ESTIMACIÓN DE ASCENDENCIA POR RANGO DE VARIACIÓN DE RASGOS MÉTRICOS CRANEALES EN UNA MUESTRA DE RESTOS ÓSEOS PROCEDENTES DE LA CIUDAD DE MEDELLÍN

LILIANA MARIA BERNAL FLOREZ

Trabajo de grado para optar al título de

Antropóloga

Asesora:

TIMISAY MONSALVE VARGAS, PhD.

Antropóloga

Universidad de Antioquia

Facultad de Ciencias Sociales y Humanas

Departamento de Antropología

Medellín

2017

Agradecimientos

A mis padres por su apoyo incondicional y por la ayuda que siempre me dieron para seguir adelante, mami decirte gracias es poco, por ti este sueño hoy es una realidad, este título también es tuyo.

Agradezco también a mis hermanas Erika y Alexandra que cada día me enseñan, me acompañan y creen en mí, a mi pequeña hija que llenó mi vida de alegría y esperanza, quien espera pacientemente que llegue la noche para volvernos a encontrar, hija te amo.

A mi asesora Timisay Monsalve mi completo respeto y agradecimiento, por sus grandes enseñanzas que han hecho de mi la antropóloga que soy ahora, gracias profe por abrirme sus puertas y contagiarme de su gran amor a la antropología, por ser mi norte y guiar este camino que apenas comienza

Y como no darle las gracias a Cecilia Londoño Uribe, por su tiempo, paciencia y apoyo que siempre me brindó, que me contagia cada día de su alegría y su capacidad de conocimiento, Ceci mil gracias por todo.

Por último, quiero darle las gracias a una persona que pacientemente ha esperado y confiado en mí, Juan Fernando infinitas gracias por tu ayuda

Resumen

Una parte fundamental en la construcción del perfil biológico de restos óseos humanos no identificados es la estimación de la ascendencia, considerada un componente biológico de la variación poblacional, siendo el cráneo el mejor indicador por su alto grado de heredabilidad. Sin embargo, este ha sido uno de los temas más controvertidos que ha tenido que afrontar la antropología física. En particular Colombia que se caracteriza por tener una amplia variabilidad poblacional. De ahí que el propósito de este estudio es estimar la ascendencia a través de características métricas craneales en una muestra de individuos contemporáneos de sexo, edad y lugar de nacimiento conocido. Para el análisis se construyeron ecuaciones lineales entre los rasgos métricos que mejor discriminaron a la población a través de una función discriminante la cual fue divida en subgrupos previamente determinados según su lugar de nacimiento. Inicialmente las funciones discriminantes fueron construidas utilizando el método de inclusión de todas las variables juntas logrando clasificar correctamente el 61.1%. Posteriormente se utilizó el método de inclusión por pasos obteniendo una clasificación correcta del 40,4%. Estos resultados reflejan alta similitud en la morfología craneal entre las regiones de Antioquia, sin embargo, se lograron identificar diferencias más marcadas entre los individuos del Valle de Aburrá, Nordeste y Urabá.

Palabras clave:

Antropología física, osteología, cráneo, ascendencia, craneometría, análisis discriminante

Tabla de contenido

INTRODUCCIÓN	1
Capitulo teórico	4
Consideraciones generales	4
Variabilidad poblacional	6
Raza y ascendencia en la identificación humana	8
Aproximaciones generales del tejido óseo	11
Crecimiento y Maduración	19
Apuntes metodológicos	20
Estudios de estimación de ascendencia en la actualidad	23
Contexto	25
Capitulo metodológico	29
Población de referencia	29
Selección de la muestra	30
Criterios de inclusión	31
Criterios de exclusión	32
Variables	32
Puntos de referencia del cráneo impares (plano medio-sagital)	32
Puntos de referencia del cráneo pares laterales (plano mediosagital)	33
Medidas del cráneo	35
Técnica Craneométrica	38
Recolección y registro de datos	38
Análisis de datos	39
RESULTADOS	42
Verificación de supuestos	42
Estadísticos descriptivos	44
Funciones discriminantes con variables independientes juntas	57
Método	57
Clasificación	60
Funciones discriminantes con método de inclusión por pasos	62
Método	
Clasificación	70
Discusión y conclusiones	76

Discusión	76
Conclusiones	77
REFERENCIAS	78
Anexo 1	83

Lista de tablas

Tabla 1. Número de casos según el sexo con respecto al lugar de nacimiento	31
Tabla 2. operacionalización de las variables	36
Tabla 3. Resultados de prueba M de Box	42
Tabla 4.Pruebas de normalidad	42
Tabla 5. Resumen de proceso del caso de análisis	44
Tabla 6.estadísticas por grupo	45
Tabla 7. Prueba de igualdad de medias de grupos	55
Tabla 8. Autovalores	58
Tabla 9. Lambda de Wilks	58
Tabla 10. Coeficientes de función discriminante canónica estandarizadas	59
Tabla 11.Funciones en centroides de grupo	61
Tabla 12. Resultados de clasificación	61
Tabla 13.Comparaciones de grupos por parejas	63
Tabla 14. Autovalores	66
Tabla 15. Lambda de Wilks	66
Tabla 16. Coeficientes de función discriminante canónica estandarizadas	67
Tabla 17. Funciones en centroides de grupo	67
Tabla 18. Resultados de clasificación	70

Lista de figuras

figura 1 funciones discriminantes canónicas	. 69
figura 2 funciones discriminantes canónicas nordeste.	. 71
figura 3 funciones discriminantes canónicas norte	.72
figura 4 funciones discriminates canónicas occidente.	.72
figura 5 funciones discriminates canónicas oriente	.73
figura 6 funciones discriminates canónicas suroeste	.73
figura 7 funciones discriminates canónicas urabá	.74
figura 8 funciones discriminates canónicas valle de aburrá	.74
figura 9 funciones discriminates canónicas otro.	. 75

INTRODUCCIÓN

Una parte integral de la construcción del perfil biológico de restos humanos esqueletizados no identificados es la estimación de ascendencia del individuo (Hefner, 2009). Como señala Konigsberg et al. (2009) esta es considerada un descriptor científicamente derivado del componente biológico de la variación poblacional (Ferguson, Kerr, & Rynn, 2011) Por lo tanto lo que busca el antropólogo al momento de evaluar la ascendencia es básicamente construir una afinidad poblacional ancestral a partir del análisis de una combinación de variables métricas y no métricas (Hefner, 2007), mediante la inspección visual de variables morfológicas del cráneo y la mandíbula o a través de un análisis de las medidas del cráneo o del esqueleto post-craneal. (Hefner, 2009). Sin embargo el cráneo es considerado según Patriquin et al. (2002) y Relethford (2009) el mejor indicador de ascendencia (Ferguson et al., 2011) ya que como lo menciona Sparks y Jantz (2002) este tiene un alto grado de heredabilidad (Ferguson et al., 2011).

Como efecto de lo anterior se han desarrollado dos métodos para la estimación de la ascendencia. Por un lado está el análisis métrico con un enfoque estadístico midiendo los rasgos en una escala continua y por otro lado está el análisis de rasgos no métricos o caracteres morfoscopicos del cráneo (DiGangi. & Hefner, 2013)

A pesar de la importancia que tiene la evaluación de la ascendencia en la identificación del individuo, es uno de los temas más controvertidos que ha tenido que afrontar la Antropología física (DiGangi. & Hefner, 2013); más aún en América latina donde hay un alto grado de mestizaje, y especialmente Colombia que es un país que se caracteriza por ser multiétnico, pluricultural y poligénico (Rodriguez, 2011), Dando lugar una amplia variación poblacional. Por esta razón es de gran importancia y total pertinencia para el caso de la población colombiana identificar patrones

en la variación de la forma del esqueleto craneal. Pero las investigaciones que se han realizado recientemente sobre variación poblacional son muy reducidas o con un enfoque en poblaciones de grupos indígenas prehispánicos (Melton et al., 2007).

De ahí que el propósito de este estudio es estimar la ascendencia a través de características métricas craneales en una muestra de individuos contemporáneos de ambos sexos procedentes de la ciudad de Medellín, basados en el principio de que la genética contribuye más a la morfología del cráneo dentro de una población. Si bien los factores ambientales pueden influir en estas características su incidencia es en menor grado con respecto a la influencia genetica (Howells 1989; Froment 1998; Hiernaux, 1968 citado en L'Abbé, Ribot, & Steyn, 2006).

Para el análisis de los datos se utilizaron técnicas estadísticas multivariadas que permiten diferenciar entre diferentes grupos mutuamente excluyentes continuando con la identificación de las variables que realmente son discriminantes en la diferenciación de estos, y finalmente comprobar la capacidad de predicción del modelo discriminante previamente construido.

Es importante anotar que este es un tema amplio para abordar, para lograr generar con los datos obtenidos una base de datos donde se evidencien los patrones de distribución de la variación de la población a partir de los rasgos métricos identificados en el cráneo, es necesario continuar con este tipo de investigación básica para que en estudios posteriores pueda ser aplicada a la población local con intereses en el campo forense.

Estas son algunas de las consideraciones por las cuales resulta pertinente realizar investigación básica en población colombiana, más específicamente con individuos provenientes de la ciudad de Medellín donde actualmente está en proceso de conformación la colección osteológica de referencia de la Universidad de Antioquia. Hacer este tipo de investigaciones contribuirá al

mejoramiento en la estimación de ascendencia y aumentará la compresión de la variación humana. Adicionalmente, estos datos también podrán ser aplicados en contextos forenses, más aún la situación de violencia que ha sufrido el país durante las últimas décadas dejando una gran cantidad de muertes de las cuales un alto porcentaje de estas personas se encuentran sin identificar como es el caso de las múltiples fosas comunes y bóvedas de NNs en distintos lugares y cementerios del país. Además, que, La clasificación craneal de individuos adultos ayuda en la determinación de parámetros antropométricos, siendo muy valioso para el estudio de la evolución biológica del ser humano, su anatomía y su simetría.

Capitulo teórico

Consideraciones generales

La antropología es el estudio de las poblaciones humanas y todos sus aspectos tanto culturales como biológicos (DiGangi. & Hefner, 2013), la antropología física es una ciencia que forma parte de esta (Velázquez, 2001) la cual aborda tanto la variabilidad contemporánea como la diversidad biológica y la historia evolutiva de las poblaciones humas (Rebato, Susanne, & Chiarelli, 2005). Por tanto esta busca ordenar o clasificar los grupos humanos en categorías, en parte como una forma más completa para entender a la humanidad (DiGangi. & Hefner, 2013). En este sentido el antropólogo físico evalúa la variación entre individuos de grupos poblacionales, la cual puede ser atribuida a la ubicación geográfica y la proximidad de poblaciones ancestrales, sin embargo, estudios recientes sustentan que este patrón no se cumple dentro de la población colombiana.

Para el caso de las poblaciones pasadas se estudia a través de la paleoantropología y la paleopatología y en poblaciones actuales con fines forenses trata la identificación de restos más o menos esqueletizados, humanos o de posible pertenencia humana (Stewart, 1979 citado en Rodriguez, 2011) De igual manera busca abordar temas tan diversos como los referentes a polimorfismos genéticos, crecimiento y desarrollo, ecología humana y finalmente problemas de nutrición y salud (Rebato et al., 2005). A su vez es subdividida en tres grandes áreas según los principales componentes del cuerpo humano, como la somatología, genética y osteología (Galera et al., 1998 citado en Rodriguez, 2011). La somatología corresponde a la técnica criminalística, la genética pertenece al campo de la biología y la osteología es una rama de la anatomía que se ocupa del estudio de los huesos humanos la cual puede ser utilizada para la recuperación e interpretación de estos. (Rodriguez, 2011).

En particular la osteología además de ser utilizada por la anatomía y la medicina es usada por otras disciplinas científicas como la antropología forense en el trabajo de la identificación de retos esqueléticos, y por lo general se hace en un contexto legal. La paleontología en contextos antiguos y la arqueología que tiene que ver con el trabajo aplicado en contextos más recientes (White, Black, & Folkens, 2012). En la línea del proceso de identificación del individuo la osteología da al investigador las herramientas necesarias para determinar a partir de los huesos el perfil biológico el cual se construye mediante la estimación de sexo, edad, ascendencia, talla, proporciones corporales, rasgos individualizantes, características físicas, forma del rostro, grado de robustez, estado nutricional y enfermedades que afectaron su salud y dejaron huella en los huesos (Rodriguez, 2011).

Por esta razón se puede observar que la biología humana en general, con sus diferentes procesos de crecimiento, maduración, estado de nutrición, entre otros, están sujetos a las condiciones materiales de vida producidas en sociedad (Monsalve & Serrano, 2005), entendiendo así el hueso como tejido y como órgano que se ve afectado durante la vida del individuo tanto por factores endógenos (desórdenes hemopoyéticos, metabólicos, endocrinos, enfermedades infecciosas) como exógenos (traumas, marcas de estrés laboral, estrés nutricional, factores culturales). Por tal razón, la variabilidad biológica de las diferentes poblaciones humanas en cuanto a la formación de la estructura ósea se ve modificada por la actividad física, los procesos de salud y enfermedad, alimentación y nutrición, diferencias de edad y sexo y la filiación grupal, por lo cual se puede afirmar que es posible conocer las poblaciones y sus procesos de vida y muerte por medio de la morfología ósea.(Isaza & Vargas, 2012)

Variabilidad poblacional

Todos los seres humanos contemporáneos son miembros de la misma especie politípica¹, "Homo sapiens", la cual está conformada por poblaciones locales que difieren en la expresión de uno o más rasgos (Jurmain, Kilgore, & Trevathan, 2011). En este marco de ideas la población es definida por DiGangi y Herner (2013) como un grupo de individuos humanos contemporáneos viviendo en relativamente la misma área geográfica, que tienen una cultura compartida, sistemas de lenguaje, tradiciones y creencias y que tienden a buscar compañeros dentro del mismo grupo. Ahora bien, las poblaciones humanas se distinguen entre sí por una serie de rasgos que varían con una tendencia central y una frecuencia determinada en su distribución (Rodríguez Cuenca, 1994), siendo esta variación entendida como el producto de la articulación entre biología, cultura y geografía (Edgar & Hunley, 2009); de ahí que el pensamiento moderno de la antropología física se haya enmarcado en un enfoque poblacional desde una perspectiva evolutiva (DiGangi. & Hefner, 2013). Por tanto, hoy los antropólogos han intentado entender cuanta diversidad existe, por qué las diferencias existen, y cómo las diferencias de los seres humanos se adaptan a diversos ambientes, más que simplemente a documentar las diferencias para crear categorías raciales (Relethford, Konigberg, & Mielke, 2006).

Las primeras investigaciones realizadas sobre diversidad humana dieron lugar a la producción de gran cantidad de clasificaciones raciales, basándose principalmente en el exterior y rasgos fenotípicos acompañados además de cualidades culturales o de comportamiento (Relethford et al., 2006), a la manera de proceso ha ido cambiando la forma de cómo abordar este tema y actualmente la variación humana es concebida desde dos escuelas de pensamiento siendo su principal punto de

¹ Una especie politípica está conformada por las poblaciones locales que difieren en la expresión de uno o más rasgos. Incluso dentro de las poblaciones locales hay una gran cantidad de variación genotípica y fenotípica (Jurmain et al., 2011)

desacuerdo la forma en que se organizan los patrones geográficos de la variación, puesto que una escuela explica que la variación humana está distribuida en clines² y que se da más variación genética dentro de la población que entre las poblaciones (DiGangi. & Hefner, 2013).

Por el contrario, la otra escuela de pensamiento explica la variación cómo el resultado de factores complejos que interrumpen el flujo génico cuando una población más grande se divide, los cuales contribuyen a las fuerzas evolutivas como la migración y división de la población. Finalmente conduciendo al efecto fundador, donde los genes de un segmento más pequeño de la población más grande se vuelven más representativos que los de la población base, dando como resultado la deriva genética. Es decir, el patrón de variación de una población es un subconjunto de la diversidad que se encuentra en otro (DiGangi. & Hefner, 2013).

Adicional a esto es de gran importancia tener en cuenta que existen una serie de cambios a corto plazo que se dan generalmente a través de una o dos generaciones los cuales han sido conocidos como cambios seculares. Estos han sido relacionados desde cambios en la estatura promedio hasta cambios de la forma de la bóveda craneal. Aunque el entorno físico tiene influencia sobre estos cambios se debe tener en cuenta que los cambios del entorno social y cultural son los que tienen mayor incidencia en la población. (Vitek, 2012).

En cuanto a cómo se distribuye esa variación poblacional moderna, Howells (1989) indica que la mayoría de las diferencias de forma entre ancestros está situada en el tercio medio facial, incluyendo: variación en la cara superior, variación en la región nasal y la variación en las fronteras De las orbitas (Hefner, 2007). Esto se debe a que como lo indico Ferguson y colaboradores (2011)

-

² El concepto de un cline se refiere a cambios graduales en los individuos en un área geográfica

el cráneo es el complejo más diverso ancestralmente por eso siempre hay una tendencia a perecernos a nuestros padres.

Como efecto de lo anterior la antropología física ha centrado su foco de atención en la evaluación entre esqueletos de grupos poblacionales, ya que estas diferencias físicas existen entre grupos ancestrales que pueden ser mostradas de una manera consistente (Vitek, 2012), por tanto es la antropología física quien ha proporcionado los métodos para caracterizar e interpretar la variación biológica humana, y cada vez más con una perspectiva biocultural que reconoce las consecuencias de los cambios seculares para la estimación forense de la ascendencia (Edgar & Hunley, 2009)

Raza y ascendencia en la identificación humana

El termino raza además de tener una connotación biológica, está cargado de connotación social, que generalizó una percepción de características físicas asociadas con numerosos atributos culturales. este el único tema asociado a la antropología que ha estado envuelto en tanta polémica. (Jurmain, Kilgore, Trevathan, & Ciochon, 2013), además de ser considerada una categoría social fundada sobre diferencias biológicas confusas entre poblaciones que son culturalmente construidas y mantenidas para fines políticos y sociales. (Vitek, 2012).

Los estudios sobre las poblaciones humanas o grupos ancestrales han sido de gran interés para los antropólogos físicos desde el periodo formativo de la disciplina. Tanto que se le ha atribuido como el "pecado original" de la Antropología (Lévi-strauss, 1952; Citado en Hefner, 2007). Pues es un tema que continúa siendo de gran interés para el quehacer antropológico. Es así como inicialmente las investigaciones estaban más enfocadas a clasificaciones raciales que a descripciones detalladas de alcance y naturaleza de la variación.

Las primeras clasificaciones raciales se basaron principalmente en rasgos fenotípicos acompañadas de cualidades culturales o comportamentales. Estas eran a menudo etnocéntricas y estereotipadas, algunos cuestionaron si había múltiples orígenes (*poligenismo*) de seres humanos o un mismo origen , monogenismo (Relethford et al., 2006).

A mediados del siglo XIX, el monogenismo y poligenismo se convirtieron en cuestiones importantes, y los cráneos humanos sirvieron para la creación de esquemas de clasificación. Samuel George Morton con las medidas craneales proporcionó la base científica del poligenismo, mientras que Louis Agassiz se convierte en el teórico de esta, siendo ratificadas las medidas del cuerpo como estudios más científicos y precisos. (Relethford et al., 2006)

A finales del siglo XIX Franz Boas empieza a mostrar en sus publicaciones un interés en la variación humana por fuera de la raza, rechazando el pensamiento determinista y las explicaciones tipológicas. (DiGangi. & Hefner, 2013), adicionalmente Frank Livingstone en 1962 argumentó que el termino raza es estático y tipológico el cual es incompatible con el concepto dinámico de selección natural y que el antropólogo debe centrarse en clines no en razas (Relethford et al., 2006). Pero es Sherwood Washburn quien estableció el marco para el pensamiento moderno en la Antropología biológica, con un enfoque en la población desde una perspectiva evolutiva. (DiGangi. & Hefner, 2013), de ahí que los estudios sobre ascendencia toman una perspectiva de la población, centrándose en la comprensión de la distribución de la variación humana (DiGangi. & Hefner, 2013).

Ascendencia se refiere a la línea de descendientes de una generación a otra u otras generaciones hasta la actualidad y generalmente se representan como categorías que son equivalentes a las utilizadas en la tipografía racial anterior (Vitek, 2012). Existen dos métodos ampliamente aceptados de la determinación de la ascendencia en antropología forense.

Uno es el enfoque de Boas que prefirió los datos métricos ya que estos reflejan con mayor precisión la distribución continua de la variación humana y el otro es el enfoque de Hooton, el cual prefirió por el contrario, rasgos no métricos o categóricos (Hefner, 2007). En consecuencia los análisis métricos y no métricos han sido utilizados alternativamente en los esfuerzos para clasificar y distinguir los grupos humanos (Hefner, Ousley, & Dirkmaat, 2012).

Durante largo tiempo los análisis métricos han sido la principal fuente de cuantificación de la variación humana (Vitek, 2012), debido a que estos pueden ser registrados en una escala continua (es decir cualquier valor entre 0 y N) mientras que los rasgos morfoscópicos son medidos categóricamente. El tratamiento estadístico de datos continuos tiene varias ventajas sobre los datos categóricos ya que se asigna un valor que está en una de varias categorías posibles. En cambio las variables categóricas no tienen siempre un significado numérico (DiGangi. & Hefner, 2013).

El análisis de rasgos craneales ha sido tradicionalmente una herramienta en antropología forense para evaluar la ascendencia en investigaciones medico legales (Brettell, 2013) ya que la morfología craneofacial es un buen indicador de los patrones geográficos (Ousley, Jantz, & Freid, 2009). Por esta razón el cráneo es considerado como el mejor indicador de la ascendencia fundamentalmente en la parte media del esqueleto facial porque es en esta zona donde se localiza la mayor diferencia entre descendientes "...incluyendo: variación en la cara superior, la variación en la región nasal, y la variación en las fronteras orbitales." (Howells (1989) citado en Hefner, 2007: 51). De ahí que cuando el cráneo y especialmente el esqueleto facial están completos la probabilidad de estimar ascendencia con precisión es muy alta, teniendo en cuenta que la estimación correcta de ascendencia depende también de la disponibilidad de una muestra de referencia y la capacidad y experiencia del analista con las técnicas de medición y la capacidad para entender correctamente

y evaluar visualmente las características métricas del cráneo asociadas a diferentes grupos ancestrales (DiGangi. & Hefner, 2013).

Ahora bien, estudios con este enfoque han sido conocidos desde las investigaciones realizadas por Giles y Elliot (1962, 1963) quienes fueron los primeros en utilizar el análisis de función discriminante (DFA) en 18 cráneos amerindios para determinar sexo y raza (DiGangi. & Hefner, 2013). El análisis de función discriminante fue desarrollado como un medio para clasificar a un individuo en uno de los varios grupos de referencia mediante la incorporación de un enfoque matemático similar al análisis de regresión (Krzanowski, 2002 citado en DiGangi. & Hefner, 2013), de igual manera el programa FORDISC es la herramienta más común que se está utilizando actualmente en Estados Unidos para el análisis de datos craneométricos en contextos forenses (Hefner et al., 2012). Este programa utiliza el análisis de función discriminante (DFA) para clasificar un individuo desconocido en una de las varias poblaciones de referencia y es, en gran medida, la Estadística de clasificación más utilizada en antropología forense, especialmente cuando los datos son continuos (DiGangi. & Hefner, 2013).

Aproximaciones generales del tejido óseo

En aras de comprender el interés de la Antropología Física en realizar estudios con restos esqueletizados se considera de gran importancia conocer muy bien el complejo óseo humano más específicamente el complejo cranoefacial ya que la investigación centra su interés en esta parte del esqueleto humano.

El tejido óseo es una variedad de tejido conjuntivo en que la matriz aparece impregnada de sales cálcicas, está constituido por células, fibras sustancia fundamental y sales minerales (Geneser, 1998). Básicamente el tejido óseo está compuesto por dos tipos de materiales: el colágeno que constituye alrededor del 90% del contenido orgánico del hueso formando fibras flexibles

ligeramente elásticas en el hueso y los cristales de hidroxiapatita que dan la dureza y rigidez en el hueso (White et al., 2012). Estos se componen de cinco tipos de células que son células osteoprogenitoras derivadas de las células madre mesenquimáticas además de ser las precursoras de los osteoblastos. Los osteoblastos o célula osteoformadora, es la encargada de secretar matriz ósea, esta célula también tiene a su cargo la calcificación de la matriz. Los osteocitos, son células óseas maduras que será la responsable de mantener la matriz ósea, estos pueden sintetizar la matriz nueva y también resorberla. Las células de revestimiento óseo derivan de los osteoblastos, siento estas las encargadas de tapizar el tejido óseo que no se está remodelando. Finalmente los osteoclastos quienes son os encargados de la resorción ósea (Ross & Pawlina, 2006). Existen dos formas de clasificar la formación del hueso que es la osificación endocondral, este se distingue porque un modelo cartilaginoso sirve como precursor óseo y en la osificación intramembranosa el hueso se forma por un método más simple, sin la intervención de un cartílago precursor (Ross & Pawlina, 2006)

El esqueleto humano está compuesto por 206 huesos constantes, el cual puede variar con la presencia de huesos supernumerarios. Los huesos sirven como protección y apoyo de los tejidos blandos, dan forma a las distintas partes del cuerpo, funcionan como centros de producción de células sanguíneas, almacenamiento de grasa y reserva de calcio (White et al., 2012)

Para facilitar el estudio de los huesos estos han sido divididos en dos grupos los cuales son: localización, si hace parte del esqueleto craneal o del esqueleto postcraneal y forma, estos a su vez se dividen en huesos largos entre los cuales se ubican los huesos de las extremidades, algunos huesos de la mano y del pie, Huesos planos como los huesos de la bóveda craneal, el hombro, la pelvis y las costillas y por último se encuentran los huesos irregulares como los huesos del tobillo, muñeca y columna vertebral (White et al., 2012)

El esqueleto post craneal está conformado por: hioides y vertebras, el tórax que está integrado por el esternón y las costillas, la cintura escapular formada por clavícula y escapula, la extremidad superior conformada por húmero, radio y ulna, mano formada por carpos, metacarpos y falanges, pelvis integrada por sacro, coxis y coxales, extremidad inferior formada por fémur, tibia, peroné y rotula, por últimos están los huesos del pie que contiene los tarsos, metatarsos y falanges (White et al., 2012). Adema el esqueleto craneal conformado por el cráneo siendo esta la parte más compleja del esqueleto y de gran importancia en osteología humana; forma la base ósea para los sentidos de la vista, el olfato, el gusto y el oído, además de contener y proteger el cerebro (Bass, 2005). La cabeza ósea está situada en la parte superior de la columna vertebral, la cual está dividida en dos partes que se encuentran íntimamente relacionadas: el neurocraneo o cráneo cerebral y el esplacnocráneo o cráneo facial(White et al., 2012).

Antes de pasar a hacer el reconocimiento detallado de los huesos se mencionará el significado y la terminología del cráneo propuesta por Bass en "Human Osteology" (2005), ya que el uso inadecuado de estos podría crear posibles confusiones en su estudio. La calavera es toda la estructura ósea de la cabeza incluyendo la mandíbula, el cráneo es la calavera sin mandíbula, la bóveda craneal o calvaria es el cráneo sin rostro, la calota es la bóveda craneal sin la base, el esplacnocráneo es todo el esqueleto facial y el neurocráneo es la caja craneana.

Adicionalmente White (2012) propone siete normas para la observación de los huesos del cráneo las cuales facilitaran el conocimiento de cada uno de los huesos, suturas y puntos craneométricos.

- vista posterior

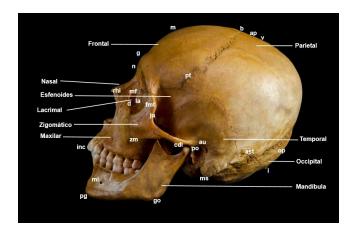
- vista lateral

- vista anterior

- vista basilar

Fotografía del Laboratorio de Osteología de la universidad de Antioquia

vista endocraneal


Imagen tomada de White et. al., 2012

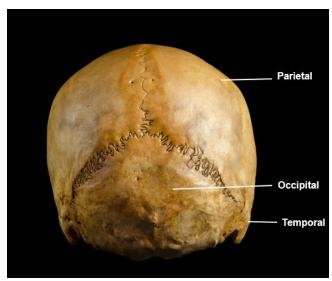
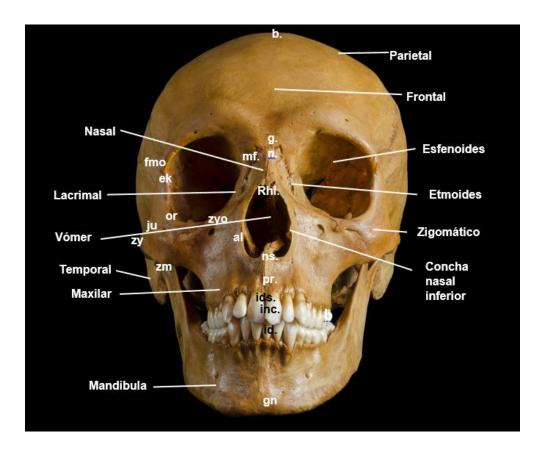

- vista superior

Imagen tomada de White et. al., 2012


El neurocraneo se conforma por ocho huesos los cuales son: un hueso frontal, dos parietales, dos temporales, un occipital, un etmoides y un esfenoides. Estos huesos se encuentran unidos por las suturas coronal, sagital, lambdoidea y temporoparietal, (White et al., 2012)

Fotografía del Laboratorio de Osteología de la universidad de Antioquia

El esplacnocráneo está conformado por catorce huesos de los cuales son dos maxilares, dos malares o pómulos, dos conchas o cornetes inferiores, dos huesos nasales o huesos propios de la nariz, dos ungis, dos palatinos, un vómer y la mandíbula (White et al., 2012)

Fotografía del Laboratorio de Osteología de la universidad de Antioquia

Los huesos del cráneo se unen en articulaciones serradas conocidas como puntos de sutura; las suturas son aberturas lineales irregulares que en estado infantil y juvenil se aprecian muy bien, ya que están completamente abiertas y en la edad adulta se van cerrando gradualmente, hasta llegar a la unión completa en la vejez (White et al., 2012).

La mayoría de las suturas toman sus nombres de los huesos del cráneo que se unen para formarla, como son: las suturas zigomaxilomalar que son las suturas entre los cigomáticos y los malares y la sutura frontonasal que son suturas cortas entre el frontal y nasales (White et al., 2012). Pero algunas suturas tiene nombres especiales como la coronal que se ubica entre el frontal y los parietales, la sagital entre los dos parietales, lambdoidea entre los parietales y el occipital, la basilar que esta entre el occipital y el esfenoides, la metópica pasa entre los frontales no fusionados y rara

vez persiste hasta la edad adulta, la escamosa que pasa entre los huesos temporal y parietal, la sutura basilar se encuentra entre el esfenoides y el occipital, parietomastoidea pasa entre los parietales y los temporales y la occipitomastoidea que pasan entre el occipital y los temporales a ambos lados de la bóveda craneal (Bass, 2005)

Crecimiento y Maduración

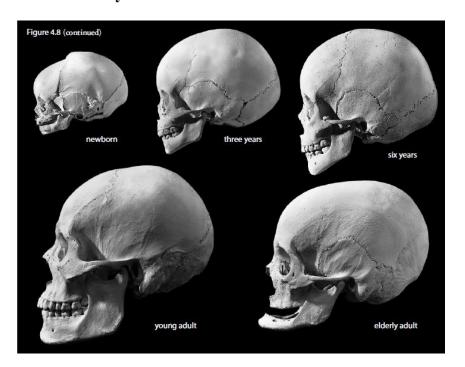
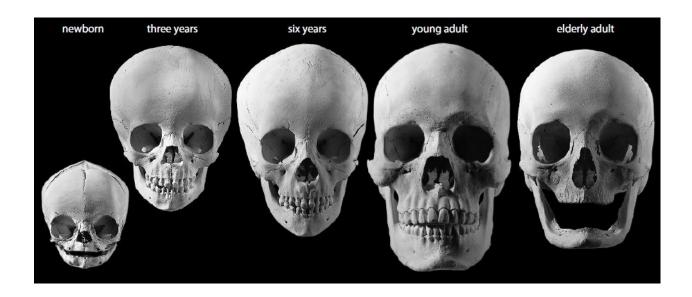



Imagen tomada de White et. al., 2012

La formación del cráneo se inicia desde el desarrollo fetal cada hueso formándose a partir de su propio centro de osificación, comenzando por la base para continuar en sentido anterior. Al momento del Nacimiento el cráneo cuenta con 45 centros de osificación siendo este bastante grande en relación con las otras partes el cuerpo (White et al., 2012) En la vida temprana hay áreas cartilaginosas llamadas fontanelas que le dan la flexibilidad necesaria al cráneo para el momento del nacimiento, entre ellas están la bregmática, lambdoidea, ptérica y astérica. Los espacios entre los huesos se cierran totalmente en la vida adulta (White et al., 2012)

Crecimiento del cráneo humano. Imagen tomada de White, et al., 2012

Apuntes metodológicos

Aunque el estudio del cráneo hace parte del estudio del esqueleto en general este ha tenido un especial interés en muchas investigaciones de la antropología física. Empezando por las someras descripciones craneológicas de Herodoto e Hipócrates, para luego llegar al siglo XVI con Vesalius donde se dan a conocer los primeros datos sobre craneología antropológica, más tarde Adriaan Van der Spieghel (1578-1625) hace el primer intento práctico de agrupar las distintas formas craneales. Louis J.M. Daubenton (1716-1800) comienza a mostrar las primeras aplicaciones en craneométria, pero con S.G. Morton se conoce esencialmente un craneólogo y publica su gran obra *Crania americana* en 1839 y *Crania Egyptiaca* en 1844; Anders A. Retzius (1796-1860) realizó estudios comparados de cráneos y es quien por primera vez establece la relación entre anchura y longitud craneal y desde 1861 se pueden encontrar los numerosos e importantes trabajos de Paul Broca (Comas, 1976)

Debido a esta gran importancia e interés que ha surgido por el conocimiento del cráneo este puede ser estudiado a partir de sus caracteres métricos y no métricos (Campillo Valero & Subirà, 2004) Los caracteres no métricos llamados también rasgos morfológicos discontinuos, variantes epigenéticas o rasgos discretos son expresiones de la variación observada en los huesos, Esta es una de las primeras observaciones que se hacen en el cráneo para reconocer que existen diferencias en función de su tamaño, forma y protuberancias, surcos, agujeros o texturas superficiales, en comparación con otro. Muchas de estas variaciones pueden deberse a factores como la edad, el sexo o patologías; sin embargo la mayor parte de esta variabilidad puede ser atribuida a la filiación poblacional (Rodriguez, 2011), también conocida como diferencias étnicas (Merabishvili, 2006) o determinación de ascendencia (Hefner, 2007)

La craneometria es la técnica de la antropología biológica que más se ha empleado en el estudio de la diversidad poblacional (Alexeev y Debetz, 1964; Howells, 1973,1989; citado en Rodríguez, 2011). Bass (2005) define la craneometría como una técnica de medición del cráneo para obtener datos precisos que luego podrán ser evaluados usando técnicas estadísticas univariadas o multivariadas. De estas manera se puede entender la craneometría como una de las técnicas predilectas de la antropología física ya que por medio de esta se ha logrado obtener precisión y estandarización en las medidas, reflejar la variación continua y conectar el pasado con el presente de las poblaciones humanas (Pietrusewsky, 2000)

Así, en términos generales se puede concluir que la craneometría se ha convertido en el foco de muchas investigaciones y por esto se ha desarrollado una extensa lista de puntos craneométricos que ha permitido a los investigadores tomar medidas comparables con otros cráneos. Los puntos de referencia que se describirán a continuación son los más frecuentemente utilizados para medición y descripción de cráneos humanos anatómicamente modernos (White et al., 2012). Los

puntos craneométricos se dividen en dos conjuntos: pares e impares. Los puntos impares son los que se encuentran ubicados en el plano mediosagital y los puntos pares se encuentran situados a cada lado (White et al., 2012), estos puntos son indispensables ya que las medidas están tomadas entre dos puntos de referencia anatómicos.

Hay tres tipos de medidas que son las más utilizadas en el estudio del cráneo: primero la que proporciona la capacidad craneal, después se encuentran las medidas lineales entre dos puntos y por último la medición curvilínea. adicionalmente están los índices que permitirán expresar la proporción del ancho del cráneo con su longitud (Bass, 2005) que serán calculados a partir de las medidas tomadas en el cráneo y servirán para hacer una clasificación de este.

También es importante anotar que con el fin de ubicar los objetos en el espacio se han establecido unos planos sobre la base de tres dimensiones geométricas: altura, longitud y anchura, los cuales son presentados por White et al., (2012) como plano sagital, este divide el cuerpo en dos mitades y coincide con el punto anatómico medio. Plano horizontal, este plano pretende correlacionar al individuo con la superficie del planeta. En el congreso de Frankfurt (1880) se propone por consenso el plano propuesto por Virchow el cual actualmente es el más utilizado y conocido como el plano de Frankfurt; los tres puntos que determinan este plano son porión derecho e izquierdo y el punto infraorbitario izquierdo. Finalmente está el Plano transversal, que a nivel del cráneo es perpendicular al plano horizontal que pasa por el porión izquierdo y derecho

Ahora bien, la craneometría ha demostrado tener un gran potencial para rastrear las principales tendencias evolutivas, discutir relaciones filogenéticas y proponer formulas discriminantes para diagnosticar la filiación poblacional; esta variable sirve para diferenciar los distintos grupos poblacionales del país y el grado de mestizaje (Rodriguez, 2011) en esta medida se puede considerar que los estudios craneométricos nos ayudan a conocer la forma de los cráneos.

La aplicación de métodos, mediciones e instrumentos en la craneometría permite la cuantificación y la comparación de los resultados de las investigaciones. La utilización de datos objetivos obtenidos a través de la craneometría asume un rol decisivo en la identificación individual en cuanto a constitución, sexo, raza y edad de los individuos (Vanrell & Borborema, 1953 citado en Bustamante, Fuentes, Flores, & Sanhueza, 2011).

En investigaciones anteriores se realizaron algunos estudios en la curvatura femoral anterior como un posible indicador de origen racial de un individuo (Stewart, 1962 citado en Bass, 2005) pero reportaron resultados contradictorios además de que estas investigaciones fueron con muestras de tamaños muy pequeños.

Estudios de estimación de ascendencia en la actualidad

Como lo indican DiGangi. & Hefner (2013) en su capítulo sobre estimación de ascendencia, un cráneo completo proporciona una alta probabilidad de estimación de ascendencia correcta, pero esta también depende de la disponibilidad de una muestra de referencia, experiencia del analista con las técnicas de medición y la capacidad para entender y evaluar correctamente las características métricas del cráneo, asociadas a diferentes grupos ancestrales. Con este fin han sido utilizados rasgos métricos y no métricos craneales aplicados a modelos estadísticos que buscan fundamentalmente proporcionar información acerca de las diferencias o semejanzas entre grupos poblacionales.

Los rasgos no métricos o discretos juegan un papel muy importante en la reconstrucción del perfil biológico de un individuo ya que además de proporcionar información sobre las distancias poblacionales, también evidencian herencia familiar, distinguen los grupos humanos y podrían ser utilizados en la evaluación de la ascendencia de restos óseos desconocidos (Hefner, 2007). Pero

por tratarse de variables que son medidas categóricamente este tipo de estudios han tenido que enfrentarse a una serie de críticas debido a que no han sido tratados adecuadamente.

Actualmente se han llevado a cabo estudios como los de Hefner (2007, 2009, 2012 y 2013) que han contribuido a la estandarización del análisis de datos morfoscopicos en los que a partir de la morfología comparada son examinados y comparados de manera objetiva.

Tise, Kimmerle y Spradley, realizaron una investigación que exploró la variación entre seis grupos diversos que se encuentran en la Florida y Estados Unidos especialmente a lo largo de la frontera basado en función discriminante canónica y distancia de malahanibis. las muestras mexicanas y guatemaltecas Son las más similares al comparar solamente los cuatro grupos considerados hispanos (D2 = 2.581) pero al comparar los seis grupos (D2 = 2.645) Dentro de los cuatro grupos considerados como hispanos, puertorriqueños y cubanos son el segundo grupo más similar (D _ {2} = 4,690). Estos resultados reflejan Similitudes en la morfología craneal al incluir las muestras de blancos y negros americanos. Mejorando la comprensión de las relaciones biológicas históricas y actuales entre Diversos grupos que viven cerca, los antropólogos forenses pueden utilizar mejor los Datos de ascendencia en sus perfiles biológicos para la identificación humana (Tise, Kimmerle, & Spradley, 2014)

Contexto

Para el análisis de la variación métrica del cráneo se ha buscado dar cuenta de las dimensiones de anchura, altura y proyección de la bóveda craneal mediante los diámetros antero-posterior máximo, transverso, altura basibregmatica y longitud de la base nasion-basion; en la frente anchura, cuerda y altura; en las orbitas altura y anchura; en la apertura periforme anchura, altura y ángulo de proyección; en la mandíbula altura, longitud, grosor y ángulo y el rostro en general anchura, altura y ángulos de proyección (Rodriguez, 2011).

Sin embargo Colombia enfrenta una tarea realmente difícil en la identificación de mestizos ya que 500 años después de la colonización el país es reconocido como pluricultural y multilingüe, dada la existencia de 87 etnias indígenas, 3 grupos diferenciados de población afrocolombiana y el pueblo ROM o gitano; se hablan 64 lenguas amerindias, el bandé, lengua de los raizales del Archipiélago de San Andrés, Providencia y Santa Catalina, el palenquero, lengua criolla de las comunidades de San Basilio de Palenque y el Romaní o Romanés lengua Rom.(Departamento Administrativo Nacional de Estadística, 2007). De los cuales según el censo realizado en 2005 se especifican las siguientes distribuciones. La población Afrocolombiana representa el 10,6% de la población, la población indígena es de 3,4% y una pequeña población Romaní del 0,01%. El 86% restante se considera población se considera sin pertenencia étnica (Departamento Administrativo Nacional de Estadística, 2007).

Por otra parte el flujo génico de indígenas, africanos y europeos se ha mantenido a lo largo de todos estos años, dando como resultado individuos con una composición tri-étnica donde la distribución genética de un colombiano promedio es aproximadamente 65% caucásico, 17% indígena y 12% de ascendencia africana (Yunis, 2004)

El proceso activo del mestizaje entre europeos, africanos y Nativos americanos en diferentes grados, se inicia a partir de la conquista de España y continua en todo el periodo que se conoce como la colonia (Yunis, 2004). Estos acontecimientos son los que configuraron la estructura genética de la población, dejando como resultado las poblaciones americanas actuales. Durante el siglo XVI en la colonización de América, alrededor de un millón de españoles y portugueses emigraron al nuevo mundo, además de los 5 millones de africanos que llegaron por la fuerza como resultado del comercio de esclavos; la población indígena que llegaba a unos 50 millones de habitantes desapareció casi por completo, la cual se vio reducida a un 10% de su tamaño original, siendo este el reflejo de lo que es posiblemente la más drástica caída de población en la historia de la humanidad (Bedoya et al., 2006).

En consecuencia estos cambios demográficos dieron lugar al establecimiento de poblaciones con diferentes grados de mestizaje a lo largo de todo el territorio americano; sin embargo se conoce poco acerca del proceso de mestizaje entre europeos invasores, población indígena nativa y descendientes africanos, pero a pesar de esto es evidente que este fue el periodo cuando la mezcla fue probablemente la más extensa en todo el territorio de la conquista, particularmente Colombia fue uno de los países más influidos por este hecho histórico por ser la puerta de entrada de América del sur (Departamento Administrativo Nacional de Estadística, 2007).

Antes de la época de la conquista, Los dos grupos lingüísticos que dominaron el territorio colombiano fueron el Chibcha y el Caribe, así mismo cuando llegan los primeros españoles a este territorio, la cultura más grande y extendida era la Chibcha, estando concentrados principalmente en las cuencas de las tierras altas y valles de la cordillera oriental. Pero a partir del periodo colonial los pueblos indígenas son conducidos a cambios dramáticos en sus regímenes políticos y socioeconómicos (Cerezo et al., 2008). Adicionalmente miles de africanos desembarcaron en

Buenaventura, Gorgona y Barbacoas en la costa del Pacífico y Cartagena de Indias, Riohacha, Santa Marta, Tolú y Darién en el Atlántico (Rodas, Gelvez, & Keyeux, 2003), dando lugar a un cambio drástico en el paisaje demográfico de la Nueva Granada (antiguo nombre de Colombia, utilizado entre 1533 y 1858); por esta razón se piensa la población colombiana como el resultado de un proceso complejo de mestizaje entre europeos, africanos, y nativos americanos en diferentes grados dependiendo de la región. (Cerezo et al., 2008).

Como se mencionó anteriormente, los tipos y grados de mestizaje se dan de manera diferente a lo largo de todo el territorio colombiano, debido a que la aspereza del terreno no ha favorecido las comunicaciones y durante siglos el crecimiento demográfico de varias poblaciones en la región ocurrió en relativo aislamiento (Carvajal et al., 2000). Dentro de las cuales se encuentra la provincia de Antioquia, una población de una región montañosa del noroeste colombiano. Los conquistadores españoles comenzaron a explorar esta zona en el siglo XVI, fundando el primer pueblo en 1541 llamado Santa Fe de Antioquia situado en un valle de tierras bajas.

Igualmente las migraciónes desde zonas bajas a tierras altas se dan a lo largo de los siglos XVI y XVII, terminando en la fundación de las ciudades de San Lorenzo de Aburra (actualmente Medellín) en 1675 y Marinilla en 1690 (Bedoya et al., 2006). Antioquia se caracterizó siempre por ser una provincia relativamente autosuficiente, encerrada en ella misma, con un territorio de difícil acceso y muy baja densidad poblacional, experimentando este relativo aislamiento hasta finales del siglo XIX (Carvajal-carmona et al., 2000), en contraste con una gran ola de migración que afronta en el siglo XX, donde Medellín es en 1871 una aldea de 20000 habitantes. que alcanza unos 65000 habitantes en 1912 y 145000 en 1938 (Melo, 1993).

Con respecto al área biológica, solo se ha publicado una investigación desarrollada recientemente desarrollada por los doctores Timisay Monsalve y el Josef Hefner. El objetivo de la misma fue

documentar rasgos macromorfoscopicos usando métodos previamente desarrollados en los Estados Unidos, usando las variaciones inter-regionales de Antioquia (Monsalve & Hefner, 2016) Con base en esto se han realizado investigaciones recientes como la de Carvajal et al (2000) para evaluar el origen de hombres y mujeres fundadores de Antioquia, examinando ADN mitocondrial y marcadores del cromosoma Y (Bedoya et al., 2006)., el cual mostró como resultado la huella de una mezcla que involucra sobre todo mujeres nativas y hombres inmigrantes, luego de encontrar que los cromosomas Y de los antioqueños son 94% europeos, 5% africanos y 1% amerindios. En contraste con los linajes del ADN mitocondrial donde el 90% son amerindios, 8% africanos y 2% europeos (Carvajal et al., 2000).

Como consecuencia de todo este proceso de mestizaje a lo largo del territorio colombiano los procesos de identificación de origen se han dificultado, en particular cuando los métodos de identificación humana han tenido que ser ajustados a colecciones osteológicas de referencia de otro país. Siendo evidente que es necesario tener una colección de referencia de población local sobre todo cuando se ha atravesado un largo periodo de violencia que ha dejado a su paso 78200 desaparecidos, siendo este un valor aproximado ya que se estima que hay problemas con las desapariciones forzadas significando que este registro podría ser mayor³. Sumado a los 28.195 individuos no identificados recuperados en 295 cementerios⁴

-

³ (http:// & www.medicinalegal.gov.co/, 2016)

⁴ (http://www.Mininterior.gov.co/sala-de-prensa/noticias/mininterior-encontro-28195-personas-no-identificadas-en-cementerios-del-pais, 2016)

Capitulo metodológico

Se realizó un estudio de tipo transversal descriptivo con un enfoque cuantitativo, debido a que se busca documentar el rango de variación craneométrica a partir de la relación con su lugar de nacimiento (variable dependiente), donde las dimensiones de la bóveda craneal y el esqueleto facial (variables independientes) fueron medidas por el investigador en un solo momento para luego realizar análisis discriminante, la cual esta una técnica estadística multivariante que tiene la capacidad de indicar que variables permiten diferenciar a los grupos y cuantas de estas variables son necesarias para alcanzar la mejor clasificación posible

Una vez establecido el tipo de estudio se definieron conceptualmente las variables para la estimación de ascendencia, siendo estas consideradas como las que mejor reflejan la morfología craneofacial en general, además de que permite maximizar el tamaño de las muestras en cada grupo poblacional para los análisis estadísticos (Hefner, Spradley, & Anderson, 2014). Se utilizó como variable dependiente o categórica el lugar de nacimiento del individuo, conocido de antemano por documentación de la colección osteológica (variable categórica). como variables independientes o variables de clasificación fueron utilizadas las 24 medidas propuestas en el estándar de Buikstra & Ubelaker (1994) para la evaluación de la ascendencia.

Población de referencia

La población de referencia se compone de todos los habitantes adultos de ambos sexos que residen actualmente en la cabecera municipal de Medellín-Antioquia y todos sus corregimientos. Esta población fue estimada para el año 2015 por el Departamento Administrativo Nacional de Estadística y la Alcaldía de Medellín en un total de 2.464.322 personas, de la cual corresponde a 1.159.759 hombres y 1.304.563 mujeres (DANE & Alcaldia de Medellín, 2010)

También es importante anotar que esta es una población altamente mestiza donde un colombiano promedio desde la perspectiva genética según Yunis y colaboradores (citado en Rodríguez, 2004) tiene una configuración de 62 genes caucasoides, 26 mongoloides y 12 negroides. Adicionalmente el Departamento Administrativo Nacional de Estadística (DANE) según los resultados del censo general 2005 presenta las siguientes distribuciones de autoreconocimiento: población Afrocolombiana 10.62%, indígenas 3.43%, y la población Rom o gitana 0,01% y El 85.94% restante no se considera perteneciente a un grupo étnico, (Departamento Administrativo Nacional de Estadística, 2007).

En contraste con lo anterior se ha encontrado que en estudios de análisis de la estructura genética y la dinámica del mestizaje en Antioquia indican que esta población deriva del 94% europeos 5% Africanos, y 1% Amerindios del cromosoma Y, en contraste con el linaje del ADN mitocondrial que se compone del 90% Amerindios, 8% Africanos, y 2% Europeos (Bedoya et al., 2006).

Selección de la muestra

Se seleccionó una muestra no probabilística de la colección osteológica de referencia de la universidad de Antioquia, la cual ha sido conformada por el Laboratorio de Osteología antropológica de la Universidad de Antioquia con el fin de desarrollar investigación básica y aplicada en antropología osteológica y antropología física en población colombiana contemporánea (Isaza & Vargas, 2012) Dicha colección cuenta actualmente con 517 individuos esqueletizados procedentes del museo cementerio san pedro y el cementerio universal de la ciudad de Medellín, completamente documentados con respecto al sexo, edad y lugar de procedencia. La colección está compuesta por individuos de ambos sexos, los cuales oscilan entre la edad fetal y 102 años, además de representar a toda la población del departamento de Antioquia.

Para este estudio fueron seleccionados 230 hombres y 87 mujeres que cumplían con los criterios de inclusión para la investigación. La tabla 1 muestra la distribución de la muestra seleccionada por sexo con respecto a su lugar de nacimiento.

Tabla 1. Número de casos según el sexo con respecto al lugar de nacimiento

		Sexo ii	Sexo individuo	
		Mujer	Hombre	Total
Lugar de nacimiento	Bajo cauca	0	0	0
	Magdalena medio	0	0	0
	nordeste	1	5	6
	norte	9	16	25
	occidente	11	9	20
	oriente	7	24	31
	suroeste	16	29	45
	Urabá	3	3	6
	valle aburra	16	85	101
	otro	9	22	31
	Sin agrupar	15	37	52
Total		87	230	317

Criterios de inclusión

- Los restos esqueletizados deben pertenecer a la colección de referencia de la Universidad de Antioquia
- Documentación que demuestre sexo y edad del individuo al momento de la muerte y procedencia geográfica (cédula de ciudadanía; registro civil de defunción)
- Cráneos de individuos adultos, los cuales son caracterizados según White (2000) porque las suturas ya están bien formadas, incluso fusionadas.
- cráneo completo o en muy buen grado de conservación

Criterios de exclusión

- Que presenten errores congénitos del desarrollo como acondroplasia, hidrocefalia, acrocefalia, microcefalia; Sinostosis de origen incierto como escafocefalia; deformación artificial en cráneo; infecciones treponémicas como la sífilis; alteraciones metabólicas como la anemia con engrosamiento de la diploe, hiperostosis porotica y criba orbitaria.
- Cráneos fragmentados y sometidos a procesos de restauración o con alteraciones tafonómicas en la cortical siempre y cuando estén afectando el área a medir
- individuos considerados osteológicamente inmaduros
- sin documentación donde se dé cuenta de la edad, sexo y procedencia geográfica.

Variables

Es de suma importancia conocer muy bien la ubicación de los puntos de referencia del cráneo, puesto que, una buena toma de medidas depende tanto de la experiencia del investigador en esta técnica, como del conocimiento adecuado de los puntos de referencia del cráneo. Por lo tanto serán mencionadas y descritas según el estándar de Buikstra & Ubelaker (1994) de la manera más sencilla para un mejor entendimiento

Puntos de referencia del cráneo impares (plano medio-sagital)

Esqueleto facial.

- Gnation: punto medio más bajo del borde inferior de la mandíbula
- Pogonión: punto más saliente del mentón en la línea media y viene determinado por el lugar en que el plano perpendicular a la base de la mandíbula contacta con el mentón
- Incisión: coincide con el lugar donde una línea horizontal, que une el borde posterior de los alvéolos de los dos primeros incisivos, cruza la sutura interpalatina.

- Alveolar: punto más bajo de la arcada alveolar superior entre los incisivos, cruza la sutura interpalatina.
- Prostion: punto más anterior en la línea media del proceso alveolar superior
- Naso-espinal. Punto más bajo para medir la altura nasal
- Nasion: situado en el punto donde coincide la sutura frontonasal con la internasal

Bóveda del cráneo.

- Glabela: punto más prominente en el plano medio entre las arcadas suplaciliares
- Bregma: punto donde coincide la sutura coronal con la sagital
- Vértex: es el punto más elevado a nivel del plano sagital, perpendicular a la cuerda nasióninión
- Lambda: coincide con el punto de unión de la sutura sagital con la lambdoidea
- Opistocráneo: punto más saliente del occipital hacia atrás
- Inion: punto más prominente de la protuberancia occipital externa
- Opistion: punto medio en el borde posterior o dorsal del foramen magnum
- Basion: punto medio en el borde anterior o ventral del foramen magnum

Paladar.

 Estafilión: punto en que la tangente que une los puntos más anteriores de los arcos palatinos de las coanas cruza la sutura palatina

Puntos de referencia del cráneo pares laterales (plano mediosagital)

- Coronal: lugar donde la línea curva temporal superior corta la sutura coronal
- Estefanión: punto en que la línea curva temporal inferior cruza la sutura coronal

- Pterion: punto donde se unen los huesos frontal, parietal, temporal y ala mayor del esfenoides
- Asterión: punto en que coinciden los huesos parietal, temporal y occipital
- Eurion: punto más saliente del cráneo hacia el lado, sin localización fija, suele estar en el parietal, pero puede coincidir en la escama del temporal
- Porion: punto más alto en el borde superior del orificio auditivo externo
- Glenoideo: coincide con el centro de la cavidad glenoidea del hueso temporal
- Occipital lateral: coincide con el diámetro transverso del agujero occipital contacta con los bordes del orificio.
- Cigomaxilar: punto más inferior de la sutura cigomaxilar
- Cigomático: punto más alejado entre sí de los arcos cigomáticos.
- Mastoideo: coincide con el vértice de la apófisis mastoides
- Digastrico: centro del surco digastrico
- Dacrion: punto de contacto entre frontal, maxilar y lacrimal
- Lacrimal: lugar donde la sutura frontolagrimal se cruza con la línea ideal que sigue el borde interno de la órbita
- Maxilofrontal: punto de encuentro de la sutura maxilofrontal con el borde orbitario interno
- Ectoconión: punto más distante del punto maxilofrontal en el borde externo de la órbita
- Cigomaxilar: punto más inferior de la sutura frontomalar
- Gonión: vértice del ángulo que forma el borde posterior de la rama con el borde inferior del cuerpo de la mandíbula
- Condíleo externo: punto más externo del cóndilo mandibular

Medidas del cráneo

Con base en los puntos que se acaban de mencionar se describirán cada una de las medidas del cráneo utilizadas en esta investigación, propuestas en el estándar de Buikstra & Ubelaker (1994)

- Longitud máxima craneal: (g-op) distancia entre glabela y opistocraneo. En el plano medio sagital. Medida en una línea derecha
- Amplitud máxima craneal: (eu-eu) máxima anchura del cráneo, perpendicular al plano medio sagital
- Diámetro bicigomático: (zy-zy): distancia directa entre el punto más lateral en los arcos zigomáticos
- Altura basión bregma: (ba-b): distancia directa del punto más bajo en el margen anterior del foramen mágnum a bregma
- Longitud de la base craneal: (ba-n) distancia de basión a nasión
- Longitud basión prostion: (ba-pr) distancia entre basión y prostión instrumento
- Amplitud maxiloalveolar: (ecm-ecm) amplitud máxima a través de las fronteras alveolares del maxilar, medida en las superficies laterales en la posición de los segundos molares superiores
- Longitud maxiloalveolar: (pr-alv) distancia directa de prostion a alveolo
- Amplitud biauricular: (au-au) menor anchura exterior a través de la raíz donde se encuentra el proceso zigomático
- Altura facial superior. (n-pr) distancia directa a nasión a prostion,
- Amplitud mínima frontal: (ft-ft) distancia directa entre los dos frontotemporales
- Amplitud facial superior: (fmt-fmt) distancia directa entre los dos puntos externos en la sutura frontomalar

- Altura nasal: (n-ns) distancia directa del nasión al medio punto de una línea que conecta el punto más bajo del margen inferior de las muescas nasales
- Amplitud nasal: (al-al) amplitud máxima de la apertura nasal
- Amplitud alveolar: (d-ec) distancia lateralmente inclinada de dacrion a ectoconquio
- Altura orbital: distancia directa entre la margen orbital inferior y superior
- Amplitud biorbital: (ec-ec) distancia directa entre ectoconquio izquierdo y derecho
- Amplitud interorbital: (d-d) distancia directa entre dacrion izquierdo y derecho
- Acorde frontal: (n-b) distancia directa de nasion a bregma
- Acorde parietal: (b-l) distancia directa de bregma a lambda
- Acorde occipital: (l-o) distancia directa a lambda a opistion
- Longitud del foramen mágnum: (ba-o) distancia directa de basion a opistion
- Amplitud de foramen mágnum: distancia entre el margen lateral del foramen mágnum al punto mayor de la curvatura lateral
- Longitud mastoide: proyección vertical del proceso mastoide bajo y el plano perpendicular de Frankfort (ojo-oido)

Las variables serán operacionalizadas en la tabla 2. teniendo en cuenta su definición conceptual.

Tabla 2. operacionalización de las variables

	VARIABLE INDEPENDIENTE	INDIC	ADOR	DESCRIPCIÓN	ESCALA	NATURALEZA
No B&U	Medida	W.W Howells				uas
1	Longitud Máxima Craneal	GOL	Buikstra &	g-op	ervalo	s continuas
2	Amplitud Máxima craneal	XCB	Ubelaker (1994)	eu-eu	De Inter	Cuantitativas
3	Diámetro Bicigomático	ZYB		zy-zy		Cuan

4		İ				
	Altura Basion-Bregma	ВВН		ba-b		
5	Longitud de la Base Craneal	BNL		ba-n		
6	Longitud Basion- prosthion	BPL		ba-pr		
7	Amplitud Maxilo- Alveolar	MAB		ecm-ecm		
8	Longitud Maxilo- Alveolar	MAL		pr-alv		
9	Amplitud Biauricular	AUB		au-au		
10	Altura Facial Superior	UFHT		n-pr		
11	Amplitud Mínima Frontal	WFB		ft-ft		
12	Amplitud Facial Superior	UFBR		fmt-fmt		
13	Altura Nasal	NLH		n-ns		
14	Amplitud Nasal	NLB		al-al		
15	Amplitud Alveolar	OBB		d-ec		
16	Altura Orbital	ОВН		Borde orbital superior- borde orbital inferior		
17	Amplitud Biorbital	EKB		ec-ec		
18	Amplitud Interorbital	DKB		d-d		
19	Acorde Frontal	FRC		n-b		
20	Acorde Parietal	PAC		b-l		
21	Acorde Occipital	OCC		l-o		
22	Longitud del Foramen Mágnum	FOL		ba-o		
23	Amplitud del Foramen Mágnum	FOB		Margen lateral- punto mayor de la curvatura lateral		
24	Longitud Mastoide	MDH		Proyección vertical del proceso mastoide bajo		
	VARIABLE DEPENDIENTE	Cedula de	ciudadanía	Individuo procedente de la ciudad de		
	Grupo poblacional			Medellín	Nominal	Cualitativa

Técnica Craneométrica

Para la toma de medidas el investigador realizó un proceso de entrenamiento y estandarización bajo supervisión de un entrenador, siendo estas recolectadas en un solo momento y por un solo observador, evitando así el error inter-observador. Todas las medidas se realizaron con el cráneo dispuesto en el plano de Frankfurt, haciendo uso de un cranióforo tipo Mollison, siendo estas tomadas en orden descendente, pasando por el esplacnocráneo y finalizando con la bóveda craneal.

Recolección y registro de datos

Los datos fueron registrados en la ficha modelo construida específicamente para el presente estudio (anexo1), con el fin de evitar la pérdida de información estos datos fueron soportados de manera física y digital. Dentro de la ficha se registraron además de las medidas del cráneo, el código del individuo (código del laboratorio), edad, sexo y lugar de procedencia (lugar de nacimiento).

Los datos fueron consignados inicialmente de forma física, que posteriormente fueron digitados en una base de datos de Microsoft Excel 2016 para Windows® con licencia para la Universidad de Antioquia realizando después un control de error de digitación por lectura de fichas y cotejo con los datos digitados. Finalmente siendo analizados con el paquete estadístico SPSS v. 24 de IBM para Windows® con licencia para la Universidad de Antioquia

Para la toma de medidas se utilizó un calibre digital marca Mitutoyo CD-6"CX con una precisión de 0,02 mm, un compás de ramas curvas con puntas romas 300 mm marca Paleo-tech con una precisión de 1 mm y un Cranióforo tipo Mollison, con aparato (tipo Black) para medir la altura superior del cráneo. Especial para soportar el cráneo al nivel de los ojos.

Análisis de datos

Los análisis métricos se han caracterizado por la estandarización en la recolección de los datos mediante el uso de instrumentos de precisión y por ser analizados estadísticamente (Ousley & Jantz, 2012), de los cuales existen múltiples técnicas estadísticas apropiadas.

Una vez terminada la etapa de la selección de la muestra y recolección de datos se procedió a subdividirla en grupos según la región o municipio de Antioquia en que nació el individuo ya que este es el criterio utilizado para identificar la correlación con la variación métrica craneal y posteriormente ser analizados con funciones discriminantes la cual es una técnica multivariante de dependencia, que tiene como objetivo además de Distinguir entre diversos grupos mutuamente excluyentes, Identificar las variables que son importantes para diferenciar entre los grupos a fin de desarrollar un procedimiento para predecir la pertenencia de aquellos casos que no han sido estudiados.

Para llevar a cabo este procedimiento es muy importante tener en cuenta que los grupos de la variable dependiente deben ser mutuamente excluyentes, las variables independientes deben ser cuantitativas continuas o, al menos, admitir un tratamiento numérico y La variable dependiente no debe ser métrica sino categórica (nominal) para formar grupos.

En una primera etapa se calcularon los estadísticos descriptivos de cada variable para luego comparar estas mediciones con el lugar de nacimiento mediante análisis univariado, esta primera fase permitió obtener información descriptiva y contrastes univariantes sobre las variables utilizadas en el análisis, se obtuvo media, desviación típica y número de casos válidos para cada uno de los grupos y para la muestra total.

Adicionalmente se realizó un análisis de varianza con estadísticos F que permitieron contrastar la hipótesis de igualdad de medias entre los grupos en cada variable independiente. La información de esta prueba fue utilizada para detectar de una forma preliminar si los grupos diferían en las variables discriminantes seleccionadas, sin embargo, algunas de las variables no significativas a nivel univariante si aportaron información a nivel multivariante.

Se utilizó la prueba M de Box para probar la igualdad de matrices de covarianza de las variables independientes entre los grupos que forman la variable dependiente

En la segunda fase de la investigación se efectuó a nivel multivariado un análisis discriminante primero con la estrategia de inclusión forzosa de variables, la cual permitió construir siete funciones discriminantes incorporando todas las variables incluidas en el análisis, pero con el fin de obtener información de significación de cada una de las variables en la función discriminante, también se utilizó la estrategia de inclusión por pasos además de que sirvió para contrastar los dos métodos.

La estrategia de inclusión por pasos consiste en ir incorporando a la función discriminante cada una de las variables independientes y así construir funciones discriminantes que incluyan únicamente las variables que realmente son útiles en la clasificación, por otro lado, poder evaluar la contribución de la variable a la función y evitar la redundancia de información

El estadístico utilizado como método para seleccionar las variables en fue Distancia de Mahalanobis la cual incorpora en cada paso la variable que maximiza esta distancia. El criterio de entrada y de salida de las variables a la función discriminante fue el de probabilidad de f, donde el nivel crítico asociado al valor del estadístico F es 0,05 para entrar y 0,10 para salir

Posteriormente se evaluó la capacidad de clasificación del modelo calculando las probabilidades previas según el tamaño de los grupos y la matriz de covarianza utilizada fue de grupos separados ya que de esta manera se tiene en cuenta la variabilidad existente dentro de cada uno de los grupos.

RESULTADOS

Verificación de supuestos

Para la verificación del supuesto de igualdad de matrices de varianzas-covarianzas, se utilizó la prueba M de Box, en la tabla 3, están los resultados de la prueba y su transformación en el estadístico F al ser significativo (sig = 0,000 menor que 0.05) permite rechazar la hipótesis de igualdad de matrices de varianzas-covarianzas y por tanto concluir que uno de los grupos es más variable que otro

Tabla 3. Resultados de prueba M de Box

M de B	2225,170	
Estadístico	Aprox.	5,356
F	Sig.	,000

Para la verificación del supuesto de normalidad se realizó una prueba de Shapiro Wilk, la cual resulto significativa solo en el acorde parietal y el acorde frontal, en las demás variables se rechaza hipótesis nula de normalidad de los datos. Tabla 4.

La técnica multivariante utilizada para la interpretación de los datos no es muy sensible a la desviación de la normalidad se continua con el proceso de la construcción del modelo discriminante.

Tabla 4. Pruebas de normalidad

	Kolmogorov-Smirnov			Shapiro-Wilk		
	Estadístico	gl	Sig.	Estadístico	gl	Sig.
Longitud máxima craneal	,054	241	,089	,992	241	,257

A114						
Amplitud máxima craneal	,056	241	,063	,992	241	,196
Diámetro bicigomatico	,061	241	,028	,993	241	,316
Altura basion-bregma	,046	241	,200*	,993	241	,269
Longitud de la base craneal	,062	241	,024	,992	241	,208
Longitud basion- prostion	,038	241	,200*	,995	241	,584
Amplitud maxilo- alveolar	,046	241	,200*	,994	241	,403
longitud maxilo- alveolar	,047	241	,200*	,991	241	,121
Amplitud biauricular	,026	241	,200*	,996	241	,869
Altura facial superior	,043	241	,200*	,997	241	,886
Amplitud mínima frontal	,034	241	,200*	,996	241	,815
Amplitud facial superior	,027	241	,200*	,997	241	,940
Altura nasal	,026	241	,200*	,996	241	,804
Amplitud nasal	,032	241	,200*	,996	241	,743
Amplitud orbital	,028	241	,200*	,998	241	,980
Altura orbital	,042	241	,200*	,996	241	,826
Amplitud biorbital	,040	241	,200*	,993	241	,309
Amplitud interorbital	,055	241	,071	,990	241	,085
Acorde frontal	,047	241	,200*	,994	241	,481
Acorde parietal	,052	241	,200*	,976	241	,000

Acorde occipital	,054	241	,089	,980	241	,002
Longitud del foramen magnum	,040	241	,200*	,994	241	,507
Amplitud del foramen magnum	,048	241	,200*	,993	241	,379
Longitud mastoide	,027	241	,200*	,998	241	,977

Estadísticos descriptivos

En la construcción del modelo discriminante por el método de inclusión de todas las variables independientes juntas se obtuvieron 198 casos válidos los cuales representan el 62,5% de la muestra, los 119 casos faltantes fueron excluidos para la construcción de las funciones discriminante debido a que por lo menos una de las variables discriminantes tiene un valor perdido o el código de su variable de agrupación no está dentro del rango seleccionado, en este caso lo que sucede es que estos individuos no tenían información sobre su lugar de nacimiento ya que todos los grupos fueron incluidos. (tabla 5)

Tabla 5. Resumen de proceso del caso de análisis

(Casos sin ponderar	N	Porcentaje
	Casos validos	198	62,5
Excluido	Código de grupo perdidos o fuera de rango	43	13,6
	Como mínimo, falta una variable discriminatoria	67	21,1
	Ambos códigos, los perdidos o los que están fuera de rango y, como mínimo, una discriminación que falta	9	2,8
	Total	119	37,5
	Total	317	100,0

En la tabla 6, estadísticas de grupo, se puede observar que las medias de cada una de las variables según el lugar de nacimiento son muy similares entre sí, permitiendo detectar que los grupos se encuentran muy solapados en las variables de clasificación utilizadas, igualmente si observamos la desviación típica en cada una de las variables, la diferencia entre los grupos es muy poco perceptible, pero esto es a nivel univariante. Más adelante analizaremos los resultados a nivel multivariante.

Tabla 6.estadísticas por grupo

			Desviación	Número de
Lugar de	nacimiento	Media	estándar	casos validos
nordest	Longitud máxima			
e	craneal	172,8333	6,67583	6
	Amplitud máxima craneal	140,3333	5,98888	6
	Diámetro bicigomatico	126,5000	4,32435	6
	Altura basion-bregma	135,8333	3,43026	6
	Longitud de la base craneal	97,1667	3,18852	6
	Longitud basion- prostion	87,3133	7,20115	6
	Amplitud maxilo- alveolar	51,4967	6,34517	6
	longitud maxilo-alveolar	47,2167	4,60910	6
	Amplitud biauricular	117,3250	3,86578	6
	Altura facial superior	64,7150	6,02776	6
	Amplitud mínima frontal	94,6733	2,96555	6

	Amplitud facial superior	101,8183	3,58876	6
	Altura nasal	50,8967	3,65253	6
	Amplitud nasal	25,2767	1,73591	6
	Amplitud orbital	39,6417	2,27504	6
	Altura orbital	35,2900	2,38917	6
	Amplitud biorbital	95,4383	4,14018	6
	Amplitud interorbital	19,7483	2,23534	6
	Acorde frontal	109,6083	4,04233	6
	Acorde parietal	109,7833	2,48198	6
	Acorde occipital	97,5650	6,54795	6
	Longitud del foramen magnum	36,0083	2,83802	6
	Amplitud del foramen magnum	30,3250	1,91657	6
	Longitud mastoide	32,5517	2,92710	6
norte	Longitud máxima craneal	176,0526	7,53122	19
	Amplitud máxima craneal	136,0000	6,92820	19
	Diámetro bicigomatico	126,2632	7,30937	19
	Altura basion-bregma	132,6842	6,65877	19
	Longitud de la base craneal	98,8421	6,12158	19
	Longitud basion- prostion	90,0326	7,39311	19

	A 34. 3 A-			
	Amplitud maxilo- alveolar	50,1732	6,19515	19
	longitud maxilo-alveolar	47,6347	5,03855	19
	Amplitud biauricular	118,0505	6,39001	19
	Altura facial superior	60,3668	6,27109	19
	Amplitud mínima frontal	91,9268	5,99241	19
	Amplitud facial superior	100,5021	6,18629	19
	Altura nasal	49,5074	3,51499	19
	Amplitud nasal	24,6253	2,85507	19
	Amplitud orbital	39,3026	2,41119	19
	Altura orbital	33,7858	1,51017	19
	Amplitud biorbital	95,0779	5,34203	19
	Amplitud interorbital	20,4126	3,30308	19
	Acorde frontal	109,2405	5,35370	19
	Acorde parietal	112,3811	7,58981	19
	Acorde occipital	96,2747	4,57792	19
	Longitud del foramen magnum	35,0221	2,55060	19
	Amplitud del foramen magnum	30,1079	2,30521	19
	Longitud mastoide	31,6079	3,24303	19
occiden te	Longitud máxima craneal	173,8125	6,90139	16
	Amplitud máxima craneal	137,3125	5,33815	16

Diámetro bicigomatico	126,3125	6,75987	16
Altura basion-bregma	130,8750	4,97829	16
Longitud de la base craneal	96,2500	4,26615	16
Longitud basion- prostion	90,5000	6,70016	16
Amplitud maxilo- alveolar	51,0344	6,89795	16
longitud maxilo-alveolar	48,9394	5,59667	16
Amplitud biauricular	118,0237	6,22694	16
Altura facial superior	60,4931	7,43482	16
Amplitud mínima frontal	90,3856	5,19683	16
Amplitud facial superior	101,1038	5,60461	16
Altura nasal	48,3606	3,30897	16
Amplitud nasal	26,2300	2,62977	16
Amplitud orbital	38,3988	1,98052	16
Altura orbital	33,9288	1,76188	16
Amplitud biorbital	95,1531	4,88105	16
Amplitud interorbital	21,1806	2,60872	16
Acorde frontal	109,4344	5,58346	16
Acorde parietal	109,3031	5,97704	16
Acorde occipital	96,2969	8,81917	16
Longitud del foramen magnum	36,1275	2,18424	16
	Altura basion-bregma Longitud de la base craneal Longitud basion- prostion Amplitud maxilo- alveolar longitud maxilo-alveolar Amplitud biauricular Altura facial superior Amplitud mínima frontal Amplitud facial superior Altura nasal Amplitud nasal Amplitud orbital Altura orbital Amplitud biorbital Acorde frontal Acorde frontal Acorde parietal Acorde occipital Longitud del foramen	Altura basion-bregma 130,8750 Longitud de la base craneal 96,2500 Longitud basion-prostion 90,5000 Amplitud maxilo-alveolar 48,9394 Amplitud biauricular 118,0237 Altura facial superior 60,4931 Amplitud mínima frontal 90,3856 Amplitud facial superior 101,1038 Altura nasal 48,3606 Amplitud nasal 26,2300 Amplitud orbital 38,3988 Altura orbital 95,1531 Amplitud biorbital 21,1806 Acorde frontal 109,4344 Acorde parietal 109,3031 Acorde occipital 96,2969 Longitud del foramen 36,1275	Altura basion-bregma 130,8750 4,97829 Longitud de la base craneal 96,2500 4,26615 Longitud basion-prostion 90,5000 6,70016 Amplitud maxilo-alveolar 48,9394 5,59667 Amplitud biauricular 118,0237 6,22694 Altura facial superior 60,4931 7,43482 Amplitud mínima frontal 90,3856 5,19683 Amplitud facial superior 101,1038 5,60461 Altura nasal 48,3606 3,30897 Amplitud nasal 26,2300 2,62977 Amplitud orbital 38,3988 1,98052 Altura orbital 33,9288 1,76188 Amplitud biorbital 95,1531 4,88105 Amplitud interorbital 21,1806 2,60872 Acorde frontal 109,4344 5,58346 Acorde parietal 109,3031 5,97704 Acorde occipital 96,2969 8,81917 Longitud del foramen 36,1275 2,18424

	1			
	Amplitud del foramen magnum	31,0263	2,94247	16
	Longitud mastoide	32,9050	3,44345	16
oriente	Longitud máxima craneal	174,7826	8,40972	23
	Amplitud máxima craneal	139,4783	5,72768	23
	Diámetro bicigomatico	125,5652	5,31572	23
	Altura basion-bregma	135,4348	6,78116	23
	Longitud de la base craneal	98,5652	4,29403	23
	Longitud basion- prostion	90,0270	5,97521	23
	Amplitud maxilo- alveolar	49,5974	4,81330	23
	longitud maxilo-alveolar	47,5957	3,34836	23
	Amplitud biauricular	118,0626	5,30426	23
	Altura facial superior	62,9643	4,59453	23
	Amplitud mínima frontal	93,2974	4,54629	23
	Amplitud facial superior	100,9600	3,95969	23
	Altura nasal	50,3104	3,47883	23
	Amplitud nasal	24,2800	2,11392	23
	Amplitud orbital	38,9252	,87515	23
	Altura orbital	34,1500	1,76990	23
	Amplitud biorbital	95,1943	3,04781	23

	Amplitud interorbital	20,7452	2,36915	23
	Acorde frontal	112,0804	7,03945	23
	Acorde parietal	112,8465	7,20409	23
	Acorde occipital	92,8617	7,08790	23
	Longitud del foramen magnum	35,9570	2,80714	23
	Amplitud del foramen magnum	30,2200	2,58810	23
	Longitud mastoide	32,3713	3,30423	23
suroeste	Longitud máxima craneal	173,9474	7,38862	38
	Amplitud máxima craneal	136,7368	5,48553	38
	Diámetro bicigomatico	125,5789	5,49512	38
	Altura basion-bregma	135,8421	5,86573	38
	Longitud de la base craneal	99,8947	4,39772	38
	Longitud basion- prostion	93,3763	6,53546	38
	Amplitud maxilo- alveolar	52,3089	4,39573	38
	longitud maxilo-alveolar	49,7971	5,08729	38
	Amplitud biauricular	116,9653	4,84105	38
	Altura facial superior	62,9289	5,45166	38
	Amplitud mínima frontal	94,1616	4,37957	38

	Amplitud facial superior	101,9092	4,74300	38
	Altura nasal	49,3129	3,14149	38
	Amplitud nasal	24,9555	1,78296	38
	Amplitud orbital	38,8897	1,85453	38
	Altura orbital	33,4697	1,91116	38
	Amplitud biorbital	95,4750	3,77546	38
	Amplitud interorbital	20,7418	2,49744	38
	Acorde frontal	108,8511	4,37941	38
	Acorde parietal	112,0434	7,91713	38
	Acorde occipital	94,6126	6,88722	38
	Longitud del foramen magnum	35,5634	2,19435	38
	Amplitud del foramen magnum	29,9545	1,88738	38
	Longitud mastoide	32,6045	3,08326	38
Urabá	Longitud máxima craneal	175,5000	1,91485	4
	Amplitud máxima craneal	134,0000	9,12871	4
	Diámetro bicigomatico	122,5000	7,93725	4
	Altura basion-bregma	132,2500	7,63217	4
	Longitud de la base craneal	100,5000	2,64575	4
	Longitud basion- prostion	100,3900	6,52951	4

	Amplitud marila			
	Amplitud maxilo- alveolar	55,5350	7,04601	4
	longitud maxilo-alveolar	55,3075	5,34895	4
	Amplitud biauricular	113,8025	3,97716	4
	Altura facial superior	64,1400	1,53716	4
	Amplitud mínima frontal	93,7200	3,23746	4
	Amplitud facial superior	102,6225	2,65019	4
	Altura nasal	48,0675	3,03870	4
	Amplitud nasal	24,7950	3,53350	4
	Amplitud orbital	39,2700	2,43243	4
	Altura orbital	34,2850	2,32360	4
	Amplitud biorbital	95,6550	2,43043	4
	Amplitud interorbital	21,8200	1,86414	4
	Acorde frontal	111,0225	3,42711	4
	Acorde parietal	109,6850	3,87115	4
	Acorde occipital	89,7700	3,15616	4
	Longitud del foramen magnum	36,0100	3,19116	4
	Amplitud del foramen magnum	27,2825	,55295	4
	Longitud mastoide	32,0550	3,68565	4
valle aburra	Longitud máxima craneal	176,7571	8,52522	70
	Amplitud máxima craneal	138,0286	5,24466	70

Diám	etro bicigomatico	127,1857	5,93025	70
Altur	a basion-bregma	136,5571	6,41700	70
Lon	gitud de la base craneal	100,0857	4,53886	70
Lo	ngitud basion- prostion	93,6997	6,48557	70
An	nplitud maxilo- alveolar	54,3797	4,82716	70
longitu	ıd maxilo-alveolar	52,0450	5,03029	70
Amp	litud biauricular	118,7787	5,52788	70
Altur	a facial superior	67,2764	6,46591	70
Am	nplitud mínima frontal	93,6374	4,78975	70
Amplit	tud facial superior	102,3701	4,79661	70
1	Altura nasal	50,8334	3,24989	70
A	mplitud nasal	24,4240	2,21878	70
An	nplitud orbital	39,4027	1,86927	70
A	Altura orbital	34,5043	1,81364	70
Am	plitud biorbital	95,3826	4,57328	70
Amp	litud interorbital	20,2683	2,62366	70
A	corde frontal	111,4741	5,77942	70
Ac	corde parietal	111,1954	8,20620	70
Ac	corde occipital	96,0436	6,42899	70
Long	itud del foramen magnum	35,8156	2,55274	70

		1	1	
	Amplitud del foramen magnum	30,0534	2,34039	70
	Longitud mastoide	32,9903	3,32244	70
otro	Longitud máxima craneal	176,0455	7,71194	22
	Amplitud máxima craneal	135,8636	4,72375	22
	Diámetro bicigomatico	128,4091	6,98065	22
	Altura basion-bregma	135,7727	5,18176	22
	Longitud de la base craneal	100,1364	3,94360	22
	Longitud basion- prostion	92,7186	6,97108	22
	Amplitud maxilo- alveolar	53,3605	5,41496	22
	longitud maxilo-alveolar	49,5386	5,83307	22
	Amplitud biauricular	119,7886	5,27897	22
	Altura facial superior	66,2659	6,59915	22
	Amplitud mínima frontal	95,7695	5,68272	22
	Amplitud facial superior	103,8277	5,82111	22
	Altura nasal	50,9045	2,97917	22
	Amplitud nasal	25,9932	2,50468	22
	Amplitud orbital	39,2391	1,95590	22
	Altura orbital	33,8550	1,89133	22
	Amplitud biorbital	96,8223	4,81079	22

	Amplitud interorbital	22,5877	2,90094	22
	Acorde frontal	111,4064	5,68496	22
	Acorde parietal	111,8305	8,23998	22
	Acorde occipital	93,2023	7,25734	22
	Longitud del foramen magnum	36,4977	2,57639	22
	Amplitud del foramen magnum	30,1309	2,28191	22
	Longitud mastoide	32,7809	3,51662	22

es importante tener en cuenta que esta tabla está dando información de la cantidad de individuos por grupo utilizados en el modelo, dejando muy claro que el grupo del Valle del Aburra es el grupo de mayor número de individuos y que Urabá y el Nordeste son dos grupos muy pequeños con respecto a la muestra representando un porcentaje muy bajo de la población total. Adicionalmente que la muestra no tiene ningún representante del Bajo Cauca y del Magdalena Medio.

La tabla 7. de Anova con estadísticos F permite contrastar la hipótesis de igualdad de medias entre grupos en cada variable independiente, arrojando como resultado que solo la longitud maxilo-alveolar resulto significativa para rechazar hipótesis nula (las medias son iguales), pero como ya se mencionó en líneas anteriores, no necesariamente las variables que no son significativas a nivel univariante quiere decir que es igual a nivel multivariante.

Tabla 7. Prueba de igualdad de medias de grupos

	Lambda		
	de Wilks	F	Sig.
Longitud máxima craneal	,974	,722	,653

A 19, 7 ()]	
Amplitud máxima craneal	,947	1,515	,164
Diámetro bicigomatico	,969	,879	,524
Altura basion-bregma	,921	2,331	,026
Longitud de la base			
craneal	,935	1,881	,075
Longitud basion-prostion	,906	2,804	,008
Amplitud maxilo-alveolar	,891	3,327	,002
longitud maxilo-alveolar	,870	4,055	,000
Amplitud biauricular	,962	1,064	,389
Altura facial superior	,841	5,124	,000
Amplitud mínima frontal	,930	2,042	,052
Amplitud facial superior	,966	,951	,468
Altura nasal	,930	2,033	,053
Amplitud nasal	,924	2,239	,033
Amplitud orbital	,972	,781	,604
Altura orbital	,943	1,653	,123
Amplitud biorbital	,987	,351	,929
Amplitud interorbital	,927	2,150	,040
Acorde frontal	,952	1,374	,218
Acorde parietal	,984	,448	,871
Acorde occipital	,949	1,465	,182
Longitud del foramen	0.70	e 4 4	7.5
magnum	,978	,611	,747
Amplitud del foramen			
magnum	,956	1,264	,270
Longitud mastoide	,984	,440	,876

También se puede observar que los valores del estadístico Lambda de Wilks se encuentran muy cercanos a uno, aceptando hipótesis nula de igualdad de centroides. Esto sucede cuando los grupos se encuentran superpuestos, pero el valor de Lambda de Wilks de la longitud maxiloalveolar es el más cercano a cero, indicando que con esta variable la variabilidad inter-grupos aumenta.

Funciones discriminantes con variables independientes juntas

Método.

El método utilizado en esta fase de la investigación fue el de introducir todas las variables independientes juntas sin importar el grado de colinealidad existente entre las variables. Con este método el programa genero siete funciones discriminante donde la primera tiene la mayor capacidad discriminativa con un 25,5% de la variabilidad disponible en los datos. Igualmente, con los autovalores (tabla 8.) es posible comparar como se distribuye la dispersión inter-grupos, pero como no es posible interpretarse por sí sola se utiliza el estadístico Lambda de Wilks.

El valor Lambda de Wilks (Tabla 9.) permite contrastar la hipótesis de igualdad de los centroides siendo este valor el cociente de la suma de cuadrados intragupos y la suma de cuadrados total. Cuando los grupos están superpuestos las sumas de cuadrados serán casi iguales dando como resultado un valor muy cercano a uno, a medida que los grupos se van separando la variabilidad intergrupos aumenta y la variabilidad intragrupos disminuye generando un valor muy cercano a cero. Para el caso de la primera función discriminante el valor lambda de wilks es el más cercano a cero, indicando esto que el grupo de individuos del nordeste es el que más difiere de los demás grupos seguido del grupo del norte que es el segundo que más se aleja de los demás grupos. En cuanto a las otras funciones discriminantes no se encontraron diferencias significativas. Igualmente, esta información se puede corroborar en los valores transformados que muestran un

nivel crítico menor a 0,05 dando lugar a rechazar la hipótesis de igualdad de promedios en las variables discriminantes en las dos primeras funciones discriminante.

Tabla 8. Autovalores

				Correlación
Función	Autovalor	% de varianza	% acumulado	canónica
1	,390ª	25,5	25,5	,530
2	,342ª	22,4	47,9	,505
3	,232ª	15,2	63,1	,434
4	,193ª	12,6	75,7	,402
5	,179ª	11,7	87,4	,390
6	,150a	9,8	97,2	,361
7	,042ª	2,8	100,0	,201

Tabla 9. Lambda de Wilks

Prueba de funciones	Lambda de Wilks	Chi-cuadrado	Sig.
1 a 7	,258	245,059	,000
2 a 7	,359	185,487	,004
3 a 7	,482	132,244	,073
4 a 7	,593	94,478	,204
5 a 7	,708	62,572	,385
6 a 7	,835	32,728	,711
7	,960	7,466	,986

en correspondencia con los autovalores la tabla 10. De coeficientes estandarizados ordena las funciones discriminantes siendo la primera la de mayor capacidad discriminativa, pero además en esta tabla se puede observar cual es la variable que más discrimina en cada función y para interpretar los signos de las ponderaciones es de gran importancia mirar la ubicación de los centroides de cada grupo. (tabla 11.) Como en el paso anterior se determinó que las dos primeras

funciones discriminantes fueron estadísticamente significativas se interpretaran solo los coeficientes estandarizados y centroides de dichas funciones.

En la primera función discriminante la altura basion bregma y la amplitud interorbital son las que más están discriminando en la función y con respecto a los valores de los centroides de cada grupo es posible interpretar que los individuos con mayor altura basion bregma son procedentes del valle de aburra, en contraste con los individuos del occidente que son los que tienen la amplitud interorbital más estrecha.

En la segunda función discriminante es posible interpretar que los individuos del valle de aburra son los que tienen la longitud maxilo-alveolar más pequeña y la longitud basion-prostion más alta es observada en individuos del suroeste antioqueño

Tabla 10. Coeficientes de función discriminante canónica estandarizadas

			J	Funció	1		
	1	2	3	4	5	6	7
Longitud máxima craneal	,442	-,867	,121	-,519	-,204	-,406	-,200
Amplitud máxima craneal	-,020	-,244	-,472	-,161	,941	,174	,158
Diámetro bicigomatico	-,342	,098	,026	-,086	-,863	,309	,136
Altura basion-bregma	,780	,209	-,116	-,195	,168	,328	-,312
Longitud de la base craneal	,116	,003	-,638	,291	-,369	,385	,103
Longitud basion-prostion	-,452	,794	-,108	,191	,318	-,518	-,388
Amplitud maxilo-alveolar	,342	-,263	-,018	,234	-,041	,140	,264
longitud maxilo-alveolar	,408	-,907	-,148	,637	-,136	-,015	,123
Amplitud biauricular	-,036	-,413	,478	-,148	-,409	-,555	-,410
Altura facial superior	,357	,249	,632	-,621	,106	,325	-,283

Amplitud mínima frontal	,550	,670	-,250	-,255	-,212	,275	,482
Amplitud facial superior	,261	-,549	,864	,614	,283	,263	-,346
Altura nasal	-,032	,354	-,087	-,358	-,042	-,366	,066
Amplitud nasal	-,054	,214	,557	,283	-,153	,543	,411
Amplitud orbital	,189	-,223	,179	-,049	-,569	-,717	,780
Altura orbital	,031	-,319	,248	,049	,339	,065	,352
Amplitud biorbital	-,518	,334	-1,332	-,393	,612	,251	-,616
Amplitud interorbital	-,064	,548	,482	-,003	,009	-,564	,121
Acorde frontal	-,533	,112	,259	,194	,276	-,702	,036
Acorde parietal	-,398	,398	-,137	,069	-,262	,041	,076
Acorde occipital	-,305	-,001	-,029	,185	-,413	,527	,115
Longitud del foramen magnum	,146	,530	,344	,443	,236	,096	,247
Amplitud del foramen magnum	-,298	-,258	,147	-,328	,156	,239	-,402
Longitud mastoide	-,252	,003	,054	-,005	,477	,101	-,243

Clasificación.

Para valorar la capacidad predictiva del modelo se utilizaron probabilidades previas según el tamaño de los grupos ya que como se observó al inicio del análisis los grupos son muy desiguales, el cual permite desplazar el punto de corte hacia el centroide del grupo de menor tamaño buscando igualar los errores de clasificación.

La clasificación se realizó a partir de matrices de varianzas-covarianzas de grupos separados, de esta manera se tiene en cuenta la diferente variabilidad de los grupos en las funciones discriminantes.

La tabla 12 muestra el resultado de clasificación de todos los individuos de la muestra incluyendo también los casos que no tenían ningún grupo de pertenencia clasificados aquí como casos desagrupados y los que fueron excluidos por tener un valor perdido en las variables independientes.

Los resultados obtenidos indican que los casos sin agrupar fueron clasificados mayoritariamente en el grupo del valle de aburra (44,2%), también esta tabla permite ver como el grupo del nordeste antioqueño tiene una clasificación correcta del 100% y el más mal clasificado fue el grupo de occidente con un 40% para un total de 61,1% de casos clasificados correctamente

Tabla 11. Funciones en centroides de grupo

Lugar de	Función									
nacimiento	1	2	3	4	5	6	7			
nordeste	,191	-,072	,177	-,699	,505	1,013	,910			
norte	-,835	-,351	-,460	-,193	-,890	-,319	,171			
occidente	-1,425	-,470	,707	,553	,316	,298	-,083			
oriente	-,460	,378	-,289	-,581	,695	-,465	-,062			
suroeste	,079	,506	-,574	,275	-,037	,425	-,103			
Urabá	,732	,329	-,317	2,061	,586	-1,292	,627			
valle aburra	,529	-,544	,102	-,056	,007	-,031	-,066			
otro	,234	1,065	,861	-,108	-,390	-,130	,004			

Tabla 12. Resultados de clasificación

				Pertenencia a grupos pronosticada							
		Lugar de nacimiento	nordeste	norte	occidente	oriente	suroeste	Urabá	valle aburra	otro	Total
Original	Recuento	nordeste	6	0	0	0	0	0	0	0	6
		norte	0	14	1	3	0	1	6	0	25
		occidente	0	0	8	1	4	1	5	1	20
		oriente	0	1	1	16	5	2	3	3	31

	suroeste	0	0	0	4	23	4	11	3	45
	Urabá	0	0	1	0	0	5	0	0	6
	valle aburra	0	3	0	2	10	6	76	4	101
	otro	0	0	2	0	2	2	11	14	31
	Casos sin agrupar	0	0	5	6	11	5	23	2	52
%	nordeste	100,0	,0	,0	,0	,0	,0	,0	,0	100,0
	norte	,0	56,0	4,0	12,0	,0	4,0	24,0	,0	100,0
	occidente	,0	,0	40,0	5,0	20,0	5,0	25,0	5,0	100,0
	oriente	,0	3,2	3,2	51,6	16,1	6,5	9,7	9,7	100,0
	suroeste	,0	,0	,0	8,9	51,1	8,9	24,4	6,7	100,0
	uraba	,0	,0	16,7	,0	,0	83,3	,0	,0	100,0
	valle aburra	,0	3,0	,0	2,0	9,9	5,9	75,2	4,0	100,0
	otro	,0	,0	6,5	,0	6,5	6,5	35,5	45,2	100,0
	Casos sin agrupar	,0	,0	9,6	11,5	21,2	9,6	44,2	3,8	100,0

Funciones discriminantes con método de inclusión por pasos

Método

con esta estrategia de clasificación las variables se van incorporando a la función discriminante una a una, este método permite obtener información sobre la significancia individual de cada variable dentro de la función.

Por tanto, la función se construye usando únicamente las variables que son útiles para la clasificación, permitiendo evaluar la contribución individual de cada variable al modelo discriminante.

El estadístico seleccionado que se utilizó como método de selección de variables fue Distancia de Mahalanobis la cual incorpora en cada paso la variable que maximiza la distancia de mahalanobis en los dos grupos más próximos, el criterio de entrada y de salida para el modelo utilizado fue el de probabilidad F, la variable pasará a formar parte del modelo si su nivel de tolerancia es mayor que 0,001 además que al incorporarse no haga que alguna de las variables previamente seleccionadas pase a tener un nivel de tolerancia por debajo del nivel establecido

La tabla 13 está contrastando si cada pareja de grupos difiere en la función discriminante. En la primera función el grupo del norte y de oriente difieren significativamente del grupo del valle de aburra. En la siguiente función se encuentran diferencias entre oriente y valle de aburra y en la última se diferencia occidente, oriente del valle de aburra.

En la cuarta función ya encontramos que occidente difiere de suroeste y valle de aburra, oriente de valle de aburra y norte de valle de aburra, en la siguiente función las diferencias se centran básicamente en el valle de aburra con norte, occidente, oriente y suroeste. En la sesta y séptima función no se encuentran nuevas diferencias estas son iguales a las generadas en la quinta función.

Tabla 13. Comparaciones de grupos por parejas

	Lugar d	e						Urab	valle	
paso	nacimien	to	nordeste	norte	occidente	oriente	suroeste	á	aburra	otro
1	nordeste	F		,292	,034	,627	,125	1,429	1,677	,598
		Sig.		,590	,854	,430	,724	,233	,197	,440
	norte	F	,292		,235	,126	2,110	3,469	9,656	3,782
		Sig.	,590		,628	,723	,148	,064	,002	,053
	occidente	F	,034	,235		,712	,668	2,367	5,322	1,830
		Sig.	,854	,628		,400	,415	,126	,022	,178
	oriente	F	,627	,126	,712		3,847	4,387	14,458	5,815
		Sig.	,430	,723	,400		,051	,038	,000	,017
	suroeste	F	,125	2,110	,668	3,847		1,375	3,857	,563
		Sig.	,724	,148	,415	,051		,242	,051	,454
	Urabá	F	1,429	3,469	2,367	4,387	1,375		,184	,584
		Sig.	,233	,064	,126	,038	,242		,668	,446
	valle	F	1,677	9,656	5,322	14,458	3,857	,184		,635
	aburra	Sig.	,197	,002	,022	,000	,051	,668		,427
	otro	F	,598	3,782	1,830	5,815	,563	,584	,635	
		Sig.	,440	,053	,178	,017	,454	,446	,427	

2	nordeste	F		,356	,715	,801	,379	1,204	,857	2,735
		Sig.		,701	,490	,451	,685	,302	,426	,067
	norte	F	,356	,	,414	,178	1,063	1,913	5,144	4,470
		Sig.	,701		,662	,837	,348	,151	,007	,013
	occidente	F	,715	,414	<u> </u>	,414	,595	1,186	4,119	1,853
		Sig.	,490	,662		,662	,553	,308	,018	,160
	oriente	F	,801	,178	,414		1,990	2,242	8,331	4,678
		Sig.	,451	,837	,662		,140	,109	,000	,010
	suroeste	F	,379	1,063	,595	1,990		,838	2,747	3,380
		Sig.	,685	,348	,553	,140		,434	,067	,036
	Urabá	F	1,204	1,913	1,186	2,242	,838		,665	,530
		Sig.	,302	,151	,308	,109	,434		,515	,590
	valle	F	,857	5,144	4,119	8,331	2,747	,665		7,499
	aburra	Sig.	,426	,007	,018	,000	,067	,515		,001
	otro	F	2,735	4,470	1,853	4,678	3,380	,530	7,499	
		Sig.	,067	,013	,160	,010	,036	,590	,001	
3	nordeste	F		1,108	2,878	,924	,443	1,191	,845	2,005
		Sig.		,347	,037	,430	,722	,314	,471	,115
	norte	F	1,108		1,082	,352	1,465	1,272	4,093	3,531
		Sig.	,347		,358	,788	,226	,285	,008	,016
	occidente	F	2,878	1,082		2,226	3,798	1,151	6,231	3,936
		Sig.	,037	,358		,087	,011	,330	,000	,009
	oriente	F	,924	,352	2,226		1,449	1,534	5,594	3,185
		Sig.	,430	,788	,087		,230	,207	,001	,025
	suroeste	F	,443	1,465	3,798	1,449		,718	1,846	2,243
		Sig.	,722	,226	,011	,230		,542	,140	,085
	uraba	F	1,191	1,272	1,151	1,534	,718		,565	,491
		Sig.	,314	,285	,330	,207	,542		,639	,689
	valle	F	,845	4,093	6,231	5,594	1,846	,565		4,981
	aburra	Sig.	,471	,008	,000	,001	,140	,639		,002
	otro	F	2,005	3,531	3,936	3,185	2,243	,491	4,981	
		Sig.	,115	,016	,009	,025	,085	,689	,002	
4	nordeste	F		1,102	2,343	,693	,481	,978	,715	1,584
		Sig.		,357	,056	,598	,750	,421	,583	,180
	norte	F	1,102		,817	1,044	1,165	,958	5,094	4,130
		Sig.	,357	0.1=	,516	,386	,328	,432	,001	,003
	occidente	F	2,343	,817		2,204	2,853	,860	6,114	4,064
	• .	Sig.	,056	,516	2.201	,070	,025	,489	,000	,003
	oriente	F	,693	1,044	2,204		1,646	1,311	4,331	2,510
		Sig.	,598	,386	,070	1.646	,165	,268	,002	,043
	suroeste	F	,481	1,165	2,853	1,646		,538	3,506	2,991
	TT1 /	Sig.	,750	,328	,025	,165	520	,708	,009	,020
	Urabá	F	,978	,958	,860	1,311	,538		,801	,735

		Sig.	,421	,432	,489	,268	,708		,526	,569
	valle	F	,715	5,094	6,114	4,331	3,506	,801		3,719
	aburra	Sig.	,583	,001	,000	,002	,009	,526		,006
	otro	F	1,584	4,130	4,064	2,510	2,991	,735	3,719	
		Sig.	,180	,003	,003	,043	,020	,569	,006	
5	nordeste	F		,877	1,188	,536	,538	1,026	,613	1,870
		Sig.		,454	,316	,658	,657	,382	,607	,136
	norte	F	,877		,282	1,340	,952	1,283	6,638	5,361
		Sig.	,454		,838	,263	,417	,281	,000	,001
	occidente	F	1,188	,282		1,581	,717	,816	5,910	3,678
		Sig.	,316	,838		,195	,543	,486	,001	,013
	oriente	F	,536	1,340	1,581		1,910	1,746	5,782	3,329
		Sig.	,658	,263	,195		,129	,159	,001	,021
	suroeste	F	,538	,952	,717	1,910		,575	4,420	3,900
		Sig.	,657	,417	,543	,129		,632	,005	,010
	Urabá	F	1,026	1,283	,816	1,746	,575		1,040	,943
		Sig.	,382	,281	,486	,159	,632		,376	,421
	valle	F	,613	6,638	5,910	5,782	4,420	1,040		4,980
	aburra	Sig.	,607	,000	,001	,001	,005	,376		,002
	otro	F	1,870	5,361	3,678	3,329	3,900	,943	4,980	
		Sig.	,136	,001	,013	,021	,010	,421	,002	
6	nordeste	F		1,299	1,684	,533	,587	,739	,584	2,820
		Sig.		,275	,188	,588	,557	,479	,559	,062
	norte	F	1,299		,363	1,012	1,199	1,078	9,542	8,052
		Sig.	,275		,696	,366	,304	,342	,000	,000
	occidente	F	1,684	,363		,901	1,051	,655	8,803	5,363
		Sig.	,188	,696		,408	,352	,521	,000	,005
	oriente	F	,533	1,012	,901		,000	,338	4,591	4,285
		Sig.	,588	,366	,408		1,000	,714	,011	,015
	suroeste	F	,587	1,199	1,051	,000		,365	6,627	5,365
		Sig.	,557	,304	,352	1,000		,695	,002	,005
	Urabá	F	,739	1,078	,655	,338	,365		1,150	,341
		Sig.	,479	,342	,521	,714	,695		,319	,711
	valle	F	,584	9,542	8,803	4,591	6,627	1,150		6,604
	aburra	Sig.	,559	,000	,000	,011	,002	,319		,002
	otro	F	2,820	8,052	5,363	4,285	5,365	,341	6,604	
		Sig.	,062	,000	,005	,015	,005	,711	,002	
7	nordeste	F		1,595	2,489	,481	1,726	4,036	1,837	1,929
		Sig.		,192	,062	,696	,163	,008	,142	,126
	norte	F	1,595		,462	1,256	,940	2,908	6,513	6,188
		Sig.	,192		,709	,291	,422	,036	,000	,000
	occidente	F	2,489	,462		2,083	,728	1,807	5,868	5,418

		Sig.	,062	,709		,104	,536	,147	,001	,001
	oriente	F	,481	1,256	2,083		1,696	3,993	5,144	2,871
		Sig.	,696	,291	,104		,169	,009	,002	,038
	suroeste	F	1,726	,940	,728	1,696		2,054	4,395	5,737
		Sig.	,163	,422	,536	,169		,108	,005	,001
	Urabá	F	4,036	2,908	1,807	3,993	2,054		2,635	4,345
		Sig.	,008	,036	,147	,009	,108		,051	,005
	valle	F	1,837	6,513	5,868	5,144	4,395	2,635		7,053
	aburra	Sig.	,142	,000	,001	,002	,005	,051		,000
	otro	F	1,929	6,188	5,418	2,871	5,737	4,345	7,053	
		Sig.	,126	,000	,001	,038	,001	,005	,000	

A continuación, se presentarán las tablas de resumen de las funciones canónicas discriminantes:

Tabla 14. Autovalores

				Correlación
Función	Autovalor	% de varianza	% acumulado	canónica
1	,190ª	47,2	47,2	,400
2	,146ª	36,4	83,6	,357
3	,066ª	16,4	100,0	,249

Tabla 15. Lambda de Wilks

Prueba de		Chi-		
funciones	Lambda de Wilks	cuadrado	gl	Sig.
1 a 3	,688	71,664	21	,000
2 a 3	,818	38,357	12	,000
3	,938	12,228	5	,032

Tabla 16. Coeficientes de función discriminante canónica estandarizadas

		Función					
	1	2	3				
Longitud maxilo alveolar	,097	-1,239	,535				
Altura facial superior	,929	,920	-,288				
Amplitud interorbital	-,123	,562	,840				

Tabla 17. Funciones en centroides de grupo

	Función						
Lugar de nacimiento	1	2	3				
nordeste	,029	,522	-,640				
norte	-,655	-,096	-,180				
occidente	-,646	-,236	,196				
oriente	-,276	,376	-,201				
suroeste	-,239	-,174	,034				
Urabá	,001	-1,125	,905				
valle aburra	,488	-,175	-,081				
otro	,178	,782	,433				

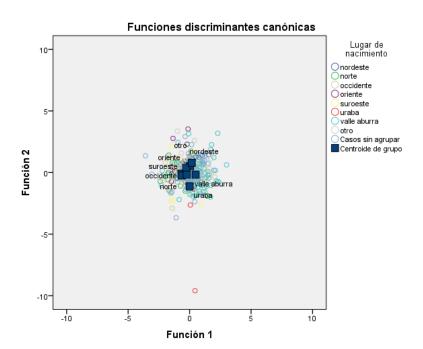
los autovalores, tabla 14. de las tres funciones que componen el modelo no son tan desiguales, por lo menos las dos primeras funciones no, ya que estas explican aproximadamente el 84% de la variabilidad disponible en los datos, y la última función solo explica el 16%, mostrando de igual manera que la correlación canónica de la última función es muy baja (0,249) con respecto a las dos primeras (0,400-0,357)

el valor de lambda de wilks de la tabla 15 contrasta la significación de las funciones obtenidas, en la primera línea se está contrastando la hipótesis nula de que el modelo completo no permite distinguir las medias de los grupos, pero como el valor lambda tiene asociado un nivel crítico

menor de 0,05 podemos concluir que el modelo permite distinguir significativamente entre los grupos.

En la segunda línea se contrasta si las medias de los grupos son iguales en la segunda función discriminante, aquí la lambda toma un valor muy próximo a uno, pero el nivel crítico es menor de 0,05 logrando concluir que el modelo distingue significativamente en al menos dos de los grupos. En el caso de la tercera función que no resulta significativa, se consideró la posibilidad de utilizar únicamente las dos primeras funciones.

Los centroides de la tabla 16. muestran que en la primera función el centroide del valle de aburra se sitúa en la parte positiva mientras que los individuos del norte y occidente se sitúan en la parte negativa en la segunda función discriminante se logra diferenciar entre los individuos del nordeste que su centroide se sitúa en la parte positiva y los individuos de Urabá se sitúan en la parte negativa. En la tercera función discriminante que no resultó significativa los centroides están arrojando los mismos resultados que en la segunda función discriminante


La tabla 17. de coeficientes estandarizados muestra que la primera función discrimina fundamentalmente altura facial superior con valores elevados y amplitud interorbital baja, puesto que el centroide que más se diferencia en la primera función es el de valle de aburra con una puntuación positiva podemos concluir que los individuos del valle de aburra se diferencian de los demás grupos en que su altura facial superior es muy elevada con una amplitud interorbital baja. En contraste con los individuos de norte y occidente que se pueden diferenciar en que su amplitud interorbital es más elevada y su altura facial superior adopta valores más reducidos.

La segunda función permite inferir que los individuos de Urabá se diferencian por su alta longitud maxiloalveolar y baja amplitud interorbital. Además de que los individuos del nordeste cuentan con una altura facial superior muy elevada y su longitud maxiloalveolar más reducida.

Después de tener construido el modelo se pasó a valorar la capacidad predictiva del modelo estimado la probabilidad previa utilizada para la clasificación fue basada en los tamaños de los grupos.

La figura 1 muestra el diagrama de dispersión de todos los grupos en las dos funciones discriminantes en el diagrama se puede observar que los centroides de los grupos se encuentran muy cercanos y los grupos siguen estando muy solapados, pero en la segunda función es cuando se logra percibir la diferencia entre los centroides de las funciones ya que estos se encuentran muy cerca a nivel horizontal

figura 1.

Clasificación

En la tabla 18. se presenta el resumen de los resultados de clasificación, en total el porcentaje de individuos clasificados correctamente fue del 40,4%, se nota como el porcentaje ha disminuido con respecto al método de inclusión de todas las variables juntas.

El grupo del nordeste no obtuvo ningún individuo clasificado correctamente al igual que el grupo de oriente, el porcentaje de clasificación correcta en al valle de aburra aumento a 88, 1% pero no es suficiente para aumentar el porcentaje en general de número de individuos clasificados correctamente

Tabla 18. Resultados de clasificación

				Pertenencia a grupos pronosticada							
		Lugar de			occide				valle		
		nacimiento	nordeste	norte	nte	oriente	suroeste	Urabá	aburra	otro	
Origi	Recue	nordeste	0	1	0	0	0	0	5	0	6
nal	nto	norte	0	2	1	1	5	0	14	2	25
		occidente	0	0	1	1	7	1	10	0	20
		oriente	0	0	0	0	8	0	18	5	31
	suroeste		0	1	0	1	9	2	29	3	45
		Urabá	0	0	0	0	0	2	4	0	6
		valle aburra	0	2	0	0	5	0	89	5	101
		otro	0	0	0	4	4	0	19	4	31
		Casos sin agrupar	0	2	0	1	7	1	37	4	52
	%	nordeste	,0	16,7	,0	,0	,0	,0	83,3	,0	100,0
		norte	,0	8,0	4,0	4,0	20,0	,0	56,0	8,0	100,0
		occidente	,0	,0	5,0	5,0	35,0	5,0	50,0	,0	100,0

	oriente	,0	,0	,0	,0	25,8	,0	58,1	16,1	100,0
	suroeste	,0	2,2	,0	2,2	20,0	4,4	64,4	6,7	100,0
	Urabá	,0	,0	,0	,0	,0	33,3	66,7	,0	100,0
	valle aburra	,0	2,0	,0	,0	5,0	,0	88,1	5,0	100,0
	otro	,0	,0	,0	12,9	12,9	,0	61,3	12,9	100,0
	Casos sin agrupar	,0	3,8	,0	1,9	13,5	1,9	71,2	7,7	100,0
•	a 40.4	% de casos	agrimad	os origin	alec clasifi	cados corr	ectament	ρ		

a. 40,4% de casos agrupados originales clasificados correctamente.

En las siguientes graficas se presentan las dos funciones discriminantes de según su lugar de nacimiento con por medio de estos diagramas de dispersion se buscaron casos atípicos dificiles de clasificar

figura 2.

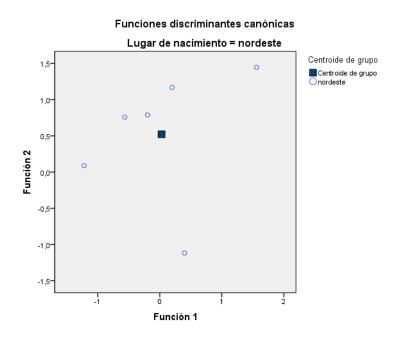


figura 3.

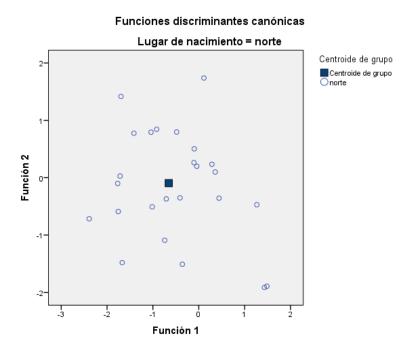


figura 4.

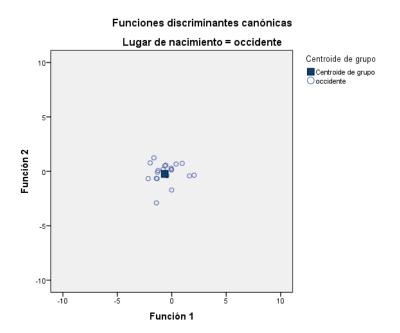


figura 5.

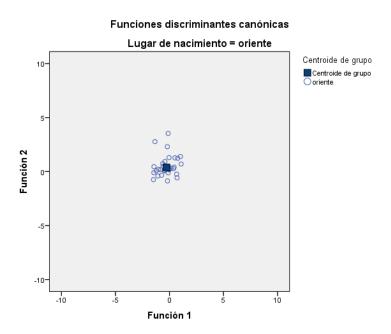


figura 6.

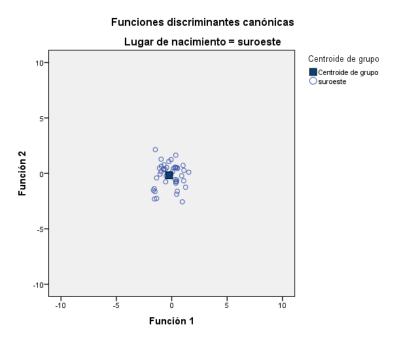


figura 7.

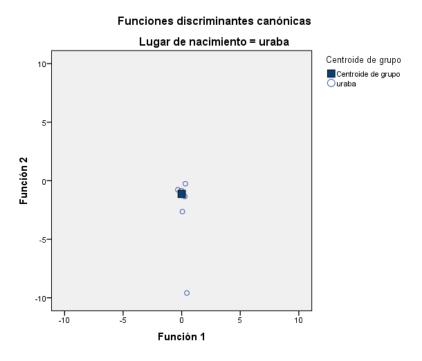


figura 8.

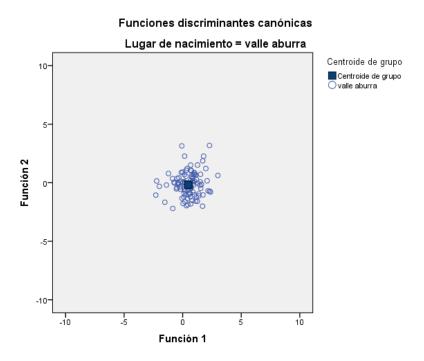
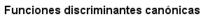
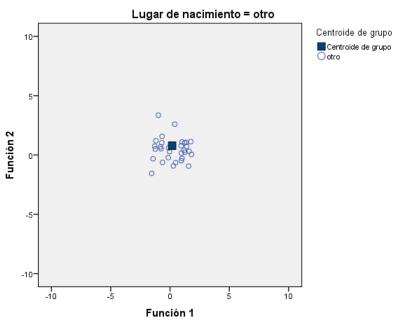




figura 9.

Discusión y conclusiones

Discusión

el objetivo de esta investigación fue el de explorar la variación craneométrica a partir de la relación con su lugar de nacimiento entre las regiones del departamento de Antioquia.

El presente estudio realizó análisis de función discriminantes, aplicando los dos métodos de inclusión de las variables. Uno fue el de inclusión de todas las variables juntas y el otro de inclusión de variables paso a paso.

Aunque el tamaño de la muestra no es tan limitado si tiene algunos vacíos para la representación de toda la población, además de que la muestra está conformada en su mayoría por hombres.

Luego de llevar a cabo el análisis estadístico de los datos el estudio reflejó baja variación craneometrica entre las regiones. Aun así, se lograron identificar diferencias entre algunos grupos, específicamente en el valle de Aburrá, nordeste y Urabá.

Esta baja variación dentro de las regiones antioqueñas puede tener una explicación en Antioquia por estar ubicada en un territorio de difícil acceso la población creció en relativo aislamiento, pero también es importante tener en cuenta la ola migratoria que afronto el departamento a mediados del siglo XX

Por otro lado, están las investigaciones realizadas en otros países para la estimación de ascendencia que han demostrado tener grandes vacíos en la información de la población colombiana. Por tanto, es suma importancia continuar construyendo una colección de referencia que represente toda la población colombiana para lograr tener muestras estadísticamente representativas.

También podría ser de gran utilidad comparar estos resultados con bases de datos de otros países y así encontrar diferencias significativas entre otras poblaciones sobre todo para tener total claridad

de las diferencias que se pueden llegar a tener cuando se trabaja con métodos que han sido generados en base a otras poblaciones biológicamente distintas a la población colombiana

Conclusiones

- Los grupos de mayor diferenciación biológica dentro del departamento de Antioquia según su grado de variación son: valle de aburra, nordeste y Urabá. Siendo la longitud maxilo-alveolar, la amplitud maxilo-alveolar, altura facial superior y la amplitud interorbital las variables más discriminantes dentro de la población antioqueña.
- Los resultados obtenidos en esta investigación no resultaron estadísticamente significativos debido a que la muestra todavía no representa a toda la población de referencia, por eso no es posible decir que este no es el tratamiento estadístico adecuado para el manejo de datos en la estimación de ascendencia, este método ya ha sido implementado en otras poblaciones con resultados significativos
- En Colombia se tiene la necesidad de generar nuevas técnicas que mejoren la precisión en la identificación, las cuales deben ser generadas a partir de datos directos de la población colombiana
- En términos generales se puede concluir que el uso de funciones discriminantes es un método muy significativo para la estimación de la ascendencia, teniendo en cuenta que el modelo discriminante debe ser generados a partir de una población biológicamente similar

REFERENCIAS

- Bass, W. M. (2005). *Human osteology: a laboratory and field manual of the human skeleton* (fifth edit). Missouri Archaeological Society Springfield, MO.
- Bedoya, G., Montoya, P., García, J., Soto, I., Bourgeois, S., Carvajal, L., ... Garci, J. (2006).

 Admixture dynamics in Hispanics: a shift in the nuclear genetic ancestry of a South

 American population isolate. *Proceedings of the National Academy of Sciences of the*United States of America, 103(19), 7234–9. https://doi.org/10.1073/pnas.0508716103
- Brettell, S. (2013). A Validation Study Examining Hefner's "Cranial Nonmetric Variation and Estimating Ancestry," 24. Retrieved from http://trace.tennessee.edu/cgi/viewcontent.cgi?article=2668&context=utk_chanhonoproj
- Buikstra, J. E., & Ubelaker, D. H. (1994). *STANDARDS FOR DATA COLLECTION FROM HUMAN SKELETAL REMAINS*. (J. E. Buikstra & D. H. Ubelaker, Eds.). Arkansas.
- Bustamante, M. F., Fuentes, R., Flores, T., & Sanhueza, A. (2011). Relación entre Índice Facial Superior e Índice Nasal en Cráneos Chilenos Adultos. *Int. J. Morphol*, 29(3), 810–815.
- Campillo Valero, D., & Subirà, M. E. (2004). Antropología física para arqueólogos. Ariel.
- Carvajal-carmona, L. G., Soto, D., Ortı, D., Duque, C., Ospina-duque, J., Mccarthy, M., ...

 Bedoya, G. (2000). Strong Amerind / White Sex Bias and a Possible Sephardic Contribution among the Founders of a Population in Northwest Colombia. *Am. J. Hum. Genet.*, *67*, 1287–1295.
- Cerezo, M., Phillips, C., Lareu, M. V, Salas, A., Acosta, A., Medicina, F. De, ... Xeno, G. D. M. (2008). The mtDNA Ancestry of Admixed Colombian Populations, *591*(April), 584–591.

- https://doi.org/10.1002/ajhb.20783
- Comas, J. (1976). Manual de antropología física. Univ. Nacional Autónoma de México.
- DANE, & Alcaldia de Medellín. (2010). Perfil Demografico 2005-2015 Total Medellin Pirámide de población. *Perfil Sociodemográfico 2005 -2015 Total Medellín*.
- Departamento Administrativo Nacional de Estadística, D. (2007). Colombia una nación multicultural. *Colombia Una Nación Multicultural, Su Diversidad Étnica*, 1–49.
- DiGangi., E. A., & Hefner, J. T. (2013). *RESEARCH METHODS IN HUMAN SKELETAL*BIOLOGY. Research Methods in Human Skeletal Biology. https://doi.org/10.1016/B978-0-12-385189-5.00001-7
- Edgar, H. J. H., & Hunley, K. L. (2009). Race reconciled?: How biological anthropologists view human variation. *American Journal of Physical Anthropology*, *139*(1), 1–4. https://doi.org/10.1002/ajpa.20995
- Ferguson, E., Kerr, N., & Rynn, D. C. (2011). FORENSIC ANTHROPOLOGY 2000 TO 2010.

 (S. BLACK & E. FERGUSON, Eds.).
- Geneser, finn. (1998). atlas color de histologia. (E. M. P. S.A., Ed.).
- Hefner, J. T. (2007). THE STATISTICAL DETERMINATION OF ANCESTRY USING CRANIAL NONMETRIC TRAITS. UNIVERSITY OF FLORIDA.
- Hefner, J. T. (2009). Cranial nonmetric variation and estimating ancestry. *Journal of Forensic Sciences*, 54(5), 985–995. https://doi.org/10.1111/j.1556-4029.2009.01118.x
- Hefner, J. T., Ousley, S. D., & Dirkmaat, D. C. (2012). *A Companion to Forensic Anthropology*. (D. C. Dirkmaat, Ed.) (3rd ed.).

- Hefner, J. T., Spradley, M. K., & Anderson, B. (2014). Ancestry assessment using random forest modeling. *Journal of Forensic Sciences*, 59(3), 583–589. https://doi.org/10.1111/1556-4029.12402
- http://, & www.medicinalegal.gov.co/. (2016). Instituto Nacional de Medicina Legal y Ciencias Forenses en Colombia. http:// www.medicinalegal.gov.co/ (accessed 12.04.16).
- http://www.Mininterior.gov.co/sala-de-prensa/noticias/mininterior-encontro-28195-personas-no-identificadas-en-cementerios-del-pais. (2016). Ministerio del Interior, Dirección de Derechos Humanos. http://www.mininterior.gov.co/sala-de-prensa/noticias/mininterior-encontro-28195-personas-no-identificadas-en-cementerios-del-pais.
- Isaza, J., & Vargas, T. M. (2012). Características biológicas de la colección osteológica de referencia de la Universidad de Antioquia. Informe preliminar. *Boletín de Antropología*, 25(42), 287–302.
- Jurmain, R., Kilgore, L., & Trevathan, W. (2011). Essentials of Physical Anthropology (8th ed.).
- Jurmain, R., Kilgore, L., Trevathan, W., & Ciochon, R. L. (2013). Physical anthropology.
- L'Abbé, E. N., Ribot, I., & Steyn, M. (2006). A Craniometric Study of the 20th Century Venda.

 The South African Archaeological Bulletin, 61, No. 18, 19–25.
- Melo, J. O. (1993). Medellín 1880–1930: los tres hilos de la modernización. In *Seminario: una mirada a Medellín y al valle de Aburra* (pp. 13–20). Medellín, Universidad Nacional de Colombia: Jesus Martín-Barbero, Fabio Ortiz de la Roche.
- Melton, P. E., Briceño, I., Gómez, A., Devor, E. J., Bernal, J. E., & Crawford, M. H. (2007).

 Biological Relationship Between Central and South American Chibchan Speaking

- Populations: Evidence From mtDNA. *American Journal of Physical Anthropology*, *133*(4), 753–770. https://doi.org/10.1002/ajpa
- Monsalve, T., & Hefner, J. T. (2016). Macromorphoscopic trait expression in a cranial sample from Medellín, Colombia. *Forensic Science International*, 6–13. https://doi.org/10.1016/j.forsciint.2016.07.014
- Monsalve, T., & Serrano, C. (2005). la síntesis biosocial: una propuesta teórica en antropología biológica. *Boletin de Antropología Americana*, 41.
- Ousley, S., & Jantz, R. (2012). Fordisc 3 and Statistical Methods for Estimating Sex and Ancestry. In D. C. Dirkmaat (Ed.), *A Companion to Forenasic Anthropology* (p. 716). Blackwell Publishing Ltd.
- Ousley, S., Jantz, R., & Freid, D. (2009). Understanding race and human variation: Why forensic anthropologists are good at identifying race. *American Journal of Physical Anthropology*, 139(1), 68–76. https://doi.org/10.1002/ajpa.21006
- Pietrusewsky, M. (2000). Metric analysis of skeletal remains: methods and applications. Biological Anthropology of the Human Skeleton. Wiley-Liss, New York, 375–415.
- Rebato, E., Susanne, C., & Chiarelli, B. (2005). Para comprender la antropología biológica.

 Verbo Divino Navarra.
- Relethford, J., Konigberg, L., & Mielke, J. (2006). human biological variation. Igarss 2014.

 New york. https://doi.org/10.1007/s13398-014-0173-7.2
- Rodas, C., Gelvez, N., & Keyeux, G. (2003). Mitochondrial DNA Studies Show Asymmetrical Amerindian Admixture in Afro-Colombian and Mestizo Populations. *Human Biology*,

- *75*(1), 13–30.
- Rodriguez, J. V. (2011). *La identificación humana en Colombia: avances y perspectivas*.

 Universidad Nacional de Colombia, Facultad de Ciencias Humanas/Departamento de

 Antropología. Retrieved from https://books.google.com.co/books?id=5M0gtwAACAAJ
- Rodríguez Cuenca, J. V. (1994). *Introducción a la antropología forense análisis e identificación de restos oseos humanos*. Santafé de Bogotá.
- Ross, M. H., & Pawlina, W. (2006). *Histology. A Text and Atlas with correlated cell and Molecular Biology* (5th ed.). EE.UU.
- Tise, M. L., Kimmerle, E. H., & Spradley, M. K. (2014). Craniometric variation of diverse populations in Florida: identification challenges within a border state. *Annals of Anthropological Practice*, 38(1), 111–123.
- Velázquez, J. R. (2001). El trabajo etnográfico. Un olvido de la Antropología Física. *Estudios de Antropología Biológica*, 10(2).
- Vitek, C. (2012). A Critical Analysis of the Use of Non-Metric Traits for Ancestry Estimation among Two North American Population Samples. Retrieved from http://trace.tennessee.edu/utk_gradthes/1218/
- White, T. D., Black, M. T., & Folkens, P. A. (2012). *Human osteology* (third edit). Academic press.
- Yunis, E. (2004). Por qué somos así?: qué pasó en Colombia? : análisis del mestizaje. Bogotá: Editorial Bruna.

Anexo 1

	FICHA DE REGISTRO DE MEDIDAS CRANEALES												
			U niversidad de										
			d de Ciencias s										
	Departamento de Antropología												
]	Laboratorio de	osteología	1								
				Fec	ha								
Código del	l individuo			Cemer	nterio								
Ed	lad			Lugar de pr	ocedencia								
Se	XO	Н	M	Observ	vador								
Buikstra				Buikstra									
&				&									
Ubelaker		Medida		Ubelaker		Medida							
(1994)				(1994)									
		Longitud											
		Máxima				Altura Nasal							
1	g-op	Craneal		13	n-ns								
		Amplitud				Amplitud							
		Máxima				Nasal							
2	eu-eu	craneal		14	al-al								
_		Diametro				Amplitud							
3	zy-zy	Bicigomatico		15	d-ec	orbital							
4	ho h	Altura Basion-		16		Altura Orbital							
4	ba-b	Bregma		16		A1241							
5	ba-n	Longitud de la Base Craneal		17	ec-ec	Amplitud Biorbital							
3	0a-11	Longitud		17	ec-ec	Dioronal							
		Basion-				Amplitud							
6	ba-pr	prosthion		18	d-d	Interorbital							
	· · · F	Amplitud											
		Maxilo-				Acorde							
7	ecm-ecm	Alveolar		19	n-b	Frontal							
		Longitud				Acorde							
		Maxilo-				Parietal							
8	pr-alv	Alveolar		20	b-l								
		Amplitud				Acorde							
9	au-au	Biauricular		21	l-o	Occipital							

10	n-pr	Altura Facial Superior		22	ba-o	Longitud del Foramen Mágnum	
11	ft-ft	Amplitud Mínima Frontal		23		Amplitud del Foramen Mágnum	
12	fmt-fmt	Amplitud Facial Superior		24		Longitud Mastoide	
Observ	Observaciones						