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a b s t r a c t 

In this paper, a numerical method is developed to obtain a solution of Caputo’s and 

Riemann-Liouville’s Fractional Differential Equations (CFDE and RLFDE). Scientific litera- 

ture review shows that some numerical methods solve CFDE and there is only one paper 

that numerically solves RLFDE. Nevertheless, their solution is limited or the Fractional Dif- 

ferential Equation (FDE) to be solved is not in the most general form. To be best of the 

author’s knowledge, the proposed method is presented as the first method that numer- 

ically solves RLFDE which includes multi-order fractional derivatives and variable coeffi- 

cients. The method converts the RLFDE or CFDE to be solved into an algebraic equation. 

Each Riemann-Liouville’s or Caputo’s Fractional Derivative (RLFD and CFD), derived from 

the RLFDE or CFDE respectively, is conveniently written as a set of substitution functions 

and an integral equation. The algebraic equation, the sets of substitution functions and the 

integral equations are discretized; and then solved using arrays. Some examples are pro- 

vided for comparing the obtained numerical results with the results of other papers (when 

available) and exact solutions. It is demonstrated that the method is accurate and easy to 

implement, being presented as a powerful tool to solve not only FDE but also a wide range 

of differential and integral equations. 

© 2020 Elsevier B.V. All rights reserved. 

1. Introduction 

Numerical solution of FDE is a concerning topic for many researchers around the world, and one of the reasons for that is 

that FDE might provide a better explanation to many natural physical phenomena and facilitate the description of dynamic 

systems [1,2] . For instance, FDE can be used to characterize complex systems related to memory and hereditary properties 

such as viscoelastic deformation, anomalous diffusion, signal processing, and stock market [3] . A modern challenge of en- 

gineering and science is to obtain more realistic models and improve processes [2,4] , and as a consequence, mathematical 

Abbreviations: (RLFI), Riemann-Liouville’s Fractional Integral; (RLSE), Riemann-Liouville’s Simplified Equation; (CRLFI), Complementary-order Riemann- 

Liouville’s Fractional Integral; (CSE), Caputo’s Simplified Equation. 
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models tend to be more complex and of difficult implementation. However, models should be simple to facilitate the im- 

plementation of engineering applications in micro-controllers or computers. In general terms, effort s are focused on finding 

a precise solution and obtaining the reduction of the computing effort with simpler algorithms [1,5] . 

Even though there is a great number of forms for FDE, CFDE and RLFDE are the most promising ones because they show 

many advantages for describing and simulating physical processes and dynamic systems [3,6] . Most researchers are focused 

on the solution of CFDE because RLFDE requires fractional order initial conditions, and there is not a consensus yet con- 

cerning their physical meaning [7] . On the other hand, because some researchers have been reporting interesting properties 

of RLFDE or have overcome some limitations [8] , RLFDE mathematical models have caught the attention in areas such as 

chaotic, polymers, biological tissue, self-similar protein dynamics among others [9–11] . Concerning the solution of RLFDE, 

it was found in the literature review that only one paper focuses on obtaining a numerical solution for RLFDE [12] which 

is limited to solve FDE in the form of D 

v f (x ) = β f (x ) + u (x ) with β > 0 and a restricted fractional order (0 < v < 1). The 

extensive use of RLFDE for modeling complex systems has the following limitations: 1) there is not a generalized method for 

the solution, and 2) there is not a consensus of the meaning of fractional initial conditions or there is not a method to con- 

vert integer initial conditions in fractional initial conditions. This paper proposes a method to overcome the first limitation. 

The main contribution is, therefore, a numerical method for the solution of RLFDE with multi-order fractional derivatives 

and variable coefficients as (1) . 

c m 

(x ) D 

v m f (x ) + · · · + c j (x ) D 

v j f (x ) + · · · + c 1 (x ) D 

v 1 f (x ) + c 0 (x ) f (x ) = u (x ) (1) 

Where j = 1 , 2 , . . . , m and m is the number Riemann-Liouville fractional derivatives in (1) . 

With the fractional initial conditions; I r 1 f (0) , . . . , I r j f (0) , . . . , I r m f (0) ; α1 −r j (0) , . . . , αk j −r j (0) , . . . , αn j −r j (0) . 

The method also solves CFDE as (2) more efficiently than the methods reported in scientific literature [2,5,6,13–19] . 

c m 

(x ) c D 

v m f (x ) + · · · + c j (x ) c D 

v j f (x ) + · · · + c 1 (x ) c D 

v 1 f (x ) + c 0 (x ) f (x ) = u (x ) (2) 

Where j = 1 , 2 , . . . , m and m is the number of Caputo fractional derivatives into (2) . With the integer initial conditions; f (0), 

f (1) (0), . . . , f (k j ) (0) , . . . , f (n m −1) (0) . 

The proposed method simplifies the fractional derivatives and the FDE into simple algebraic equations, and then solves 

them using simple array operations. In order to show the accuracy and simplicity of the method, some examples are pro- 

vided where the method is used to solve linear and nonlinear FDE (RLFDE and CFDE) which includes multi-order derivatives 

and variable coefficients. 

This paper is organized as follows: Section 2 introduces some basic definitions and properties. Section 3 presents the 

proposed method supported by Theorem 3.1 and Corollary 3.1.1 ; and Theorem 3.2 and Corollary 3.2.1 which are presented 

as important contributions of this paper. Theorem 3.1 and Corollary 3.1.1 are necessary for transforming RLFDE and CFDE to 

algebraic equations, while Theorem 3.2 and Corollary 3.2.1 allow finding the additional initial conditions necessary for apply- 

ing the method. Section 4 includes numerical examples such as: Example 4.1 solves a linear RLFDE including the explanation 

step by step of the proposed method, also the absolute error for different fractional orders is analyzed; Example 4.2 solves 

a RLFDE with multi-order fractional derivatives and variable coefficients, Example 4.3 solves a multi-order CFDE including a 

comparison in terms of precision and simulation time, and Example 4.4 solves a CFDE with multi-order fractional derivatives 

and variable coefficients. Section 5 concludes and highlights the contributions of this paper. 

2. Basic definitions and properties 

Operators and properties used in this paper are provided by [6,20,21] , these are as follows. 

Riemann-Liouville Fractional Integral (RLFI) of order r ( r ≥ 0) is defined as: 

I r f (x ) = 

1 

�(r) 

∫ x 

o 

(x − τ ) r−1 f (τ ) dτ (3) 

Riemann-Liouville Fractional Derivative (RLFD) of order v ( v ≥ 0) is defined as: 

D 

v f (x ) = D 

n I r f (x ) = 

1 

�(r) 

d n 

dx n 

∫ x 

o 

(x − τ ) r−1 f (τ ) dτ (4) 

Where r = n − v and n = � v � 
Caputo Fractional Derivative (CFD) of order v ( v ≥ 0) is defined as: 

c D 

v f (x ) = I r D 

n f (x ) = 

1 

�(r) 

∫ x 

o 

(x − τ ) r−1 d 
n f (τ ) 

dτ n 
dτ (5) 

Where r = n − v and n = � v � 
Abelian semigroup property for RLFI of orders v 1 ( v 1 ≥ 0) and v 2 ( v 2 ≥ 0) is defined as: 

I r 1 I r 2 f (x ) = I r 2 I r 1 f (x ) = I r 1 + r 2 f (x ) (6) 
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3. Proposed method 

The proposed method allows solving an v j -order FDE where n j − 1 < v j < n j and n = � v � in the sense of Riemann- 

Liouville (1) or Caputo (2) . The method is composed of three steps: 

1. Order reduction of fractional derivatives: this step allows converting each fractional derivative into an integral equa- 

tion and a set of first-order differential equations which conform a system equation. 

2. Transformation to recurrence equations: the system equation of step one is transformed into a system of recurrence 

equations, transforming a continuous problem in a discrete problem. 

3. Search of additional initial conditions: this step allows finding the additional initial conditions necessary for solving a 

FDE using the set of discrete equations found in the previous step. 

The following sections explain the steps of the proposed method. 

3.1. Step 1: Order reduction of fractional derivatives 

The method requires an order reduction of each derivative into the FDE to be solved; the order reduction allows con- 

verting each fractional derivative into an integral equation and a set of first-order differential equations that are valid for 

fractional derivatives in Riemann-Liouville’s or Caputo’s sense. The resultant set of first-order differential equations intro- 

duces all initial conditions to the method. Eq. (1) and (2) are composed of m fractional derivatives. The order reduction is 

shown in the following sections for an arbitrary v j -order fractional derivative in the sense of Riemann-Liouville ( Section 3.1.1 ) 

and Caputo ( Section 3.1.2 ) where r j = n j − v j , n j − 1 < v j < n j and n j = � v j � . 

3.1.1. Riemann-Liouville order reduction 

Definition of RLFD (4) shows that D 

v j f (x ) = 

d 
n j 

dx 
n j 

(I r j f (x )) where I r j f (x ) corresponds to RLFI (3) , supposing that G 

j (x ) = 

I r j f (x ) then (3) is conveniently written as follows to simplify notation. 

G 

j (x ) = I r j f (x ) = 

1 

�(r j ) 

∫ x 

o 

(x − τ ) r j −1 f (τ ) dτ (7) 

Each RLFD in (1) can be written as a first-order Differential Equation System (DES), applying (7) over (4) then a RLFD is 

written as D 

v f (x ) = 

d 
n j 

dx 
n j 

G 

j (x ) where d 
n j 

dx 
n j 

G 

j (x ) can be simplified to a first-order Differential Equations System (DES) given 

by (8) . 

α1 −r j (x ) = 

dG 

j (x ) 

dx 
, 

α2 −r j (x ) = 

dα1 −r j (x ) 

dx 
= 

d 2 G 

j (x ) 

dx 2 
, 

. . . 

αk j −r j (x ) = 

dαk j −1 −r j (x ) 

dx 
= 

d k j G 

j (x ) 

dx k j 
, 

. . . 

αn j −r j (x ) = 

dαn j −1 −r j (x ) 

dx 
= 

d n j G 

j (x ) 

dx n j 
(8) 

Where k j = 1 , 2 , . . . , n j and n j = � v j � 
The first-order DES (8) represents the n j functions and are defined in this paper as the substitution functions in the 

Riemann-Liouville’s sense. After the application of the order reduction to the m Riemann-Liouville’s fractional derivatives 

in (1) , m RLFIs are obtained as (7) and m sets of first-order differential equations as (8) . Eq. (9) is obtained when the 

substitution functions (8) are replaced for all the m Riemann-Liouville’s fractional derivatives into (1) and is defined in this 

paper as Riemann-Liouville’s Simplified Equation (RLSE). 

c m 

(x ) αn m −r m + . . . + c j ( x ) α
n j −r j + . . . + c 1 ( x ) α

n 1 −r 1 + c 0 ( x ) f ( x ) = u (x ) (9) 

Proposition 3.1. Let (1) be a Riemann-Liouville’s FDE where f ( x ) and G 

j ( x ) are continuous functions in the interval [ a, x ) and 

all their integer derivatives are continuous in the interval [ a, x ), then (1) can be represented as an equation system using (9) , m 

RLFIs as (7) and m sets of substitution functions as (8) . 

For example, let 10 D 

2 . 45 f (x ) − 7 D 

1 . 8 f (x ) + 9 f (x ) = 13 be a RLFDE as (1) , for D 

2.45 f ( x ) v 2 = 2 . 45 , n 2 = 3 , r 2 = 0 . 55 and for 

D 

1.8 f ( x ) v 1 = 1 . 8 , n 1 = 2 , r 1 = 0 . 2 . Applying Proposition 3.1 , the following RLSE is obtained: 

10 α2 . 45 (x ) − 7 α1 . 8 (x ) + 9 f (x ) = 13 
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Two RLFIs as (7) are shown as follows: 

G 

2 (x ) = 

1 

�(0 . 55) 

∫ x 

o 

(x − τ ) 0 . 55 −1 f (τ ) dτ G 

1 (x ) = 

1 

�(0 . 2) 

∫ x 

o 

(x − τ ) 0 . 2 −1 f (τ ) dτ

Two sets of substitution functions as (8) are obtained: 

α0 . 45 (x ) = 

dG 

2 (x ) 

dx 
α0 . 8 (x ) = 

dG 

1 (x ) 

dx 

α1 . 45 (x ) = 

dα0 . 45 (x ) 

dx 
α1 . 8 (x ) = 

dα0 . 8 (x ) 

dx 

α2 . 45 (x ) = 

dα1 . 45 (x ) 

dx 

3.1.2. Caputo order reduction 

It is supposed that f ( x ) and its derivates are continuous in a solution interval [ a, x ), (5) can be represented as a RLFI given 

by (10) and a first-order DES given by (11) . 

G 

j (x ) = 

c D 

v f (x ) = 

1 

�(r j ) 

∫ x 

o 

(x − τ ) r j −1 βn j (τ ) dτ (10) 

β1 (x ) = 

df (x ) 

dx 
, 

β2 (x ) = 

dβ1 (x ) 

dx 
= 

d 2 f (x ) 

dx 2 
, 

. . . 

βk j (x ) = 

dβk j −1 (x ) 

dx 
= 

d k j f (x ) 

dx k j 
, 

. . . 

βn j (x ) = 

dβn j −1 (x ) 

dx 
= 

d n j f (x ) 

dx n j 
(11) 

Where k j = 1 , 2 , . . . , n j and n j = � v j � 
Eq. (11) represent the n j functions and are defined in this paper as the substitution functions in the Caputo’s sense, after 

applying the order reduction to the m Caputo’s fractional derivatives in (2) , m RLFIs are obtained as (10) and m sets of 

first-order differential equations as (11) . Eq. (12) is obtained when the substitution functions (11) are replaced into (2) and 

is defined in this paper as Caputo’s Simplified Equation (CSE). 

c m 

(x ) G 

m (x ) + · · · + c j (x ) G 

j (x ) + · · · + c 1 (x ) G 

1 (x ) + c 0 (x ) f (x ) = u (x ) (12) 

Proposition 3.2. Let (2) be a Caputo’s FDE where f ( x ) and G 

j ( x ) are continuous functions in the interval [ a, x ) and all integer- 

derivates of f ( x ) are continuous in the interval [ a, x ), then (2) can be represented as an equation system using (12) , m RLFIs as 

(10) and m sets of substitution functions as (11) . 

For example, let 10 c D 

2 . 45 f (x ) − 7 c D 

1 . 8 f (x ) + 9 f (x ) = 13 be a CFDE as (2) , for c D 

2.45 f ( x ) v 2 = 2 . 45 , n 2 = 3 , r 2 = 0 . 55 and 

for c D 

1.8 f ( x ) v 1 = 1 . 8 , n 1 = 2 , r 1 = 0 . 2 . Applying Proposition 3.2 , the following CSE is obtained: 

10 G 

2 (x ) − 7 G 

1 (x ) + 9 f (x ) = 13 

The following RLFIs as (10) are obtained: 

G 

2 (x ) = 

1 

�(0 . 55) 

∫ x 

o 

(x − τ ) 0 . 55 −1 β3 (τ ) dτ G 

1 (x ) = 

1 

�(0 . 2) 

∫ x 

o 

(x − τ ) 0 . 2 −1 β1 (τ ) dτ

The substitution functions as (11) are: 

β1 (x ) = 

df (x ) 

dx 
β1 (x ) = 

df (x ) 

dx 

β2 (x ) = 

dβ1 (x ) 

dx 
β2 (x ) = 

dβ1 (x ) 

dx 

β3 (x ) = 

dβ2 (x ) 

dx 
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3.2. Step 2: Transformation to recurrence equations 

The proposed numerical method requires discretization of equations. The discretization begins supposing that a line is 

a proper adjustment to a segment of curve between two points ( x a , y a ) and ( x b , y b ) when these points are so close, the 

distance h = | x b − x a | corresponds to the step of the method. 

Proposition 3.3. Let (x l+1 , y l+1 ) and ( x l , y l ) be two points in a curve y ( x ) such that h = | x l+1 − x l | and h → 0 then y (x ) ≈
( 

y l+1 −y l 
h 

)(x − x l ) + y l in the interval [ x l , x l+1 ] . 

3.2.1. Recurrence equations for RLFDE 

The discrete form for the substitution functions in the Riemann-Liouville’s sense is obtained applying Proposition 3.3 over 

the system (8) , then the discrete form of (8) is (13) and is shown as follows: 

α
1 −r j 
l+1 

= 

G 

j 

l+1 
− G 

j 

l 

h 

, 

α
2 −r j 
l+1 

= 

α
1 −r j 
l+1 

− α
1 −r j 
l 

h 

, 

. . . 

α
k j −r j 
l+1 

= 

α
k j −1 −r j 
l+1 

− α
k j −1 −r j 
l 

h 

, 

. . . 

α
n j −r j 
l+1 

= 

α
n j −1 −r j 
l+1 

− α
n j −1 −r j 
l 

h 

(13) 

Where k j = 1 , 2 , . . . , n j and n j = � v j � 
Applying Proposition 3.3 over (9) , the discrete form of RLSE is obtained: 

c m,l α
n m −r m 
l+1 

+ · · · + c j,l α
n j −r j 
l+1 

+ · · · + c 1 ,l α
n 1 −r 1 
l+1 

+ c 0 ,l f l+1 = u l (14) 

3.2.2. Recurrence equations for CFDE 

The substitution functions for fractional derivatives in the sense of Caputo have the same discrete form than Riemann- 

Liouville’s substitution functions. Applying Proposition 3.3 over the system (11) , the discrete form of the substitution func- 

tions in the sense of Caputo (15) is obtained: 

β1 
l+1 = 

f l+1 − f l 
h 

, 

β2 
l+1 = 

β1 
l+1 

− β1 
l 

h 

, 

. . . 

β
k j 
l+1 

= 

β
k j −1 

l+1 
− β

k j −1 

l 

h 

, 

. . . 

β
n j 
l+1 

= 

β
n j −1 

l+1 
− β

n j −1 

l 

h 

(15) 

Where k j = 1 , 2 , . . . , n j and n j = � v j � 
Applying Proposition 3.3 over (12) , the discrete form of CSE is obtained. Eq. (16) corresponds to the discrete form of CSE 

and is shown as follows: 

c m,l G 

m 

l+1 + . . . + c j,l G 

j 

l+1 
+ . . . + c 1 ,l G 

1 
l+1 + c 0 ,l f l+1 = u l (16) 

3.2.3. Proposition of Complementary-order RLFI 

The Complementary-order RLFI ( I α) (CRLFI) is defined to facilitate the demonstration of Theorem 3.1 . CRLFI of a RLFI 

( I β f ( x )) is proposed in this paper as a RLFI such that I α ( I β f ( x )) and α + β = 1 , being used Abelian semigroup property (6) to 

find a complementary form of RLFI. RLFIs (7) and (10) are equal to G 

j (x ) = I r j f (x ) and G 

j (x ) = I r j βn j (x ) respectively, so 

CRLFIs of (7) and (10) are I 1 −r j G 

j (x ) = I 1 −r j I r j f (x ) and I 1 −r j G 

j (x ) = I 1 −r j I r j βn j (x ) respectively. Applying Abelian semigroup 

property over RLFIs (7) and (10) , I 1 f (x ) = I 1 −r j G 

j (x ) and I 1 βn j = I 1 −r j G 

j (x ) are respectively obtained. 

Proposition 3.4. Let (7) and (10) be RLFIs where f ( x ) and βn j are continuous and integrable functions, CRLFIs of (7) and (10) are 

F (x ) = I 1 −r j G 

j (x ) and βn j −1 = I 1 −r j G 

j (x ) respectively where F (x ) = I 1 f (x ) = 

∫ 
f (x ) dx . 
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3.2.4. Recurrence equations for CRLFI 

Applying Proposition 3.4 over (3) , the CRLFI of (3) is obtained. Eqs. (7) and (10) correspond to RLFIs, and then discrete 

form of CRLFIs (3), (7) and (10) can be obtained using Theorem 3.1 . 

Theorem 3.1. Let (3) be the RLFI of f ( x ) and supposing that f ( x ) is a continuous function in the interval [0, b ] then the 

discrete form of CRLFI of (3) is given by h f l+1 + F l = 

h 
1 −r j 

�(3 −r j ) 
(G 

j 

l+1 
− G 

j 

l 
) + 

h 
1 −r j 

�(2 −r j ) 
G 

j 

l 
+ 

1 
�(3 −r j ) 

∑ l−1 
i =0 k i + 

1 
�(2 −r j ) 

∑ l−1 
i =0 m i where 

k i = 

(G 
j 
i +1 

−G 
j 
i 
) 

h 
[(ρ + h ) 2 −r j − ρ2 −r j ] , m i = G 

j 
i 
(ρ + h ) 1 −r j − G 

j 
i +1 

ρ1 −r j , and ρ = (l − i ) h . 

Proof. Applying Proposition 3.4 over (3), (17) is obtained as follows: 

F (x ) = 

1 

�(1 − r j ) 

∫ x 

0 

f ( x − τ ) −r j G 

j (τ ) dτ (17) 

Let identity (18) be 

H(τ ) = 

1 

�(1 − r j ) 
( x − τ ) −r j G 

j (τ ) (18) 

F (x ) = 

∫ x 

0 

H(τ ) dτ (19) 

Considering that solution interval of (17) is [0 , x l+1 ] where x l+1 = (l + 1) h and supposing that x 1 , x 2 , . . . , x i , x i +1 , .., x l ∈ 

[0 , x l+1 ] 

F (x ) = 

∫ x 1 

0 

H (τ ) dτ + 

∫ x 2 

x 1 

H (τ ) dτ + . . . + 

∫ x i +1 

x i 

H (τ ) d τ + . . . + 

∫ x l +1 

x l 

H(τ ) d τ = 

l ∑ 

i =0 

∫ x i +1 

x i 

H(τ ) d τ (20) 

Replacing (18) in (20) 

F (x ) = 

l ∑ 

i =0 

1 

�(1 − r j ) 

∫ x i +1 

x i 

(x l+1 − τ ) −r j G 

j (τ ) dτ (21) 

Applying Proposition 3.3 over functions F ( x ) and G 

j ( τ ) in (21) 

F l+1 = 

l ∑ 

i =0 

1 

�(1 − r j ) 

∫ x i +1 

x i 

(x l+1 − τ ) −r j 

[ 

(G 

j 
i +1 

− G 

j 
i 
) 

�τ
(τ − τi ) + G 

j 
i 

] 

dτ (22) 

Separating the integral in (22) and supposing the identity b = 

G 
j 
i +1 

−G 
j 
i 

�τ

F l+1 = 

l ∑ 

i =0 

[
b 

∫ x i +1 

x i 

τ (x l+1 − τ ) −r j 

�(1 − r j ) 
dτ − b 

∫ x i +1 

x i 

τi (x l+1 − τ ) −r j 

�(1 − r j ) 
dτ + 

∫ x l+1 

x l 

G i (x l+1 − τ ) −r j 

�(1 − r j ) 
dτ

]
(23) 

Solving integrals in (23) 

F l+1 = 

l ∑ 

i =0 

[
−bx i +1 (x l+1 − x i +1 ) 

1 −r j 

�(2 − r j ) 
+ 

bx i (x l+1 − x i ) 
1 −r j 

�(2 − r j ) 
− b(x l+1 − x i +1 ) 

2 −r j 

�(3 − r j ) 
+ 

b(x l+1 − x i ) 
2 −r j 

�(3 − r j ) 

+ 

bτi (x l+1 − x i +1 ) 
1 −r j 

�(2 − r j ) 
− bτi (x l+1 − x i ) 

1 −r j 

�(2 − r j ) 
− G 

j 
i 
(x l+1 − x i +1 ) 

1 −r j 

�(2 − r j ) 
+ 

G 

j 
i 
(x l+1 − x i ) 

1 −r j 

�(2 − r j ) 

]
(24) 

Supposing τ = τi +1 where τi +1 = τ0 + (i + 1)�τ, τ0 = 0 , �τ = h then τi +1 = x i +1 . Replacing x i +1 = (i + 1)�τ in (24) and 

simplifying 

F l+1 = 

l ∑ 

i =0 

[
−bh (lh − ih ) 1 −r j 

�(2 − r j ) 
− b(lh − ih ) 2 −r j 

�(3 − r j ) 
+ 

b(lh − ih + h ) 2 −r j 

�(3 − r j ) 
− G 

j 
i 
(lh − ih ) 1 −r j 

�(2 − r j ) 
+ 

G 

j 
i 
(lh − ih + h ) 1 −r j 

�(2 − r j ) 

]
(25) 

Applying the identities ρ = lh − ih, b = 

G 
j 
i +1 

−G 
j 
i 

�τ in (25) and simplifying 

F l+1 = 

l ∑ 

i =0 

[ 

−G 

j 
i +1 

ρ1 −r j 

�(2 − r j ) 
− (G 

j 
i +1 

− G 

j 
i 
) 

h 

ρ2 −r j 

�(3 − r j ) 
+ 

(G 

j 
i +1 

− G 

j 
i 
) 

h 

(ρ + h ) 2 −r j 

�(3 − r j ) 
+ 

G 

j 
i 
(ρ + h ) 1 −r j 

�(2 − r j ) 

] 

(26) 
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Extracting the terms associated to l + 1 and grouping the common terms: 

F l+1 = 

h 

1 −r j 

�(3 − r j ) 

(
G 

j 

l+1 
− G 

j 

l 

)
+ 

h 

1 −r j 

�(2 − r j ) 
G 

j 

l 
+ 

1 

�(3 − r j ) 

l−1 ∑ 

i =0 

(G 

j 
i +1 

− G 

j 
i 
) 

h 

[
(ρ + h ) 2 −r j − ρ2 −r j 

]

+ 

1 

�(2 − r j ) 

i −1 ∑ 

i =0 

G 

j 
i 

[
(ρ + h ) 1 −r j − ρ1 −r j 

]
(27) 

Applying Proposition 3.3 over the identity f (x ) = 

dF (x ) 
dx 

and organizing it: 

F l+1 = F l + h f l+1 (28) 

Replacing (28) in (27) and supposing that k i = 

(G 
j 
i +1 

−G 
j 
i 
) 

h 
[(ρ + h ) 2 −r j − ρ2 −r j ] , m i = G 

j 
i 
(ρ + h ) 1 −r j − G 

j 
i +1 

ρ1 −r j 

F l + h f l+1 = 

h 

1 −r j 

�(3 − r j ) 

(
G 

j 

l+1 
− G 

j 

l 

)
+ 

h 

1 −r j 

�(2 − r j ) 
G 

j 

l 
+ 

1 

�(3 − r j ) 

l−1 ∑ 

i =0 

k i + 

1 

�(2 − r j ) 

l−1 ∑ 

i =0 

m i (29) 

�

Corollary 3.1.1. Let (5) be the CFD of f ( x ) and supposing that f ( x ), β1 ( x ), . . . , βn ( x ) are continuous functions in the interval 

[0, b ], then the discrete form of (5) is given by G l+1 = 

h 
r j 

�(2+ r j ) (β
n j 
l+1 

− β
n j 
l 

) + 

h 
r j 

�(1+ r j ) β
n j 
l 

+ 

1 
�(2+ r j ) 

∑ l−1 
i =0 k i + 

1 
�(1+ r j ) 

∑ l−1 
i =0 m i where 

k i = 

(β
n j 
i +1 

−β
n j 
i 

) 

h 
[(ρ + h ) 1+ r j − ρ1+ r j ] , m i = β

n j 
i 

(ρ + h ) r j − β
n j 
i +1 

ρr j , and ρ = (l − i ) h . 

Proof. Applying Proposition 3.3 over (5) and the same procedure exposed in the proof of Theorem (3.1), (30) is obtained 

G l+1 = 

h 

r j 

�(2 + r j ) 

(
β

n j 
l+1 

− β
n j 
l 

)
+ 

h 

r j 

�(1 + r j ) 
β

n j 
l 

+ 

1 

�(2 + r j ) 

l−1 ∑ 

i =0 

k i + 

1 

�(1 + r j ) 

l−1 ∑ 

i =0 

m i (30) 

�

3.3. Step 3: Search of initial conditions 

The proposed method requires initial conditions for solving a FDE. The initial conditions required for Riemann-Liouville’s 

Fractional derivatives are different to the initial condition required for Caputo’s fractional derivatives. In the following sec- 

tion, the method for finding the initial conditions for RLFDE and CFDE is explained. 

3.3.1. Initial conditions for RLFDE 

Each Riemann-Liouville’s fractional derivative into a RLFDE requires a set of fractional initial conditions. Laplace’s rule 

shows that a v j -order RLFDE needs n j initial conditions [22] where n j = � v j � . s initial conditions are needed for solving the 

RLFDE of (1) , where s = 

∑ m 

j=1 n m 

and n m 

= � v m 

� . Eqs. (13) , (14) and (29) have in total s + m + 2 unknowns, these are in 

total s + m + 1 equations, then other initial condition is required. This initial condition is found using the s initial conditions 

given for solving (1) , Eqs. (13) , (14), (29) and the discrete form of RLFI. 

Theorem 3.2. Let G 

1 (0), . . . , G 

j (0), . . . , G 

m (0) ; α1 −r j (0) , . . . , αk j −r j (0) , . . . , αn j −r j (0) , . . . , αn m −r m (0) be the s initial condi- 

tions for solving RLFDE (1) , (13) , (14) , f 1 − h 
−r j 

�(2 −r j ) 
G 

j 
1 

= − h 
−r j 

�(2 −r j ) 
G 

j 
0 

+ 

h 
−r j 

�(1 −r j ) 
G 

j 
0 
, and G 

j 
1 

+ 

h 
r j 

�(2+ r j ) ( f 0 − f 1 ) − h 
r j 

�(1+ r j ) f 0 = 0 allow 

finding the unknown initial conditions G 

j 
1 

that is necessary for solving (1) . 

Proof. Applying Proposition 3.4 over (3) and deriving it yields to (31) . 

f (x ) = 

1 

�(1 − r j ) 

d 

dx 

∫ x 

0 

( x − τ ) −r j G 

j (τ ) dτ (31) 

Applying Proposition 3.3 over (31) and considering only one step in the interval [0, h ], (32) is obtained 

f 1 = 

1 

�(1 − r j ) 

d 

dx 

∫ x 

0 

(x − τ ) −r j 

[
(G 

j 
1 

− G 

j 
0 
) 

�τ
τ + G 

j 
0 

]
dτ (32) 

Separating the integral in (32) and supposing the identity b = 

G 
j 
1 
−G 

j 
0 

�τ

f 1 = 

b 

�(1 − r j ) 

d 

dx 

∫ x 

0 

(x − τ ) −r j τd τ + 

G 

j 
0 

�(1 − r j ) 

d 

d x 

∫ x 

0 

(x − τ ) −r j dτ (33) 
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Solving the integrals in (33) and applying the identity b = 

G 
j 
1 
−G 

j 
0 

�τ

f 1 = 

d 

dx 

[
(G 

j 
1 

− G 

j 
0 
) 

�τ

x 2 −r j 

�(3 − r j ) 
+ 

G 

j 
0 
x 1 −r j 

�(2 − r j ) 

]
(34) 

Deriving (34) , then applying one step (x = h ) in the interval [0, h ], (35) is obtained 

f 1 − h 

−r j 

�(2 − r j ) 
G 

j 
1 

= − h 

−r j 

�(2 − r j ) 
G 

j 
0 

+ 

h 

−r j 

�(1 − r j ) 
G 

j 
0 

(35) 

Now applying Proposition 3.3 over (3) and considering one step in the interval [0, h ], (36) is obtained 

G 

j 
1 

= 

1 

�(r j ) 

∫ x 

0 

(x − τ ) r j −1 

[
( f 1 − f 0 ) 

�τ
τ + f 0 

]
dτ (36) 

Separating the integral in (32) and supposing the identity b = 

G 
j 
1 
−G 

j 
0 

�τ

G 

j 
1 

= 

b 

�(r j ) 

∫ x 

0 

(x − τ ) r j −1 τdτ + 

f 0 
�(r j ) 

∫ x 

0 

(x − τ ) r j −1 dτ (37) 

Solving the integrals in (37) , applying the identities b = 

G 
j 
1 
−G 

j 
0 

�τ and one step (x = h ) in the interval [0, h ], (38) is obtained 

G 

j 
1 

+ 

h 

r j 

�(2 + r j ) 
( f 0 − f 1 ) − h 

r j 

�(1 + r j ) 
f 0 = 0 (38) 

Eqs. (35) and (38) correspond to the equations proposed in Theorem 3.2 , being G 

j 
0 

initial conditions. Now Eqs. (13) , (14), 

(35) and (38) are in total s + m + 2 and these have s + m + 2 unknowns. �

3.3.2. Initial conditions for CFDE 

Each Caputo’s fractional derivative into a CFDE requires a set of integer initial conditions, Laplace’s rule shows that a 

v j -order CFDE needs n j initial conditions [22] where n j = � v j � , the CFDE (2) needs n m 

initial conditions where n m 

= � v m 

� , 
because v m 

≥ v j with j = 1 , 2 , . . . , m . Eqs. (15) , (16) and (30) have in total s + m + 2 unknown, but these equations are in 

total s + m + 1 then another initial condition is required. For obtaining the required initial condition, it is necessary: (1) the 

s initial conditions given for solving (2) , (2) Eqs. (15) , (16), (30) , and (3) the discrete form of RLFI. 

Corollary 3.2.1. Let f (0), β1 (0), . . . , βk j (0) , . . . , βn m −1 (0) be the n m 

initial conditions for solving CFDE (2) ; then (15) , (16) , 

βn m 
1 

− h −r m 

�(2 −r m ) 
G 

m 

1 
= 0 , and G 

m 

1 
+ 

h r m 

�(2+ r m ) (β
n m 
0 

− βn m 
1 

) − h r m 

�(1+ r m ) β
n m 
0 

= 0 allow finding the unknown initial conditions βn m 
0 

and 

βn m 
1 

. 

Proof. Applying Proposition 3.4 over (10) and deriving it, (39) is obtained 

βn m (x ) = 

1 

�(1 − r m 

) 

d 

dx 

∫ x 

0 

( x − τ ) −r m G 

m (τ ) dτ (39) 

Applying the same procedure exposed in the proof of Theorem 3.2 , (40) is obtained 

βn m 
1 

− h 

−r m 

�(2 − r m 

) 
G 

m 

1 = − h 

−r m 

�(2 − r m 

) 
G 

m 

0 + 

h 

−r m 

�(1 − r m 

) 
G 

m 

0 (40) 

Considering that G 

m 

0 
= 0 for the definition of Caputo’s derivative and applying it in (40), (41) is obtained 

βn m 
1 

− h 

−r m 

�(2 − r m 

) 
G 

m 

1 = 0 (41) 

Applying Proposition 3.3 over (10) and the same procedure exposed in the proof of Theorem 3.2 , (42) is obtained 

G 

m 

1 + 

h 

r m 

�(2 + r m 

) 
(βn m 

0 
− βn m 

1 
) − h 

r m 

�(1 + r m 

) 
βn m 

0 
= 0 (42) 

Eqs. (41) and (42) correspond to the equations proposed in the Corollary 3.2.1 ; being f 0 , . . . , β
n m −1 
0 

the initial conditions. 

Now Eqs. (13) , (14), (35) and (38) are in total s + m + 2 and these have s + m + 2 unknowns. �

4. Numerical examples 

Example 4.1. Consider the linear RLFDE (43) exposed in [12] 

D 

v 1 f (x ) + f (x ) = x 4 − 1 

2 

x 3 − 3 

�(4 − v 1 ) 
x 3 −v 1 + 

24 

�(5 − v 1 ) 
x 4 −v 1 (43) 
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Where 0 < v 1 < 1 and with the initial condition I v 1 −1 f (0) = 0 . The exact solution is f (x ) = x 4 − 1 
2 x 

3 . Considering v 1 = 

0 . 1 , 0 . 25 , 0 . 5 , 0 . 9 and step size h = 0 . 1 for solving (43) . For this example: 0 < v 1 < 1, n 1 = 1 and r 1 = 1 − v 1 . Steps of the 

proposed method are explained below. 

First step (order reduction): the resultant equations after the application of Proposition 3.1 are as follows: 

α1 −r 1 (x ) + f (x ) = x 4 − 1 

2 

x 3 − 3 

�(4 − v 1 ) 
x 3 −v 1 + 

24 

�(5 − v 1 ) 
x 4 −v 1 (44) 

In this case, there is only one RLFD into (43) then one RLFIs is obtained 

G 

1 (x ) = 

1 

�(r 1 ) 

∫ x 

o 

(x − τ ) r 1 −1 f (τ ) dτ (45) 

In this case, n 1 = 1 and there is only one RLFD then one substitution function is obtained 

α1 −r 1 (x ) = 

dG 

1 (x ) 

dx 
(46) 

Second step (transform the previous equations to recurrence equations): applying Proposition 3.3 over Eqs. (44) and (46) , 

the following equations are obtained: 

α1 −r 1 
l+1 

+ f l+1 = x 4 l+1 −
1 

2 

x 3 l+1 −
3 

�(4 − v 1 ) 
x 3 −v 1 

l+1 
+ 

24 

�(5 − v 1 ) 
x 4 −v 1 

l+1 
(47) 

α1 −r 1 
l+1 

= 

G 

1 
l+1 

− G 

1 
l 

h 

(48) 

Now, applying Theorem 3.1 over (45), (49) is obtained. 

h f l+1 + F l = 

h 

1 −r j 

�(3 − r j ) 
(G 

j 

l+1 
− G 

j 

l 
) + 

h 

1 −r j 

�(2 − r j ) 
G 

j 

l 
+ 

1 

�(3 − r j ) 

l−1 ∑ 

i =0 

k i + 

1 

�(2 − r j ) 

l−1 ∑ 

i =0 

m i (49) 

Where k i = 

(G 
j 
i +1 

−G 
j 
i 
) 

h 
[(ρ + h ) 2 −r j − ρ2 −r j ] , m i = G 

j 
i 
(ρ + h ) 1 −r j − G 

j 
i +1 

ρ1 −r j , and ρ = (l − i ) h . Eqs. (47) to (49) have 4 un- 

knowns (α
1 −r 1 
l+1 

, f l+1 , G 

1 
l+1 

, F l ) . 

Third step (search of additional initial conditions): if it is supposed that l = 0 then Eqs. (47) and (48) are transformed to 

the system (50) . 

α1 −r 1 
1 

+ f 1 = x 4 1 −
1 

2 

x 3 1 −
3 

�(4 − v 1 ) 
x 3 −v 1 

1 
+ 

24 

�(5 − v 1 ) 
x 4 −v 1 

1 

α1 −r 1 
1 

= 

G 

1 
1 − G 

1 
0 

h 

(50) 

Now applying Theorem 3.2 , (51) and (52) are obtained. 

f 1 − h 

−r 1 

�(2 − r 1 ) 
G 

1 
1 = − h 

−r 1 

�(2 − r 1 ) 
G 

1 
0 + 

h 

−r 1 

�(1 − r 1 ) 
G 

1 
0 (51) 

G 

1 
1 + 

h 

r 1 

�(2 + r 1 ) 
( f 0 − f 1 ) − h 

r 1 

�(1 + r 1 ) 
f 0 = 0 (52) 

Eqs. (50) – (52) compose a system of four unknowns and four equations, that is solved to find f 1 and G 

1 
1 

which are the 

additional initial conditions necessary to solve (47) to (49) . Absolute error is shown in Fig. 1 . 

Fig. 1 shows the absolute error for different values of v 1 . We consider that the solution is accurate, the maximum error 

is less than 5 . 3 x 10 −3 . In this case, the absolute error tends to increase when the fractional order is increased. 
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Fig. 1. Absolute Error for different values of v 1 . 

Example 4.2. Consider the RLFDE of (53) with variable coefficients 

a (x ) D 

v 2 f (x ) + bD 

v 1 f (x ) + c(x ) f (x ) = u (x ) (53) 

Where u (x ) = 

2 
�(3 −v 2 ) 

x 3 −v 2 − 1 
�(2 −v 2 ) 

x 2 −v 2 + 

2 
�(3 −v 1 ) 

x 2 −v 1 − 1 
�(2 −v 1 ) 

x 1 −v 1 + 

√ 

x (x 2 − x ) ; the coefficients are a (x ) = x, b = 1 

and c(x ) = 

√ 

( x ) ; and the fractional orders are v 2 = 0 . 719 and v 1 = 0 . 141 . (53) is subject to initial conditions I v 2 −1 f (0) = 0 

and I v 1 −1 f (0) = 0 . The exact solution is f (x ) = x 2 − x . The numerical solution f l+1 with h = 0 . 005 and the exact solution f ( x ) 

are shown in Fig. 2 , while the absolute error is shown in Fig. 3 . 

Fig. 2. Numerical ( f l+1 ) and exact solution ( f ( x )) of RLFDE with variable coefficients. 
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Fig. 3. Absolute error between numerical and exact solutions. 

Figs. 2 and 3 show that the proposed method is able to solve RLFDE with multi-order fractional derivatives and variable 

coefficients, the solution obtained ( f l+1) ) is accurate to the exact solution, being the maximum absolute error less than 

2 . 2 x 10 −3 . 

Example 4.3. Consider the multi-order CFDE (54) that it is known as Bagley-Torvik equation in [5] . This is a classic problem 

of fractional differential equations, the exact solution of this problem is f (x ) = x + 1 . 

D 

2 f (x ) + 

c D 

v 1 f (x ) + f (x ) = (x + 1) (54) 

Where v 1 = 

3 
2 subject to initial conditions f (0) = f (1) (0) = 1 , the solution is given in the intervals 0 ≤ x ≤ 5 and 0 ≤ x ≤ 10 

and for three different h (0.01325, 0.125, 0.5). 

Table 1 gives the maximum error obtained using the two methods reported in [19] that are called E M 1 
with CPU time 

( CPU 1 ) and E M 2 
with ( CPU 2 ). Table 1 also gives the maximum error of the proposed method ( E Proposed ) with CPU time 

( CPU Proposed ). Characteristics of the computer used in the simulations are: RAM 8 GB, Intel Core i3 without GPU. 

Table 1 shows that the most accurate method is E M 2 
while E M 1 

and E Proposed have similar precision. The proposed method 

demanded less CPU time for all simulations than all the others thus corresponding to the most efficient method in this 

scenario. For the proposed method, when h is decreased the precision significantly increases without increasing too much 

its CPU time. In consequence, reduction of the step size is a practical solution for increasing the accuracy of the proposed 

method. 

Table 1 

Comparison between the solutions of [19] and the proposed method. 

h Interval | E M 1 | | E M 2 | | E Proposed | CPU 1 CPU 2 CPU Proposed 

0.5 0 ≤ x ≤ 5 0.3831 0.00741 0.37240 3 . 2 x 10 −3 8 x 10 −3 1 . 5 x 10 −3 

0.125 0 ≤ x ≤ 5 0.0265 0.00196 0.02348 9 . 4 x 10 −3 25 x 10 −3 5 . 8 x 10 −3 

0.01325 0 ≤ x ≤ 5 0.0028 0.00016 0.00248 68 x 10 −3 185 x 10 −3 66 x 10 −3 

0.5 0 ≤ x ≤ 10 0.3834 0.00709 0.37130 6 . 1 x 10 −3 20 x 10 −3 3 . 1 x 10 −3 

0.125 0 ≤ x ≤ 10 0.0254 0.00198 0.02389 25 x 10 −3 68 x 10 −3 11 x 10 −3 

0.01325 0 ≤ x ≤ 10 0.0021 0.00015 0.00104 134 x 10 −3 405 x 10 −3 105 x 10 −3 
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Example 4.4. Consider the multi-order CFDE with variable coefficients (55) in [23] 

aD 

2 f (x ) − b(x ) c D 

v 2 f (x ) + c(x ) D f (x ) + e (x ) c D 

v 1 f (x ) + k (x ) f (x ) = u (x ) (55) 

Where u (x ) = −a − b(x ) 
�(3 −v 2 ) 

x 2 −v 2 − c(x ) x − e (x ) 
�(3 −v 1 ) 

x 2 −v 1 + k (x )(2 − 1 
2 x 

2 ) ; the coefficients are a = 1 , b(x ) = x 
1 
2 , c(x ) = x 

1 
3 , 

e (x ) = x 
1 
4 and k (x ) = x 

1 
5 ; and the orders or fractional derivatives are v 1 = 0 . 333 and v 2 = 1 . 234 . (55) is subject to initial 

condition f (0) = 2 and f (1) (0) = 0 , under this initial conditions the solution of the problem is f (x ) = 2 − 1 
2 x 

2 . 

Fig. 4 shows that the solution obtained using the proposed numerical method is close to the exact solution of the CFDE 

(55) , also the accuracy of the method increases by the increasing of the step size h . Fig. 4 proves that with small values of h , 

Fig. 4. Numerical solution obtained ( f l+1 ) for different step sizes and the exact solution ( f ( x )). 

Fig. 5. Absolute error between numerical and exact solutions for different values of h. 
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the solution f l+1 is approaching to the exact solution f ( x ). In addition to these, Fig. 5 shows that the absolute error sharply 

decreases when h decreases. 

5. Conclusions 

The main contribution of this paper is a novel numerical method for solving FDE with Riemann-Liouville’s or Caputo’s 

Fractional Derivatives. The strength of the method consists in the solution of FDE with multi-order fractional derivatives 

and variable coefficients. The proposed method has not restriction in the type of Differential equation to be solved, being 

possible to be applied to a wide range of FDE. 

Two theorems and two corollaries were proposed as important contributions of this paper. Theorem 3.1 and 

Corollary 3.1.1 transform Riemann-Liouville’s and Caputo’s fractional derivatives respectively to recurrence equations, these 

allow solving a FDE like a system of algebraic equations. While, Theorem 3.2 and Corollary 3.2.1 allow finding the additional 

initial conditions necessary for applying the method. 

In CFDE examples, the obtained solution was compared with solutions obtained using other methods, the precision was 

very similar. Although the proposed method was not the most accurate, it was the most efficient method with fewer CPU 

times. Also, the pseudo-code is presented in Appendix A to show the easy computational implementation of the proposed 

method. 

Considering that there are not reported examples for numerical solution of RLFDE yet, solutions were only compared 

with exact solutions. It was demonstrated that the method is accurate for solving linear, multi-order and variable coefficients 

RLFDE, so that the proposed method is presented as the first numerical method that solves RLFDE which includes multi- 

order fractional derivatives and variable coefficients. 
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Appendix A. Pseudo-code for solving RLFDE or CFDE with the proposed method 

1. start 

2. initialize x a = 0 , x b = b and l = 1 

3. introduce simulation parameters h, v j with j = 0 , 1 , . . . , m 

4. introduce initial conditions ( G 

1 (0), . . . , G 

j (0), . . . , G 

m (0); α1 −r j (0) , . . . , αk j −r j (0) , . . . , αn j −r j (0) , . . . , αn m −r m (0) ) for 

RLFDE or ( f (0), β1 (0), . . . , βk j (0) , . . . , βn m −1 (0) ) for CFDE 

5. calculate additional initial conditions ( G 

1 ( h ), . . . , G 

j ( h ), . . . , G 

m ( h )) using (13), (14) and Theorem 3.2 for RLFDE or ( βn m 
0 

and βn m 
1 

) using (15), (16) and Corollary 3.2.1 for CFDE 

6. while x ≤ (x b − h ) 7. calculate f l+1 using (13), (14) and Theorem 3.1 for RLFDE or using (15), (16) and Corollary 3.1.1 for 

CFDE 

8. calculate x = (l + 1) h 

9. end 
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