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Abstract

In addition to the chemical composition, information about the three-dimensional structure
of a biomolecule is vital for understanding its biological function. For many years, resolv-
ing structures of biomolecules was exclusive of X-ray crystallography and nuclear magnetic
resonance (NMR) techniques. However, due to technological and software improvements,
cryo-electron microscopy (cryo-EM) has emerged as an alternative for resolving complexes
that were infeasible for crystallization or too large for NMR. Currently, cryo-EM is able to
provide near-atomic resolution and close-to-native structures . Moreover, it enables extract-
ing dynamical information, such as free-energy landscapes, from thermal states in the mi-
crographs. The “resolution revolution” in cryo-EM has provoked an avalanche of reported
cryo-EM maps. Recent statistics show an exponentially-growing number of reported maps
spatially resolved by cryo-EM with their mean resolution decreasing from ∼ 10 Å (in 2013)
to 4 Å (for 2018).

The resolution revolution brings with it the need of creating robust and reliable methodolo-
gies to validate the increasingly large number of maps. Some advances have been done along
these lines: the tilt-pair analysis , the gold-standard procedure and the high-frequency ran-
domization have shown to be reliable validation tools. However, it has recently been shown
that these methods remain sensitive to overfitting (treating noise as true signal) and subjec-
tive criteria.

In this work, I will present a novel methodology for validating cryo-EM maps. The method
is based on cross-validation criteria where the reconstructed maps are compared against a set
of experimental images (raw data) not used in the reconstruction procedure. Such comparison
is carried out by calculating the probability that an image is the projection of a given map. The
information from these probabilities led us to propose two validation criteria, which are tested
over three well-behaved systems and two systems that present overfitting. The results prove
that our methodology is able to identify overfitted maps.
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1
Introduction

Cryo-electron microscopy (cryo-EM) has become a mainstream technique for resolving bio-
logical structures in a close-to-native environment and at near-atomic resolution. Moreover,
cryo-EM has the potential for monitoring the dynamics of structural changes induced by ther-
mal fluctuations or chemical interactions [2, 3]. Cryo-EM resolves a biomolecule structure by
analyzing hundreds of thousands of two-dimensional projections of the biomolecule’s elec-
tron density. Such projections are obtained by passing a coherent electron beam through a
frozen sample, which contains multiples copies of the biomolecule oriented randomly. With
advanced algorithms a 3D density map is reconstructed from the projections, and ultimately
an atomic model is fitted into the map.

Most of the reconstruction algorithms are based on the Fourier slice theorem, which states
that a central slice (a plane that passes through the origin) of the Fourier transform (FT) of a
3D function corresponds to the FT of the 2D projection of the function over a plane parallel to
the slice. The basic idea is to assign an orientation to each experimental cryo-EM projection
and to calculate its FT. If there is enough sampling of the orientation space, and it is assumed
that all projections correspond to the same conformation, it is possible to obtain a 3D object
in Fourier space by combining all the FT-projections as central slices in the corresponding
orientations. The inverse FT of this object will be the 3D electron density map. Of course,
behind this simple description there are important tasks to solve such as the accuracy of the
orientation assignment, reference bias, heterogeneity and others. Moreover, the difficulty is
enhanced by the very low signal-to-noise ratios (SNR) present in cryo-EM data sets. These
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typically range from 0.1 to 0.001.
In fact, the low SNRs make it challenging for the reconstruction algorithms to distinguish

noise from true signal. This has serious consequences because noise can be aligned as true
signal (termed as overfitting), and hence artificial features can build-up the map. In extreme
cases, a reference object can be generated from pure-noise images [4, 5]. For this reason,
validation and map quality assessment play a vital role for cryo-EM [6, 7].

Currently, there are some standard methodologies to reduce the risk of overfitting. The
most common is the ’gold-standard’ procedure [8]. In this method, the image set is divided
into two subsets and two independent reconstructions are generated from each half set, then
the two maps are correlated for assessing the resolution. Additional strategies to validate the
reconstructions are the tilt-pair analysis [9] and the high-frequency substitution [10].

Despite this progress, in the recent Map Challenge [11] it has been shown that the proto-
cols remain user-dependent and there can be biases due to processing workflows, which can
lead to overfitted cryo-EM reconstructions. For example, the reported values of the resolution
in the atomic model (from the Protein Data Bank or PDB) and in the map (from the Electron
Map Deposition Bank or EMDB) are different for about 30% of the deposited data [12]. More-
over, it has been found that more than 70% of the maps in the EMDB have moderate to low
agreement with the model, mostly because of the limited resolvable features of the maps [7].

Cross-validation methods are widespread statistical tools for measuring the prediction ac-
curacy of a model over a control dataset not used in the model training. Following this idea,
we here propose an unbiased strategy that validates cryo-EM reconstructions using a small
control set of images that are omitted from the refinement process. The prediction accuracy
will be measured by calculating the probability that control images are projections from the
refined maps [13, 14]. Based on such probabilities, we propose two criteria for monitoring the
quality and correctness of the refinement procedure. We test the method on different systems
and asses its effectiveness to discriminate overfitted maps.

1.1 Problem statement

Validation tests are fundamental to recognize correct maps from those contaminated by noise
alignment or template bias in cryo-EM. Moreover, the high rate of reported cryo-EM struc-
tures has forced the community to propose more robust validation criteria [11]. Although
some advances have been done in this direction, cryo-EM map validation is still an open is-
sue, since it was recognized that current reconstruction strategies remain prone to overfitting.
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1.1.1 Objectives

General objective

Propose a robust methodology for validating cryo-EM maps using an independent set of im-
ages not used in the refinement procedure.

Specific objectives

• Implement a strategy to compare the refined maps against the validation set.

• Propose robust criteria to identify overfitted maps.

• Create a public code to apply the methodology.
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2
Cryo-electron microscopy

There are two main stages to overcome for solving a biological 3D structure by cryo-EM: the
experimental part, including sample preparation, data collection and data processing (Fig.
2.1). In this chapter, we will describe each stage briefly, emphasizing the processing part.
Basic concepts used in cryo-EM are explained in ref. [15].

2.1 Experimental stage

The sample preparation initializes with the purification, using biochemical methods, of an
aqueous solution containing multiples copies of a biomolecule. Since the high-vacuum of the
electron microscopes causes dehydration, the biomolecules must be fixed in a close-to-native
state: negative staining and vitrification are the most commonly used methods [16].

Jacques Dubochet and his group firstly proposed vitrification [17]. They vitrified a bio-
logical sample into a thin film of amorphous ice by freezing it at cryogenic temperatures
(∼ −196◦C) using liquid nitrogen. This procedure was done quickly enough to prevent the for-
mation of ice-cubic cells, which would diffract the electron beam [17]. The single-particle ap-
proach of imaging of cryo-fixed samples using an electron microscope became known as cryo-
electron microscopy (cryo-EM). In 2017, J. Dubochet was awarded, together with Richard
Henderson and Joachim Frank, the Nobel prize in chemistry because of their contribution to
the development of the cryo-EM field.

After vitrification, the specimen is loaded onto a thin support film and it is imaged by a
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Figure 2.1: Graphical summary for a standard pipeline to solve a biomolecular structure using cryo-EM. The experimen-
tal stage includes the specimen purificaঞon, vitrificaঞon and imaging by a TEM. The series of micrographs (top-right)
undergo data processing unঞl a 3D map is obtained. Finally, an atomic model is fi�ed from the map.
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conventional transmission electron microscope (TEM) working from 200 to 300eV. A 2D
projection of the sample (called micrograph) is generated (e.g., top-right in Figure 2.1).

Since imaging biological samples requires low radiation doses to avoid chemical bond break-
ing, the micrographs contain a strong noise component (typical SNRs are in the order of 10−3).
This imposed a substantial limitation to the cryo-EM technique. However, the introduction
in 2012 of direct-electron detectors (DEDs), [18, 19] with relatively high efficiency (which ex-
presses the degradation over the incoming SNR due to the recording error), led cryo-EM to
achieve near-atomic resolution of cryo-EM maps for the first time. DEDs can detect indi-
vidual electrons allowing a pixel-resolution recording. Moreover, due to the high frame rate
of the DEDs, the radiation dose can be spread among different frames creating an exposure
movie. These movies are used as input for the computational processing part.

For more details about experimental procedures, such as sample preparation, apparatus
description, and data recording, see [16].

2.2 Data processing

In a typical cryo-EM experiment, 2D images of the vitrified sample containing multiples pro-
jections of the biological system are recorded in a series of frames (or movies). The analysis
of such data is typically divided into three stages. The first stage is the pre-processing of the
micrographs, which includes picking, cleaning, and clustering of the individual projections of
the biomolecule (henceforth referred to as particles). The second stage is the reconstruction,
refinement, and validation of the 3D electron density map generated from the particles. The
final stage consists of fitting an atomic model into the map (see Figure 2.1).

Since the interaction between the electron beam and the biomolecules induces mechanical
movements, averaging frames of a movie can not be done directly. Instead, motion correction
is performed [20, 21], and after a correct alignment, the frames are averaged, producing a
micrograph with a higher signal. Using automatic [22], semi-automatic [23] or even manual
strategies, the particles are picked from the micrograph. Picking algorithms have to be very
careful to avoid template bias because, in extreme cases, pure noise images can be detected
as a particles [4]. This can furtheron lead to overfitting (i.e, treating noise as true signal) in
cryo-EM workflows.

Once the particles are picked, most algorithms perform a 2D classification, where the parti-
cles are clustered according to their similarity over rotations in a plane [1, 24]. Particles from
the same cluster are averaged. Bad particles (with artifacts because of radiation damage, over-
laped projections, etc) can be detected because they produce blurred averaged-projections.
The particles chosen from the good clusters are used to generated a low-resolution de-novo
map [25, 26] (see below how to go from 2D images to a 3D map). Afterwards, a 3D classifi-
cation that clusters the particles according to certain underlying states present in the experi-
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mental sample is performed [27]. The number of 3D states will be limited by the total number
of particles. If it is excessively large, the conformational states will have low populations and
hence the information will not be enough to reconstruct the corresponding maps. For most
cases, 3D classification is used to clean even more the data. The final subset of particles be-
longing to a unique state is used to obtain a final reconstruction and perform a refinement of
the map.

For a complete introduction to processing techniques in cryo-EM reconstructions, we rec-
ommend the books [28, 29, 30]. A practical pipeline is described in [31]. Additionally, refs.
[32, 33, 34] offer a historical review of cryo-EM development. Below I will focus on explaining
in detail the 3D refinement procedure and map validation.

2.2.1 3D reconstruction

Most reconstruction algorithms are based on the weak-phase approximation [35], which de-
scribes the scattered electron wave function as a phase shift of the incident electron wave-
function, i.e Ψexit = e−iφΨincident. Such shift φ is proportional to the effective atomic potential
of the sample, φ ∝

∫
V(z)dz (assuming êz as the propagation direction). If a thin enough

sample (see Appendix) and small angles scattering are considered (this latter assumption is
fulfilled by typical cryo-EM experiments, where electron beams are generated at 200-300 keV
energies), then the exit wave function is reduced to Ψexit = (1 − iφ)Ψincident.

Taking into account the optical aberrations effects induced by the microscope, the image
formation can be modelled by the linear model

F{X} = CTF ∗ F{P−→
d
V}+N, (2.1)

where the CTF is the FT of the point-spread function of the microscope (see the Appendix),
X represents the intensities of a particle (i.e a projection of the biomolecule obtained from
experimental data), V is the underlying 3D electron density map, P−→

d
is the projection op-

erator along the direction
−→
d and N represents the noise (see chapter 9th of ref. [36] for a

comprehensive explanation about how such model arises).
Most reconstruction algorithms use an iterative approach to generate better maps at each

step. From an initial map V, the best orientations for each particle are calculated using the
projection-matching method [37]. Once the orientations are assigned to all particles, a new
map is reconstructed using the Fourier-slice theorem [37] which states that a central slice

normal to
−→
d of a 3D map corresponds to the FT of a projection along

−→
d . The algorithm is

halted when the map quality stops improving.
Algorithms based on maximum-likelihood and Bayesian inference [1, 25, 38, 39], instead

of projection-matching, are currently the most popular. They have showed huge power to

17



resolve the underlying map with the minimal user intervention at accessible computational
costs [40].

2.2.2 Validation & Resolution

The gold-standard procedure

Most of the reconstruction algorithms are based on iterative schemes, which initialize from a
low-resolution map and improvements are done using, for example, Bayesian or likelihood-
based methods. For ‘perfect’ images, these algorithms should convert to a unique and un-
ambiguous structure. However, if there are high noise levels, differentiating between noise
and true signal is difficult. In this case, orientation assessment may be incorrect due to spu-
rious correlations between the noise components and the features from the reference map.
Refinement iterations can yielded a template-biased (’overfitted’) final map. A famous exam-
ple is the Einstein-from-noise model, where Einstein’s face is reconstructed from pure-noise
images [5, 4].

Moreover, even if one uses a low-resolution map, matching noise at higher frequencies is
still possible, which can induce the generation of artificial features. Overfitting can be difficult
to detect since there is no exact (“true”) map for comparison. In several cases, a visual analysis
of an expert is required. However, objective tools for overfitting detection such as the tilt-pair
analysis and the Fourier Shell Correlation (FSC) have been proposed. We will make a brief
introduction to the FSC since it is, by far, the most common tool currently used.

The FSC is 1D curve which measures the correlation between two objects as a function of
the spatial frequency. It was proposed by Saxton and Baumeister for image comparison [41]
and it was generalized for 3D maps [42].

Let F1, F2 be the 3D FT of the maps M1 and M2, respectively. The FSC is defined as

FSC(k,Δk) =

∑
q∈Sk,Δ F1(q) ∗ F∗

2(q)√∑
q∈Sk,Δk |F1(q)|2

∑
q∈Sk,Δk |F1(q)|2

(2.2)

where all the sums run over the Fourier components belonging to the shell Sk,Δk of radius k
and width Δk. By definition, the FSC is bounded between 1 and −1. These points correspond
to a perfect correlated or anti-correlated shells, respectively. FSC = 0 indicates uncorrelated
shells.

Both maps (from set 1 and 2) must have the same statistical significance, i.e., they must
correspond to the same structural state. This is guaranteed by performing subsequent non-
supervised 3D-classification procedures) for the selecting the particles to run the final gold-
standard refinement). For the systems tested in this work, 3D classification was performed
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Figure 2.2: FSC curves encountered for cryo-EMmaps. Some FSC curves show signs of overfiমng. This figure is based
on the figure 3.4 from ref. [45].

previous to the refinement.
Besides, in order to avoid artificial correlations, both maps should be independent. Fol-

lowing this idea, the so-called ‘gold-standard’ procedure consists on dividing randomly the
particle set in two halves, and generating independent reconstructions from each half. It is
important that reconstructions are performed using independent alignment processes.

The majority of the validation and quality assessment criteria of cryo-EM data is based on
the FSC. The popularity of this method is motivated by its relation to the spectral signal-to-
noise ratio (SSNR) (the SNR in Fourier shells) [43, 44, 45],

FSC =
SSNR

1 + SSNR
. (2.3)

The FSC can be interpreted as a measure of the noise level added at each frequency shell.
Therefore, the FSC curve is used as validation criteria [6, 7, 8]. If the reconstruction was
performed adequately, the FSC will begin near 1 for the lowest frequencies, decay smoothly
and oscillate around zero after a certain frequency less or equal than the Nyquist frequency
(see figure 2.2). Any behavior differing from the one mentioned above indicates that some
error/overfitting was performed in the reconstruction procedure[45].

Chen et. al. [10] propose a method to obtain a more robust validation criteria from FSC
curves. They create an image stack identical to the original one, except that, beyond a certain
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frequency, the Fourier components of the original images are replaced by random complex
numbers which follow a similar distribution to the background noise. The FSC curve between
the two maps generated from the manipulated and the original images give an additional
validation criteria.

However, some authors [46, 44] have criticized the FSC arguing that it is based on the as-
sumption that both noise components ofM1 andM2 are orthonormal, which might not be true
for all cases.

Resolution and map quality assessment

Quantifying the quality of cryo-EM maps is still under debated in the field, mainly due to the
statistical nature of the cryo-EM resolution concept. Unlike with X-ray crystallography where
the resolution has physical sense related to Bragg’s law, in cryo-EM the resolution measures
the statistical consistency of the data. Although several approaches have been proposed, FSC-
based methods are the most widespread. For a review of the resolution measure see refs. [47,
45]. The debate has centered on the convenience of the use of a single number for resolution
assessment, and how this number is obtained [46, 44, 48, 12].

In the practice, most studies use a fixed-threshold approach. Based on the relation be-
tween the FSC and the SSNR (eq. 2.3) authors have proposed the resolution as the frequency
where the FSC curve reaches the 0.143 or 0.5 value [49, 41]. The 0.5 threshold indicates that
there is as much signal as noise after comparing both maps generated with the gold-standard
procedure. The 0.143 threshold has the same significance but comparing a half-map to the
hypothetical perfect map generated from the entire dataset.

Better resolution estimates are obtained with reference-free pipelines using the 1/2 bit
non-fixed FSC threshold [46, 50]. The local resolution in a map can be evaluated using the
background noise of the reconstruction [51] or by masking different regions with the FSC
[52, 53]. Predictability of the particle alignment provides quality indicators of the reconstruc-
tion [48, 54]. Moreover, several metrics that monitor cross-correlations in real or Fourier
space between the maps and models indicate the reliability of the resolution [12, 7, 55]. Re-
cently, deep learning algorithms have been introduced to automatically classify maps into
high, medium, and low resolution [56]. However, all these methods have the limitation that
they do not use the raw data, which ultimately comes from the individual particles, but they
only use the maps or models that are product of processing and averaging. For instance, in
cryo-EM there is no cross-validation method, such as the R-free in X-ray crystallography [57],
which uses an independent control set from the pure experimental data. This has therefore
motivated us to develop cross-validation tests for cryo-EM.
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3
Theory and methods

Cross validation is a widespread statistical tool for measuring the prediction accuracy of a
model over a control dataset not used in the model fitting. It is commonly used in machine
learning for expressing the agreement between a model and the observed data. In structural
biology, cross-validation tools have been used for addressing the quality of the atomic mod-
els fitted to density maps. A prominent example is the free R-factor used to validate models
resolved by X-ray crystallography [57]. In cryo-EM, there are also some proposed method-
ologies for validating atomic models fitted into 3D maps [58, 59]. However, we are interested
in the map validation stage where there is no a cross-validation approach available.

In this work, inspired by the main ideas of cross validation, we propose to validate cryo-EM
maps (generated from the gold-standard procedure) by comparing them against a set of par-
ticles (Ω) not used in the reconstruction procedure. Such comparison is done by calculating
the probability PMω that a particle ω ∈ Ω is the projection of a given map M [13]. Based on
these probabilities we propose two validation criteria.

The chapter is organized as follows. First, we describe the general theory for the two val-
idation tests. Then, in the Methods section, we describe the details about the benchmarks
systems and the reconstruction procedure.
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3.1 Theory: Novel cross-validation tests for cryo-EM

We propose a statistical framework for the cross-validation of cryo-EM reconstructions. First,
and foremost, the validation analysis is done over a small control set of particle images not
used in the refinement process. This independent set should give an unbiased estimate of the
quality of the reconstructions.

From a given pre-processed particle set, a small number Nω of particles are selected ran-
domly as the test set Ω. The rest of the particles will belong to the reconstruction set. The
particles from reconstruction set are submitted to a refinement procedure following the gold-
standard guidelines. Therefore, the particles from the refinement are split in two halves.
Starting from a low-resolution map used as reference (to reduce overfitting and bias template
[1]), the refinement is done iteratively, and independently for each half. A series of maps Mi

with i = 1,2 for each half are generated (see the Methods section below for details on the
refinement procedure).

Fig. 3.1 shows the work-flow of our novel methodology. The refinement is done following
the gold-standard procedure (Fig. 3.1–left), where two reconstructions are generated at each
iteration step. These two reconstructions are validated using the control particle set (Fig. 3.1–
right). At each iteration, the two maps are low-pass filtered to different frequency cutoffs, kc.
Then, the BioEM probabilities are calculated for each low-pass filtered map. The main idea
is to measure map probability with the cumulative log-posterior (Test 1), and compare these
probability distributions using the normalized Jensen-Shannon metric (Test 2). Below we
will explain each test in detail.

3.1.1 Test 1: The BioEM posterior probability

The first direct validation criteria is the cumulative log-probability of each map M given the
test set of particles. This measures how probable a 3D map is given the unbiased experimen-
tal data. The cumulative evidence should increase or remain constant as a function of the
iteration. Moreover, it should also increase as a function of a low-pass filter frequency cutoff.
Failing this test is a prime indicative that there is a problem in the refinement process.

The BioEM posterior probability

The probabilities involved in our methodology are calculated using the BioEM (Bayesian In-
ference of electron microscopy images) algorithm developed by Cossio and Hummer [13]. The
BioEM method [13] uses a Bayesian framework to quantify the consistency between an exper-
imental image ω and a given mapM (or atomic model) by calculating the posterior probability
PMω.
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Figure 3.1: Cross-validaঞon protocol for unbiased map validaঞon in cryo-EM. (le[) Gold-standard refinement proce-
dure in cryo-EM. Two parঞcle sets are used to generate two independent reconstrucঞons. These reconstrucঞons are
compared using the Fourier shell correlaঞon (FSC). A fixed FSC threshold is used to extract the resoluঞon of the recon-
strucঞons. The process is iterated unঞl the resoluঞon stops improving. (right) Novel cross-validaঞon protocol using
a small control parঞcle set. At each iteraঞon of the refinement, the reconstrucঞons are low-pass filtered to different
frequency cutoffs kc. The BioEM probabiliঞes [13, 14], over the independent control set, are calculated as a funcঞon of
kc. Two tests validate the quality of the reconstrucঞons: 1) the cumulaঞve log-posterior and 2) the staঞsঞcal similarity
between the probability distribuঞons (measured with a normalized Jensen-Shannon divergence). The results from both
tests should increase as a funcঞon of the frequency cutoff. The maps represented correspond to the RAG1-RAG2
complex (see the Methods).

Unlike Cossio and Hummer’s original work [13], we are not interested in ranking atomic
models (or model ensembles). Instead, our aims are (i) to extent the BioEM utility for analyz-
ing electron densities -maps and (ii) to evaluate how the consistency of the maps generated in
a typical 3D-refinement procedure.These aims are challenging because the changes between
the maps from different refinement iterations are, in general, not distinguishable with no no-
ticeable structural changes, but rather by the information contained in the higher frequencies
measured with the individual cryo-EM particles.

To calculate posterior probability, BioEM takes into account the relevant physical param-
eters (Θ) for the image formation: center displacement (x-shift and y-shift), normalization,
offset, noise, orientation and CTF parameters (defocus, amplitude, and B-factor). Pmω is cal-

23



culated by integrating out all these parameters

Pmω ∝
∫

L(ω|Θ,m)p(Θ)p(m)dΘ , (3.1)

where p(m) and p(Θ) are the prior probabilities of the map and parameters, respectively, and
L(ω|Θ,m) is the likelihood function.

Recalling the weak-phase approximation discussed in chapter 2 and assuming that the im-
age is blurred by independent and white noise, distributed normally with mean zero and vari-
ance σ2, then BioEM method postulates the likelihood function as

L(ω|Θ,m) =

Npix∏
x,y

1√
2πσ

e−
[
I(obs)ω (x,y)−I(cal)(x,y|m,Θ)

]2
/2σ2

(3.2)

where I(obs)ω is the intensity of the experimental image ω and I(cal)(x,y|m,Θ) is the intensity of
the image projected from the map m under the parameters Θ.

Prior probabilities of maps might play an important role in applications such as model-
ensemble refinement [13], however, in our case we will consider p(m) constant. Prior prob-
abilities of CTF parameters are Gaussian functions, their means and variances are chosen
from previous information about the particles. For several cases, (for example, the CTF pa-
rameters), these can be extracted during the experimental stage of cryo-EM. Therefore, the
variances and means of the CTF priors are chosen to sample around these reference values
in order of reduce the integration space. The prior probabilities of all others parameters are
uniform over the integration intervals. In Eq. 3.1, the integrals over the offset, noise and nor-
malization are performed analytically [13], and that over the center displacement is described
in ref. [14]. The integral over the orientations and CTF defocus is done using a double-round
algorithm, which is described in the BioEM algorithm section.

Similarly as in ref. [13], we define a noise model PNoise = (2πλ2e)−Npix/2 where Npix is the
number of pixels and λ is the image variance (by default λ = 1). PNoise is used as a reference
to compare the posterior probabilities.

In summary, Pmω measures how probable a 3D map (m) is given an experimental image ω.
So we calculate the cumulative log-probability relative to noise

∑
ω ln(Pmω)/Nω − ln(PNoise),

over the control set with Nω images, to determine how the probability of maps changes as a
function of the low-pass filtering frequency and the refinement iteration step.

3.1.2 Test 2: The similarity between the posterior distributions

The second cross-validation test consists on measuring the similarity between the probability
distributions of the two reconstructions (generated from the two halves of the gold-standard
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procedure) as a function of a low-pass frequency cutoff and refinement iteration. We expect
that as more frequencies are added to the reconstructions, more noise is added, and the prob-
ability distributions are less similar.

Normalized Jensen-Shannon divergence

Measuring a distance among probability distributions is a common task in statistics which it
is of key importance in fields such as applied statistics, machine learning and Bayesian infer-
ence. The most popular measure is the Kullback-Leibler divergence (KLD) [60, 61] defined
as

DKL(P|Q) =
∑
x

P(x) log[P(x)/Q(x)]

where the sum runs over all the realizations of the distributions P(x) and Q(x). Thomas’ book
[62] presents a detailed study about KLD and other statistical measures. However, KLD has
several limitations: it is not symmetric and it is not normalized. To overcome this, we define a
metric that is the Jensen-Shannon divergence [62, 61] normalized by the individual Shannon
entropies

NJSD =

∑
ω[P1ω ln(P1ω/Mω) + P2ω ln(P2ω/Mω)]

2(
∑

ω P1ω ln(P1ω)
∑

ω P2ω ln(P2ω))1/2
, (3.3)

where P1ω and P2ω are the probabilities of the reconstructions from set 1 and 2, respectively,
over particles ω ∈ Ω, andMω = (P1ω+P2ω)/2. For simplicity of notation, we have omitted the
dependency of the probabilities on the frequency cutoff kc. To calculate Eq. 3.3, we normalize
the posterior probabilities such that P1ω + P2ω = 1 for each particle ω, frequency cutoff and
iteration.

In Eq. 3.3, the numerator measures the correlation between the probability distributions,
and the Shannon entropies in the denominator play the role of a normalization factor. The
NJSD metric is always positive, symmetric and its lower bound is 0 if and only if P1ω = P2ω

for all particles ω ∈ Ω.
In summary, the NJSD measures how similar are the probability distributions generated

from the BioEM probabilities for the two maps from the refinement procedure. These dis-
tributions should become less similar as a function of the low-pass frequency cutoff and the
refinement iteration step. In chapter 4, we will present in detail the results from these two
validation tests over several benchmark systems. In the following, we describe the Methods
for performing the calculations.
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3.2 Methods

In this section, we describe in detail the BioEM algorithm and benchmark systems used for
calculating the cross-validation tests.

3.2.1 The BioEM algorithm

The BioEM posterior calculation is time consuming due to the multidimensional integral that
has to be calculated numerically. We found that the orientation integral has a critical influence
on the BioEM posterior probability. Then, to ensure an accurate orientation assessment we
divided the BioEM calculation into two rounds (Figure 3.2).

In the first round an all-orientations to all-particles algorithm is performed [14], carrying
out an uniform sampling of the orientation space. For this propose a grid of 36864 quater-
nions is generated following the scheme described in ref. [63]. Moreover, to reduce the errors
associated to the integration over CTF parameters, the particles were grouped into sets with
similar experimental defocus with 0.4μm range, and an independent orientation search was
performed for each group.

As the BioEM input map, we used the final reconstruction from the refinement with a broad
mask and without low-pass filtering. The objective of the first round is to obtain the best
orientations for each particle. An example of the BioEM input for the first round is presented
in the Appendix.

In the second round, a local search around the best 10 orientations from the first round is
performed. The zoom around each best orientation is done using 125 quaternions with ap-
proximately 0.01 grid spacing, resulting in 1250 zoomed-orientations for each particle. This
procedure is described in detail in ref. [64]. The defocus of each particle is fixed to its exper-
imental value. For this round, we select a representative subset of maps from the refinement
iterations, each one of those is low-pass filtered using 8 frequencies cutoffs distributed uni-
formly from 1/(ps

√
Npix) to 1/(3ps), whereps is the pixel size. All reconstructions were masked

using the same broad mask as for round 1. An example of the BioEM input file for round 2 is
presented in the Appendix.

Figure 3.2 shows a graphical summary of the workflow described here.
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Round 1
Uniform orien-
tation sampling

Group particles with
a similar defocus
in a 0.4μm range

Run an all-particles
vs all-orientations

for each de-
focus group

Choose the best
10 orientations

for each particle

Round 2
Local orienta-

tion search

Make a zoom -
grid around the
best orientations

from round 1

Run BioEM for
each particle

using individual
orientation grids

The final BioEM
probabilities

Masked final map

A grid of 36864
quaternions

Map 1 or 2 from a
given iteration, fil-
tered and masked.

Individual grids of
1250 quaternions

Figure 3.2: Summary of methodology employed for calculaঞng the BioEM probabiliঞes using a double round of orien-
taঞonal search.

The BioEM code has been extended with several optimizations, which drastically increase
performance for the second round of calculations. Most importantly, the main data structures
and algorithm were modified to allow for a parallel comparison of multiple orientations to a
single particle image. Initial reading of the input files has been parallelized, and the overall
memory consumption decreased. These code changes lead to more efficient utilization of the
computing resources, and hence to a faster calculation of posterior probabilities, especially
for the workloads specific to the second round. For more information, we refer the reader to
the BioEM user manual: https://readthedocs.org/projects/bioem/.
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3.2.2 Cryo-EM benchmark systems

It is worth remembering that our protocol is focused on validating maps and not on monitor-
ing the quality of all the steps involved in the pre-processing stage. Thus, the results presented
here start from the refinement procedure itself. This is done using pre-processed particles
available in Electron Microscopy Public Image Archive (EMPIAR)[65]

We used the following benchmarks that represent diverse biomolecular families and cryo-
EM systems:

• The human hyperpolarization-activated cyclic nucleotide-gated channel (HCN1) is a
voltage-dependent ion channel, which was resolved to high resolution using cryo-EM
[66]. The system was resolved in two conformational states, an apo state and a cAMP-
bound state, to ∼ 3.5 Å using RELION 3D-refinement [1]. 55870 particles images be-
longing to the apo state are available in the EMPIAR with code 10081.

• The recombination-activating genes RAG1-RAG2 form a complex (RAG1-RAG2) that
plays an essential role in the generation of antibodies and antigen-receptor genes in a
process called V(D)J recombination. Two main structures of the RAG1-RAG2 complex
can be distinguished during the V(D)J recombination, a synaptic paired complex and
the signal end complex (SEC). These states were resolved to 3.7 and 3.4 Å, respectively,
using cryo-EM [67]. 81946 processed picked particles from the SEC state are deposited
in the EMPIAR data bank with code 10049.

• The mammalian transient receptor potential TRPV1 ion channel (TRPV1) is the recep-
tor for capsaicin. Its structure was determined to 3.4 Å using cryo-EM [68]. A set of
35645 processed particles for this system are found in the EMPIAR data bank with code
10005.

• The human immunodeficiency virus type 1 envelope glycoprotein trimer (HIV-ET) is
a membrane-fusing machine which mediates virus entry into host cells. The structure
of the apo HIV-1 envelope glycoprotein in the trimer-conformation was determined to
6 Å using the 0.5 FSC threshold with cryo-EM [69]. A set of 124478 particles used in
the refinement process is available in EMPIAR with code 10008.

• Pure-noise images: we generated a set of synthetic 1000 pure-noise particles. Each
particle contains random intensities following a Gaussian distribution with zero mean
and unit variance (for details see the Appendix). These images were used as a “false”
control set to assess the RAG1-RAG2 reconstructions.

The defocus information is also available for all these particles. Furthermore, for all of
the above cases, a subset of 5000 particles was randomly selected to be used as the cross-
validation set. Specifically, these particles are not used in the refinement processes.
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3.2.3 3D refinement

System #Particles Symmetry #iterations Final resolution*
HCN1 50870 C4 17 4.2Å

RAG1-RAG2 79946 C2 26 3.8Å
TRPV1 30645 C4 24 5.3Å

HIV-ET 119478 C3 10 9.9Å
*using the 0.143 FSC threshold

Table 3.1: Summary of the results from the 3D-refinement using RELION [1] for the cryo-EM systems.

The refinement for all systems was performed using the RELION [1] software. RELION
provides the relion_refine utility that joins a Bayesian framework and an expectation- max-
imization strategy [1, 40] to refine iteratively a reference map. This algorithm requires as
input an initial map and the set of particles corresponding to an unique state (it is assumed
that a 3D-classification was performed previously). The particles from the refinement data
are divided into two halves and two independent reconstruction are carried on following the
gold-standard procedure. This is done automatically in RELION. In order to guarantee inde-
pendence of both generated maps, it is suggested [8] to low-pass filter strongly (50 ∼ 60 Å)
the initial reference map. Upon convergence a final map is generated by joining the informa-
tion from the two halves.

For all systems, we assume that the deposited particles correspond to the same state. There-
fore, the preprocessing steps of 2D or 3D classification are not performed. Hence, only the
refinement procedure is carried out. As the initial reference map for the 3D refinement, we
use the final map reported by the authors low-pass filtered to 60 Å. This was done also to
minimize the risk of overfitting [8]. We note that the number of particles used for these re-
constructions was slightly less than those of the original works because the particles from the
control set were taken out. In all cases, we used the RELION default parameters, and point-
group symmetries reported by the authors. Table 1 summarizes the results obtained from the
3D refinement. The resolutions are in accordance with the reported ones, taking into account
that the post-processing steps were not performed, and that the control set of particles was
excluded from the refinement.

3.2.4 Summary of the protocol application

For a specific system, a subset of 5000 particles is selected from the original particle set. The
refinement procedure is carried out with the remaining particles using the RELION software.
Several maps corresponding to both refinement sets and representative iterations are chosen
for the cross-validation tests. These maps are low-pass filtered using eight frequency cutoffs
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(see details in the Appendix). Each low-pass filtered map is submitted to the first and second
rounds of the BioEM algorithm, obtaining a probability for each. These probabilities are used
to compute both validation criteria: the cumulative probability and the normalized Jensen-
Shannon divergence. In the next chapter, the results over the selected cryo-EM systems will
be presented.
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4
Cross-validation tests for cryo-EM

In this chapter, we present the main results obtained by applying our cross-validation tests
over some systems that represent a diverse set of biomolecular families, including membrane
proteins and protein-nucleicacids complexes. We tested the methodology over the cryo-EM
datasets: the synaptic RAG1-RAG2 complex (RAG1-RAG2) [67], the human HCN1 channel
(HCN1) [66], and the TRPV1 ion channel (TRPV1) [68]. To analyze the impact of overfitting,
we studied two additional systems: cryo-EM reconstructions from the HIV-1 envelop trimer
(HIV-ET) [69] and a set of synthetic pure-noise images that act as a ‘false’ control set with the
RAG1-RAG2 reconstructions. This was motivated by the fact that some reconstructions might
have been generated from pure-noise particles, and their resolution might have been over-
estimated [70, 4, 5]. The reconstruction refinement was performed using the gold-standard
procedure in RELION [1] yielding resolutions in the 3 to 6 Å range. Figure 4.1 shows the final
reconstructions for the four real systems.

We propose two validation tests for monitoring overfitting in cryo-EM. We monitor the
cumulative log-posterior and the NJSD increase as function of the refinement iteration and
filtering frequency cutoff. With these two observables, we are able to distinguish overfitted
maps from non-overfitted ones. All this is discussed more in detail in the next sections.
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(a) HCN1 - 4.2 Å (b) RAG1-RAG2 - 3.8 Å

(c) HIV-ET- 6.9 Å (d) TRPV1- 5.3 Å

Figure 4.1: Final maps from the RELION refinement for the four systems presented in chapter 3. Resoluঞons are
calculated with the FSC with the 0.143 threshold.

4.1 Test 1: Map evidence from the BioEM log-posterior.

In Fig. 4.2, we examine the improvement of the maps by monitoring the cumulative log-
posterior relative to noise,

∑
ω ln(Piω(kc))/Nω − ln(PNoise), over the control set with Nω =

5000, as a function of the filtering frequency kc for the reconstructions from sets i = 1,2.
The results are shown for different refinement iterations with a gradient color scheme (first
iteration: maroon; last iteration: green). These results measure how probable each filtered
map is relative to PNoise (see the Methods). For the RAG1-RAG2, HCN1 and TRPV1 systems,
we find an increase of the map evidence (given by the cumulative log-posterior) as a func-
tion of the frequency cutoff. For very high frequencies, the cumulative evidence plateaus. We
only observe minor differences between the results from set i = 1 and 2 (solid and dashed
lines, respectively, in Fig. 4.2). This is an indication of the similarity between the reconstruc-
tions generated from the two sets. Importantly, the results highlight the ability of the BioEM
posterior to correctly rank maps of different resolutions. The reconstructions from the last
iterations (i.e., the most refined) are the most probable. This is in agreement with what one
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Figure 4.2: The cumulaঞve log-posterior relaঞve to noise
∑

ω ln(Piω)/Nω − ln(PNoise), over the control set with Nω

images, as a funcঞon of the frequency cutoff for reconstrucঞons from set i = 1 and 2 (solid and dashed lines, respec-
ঞvely). The results are shown for different refinement iteraঞon steps with a gradient color code: the first iteraঞon is
maroon and the last iteraঞon is green. On the top row, we show the results for the standard cryo-EM systems: HCN1,
TRPV1 and RAG1-RAG2 forNω = 5000. Systems that exhibit signs of overfiমng, i.e. a noise-parঞcle control set with
Nω = 1000 and HIV-ET with Nω = 5000, are shown in the bo�om row, highlighted with a red box.

expects from the 3D-refinement algorithms [71].
In contrast, for the HIV-ET and noise-particle set, we find a different behavior of the map

evidence. We find that the cumulative log-posterior does not increase as a function of the
frequency cutoff but decreases or remains constant. For the noise-particle set, the map evi-
dence relative toPNoise is small, and the differences between iterations are almost two orders of
magnitude smaller than for the non-overfitted sets. Moreover, for this case, as the refinement
iterations increase, the maps are slightly less probable. This analysis monitors overfitting in
cryo-EM: if the map evidence does not increase as a function of the frequency cutoff or the
refinement iteration, then there are signs of overfitting in the data.
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4.2 Test 2: Similarity between the probability distributions.

Assuming that homogeneous particle sets were used in the gold-standard procedure, one ex-
pects that the BioEM probabilities will be quite similar for both maps from the same itera-
tion. The difference level should depend on the map resolution since overfitting and noise
alignment is stronger for higher spatial frequencies [6, 8]. Thus, as a second validation test,
we compare the distributions of the posterior probabilities generated by the reconstructions
from sets i = 1,2 over the control set. Figure 4.3 shows an example of the probability distri-
butions for the HCN1 system for two frequency cutoffs at a given iteration. We find that the
probability distributions, over the independent set, are quite similar for both reconstructions
(top panel). However, there are small differences between them, and the higher-frequency
maps present larger fluctuations (bottom panel) as expected. It is these difference levels that
we seek quantify using the NJSD (see chapter 3 for its definition).

Figure 4.3: Differences in the log-posterior distribuࢼons. (top) Examples of the distribuঞons of the log-posterior relaঞve
to noise over the independent parঞcle set. The distribuঞons are calculated for the reconstrucঞons from set 1 and set
2 at two cutoff frequencies kc = 0.05 and 0.25 Å−1 for the fi[h iteraঞon of refinement of the HCN1 system. The
verঞcal lines are the averages of the distribuঞons. (bo�om) Absolute value of the difference between the probability
distribuঞons from set 1 and set 2 for kc = 0.05 and 0.25 Å−1. The distribuঞons calculated for the maps with higher
frequencies are less similar.
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Figure 4.4: Normalized Jensen-Shannon divergence (NJSD) as a funcঞon of the frequency cutoff. This metric calculates
the similarity between the distribuঞons of the BioEM probabiliঞes computed for the two reconstrucঞons from sets 1
and 2. We use a gradient color code for the refinement iteraঞon steps: the first iteraঞon is maroon and the last iteraঞon
is green. On the top row, we show the results for the standard cryo-EM systems: HCN1, TRPV1 and RAG1-RAG2. For
these systems, we fit the data points to an inverse exponenঞal funcঞon−Ae−kc/γ+B (solid lines). Systems that present
signs of overfiমng, a noise-parঞcle control set and HIV-ET, are shown in the bo�om row with dashed lines as a guide.
The red box highlights the overfi�ed systems. The number of images in the control sets are the same as for the data in
Fig. 4.2.

In Fig. 4.4, we plot the NJSD as a function of the frequency cutoff kc for all the four systems
and the synthetic noise particles set. Interestingly, for the RAG1-RAG2, HCN1 and TRPV1 sys-
tems, we observe that as the filtered maps contain higher frequencies, the larger the value of
the NJSD. This implies that the probability distributions between maps with higher frequen-
cies are less similar, possibly because they are more uncorrelated due to the high-frequency
noise. For these standard systems, we also find that as the iteration increases the NJSD
reaches at higher frequencies a plateau value. This behavior can be fit with an inverse ex-
ponential function −Ae−kc/γ + B (see below and solid lines in Fig. 4.4). On the contrary, for
the HIV-ET and noise-particle set, we find that the NJSD remains constant or has random
behavior, suggesting that distributions do not consistently change when higher frequencies
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are added to the maps.
Based on the results of both validation criteria for the HIV-ET system, we can conclude that

this system shows signs of overfitting. The nature of such overfitting was discussed previously
in [4], where the author argue that experimental particles are in most cases, pure noise data
with spurious correlations introduced by a biased particle picking. The similarity between the
HIV-ET and the pure noise-images curves, shown in figures 4.2 and 4.4 support this conclu-
sion.

4.3 Cross-validation tests versus resolution.

An interesting feature of the NJSD curves shown in Fig. 4.4 is that the saturation rate depends
on the iteration index (first iterations reach the plateau faster than last iterations), which in
turn are a resolution indicative. This motivated us to investigate the correlation between the
NJSD curves and the map resolution.

For the HCN1, TRPV1 and RAG1-RAG2 systems, we find that the NJSD curves can be fitted
to an inverse exponential function, −Ae−kc/γ + B (solid lines shown in Fig. 4.4). Intuitively,
the frequency γ describes how fast the plateau of the NJSD is reached: a larger γ indicates a
slower saturation of the NJSD.

In Fig. 4.5, we plot the frequency γ as a function of the inverse of the resolution (calculated
using the FSC at the threshold 0.143). Interestingly, we find that the frequency γ is highly
correlated to the inverse of the resolution with correlation coefficient r2 = 0.93, 0.91, and
0.85, for HCN1, TRPV1 and RAG1-RAG2, respectively. These results show that even from a
small independent control set, it is possible to extract unbiased information about the map
resolution. We note the correlation between γ and the FSC resolution is a fortuitous result,
signature of the data. In future work, we intend to search for the analytical explanation of this
correlation.

We note that for the HIV-ET and noise-particle sets it is not possible to fit the NJSD data
to an inverse exponential function. Therefore, we can only estimate the correlation between
γ and the inverse of the resolution for the standard cryo-EM systems.

4.4 Convergence over a small cross-validation set.

We assessed how the results depend on the number of particles in the control set. In Fig.
4.6, we show an example of the cumulative log-posterior and NJSD as a function of the num-
ber of particles. We find that after approximately 1000 particles these observables converge,
suggesting that only a small set is needed to perform the cross-validation analysis. This is
confirmed in Fig. 4.7, where we plot the cumulative log-posterior and NJSD as a function of
the frequency cutoff for a validation set of 1000 images. For the same set, in Fig. 4.8, we plot
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Figure 4.5: Frequency γ versus the inverse of the resoluঞon for the standard cryo-EM systems: HCN1, TRPV1 and
RAG1-RAG2. The NJSD curves for these systems were fi�ed to an inverse exponenঞal funcঞon −Ae−kc/γ + B. We
find large correlaঞons between γ and the inverse of the resoluঞon (calculated using the 0.143 criteria). The correlaঞon
coefficients are r2 = 0.93, 0.91, and 0.85, for HCN1, TRPV1 and RAG1-RAG2, respecঞvely. Solid lines show the linear
fits.

the frequency γ as a function of the inverse of the map resolution, showing high correlations
for the standard cryo-EM systems. These results are very similar to those obtained for the
cross-validation set with 5000 particles.

The convergence of the log-posterior and NJSD, for different sizes of the validation set and
for all the systems, can be associated to the fact that the particles sets sample near-uniformly
the orientation space. It would be interesting for future work to analyze systems with orien-
tational preference.
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Figure 4.6: Convergence of the observables. (top) The cumulaঞve log-posterior relaঞve to noise
∑

ω ln(Piω)/Nω −
ln(PNoise) for set i = 1 and 2 (solid and dashed lines, respecঞvely), and (bo�om) the normalized Jensen-Shannon di-
vergence as a funcঞon of the number of parঞcles in the control set. The results are shown for the TRPV1 system for
iteraঞon 12 and cutoff frequency kc = 0.21 Å−1. The observables converge if more than approximately 1000 parঞcles
are used.
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Figure 4.7: Cumulaࢼve log-posterior and NJSD for a control set with 1000 parࢼcles. (top) The cumulaঞve log-posterior
relaঞve to noise and (bo�om) the normalized Jensen-Shannon divergence as a funcঞon of the frequency cutoff. We use
a gradient color code for the refinement iteraঞon steps: the first iteraঞon is maroon and the last iteraঞon is green. The
results are shown for the standard cryo-EM systems: HCN1, TRPV1 and RAG1-RAG2. The cumulaঞve log-posterior
is shown for the reconstrucঞons from set 1 as solid lines and set 2 as dashed lines. NSJD data is fit to an inverse
exponenঞal funcঞon −Ae−kc/γ + B (solid lines; bo�om).
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Figure 4.8: Frequency (γ) versus the inverse of the resoluࢼon for a control set with 1000 parࢼcles. The results are shown
for the standard cryo-EM systems: HCN1, TRPV1 and RAG1-RAG2. The correlaঞon coefficients are r2 = 0.95, 0.93,
and 0.78, respecঞvely. Solid lines show the linear fits.
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5
Conclusions

In this work, we have developed a novel methodology to validate cryo-EM maps. The main
characteristic of our validation methodology is the employment of control images, which are
not used in the reconstruction procedure. This protocol defines clear criteria to detect over-
fitted reconstructions in cryo-EM. Public-friendly codes and a detailed tutorial are available
in https://github.com/bio-phys/BioEM-tutorials.

In summary, we propose monitoring the map probability and the similarity between the
two probability distributions, associated to both maps generated during the gold-standard
procedure, as function of the filtering frequency cutoff and the refinement iteration. As the
similarity measure between distributions, we proposed the NJSD, which is a positive metric
and is zero only for identical distributions. The increase of the map probability and the NJSD
as a function of the frequency cutoff and the refinement iteration is a reliable validation test,
since one expects that higher resolution maps, or less filtered maps, will have a greater corre-
lation with the control particles.

We tested our cross-validation methodology over several systems: three standard cryo-EM
reconstruction sets, and two datasets with noise particles that mimic overfitting. The results
show substantial differences. While for the standard cryo-EM sets the results are as expected,
the overfitted sets present almost no increment (even sometimes decrease) of the cumulative
posterior or the NJSD. Thus, signatures of overfitting can be monitored with the proposed
cross-validation tests.

Our methodology is general and robust. The mathematical framework is not only valid for
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the BioEM posterior but also for any posterior probability that measures the likelihood of a
3D density given a particle set. The tests converge over a small particle set, typically only 1000
particles. Moreover, the methodology has the potential to be applicable for directly refining
atomic models (instead of 3D maps) using an independent control set.

Determining an unbiased estimate of the reconstruction resolution remains an open issue.
However, our procedure could shed light on how to tackle this problem with a different per-
spective. For example, the resolution could be defined as a multiple of γ that determines
the frequency at which the information between the probability distributions is governed by
noise.

All-in-all, our work provides a novel way to monitor overfitting in cryo-EM. We conclude
that having a control particle set which is not used to generate the reconstructions should
become a standard for any cryo-EM application.
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6
Perspectives

As future goals, we seek the optimization of the BioEM algorithm to speed-up round 2 of
the analysis. Dr. Luka Stanisic has already implemented some optimization improvements
to the BioEM code which are available in the latest BioEM version 2.1. However, we need
to investigate code improvements or new strategies to reduce the computing resources and
performance time of our protocol.

Furthermore, we are very interested in a deeper analysis of the relation between the fre-
quency γ and the standard resolution. The high correlations between these two quantities
motivates us to try to define a resolution measure based on the cross-validation test. This
resolution would have a similar meaning to the free R-factor widely used in X-ray crystallog-
raphy. We are currently researching this topic.
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A
Appendix

A.1 Image formation and contrast transfer function

In chapters 2 and 3, we discussed several aspects of the image formation process in cryo-EM.
Here, we will describe briefly this process and introduce the contrast transfer function (CTF).

The scattering of the incoming electron beam produced by the interaction with the sample
can be approximately modelled by a phase shift. If the sample is thin enough and weak scat-
tering is assumed, the phase shift can be expanded in a Taylor series to the first order (this is
known as the weak-phase approximation) [35]. Thus, all information about the biomolecule
structure is encoded in the complex part of the exit wave function. However, to obtain an
ideal recording the phase angle must be multiple of π/2. Unfortunately, in cryo-EM there
is no experimental setup able to achieve this yet (but phase-plates are a promise alternative
[72]).

To overcome this, the common strategy in cryo-EM is recording data in defocus conditions
[36, 15]. The microscope optical aberrations generate a dependency of the phase shift on the
spatial frequency components k which induces a phase-contrast. This can be modelled by the
contrast transfer function [36, 73] in Fourier space

CTF(k) = e−k
2/2b2

(
√

1 − A2 sin(ξ(k)) + A2 cos(ξ(k)), (A.1)

which generates a phase shift induced by the optical aberrations. The factors A is the ampli-
tude contrast ratio and b is the B-factor. ξ(k) retains all the aberrations effects, mainly due to
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the defocus, the spherical aberration and the astigmatism. The envelope e−k
2/2b2

is a general
function to describe all other incoherent aberrations which tend to suppress high-frequency
components [36, 15, 73]. It has been shown that large biomolecules (typically greater than
30nm) requires CTF corrections due to the size effects[74]. However, such effect is negligible
for the systems studied here, that have size in the 180-200 Å.

A.2 Map low-pass filtering

Consider a map m generated from an iteration of the 3D refinement. Let Fm(k) be its 3D-
Fourier transform, where k is the reciprocal vector. We perform a low-pass filter on the map,
Fkc
m (k), up to a frequency cutoff kc. The resulting filtered map is

Fkc
m (k) =

{
Fm(k) k ≤ kc

0 otherwise.
(A.2)

We use the code lowpassmap_fftw available from the Rubinstein lab webpage [75] to perform
this calculation. We then convert the map into real space by applying the inverse Fourier
transform of Fkc

m (k). The real-space filtered map is masked and then used as input for the
BioEM computation.

A.3 Pure-noise particles

We generated a set of 1000 synthetic pure-noise particles. Each particle has an image size
of 180 × 180 and a pixel size of 1.23 Å. The particles contain random intensities following a
Gaussian distribution with zero mean and unit variance. Because there is no experimental
defocus, the BioEM probabilities are computed by performing round 1 with defocus range
between 0.5 and 4.5 μm and using 4608 quaternions uniformly distributed in orientation
space. This analysis was performed for each of the refined maps of the RAG1-RAG2 system.

A.4 BioEM input file examples

See the BioEM manual for more in detail information.
Round 1: Example of the BioEM input file for the TRPV1 system for round 1. The best

orientations for each particle are obtained using the final map from the refinement. The fol-
lowing input file is for a subset of particles that have experimental defocus between 1.3 and
1.7 μm. The best 10 orientations for each particle are selected.

PIXEL_SIZE 1.22
NUMBER_PIXELS 256
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USE_QUATERNIONS
CTF_DEFOCUS 1.3 1.7 10
CTF_B_ENV 0 10 2
CTF_AMPLITUDE 0.1 0.1 1
PRIOR_DEFOCUS_CENTER 1.5
SIGMA_PRIOR_DEFOCUS 0.8
SIGMA_PRIOR_B_CTF 1
DISPLACE_CENTER 30 1
WRITE_PROB_ANGLES 10

Round 2: Example of the BioEM input file for the TRPV1 system for round 2. The input
file is for a single particle that has an experimental defocus of 1.9 μm.

PIXEL_SIZE 1.22
NUMBER_PIXELS 256
USE_QUATERNIONS
CTF_DEFOCUS 1.9 1.9 1
CTF_B_ENV 0 10 2
CTF_AMPLITUDE 0.1 0.1 1
PRIOR_DEFOCUS_CENTER 1.9
SIGMA_PRIOR_DEFOCUS 0.3
SIGMA_PRIOR_B_CTF 1
DISPLACE_CENTER 30 1

A.5 Compute performing

With the current version of BioEM, it is recommended to run the validation methodology in
a computing cluster -if it is possible-. Since the manipulation of the BioEM code is not in
the scope of the present work, we had the collaboration of Ph.D..s Luka Stanisic and Markus
Rampp from the Max Planck Computing and Data Facility, who improved the CUDA and MPI
parallelization for the Round 2.

The results shown here were computed over a single node with 32 real cores and 2 GPUs.
Round 1, takes approximately 4 hours. For Round2, BioEM takes 0.3 seconds per image, so
analyzing the 64 maps (8 iterations and 8 frequencies) and 5000 particles takes 1 day with
same configuration. .

Minimize this time computing is a important future goal.
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