

UNIVERSIDAD DE ANTIOQUIA

CARACTERIZACIÓN BIOLÓGICA Y ANÁLISIS TRANSCRIPTÓMICO DEL VENENO DE LA ARAÑA PLATANERA COLOMBIANA Phoneutria

boliviensis

Julieta Vásquez Escobar

Universidad de Antioquia

Facultad de Ciencias Farmacéuticas y Alimentarias

Medellín, Colombia

2020

Caracterización biológica y análisis transcriptómico del veneno de la araña platanera colombiana *Phoneutria boliviensis*

Julieta Vásquez Escobar

Tesis o trabajo de investigación presentado como requisito parcial para optar al título de: Doctor en Ciencias Farmacéuticas y Alimentarias

> Asesores: Dora María Benjumea Gutiérrez Dra. Investigación Básica Biomédica

> > Ligia Luz Corrales García Dra. Ciencias Bioquímicas

Línea de Investigación: Bioorgánica Grupo de Investigación: Toxinología y Alternativas Terapéuticas y Alimentarias

Universidad de Antioquia Facultad de Ciencias Farmacéuticas y Alimentarias Medellín, Colombia 2020

LA PRESENTE TESIS FUE REALIZADA EN

El grupo de Toxinología y Alternativas Terapéuticas y Alimentarias (antes Programa de Ofidismo / Escorpionismo) y el Serpentario pertenecientes a la Facultad de Ciencias Farmacéuticas y Alimentarias de la Universidad de Antioquia, en Medellín, Colombia.

El Instituto de Biotecnología de la Universidad Nacional Autónoma de México, del Departamento de Medicina Molecular y Bioprocesos, en el grupo de trabajo del Dr. Gerardo A. Corzo Burguete, ubicado en la ciudad de Cuernavaca, Morelos.

El Grupo de Biología Teórica, del Departamento de Ciencias Computacionales de la Universidad de Guadalajara, bajo el liderazgo del Dr. José Alejandro Morales Valencia, ubicado en la ciudad de Guadalajara, Jalisco.

AGRADECEMOS EL APOYO ECONÓMICO DE

El Comité para el Desarrollo de la Investigación (CODI) de la Universidad de Antioquia, por el financiamiento del proyecto en la Convocatoria Programática Ciencias de la Salud 2015-2016.

El Ministerio de Ciencia, Tecnología e Innovación (antes Departamento Administrativo de Ciencia, Tecnología e Innovación – Colciencias) por la beca de doctorado de la Convocatoria de Doctorados Nacionales 647, otorgada a la MsC Julieta Vásquez Escobar.

AGRADECIMIENTOS

A mis tutores, Dora Benjumea, Ligia Luz Corrales y Cristiano Giordani, por ser una fuente inagotable de inspiración y admiración, por toda su paciencia, su tiempo, consejos y orientación.

Al Doctor Gerardo A. Corzo Burguete, por recibirme en su laboratorio durante una de mis estancias, por todo su apoyo, su cariño y su orientación; por su amabilidad y ser siempre incondicional.

Al *Herr Professor Medicum Doctor* José Alejandro Morales por recibirme para realizar la estancia para el análisis del transcriptoma, por su orientación siempre crítica y amable, por recordarme con su ejemplo a ver más allá de un título, por apreciar siempre las opiniones de los demás olvidando las jerarquías.

A la Doctora Herlinda Catalina Clement, por todo su apoyo técnico, sus enseñanzas, su cariño, por enseñarme que debo ser fuerte como las mexicanas y su amistad sincera durante mis estancias en el Instituto de Biotecnología en la UNAM.

A la Doctora María Teresa Romero por toda su paciencia y sus enseñanzas en el análisis del transcriptoma, por inspirarme a ser mejor y a dar todo lo mejor, por abrirme las puertas de su casa y de su familia, por ayudarme en todo cuanto necesité durante este proceso y más... por cuidarme de las cucarachas y de los que me ofrecían dulces en el camión.

Igualmente a Damaris Bolaños, por todo su apoyo y toda su paciencia y ayuda en mis peleas con los geles de electroforesis y acompañarme a satisfacer cada capricho, aunque siempre le faltara sal; y a Lorena Mendoza por su apoyo, cariño y compañía.

A Samuel Cardoso y Jesús Ángel Borrego por toda su ayuda y apoyo en las pruebas con grillos y peces... y por las noches de películas de terror con Damaris y David.

A Marco Antonio Ibarra por sus enseñanzas y su paciencia en los ensayos de *Hot plate*, enseñarme a sacrificar ratones... y dejarse abrazar.

A Carolina Gómez y su esposo Ernesto, por ayudarme con mis problemas con las cucarachas de Guadalajara, por recibirme en su hogar, por las comidas deliciosas, a Caro por enseñarme lo que es un buen tequila, el pulque y el tejuino, y por ayudarme con mis peleas perdidas con el PC.

A Omar "Pollo" Paredes por sus consejos y críticas, por su actitud siempre alegre y sus tours con datos históricos, especialmente las gorditas y por hacer de Betty la fea.

A Brenda Ramírez por salvarme del dolor del estrés, y con su esposo Nelson, por acogerme y hacerme sentir en familia.

Al Dr. Fernando Zamudio Zúñiga por el apoyo técnico para la obtención de las masas moleculares de los péptidos y su secuenciación.

Al grupo del Dr. Gerardo Corzo, Herli, Dama, Sam, Chuy, Erika, Diana, David, Marcela, German, Marcos, Andrei, Carmencita, Galilea... por disfrutar de toda la comida que les llevé aunque alguna no fuera muy agradable a la vista y por acogerme como una más.

Al grupo del Dr. Alejandro Morales, Tere, Pollo, Caro, Emilio, Manuel, Paty, Bryan por toda la paciencia, por todas las enseñanzas, por ser una inspiración de trabajo duro y en equipo, por tener siempre café colombiano y disfrutar de los buñuelos asesinos y mis aborrajados.

A Alejandra Arroyave, José Luis Londoño, Nicolás Hazzi y sus secuaces por ayudarme y enseñarme a colectar estos animalitos tan hermosos, sin los cuales ésto no sería posible.

Al Serpentario de la Universidad de Antioquia, especialmente a Janeth García y Jorge Asprilla, por siempre ser extremadamente colaboradores conmigo, por siempre facilitar todo y hacer todo mejor; y sobretodo, por brindarme su amistad.

A Arley Camilo Patiño por toda su colaboración desde la coordinación del posgrado, pero especialmente por ayudarme con los controles para la realización de los ensayos de actividad analgésica.

A Héctor Holgín, por ayudarme con los controles para la realización de los ensayos de actividad analgésica y ser mi proveedor de risas.

A Alejandro Serna, por ayudarme en mi batalla con el analgesímetro y la prueba de Siegmund y a Felipe, Jorge William Flórez y Daniela Hernandez, y muy especialmente a Carolina Lopera, por su apoyo en la realización de las pruebas de analgesia.

A Sebastián Estrada y Leidy Vargas por su ayuda con el HPLC y el perfil cromatográfico y por recibirme en su hogar con mis arañas; y a Sebastián por su ayuda en la extracción de la glándula de la araña y acompañarme en la captura de arañas.

A Yeisson Galvis y Catalina Marín por pelear conmigo contra el SPSS y apoyarme siempre para no desfallecer en esta tesis.

A Sergio Pulido por facilitarme siempre equipos y enzimas para lograr la clonación del péptido recombinante.

A Juliana Palacio y José David Ojeda por liofilizarme las muestras. Y a José David por ayudarme con los Pamelitos...

A mis tíos Ana y Juan, por recibirme en su hogar con todas las arañas, y ayudarme a colectarlas.

A mi hermana Ana María, por siempre querer ayudarme a hacer tablas, y por escucharme, aunque no entendiera nada.

A Leidy Vargas, Andrea "La Reina" Salazar, Isabel "La ñoña" Gómez y Maritza Fernández, por todas sus palabras de aliento yconstante interés en la tesis.

A Caro Restrepo, Diana Vélez, Laura Gómez, Ana Torres, Sandra Navarro, Johana Agudelo y Jennifer López, por estar conmigo, brindarme sus palabras y regaños y darme todo su apoyo, por confiar y creer en mí cuando ni siquiera yo podía hacerlo.

A Franklin Duque, Jessica Hoyos, Manuel Pastrana y Catalina Marín por ser mi apoyo moral, emocional y mental en los momentos en que los infortunios durante mi pasantía y el término de esta tesis que hicieron flaquear mi fortaleza para lograr avanzar y presentar el siguiente trabajo. A mis padres, Luis Guillermo y Luz Marina, a mi tía Luz Elena, y a mi Negra, a Nerú y Nina quienes, sin saberlo, fueron mi primera y principal fuente de inspiración y es a quienes dedico este trabajo.

CONTENIDO

ABREVIATURAS				XV
RESUMEN			XVIII	
ABSTRACT				XIX
1.	INTR	ODUCC	IÓN	1
	1.1.	Plantean	niento del problema u oportunidad	1
	1.2.	Objetivo	DS	4
		1.2.1.	Objetivo general	4
		1.2.2.	Objetivos específicos	4
2.	MAR	CO TEÓ	RICO	5
	2.1.	Las arañ	ias	5
	2.2.	El vener	no de las arañas	6
	2.3.	Herrami	entas actuales para el estudio de los venenos de arañas	8
	2.4.	El géner	o Phoneutria	10
	2.5.	Venenos	s del género Phoneutria	13
3.	ANT	ECEDEN	TES	15
	3.1.	Estrateg	ias actuales para el estudio de venenos de arañas	15
		3.1.1.	Expresión recombinante de péptidos de arañas	15
		3.1.2.	Análisis transcriptómicos de glándulas venenosas de arañas	19
	3.2.	Veneno	del género Phoneutria	23
	3.3.	Veneno	de Phoneutria boliviensis	26
4.	MAT	ERIALES	S Y MÉTODOS	28
	4.1.	Esquema	a metodológico	28
	4.2.	Metodol	logía	28
		4.2.1.	Colecta de especímenes	28
		4.2.2.	Extracción del veneno	29
		4.2.3.	Fraccionamiento del veneno por Sep-Pack	30
		4.2.4.	Fraccionamiento del veneno por RP-HPLC	30
		4.2.5.	Cuantificación deproteínas por espectrofotometría	30

		4.2.6.	Electrofoeresis	31	
		4.2.7.	Espectrometría de masas y secuenciación	31	
		4.2.8.	Caracterización enzimática del veneno	31	
		4.2.9.	Análisis transcriptómico de la glándula venenosa de <i>P</i> . <i>boliviensis</i>	34	
		4.2.10.	Diseño, expresión y purificación de un péptido recombinante con posible actividad analgésica	36	
		4.2.11.	Validación del transcriptoma: búsqueda de la secuencia del gen codificante del péptido recombinante en la glándula venenosa	40	
		4.2.12.	Evaluación de actividades biológicas	43	
5.	RESU	RESULTADOS			
	5.1.	Colecta	y ordeño de arañas de <i>P. boliviensis</i>	53	
	5.2.	Fraccion espectro	amiento del veneno por Sep-Pack y cuantificación por fotometría	53	
	5.3.	Fraccion	amiento del veneno por RP-HPLC	54	
	5.4.	Perfil electroforético de veneno de <i>P. boliviensis</i>			
5.5. Análisis de masas moleculares				57	
	5.6.	Caracterización enzimática del veneno de P. boliviensis			
		5.6.1.	Evaluación de actividad fosfolipasa A2 del veneno de <i>P boliviensis</i>	59	
		5.6.2.	Evaluación de actividad proteasa del veneno de P. boliviensis	59	
		5.6.3.	Evaluación de actividad hialuronidasa del veneno de <i>P</i> . <i>boliviensis</i>	61	
	5.7.	Análisis	transcriptómico de la glándula venenosa de P. boliviensis	62	
		5.7.1.	Extracción de RNA de la glándula venenosa	62	
		5.7.2	Secuenciación y ensamble del transcriptoma	63	
		5.7.3.	Nomenclatura de los transcritos funcionales	64	
		5.7.4.	Análisis del transcriptoma	66	
		5.7.5.	Cuantificación del transcriptoma de P. boliviensis	70	
	5.8.	Diseño, posible a	expresión y purificación de un péptido recombinante con actividad analgésica	73	
		5.8.1.	Amplificación del gen y clonación en el vector de expresión pQE30	77	
		5.8.2.	Transformación y expresión del péptido recombinante Ctx-4 en células M15 y Origami	77	
		5.8.3.	Plegamiento del péptido recombinante Ctx-4	81	

	5.9. Validación del transcriptoma					
		5.9.1.	Búsqueda de las enzimas secuenciadas en el transcriptoma	82		
		5.9.2.	Búsqueda de la secuencia del gen codificante del péptido recombinante en la glándula venenosa	88		
	5.10.	Evaluac	ión de actividades biológicas	90		
		5.10.1.	Determinación de actividad antimicrobiana	90		
		5.10.2.	Evaluación de actividades in vivo	91		
6.	ANÁ	LISIS DE	E RESULTADOS Y DISCUSIÓN	107		
	6.1.	Fraccior	namiento del veneno	107		
	6.2.	Perfil el	lectroforético de veneno de <i>P. boliviensis</i> 1			
	6.3.	Análisis	de masas moleculares	109		
	6.4.	Caracter	ización enzimática del veneno de P. boliviensis	110		
		6.4.1.	Evaluación de actividad fosfolipasa A2 del veneno de <i>P</i> . <i>boliviensis</i>	110		
		6.4.2.	Evaluación de actividad proteasa del veneno de P. boliviensis	111		
		6.4.3.	Evaluación de actividad hialuronidasa del veneno de <i>P</i> . <i>boliviensis</i>	112		
	6.5.	Análisis	transcriptómico de la glándula de P. boliviensis	113		
	6.5.1. Componentes del veneno					
6.6. Diseño, expresión y purificación de un péptido recombinante co posible actividad analgésica				130		
	6.7.	Validaci	ón del ensamble	132		
		6.7.1.	Búsqueda de las enzimas secuenciadas en el transcriptoma	132		
		6.7.2.	Búsqueda de la secuencia del gen codificante del péptido recombinante en la glándula venenosa	134		
	6.8.	Evaluac	ión de actividades biológicas	135		
		6.8.1.	Determinación de actividad antimicrobiana	135		
		6.8.2.	Evaluación de actividades biológicas in vivo	135		
7.	CON	CLUSIO	NES, PERSPECTIVAS Y RECOMENDACIONES	143		
8.	REFE	CRENCIA	AS	146		
A٢	NEXOS 1'					
GI	GLOSARIO 220					

LISTA DE TABLAS

Tabla 1.	Clasificación y sintomatología del envenenamiento por <i>Phoneutria</i> sp. 13		
Tabla 2.	Sistemas celulares y plásmidos empleados en la expresión de péptidos de arañas.	17	
Tabla 3.	Transcriptomas de glándulas venenosas de arañas que han sido analizados.	21	
Tabla 4.	Comparación de las DL ₅₀ (mg/kg) de arañas del género <i>Phoneutria</i> para diferentes tipos de presa.	26	
Tabla 5.	Cuantificación de proteínas por espectrofotometría de las fracciones obtenidas mediante separación del veneno de <i>P. boliviensis</i> por un cartucho <i>Sep-Pack</i> .	54	
Tabla 6.	Masas moleculares de las fracciones recolectadas del fraccionamiento por RP-HPLC del veneno de <i>P. boliviensis</i> .	58	
Tabla 7.	Resultados generales del ensamble.	64	
Tabla 8.	Nomenclatura empleada para los transcritos identificados en el transcriptoma de <i>P. boliviensis</i> .	65	
Tabla 9.	Abundancia de enzimas en el veneno de <i>P. boliviensis</i> a partir del análisis transcriptómico de las glándulas venenosas.	68	
Tabla 10.	Resumen de los 10 transcritos con mayor nivel de expresión.	71	
Tabla 11.	Secuencias reportadas de péptidos con actividad analgésica obtenidos a partir de venenos de animales.	74	
Tabla 12.	Resultados del alineamiento entre las secuencias peptídicas obtenidas a partir de venenos de animales con actividad analgésica y las del transcriptoma.	75	
Tabla 13.	Comparación de secuencias traducidas a partir de los transcritos.	76	
Tabla 14.	Fragmentos secuenciados de las bandas del zimograma de actividad	83	

proteasa del veneno completo de *P. boliviensis*.

Tabla 15.	Fragmentos secuenciados de las bandas del zimograma de gelatina para actividad proteasa de las fracciones del veneno de <i>P. boliviensis</i> .	85
Tabla 16.	Fragmentos secuenciados de las bandas del zimograma de actividad hialuronidasa de las fracciones del veneno de <i>P. boliviensis</i> .	87
Tabla 17.	Signos y síntomas de toxicidad en los ratones tratados a dosis de 1 μ g/g del veneno completo de <i>P. boliviensis</i> , según su curso temporal.	91
Tabla 18.	Signos y síntomas de toxicidad en los ratones tratados a dosis de 0,9 μ g/g del veneno completo de <i>P. boliviensis</i> , según su curso temporal.	93
Tabla 19.	Evaluación del efecto paralizante de Ctx-4 recombinante plegado sobre grillos.	95
Tabla 20.	Evaluación de la actividad analgésica por el método <i>Tail-Flick</i> de las fracciones obtenidas por RP-HPLC (gradiente 2) de la fracción 2, de la separación en el cartucho Sep-Pack, del veneno de <i>P. boliviensis</i> y efectos	
	adicionales observados.	99

LISTA DE FIGURAS

Distribución del género <i>Phoneutria</i> en Colombia 1	
Mapa político de Antioquia resaltando las áreas donde se realizaron las colectas.	29
Procedimiento de evaluación de toxicidad aguda.	46
Perfil cromatográfico del veneno de <i>P. boliviensis</i> por RP-HPLC, usando una columna análitica C18, con un gradiente de elución de 0 hasta 60 % de ACN con TFA 0,1 %, durante 60 minutos, con un flujo de 1 mL/min.	55
Perfil cromatográfico del veneno de <i>P. boliviensis</i> por RP-HPLC, usando una columna analítica C18, con el gradiente 2, durante 130 minutos con un flujo de 1 mL/min.	56
SDS-PAGE a 4/15 % del veneno completo de <i>P. boliviensis</i> .	57
Evaluación de la actividad proteasa del veneno de <i>P. boliviensis</i> mediante electroforesis en gel de poliacrilamida 12,5 % y gelatina.	60
Evaluación de la actividad proteasa de las fracciones del veneno de <i>P</i> . <i>boliviensis</i> mediante electroforesis en gel de poliacrilamida 12,5 % y gelatina.	61
Evaluación de la actividad hialuronidasa de las fracciones del veneno de <i>P. boliviensis</i> mediante electroforesis en gel de poliacrilamida 12.5 % y ácido hialurónico.	62
Electroferograma del análisis de calidad del RNA total purificado, análisis <i>RNA integrity number</i> (RIN).	63
Diversidad relativa de transcritos anotados con identidad de proteínas de veneno.	67
	 Distribución del género <i>Phoneutria</i> en Colombia Mapa político de Antioquia resaltando las áreas donde se realizaron las colectas. Procedimiento de evaluación de toxicidad aguda. Perfil cromatográfico del veneno de <i>P. boliviensis</i> por RP-HPLC, usando una columna análitica C18, con un gradiente de elución de 0 hasta 60 % de ACN con TFA 0,1 %, durante 60 minutos, con un flujo de 1 mL/min. Perfil cromatográfico del veneno de <i>P. boliviensis</i> por RP-HPLC, usando una columna analítica C18, con el gradiente 2, durante 130 minutos con un flujo de 1 mL/min. SDS-PAGE a 4/15 % del veneno completo de <i>P. boliviensis</i>. Evaluación de la actividad proteasa del veneno de <i>P. boliviensis</i> mediante electroforesis en gel de poliacrilamida 12,5 % y gelatina. Evaluación de la actividad hialuronidasa de las fracciones del veneno de <i>P. boliviensis</i> mediante electroforesis en gel de poliacrilamida 12,5 % y gelatina. Evaluación de la actividad hialuronidasa de las fracciones del veneno de <i>P. boliviensis</i> mediante electroforesis en gel de poliacrilamida 12,5 % y gelatina. Evaluación de la actividad hialuronidasa de las fracciones del veneno de <i>P. boliviensis</i> mediante electroforesis en gel de poliacrilamida 12,5 % y gelatina.

como componentes de veneno.

Figura 13.	13. Distribución de las abundancias relativas de los transcritos identificado		
	como componentes de veneno.	73	
Figura 14.	 SDS-PAGE a 4/15 % de purificación en resina de níquel de la expresión de Ctx-4/Origami. 		
Figura 15.	Purificación por RP-HPLC del péptido Ctx-4 recombinante crudo, usando una columna C18, con un gradiente de elución de 0 % hasta 60 % de acetonitrilo (99 %) con adición de TFA en concentración final de 0,1 %, durante 40 minutos con un flujo de 1 mL/min.	80	
Figura 16.	Espectro de masas del péptido recombinante Ctx-4 crudo.	81	
Figura 17.	Purificación por RP-HPLC del péptido Ctx-4 recombinante plegado, usando una columna C18, con un gradiente de elución de 0 % hasta 60 % de acetonitrilo (99 %) con adición de TFA en concentración final de 0,1 %, durante 60 minutos con un flujo de 1 mL/min.	82	
Figura 18.	Alineamiento de los fragmentos secuenciados de las bandas de proteasa de ~ 30 kDa del veneno completo de <i>P. boliviensis</i> y el transcrito PhbEnzSeP15.	84	
Figura 19.	Alineamiento de los fragmentos secuenciados de la banda de proteasa de la fracción de 47,2 % del veneno de <i>P. boliviensis</i> y el transcrito obtenido.	86	
Figura 20.	Alineamiento de los fragmentos secuenciados de las bandas de hialuronidasa de la fracción de 52,6 % del veneno de <i>P. boliviensis</i> y el transcrito PhbFibTec40.	88	
Figura 21.	Alineamiento de los fragmentos secuenciados de las bandas de hialuronidasa de la fracción 52,6 % del veneno de <i>P. boliviensis</i> y el transcrito PhbNtxNav24.	88	
Figura 22.	Alineamiento de las secuencias peptídicas del transcrito PhbNtxNav23, la secuencia obtenida para los plásmidos y del péptido recombinante	89	

Ctx-4.

Figura 23.	. Alineamiento de las secuencias peptídicas de PhbNtxNav24, del péptido		
	recombinante Ctx-4 y la secuencia obtenida para los plásmidos.	90	
Figura 24.	Marcha en punta.	92	
Figura 25.	Determinación de actividad analgésica por el método <i>Tail Flick</i> de la fracción 2 del veneno de <i>P. boliviensis</i> (vía i.p) obtenida por fraccionamiento en un cartucho Sep-Pack C18.	97	
Figura 26.	Determinación de actividad analgésica por el método <i>Tail Flick</i> de la fracción 2 del veneno de <i>P. boliviensis</i> (vía s.c.), obtenida por fraccionamiento en un cartucho Sep-Pack.	98	
Figura 27.	Perfil cromatográfico de la co-elución del veneno de <i>P. boliviensis</i> por RP-HPLC (gradiente 1) con la fracción de 38,4 % de ACN (gradiente 2), repurificada bajo gradiente 1.	99	
Figura 28.	Determinación de actividad analgésica por el método <i>Tail Flick</i> del péptido recombinante Ctx-4 crudo (vía i.p.).	102	
Figura 29.	Determinación de actividad analgésica por el método <i>Tail Flick</i> del péptido recombinante Ctx-4 crudo (vía i.cr.).	103	
Figura 30.	Determinación de actividad analgésica por el método <i>Tail Flick</i> del péptido recombinante Ctx-4 plegado (vía i.cr.).	104	
Figura 31.	Determinación de actividad analgésica por el método <i>Hot Plate</i> del péptido recombinante Ctx-4 plegado (vía i.cr.).	105	
Figura 32.	Determinación de actividad analgésica por el método <i>Siegmund</i> del péptido recombinante Ctx-4 plegado (vía i.cr.).	106	

ABREVIATURAS

ACN	Acetonitrilo		
ANLA	Autoridad Nacional de Licencias Ambientales (Colombia)		
BLAST	<i>Basic Local Alignment Search Tool –</i> Herramienta de Búsqueda Básica de Alineamientos Locales		
bp	Base pairs – Pares de bases		
$CaCl_2$	Cloruro de calcio		
cDNA	Ácido desoxirribonucléico complemetario (DNA complementario)		
CO_2	Dióxido de carbono		
DEPC	Diethyl pyrocarbonate		
DL_{50}	Dosis Letal 50 – Dosis Letal media		
DNA	Deoxyribonucleic acid – Ácido Desoxirribonucléico		
ESI-MS	<i>Electrospray ionization-Mass Spectrometry</i> - Ionización por electroespray- espectrometría de masas		
ETS	Expressed Sequence Tags – Marcador de secuencia expresada		
GSH	Glutatión reducido		
GSSG	Glutatión oxidado		
HCl	Ácido clorhídrico		
HOAc	Ácido acético		
IBt	Instituto de Biotecnología (UNAM - México)		
i.cr.	Intracraneal (vía de administración)		
i.m.	Intramuscular (vía de administración)		

i.p.	Intraperitoneal (vía de administración)	
IPTG	IsoPropil-&-1-D TioGalactopiranósido	
i.to.	Intratorácica (vía de administración)	
LB	Luria-Bertani (medio de cultivo)	
mRNA	Ácido Ribonucléico mensajero (RNA mensajero)	
MS	Mass Spectrometry – Espectrometría de Masas	
m.s.n.m.	Metros sobre el nivel del mar	
NaCl	Cloruro de sodio	
NaOAc	Acetato de sodio	
NaPB	Sodium phosphate buffer – Buffer fosfato de sodio	
NCBI	National Center for Biotechnology Information – Centro Nacional para Información Biotecnológica	
NGS	Next Generation Sequencing – Secuenciación de Próxima Generación	
Ni-NTA	Nickel-Nitrilotriacetic acid – Resina de afinidad cargada de Niquel	
NMR	Nuclear Magnetic Resonance – Resonancia Magnética Nuclear	
OD	<i>Optical density</i> – Densidad óptica	
OECD/OCDE Organisation for Economic Co-operation and Development – Organ para la Cooperación y el Desarrollo Económicos		
OMS	Organización Mundial de la salud	
O.N.	<i>Over night</i> – Durante la noche	
PCR	Polymerase Chain Reaction – Reacción en Cadena de Polimerasa	
rCtx-4	Péptido recombinante Ctx-4	
RIN	RNA Integrity Number – Número de Integridad del RNA	
RNA	<i>Ribonucleic Acid</i> – Ácido Ribonucléico	

- RP-HPLC *Reverse Phace High Performance Liquid Cromatography* Cromatografía Líquida de Alta Resolución en Fase Reversa
- rpm Revoluciones por minuto
- RT Room temperature Temperatura ambiente
- s.c. Subcutánea (vía de administración)
- SDS-PAGE *Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis* Electroforesis en gel de poliacrilamida con dodecilsulfato sódico
- SNC Sistema Nervioso Central
- SSN Solución Salina Normal 0.9 % NaCl
- SOC *Super Optimal Broth with Catabolite Repression* Caldo súper óptimo con represión de catabolitos
- TBS Trypticase Soy Broth Caldo de Tripticasa de Soya
- TEV Tobacco Etch Virus Virus de grabado de tabaco
- TFA Ácido trifluoroacético
- TMHMMTransmembrane Hidden Markov Model Modelo Oculto de Markov para
predicción de hélices transmembranales
- UNAM Uiversidad Nacional Autónoma de México
- U.V. Ultravioleta

RESUMEN

A pesar de ser una especie de gran importancia médica, la araña platanera colombiana *Phoneutria boliviensis* ha sido escasamente estudiada. Investigar acerca de los compuestos que integran su veneno es un valioso aporte científico para entender mejor los efectos que suceden en un envenenamiento, y para encontrar potenciales fármacos para enfermedades que, a día de hoy, no tienen tratamientos efectivos, como es el dolor crónico; o sustancias que aporten en el campo agroindustrial como futuros insecticidas.

El uso de herramientas modernas como la proteómica y la transcriptómica facilitan este análisis, ahorrando tiempo y disminuyendo el impacto ambiental al evitar el sacrificio de un alto número de especímenes. Todo esto sin olvidar las técnicas tradicionales como la cromatografía, pieza fundamental para, además de lo anterior, poder establecer comparaciones con otras especies de arañas similares a *P. boliviensis*. Así, mediante el uso de las tres herramientas, se logró establecer principalmente la actividad proteasa en el veneno de esta araña; además de determinar una notable presencia de neurotoxinas que afectan canales iónicos y enzimas e identificar compuestos como algunas enzimas y factores de crecimiento en el transcriptoma, que no se han reportado previamente para el veneno de las especies de este género.

Por último, la biotecnología juega un papel importante para el diseño y expresión recombinante de un gen con actividad biológica, para el que se determinó un efecto analgésico moderado con ausencia de toxicidad en mamíferos, mientras que logró una potente acción paralizante en insectos; demostrando la riqueza inexplorada en este y otros venenos de animales.

Palabras clave: *Phoneutria boliviensis*, veneno, transcriptoma, expresión heteróloga, actividad biológica.

ABSTRACT

In spite of being a species of great medical importance, the Colombian wandering spider *Phoneutria boliviensis* has been poorly studied. Researching on the compounds that integrate its venom is a valuable scientific contribution to a better understanding of the effects that occur in envenomation, and to find potential medicines for diseases that today, do not have effective treatments, such as chronic pain; or substances that contribute in the agro-industrial field as future insecticides.

The use of modern tools such as proteomics and transcriptomics facilitate this analysis, saving time and diminishing the environmental impact by avoiding the sacrifice of a large number of specimens. All this without forgetting traditional techniques as chromatography, a fundamental piece for being able to establish comparisons with other species of spiders similar to *P. boliviensis*, in addition to the above. Thus, by using the three tools, it was possible to establish mainly the protease activity in the venom of this spider; in addition to determining a remarkable presence of ion channels impairing neurotoxins and enzymes with the identification of compounds such as some enzymes and growth factors in the transcriptome, which have not been previously reported for the venom of species of this genus.

Finally, biotechnology plays an important role in the design and recombinant expression of a gene with biological activity, for which a moderate analgesic effect with no toxicity on mammals was determinated, while achieved a potent paralyzing action on insects, demonstrating the unexplored richness in this and other animal venoms.

Keywords: *Phoneutria boliviensis*, venom, transcriptome, heterologous expression, biological activity.

1. INTRODUCCIÓN

En el presente trabajo de tesis se muestra el estudio, tanto del veneno completo como de algunas fracciones del mismo, proveniente dela araña *P. boliviensis*. Fueron realizadas diferentes caracetrizaciones, destacando las siguientes: evaluación de la toxicidad, evaluación de capacidades biológicas (*e.g.* analgésica) y análisis transcriptómico a partir del material obtenido de las glándulas venenosas de la araña. Adicionalmente, se llevó a cabo la expresión recombinante de un péptido obtenido del transcriptoma, al cual se le evaluó tanto su toxicidad como su actividad biológica sobre algunos modelos animales y que, por los resultados, se puede catalogar como una posible herramienta farmacológica o insecticida.

1.1. Planteamiento del problema u oportunidad

Los venenos de las arañas son una mezcla compleja de compuestos biológicos, tales como: proteínas, polipéptidos, poliaminas neurotoxinas, enzimas, ácidos nucleicos, aminoácidos libres, monoaminas y sales inorgánicas. De los anteriores, los péptidos son los componentes principales y de mayor abundancia (Rash & Hodgson, 2002; Saez *et al.*, 2010), y que pueden tener masas entre 0,1 y 14 kDa (Estrada *et al.*, 2006; Saez *et al.*, 2010). Se estima que el número potencial de péptidos únicos en los venenos de araña puede ser de más de 12 millones, basándose en el número de especies de arañas descritas y en una apreciación relativa de la conservación de la complejidad de su veneno. No obstante, tan solo se ha estudiado cerca del 0,1 % de estos péptidos (Estrada *et al.*, 2006; Saez *et al.*, 2010). En el caso de los venenos de las arañas del género *Phoneutria*, catalogados como de los más potentes entre todas las arañas, se han aislado cerca de 400 péptidos y proteínas con masas entre 1,2 y 27 kDa, y se ha determinado la secuencia, total o parcial, de alrededor de 100 de estas moléculas (de Oliveira *et al.*, 2015; Richardson *et al.*, 2006a).

Algunos de los componentes de los venenos de araña se han convertido en herramientas farmacológicas altamente selectivas y potentes para la caracterización de los receptores celulares (ligandos y canales iónicos activados por voltaje); además, son moléculas con valores terapéuticos prometedores (Diego-García et al., 2016). Por ejemplo, los venenos de las arañas del género Phoneutria contienen una amplia variedad de proteínas y péptidos, incluidas neurotoxinas que actúan sobre los canales iónicos de sodio, potasio y calcio, y algunos receptores químicos de los sistemas neuromusculares de insectos y mamíferos (Richardson et al., 2006a). Estos venenos han sido descritos como un "tesoro" para el futuro descubrimiento y desarrollo de nuevas moléculas biológicamente activas con potencial aplicación en medicina y agricultura (Peigneur *et al.*, 2018). Además, muchos de los venenos del género Phoneutria han sido sometidos a estudios de caracterización biológica, estableciendo su toxicidad en diferentes modelos animales y otros efectos interesantes tales como priapismo, alteraciones motoras y respiratorias, modificación de la permeabilidad de la barrera hematoencefálica, además del desarrollo de agentes de diagnóstico (Le Sueur et al., 2004; Nunes da Silva et al., 2018). Por otro lado, dentro de los componentes del veneno de Phoneutria, se han identificado péptidos potencialmente útiles para el tratamiento de enfermedades cardiacas como arritmias (Gomez et al., 2014); disfunción eréctil (Saez et al., 2010); y dolor crónico (Dalmolin et al., 2011; Emerich et al., 2016; Guatimosim et al., 1997; Tonello et al., 2014). La especie más estudiada de este género ha sido Phoneutria nigriventer y su veneno ha sido reportado como una fuente invaluable de péptidos, más de 40 de ellos caracterizados como neurotóxicos (Peigneur et al., 2018; Richardson et al., 2006a).

No obstante, debido a la poca cantidad de veneno que produce una araña, los procesos de identificación y caracterización se hacen difíciles, pudiéndose estudiar sólo los componentes mayoritarios (Gopalakrishnakone *et al.*, 2016). De ahí que sea necesario emplear nuevas tecnologías para la investigación de componentes minoritarios del veneno, tales como la proteómica y la transcriptómica (Romero-Gutierrez *et al.*, 2017). Es así como en los últimos años, estudios proteómicos de venenos han podido complementarse con

análisis transcriptómicos de glándulas venenosas, permitiendo la identificación de un mayor número de componentes con respecto a las metodologías tradicionales de bioquímica y de biología molecular (Paiva *et al.*, 2019; Rodríguez de la Vega *et al.*, 2010). Por ejemplo, gracias a los estudios transcriptómicos de las glándulas venenosas de *Phoneutria pertyi*, se pudo determinar la presencia de algunas proteínas que no habían sido descritas previamente para el veneno de esta especie y tampoco de este género (Paiva *et al.*, 2019).

Considerando lo anterior, el presente trabajo de investigación se propone explorar el veneno de *Phoneutria boliviensis*, una araña colombiana errante, de comportamiento agresivo, de importancia médica por su potente veneno neurotóxico y sobre el cual existe poca investigación documentada (Estrada-Gomez *et al.*, 2015; Valenzuela-Rojas *et al.*, 2019). Dicho veneno, por comparación con el de la araña *P. nigriventer*, también puede ser muy interesante. El estudio del veneno de la araña *P. boliviensis* se aborda a nivel biológico, proteómico y transcriptómico, de manera que en algún punto se pueda llegar a demostrar la presencia de una diversidad bioquímica, biológica y farmacológica, con el fin de ampliar el conocimiento de esta especie y de que en el futuro los resultados obtenidos puedan ser de utilidad para el desarrollo de fármacos y/o agentes agroquímicos biológicos interesantes.

1.2. Objetivos

1.2.1. Objetivo General

Caracterizar por medio de análisis biológico y transcriptómico, el veneno de la araña colombiana *Phoneutria boliviensis*.

1.2.2. Objetivos Específicos

Caracterizar los componentes mayoritarios del veneno de la araña Phoneutria boliviensis.

Determinar el efecto tóxico y letal del veneno completo y de algunas de las fracciones del veneno de la araña *Phoneutria boliviensis*.

Analizar el transcriptoma de la glándula venenosa de la araña Phoneutria boliviensis.

Construir y expresar un péptido recombinante con posible actividad biológica, a partir de información obtenida del transcriptoma de la glándula venenosa.

2. MARCO TEÓRICO

2.1. Las arañas

Los arácnidos (Arachnida, del griego $\alpha \rho \dot{\alpha} \chi v \eta$ aráchne, "araña" e $-\iota \delta \varepsilon \varsigma$ -ides, "perteneciente a un grupo") son una clase de artrópodos quelicerados de los que han sido descritas más de 102.000 especies. Incluye formas tan conocidas como las arañas, las garrapatas, los escorpiones y los ácaros (Hoffmann, 1993). Se consideran los animales terrestres más antiguos de todos por sus restos fósiles (particularmente los alacranes), conociéndose desde el Silúrico y han llegado hasta nuestros días sin sufrir grandes cambios en su morfología y costumbres (Hoffmann, 1993).

Las arañas son, sin duda alguna, los artrópodos más conocidos. Este grupo es, además, el que ha alcanzado el mayor nivel evolutivo dentro de los arácnidos, cuyo fósil más antiguo data de 300 millones de años. Han logrado adaptarse a muchos ecosistemas diferentes, distribuyéndose en todos los hábitats accesibles a la vida terrestre del planeta, desde el nivel del mar hasta altitudes de cerca de 7.000 m.s.n.m., y han logrado desarrollar diversos mecanismos de defensa y captura de sus presas (Hoffmann, 1993; Rash & Hodgson, 2002). El éxito de las arañas para colonizar la tierra es generalmente atribuido a su extraordinaria versatilidad química, poseen unas glándulas integumentales, originadas por evolución de regiones especializadas de la epidermis, cuya función es producir sustancias vitales como venenos, compuestos repelentes y feromonas, que utilizan para inmovilizar y matar a sus presas, prevenir o ahuyentar a sus enemigos, y reproducción (Gopalakrishnakone *et al.*, 2016).

Desde el punto de vista biológico, las arañas constituyen el orden más importante y numeroso en especies actuales de la clase Arachnida. Se conocen alrededor de 48.462 especies a nivel mundial, pertenecientes a 4.170 géneros aproximadamente y de 120 familias (Hoffmann, 1993; Saez *et al.*, 2010; World Spider Catalog, 2020). Colombia posee cerca del 2,4 % de la riqueza mundial de arañas, con 914 especies descritas (Barriga & Moreno, 2013; Galvis, 2019). Las familias de arañas con mayor abundancia de especies en Colombia son: Araneidae con 312 especies, Salticidae con 115 especies, Oonopidae con 109 especies, Linyphiidae con 84 especies y Theridiidae con 72 especies (Galvis, 2019). Se conocen arañas colectadas entre los 0 m.s.n.m. y los 4.000 m.s.n.m., pero la gran mayoría se encuentra en alturas bajas o medias (Barriga & Moreno, 2013).

2.2. El veneno de las arañas

En casi todas las arañas el aparato venenoso está compuesto por un par de glándulas, que ocupan la porción superior de los quelíceros en el suborden Mygalomorphae, y en las arañas del suborden Araneomorphae se extienden hasta el cefalotórax entre los ojos y el ganglio supraesofágico (Resh & Cardé, 2009), las cuales se comunican con un par de colmillos localizados en los quelíceros, que son a su vez unos apéndices ahusados, huecos y móviles presentes en la boca que penetra la piel durante una mordedura, inyectando el veneno en la presa (Pineda & Florez, 2002).

La gran mayoría de las arañas son carnívoras y emplean su veneno para someter rápidamente a su presa, alimentándose de pequeños peces, reptiles, anfibios, aves, mamíferos y otros artrópodos. Esto es posible ya que sus venenos contienen una gran variedad de toxinas específicas para una amplia gama de receptores neuronales, canales iónicos (potasio, sodio y calcio) y enzimas, de diversas especies vertebradas e invertebradas (Saez *et al.*, 2010). Estas toxinas tienen la capacidad de discriminar entre isoformas moleculares estrechamente relacionadas de miembros de una familia particular de canales iónicos y su selectividad las convierte en herramientas cada vez más importantes para desarrollar la función del canal iónico en las células excitables y no excitables (Diniz *et al.*, 2006). En general, los venenos de araña, especialmente aquellos de tarántula, son claros, líquidos incoloros fácilmente solubles en agua. La mayoría de los venenos de araña son neutros o alcalinos, aunque hay algunos ácidos, como los de *Atrax robustus, Dugesiella hentzi y Eurypelma californicum*, todos ellos con pH de 4 – 5,5. Posterior a la liofilización, los venenos de araña se han reportado con coloraciones que varían entre blanco, blanco con rosado, amarillo o gris (Rash & Hodgson, 2002).

Similar a los venenos de otros animales, como las serpientes y los escorpiones, los venenos de arañas son heterogéneos, no solo entre diferentes especies, si no entre la misma especie. Además, los venenos de las arañas son una mezcla compleja de moléculas, como proteínas, polipéptidos y poliaminas neurotóxicas, enzimas, ácidos nucleicos, aminoácidos libres, monoaminas y sales inorgánicas (Diego-García *et al.*, 2016; Rash & Hodgson, 2002; Saez *et al.*, 2010). Los péptidos son los componentes principales de los venenos de arañas y algunas especies pueden producir venenos con más de 1.000 péptidos únicos, con capacidad de ejercer efectos a nivel del sistema nervioso (Saez *et al.*, 2010).

Los venenos de arañas han recibido menos atención que el veneno producido por otros animales debido a su impacto mínimo en la salud humana (Gremski *et al.*, 2010), con excepción de cuatro géneros cuyo envenenamiento es catalogado por la Organización Mundial de la Salud (OMS) de importancia a nivel clínico: *Phoneutria* (Ctenidae), *Loxosceles* (Loxoscelidae), *Latrodectus* (Theridiidae) y *Atrax* (Hexathelidae). El accidente aracnídico es un problema de salud pública en América, en países como Chile, Estados Unidos y Brasil (Quintana & Patiño, 2002). En Colombia no se cuentan con datos epidemiológicos precisos de los accidentes ocasionados por estos animales, ya que el reporte de los mismos no es obligatorio, a diferencia de lo que ocurre con el envenenamiento por mordeduras de serpientes. En el estudio más reciente del país sobre la epidemiología de estos accidentes, se encontró que, del total de casos reportados y atendidos, el 11 % corresponde a accidentes causados por *Phoneutria* (13 %), *Latrodectus* (5 %), *Lycosa* (4 %) y *Loxosceles* (3 %) y el 17 % de estos accidentes quedaron sin identificación (Rodríguez-Vargas *et al.*, 2012).

Además de los efectos neurotóxicos conocidos de venenos de araña, algunos péptidos han demostrado poseer actividad antiarrítmica, antimicrobiana, analgésica, antiparasitaria, citolítica, hemolítica y actividad inhibidora de enzimas. Por ejemplo, el veneno crudo de *Macrothele raveni* tiene actividad antitumoral, pero el componente responsable aún no ha sido identificado (Saez *et al.*, 2010).

El estudio de los componentes del veneno ha supuesto un gran esfuerzo para su purificación, ya que uno de los principales problemas en el uso de toxinas de péptidos araña como herramientas de investigación ha sido la dificultad para obtener cantidades adecuadas de material (Diniz *et al.*, 2006; Romero-Gutierrez, 2018). La purificación de toxinas menores, o especies moleculares estrechamente relacionadas con propiedades farmacológicas que pueden ser muy distintas, no es fácil. El enfoque molecular de la clonación, la caracterización y expresión de los genes que codifican estas toxinas, al igual que los estudios transcriptómicos de las glándulas venenosas, pueden ayudar a superar estos problemas; permitiendo, por ejemplo, la producción de toxinas mutadas para probar hipótesis estructurales y funcionales específicas (Diniz *et al.*, 2006; Rodríguez de la Vega *et al.*, 2010; Romero-Gutierrez, 2018).

2.3. Herramientas actuales para el estudio de venenos de arañas

Las dificultades para aislar los compuestos poco abundantes del veneno de arañas y elucidar sus estructuras químicas, incluyen considerables cantidades de veneno y, por tanto, la colecta de un alto número de especímenes (Gopalakrishnakone *et al.*, 2016). Esto podría implicar una notable disminución de arácnidos en algunos ecosistemas y, aunque su papel exacto no está plenamente determinado, ellas son el depredador dominante del grupo de los

invertebrados en la mayoría de los ecosistemas terrestres, pero a su vez también hacen parte de la dieta de muchas otras especies en una proporción significativa como algunas aves en peligro de extinción (Resh & Cardé, 2009).

Los recientes avances tecnológicos en las metodologías utilizadas para el análisis de moléculas pequeñas, como resonancia magnética nuclear (NMR), espectrometría de masas (MS) y bioquímica de péptidos junto con métodos modernos de electrofisiología, han permitido el aislamiento, elucidación estructural y caracterización biológica de muchas de estas toxinas en los venenos de araña previamente inexplorados debido a limitaciones técnicas (Estrada *et al.*, 2006; Gopalakrishnakone *et al.*, 2016). Además, desde la década de los 90's, se han desarrollado otras técnicas para resolver las limitaciones en las cantidades de veneno, una de ellas es la creación de bibliotecas de *DNA* complementario (cDNA) construidas a partir de RNA mensajero (mRNA) de glándulas de veneno y la otra es la expresión heteróloga de los péptidos (Diego-García *et al.*, 2016; Romero-Gutierrez *et al.*, 2017).

En los últimos años, los estudios proteómicos y transcriptómicos de los venenos y de las glándulas venenosas y el uso de nuevas tecnologías de secuenciación masiva de alto rendimiento, han permitido la identificación de un gran número de componentes con respecto a las metodologías tradicionales de bioquímica y de biología molecular (Rodríguez de la Vega *et al.*, 2010). El análisis del transcriptoma de araña comenzó utilizando bibliotecas de cDNA que representan la expresión génica de las glándulas venenosas o de todo el cuerpo. Se usaron bibliotecas de cDNA y secuenciación Sanger para la generación de información de Marcadores de Secuencias Expresadas (*Expressed Sequence Tags* – ETS –, por sus siglas en inglés) (Diego-García *et al.*, 2016). Una de las ventajas más destacables, es que solo se necesitan pocos animales para ambos estudios, la cantidad de muestra dependerá de los tamaños de los animales y de su glándula venenosa; además de la obtención de fragmentos completos (Romero-Gutierrez *et al.*, 2017).

La caracterización del transcriptoma a partir del mRNA de la glándula venenosa es una de las metodologías más utilizadas hoy en día para el estudio de la composición de los venenos de diferentes especies, ya que permite tener una visión global de la maquinaria molecular de este órgano (Romero-Gutierrez, 2018). Con respecto al alto rendimiento, la secuenciación de siguiente generación (*Next Generation Sequencing* – NGS – por sus siglas en inglés) tiene el potencial de proporcionar más información sobre el número total de transcriptos de araña y puede ayudar a generar transcriptomas "completos" (que incluye todos los RNA en las glándulas venenosas y cualquier tejido) (Diego-García *et al.*, 2016). El análisis de los genes que codifican para los diferentes componentes de veneno y ETS, ayudan a identificar de manera eficaz las toxinas principales y de esa forma también se puede contribuir al desarrollo de antivenenos específicos y eficaces. Además, se ha empleado como un acercamiento eficiente para el descubrimiento de genes y resolver dudas relacionadas a la evolución, el perfil de expresión y el desarrollo de recursos útiles para estudios de genómica funcional y la búsqueda dirigida de moléculas de interés (Diego-García *et al.*, 2016; Fernandes-Pedrosa *et al.*, 2008; Romero-Gutierrez, 2018).

2.4. El género Phoneutria

Las arañas del género *Phoneutria* son miembros de la familia Ctenidae, descrito por Perty en 1833 (Lucas, 1988; Peigneur *et al.*, 2018). Son conocidas como "arañas plataneras" por su preferencia a esconderse en racimos de banano o plátano; "errantes" por su tipo de desplazamiento; o "armadas" por su postura característica cuando se sienten amenazadas, ya que, en su posición de defensa, se paran sobre sus patas traseras mientras levantan sus cuatro patas frontales (Hernández, 1993; Peigneur *et al.*, 2018).

El género está compuesto por ocho especies: *P. bahiensis*, *P. boliviensis*, *P. eickstedtae*, *P. fera*, *P. keiserlingi*, *P. nigriventer*, *P. pertyi*, y *P. reidyi*. Están distribuidas desde Costa Rica a través de Sur América, desde el este de los Andes hasta el norte de Argentina, en altitudes entre 600 m.s.n.m. y 3.000 m.s.n.m., encontrándose en regiones

11

cálidas, tropicales y semitropicales, donde realizan cuevas en sitios húmedos y oscuros, o también habitan en arbustos y follajes (Mena-Muñoz *et al.*, 2016; Peigneur *et al.*, 2018). En Colombia, se han reportado tres de estas especies (Figura 1).

Figura 1. Distribución del género *Phoneutria* en Colombia: • *P. boliviensis*, \blacktriangle *P. fera*, \blacksquare *P. reidyi*. (Hazzi *et al.*, 2013).

Son arañas con un tamaño entre 17 mm y 50 mm de envergadura, alcanzando de 15 cm a 18 cm contando las patas (Hazzi, 2014; Lucas, 1988; Quintana & Patiño, 2002). Presentan una densa escópula, su cuerpo está cubierto de pelos cortos y adherentes de coloración que va de gris parduzco a castaño oscuro en el prosoma, el opistosoma tiene un diseño de puntos pares que forman una banda longitudinal y con filas laterales de puntos más pequeños y claros; las hembras poseen un abdomen oscuro, mientras que en los machos es de tonos naranja, mostrando un color más claro en la espalda. Las patas poseen varias espinas negras con puntos amarillos en la base de cada espina, los quelíceros están

cubiertos con vellos alargados y naranjados que se tornan rojos al encontrarse irritados, y ocho ojos con fórmula 2-4-2 (Lucas, 1988; Mena-Muñoz *et al.*, 2016; Peralta, 2013).

El proceso adaptativo y evolutivo del género *Phoneutria* está asociado con la pérdida de seda cribelar y redes de captura de presas; sólo usan seda para la producción de los ovisacos o para las redes del vivero (Peigneur *et al.*, 2018); alcanzan su adultez en el tercer año cuando se presenta la ecdisis sexual, el apareamiento y la oviposición; con un ciclo de vida completo de 4 a 5 años (Bucherl, 1969; Lucas, 1988). Son animales errantes y sinantrópicos, explicando la gran cantidad de encuentros con humanos que pueden ocurrir en lugares diferentes a su distribución por la exportación de bananos (Peigneur *et al.*, 2018; Quintana & Patiño, 2002). Tienen hábitos nocturnos, solitarios, y son capaces de recorrer cientos de metros durante la noche. Son cazadores activos, confiando en su veneno de acción rápida y eficiente para la captura y defensa de sus presas, las cuales suelen ser insectos, aunque también cazan otras arañas y roedores pequeños (Bucherl, 1969; Peigneur *et al.*, 2018). Poseen una conducta agresiva, muerden a la menor provocación y no huyen cuando son molestadas; además tienen una agilidad característica, siendo capaces de saltar hasta 40 cm de distancia y trepar rápidamente cualquier objeto, siempre buscando defenderse con agresión (Pineda & Florez, 2002).

Por lo general, los accidentes ocurren en los primeros meses del año, coincidiendo con su época de apareamiento (abril a julio) (Bucherl, 1969; Lucas, 1988). La mayoría de los accidentes en humanos son leves, el 0,5 % de los casos son graves. Aunque el veneno es altamente neurotóxico, la cantidad inoculada a través de la mordedura suele ser demasiado pequeña para inducir efectos letales, siendo las hembras las que inyectan mayor cantidad de veneno (Peigneur *et al.*, 2018). Se ha demostrado que la potencia de los venenos de *Phoneutria* varía de acuerdo a la especie y al sexo de la araña, usualmente es más letal el veneno de las hembras (Herzig *et al.*, 2002; Valenzuela-Rojas *et al.*, 2019).

Las manifestaciones clínicas del envenenamiento grave generalmente se observan en ancianos y niños; en tales casos, el priapismo es uno de los signos más notorios. Otras manifestaciones clínicas comunes son convulsiones, náuseas, sudoración y salivación excesiva, vómitos profusos, hipertensión, taquicardia, temblores y parálisis espástica (Tabla 2) (Peigneur *et al.*, 2018). Las muertes debidas a este envenenamiento son extremadamente raras y se deben al edema pulmonar o al shock inducidos por el veneno (Quintana & Patiño, 2002).

Tabla 1. Clasificación y sintomatología del envenenamiento por *Phoneutria* sp. (Quintana& Patiño, 2002).

Síntomas locales	Intensidad del envenenamiento	Síntomas sistémicos
	Leve	Agitación y taquicardia
Dolor, edema, sudoración,	Moderado	Además, vómito, dolor abdominal, sialorrea, sudoración profusa, priapismo, hipertensión
fasciculaciones	Grave	Además, bradicardia o taquicardia, híper o hipotensión, arritmias, disnea, confusión o estupor, edema pulmonar o shock en raros casos

2.5. Veneno del género Phoneutria

Los venenos de las especies de arañas del género *Phoneutria* se encuentran entre los que más contribuyen a estudios de proteómica y transcriptómica (Lausten *et al.*, 2016). Se estima que el veneno de cada especie del género *Phoneutria* puede contener cerca de 150 péptidos (Paiva *et al.*, 2019); la mayoría de ellos adoptan el motivo estructural ICK llamado "nudo inhibidor de cistina" (ICK, por sus siglas en inglés) (Gremski *et al.*, 2010; Haney *et al.*, 2014; Undheim *et al.*, 2013; Xu *et al.*, 2015; Zobel-Thropp *et al.*, 2014a, b). Las toxinas ICK pueden actuar en diferentes canales iónicos de vertebrados e invertebrados, convirtiendo a muchas de estas moléculas en modelos potenciales para el desarrollo de

nuevas herramientas biológicamente activas para aplicaciones biotecnológicas (Paiva *et al.*, 2019).

Entre las toxinas del veneno de *Phoneutria* pueden encontrarse poliaminas, que bloquean potentemente el receptor de glutamato inhibiendo la transmisión neuromuscular mediada por ácido glutámico; y péptidos neurotóxicos ricos en cisteína, que actúan sobre los canales de sodio, potasio y potencial del receptor transitorio, de la subfamilia A (TRPA – por sus siglas en inglés). También actúan sobre receptores como el ácido N-metil-D-aspártico (NMDA), cannabinoides u opioides del sistema nervioso de insectos y mamíferos, subrayando una posible aplicabilidad farmacéutica (Anexo I) (Peigneur *et al.*, 2018; Quintana & Patiño, 2002).

3. ANTECEDENTES

3.1. Estrategias actuales para el estudio de venenos de arañas

3.1.1. Expresión recombinante de péptidos de venenos de arañas

La ingeniería genética se ha convertido en una herramienta importante para producir péptidos de interés provenientes de arañas con un costo relativamente bajo y la posibilidad de producir no solo el péptido original sino también mutantes del mismo (Quintero-Hernández *et al.*, 2011). Además, las técnicas de biología molecular han sido esenciales para comprender la toxicología de los venenos de animales y para aportar una visión más profunda de la acción molecular de estas toxinas y su estructura (Chavez-Moreira *et al.*, 2017).

La clonación de péptidos de venenos de arañas se ha empleado desde la década de los 90's. La primera caracterización molecular de una secuencia precursora de araña a partir de una biblioteca de cDNA de la glándula venenosa, fue de ω -agatoxina IA, de *Agelenopsis aperta*, cuya estructura heterodimérica tiene la capacidad de bloquear canales de Ca²⁺ (Quintero-Hernández *et al.*, 2011). Además, en esta década se expresaron péptidos insecticidas recombinantes provenientes de *Diguetia canities*, usando por primera vez la técnica de reacción en cadena de la polimerasa de transcripción inversa (RT-PCR), que permite obtener cDNA (Krapcho *et al.*, 1995).

La selección del sistema de expresión es esencial para la producción exitosa de toxinas recombinantes de arañas; este sistema debe permitir el correcto plegamiento del péptido, con formación precisa de puentes disulfuro, asegurando de esta manera la efectividad de la actividad biológica. Para la clonación y expresión de péptidos recombinantes de venenos de arañas se han empleado sistemas bacterianos, levaduras,

células animales y plantas (Tabla 2). Los sistemas bacterianos no pueden realizar modificaciones postraduccionales en las proteínas expresadas, por tanto, algunos de los sistemas de expresión bacterianos podrían ser inapropiados para la producción de proteínas heterólogas activas. Además, pueden ser necesarias modificaciones *in vitro* para obtener péptidos funcionales (Quintero-Hernández *et al.*, 2011).

A pesar de lo mencionado anteriormente, uno de los sistemas de expresión mejor estudiados para producir péptidos de araña es el uso de *E. coli* como célula hospedera, y en el que se han expresado casi la mitad de los péptidos de araña. Se usa tanto en los pasos de clonación como para la expresión de las proteínas. Es técnicamente accesible, rápido y rentable, con condiciones de cultivo simples, fácilmente escalables. *E. coli* es un organismo de fácil manejo, del que se disponen muchas cepas y vectores, así como protocolos ajustados para la manipulación genética (Terpe, 2006).

Por otro lado, el uso de codones de bacterias y artrópodos es diferente, lo que se refleja ocasionalmente en bajos rendimientos y/o la producción de especies truncadas. Como consecuencia, a veces, la secuencia de codificación clonada, amplificada a partir de la fuente natural, no puede usarse directamente para la expresión y tiene que ensamblarse un nuevo gen con el uso preferencial de codones para *E. coli* (Quintero-Hernández *et al.,* 2011). Aunque los rendimientos de producción pueden ser de hasta 10-20 mg/L, el paso de replegamiento suele ser el paso limitante para obtener cantidades suficientes de toxina activa, ya que el rendimiento puede ser inferior al 10 % del producto original (Li *et al.,* 2000).

En algunos casos, el producto se expresa como un híbrido, es decir, el gen de la araña se fusiona con un gen que codifica para una proteína transportadora y que en ocasiones ha permitido la expresión de formas plegables solubles de toxinas en *E. coli*. Basado en esta estrategia, se han utilizado cepas deficientes en tiorredoxina reductasa (Ostrow *et al.*, 2003) o sistemas de fusión a glutatión-S-transferasa (GST) (Tedford *et al.*,
2004) haciendo posible que las toxinas sean expresadas en el citoplasma en lugar de los cuerpos de inclusión. Varios inconvenientes de la metodología incluyen la necesidad de una proteasa o la escisión química para separar las proteínas de fusión, que reducen aún más los rendimientos finales y, en ocasiones, la destrucción de la toxina de interés (Quintero-Hernández *et al.*, 2011).

Sistema	Vector	Toxina	Especie de araña	Referencia
Bacteria			•	
E. coli DH5	pGEX-KT	Huwentoxin-1	Selenocosmia huwena	Li <i>et al.</i> , 2000
E. coli BL21 (DE3)	pGEX-2T	J-ACTXHv1c	Hadronyche versuta	Maggio & King, 2002
E. coli BL21 (DE3)	pMAL-c2	PnTx-3-1	Phoneutria nigriventer	Carneiro <i>et al.</i> , 2003
<i>E. coli</i> BL21 (DE3)	pGEM/pET32a	GsMTx4	Grammostola rosea	Ostrow <i>et al.</i> , 2003
<i>E. coli</i> BL21 (DE3)	pGEX-2T	ω-Atracotoxin- Hv1a	Hadronyche versuta	Tedford <i>et al.</i> , 2004
E. coli (AD494(DE3)pLysS)	pET-32c	Tx1	Phoneutria nigriventer	Diniz <i>et al.</i> , 2006
E. coli BL21 (DE3)	pMAL	ProTx-II	Thrixopelma pruriens	Smith <i>et al.</i> , 2007
<i>E. coli</i> BL21 (DE3)	pET-32c	Latarcin 2a	Lachesana tarabaevi	Shlyapnikov et al., 2008
Levadura				
Pichia pastoris	pGAPZαA	SFI1	Segestria florentina	Fitches <i>et al.</i> , 2004
Pichia pastoris	pPICZα	GsMTx4	Grammostola rosea	Park et al., 2008
Saccharomyces cerevisiae	pYES2-DEST52	Lycotoxin 1	Lycosa carolinensis	Hughes <i>et al.</i> , 2008
Saccharomyces cerevisiae	pVT102U/a	Lectin-like peptides	s Ornithoctonus huwena	Jiang et al., 2009
Saccharomyces cerevisiae	pVT102U/a	Jingzhaotoxin-34 Chilobrachys jingzhao		Chen <i>et al.</i> , 2009
Células animales				
Spodoptera frugiperda Sf21	PacLTX, pAcLIT y	α -latrotoxina α -latroinsectoxina	Latrodectus mactans	Kiyatkin <i>et al.</i> , 1995
Spodoptera frugiperda Sf9/High-five	pFastBac	α-latrotoxina	Latrodectus mactans	Ichtchenko et al., 1998
Drosophila melanogaster S2 cells	pGEM	PcTx1	Psalmopoeus cambridge	Escoubas <i>et al.</i> , 2003
Spodoptera frugiperda Sf9/High-five	pFastBac	Huwentoxin-1	Selenocosmia huwena	Ji et al., 2005
Plantas				
Nicotiana tabacum		J-ACTXHv1c	Hadronyche versuta	Khan <i>et al.</i> , 2006
Nicotiana tabacum	pBin19	Magi6	Macrothele gigas	Hernandez- Campuzano <i>et</i> <i>al.</i> , 2009

Tabla 2. Sistemas celulares y plásmidos empleados en la expresión de péptidos de arañas.

Pichia pastoris es el hospedero de levadura más comúnmente utilizado para la expresión heteróloga y ofrece varias ventajas sobre otros sistemas de levadura como *Saccharomyces cerevisiae*, ya que se puede cultivar en metanol como la única fuente de carbono, en concentraciones que matarían a casi cualquier otro microorganismo. También crece a densidades celulares muy altas, lo que significa mayores rendimientos de proteínas por cultivo. Aunque no es tan simple de manipular y mantener como *E. coli*, ni tan rápida en la producción de proteínas, *P. pastoris* es capaz de formar enlaces disulfuro y otras modificaciones postraduccionales, como la glicosilación y plegamiento correcto de péptidos ricos en cisteína (Cereghino & Cregg, 2000). *P. pastoris* se empleó para expresar una lectina llamada *Galanthus nivalis* agglutinin (GNA) fusionada a una neurotoxina insecticida del veneno de la araña *Segestria florentina*. La actividad insecticida demostrada por la toxina reflejó la capacidad de GNA para actuar como una proteína transportadora de péptidos de araña, hacia la hemolinfa de los insectos, después de la ingestión oral (Down *et al.*, 2006; Fitches *et al.*, 2004).

Otro péptido insecticida de veneno de araña, pero expresado en plantas, fue el de la neurotoxina Magi6, de *Macrothele gigas*. Se clonó un fragmento que codifica el cDNA de la neurotoxina de araña. La construcción se introdujo en una cepa de *Agrobacterium tumefaciens* y se usó para transformar *Nicotiana tabacum*. Las plantas transformadas que expresaban niveles moderados o altos del Magi6 eran resistentes a ataques de insectos (Hernandez-Campuzano *et al.*, 2009). Esto también se observó en plantas de tabaco en las que se expresó la toxina ω -ACTX-Hv1a (Hvt) de *Hadronyche versuta*, que es un antagonista de canales de calcio, y además les confiere resistencia a insectos (Khan *et al.*, 2006).

Estas técnicas también han sido empleadas en la obtención de diversas toxinas de venenos del género *Loxosces*; la primera toxina en ser clonada del veneno de *Loxoceles laeta* en 2002 fue la esfingomielinasa-D (Fernandes-Pedrosa *et al.*, 2008). De igual forma, se han clonado y expresado otras isoformas de esfingomielinasa-D funcionales del veneno de *Loxoceles intermedia*, siendo la toxina de este veneno más investigada y caracterizada

por sus efectos biológicos: dermonecrosis, insuficiencia renal aguda, respuestas inflamatorias masivas y hemólisis (Kalapothakis *et al.*, 2002; Quintero-Hernández *et al.*, 2011). Entre las toxinas recombinantes que hacen parte del veneno de arañas del género *Loxosceles* se cuentan, además de las fosfolipasas-D, metaloproteasas, hialuronidasas, péptidos insecticidas, factores liberadores de histamina y alergenos (Chavez-Moreira *et al.*, 2017). La mayoría de las isoformas enzimáticas del género *Loxosceles* se han producido de manera heteróloga en sistemas procariotas utilizando *E. coli*, y se obtienen fácilmente grandes cantidades de las formas solubles y enzimáticamente activas de estas proteínas (Chavez-Moreira *et al.*, 2017).

Otra toxina recombinante de utilidad es α -Latrotoxina, principal compuesto tóxico de los síntomas de envenenamiento causados por *Lactrodectus* sp.. Los anticuerpos generados por ratones contra esta toxina, fueron clonados y obtenidos de manera recombinante en un fago (pCombIII) usando *E. coli* como célula hospedera (Bugli *et al.*, 2008). Estos anticuerpos, al igual que los de esfingomielinasa-D recombinante, fueron capaces de neutralizar los síntomas de intoxicación producidos en ratones por el veneno de las arañas *Loxoceles reclusa* y *Lactrodectus mactans* (Bugli *et al.*, 2006, 2007). Además, la esfingomielinasa-D recombinante se usa realmente como antígeno para la producción comercial de anticuerpos F(ab')₂, siendo el primer antiveneno comercial contra la mordedura de *Loxoceles* spp obtenido de una toxina recombinante de veneno de araña (Quintero-Hernández *et al.*, 2011).

3.1.2. Análisis transcriptómicos de glándulas venenosas de arañas

En la última década, el alto rendimiento de NGS ha incrementado la caracterización de transcriptomas de glándulas venenosas de araña. Además, la optimización de los algoritmos de ensamblaje de secuencias *de novo* para la secuenciación profunda ha permitido el ensamblaje preciso de fragmentos de datos a partir de la secuenciación en transcripciones completas (Peng *et al.*, 2011). Estas tecnologías han sido ampliamente

utilizadas / validadas en proyectos de secuenciación genómica y transcriptómica a gran escala, en particular en ausencia de una secuencia de genoma de referencia (Wang *et al.,* 2010). Los estudios transcriptómicos de glándulas venenosas de arañas se han enfocado en el suborden Araneomorphae, también llamadas arañas verdaderas, probablemente debido a que incluye más del 90 % de las especies de arañas conocidas (Tabla 3) (Diego-García *et al.,* 2016).

Los perfiles transcripcionales de las glándulas venenosas de especies diferentes del mismo género han mostrado diferencias notables en términos de abundancia de toxinas. Por ejemplo, el análisis del transcriptoma de la glándula del veneno de *L. laeta* reveló que el 16,4 % del total de ESTs codificantes de toxinas pertenecen a esfingomielinasas-D (Fernandes-Pedrosa *et al.*, 2008); el 15 % del transcriptoma completo de la glándula venenosa de *L. similis* corresponde a transcripciones de fosfolipasa-D (Dantas *et al.*, 2016); y más del 20,2 % de todas las EST que codifican toxinas de la glándula del veneno de *L. intermedia* corresponden a fosfolipasas D y representan una proporción significativa de las toxinas presentes en el veneno de araña violinista (Gremski *et al.*, 2010). En estos análisis también identificaron viarias enzimas y péptidos tipo-toxinas, que incluyen metaloproteasas similares a astacina, serin proteasas y neurotoxinas (como Magi-3 de *Machrotele gigas*), hialuronidasas, lectinas, lipasas y alérgenos de veneno. Estas observaciones confirmaron la rica fuente de péptidos tipo-toxinas en las arañas violinistas y su relación evolutiva con las arañas de diferentes familias (Quintero-Hernandez *et al.*, 2011).

Familia	Especie	Referencia		
Agelenidae	Agelena orientalis	Kozlov et al., 2005.		
	Agelenopsis naevia	Ahmed <i>et al.</i> , 2018.		
Araneidae	Araneus ventricosus	Duan <i>et al.</i> , 2013		
Barychelidae	Trittame loki	Undheim <i>et al.</i> , 2013		
Ctenidae	Cupiennius salei	Langenegger <i>et al.</i> , 2018.		
	Phoneutria nigriventer	Diniz <i>et al.</i> , 2018.		
	Phoneutria pertyi	Paiva <i>et al.</i> , 2019.		
	Viridasius fasciatus	Oldrati <i>et al.</i> , 2017.		
Hexathelidae	Hadronyche infensaPineda et al., 2012.			
Lycosidae	Lycosa singoriensis	Zhang <i>et al.</i> , 2010.		
	Lycosa vittata	Zhang <i>et al.</i> , 2015.		
Macrothelidae	Macrothele gigas	Satake <i>et al.</i> , 2004.		
Pisauridae	Dolomedes fimbriatus	Kozlov et al., 2014.		
	Dolomedes mizhoanus	Jiang <i>et al.</i> , 2013.		
	Dolomedes sulfurous	Xu et al., 2015.		
Plectreuridae	Plectreurys tristis	Zobel-Thropp <i>et al.</i> , 2014b.		
Scytodidae	Scytodes thoracica	Zobel-Thropp <i>et al.</i> , 2014a.		
Sicariidae	Loxosceles intermedia	Gremski <i>et al.</i> , 2010.		
	Loxosceles laeta	Fernandes-Pedrosa <i>et al.</i> , 2008.		
Sparassidae	Heteropoda davidbowie	Oldrati et al., 2017.		
Theraphosidae	Chilobrachys jingzhao	Chen <i>et al.</i> , 2008.		
	Citharischius crawshayi (Pelinobius muticus)	Diego-García <i>et al.</i> , 2010.		
	Grammostola rosea	Kimura <i>et al.</i> , 2012.		
	Haplopelma hainianum (Ornithoctonus hainana)	Tang <i>et al.</i> , 2010. Cheng <i>et al.</i> , 2016.		
	Haplopelma schmidti (Ornithoctonus huwena)	Jiang <i>et al.</i> , 2008 Zhang et al., 2014.		
	Poecilotheria formosa	Oldrati <i>et al.</i> , 2017.		
	Selenotypus plumipes	Wong et al., 2013.		
Theriididae	Latrodectrus geometricus	Haney <i>et al.</i> , 2016.		
	Latrodectus hesperus	Haney <i>et al.</i> , 2014. Clarke <i>et al.</i> , 2014.		
	Latrodectus mactans	Oldrati <i>et al.</i> , 2017.		
	Latrodectus tredecimguttatus	He et al., 2013.		
	Parasteatoda tepidarorium	Posnien <i>et al.</i> , 2014.		
	Steatoda grossa	Haney <i>et al.</i> , 2016.		

Tabla 3. Transcriptomas de glándulas venenosas de arañas que han sido analizados.

Las secuencias de los péptidos del veneno de especies del mismo género son similares más no idénticas (Richardson et al., 2006a). La comparación de los análisis transcriptómicos muestra alta identidad entre las toxinas peptídicas ricas en cisteína de los venenos de *P. pertyi* y *P. nigriventer*, que solamente difieren en unos pocos aminoácidos. Sin embargo, algunas de estas sustituciones eran significativas, modificando la carga o hidrofobicidad del péptido, lo que podría interferir con su acción en canales iónicos y conferirles nuevas propiedades a las toxinas. Por otro lado, en el transcriptoma de *P. pertyi* se encontraron cinco secuencias con menos del 60 % de identidad con toxinas previamente identificadas, incluido un nuevo marco de cisteína que no se identificó en *P. nigriventer*; además, no se identificaron en secuencias de transcriptoma de *P. pertyi* con dos marcos de cisteína descritos en *P. nigriventer* que presentaron identidad con ω-agatoxinas, con acción prevista sobre canales de calcio (Paiva et al., 2019). Por otra parte, el análisis transcriptómico de la glándula venenosa de *P. pertvi*, reportó 8 transcripciones de proteínas ricas en glicina (GRP). No se detectaron secuencias de GRP en el análisis transcriptómico de la glándula del veneno de *P. nigriventer* ni se han descrito en ningún análisis del veneno de las arañas de *Phoneutria* (Paiva *et al.*, 2019).

Asimismo, se han identificado secuencias de otros componentes putativos del veneno, especialmente moléculas pequeñas, de un tamaño similar a las toxinas peptídicas ricas en cisteína. Estas familias se han descrito en otros análisis de glándulas de veneno, especialmente en el transcriptoma de veneno de *P. nigriventer*; sin embargo, la mayoría de las moléculas encontradas en la glándula venenosa de *P. pertyi* tienen baja identidad con las descritas anteriormente para *P. nigriventer* (Diniz *et al.*, 2018; Paiva *et al.*, 2019). Entre esta clase de componentes en los venenos de *Phoneutria*, se encuentran inhibidores del dominio TIL (tipo inhibidor de tripsina – *Trypsin Inhibitor-like*) ya descritos en secreciones de arácnidos, como garrapatas (Fogaça *et al.*, 2006) y escorpiones (Chen *et al.*, 2013), pero su detección en el transcriptoma de *P. nigriventer* fue primera evidencia de la presencia de inhibidores de TIL en arañas (Diniz *et al.*, 2018), y posteriormente en *P. pertyi* (Paiva *et al.*, 2019).

3.2. Veneno del género Phoneutria

El veneno de las arañas del género Phoneutria ha sido uno de los venenos más estudiados, ya que, debido a su alta toxicidad, la Organización Mundial de la Salud ha catalogado su envenenamiento como de importancia clínica. Particularmente, el veneno de Phoneutria nigriventer ha sido objeto de numerosas investigaciones en cuanto a sus actividades biológicas, convirtiéndolo en uno de los venenos de arañas más estudiados en el mundo (Bucaretchi et al., 2000; Costa et al., 2003; de Lima et al., 2002; de Roodt et al., 2016; de Souza et al., 2012; Diniz et al., 2006; Emerich et al., 2016; Gomes-Fegueiredo et al., 1995; Herzig et al., 2002; Kalapothakis et al., 1998a,b; Le Sueur et al., 2004; Nunes et al., 2008; Nunes da Silva et al., 2018; Oliveira et al., 2003; Richardson et al., 2006a; Tonello *et al.*, 2014). Se han aislado alrededor de 400 péptidos y proteínas en estado puro del género Phoneutria, con masas moleculares que van de 1,2 kDa a 27 kDa, y a casi 100 de estos se les han determinado sus secuencias de aminoácidos completas o parciales, aunque la mayoría de los estudios han se ha centrado en las especies P. nigriventer y P. reidyi. Los venenos de otras especies de este género, como P. fera, P. keiserlingii y P. pertyi también han sido estudiados en menor proporción (Anexo I) (Richardson et al., 2006a).

En cuanto a su composición química, los estudios sobre el veneno de *P. nigriventer* han reportado la presencia de proteínas biológicamente activas como péptidos, proteasas y hialuronidasas; además de compuestos activos como histamina, serotonina y algunos aminoácidos libres. A pesar de que en su veneno se han logrado identificar cerca de 40 neurotoxinas, muchos péptidos aún no tienen su estructura determinada, y muchos más permanecen sin descubrir; esto se debe principalmente a la poca concentración de péptidos – ya que solo se pueden aislar pequeñas cantidades del veneno – debido a su tamaño y complejidad (Peigneur *et al.*, 2018).

Dentro de las proteasas, las serin proteasas se han identificado en veneno de arañas (He *et al.*, 2013; Shikata *et al.*, 1995; Veiga *et al*, 2000), y fueron muy abundantes tanto en el análisis transcriptómico como en el proteómico de *P. nigriventer* (Diniz *et al.*, 2018); dos de estas serin proteasas, pertenecientes a la familia peptidasa S1, fueron llamadas proteasa PN44 y PN47, de esta última se han determinado tanto la secuencia completa, como de su N-terminal. Se ha sugerido que las enzimas proteolíticas endógenas pueden ser responsables de la modificación postraduccional observada en algunos de los componentes del veneno (de Lima *et al.*, 2016). La presencia de serin proteasas en la glándula venenosa de *P. pertyi* muestra que esta clase de toxina está muy presente en este género de arañas (Paiva *et al.*, 2019).

Los estudios del veneno de *P. nigriventer* se han realizado mediante su fraccionamiento y la búsqueda de actividades biológicas de estas fracciones. En una fracción el veneno de *P. nigriventer* con actividad en el músculo liso, se identificó un conjunto de isoformas similares de péptidos más pequeños (<2 kDa) (Pimenta *et al.*, 2005). Estos péptidos contienen 7 – 14 residuos de aminoácidos y tienen una estructura común compuesta de aminoácidos básicos y ácidos. Dado que todas estas moléculas están estructuralmente relacionadas con la familia de los péptidos de neurohormona de la taquiquinina, que poseen residuos de piroglutamato N-terminal, se llamaron péptidos taquiquinina de *Phoneutria nigriventer* PnTkPs (Pimenta *et al.*, 2005). Las PnTkP muestran una variación de las modificaciones postraduccionales, como la proteólisis, la amidación C-terminal y la ciclación (Pimenta *et al.*, 2005).

En estudios de toxicidad de los venenos de las arañas del género *Phoneutria*, realizados en ratones se ha reportado que este veneno posee una dosis tóxica de 0,34 μ g/g cuando se administra vía intravenosa (i.v.) y 0,67 μ g/g cuando se administra de manera subcutánea (s.c.) (Bucherl, 1969). Sin embargo, se ha demostrado que la potencia de los venenos de *Phoneutria* varía de acuerdo a la especie y al sexo de la araña (Tabla 4) (Valenzuela-Rojas *et al.*, 2019); y entre las hembras, la potencia del veneno varía de acuerdo a la presencia o no de la ooteca, siendo mayor la toxicidad del veneno de las

hembras con ooteca (Herzig *et al.*, 2002). El envenenamiento fatal generalmente ocurre después de una mordedura de una hembra. Se ha reportado que las hembras inyectan una mayor cantidad de veneno en comparación con los machos. Además, como con la mayoría de los animales venenosos, se han demostrado diferencias intersexuales en la composición del veneno (Herzig *et al.*, 2002; Peigneur *et al.*, 2018).

Las actividades biológicas que poseen los venenos de las arañas del género *Phoneutria*, han despertado interés en diferentes áreas, ya que podría servir como fuente para la comprensión del funcionamiento de diferentes sistemas del organismo humano y la obtención o diseño de compuestos para tratamiento de enfermedades o de utilidad agroindustrial. Como ejemplo de esto, se han encontrado ciertos componentes del veneno de *P. nigriventer* que han mostrado una potencial capacidad para cruzar la barrera hematoencefálica, provocando la activación de múltiples áreas del cerebro, lo que sugiere que podrían ser una herramienta potencial para los estudios sobre la permeabilidad de sustancias en dicha barrera (Le Sueur *et al.*, 2004; Nunes da Silva *et al.*, 2018). Por otro lado, algunas toxinas del veneno de *P. nigriventer* han demostrado potencial biotecnológico y terapéutico, por ejemplo, al mejorar la función eréctil, actuando como analgésicos, además, se han encontrado toxinas que poseen actividad de tipo insecticida (de Oliveira *et al.*, 2015; Emerich *et al.*, 2016; Tonello *et al.*, 2014). Aun así, es claro que la compleja diversidad bioquímica y farmacológica de este veneno aún no se ha estudiado al máximo (Peigneur *et al.*, 2018).

De igual manera, se han realizado estudios de diseño de compuestos útiles a partir de péptidos del veneno, como PnPP-19, un péptido de 19 residuos, cuya base fue el péptido δ -ctenitoxin-Pn2a, activo sobre canales Na_v. PnPP-19 comprende el farmacóforo del péptido nativo, está desprovisto de puentes disulfuro y que no es activo en los canales Na_v. Esta supresión de la actividad del canal redujo fuertemente la toxicidad que tenía el péptido δ -ctenitoxin-Pn2a y, por tanto, los efectos secundarios no deseados; sin embargo, PnPP-19 potenció el priapismo con una actividad similar a δ -ctenitoxin-Pn2a. Además, PnPP-19 también se ha investigado en antinocicepción periférica y central (Freitas *et al.*, 2016), mostrando activación de los receptores involucrados en las vías del dolor, como el receptor de cannabinoides 1 y los receptores opioides μ y δ (da Fonseca Pacheco *et al.*, 2016; Freitas *et al.*, 2016). PnPP-19 activa selectivamente los receptores opioides μ que inducen la inhibición indirecta de los canales de calcio y de este modo deterioran la entrada de calcio en las neuronas del ganglio de la raíz dorsal (DRG), siendo el primer derivado de toxina araña que, entre los receptores opioides, activa selectivamente los receptores μ -opioides. Esto destaca el potencial de este péptido y del veneno de *Phoneutria* para el diseño de nuevos agonistas opioides mejorados, ya que PnPP-19 no induce el reclutamiento de β arrestina 2, la cual se ha relacionado con el desarrollo de efectos secundarios graves, como parálisis respiratoria, después del uso de los medicamentos agonistas opioides (Freitas *et al.*, 2018).

Especie	Presa						
	Sexo	Ratón	Perro	Araña	Gecko	Mosca	
P. nigriventer	Н	0,63	-	-	-	-	
P. nigriventer	Μ	1,57	-	-	-	-	
P. nigriventer	M/H	0,6	-	-	-	22,40	
P. keyserlingi	M/H	0,9	-	-	-	-	
P. reidyi	M/H	0,11	-	-	-	0,85	
P. fera	M/H	0,76	0,20	-	-	-	
P. boliviensis	Μ	-	-	639	2,03	-	
P. boliviensis	Н	-	_	4229	2,20	-	

Tabla 4. Comparación de las DL₅₀ (mg/kg) de arañas del género *Phoneutria* para diferentes tipos de presa (Valenzuela-Rojas *et al.*, 2019).

Sexo: M = Macho, F = Hembra, M/H = Veneno de macho y hembra reunido.

3.3. Veneno de Phoneutria boliviensis

El veneno de *Phoneutria boliviensis* ha sido muy poco estudiado y aún se desconocen muchos datos acerca de su composición y toxicidad en mamíferos. En estudios

previos, el veneno de *P. boliviensis* exhibió similitudes con otros venenos de arañas del género de *Phoneutria* como *P. nigriventer*, *P. reidyi* y *P. keyserlingui*. En cuanto a sus actividades biológicas, el veneno de *P. boliviensis* mostró actividad hemolítica indirecta con y sin calcio; además, la dosis hemolítica mínima (MHeD) se estableció en 202,5 µg, confirmándose que esta actividad dependía de las fosfolipasas A2 (PLA2) ya que el veneno completo hidrolizaba el sustrato específico de esta enzima. Algunas fracciones obtenidas por cromatografía líquida de alta resolución en fase reversa (RP-HPLC) (33 % y 37 % de acetonitrilo) hidrolizaron el sustrato sintético ácido 4-nitro-3-octanoiloxi-benzoico, demostrando la actividad PLA2 en dichas fracciones. El veneno de *P. boliviensis* también mostró actividad proteolítica, degradando tanto azocaseína como sustratos de N-benzoil-DL-arginina-p-nitroanilida (BapNA), la actividad de BapNA se encontró solo a una concentración de 100 µg (Estrada-Gomez *et al.*, 2015).

El perfil electroforético de veneno completo mostró un importante contenido de proteínas con masas moleculares inferiores a 14 kDa, y también se revelaron diferencias entre el contenido de proteínas en el veneno del macho y la hembra, diferencia que se corroboró por RP-HPLC donde se evidenciaron dos fracciones en el cromatograma del veneno de la hembra, que no se observaron en el del macho. El análisis de masas realizado de fracciones seleccionadas revela masas isotópicas que van desde 1.047,71 a 3.278,07 Da, mostrando similitudes con otras especies de *Phoneutria*, como los péptidos encontrados en *P. nigriventer* con actividad anfipática catiónica (Estrada-Gomez *et al.*, 2015).

4. MATERIALES Y MÉTODOS

4.1. Esquema metodológico

4.2. Metodología

4.2.1. Colecta de especímenes

Las arañas de la especie *Phoneutria boliviensis* se obtuvieron por medio de colectas nocturnas en áreas rurales en diferentes municipios del departamento de Antioquia (Andes, Apartadó, Carepa, Chigorodó y Copacabana) (Figura 2). Posteriormente fueron trasladados a la colección COLVIOFAR-149 de arácnidos del Serpentario del Programa de Ofidismo/Escorpionismo. Las colectas estuvieron amparadas con el permiso marco de colecta de la Universidad de Antioquia otorgado a la Profesora Dora María Benjumea del Programa de Ofidismo/Escorpionismo por la Autoridad Nacional de Licencias Ambientales

(ANLA) en la Resolución 0524 de mayo de 2014. La obtención de veneno y de sus péptidos, está amparada bajo el Permiso de Acceso a Recurso Genético otorgado por el Ministerio de Medio Ambiente y Desarrollo Sostenible en la Resolución 2074 de octubre de 2017.

Figura 2. Mapa político de Antioquia resaltando en círculos negros las áreas donde se realizaron las colectas.

4.2.2. Extracción del veneno

El veneno de *Phoneutria boliviensis* (hembras y machos) fue obtenido mediante extracción con electroestimulación (45 voltios (V)) sobre los quelíceros. La extracción se realizó mensualmente una semana antes de la alimentación. El veneno fue reunido en un mismo vial, se liofilizó y se almacenó a – 70 °C hasta su uso.

4.2.3. Fraccionamiento del veneno por Sep-Pack

El veneno completo fue sometido a fraccionamiento en un cartucho Sep-Pack C18 (*Plus Light Cartridge*, Waters, Milford, MA, USA), por medio de gradientes desde 0 % hasta 100 % de acetonitrilo (ACN) (Merck; Germany) con adición de ácido trifluoroacético (TFA) en concentración final de 0,1 % (Sigma-Aldrich; Germany), obteniendo un total de cinco fracciones (eluato del veneno, 0 %, 30 %, 50 % y 100 % ACN). Cada fracción fue colectada individualmente, secadas por liofilización y almacenadas a – 70 °C hasta su uso.

4.2.4. Fraccionamiento del veneno por RP-HPLC

El veneno completo de *P. boliviensis* fue sometido a fraccionamiento por RP-HPLC (Cromatografía líquida de Alta Resolución en Fase Reversa) en columna C18 (Zorbax 300SB - Agilent Technologies, Inc.; Santa Clara, CA, USA), empleando dos gradientes: **1)** 0 % de ACN durante 5 minutos y de 0 % a 60 % de ACN/TFA durante 60 minutos con un flujo de 1 mL/min; y **2)** 0 % de ACN durante 5 minutos, de 0 % a 15 % de ACN por 20 minutos, luego de 15 % a 45 % de ACN durante 60 minutos, de 45 % a 70 % durante 10 min y se mantiene en 70 % por 7 minutos, finalmente de 70 % a 100 % de ACN en 3 minutos y se dejó a esta concentración hasta llegar a 130 minutos, todo con un flujo de 1 mL/min. Las fracciones del veneno obtenidas en la separación realizada en el cartucho Sep-Pack, también fueron sometidas a fraccionamiento mediante este segundo gradiente. Cada fracción fue colectada, secada y almacenada a – 70 °C hasta su uso.

4.2.5. Cuantificación de proteínas por espectrofotometría

La concentración de proteína en el veneno total o en sus fracciones se realizó en un equipo de espectrofotometría NanoDrop Lite (Thermo-Fisher Co.; San José, CA, USA) a una longitud de onda (λ) de 280 nm, obteniendo una concentración de la fracción en mg/mL.

4.2.6. Electroforesis

Geles de Sodio Dodecil Sulfato-Poli Acrilamida Gel Electroforesis (SDS-PAGE) a 4/12,5 % y 4/15 % en condiciones reductoras y desnaturalizantes, se usaron para evaluar la pureza y el peso molecular aparente de las diferentes proteínas, tanto del veneno completo como de las fracciones obtenidas. Las muestras, preparadas en condiciones desnaturalizantes y no desnaturalizantes, se corrieron en campo eléctrico de 90 V a temperatura ambiente. Finalmente, las proteínas se visualizaron por tinción con Azul Brillante de Coomassie R 250 (BioRad; CA, USA) (Laemmli, 1970).

4.2.7. Espectrometría de masas y secuenciación

Las masas moleculares de los péptidos que mostraron actividad en las diferentes pruebas de caracterización enzimática y de actividad biológica, fueron determinadas en la unidad de proteómica del Instituto de Biotecnología (IBt) de la Universidad Nacional Autónoma de México (UNAM) mediante ionización por *electrospray* (ESI-MS) en un equipo *Finnigan LCQ-DUO ion trap* (San José, CA, USA). La secuenciación del N-terminal de los péptidos se determinaron en un equipo automático (LF3000 *Protein Sequencer Beckman*, CA, USA) de secuenciación de péptidos (degradación de Edman).

4.2.8. Caracterización enzimática del veneno de P. boliviensis

4.2.8.1. Evaluación de actividad fosfolipasa A2 del veneno de P. boliviensis

La actividad fosfolipasa del veneno completo de *P. boliviensis* y de algunas de sus fracciones obtenidas por RP-HPLC, separadas mediante el gradiente 1 (apartado 4.2.4.), se determinó por hidrólisis de fosfolípidos de yema de huevo en platos de agarosa, según el método propuesto por Haberman & Hardt (1972), con algunas modificaciones. Se disolvió agarosa al 2 % en 10 mL de Tris-HCl 0,2 M, pH 8 por medio de calentamiento hasta

ebullición. Una vez alcanzada una temperatura aproximada de 50 °C, se adicionaron 1 mL de CaCl₂ 20 mM, 2 mL de Rodamina 6G al 0,1 %, 100 μ L de Triton X-100 y 2 mL de solución de yema de huevo al 10 %, bajo agitación suave para facilitar la uniformidad. 20 mL de la mezcla se vertieron en cajas Petri situadas en una plataforma nivelada. Una vez solidificado el sistema, se perforaron orificios de 3 mm de diámetro, lo suficientemente espaciados y en los que se depositaron 5 μ L de cada muestra. Como control positivo se emplearon 5 μ g de veneno (1 μ g/ μ l) de la serpiente *Bothrops ammodytoides* y agua como control negativo. Se emplearon 5 μ g de las fracciones del veneno, y 53,0 μ g y 106,1 μ g de veneno completo de *P. boliviensis*. Finalmente, las cajas fueron incubadas a 37 °C durante 1 hora. Las muestras con actividad fosfolipasa mostraron halos visualizados bajo luz ultravioleta (U.V.).

4.2.8.2. Evaluación de actividad proteasa del veneno de P. boliviensis

La actividad proteasa del veneno completo y de algunas fracciones obtenidas de veneno de *P. boliviensis* por RP-HPLC (gradiente 1), se determinó mediante un análisis electroforético propuesto por Heussen & Dowdle (1980), con algunas modificaciones. Se emplearon geles de acrilamida al 12,5 % copolimerizado con gelatina (1,5 mg/mL). Se empleó veneno de la serpiente *Bothrops ammodytoides* (5 µg) como control positivo. Las muestras bajo estudio fueron veneno completo de *P. boliviensis* (35 µg) y algunas de las fracciones (1 µg o 3 µg, dependiendo de la disponibilidad). Para la electroforesis, las muestras se mezclaron con buffer de carga sin 2-mercaptoetanol y no se sometieron a tratamiento térmico.

Después de la electroforesis, el gel se sometió a diferentes lavados: el primer lavado se realizó durante 1 hora con una solución de Tris-HCl 0,1 M, pH 8 y Tritón X-100 al 5 %; el segundo lavado se realizó durante 1 hora con una solución de Tris-HCl 0,1 M, pH 8 y Tritón X-100 al 0,05 %; y un tercer lavado de 10 minutos con una solución de Tris-HCl 0,1 M, pH 8. Estos pasos se llevaron a cabo a temperatura ambiente y bajo agitación rotatoria. Al finalizar los lavados, el gel sin buffer se dispuso en cámara húmeda durante la noche (O.N.), para posteriormente ser sometido a tinción con Azul Brillante de Coomassie R 250. Las muestras con actividad proteasa mostraron bandas de degradación del sustrato claramente visibles contra el fondo azul de la gelatina no digerida.

4.2.8.3. Evaluación de actividad hialuronidasa del veneno de P. boliviensis

Para determinar la actividad hialuronidasa del veneno completo y de algunas de las fracciones de *P. boliviensis*, obtenidas por RP-HPLC (gradiente 1), se empleó un análisis electroforético propuesto por Cevallos *et al.* (1992), con algunas modificaciones. Se prepararon geles de SDS-PAGE al 12,5 % coopolimerizado con ácido hialurónico (0,5 mg/ mL). Se empleó veneno de la araña *Brachypelma vagans* (5 µg) como control positivo, las muestras bajo estudio fueron el veneno de *P. boliviensis* (5 µg) y fracciones del mismo (2 µg); las muestras para electroforesis se mezclaron con buffer de carga sin 2-mercaptoetanol y sin tratamiento térmico.

Después de la electroforesis, el gel se sometió a diferentes lavados: el primero se realizó durante 1 hora con buffer ácido acético (HOAc) 0,2 M, acetato de sodio (NaOAc) 0,2 M, cloruro de sodio (NaCl) 0,15 M, pH 3,6 y Tritón X-100 al 5 %; el segundo lavado se realizó durante 10 minutos con buffer HOAc 0,2 M, NaOAc 0,2 M, NaCl 0,15 M, pH 3,6. Estos pasos se llevaron a cabo a temperatura ambiente y bajo agitación rotatoria. Al finalizar los lavados, el gel sin buffer se dispuso en cámara húmeda O.N.

Después de la incubación, el gel se depositó en la solución de tinción bajo una suave oscilación durante al menos 5 horas y se mantuvo en oscuridad. La solución de tinción se preparó justo antes de su uso mezclando 0,1 % de Stains-all (1-ethyl-2- [3- (1-ethylnaphthol [1,2-d] thiazolin-2-ylidene) -2-methylpropenyl] naphtho [1,2-d] thiazolium bromide) con 5 % de formamida, 20 % de isopropanol, 0,015 M de Tris-HCI, pH 8. Para visualizar el resultado, los geles se pusieron en solución de formamida al 5 % e isopropanol al 20 %, en Tris-HCI 0,015 M, pH 8, hasta que las bandas de actividad fueron claramente visibles contra el fondo azul intenso del ácido hialurónico no digerido.

4.2.9. Análisis transcriptómico de la glándula venenosa de P. boliviensis

4.2.9.1. Extracción de RNA de la glándula venenosa

Para el análisis transcriptómico se seleccionó una araña hembra adulta de *P*. *boliviensis*, cuyas glándulas fueron extraídas y sumergidas en el reactivo de TRIzol® (Thermo-Fisher Co.; San José, CA, USA), y posteriormente se rompieron con perlas de tungsteno. Para la separación de fases se utilizó cloroformo. El RNA total se precipitó con isopropanol y finalmente se lavó con etanol al 75%. Se realizó un análisis de integridad del RNA, en el que se obtiene el RIN, mediante un algoritmo, que es la proporción del gen ribosomal 28S contra el 18S.

4.2.9.2. Sequenciación, ensamble y anotación del transcriptoma

Para la secuenciación del transcriptoma de la glándula de la araña *P. boliviensis* se utilizó el método de secuenciación por síntesis utilizando la metodología de RNA-seq, para la cual se preparó una librería con el kit *Illumina Truseq* mRNA (enriquecimiento de RNA poliA+), partiendo de una concentración de 295,8 nM y con un tamaño medio de fragmento de 305 pares de bases (bp). Esta librería fue secuenciada en un instrumento *Illumina Hiseq* 2500 con una configuración de *reads paired-end* de 100 bases. Los *reads* fueron depurados con un valor mínimo de calidad Q30 y ensamblados con el paquete *Trinity* v. 2.5.1 (disponible en *https://github.com/trinityrnaseq/trinityrnaseq/wiki*).

Para anotación funcional de los transcritos resultantes de este ensamble se empleó la herramienta BLAST 2.6.0, buscando identidad con la base de datos del *Animal Toxin Annotation Project*: una base de datos de proteínas secretadas en venenos de animales, anotadas sistemáticamente de acuerdo a los estándares de calidad de UniProtKB/Swiss-Prot (disponible en *https://www.uniprot.org/biocuration_project/Toxins/statistics*). Además, se utilizó la herramienta blastx (disponible en *https://blast.ncbi.nlm.nih.gov/Blast.cgi? PROGRAM=blastx&PAGE_TYPE=BlastSearch&BLAST_SPEC=&LINK_LOC=blasttab& LAST_PAGE=blastp*), para buscar regiones de similitud de las secuencias de nucleótidos

con secuencias biológicas ya reportadas de la base de datos del Centro Nacional de Información Biotecnológica – *NCBI*, por sus siglas en inglés. Para determinar la masa molecular se utilizó ProtParam (disponible en *http://web.expasy.org/protparam/*).

Por otro lado, para predecir la presencia de péptidos señal y la ubicación de sus sitios de escisión en proteínas obtenidas del transcriptoma se empleó el servidor SignalP-5.0 (disponible en *http://www.cbs.dtu.dk/services/SignalP-5.0/*). Se evaluó la presencia de dominios transmembranales en las secuencias, en el servidor TMHMM v. 2.0 (disponible en *http://www.cbs.dtu.dk/services/TMHMM/*).

Para la selección de las secuencias relacionadas con veneno se tomaron en cuenta los siguientes criterios: **a)** El transcrito tiene similitud con alguna de las secuencias reportadas previamente para el género *Phoneutria*. **b)** El transcrito tiene identidad de secuencia con alguna de las secuencias reportadas en *Animal Toxin Annotation Project*. **c)** El *e-value* de la secuencia identificada en el transcriptoma contra las bases de datos reportadas es menor a 1 x 10^{-4} . Este valor *e* representa la probabilidad que la anotación asignada por similitud de secuencia se haya dado por azar o no (Romero-Gutierrez, 2018).

Todos los alineamientos se realizaron con el software Clustal Omega que genera alineaciones entre tres o más secuencias, utilizando los parámetros estándar que ofrece el programa (con numeración de base/residuo) (disponible en *http://www.ebi.ac.uk/Tools/msa/clustalo/*).

4.2.9.3. Cuantificación de RNA-Seq

Realizada la identificación de los transcritos relacionados con veneno, se cuantificaron los niveles de expresión *in silico* del transcriptoma por medio del algoritmo *Salmon* v 0.7.2 (disponible en *https://combine-lab.github.io/salmon/*). Se utilizó como

referencia el ensamble obtenido previamente por *Trinity* para el mapeo de lecturas y se emplearon los parámetros estándar para las cuantificaciones por transcrito.

Para llevar a cabo la cuantificación, se utilizó como referencia el ensamble obtenido previamente por *Trinity*, este fue indizado y posteriormente se obtuvo una carpeta de indexación, que contiene el índice o coordenadas de cada uno de los transcritos ensamblados (código binario).

Para realizar la cuantificación de transcritos del RNA-Seq se utilizaron los parámetros estándar y adicionalmente se alimentó de los dos archivos *fastq*, como resultado se obtuvo el archivo *"quant.sf*" que proporciona la información del número de *reads*, la longitud efectiva, los transcritos por millón y el número de *reads* mapeados.

4.2.9.4. Validación del ensamble del transcriptoma

Para hacer la validación del ensamble del transcriptoma se tomaron las secuencias peptídicas de aquellas fracciones que mostraron actividad enzimática (apartados 4.2.7. y 4.2.8.). Se buscaron homologías entre dichas secuencias y la base de datos del transcriptoma, mediante la herramienta BLAST. Los alineamientos se realizaron con el software Clustal Omega con los parámetros estándar.

4.2.10. Diseño, expresión y purificación de un péptido recombinante con posible actividad analgésica

4.2.10.1. Diseño y amplificación del gen

A partir de la información obtenida del transcriptoma de la glándula venenosa de la araña *P. boliviensis*, y empleando la herramienta tblastn, se buscaron secuencias de nucleótidos similares a otras ya reportadas con actividad analgésica (Tabla 10). Se seleccionó una secuencia peptídica a clonar, a la que se realizó la traducción reversa *in*

silico, y se adicionaron las secuencias de reconocimiento para la enzima de restricción **Bam**HI (GGATCC) la proteasa Tobacco Etch Virus У para (TEV) (GAGAACCTGTACTTTCAA) en el extremo 5', mientras que en el extremo 3' se adicionaron dos codones de paro (TAATAG) y el sitio de reconocimiento para la enzima de restricción PstI (CTGCAG), con el fin de direccionar el gen para ser clonado en el plásmido pQE30 (QiaGen; Germantown, MD, U.S.A). La siguiente secuencia muestra el diseño del gen, con uso preferencial de codones para Escherichia coli K12, con los sitios de interés establecidos:

5'-GAGAGGATCCGAGAACCTGTACTTTCAAGGCAAATGCGGtGATATTAACGCGCCG TGtCAGAGCGAcTGCGATTGtTGCGGGCTATtcgGTGACCTGtGAcTGCTAcTGGAGCAAg GATTGtAAATGCCGCGAAAGtAAtTTTGCcGCGGGGtATGGCaCTGCGtAAgGCGTTcTGtA AAAACAAgATTTAATAGCTGCAGGAGA-3'

Partiendo de la secuencia anterior se diseñaron cuatro oligonucleótidos con extremos sobrelapantes que permitieran la construcción del gen y su amplificación por la técnica de *megaprimers*. Se realizó la amplificación con la enzima *Vent* polimerasa (New England BioLabs Inc.; Ipswich, MA, U.S.A).

4.2.10.2. Clonación en el vector de expresión pQE-30

Una vez ensamblado y amplificado el gen por Reacción en Cadena de Polimerasa (PCR). El inserto de tamaño esperado, se extrajo de un gel preparativo de agarosa (1,2 %), y luego se purifico usando fenol y cloroformo y finalmente se precipitó con butanol-etanol al 75%

Tanto el vector pQE-30 como el amplificado se sometieron a digestión usando las enzimas de restricción *BamH*I para el extremo 5' y *Pst*I para el extremo 3' (*New England* BioLabs Inc.; Ipswich, MA, U.S.A), de tal forma que se obtuvieron extremos similares

tanto en el vector como en los insertos, de manera que posteriormente pudieran ser ligados. Posteriormente se realizó la reacción de ligación, y el producto obtenido se empleó para transformar células quimiocompetentes de *E. coli* XL1Blue. Las células transformadas se sembraron en una caja Petri con medio sólido 2xYT-Ampicilina (200 μg/mL), y se incubaron a 37 °C O.N.

Algunas colonias producto de la transformación se evaluaron por PCR de colonia, empleando los oligonucleótidos de pQE-30 directo (5'–*GAGCGGATAACAATTATAA–3'*) y reverso (5'–*GGTCATTACTGGATCTAT–3'*) para la amplificación. Aquellas colonias que mostraron una amplificación del tamaño esperado se permitieron crecer en medio líquido 2xYT-Ampicilina (200 µg/mL) incubando a 37 °C O.N. con agitación, para posteriormente verificar por una expresión de prueba la presencia del péptido recombinante. Para ello se tomaron 50 µL de cultivo, se centrifugaron y posteriormente el botón celular se resuspendió en 20 µL de agua y 5 µL de buffer de carga. La muestra se corrió en un gel SDS-PAGE 12,5 %.

Aquellos cultivos que mostraron en el gel de proteínas, la mayor expresión de un péptido con tamaño esperado, se sometieron a purificación del plásmido por lisis alcalina y luego se enviaron a secuenciar a la Unidad de Síntesis del Instituto de Biotecnología, de la UNAM.

<u>4.2.10.3. Transformación y expresión del péptido recombinante en células M15</u> <u>y Origami</u>

Un plásmido de secuencia corroborada, se utilizó para transformar células quimiocompetentes de *E. coli* M15 y Origami. Para ello, se inocularon células transformadas en medio líquido 2xYT-Ampicilina (200 μ g/mL), incubándolas a 37 °C O.N. con agitación. Luego, este cultivo se diluyó 1:10 en 10 mL de medio 2xYT-Ampicilina (200 μ g/mL), que se incubó nuevamente (37 °C / 4 horas aproximadamente), hasta alcanzar una OD₆₀₀ de 0,8 a 1,0. La expresión del péptido se indujo por adición de IPTG (IsoPropil-

ß-1-D TioGalactopiranósido) a una concentración final de 0,1 mM; durante toda la noche a temperatura ambiente (RT) O.N. Se tomaron muestras antes y después de la inducción, se sometieron a centrifugación y el botón celular se diluyó en agua. Con estas muestras se realizó una electroforesis en gel de acrilamida al 12,5 %.

La expresión también se llevó a cabo en un volumen de 200 mL de medio 2xYT-Ampicilina (200 µg/mL), con células *E.coli* Origami transformadas con el plásmido de secuencia corroborada. Las células transformadas se dejaron crecer hasta una OD₆₀₀ de 0,8 a 1,0 en las condiciones de incubación mencionadas previamente. Concluido este tiempo, se realizó la inducción con IPTG 0,1 mM, y se incubó a RT O.N. con agitación constante a 250 rpm.

Las células se recuperaron por centrifugación (2.300 *g*, 20 minutos, R.T), y luego se resuspendieron en 10 mL de Tris-HCl 50 mM, pH 8. Las células se lisaron por sonicación durante 3 minutos (intervalos de 5 segundos de sonicación y 5 segundos de descanso, a una potencia de 5 %). La solución resultante fue centrifugada (12.300 *g*, 30 minutos, R.T.); y se obtuvieron las fracciones solubles e insolubles de la expresión. La fracción insoluble se lavó con 20 mL de Tris-HCl 50 mM, pH 8. En un gel de acrilamida al 12,5 % se evaluaron las muestras de antes de inducir, después de inducir, fracción soluble y fracción insoluble.

4.2.10.4. Purificación por cromatografía de afinidad a níquel

El péptido recombinante se purificó a partir de fracción insoluble por medio de cromatografía de afinidad a níquel (Ni-NTA). Previamente, la fracción insoluble, que contiene los cuerpos de inclusión, se solubilizó en una solución de cloruro de guanidinio 6M, Tris-HCl 50 mM, pH 8.0. Para el proceso de purificación con la resina de Ni-NTA, se procedió inicialmente a equilibrar la resina con 2 volúmenes de columna de solución de cloruro de guanidinio 6M, Tris-HCl 50 mM, pH 8. Posteriormente, se hicieron pasar los cuerpos de inclusión solubilizados con un flujo lento. A continuación, la resina se lavó con 5 mL de buffer de cloruro de guanidinio 6 M en Tris-HCl 50 mM, pH 8 con imidazol 10

mM. Finalmente, el péptido recombinante se eluyó con 4 mL de buffer de cloruro de guanidinio 6 M en Tris-HCl 50 mM, pH 8 con imidazol 300 mM.

Alícuotas de los diferentes eluatos se desalinizaron mediante precipitación con metanol y cloroformo, para posteriormente ser evaluadas por SDS-PAGE al 12,5 %. Las fracciones con la proteína de interés fueron reunidas y re-purificadas por RP-HPLC (gradiente 1), y una muestra pura proveniente de la purificación se dispuso para determinar su masa molecular mediante ESI-MS.

4.2.10.5. Plegamiento del péptido recombinante

La solución resultante de la purificación con níquel que contiene el péptido de interés, se llevó a una concentración de cloruro de guanidinio 2 M con Tris-HCl 50 mM, pH 8. Posteriormente, se adicionaron glutatión oxidado (GSSG) para una concentración final de 1 mM y glutatión reducido (GSH) para una concentración final de 10 mM. La reacción de plegamiento se incubó en hielo y se almacenó en cuarto frío durante 96 horas, para posteriormente ser centrifugado y purificado por RP-HPLC (gradiente 1); las muestras puras provenientes de la purificación se enviaron a evaluar para determinar su masa molecular mediante ESI-MS. La muestra que mostró la masa molecular adecuada del péptido recombinante plegado, se usó para realizar diferentes ensayos de actividad biológica.

4.2.11. Validación del transcriptoma: búsqueda de la secuencia del gen codificante del péptido recombinante en la glándula venenosa

4.2.11.1. Extracción de RNA de la glándula venenosa

Para la validación del transcriptoma se seleccionó otra araña hembra adulta de *P*. *boliviensis*, cuyas glándulas fueron extraídas y sumergidas en el reactivo TRIzol® (Thermo-Fisher Co.; San José, CA, USA), el tejido se rompió con un homogenizador de tejidos. El RNA se extrajo siguiendo el método de isotiocianato guanidina/fenol

originalmente descrito por Chomczynski & Sacchi (1987), hasta obtener un pellet que fue lavado con etanol al 75 % en agua con *Diethyl pyrocarbonate* (DEPC) y se permitió secar. El producto se resuspendió en agua con DEPC para su cuantificación espectrofotomética a λ 260 nm.

<u>4.2.11.2. Obtención de cDNA y amplificación del gen codificante del péptido</u> <u>recombinante</u>

La obtención del cDNA se realizó con el kit 3'RACE proceso que se logra gracias a la etiqueta de adeninas que los mRNA poseen (Invitrogen; Carlsbad, CA, USA), siguiendo el protocolo establecido por el fabricante, empleando para ello 4 µg de RNA total extraído.

Para amplificar el gen codificante del péptido recombinante, se diseñaron oligonucleótidos específicos a partir de la información del transcriptoma:

Oligonucleótido directo: 5'-AAA TGC GGC GAT ATA AAC G-3'

Oligonucleótido reverso: 5'-TTA TTA TAT TTT GTT TTT GCA GAA GGC-3'

La reacción de amplificación se realizó con la enzima *Taq* DNA polimerasa. Para corroborar la amplificación del inserto con los dos oligonucleótidos, se corrió un gel de agarosa al 1 %, esperando ver un amplificado de aproximadamente 150 pb.

4.2.11.3. Clonación en TOPO

El fragmento de DNA amplificado fue purificado a partir del gel de agarosa (1,2 %) utilizando el kit *High Pure PCR Product Purification* (Roche®, Basilea, Suiza), siguiendo el protocolo del fabricante.

Se empleó el vector de clonación pCR 2.1-TOPO® del kit *TOPO*® *TA Cloning*® *Kits* (Invitrogen; Carlsbad, CA, USA), para unir el vector con el fragmento de DNA purificado siguiendo el protocolo de ligación sugerido por el fabricante. El producto obtenido se empleó para la transformación bacteriana en células electrocompetentes. Se adicionaron 6 µL de la reacción de ligación a las células electrocompetentes *E. coli* XL1Blue, y se realizó la transformación por electroporación, usando una corriente de 1.8 kV. Las células se recuperaron en 200 µL de medio *Super Optimal Broth with Catabolite Repression* (SOC) y se incubaron a 37 °C por 1 hora en agitación y posteriormente se sembró parte del cultivo en cajas Petri con medio 2xYT-Ampicilina (200 µg/mL), y diluciones 1:10 y 1:100, y se incubaron a 37 °C O.N.

Después de la incubación, se seleccionaron algunas colonias obtenidas de la transformación y se evaluaron por PCR de colonia, empleando los oligonucleótidos M13, directo y reverso, del kit. Se purificaron los plásmidos de las colonias que amplificaron el segmento de DNA con el tamaño esperado y se secuenciaron en la Unidad de Síntesis del Instituto de Biotecnología, de la UNAM. Se buscó homología entre las secuencias resultantes y la base de datos del transcriptoma.

4.2.12. Evaluación de actividades biológicas

4.2.12.1. Determinación de actividad atimicrobiana

La determinación de la actividad antimicrobiana de algunas fracciones del veneno de *P. boliviensis*, obtenidas por RP-HPLC (gradiente 1), se realizó mediante el método de difusión en agar. Se evaluó la actividad sobre una bacteria Gram positiva, *Staphylococcus aureus* (ATCC 25923), y una bacteria Gram negativa, *Pseudomona aeruginosa* (ATCC 27853). Se inició con un preinóculo de las bacterias, en medio Luria-Bertani (LB) (triptona 10 g/L, extracto de levadura 5 g/L, cloruro de sodio 10 g/L) incubado durante 18 horas a 37 °C y 180 rpm. Se tomó una alícuota de 50 µL de cada cultivo, se adicionaron a 4 mL de medio LB estéril y se incubaron en iguales condiciones hasta alcanzar una densidad óptica (OD₆₀₀) entre 0,08 y 0,13.

Se tomaron 500 μ L de este inóculo y se adicionaron a 9,5 mL de medio 1 tibio (10 mM de buffer fosfato de sodio, pH 7.4 (NaPB), 0,03 % *Trypticase Soy Broth* (TBS), Agarosa al 1 %, 0,02 % de Tween 20), y se vertió en cajas Petri situadas en una superficie nivelada de manera que se formó una capa de aproximadamente 1 mm de profundidad. Una vez solidificado el medio, se hicieron pozos espaciados, cada uno con un diámetro de 3 mm y se adicionaron en ellos 5 μ L de cada una de las muestras (0.6 μ g/ μ L). Se emplearon agua como control negativo y 0,5 μ L de ampicilina (10 mg/mL), como control positivo. Posteriormente, las cajas fueron incubadas durante 3 horas a 37 °C.

Concluido el periodo de incubación, las cajas se cubrieron con 10 mL de medio 2 tibio (TBS al 6 % y Agarosa al 1 %). Una vez solidificado el medio 2, las cajas se llevaron a incubación a 37 °C durante 24 horas. Finalmente, se midieron los diámetros de las zonas claras alrededor de los pozos como indicadores de inhibición del crecimiento bacteriano. El resultado se expresó como porcentaje (%) de inhibición del crecimiento.

4.2.12.2. Evaluación de actividades in vivo

4.2.12.2.1. Animales

Para los ensayos de toxicidad se emplearon ratonas hembra sanas *Swiss Webster* albinas, no preñadas, nulíparas, con un peso entre 20 - 24 g. Para los ensayos de analgesia con el método *Tail-Flick* se emplearon ratones macho, con peso entre 20 - 25 g para las fracciones del veneno; y entre 18 - 21 g para el péptido recombinante. Para los ensayos de analgesia con el método de *Siegmund* se emplearon ratones macho, con peso entre 18 - 21 g. Estos ratones fueron adquiridos en el Serpentario de la Universidad de Antioquia. Para los ensayos de analgesia con el método *Hot Plate* se emplearon ratones macho CD1 sanos, con peso comprendido entre 26 - 30 g, y fueron adquiridos en el Bioterio del Instituto de Biotecnología, UNAM, Cuernavaca.

Para los ensayos de toxicidad sobre insectos se emplearon grillos (*Acheta domesticus*), con peso entre 100 y 200 mg. Mientras que, para los ensayos de toxicidad sobre peces óseos se emplearon peces cebras (*Danio rerio*). Los animales obtenidos en Bioterio del Instituto de Biotecnología, UNAM, Cuernavaca.

Los animales permanecieron en jaulas de plástico transparente con rejillas metálicas, con densidad de alojamiento de 4 a 5 ratones por caja. Para todos los animales se mantuvo un ambiente con humedad relativa entre el 60 % y 80 % y con temperatura controlada: para ratones y grillos 22 ± 2 °C, y para los peces el agua se conservó a temperatura de 25 ± 3 °C. Todos los animales se mantuvieron en un ciclo de luz-oscuridad de 12 horas con libre acceso a alimentos y agua. Los experimentos se realizaron en el ciclo de luz entre las 8 y las 12 a.m. Todos los animales se usaron para un solo procedimiento antes de ser sacrificados humanitariamente: ratones por sobreexposición a CO₂ o dislocación cervical, y peces por congelación. El protocolo de estudio fue aprobado en julio de 2016 por el Comité de Ética para la Experimentación con Animales (Anexo III); además, se siguieron los principios internacionalmente aceptados para el uso y cuidado de animales de laboratorio (Aller Reyero *et al.*, 2000; *National Research Council*, 2011).

4.2.12.2.2. Evaluación de toxicidad aguda

Para la determinación de la toxicidad aguda, tanto del veneno completo de P. boliviensis como del péptido recombinante se siguieron los lineamientos de la Guía 423 de la OECD/OCDE titulada "Acute Oral Toxicity – Acute Toxic Class Method" (OECD Guideline, 2009), con algunas modificaciones. El principio de la prueba está basado en un procedimiento por etapas con el uso de un número mínimo de animales por paso, con el cual se obtiene suficiente información sobre la toxicidad aguda de la sustancia de ensayo para finalmente encontrar su Dosis Letal 50 (DL₅₀) (Figura 3). Se emplearon tres ratones *Swiss Webster* por cada lote de animales. La dosis inicial a evaluar para el veneno completo de P. boliviensis (1,0 µg/g administrado por vía intraperitoneal (i.p.)) fue seleccionada teniendo en cuenta la DL₅₀ del veneno de *P. nigriventer* (Valenzuela et al., 2019); la dosis determinada para el veneno de P. boliviensis se empleó como dosis inicial del péptido recombinante (vía intracraneal (i.cr.)). Dependiendo del número de muertes, se procedió con la dosis correspondiente según indique el procedimiento: una disminución de la dosis si se producen de dos a tres muertes, o repetir la dosis para confirmar la dosis letal; o aumentar la dosis en caso que, al repetir la dosis, no se presenten muertes o haya solo una. Se continuó así el procedimiento hasta hallar la dosis letal.

Después de la administración de las sustancias, los ratones se observaron continuamente por un periodo de 30 minutos, en las primeras cuatro horas se observaron cada hora y posteriormente cada 24 horas, hasta el día 14, registrando los individuos fallecidos, signos y síntomas de toxicidad. Además, se anotó el peso corporal de cada ratón diariamente. El día 14, los animales sobrevivientes fueron sacrificados por sobreexposición a CO₂. Inmediatamente después de su muerte, por envenenamiento o eutanasia, a todos los ratones se les realizó un examen macroscópico de los principales órganos (corazón, pulmón, estómago, bazo, hígado y riñones) para evaluar su aspecto y su posible afectación. El resultado obtenido fue expresado mediante la DL₅₀ correspondiente.

Figura 3. Procedimiento de evaluación de toxicidad aguda, donde A equivale a una dosis de 0,9 μ g/g del veneno completo de *P. boliviensis* y 0,8 μ g/g de péptido recombinante; B a una dosis de inicio de 1,0 μ g/g del veneno completo de *P. boliviensis* y 0,9 μ g/g de péptido recombinante; C a 1,1 μ g/g del veneno completo de *P. boliviensis* y 1,9 μ g/g de péptido recombinante; y D a 1,2 μ g/g del veneno completo de *P. boliviensis* y 1,5 μ g/g de péptido recombinante (Guía 423 de la OECD/OCDE, con modificaciones).

4.2.12.2.3. Evaluación de toxicidad del péptido recombinante sobre peces

Los peces cebra (n = 3) fueron inyectados por vía intramuscular (i.m.) en la parte dorsal, con una dosis de 1 μ g/ μ L (5 μ L) de la fracción de 38,7 % de ACN, purificado por RP-HPLC a partir del péptido recombinante plegado. Los peces se observaron de cerca durante las 2 horas posteriores a la inyección, y hasta 24 horas después de la misma.

Las evaluaciones de toxicidad en los peces se clasificaron de la siguiente manera: toxicidad leve es cuando, después de la inyección, el pez perdió la capacidad de moverse, pero se recuperó en segundos (10 segundos); toxicidad moderada cuando el pez se recuperó después de 30 minutos; y toxicidad severa cuando el animal no se recuperó después de una hora de la inyección. Se determinó un efecto letal, cuando los peces murieron después de la inyección.

4.2.12.2.4. Evaluación de toxicidad del péptido recombinante sobre grillos

Los grillos (n = 3) fueron inyectados por vía intratorácica (i.to.) entre el segundo y el tercer par de patas, con una dosis de 1 μ g/ μ L (5 μ L) de las fracciones obtenidas apartir de la purificación del péptido recombinante plegado por RP-HPLC.

Las evaluaciones de toxicidad en los grillos se clasificaron de la siguiente manera: toxicidad leve cuando, después de la inyección, el grillo perdió la capacidad de levantarse cuando se colocó con las patas hacia arriba, pero se recuperó en segundos (10 segundos); toxicidad moderada cuando el grillo se recuperó después de 30 minutos y toxicidad severa cuando el animal no se recuperó después de una hora de la inyección. La palabra "parálisis" se usó cuando el grillo perdió toda movilidad durante 2 horas, pero finalmente se recuperó. Se determinó un efecto letal, cuando los grillos murieron después de la inyección.

<u>4.2.12.2.5. Determinación de la Dosis Paralizante media (DPm) del péptido</u> <u>recombinante sobre grillos</u>

La determinación de la DPm se realizó siguiendo el método "*up-and-down*" para poblaciones pequeñas, propuesto por Dixon (1965), con algunas modificaciones. De acuerdo a los efectos observados previamente para la toxicidad en grillos, se seleccionó una dosis inicial de 1,3 μ g/g vía i.to., determinando el efecto paralizante como la pérdida de toda movilidad del grillo durante 2 minutos en los primeros 10 minutos posteriores a la administración, empleando una población de 6 grillos. De acuerdo con el protocolo descrito, las dosis se incrementaron o disminuyeron en razón a la respuesta evaluada inmediatamente anterior, negativa o positiva, respectivamente, según una constante *d* equivalente a 0,176 aplicada al logaritmo de la dosis ensayada que dio la respuesta.

4.2.12.2.6. Evaluación de la actividad analgésica por el método de Tail-Flick

El ensayo de *Tail-Flick* es un modelo agudo de dolor que mide el tiempo de latencia, desde el inicio de la exposición a un estímulo térmico doloroso, hasta la retirada de la cola.

Para la evaluación analgésica de las fracciones del veneno de *P. boliviensis* se siguió el procedimiento sugerido por Meymandi *et al.* (2015), con algunas modificaciones. El equipo empleado fue el analgesímetro *Tail-Flick* (PANLAB LE7106; España), su calor radiante (ajustado para producir latencias de referencia de 3 a 6 segundos) se aplicó en la cola del ratón, a una distancia entre 3 - 5 cm de la base de la cola. Se estableció un tiempo máximo de exposición a dicho estímulo de 12 segundos con el fin de evitar el daño tisular. La medida del tiempo de latencia registrado antes de la administración de cada sustancia fue considerada como latencia inicial. Los animales que mostraron tiempos de latencia basales de menos de 3 o más de 6 segundos fueron excluidos del estudio. Los tiempos de latencia se determinaron en intervalos de 30 minutos durante 180 minutos desde el momento de la administración de la muestra o los controles empleados.

Se usaron grupos experimentales de cinco ratones cada uno, asignados aleatoriamente y administrando a cada grupo: Solución Salina Normal (SSN) empleada como control negativo por vías i.p. o intracraneal (i.cr.) según la administración de la muestra; morfina como control positivo, a dosis de 0,1 mg/kg, por vía subcutánea (s.c.). Las fracciones del veneno obtenidas por Sep-Pack, administradas por vía i.p.; las fracciones obtenidas por RP-HPLC (gradiente 2), administradas por vía i.cr. para evaluar actividad en Sistema Nervioso Central (SNC). La administración del péptido recombinante, sin plegar y plegado, se realizó por vía i.cr.

4.2.12.2.7. Evaluación de la actividad analgésica por el método de Hot Plate

Se utilizó el equipo de *Hot Plate* PANLAB LE7406 (España) o placa caliente para inducir dolor agudo aplicando un estímulo térmico de 55 °C a través de una placa de acero. Este ensayo se realizó en grupos de cinco ratones de 18 g cada uno. La administración del péptido recombinante se realizó por vía i.cr., a dosis de 1,0 y 1,25 µg/g. Se empleó como control negativo agua estéril vía i.cr. y como control positivo se empleó morfina, a dosis de 0,1 mg/kg, vía s.c.

Cada animal fue acondicionado durante tres días colocándolo sobre el equipo *Hot Plate*, sin estar encendido. Debido a que es una prueba donde se evalúa el comportamiento, aquellos animales que se mostraron alterados durante el acondicionamiento (que saltaron o lamieron las patas con regularidad) se excluyeron del experimento.

Después del acondicionamiento, los animales se pesaron y se separaron aleatoriamente en grupos para cada tratamiento. La prueba consistió en poner a los animales sobre la placa caliente limitada por un cilindro de acrílico transparente, que permitía observar la conducta del ratón (salto o lamida de patas). El tiempo que tardó cada animal en saltar o lamerse las patas se registró como tiempo latencia, en ausencia de estas conductas el tiempo de latencia se registró como 30 segundos y se retiró al animal de la placa caliente. La medida del tiempo de latencia registrado antes de la administración de cada sustancia fue considerada como latencia inicial. Los tiempos de latencia se determinaron en intervalos de 15 minutos durante 75 minutos desde el momento de la administración de las sustancias. Una vez terminado el experimento, los animales fueron sacrificados por dislocación cervical.

4.2.12.2.8. Evaluación de la actividad analésica por el método de Siegmund

Se evaluó la actividad analgésica por estímulo químico del péptido recombinante aplicando el test de Siegmund *et al.* (1957), basado en la inyección intraperitoneal de un agente algésico, 2-fenil-1,4-benzoquinona o fenilquinona, que provoca como respuesta refleja, contracciones o estiramientos cuando se inyecta en el ratón. Los ratones se repartieron al azar en grupos homogéneos, de forma que para cada dosis y producto ensayados se dispuso de un grupo de cinco ratones. Transcurrido un tiempo de ayuno (6 horas), se comenzó el experimento administrando al grupo control, el excipiente de los productos en estudio; al grupo patrón, morfina (0,1 mg/kg), utilizado como fármaco de referencia; a los grupos tratados, se les administró por vía i.cr., las dosis correspondientes del péptido recombinante (1,25, 2 y 3 μ g/g). Después del tratamiento y transcurridos 15 minutos, se inyectó vía i.p. a todos los grupos de animales una solución de fenilquinona, a dosis de 0,1 mL/10 g de una solución de 0,16 mg/mL (preparada a partir de una solución madre de 4 mg/mL en etanol).

Después de un tiempo de latencia de 5 minutos, se empezaron a contar las contracciones en cada ratón individualmente durante un intervalo de 10 minutos. El dolor provocado en el ratón se pone de manifiesto por las contracciones, considerando como positivas aquellas caracterizadas por el estiramiento de las patas posteriores y torsión de la musculatura dorso-abdominal. El efecto analgésico de las sustancias es determinado según su capacidad para reducir el número de contracciones dolorosas o estiramientos producidos por la fenilquinona, expresando los resultados como porcentaje de inhibición del estiramiento.

4.2.12.2.9. Análisis estadístico

Para el análisis de los resultados de la Dpm sobre grillos, el conjunto de respuestas se contrastó contra la tabla de resultados del estudio (Anexo IV), de donde se obtiene el valor *k*. Para el cálculo de la DPm se aplicó la ecuación 1 descrita en el estudio:

$$DPm = Xf + k \times d$$
 Ecuación 1

Donde DPm es la Dosis Paralizante media, Xf representa el logaritmo de la última dosis empleada, k es el valor tabulado y d es la constante empleada para el cálculo del incremento o disminución de las dosis. El antilogarítmo del resultado será la Dpm. El error estándar se obtiene al multiplicar el valor de la tabla de resultados con la desviación estándar de las dosis empleadas.

Para el análisis de los resultados de la evaluación de actividad analgésica por el método de *Tail-Flick*, se construyó un curso temporal de respuesta antinociceptiva de cada grupo trazando los tiempos de latencia promedio en función del tiempo para cada grupo administrado con morfina, SSN, fracciones del veneno obtenidas por Sep-Pack y RP-HPLC, y el péptido recombinante Ctx-4 plegado y no plegado. La antinocicepción se cuantificó como el tiempo de latencia del movimiento de la cola o el porcentaje del efecto máximo posible (*% EMP*) a los 30, 60, 90 y 120 minutos después de la inyección, aplicando la ecuación 2:

$$%EMP = |(T 1 - T 0)|(T 2 - T 0)| \times 100$$
 Ecuación 2

Donde T0 corresponde a la latencia inicial, T1 a las latencias 30, 60, 90 o 180 minutos después de la administración de la muestra o controles y T2 corresponde al tiempo límite. Para comprobar si la diferencia entre las respuestas de los grupos fue significativa, se realizó el análisis de varianza (ANOVA) de medidas repetidas con un *post hoc* de Bonferroni, comparando los resultados obtenidos entre los grupos controles negativo y positivo (animales tratados con solución salina y morfina) contra los grupos de los animales tratados con las fracciones del veneno o el péptido recombinante, plegado y no plegado, a diferentes dosis.

Para el análisis de los resultados de la evaluación de actividad analgésica por el método de *Hot plate*, se construyó un curso temporal de respuesta antinociceptiva de igual manera que el análisis anterior. La antinocicepción se cuantificó como el tiempo de latencia del signo doloroso o el porcentaje del efecto máximo posible (*% EMP*) en cada tiempo de medición después de la inyección de morfina, agua o el péptido recombinante Ctx-4 plegado, aplicando la ecuación 2. Se realizó un análisis de varianza (ANOVA) de medidas repetidas con un *post hoc* de Bonferroni, comparando los resultados obtenidos entre los grupos de los animales tratados con los controles con los grupos de los animales tratados

con el péptido recombinante plegado, a diferentes dosis, para verificar si la diferencia entre las respuestas de los grupos fue estadísticamente significativa.

Para el análisis de los resultados de la evaluación de actividad analgésica por el método de Siegmund se halló la media de los estiramientos de cada grupo de tratamiento más o menos el error estándar. Para comprobar si la diferencia entre los valores promedio de los grupos fue significativa, se realizó el análisis de varianza (ANOVA de una vía con un *post hoc* de Bonferroni, comparando los resultados obtenidos del grupo de animales tratados con morfina con los grupos e animales a los cuales se administró el péptido recombinante, a varias dosis). La actividad analgésica se expresó en Porcentaje de Protección (% *P*) respecto al grupo control según la ecuación 3:

$$%P = \frac{(GCN^{\circ}estiram. - GTN^{\circ}estiram.)}{GCN^{\circ}estiram} \times 100$$
 Ecuación 3

Donde GC representa el grupo control y GT el grupo tratado con la sustancia de ensayo.

Los análisis estadísticos se realizaron con el paquete GraphPad Prism v 6.0.
5. RESULTADOS

5.1. Colecta y ordeño de arañas de P. boliviensis

Las colectas nocturnas permitieron la captura de 15 especímenes de *P. boliviensis* que fueron identificados por la Bióloga Alejandra Arroyave, del Serpentario de la Universidad de Antioquia. Las arañas se ingresaron a la colección COLVIOFAR-149 de arácnidos del Serpentario del Programa de Ofidismo / Escorpionismo, donde se realizó la extracción mensual del veneno mediante electroestimulación (45 voltios (V)) sobre los quelíceros. Cada araña produjo entre 8 y 15 µL de veneno, que contenía aproximadamente 87 % de agua. Este veneno se reunió en un vial que, se secó por liofilización y se reservó para los diferentes experimentos. Se obtuvieron 15,4 mg de peso seco de veneno.

5.2. Fraccionamiento del veneno por Sep-Pack y cuantificación por espectrofotometría

El fraccionamiento del veneno se realizó en un cartucho Sep-Pack C18 y se obtuvieron cinco fracciones: eluato del veneno, 0, 30, 50 y 100 % de ACN. Una vez liofilizadas se resuspendieron en agua para su cuantificación por espectrofotometría (λ_{280nm}). Las fracciones que presentaron mayor concentración de proteína fueron las correspondientes al eluato del veneno, 0 % y 30 % de ACN (Tabla 5). Las fracciones obtenidas a partir de esta separación se emplearon para identificar la fracción del veneno con posible actividad analgésica.

Fracción	ACN (%)	Concentración de proteína (mg/mL)
Eluato del veneno	0	0,685
1	0	0,909
2	30	0,794
3	50	0,297
4	100	0,008

Tabla 5. Cuantificación de proteínas por espectrofotometría (λ_{280nm}) de las fracciones obtenidas mediante separación del veneno de *P. boliviensis* por un cartucho *Sep-Pack*

5.3. Fraccionamiento del veneno por RP-HPLC

El fraccionamiento del veneno completo de *P. boliviensis* por RP-HPLC, usando un gradiente linear de acetonitrilo de 0 a 60 % durante 60 minutos con un flujo de 1 mL/min (gradiente 1), mostró un cromatograma con 15 fracciones bien definidas con intensidad superior a 250 mAU, y 27 fracciones de menor intensidad (Figura 4). Aquellas fracciones que mostraron mejor definición e intensidad, fueron empleadas para la caracterización enzimática del veneno.

Las muestras obtenidas del fraccionamiento con Sep-Pack, se repurificaron por RP-HPLC con el gradiente 2 (Figura 5) (Anexo V). En este perfil se definen mejor algunas fracciones; sin embargo, algunas de ellas eluyen sobrelapadas. Las fracciones recolectadas bajo este gradiente se reunieron en base al porcentaje de acetonitrilo de su elución, se secaron, y fueron empleadas para los ensayos de actividad analgésica por el método *Tail-Flick*.

Figura 4. Perfil cromatográfico del veneno de *P. boliviensis* por RP-HPLC, usando una columna análitica C18 (250 x 4,6 mm), con un gradiente de elución de 0 hasta 60 % de ACN con TFA 0,1 %, durante 60 minutos, con un flujo de 1 mL/min (gradiente 1). La corrida fue monitorizada a 230 nm. Los porcentajes sobre cada fracción corresponden al gradiente de ACN de elución.

Figura 5. Perfil cromatográfico del veneno de *P. boliviensis* por RP-HPLC, usando una columna analítica C18 (250 x 4,6 mm), con el gradiente 2, durante 130 minutos con un flujo de 1 mL/min. La corrida fue monitorizada a 215 nm. Las llaves verdes indican la correspondencia de las fracciones obtenidas en el cartucho Sep-Pack con las fracciones del veneno completo de *P. boliviensis* bajo este gradiente.

5.4. Perfil electroforético de veneno de P. boliviensis

El perfil electroforético del veneno de *P. boliviensis* en geles de SDS-PAGE al 4/15 % revela la existencia de proteínas de media y baja masa molecular. Se pueden observar

bandas entre 5 y 75 kDa, con una gran densidad de proteínas entre 5 y 15 kDa. En este gel no se ve una diferencia en las bandas de la muestra de veneno con y sin tratamiento térmico; el calentamiento favorece la desnaturalización de las proteínas para que el SDS confiera al polipéptido carga negativa neta, y lo mantenga desplegado. Una diferencia en el número y posición de las bandas en el gel podría indicar una desnaturalización incompleta y la presencia de dímeros en la muestra del veneno completo de *P. boliviensis* (Figura 6).

Figura 6. SDS-PAGE a 4/15 % del veneno completo de *P. boliviensis*, **1.** Veneno completo con tratamiento térmico, **2.** Marcador de peso molecular, **3.** Veneno completo sin tratamiento térmico.

5.5. Análisis de masas moleculares

Con base en el perfil cromatográfico del veneno de *P. boliviensis* bajo el gradiente 1 (Figura 4), las fracciones colectadas de mayor intensidad fueron enviadas para análisis de masas moleculares teniendo en cuenta la concentración de proteína y la intensidad registrada por el equipo. Se obtuvieron un total de 14 especies moleculares en las fracciones seleccionadas con masas comprendidas en un rango desde 3.536,58 hasta 8.713,45 Da (Tabla 6).

Porcentaje de ACN	Masa molecular (Da)
33,2	8713,45
35,6	4585,23
37,0	6532,26
37,5	4471,42
38,1	5185,71
	5600,60
40,2	5025,51
	5627,00
41,2	5019,16
42,1	5532,72
42,9	3536,58
	5405,00
43,9	5180,22
45,3	6326,00
46,2	ND
47,2	ND
48,5	ND
49,0	ND
52,6	ND

Tabla 6. Masas moleculares de las fracciones recolectadas del fraccionamiento por RP-HPLC del veneno de *P. boliviensis* (Figura 4), determinada por ESI-MS.

ND: No disponible

NOTA: Las fracciones correspondientes a los gradientes de 46,2, 47,2, 48,5, 49,0 y 52,6 % de ACN también se enviaron a la unidad de masas; sin embargo, por limitaciones del equipo, su masa no pudo ser determinada.

5.6. Caracterización enzimática del veneno de P. boliviensis

5.6.1. Evaluación de actividad fosfolipasa A2 del veneno de P boliviensis

Para evaluar la actividad fosfolipasa A2 se tomaron 5 µg de veneno completo de *P*. *boliviensis* y de diferentes fracciones del veneno, separadas por RP-HPLC (gradiente 1); las fracciones se seleccionaron entre 25 y 40 % de ACN, siendo generalmente el rango de porcentaje en el que eluyen estas enzimas en invertebrados (Schwartz *et al.*, 2008; Usmanov & Nuritova, 1994). Sin embargo, no se evidenció la actividad enzimática en la placa de agarosa con yema de huevo, en la que el control positivo registró un halo de degradación de 18 mm. Se evaluaron cantidades mayores de veneno (53 y 106 µg), que tampoco evidenciaron actividad fosfolipasa A2 (Anexo VI).

5.6.2. Evaluación de actividad proteasa del veneno de P. boliviensis

El veneno completo de *P. boliviensis* mostró actividad de proteasa en el zimograma utilizando como sustrato gelatina, en el que se observan bandas de degradación con pesos aparentes de 24 y 32 kDa (Figura 7, pozo 3). Las bandas con actividad proteasa del veneno completo se cortaron y se enviaron para secuenciación.

Figura 7. Evaluación de la actividad proteasa del veneno de *P. boliviensis* mediante electroforesis en gel de poliacrilamida 12,5 % y gelatina (1,5 mg/ mL). **1.** Marcador de peso molecular (kDa), **2.** Veneno completo de *B. ammodytoides* (5 μg), **3.** Veneno completo de *P. boliviensis* (35 μg). Los círculos negros representan las bandas enviadas a secuenciación.

Las fracciones del veneno completo obtenidas por RP-HPLC (Figura 4) que eluyeron en gradientes más altos de ACN, presentaron actividad proteasa (Figura 8, A y B). La fracción de 46,2 % de ACN (pozo 16), presentó dos halos de degradación de masas moleculares aparentes entre 20 y 30 kDa; y la fracción obtenida en 47,2 % de ACN (pozo 17) presentó dos halos de degradación. Estos halos fueron cortados y enviados a secuenciación.

Figura 8. Evaluación de la actividad proteasa de las fracciones del veneno de *P. boliviensis* mediante electroforesis en gel de poliacrilamida 12,5 % y gelatina (1,5 mg/mL). **1.** Marcador de peso molecular (kDa), **2.** C+: veneno de *B. ammodytoides* (5 μg), **3.** Fracción 33,2 (3 μg), **4.** Fracción 35,6 (3 μg), **5.** Fracción 37,0 (3 μg), **6.** Fracción 37,5 (3 μg), **7.** Fracción 38,1 (3 μg), **8.** Fracción 40,2 (3 μg), **9.** Fracción 41,2 (3 μg), **10.** Fracción 42,1 (3 μg). **11.** Marcador de peso molecular (kDa), **12.** C+: veneno de *B. ammodytoides* (5 μg), **13.** Fracción 42,9 (3 μg), **14.** Fracción 43,9 (3 μg), **15.** Fracción 45,3 (1 μg), **16.** Fracción 46,2 (3 μg), **17.** Fracción 47,2 (3 μg), **18.** Fracción 48,5 (1 μg), **19.** Fracción 49,0 (1 μg), 20. Fracción 52,6 (1 μg). Los círculos negros representan las bandas enviadas a secuenciación.

5.6.3. Evaluación de actividad hialuronidasa del veneno de P. boliviensis

Para determinar la actividad de hialuronidasa en el veneno completo de *P*. *boliviensis*, así como las fracciones que la contienen, se realizó un zimograma, en el cúal se utilizó como sustrato ácido hialurónico; se utilizó como control positivo el veneno de una tarántula mexicana *Brachypelma vagans*, el cual se ha reportado que es altamente específico contra el sustrato ácido hialurónico (Clement *et al.*, 2012). El venneno completo de *P. boliviensis* y sus fracciones, seleccionando las que eluyeron en gradientes de ACN superiores a 45 %, en los que se ha visto eluyen estas enzimas (Delgadillo, 2019; Feng *et al.*, 2008; Sutti, 2011), la degradación que se observa, en bandas con masas moleculares entre a 45 y 70 kDa es baja (Figura 9, pozo 3). Dichas bandas no se aprecian claramente en el veneno completo, pero sí en las fracciones de 47,2 y 52,6 % de ACN (Figura 4). Dichas bandas se cortaron y se enviaron para su secuenciamiento.

Figura 9. Evaluación de actividad hialuronidasa de las fracciones del veneno de *P. boliviensis* mediante electroforesis en gel de poliacrilamida 12.5 % y ácido hialurónico (0,5 mg/mL). **1.** Marcador de peso molecular (kDa), **2.** Veneno completo de *B. vagans* (5 μg), **3.** Veneno completo de *P. boliviensis* (35 μg), **4.** Fracción 46,2 (2 μg), **5.** Fracción 47,2 (2 μg), **6.** Fracción 49,0 (2 μg), **7.** Fracción 52,6 (2 μg). Las flechas negras indican las bandas de actividad hialuronidasa del veneno completo. Los círculos negros representan las bandas enviadas a secuenciación.

5.7. Análisis transcriptómico de la glándula venenosa de P. boliviensis

5.7.1. Extracción de RNA de la glándula venenosa

De la extracción del RNA a partir de las glándulas venenosas de la araña *P*. *boliviensis*, se obtuvieron 5,6 µg de RNA total. El análisis de integridad del RNA por electroforesis capilar mostró una sola fracción ribosomal con un valor de RIN de 8,9 (Figura 10). En los artrópodos ocurre un fenómeno de procesamiento de la subunidad 28S

que hace que el fragmento quede del mismo tamaño que la subunidad 18S (Winnebeck *et al.*, 2010).

Figura 10. Electroferograma del análisis de calidad del RNA total purificado, análisis *RNA integrity number* (RIN).

5.7.2. Secuenciación y ensamble del transcriptoma

Como resultado de la secuenciación, se obtuvieron un total de 33'538.542 parejas de *reads* con un valor mínimo de calidad Q30 en el análisis (QC < 30 Phred) (Tabla 7) (Anexo VII) y estas a su vez se ensamblaron en 86.424 transcritos con una N50 (mediana de la longitud de los transcritos) de 1.334 bases. De los ensambles obtenidos se anotaron sistemáticamente un total de 1.006 transcritos, utilizando la identidad de los ensambles del transcriptoma con la base de datos *Animal Toxin Annotation Project*.

Debido a la gran diversidad de anotaciones de las secuencias del transcriptoma, se decidió utilizar como primer parámetro de distribución de funciones la clasificación de PFAM (familia de proteínas); esta clasificación permite encontrar dominios comunes, regiones funcionales, de los que se componen las proteínas, y su identificación puede proveer direccionamiento hacia la función de la proteína.

Tabla 7. Resultados	generales d	el ensamble.
---------------------	-------------	--------------

Total de bases ensambladas	66'204.457 bp
Parejas de <i>reads</i> de buena calidad (Q<30)	33'538.542 bp
Total de <i>contigs</i> (transcritos) ensamblados	86.424
Longitud media de los contigs	766 bp
N50 de los <i>contigs</i>	1.334 bp
Número de Ns (bases ambiguas)	0

5.7.3. Nomenclatura de los transcritos funcionales

Actualmente no existe una nomenclatura estándar para nombrar los transcritos identificados por RNAseq que son anotados como proteínas de veneno; con frecuencia se conserva el identificador que genera el ensamblador, lo que dificulta la clasificación de las secuencias y puede generar confusión.

En este proyecto de tesis se propone una forma estándar para identificar los transcritos que resulta intuitiva para el lector, esta nomenclatura se compone de los siguientes elementos: los tres primeros caracteres corresponden a la especie descrita. Los siguientes tres caracteres definen la familia que codifica para el péptido/proteína con respecto a su función putativa, seguido de otros tres caracteres relacionados con la sub-familia (cuando se presenta el caso). Los últimos caracteres asignan el número de transcrito (Tabla 8). Aquellos transcritos que no se relacionaron como componentes del veneno permanecieron con el identificador otorgado por *Trinity*.

Código de especie	Significado	Código de familia	Significado	Código de subfamilia	Significado	Ejemplo
Phb	Phoneutria			SeP	Serin proteasa	PhbEnzSeP01
	boliviensis			Cho	Colinesterasa	PhbEnzCho01
				MtP	Metaloproteasa	PhbEnzMtP01
				Нуа	Hialuronidasa	PhbEnzHya01
				Ces	Carboxilesterasas	PhbEnzCes01
				Hyd	Hidrolasa	PhbEnzHyd01
				Схр	Carboxipeptidasa	PhbEnzCxp01
				Kin	Kinasa	PhbEnzKin01
		P		Pho	Fosfatasa	PhbEnzPho01
		Enz	Enzima	PA2	Fosfolipasa A2	PhbEnzPA201
				OxR	Oxidorreductasas	PhbEnzOxR01
				Tra	Transferasas	PhbEnzTra01
				GlS	Glutamato sintasas	PhbEnzGlS01
				Phd	Fosfodiesterasa	PhbEnzPhd01
				Lig	Ligasa	PhbEnzLig01
				PLB	Fosfolipasa B	PhbEnzPLB01
			End	Endonucleasa	PhbEnzEnd01	
			Lip	Lipasa	PhbEnzLip01	
			Neurotoxina	Nav	Toxina de sodio	PhbNtxNav01
		NT.		Cav	Toxina de calcio	PhbNtxCav01
		INTX		Atx	Atracotoxina	PhbNtxAtx01
				NSp	No especificada	PhbNtxNSp01
				SeP	Inh. serin proteasa	PhbPInSeP01
		ם זמ	Tabibidan da mutana	Рер	Inh. peptidasa	PhbPInPep01
		PIN	innibidor de proteasa	СуР	Inh. Cistein proteasa	PhbPInCyP01
				MtP	Inh. Metaloproteasa	PhbInMtP01
				Cys	Rico en cisteína	PhbGrFCys01
		GrF	Factor de crecimiento	PDG	Derivado de plaquetas	PhbGrFPDG01
				Ins	Tipo insulina	PhbGrFIns01
				NeR	Relacionado a nervio	PhbGrFNeR01
		Fib	Tipo Fibrinogeno	Tec	Tequilectina	PhbFibTec01
		TCT	Proteínas tumorales controladas traduccionalmente			PhbTCT01

Tabla 8. Nomenclatura empleada para los transcritos identificados en el transcriptoma de*P. boliviensis*

	CRI	CRISP			PhbCRI01
Oth Otros componente veneno			vWC	Factor von Willebrand tipo C	PhbOthvWC01
	Otros componentes del	Def	Defensina	PhbOthDef01	
	Oth	veneno	AMB	Antimicrobiano	PhbOthAMB01
			HDH	Tipo hormona DH31	PhbOthHDH01
	Und	Indefinido	PhbOthUnd01		

5.7.4. Análisis del transcriptoma

Durante el proceso de anotación se hizo una búsqueda de transcritos con identidad a componentes de veneno. Se identificaron 682 transcritos codificantes para componentes integrales del veneno, de los cuales 239 (35,0 %), están relacionados con enzimas como serin proteasas, fosfolipasas, metaloproteasas, hialuronidasas, entre otras; 156 de las secuencias (22,9 %) tiene identidad con neurotoxinas que afectan canales de sodio y de calcio dependientes de voltaje; 83 de los transcritos (12,2 %) tiene identidad con inhibidores de diferentes tipos de enzimas, principalmente de serin proteasas; 78 secuencias (11,4 %) se anotaron como péptidos tipo fibrinógeno; 48 secuencias (7,0 %) están relacionados con factores de crecimiento; 36 de las secuencias (5,3 %) que componen el veneno se anotaron como CRISP (miembros de la superfamilia CAP); 17 de los transcritos (2,5 %) tienen identidad con proteínas tumorales controladas por traducción (TCTP – por sus siglas en inglés); y por último, se anotaron 25 transcritos (3,7 %) como otros componentes de veneno (Figura 11).

Figura 11. Diversidad relativa de transcritos anotados con identidad de proteínas de veneno.

5.7.4.1. Componentes del veneno identificados en el transcriptoma de las glándulas venenosas de la araña *P. boliviensis*

5.7.4.1.1. Enzimas

Se encontraron 239 transcritos relacionados con enzimas (Enz), constituyendo la categoría más abundante en el transcriptoma, incluyendo 18 tipos de enzimas diferentes. De estos, los más abundantes fueron los de serin proteasas, metaloproteasas y colinesterasas. Además, se encontraron otras secuencias, en menor cantidad, usualmente reportadas en venenos de animales venenosos como hialuronidasas, fosfolipasas A2 y B (Tabla 9).

Enzima	Número de secuencias codificantes	Abundancia en la clase (%)	Abundancia en el transcriptoma (%)
Serin proteasas	89	37,2	13,1
Colinesterasas	46	19,3	6,7
Metaloproteasas	35	14,6	5,1
Hialuronidasas	11	4,6	1,6
Carboxilesterasas	9	3,8	1,3
Hidrolasas	8	3,4	1,8
Carboxipeptidasas	6	2,5	0,9
Fosfolipasas A2	5	2,1	0,7
Kinasas	5	2,1	0,7
Fosfatasas	5	2,1	0,7
Oxidorreductasas	5	2,1	0,7
Transferasas	5	2,1	0,7
Glutamato sintasas	4	1,7	0,6
Fosfodiesterasas	2	0,8	0,3
Fosfolipasas B	1	0,4	0,2
Endonucleasas	1	0,4	0,2
Ligasas	1	0,4	0,2
Lipasas	1	0,4	0.2

Tabla 9. Abundancia de enzimas en el veneno de *P. boliviensis* a partir del análisis transcriptómico de las glándulas venenosas.

5.7.4.1.2. Neurotoxinas

En el transcriptoma de *P. boliviensis* se identificaron 156 secuencias que tienen identidad con neurotoxinas (Ntx). En esta categoría se encontraron toxinas que alteran canales de calcio, con 49 secuencias codificantes; toxinas que alteran canales de sodio dependientes de voltaje, para las que se codifican 26 transcritos; y 6 secuencias codificantes para la familia de atracotoxinas tipo-MIT, con identidad hacia la Atracotoxina-Hvf17, un péptido no tóxico aislado del veneno de la araña de tela en embudo de Blue Mountains, *Hadronyche versuta*, y que no funciona como las atracotoxinas clásicas para modular la función del canal iónico dependiente del voltaje de mamíferos o insectos, ya que carece de actividad insecticida y no afecta la contractilidad del músculo liso del conducto deferente o

del músculo esquelético. Por otra parte, 75 de los transcritos pertenecen a secuencias anotadas como neurotoxinas que aún no cuentan con la identificación de su diana molecular.

5.7.4.1.3. Péptidos tipo fibrinógeno

De los transcritos obtenidos de la glándula venenosa de *P. boliviensis*, 78 de ellos tienen identidad con péptidos tipo fibrinógeno, que codifican para tequilectinas (FibTec), y se ha sugerido su relación con la agregación plaquetaria y/o coagulación (OmPraba et al., 2010; Utkin, 2017).

5.7.4.1.4. Inhibidores de proteasas

En esta categoría se encontraron 80 secuencias codificantes para inhibidores de proteasas (PIn). En su gran mayoría son inhibidores de serin proteasas, anotándose 71 secuencias codificantes. En menor proporción se encontraron secuencias codificantes para otros inhibidores: ocho secuencias para inhibidores de peptidasas, tres para inhibidores de cistein proteasas y una secuencia codificante para inhibidores de metaloproteasas.

5.7.4.1.5. Factores de crecimiento

En el transcriptoma de *P. boliviensis* se identificaron 48 secuencias codificantes para factores de crecimiento (GrF). Entre estas se encontraron 31 secuencias anotadas como receptor rico en cisteína relacionado con factor de crecimiento epidérmico; 10 secuencias codificantes para factor de crecimiento tipo insulina, cinco secuencias codificantes relacionadas con factor de crecimiento derivado de plaquetas (PDGF – por sus siglas en inglés) y dos como factor de crecimiento nervioso.

5.7.4.1.6. CRISP

En la categoría de Proteínas Secretoras Ricas en Cisteínas (CRISP – por sus siglas en inglés) se hallaron 36 transcritos codificantes. En su gran mayoría son alérgenos del veneno.

5.7.4.1.7. Proteínas tumorales controladas por traducción

En el transcriptoma de *P. boliviensis* se identificaron 17 transcritos anotados como proteínas tumorales controladas traduccionalmente (TCTP, por sus siglas en inglés).

5.7.4.1.8. Otros componentes del veneno

Este grupo incluye transcritos anotados como péptidos de veneno, pero la función o la diana molecular no se ha demostrado experimentalmente o su representación en el transcriptoma es muy baja. En total se encontraron 25 transcritos codificantes; 6 de ellos tienen el dominio del factor von Willebarnd tipo C. Dentro del grupo de los péptidos de defensa del huésped se anotaron dos de los transcritos codificantes como defensinas y uno como antimicrobiano. También se identificó una secuencia codificante para un péptido tipo hormona DH31.

Los transcritos que no tienen un dominio asociado que corresponda a alguna familia de proteínas u otra información de actividad o diana molecular se anotaron como componentes de veneno sin función conocida. En el caso del transcriptoma de *P boliviensis*, se identificaron 15 secuencias con estas características que se agruparon en la categoría "desconocida" (Und).

5.7.5. Cuantificación del transcriptoma de P. boliviensis

Conocer la diversidad de componentes de interés en un transcriptoma es un paso esencial en la caracterización del RNA-Seq. La cuantificación del transcriptoma permite estimar la abundancia relativa de los transcritos para comprender mejor la biología del animal estudiado. Ya que no se tiene un genoma de referencia para mapear y cuantificar los *reads*, se pueden saber los niveles de expresión de los transcritos, no de los genes.

Los 10 transcritos relacionados con veneno que tienen los niveles de expresión más altos representados en función del valor de los transcritos por millón (TPM) son

principalmente pertenecientes a la familia de las neurotoxinas que alteran canales dependientes de voltaje tanto de sodio como de calcio; además, se encuentran transcritos para CRISP, péptidos tipo fibrinógeno y serin proteasas (Tabla 10) (Anexo VIII).

ID	Posición en el transcriptoma	Longitud	Longitud efectiva	ТРМ	Número de reads
PhbNtxNav14	1	597	419,443	62338,7	845088
PhbNtxCav18	2	572	394,481	38429,9	489966
PhbNtxNav22	3	562	384,496	32939,7	409339
PhbNtxCav25	4	721	543,373	31258,3	548952
PhbCRI20	5	2702	2524,32	29072,8	2371930
PhbFibTec39	7	671	493,388	23227,8	370397
PhbNtxCav19	8	516	338,614	20647,0	225961
PhbNtxNav12	9	586	408,454	20268,8	267574
PhbEnzSeP15	11	1113	935,318	16175,8	488984
PhbNtxNav15	12	572	394,481	15756,6	200891

Tabla 10. Resumen de los 10 transcritos con mayor nivel de expresión.

Posición en el transcriptoma: designado de acuerdo con el lugar del transcrito definido por el valor de TPM; **ID:** identificador asignado de acuerdo a la anotación; **TPM:** valor de transcritos por millón determinado por el algoritmo de Salmon.

De acuerdo a la cuantificación del transcriptoma, estos niveles promedio de las familias son concordantes con los 10 transcritos con mayores niveles de expresión (Figura 12).

Figura 12. Distribución de las abundancias relativas de las familias identificadas como componentes de veneno. Las etiquetas corresponden a los niveles de expresión promedio de cada familia.

Las neurotoxinas, tanto las que alteran canales de sodio como de calcio, son las que tienen mayores niveles de expresión de los transcritos relacionados con el veneno (5.376,60 y 2.097,58 TPM, respectivamente); seguidas por las CRISP (1.065,36 TPM) y las neurotoxinas cuyas dianas aún no han sido identificadas (788,83 TPM). Entre otros transcritos cuya expresión es alta se encuentran otros componentes del veneno con función aún indeterminada (597,40 TPM), carboxilesterasas (529,43TPM), el transcrito codificante para la hormona DH-31 (428,94 TPM) y las tequilectinas (348,11 TPM). Por otra parte, la mayoría de las enzimas no tienen altos niveles de expresión, se destacan las serin proteasas (229,62 TPM), hialuronidasas (133,51 TPM), fosfodiesterasas (85,32 TPM), cholinesterasas (28,77 TPM) y carboxipeptidasas (19,10 TPM), pero sus niveles promedio no alcanzan a ser tan altos como los encontrados para las neurotoxinas. Seguidamente, se encuentran los inhibidores de serin proteasas (35,51 TPM), transcritos que codifican para péptidos de defensa del hospedero, como antimicrobianos (271 TPM) y defensinas (21,15 TPM). Los transcritos codificantes para fosfolipasas A2 (12,30 TPM) y B (13,80 TPM), metaloproteasas (3,68 TPM), atracotoxinas (2,91 TPM) e inhibidores de peptidasas (4,96 TPM) y metaloproteasas (8,23 TPM) se encuentran entre los niveles de expresión de transcritos de componentes del veneno bajos (Figura 13).

Figura 13. Distribución de las abundancias relativas de los transcritos identificados como componentes de veneno.

5.8. Diseño, expresión y purificación de un péptido recombinante con posible actividad analgésica

Para diseñar el gen recombinante, se emplearon unas secuencias peptídicas como modelo de partida y obtenidas a partir de venenos de otros animales, las cuales fueron reportadas con alguna actividad analgésica (Tabla 11). Posteriormente, se hizo un alineamiento entre dichas secuencias y el transcriptoma de *P. boliviensis*, empleando la herramienta tblastn.

Tabla 11. Secuencias reportadas de péptidos con actividad analgésica obtenidos a partir de venenos de animales

Familia	Especie	Péptido	Secuencia	Referencia
Ctenidae	Phoneutria	Ρhα1β	ACIPRGEICTDDCECCGCDNQCYCPPGSSLG IFKCSCAHANKYFCNRKKEKCKA	de Souza <i>et</i> <i>al.</i> , 2008
	nıgrıventer	δ-CNTX-Pn1a	CGDINAACKEDCDCCGYTTACDCYWSKSC KCREAAIVIYTAPKKKLTC	Richardson et al., 2006a.
		GsAF I	YCQKWTCDSERKCCEDMVCRLWCKKRL	Lampe, 1999
	Grammostola	GsAF II	YCQKWMWTCDEERKCCEGLVCRLWCKK KIEW	Lampe, 1999
Thereacheridae	rosea	ω-GsTx SIA	DCVRFWGKCSQTSDCCPHLACKSKWPRNI CVWDGSV	Takeuchi <i>et</i> al., 2002
Theraphosidae Chilobrachys guangxiensis Thrixopelma pruriens Phlogius	Chilobrachys guangxiensis	µ-theraphotoxin- Cj1a	ACREWLGGCSKDADCCAHLECRKKWPYH CVWDWTV	Chow <i>et al.</i> , 2015
	Thrixopelma pruriens	β/ω-TRTX-Tp1a	ECRYWLGGCSAGQTCCKHLVSRRHGWCV WDGTFS	Chow <i>et al.</i> , 2015
	Phlogius	Phlo2a	SCQKWMWLCDEERKCCEDMVCKLWCK	Chow <i>et al.,</i> 2015
Buthidae	Buthus martensii	BmK AGAP- SYPU2	VKDGYIVDDKNCAYFCGRNAYCDDECEKN GAESGYCQWAGVYGNACWCYKLPDKVPI RVPGRCNG	Shao <i>et al.</i> , 2014
		BmK NT1	VRDGYIADDKNCAYFCGRNAYCDDECKK NGAESGYCQWAGVYGNACWCYKLPDKVP IRVPGKCNG	Zou <i>et al.,</i> 2016
Viperidae	Crotalus durissus terrificus	Crotalfina <efspencqgesqpc 2<="" td=""><td>Konno <i>et al.</i>, 2008</td></efspencqgesqpc>		Konno <i>et al.</i> , 2008
Scolopendridae	Scolopendra subspinipes mutilans	µ-SLPTX-Ssm6a	ADNKCNSLRREIACGQCRDKVKTDGYFYE CCTSDSTFKKCQDLLH	Yang <i>et al.</i> , 2013
	Conus geographus	Contulakin-G	<eseeggsnatkkpyil< td=""><td>Craig <i>et al.,</i> 1999</td></eseeggsnatkkpyil<>	Craig <i>et al.,</i> 1999
Conidae	Conus magus	gus Conotoxin-MVIIA CKGKGAKCSRLMYDCCTGSCRSGKC		Miljanich, 2004
	Conus regularis	RsXXIVA	CKGQSCSSCSTKEFCLSKGSRLMYDCCTGS CCGVKTAGVT	Bernáldez <i>et</i> al., 2013

Se consideró como el mejor alineamiento obtenido por tblastn, aquel que tuviera un menor *e-value*, indicando una coincidencia más "significativa" (Tabla 12).

Familia	Especie	Péptido	No.	Rango del e-	Identificador de la	Identidad	e-value
			Hits	value	secuencia	(%)	
Custles	Phoneutria	Ρhα1β	14	4,16 ⁻¹² – 9,3	PhbNtxCav43	69,8	4,2-12
Ctenidae	nigriventer	δ-CNTX-Pn1a	21	4,8 1 ⁻¹⁷ – 4, 7	PhbNtxNav24	60,9	4,8 ⁻¹⁷
		GsAF I	7	5,7 – 9,2	DN39911_c0_g1_i1**	41,7	5,7
	Grammostola rosea	GsAF II	4	1,6-4,3	DN17096_c0_g2_i1**	53,3	1,6
		ω-GsTx SIA	5	1,1-9,9	DN11741_c0_g2_i1**	50,0	1,1
Theraphosidae	Chilobrachys guangxiensis	µ-theraphotoxin- Cj1a	4	1,2-4,7	PhbNtxCav02	52,2	1,2
	Thrixopelma pruriens	β/ω-TRTX-Tp1a	5	3,7 – 9,4	DN16498_c0_g2_i1**	38,5	3,7
	Phlogius	Phlo2a	0	-	-	-	-
Buthidae Buthus martensii	Buthus	BmK AGAP- SYPU2	1	-	DN44992_c0_g1_i1**	31,3	7,7
	BmK NT1	1	-	DN10585_c0_g1_i1**	66,7	9,9	
Viperidae	Crotalus durissus terrificus	Crotalfina	2	1,1	PhbPInSeP51	69,2	1,1
Scolopendridae	Scolopendra subspinipes mutilans	µ-SLPTX- Ssm6a	5	5,6 – 9,2	DN21405_c0_g5_i2**	37,5	5,6
	Conus geographus	Contulakin-G	0	-	-	-	-
Conidae	Conus magus	Conotoxin- MVIIA	2	8,9 - 9,9	DN65173_c0_g1_i1**	47,4	8,9
	Conus regularis	RsXXIVA	0	-	-	-	-

Tabla 12. Resultados del alineamiento entre las secuencias peptídicas obtenidas a partir de venenos de animales con actividad analgésica y las del transcriptoma^{*}.

* Se seleccionó para cada péptido, la secuencia del transcriptoma con menor *e-value* y mayor porcentaje de identidad del resultado del alineamiento.

** Las secuencias de estos transcritos no representan componentes del veneno de *P. boliviensis*, por tanto, se reportan con el identificador otorgado por Trinity.

Los transcritos con mayor porcentaje de identidad fueron los dos péptidos de *P*. *nigriventer*, y se realizó una comparación entre las secuencias de estos dos transcritos, teniendo en cuenta el número de aminoácidos totales, de cisteínas, su identidad y el *e-value*, de manera que se lograra seleccionar el péptido a expresar de manera recombinante. Para

esto se realizó la traducción de los transcritos, en los seis marcos de lectura, y se predijo para cada uno el péptido señal con SignalP, mientras que para el pro-péptido y la toxina madura se utilizó la herramienta SpiderP de ArachnoServer (disponible en *http://www.arachnoserver.org/spiderP.html*) (Tabla 13).

		Identificador de la secuencia			
		PhbNtxCav43	PhbNtxNav24		
Péptido señal	Secuencia	ND	MKVAIFFILSLFVLAVAS		
	No. AA	_	18		
Propéptido	Secuencia	FVHIFVVEAEEEAEFDALVPQER	ESIEEKREEFPVEESAR		
	No. AA	23	17		
Toxina Secuencia madura		ACIRTGQICKDDCDCCDCEDECY CPPGSSLGFFKCSCALGGKYFCS HKKQKCKKA	GKCGDINAPCQSDCDCCGYSV TCDCYWSKDCKCRESNFAAG MALRKAFCKNKI		
	No. AA	55	53		
	No. Cys	12	10		
Péptido de ref	erencia	Phα1β δ-CNTX-Pn1a			
e-value		9 ⁻¹⁹	9 ⁻²¹		
Identidad		69,8 %	60,9 %		

Tabla 13. Comparación de secuencias traducidas a partir de los transcritos.

AA: número de residuos de aminoácidos. Cys: número de cisteínas. ND: No determinado

Teniendo en cuenta esta comparación, para la expresión recombinante se seleccionó el péptido δ -CNTX-Pn1a, utilizando como criterios el e-value y el menor número de cisteínas, aunque tuviera un menor porcentaje de identidad. A partir de esta secuencia, δ -CNTX-Pn1a, se seleccionó el transcrito PhbNtxNav24, con una identidad 60,9 % y que de ahora en adelante se conocerá como Ctx,. y al que se le realizó la traducción reversa *in silico*; posteriormente se diseñaron los oligonucleótidos para su ensamble, los que después de diferentes procesos de biología molecular permitieron obtener el gen codificante de Ctx.

5.8.1. Amplificación del gen y clonación en el vector de expresión pQE30

El ensamble del gen Ctx (203 pb) se realizó por la técnica de *megaprimers*. El inserto de Ctx se clonó en el vector pQE30 y se transformo en células de *E. coli* de la cepa XL1Blue, de las cuales crecieron siete colonias. Al ser evaluadas por PCR de colonia, todas mostraron una amplificación del tamaño esperado. Las colonias que resultaron positivas se crecieron en medio líquido 2xYT-ampicilina 200µg/mL, a una temperatura de 37 °C toda la noche. Posteriormente, se centrifugó el medio y el botón celular se analizó por SDS-PAGE, en el cual se pudo verificar la presencia del péptido recombinante, identificando que en todas las colonias se expresa una proteína con el tamaño esperado (~ 8 kDa). Sin embargo, las colonias 4 y 5 son las que mostraron tener mayor expresión aparente del péptido, por lo que se sometieron a purificación del plásmido por lisis alcalina para posteriormente enviarlas a secuenciación. El plásmido con secuencia la correcta se denominó pQE30-Ctx-4.

A continuación, se muestra la secuencia del péptido recombinante esperado, indicando la serie aminoácidos incorporados por el vector (subrayado) que incluye 6 histidinas y la secuencia del sitio de reconocimiento para *Bam*HI (subrayado y en negrilla) y la secuencia de reconocimiento para la proteasa *Tobacco Etch Virus* (TEV) (negrilla):

<u>MRGSHHHHHHGS</u>ENLYFQGKCGDINAPCQSDCDCCGYSVTCDCYWSKDCKCRESNF AAGMALRKAFCKNKI

5.8.2. Transformación y expresión del péptido recombinante Ctx-4 en células M15 y Origami

Para expresar el péptido Ctx-4, el plásmido con la construcción pQE30-Ctx-4 se trasformo en células *E. coli* en las cepas Origami y M15. Estas células transformadas crecieron en medio líquido 2xYT-Ampicilina (200 µg/mL) (apartado 4.2.10.3); y al alcanzar la OD₆₀₀ deseada, se indujo la expresión del péptido adicionando IPTG (0,1 mM). Para analizar la expresión se realizó una electroforesis colocando muestras antes y después de la inducción, en la que se evidenció que la cepa más conveniente para seguir con la expresión fue la de Origami, ya que tuvo mejores rendimientos aparentes. Sin embargo, en ambas cepas se observó la expresión de una proteína con el tamaño esperado (masa teórica reducida 8006,03 Da).

Posteriormente, se llevó a cabo una nueva expresión del péptido en células *E. coli* Origami. Después de los procesos de inducción de la expresión, las células obtenidas y resuspendidas en Tris-HCl 50 mM, pH8, se lisaron por sonicación para la obtención de las fracciones soluble e insoluble. La electroforesis reveló la presencia de una proteína del tamaño aparente esperado, presente tanto en células inducidas como en la fracción insoluble.

La fracción insoluble fue purificada por cromatografía de afinidad a níquel. Las fracciones que presentaron la proteína de interés, de acuerdo a la evaluación por SDS-PAGE, fueron reunidas para su plegamiento; una alícuota fue re-purificada por RP-HPLC para determinar la masa molecular de la fracción obtenida no reducida, la cual fue enviada a la unidad de masas que fue de 7.995,73 kDa (Figura 14, 15 y 16).

Figura 14. SDS-PAGE a 4/15 % de purificación en resina de níquel de la expresión de Ctx-4/Origami. **1.** Marcador de peso molecular. **2.** Inducción **3.** Fracción soluble. **4.** fracción insoluble. **5.** Recirculante. **6.** Lavado 1. **7.** Lavado 2. **8-14.** Eluciones 400 mM Imidazol. **15.** Elución 1M Imidazol.

Figura 15. Purificación por RP-HPLC del péptido Ctx-4 recombinante crudo, usando una columna C18 (250 x 4,6 mm), con un gradiente de elución de 0 % hasta 60 % de acetonitrilo (99 %) con adición de ácido trifluoroacético en concentración final de 0,1 %, durante 40 minutos con un flujo de 1 mL/min. La corrida fue monitorizada a 230 nm.

Figura 16. Espectro de masas del péptido recombinante Ctx-4 crudo. Masa experimental no reducida: 7.995,73 Da.

5.8.3. Plegamiento del péptido recombinante Ctx-4

Después del protocolo de plegamiento, se purificó la reacción por RP-HPLC (gradiente 1). Se obtuvieron 3 fracciones del péptido recombinante, que eluyeron a 36,5, 38,7 y 39,5 % de ACN (Figura 17). Las masas moleculares se determinaron para cada fracción como 7.998,35, 7.994,61 y 7.994,20 Da, respectivamente. Cada una de estas fracciones fue colectada, secada y almacenada hasta su uso en los ensayos de toxicidad.

Figura 17. Purificación por RP-HPLC del péptido Ctx-4 recombinante plegado, usando una columna C18 (250 x 4,6 mm), con un gradiente de elución de 0 % hasta 60 % de acetonitrilo (99 %) con adición de ácido trifluoroacético en concentración final de 0,1 %, durante 60 minutos con un flujo de 1 mL/min. La corrida fue monitorizada a 230 nm. Los números dispuestos en la parte superior de cada pico representan el porcentaje de ACN de su elución.

5.9. Validación del transcriptoma

5.9.1. Búsqueda de las enzimas secuenciadas en el transcriptoma

5.9.1.1. Secuencias obtenidas del zimograma de gelatina

Del zimograma de actividad proteasa del veneno completo de *P. boliviensis* (Figura 7) se cortaron dos bandas con pesos moleculares aproximados a 23 kDa y 30 kDa. Para la banda de ~ 23 kDa se obtuvo un fragmento secuenciado y que tiene identidad con el péptido parcial *keratin, type II cytoskeletal 6A-like, partial* de *Parasteatoda tepidariorum* (NCBI: XP_015915717.1; UniParc: UPI00077F9947), mientras que para la banda de ~ 30 kDa los fragmentos secuenciados fueron 8, que presentan identidad con un precursor de proteasa de *P. fera, putative PQM protease precursor* (UniProtKB: A0A2I5YNW5) (Tabla 14).

Banda de proteasa	Fragmentos secuenciados
Proteasa de ~23 kDa	LALDVEIATYR
	1. DACQFDSGGPLFQYDKK
	2. DGFANDIALIK
	3. DYEVYAGLYSITK
Drotogog de 20 hDa	4. EVTLPLVPWQK
Proleasa de ~30 kDa	5. GVATLIGTVANGADCAYAHYPGMYMK
	6. GYVNGICFPSGATDPSGEATVIGWGMIR
	7. QIYGHPDSEFEYIQVVPSMLCAGGNGK
	8. YVKDGFANDIALIK

Tabla 14. Fragmentos secuenciados de las bandas del zimograma de actividad proteasa del veneno completo de *P. boliviensis* (Figura 7).

A los fragmentos obtenidos para cada banda se les buscó identidad con el transcriptoma; sin embargo, solo se encontró homología para las secuencias 1, 5, 6 y 7 de la banda de ~ 30 kDa. Estas secuencias tuvieron 100,00 % de identidad con el transcrito PhbEnzSeP15, con *e-value* reportados entre 1,96e-13 y 7,05e-07. Posteriormente, se realizó el alineamiento entre dichas secuencias y el transcrito PhbEnzSeP15 (Figura 18), donde se puede ver que los ocho fragmentos secuenciados tienen un alineamiento entre 92,31 y 100 % con el transcrito, excepto por un solo aminoácido, lisina (K) en el transcrito y ácido glutámico (E) en el producto de secuenciación. De manera esta puede concluirse que se ha obtenido una secuencia tipo proteasa, y que puede demostrarse que la banda con actividad proteasa corresponde realmente a una secuencia en el transcrito anotado previamente como una secuencia con actividad serin proteasa putativa.

El fragmento obtenido para la banda de peso aproximado de 23 kDa no tuvo identidad con los transcritos obtenidos para el transcriptoma de las glándulas venenosas de *P. boliviensis*, bajo las condiciones establecidas.

Figura 18. Alineamiento de los fragmentos secuenciados de las bandas de proteasa de ~ 30 kDa del zimograma de actividad proteasa del veneno completo de *P. boliviensis* y el transcrito PhbEnzSeP15 obtenido del transcriptoma con la herramienta tblastn. Las coincidencias en aminoácidos en las secuencias se muestran en color verde.

Por otra parte, cuando se usaron las fracciones del veneno obtenidas por RP-HPLC (gradiente 1) para realizar el zimograma de proteasa, se obtuvieron tres bandas con actividad que fueron aisladas y secuenciadas: dos bandas de la fracción de 46,2 % de ACN (con tamaños de ~ 30 kDa y ~ 20 kDa); y una banda de la fracción de 47,2 % deACN de ~ 25 kDa (Figura 8). Para las bandas de ~ 20 kDa y de ~ 30 kDa de la fracción de 46,2 % se obtuvo un fragmento secuenciado y con identidad con el péptido parcial *keratin, type II cytoskeletal 6A-like, partial* de *Parasteatoda tepidariorum* (NCBI: XP_015915717.1); para la banda con actividad proteasa de la fracción de 47,2 % de ACN se obtuvieron cinco fragmentos secuenciados y tuvo identidad con el péptido *putative PQM protease precursor*, de *P. fera* (UniProtKB: A0A2I5YNW5) (Tabla 15).

Banda de proteasa	Fragmentos secuenciados
Proteasa 46,2 % ~ 20 kDa	LALDVEIATYR
Proteasa 46,2 % ~ 30 kDa	LALDVEIATYR
	1. DYEVYAGLYSITK
	2. DACQFDSGGPLFQYDK
Proteasa 47,2 %	3. DGFANDIALIK
	4. YVKDGFANDIALIK
	5. DYEVYAGLYSITKK

Tabla 15. Fragmentos secuenciados de las bandas del zimograma de gelatina para actividad proteasa de las fracciones del veneno de *P. boliviensis* (Figura 8).

De igual manera, a estos fragmentos obtenidos para cada banda se les buscó identidad con el transcriptoma; sin embargo, solo se encontró homología para la secuencia 2 de la proteasa de la fracción de 47,2 % de ACN, que tuvo una identidad de 100,0 % con el *contig* PhbEnzSeP16, con *e-value* 2,6e-06. Posteriormente, se realizó el alineamiento entre todos los fragmentos obtenidos para esta proteasa y el transcrito PhbEnzSeP16 (Figura 19), donde se puede ver que los fragmentos hacen parte de la secuencia del transcrito, aunque se presentan varias diferencias entre los aminoácidos del *contig* y de los fragmentos 1 y 5, en los que se presenta un ácido glutámico (E), mientras que el transcrito tiene una lisina (K) en esa posición.

Los fragmentos obtenidos para las bandas de proteasa de la fracción de 46,2 % de ACN no tuvieron identidad con los transcritos del transcriptoma de las glándulas venenosas de *P. boliviensis*, bajo las condiciones establecidas.

PhbEnzSeP16 Protease_47, 2_2 Protease_47, 2_3 Protease_47, 2_4 Protease_47, 2_5 Protease_47, 2_1	10 LSTPRYWTRFLYFRLI	20 .TITFLSLLCGY	30 /SSGKLYTVKDC	40 	50 . VNGTVTTPGK	60 . YPWMVSIHER	70 . 2VKDVMRQACG	80 . GAILNENWIV	90 . TAAHCFDQPJ	100 . %Identity IIL 100 100 100 100 92,86 92,31
PhbEnzSeP16 Protease_47, 2_2 Protease_47, 2_3 Protease_47, 2_4 Protease_47, 2_5 Protease_47, 2_1	110 KDYKVYAGLYSITKKI 	120 MAPTVQKFQLSk	130 (IIIHEKYVKDO DO 	140 SFANDIALIKT SFANDIALIK- SFANDIALIK-	150 . ATPINIKGSK	160 . GYVNGICFPS	170 GATDPSGEAT	180 . VIGWGMIRGG	190 . GPISAELREV	200 . %Identity TL 100 100 100 92,86 92,31
PhbEnzSeP16 Protease_47, 2_2 Protease_47, 2_3 Protease_47, 2_4 Protease_47, 2_5 Protease_47, 2_1	210 PLVPWQKCKQIYGHPI	220 . DSEFEYIQVVPS	230 SML CAGGNGKDA	240 ACQFDSGGPLF ACQFDSGGPLF	250 . QYDKKGVATL QYDK	260 . . IGTVANGADC	270 . AYAHYPGMYM	280 . KVSAFRSWMDI	290 . %IC KVMT S S	lentity 100 100 100 100 22,86 22,31

Figura 19. Alineamiento de los fragmentos secuenciados de la banda de proteasa de la fracción de 47,2 % del zimograma de actividad proteasa de las fracciones del veneno de *P. boliviensis* y el transcrito obtenido del transcriptoma con la herramienta tblastn. Las coincidencias en aminoácidos en las secuencias se muestran en color verde.

5.9.1.2. Secuencias obtenidas del zimograma de ácido hialurónico

A partir del zimograma para la determinación de la actividad hialuronidasa se hizo el secuenciamiento de dos bandas que presentaron actividad (Figura 9). Para la banda de la fracción 47,2 se obtuvieron tres fragmentos, dos de ellos con identidad para *keratin, type II cytoskeletal 6A-like, partial* de *Parasteatoda tepidariorum* (NCBI: XP_015915717.1; UniParc: UPI00077F9947) y el tercero tuvo identidad con *Tricarboxylate transport protein-like protein* de *Dinothrombium tinctorium* (GenBank: RWS13677.1; UniProtKB: A0A3S3PEL2). Para la banda de la fracción 52,6 se obtuvieron cuatro fragmentos secuenciados, tres de ellos presentaron identidad con *Techylectin-like protein* de *P. nigriventer* (UniProtKB/Swiss-Prot: P85031.1), y el restante con U2-ctenitoin-Pk1a de *P. keiserlingi* (UniProtKB/Swiss-Prot: P83905.1) (Tabla 16).

Banda de hialuronidasa	Fragmentos secuenciados
Hasa 47,2 %	1. LALDVEIATYR
	2. FASFIDK
	3. TAIRFGAFEALKK
Hasa 52,6%	1. AIPNPIDVYCDMVTDGGGWTVIQR
	2. DNFPVCPSPPLPIDCEEVLQR
	3. GICNLNLALQLITDVR
	4. CGDINAPCQSDCDCCGYSVTCDCYWSK

Tabla 16. Fragmentos secuenciados de las bandas del zimograma de actividad hialuronidasa de las fracciones del veneno de *P. boliviensis* (Figura 9).

Hasa: Hialuronidasa.

La búsqueda de homología entre estos fragmentos y el transcriptoma arrojó resultados únicamente para los fragmentos 1, 2 y 4 de la banda de hialuronidasa de la fracción 52,6 del veneno. La homología encontrada para los fragmentos 1 y 2 coincide en el transcrito PhbFibTec40, con identidad de 91,7 % y 100,0 %, y *e-value* de 3,8e-11 y 7,6e-08, respectivamente (Figura 20). Mientras el fragmento 4 tuvo homología con el transcrito PhbNtxNav24, con una identidad de 100,0 % y un *e-value* de 9,8e-13. A pesar que se encontró identidad entre los fragmentos secuenciados y las transcritos obtenidos del análisis transcriptómico de las glándulas venenosas de *P. boliviensis*, ninguno de estos transcritos codifica para hialuronidasas; sin embargo, se reportan los alineamientos por la alta identidad encontrada, ya que es posible que, al ser las bandas de hialuronidasas tan pequeñas y dada la tinción oscura del gel (Figura 9), es posible que en el aislamiento de la banda se hayan tomado bandas de otros péptidos, correspondientes al producto del secuenciamiento.

PhbFibTec44 Hasa_52,6_2 Hasa_52,6_1 Hasa_52,6_4 Hasa_52,6_3	10 VCPSPPLPI DNFPVCPSPPLPI	20 . . DCEEVLQRGQSKS DCEEVLQR	30 GVYKVLPRSRA A	40 	50 	60 . IQRRGNFLR 	70 . PKDYFYQDWQ 	80 AYKKGFGSI	90 EKDFWLGNDN	100 IIFGLS	%Identity 100 100 91,67 29,63 18,75
PhbFibTec44 Hasa_52,6_2 Hasa_52,6_1 Hasa_52,6_4 Hasa_52,6_3	110 NQRMCSVRFDLKC GICNLNLALQL	120 . VEGSRRHALYDTF VTCDCY .ITDVR	130 WIDDEDHKYML 	140 	150 DSMIGVHNEQ	160 . KFSTKDQRN	170 . DNFPGATSCA	180 QLYKGGWWY	190 NRCHVSNLNG	200 SQYLKG 	%Identity 100 100 91,67 29,63 18,75
PhbFibTec44 Hasa_52,6_2 Hasa_52,6_1 Hasa_52,6_4 Hasa_52,6_3	210 KHKSYADGVIWRS	220 . . WKGYHESLGWTEI	230 . KIRSKDFRK*	% Identity 100 91,67 29,63 18,75	y						

Figura 20. Alineamiento de los fragmentos secuenciados de las bandas de hialuronidasa de la fracción de 52,6 % del zimograma de actividad hialuronidasa de las fracciones del veneno de *P. boliviensis* y el transcrito PhbFibTec40. Las coincidencias en aminoácidos en las secuencias se muestran en color verde.

En el alineamiento del transcrito PhbNtxNav24 con los fragmentos obtenidos del secuenciamiento de la banda con actividad hialuronidasa de la fracción 52,6, se evidencia que únicamente el fragmento 4 tiene 100,00 % de identidad con este transcrito, los otros fragmentos tienen porcentajes de identidad que no superan el 25 %; para el fragmento 1 es de 20,83 %, para el fragmento 2 es de 23,81 % y para el fragmento 3 es de 25,00 % (Figura 21).

	10	20	30	40	50	60	70	80	
									%Identity
PhbNtxNav24	MKVAIFFILSLFVLAV	ASESIEEKR	EFPVEESAR	GKCGDINAPC	QSDCDCCGYS	TCDCYWSKD	CKCRESNFAA	GMALRKAFCKNKI	100
Hasa_52,6_4				CGDINAPC	QSDCDCCGYS\	/TCDCYWSK-			100
Hasa_52,6_3	GICNLNL	ALQLITDV.							25,00
Hasa_52,6_2			ONFPVCP	PPLPIDC	EEVLQR				23,81
Hasa_52,6_1				AIPNPIDVYC	DMVTDGGGWT	/IQR			20,83

Figura 21. Alineamiento de los fragmentos secuenciados de las bandas de hialuronidasa de la fracción de 52,6 % del zimograma de actividad hialuronidasa de las fracciones del veneno de *P. boliviensis* y el transcrito PhbNtxNav24. Las coincidencias en aminoácidos en las secuencias se muestran en color verde.

5.9.2. Búsqueda de la secuencia del gen codificante del péptido recombinante en la glándula venenosa

Con el fin de buscar la secuencia codificante de Ctx en los transcritos de la glándula venenosa de la araña *P. boliviensis*, se procedió a extraer el RNA de la glándula,
obteniendo 11,4 µg de RNA total, de los que se emplearon 4 µg para obtener cDNA y amplificar un gen codificante semejante a Ctx-4. Se logró obtener un amplificado de tamaño esperado, que fue posteriormente clonado en vector de clonación pCR 2.1-TOPO[®]. Dicho plásmido se utilizó para transformar células de *E. coli* XL1Blue. Algunas células producto de la transformación se evaluaron por PCR de colonia. Posteriormente, se purificaron los plásmidos de 4 colonias que mostraron una amplificado de DNA del tamaño esperado en el PCR de colonia. Los plásmidos purificados se enviaron a secuenciación y después de analizar las secuencias, se encontró que todas ellas tienen una alta identidad con el péptido recombinante Ctx-4 (98,1 %).

Adicionalmente, a estas secuencias obtenidas de los plásmidos pCR 2.1-TOPO-Ctx, se les buscó homología con el transcriptoma. Empleando la herramienta blastn, se encontró homología con el transcrito PhbNtxNav23, con identidad de 94,3 % e *e-value* de 8,2e-76 (Figura 22). Buscando la homología entre las secuencias y el transcriptoma con la herramienta blastx, se encontró un porcentaje de 98,1 % con el transcrito PhbNtxNav24 y un *e-value* de 2,9e-34, que dicho transcrito fue el empleado para la construcción del gen codificante de Ctx-4.

	10	20	30	40	50	
						%Identity
PhbNtxNav23	ARCGDINAPCQSDCDC	CGYSVTCDC	YWSKDCKCRES	SNFPAGMAVR	KAFCKNKI	100
T0P0/Ctx-4_1	GKCGDINAPCQSDCDC	CGYSVTCDC	YWSKDCKCRES	NFAAGMAVR	KAF <mark>C</mark> KNKI	94,34
rCtx-4	GKCGDINAPCQSDCDC	CGYSVTCDC	YWSKDCKCRES	SNFAAGMALR	KAFCKNKI	92,45

Figura 22. Alineamiento de las secuencias peptídicas del transcrito PhbNtxNav23, la secuencia obtenida para los plásmidos y del péptido recombinante Ctx-4. Las coincidencias en aminoácidos en las secuencias se muestran en color verde.

Se realizó el alineamiento de las secuencias peptídicas obtenidas de los plásmidos TOPO/Ctx-4 y de cada transcrito. En el alineamiento para el transcrito PhbNtxNav23, se puede ver una gran coincidencia entre los aminoácidos de las secuencias; no obstante, no comparten una identidad del 100,0 %, por ejemplo, la secuencia del péptido Ctx-4 recombinante tiene un 92,5 % de identidad con el transcrito, debido a la diferencia de cuatro aminoácidos (A₁-G₁, R₂-K₂, P₃₉-A₃₉ y V₄₄-L₄₄); mientras que la secuencia de los

plásmidos TOPO/Ctx-4 tienen un 94,3 % de identidad con el transcrito por la diferencia de tres aminoácidos (A_1 - G_1 , R_2 - K_2 y P_{39} - A_{39}); pero las secuencias del péptido recombinante Ctx-4 y los plásmidos TOPO/Ctx-4, tienen un 98,1 % de identidad, ya que solo difieren en un aminoácido (V_{44} - L_{44}).

En el alineamiento de una las secuencias peptídicas obtenidas de los plásmidos TOPO/Ctx-4 con la del transcrito PhbNtxNav24, secuencia empleada para expresar el péptido recombinante Ctx-4, se puede apreciar que hay una mayor identidad entre estas (Figura 23). En este alineamiento se observa únicamente el cambio de un aminoácido en las secuencias de los plásmidos TOPO/Ctx-4 y las secuencias del transcrito PhbNtxNav24 y el péptido recombinante Ctx-4, de leucina por valina en la posición 44.

10 20 30 40 50 %Identity PhbNtxNav24 GKCGDINAPCQSDCDCCGYSVTCDCYWSKDCKCRESNFAAGMALRKAFCKNKI 100 rCtx-4 GKCGDINAPCQSDCDCCGYSVTCDCYWSKDCKCRESNFAAGMALRKAFCKNKI 100 TOPO/Ctx-4_1 GKCGDINAPCQSDCDCCGYSVTCDCYWSKDCKCRESNFAAGMAVRKAFCKNKI 98,11 Figura 23. Alineamiento de las secuencias peptídicas de PhbNtxNav24, del péptido recombinante Ctx-4 y la secuencia obtenida para los plásmidos. Las coincidencias en aminoácidos en las secuencias se muestran en color verde.

5.10. Evaluación de actividades biológicas

5.10.1. Determinación de actividad antimicrobiana

La actividad antimicrobiana del veneno de *P. boliviensis* se evaluó para diferentes fracciones del veneno obtenidas por RP-HPLC (gradiente 1) (Figura 4). Las fracciones se seleccionaron de acuerdo a la cantidad de proteína disponible, tomando como base 1 µg; sin embargo, para la mayoría se emplearon 3 µg. Las fracciones del veneno de *P. boliviensis* a las dosis evaluadas no mostraron actividad antimicrobiana para *P. aeruginosa* (gramnegativa) y *S. aureus* (grampositiva) (Anexo IX).

5.10.2. Evaluación de actividades in vivo

5.10.2.1. Evaluación de toxicidad aguda del veneno de P. boliviensis

Para la evaluación de la toxicidad aguda del veneno completo de *P. boliviensis* se utilizó una dosis de 1 µg/g de peso corporal, inyectada vía i.p. A esta dosis se evidenciaron signos de envenenamiento en todos los ratones evaluados que aumentaron en el transcurso del tiempo hasta desencadenar en muerte. Los signos de envenenamiento más predominantes fueron las alteraciones motoras observándose principalmente dificultad en la marcha y mioclonos, dolor que se evidencia por estiramientos de los ratones y su excesivo acicalamiento, así como disnea y diarrea (Tabla 17).

Tabla 17. Signos y síntomas de toxicidad en los ratones tratados a dosis de 1 μg/g del veneno completo de *P. boliviensis*, según su curso temporal.

	Agitación/excitación inmediatamente después de la administración					
	Quietud					
	Diarrea					
	Acicalamiento excesivo					
Signos y síntomas entre los	Disnea					
después de la administración	Dificultad en la marcha: marcha en punta (Figura 24) y dificultad motora					
	Sialorrea					
	Corea / Brincos					
	Mioclonos					
	Estiramientos / Dolor					
	Disnea					
Signos y síntomos ontro los	Inestabilidad					
30 minutos y 60 minutos	Temblor					
después de la administración	Sialorrea					
	Mioclonos					
	Corea / Brincos					
Muertes	45 min – 54 min – 67 min					

Figura 24. Marcha en punta: signo de envenenamiento evidenciado en el que los ratones elevan su parte posterior caminando únicamente en la punta de sus patas traseras.

Posterior a las muertes de los ratones se realizó la evaluación macroscópica de los órganos principales para evaluar los posibles efectos ocasionados por el veneno. En pulmones se encontraron principalmente zonas hemorrágicas y algunas zonas infartadas; el hígado se observó friable y hemorrágico.

La prueba de toxicidad continuó con la administración de la dosis de 0,9 μ g/g de peso corporal, por vía i.p., para encontrar la DL₅₀. Los ratones inyectados con esta dosis mostraron signos de toxicidad iguales a los registrados para la dosis de 1,0 μ g/g (Tabla 18). No obstante, solo se registraron dos muertes. El ratón sobreviviente fue evaluado durante 14 días, en los que no mostró signos evidentes de intoxicación, aunque presentó una disminución de su peso durante los primeros días, seguido por altibajos y, durante los últimos días del experimento, mostró tendencia a la recuperación (Anexo X). Los órganos de los ratones que murieron presentaron las mismas condiciones de los órganos de los ratones evaluados con dosis de 1,0 μ g/g; los órganos del ratón sacrificado el día 14, se encontraron en un estado saludable. De acuerdo a estos resultados se logra determinar una DL₅₀ para el veneno de *P. boliviensis* de 0,9 μ g/g por vía i.p.

	Agitación con periodos de quietud				
	Mioclonos				
primeros 30 minutos	Temblor				
después de la	Corea / Brincos				
administracion	Diarrea				
	Dificultad en la marcha (marcha en punta)				
	Disnea con jadeo				
	Temblor				
	Dificultad en la marcha (marcha en punta)				
	Sialorrea				
Signos y síntomas en las 4	Acicalamiento excesivo				
administración	Mioclonos				
	Quietud				
	Piloerección				
	Diarrea				
	Corea / Brincos				
	Quietud				
Signos y síntomas en los 13 días siguientes	Pocas secreciones				
	No presenta temblor				
	Genitales normales				
	Buena fuerza de agarre				
Muertes	53 min – 130 min				

Tabla 18. Signos y síntomas de toxicidad en los ratones tratados a dosis de 0,9 μg/g del veneno completo de *P. boliviensis*, según su curso temporal

5.10.2.2. Evaluación de toxicidad aguda del péptido recombinante Ctx-4

Ninguno de los ratones tratados a dosis de 0,9 μ g/g del péptido recombinante plegado mostró signos de toxicidad, ni se evidenció una variación de peso importante durante los 14 días del experimento, con incremento de peso al final del experimento (Anexo XI). Estos mismos resultados se presentaron con la administración de las dosis de 1,0 y 1,5 μ g/g, evidenciando que el péptido recombinante no es tóxico para ratones por esta vía, a las dosis usadas. La evaluación macroscópica de los órganos no reveló ninguna alteración en tamaño, forma, color o friabilidad. Adicionalmente, la administración de 0,5,

1,0 y 2,0 μg vía i.cr. de las fracciones de péptido recombinante Ctx-4 provenientes de la purificación por RP-HPLC tampoco mostraron toxicidad en los ratones.

5.10.2.3. Evaluación de toxicidad del péptido recombinante Ctx-4 sobre grillos

La administración i.m. de 5 µg de las fracciones obtenidas en la purificación del péptido recombinante plegado Ctx-4 (Figura 17) sobre grillos produjo una toxicidad severa caracterizada por la producción de parálisis en el animal durante más de 30 minutos. Los grillos inyectados con la fracción 36,5 % de ACN (Figura 17) mostraron parálisis 1 minuto después de la administración, mientras que la inyección de las fracciones obtenidas por RP-HPLC de 38,7 y 39,5 % de ACN (Figura 17) produjeron parálisis inmediata en los grillos.

En observaciones adicionales realizadas, los grillos inyectados con la fracción 36,5 % de ACN recuperaron parte de su movilidad 2 horas después de la administración, y totalmente a las 24 horas. Además, a los grillos se les administraron 1,0 y 2,5 µg de la fracción 38,7 % de ACN, mostrando la misma toxicidad severa observada en los grillos administrados con 5,0 µg de esta fracción. Los grillos administrados con las fracciones 38,7 y 39,5 % de ACN murieron entre 29 horas y 32 horas después de la administración, respectivamente.

5.10.2.4. Determinación de la Dosis Paralizante media (DPm) del péptido recombinante sobre grillos

La determinación de la DPm se evaluó con la fracción de 38,7 % de ACN obtenida de la purificación por RP-HPLC del Ctx-4 plegado (Figura 17), con una dosis inicial de 1,3 µg/g. Los resultados se muestran como X en caso que el grillo haya mostrado la pérdida de toda movilidad durante mínimo 2 minutos en los primeros 10 minutos posteriores a la administración, y 0 en caso que no lo haya mostrado (Tabla 19).

Dosis (µg/g)	Log	1	2	3	4	5	6
1,959	0,292				X		
<u>1,306</u>	0,116	X		0		X	
0,871	- 0,060		0				0

Tabla 19. Evaluación del efecto paralizante de Ctx-4 recombinante plegado sobre grillos (n = 6)

El número subrayado indica la dosis inicial.

El resultado obtenido se empleó para hallar las variables necesarias para aplicar la ecuación 1, con su error estándar (Anexo IV).

$$DPm = -0,60 + (0,831 \times 0,176) = 0,0863$$

Al aplicar el antilogarítmo al resultado de la ecuación se obtuvo la DPm de Ctx-4 recombinante de 1,22 µg/g, el error estándar es 0,306.

5.10.2.5. Evaluación de toxicidad del péptido recombinante Ctx-4 sobre peces

La administración i.m. de 5,0 µg de la fracción de 38,7 % de ACN obtenida en la purificación del péptido recombinante plegado Ctx-4 (Figura 17), que fue la que mostró la mayor toxicidad sobre grillos. No se evidenció ninguna reacción tóxica sobre peces cebra, no murieron ni perdieron su movilidad.

5.10.2.6. Evaluación de la actividad analgésica por el método de Tail-Flick

5.10.2.6.1. Fracciones obtenidas en el cartucho Sep-Pack

La fracción correspondiente al eluato del veneno (0) de *P. bolviensis* (Tabla 5), fue administrada por vía i.p. a los animales de experimentación, en dosis de 0,37, 0,55 y 0,74 ug/g. Dichas dosis corresponden a tres dosis inferiores a la DL_{50} determinado para el veneno completo. A las dosis evaluadas, no mostró un aumento del tiempo de retirada de la cola de los ratones del estímulo térmico; tampoco se evidenciaron signos de toxicidad como temblores o salivación (Anexo XII). El análisis estadístico (ANOVA de dos vías) mostró que no hay diferencias significativas (***p < 0,05) entre la respuesta de los ratones tratados con SSN con la fracción eluato del veneno a las tres dosis utilizadas.

La fracción 1 evaluada a dosis de 0,25, 0,50 y 0,75 μ g/g (i.p.), no disminuyó el tiempo de latencia de los animales de experimentación sometidos al estímulo térmico; tampoco mostraron signos de toxicidad. El análisis estadístico no reveló diferencia significativa (***p < 0,05) en la respuesta de los ratones administrados con SSN con la fracción 1 (Anexo XII).

La fracción 2 fue administrada a dosis de 0,25, 0,50 y 0,75 μ g/g (i.p.). El tiempo de latencia aumentó notoriamente en la dosis de 0,75 µg/g siendo comparable con el resultado del control positivo en algunos intervalos de tiempo; este aumento es dependiente de la dosis. La dosis de 0,50 µg/g mostró un aumento leve en la medición de retirada de la cola a los 30 minutos después de la administración de 44,9 % de EMP, este efecto disminuyó en la medición de los 60 minutos a 30,7 % EMP y luego aumentó a 36,2 y 37,8 % EMP, en las mediciones de los 90 y 120 minutos, respectivamente. Los porcentajes obtenidos para la dosis de 0,75 µg/g fueron mucho mayores, en la medición de los 30 minutos, con 66,1 % de EMP y alcanzando 100 % de EMP en las mediciones de los 60 y 90 minutos. Sin embargo, los signos de toxicidad de esta fracción se presentaron con las dosis de 0,50 y 0,75 µg/g; además de los signos ya descritos del envenenamiento (apartado 5.10.2.1.), también se produjo la muerte de dos ratones de la dosis de 0,50 μ g/g a los 50 minutos y 60 minutos después de la administración, y de cuatro ratones de la dosis de 0,75 µg/g murieron entre 37 minutos y 54 minutos después de la administración y el quinto ratón de este grupo murió a los 91 minutos de la inyección de la dosis; por esta razón no fue posible realizar el análisis estadistico ANOVA ni el test post hoc de Bonferroni (Figura 25).

Tiempo de medición

Figura 25. Determinación de actividad analgésica por el método *Tail Flick* de la fracción 2 del veneno de *P. boliviensis* (vía i.p.) obtenida por separación del veneno completo en un cartucho Sep-Pack C18. La gráfica representa la media + SEM del % EMP.

Estas mismas dosis se probaron vía s.c., notándose efectos tóxicos a todas las dosis evaluadas, pero a diferencia de la inyección intraperitoneal en los ratones se evidenció priapismo, a todas las dosis. La respuesta del periodo de latencia de los ratones fue variable en los tiempos de medición y las dosis de tratamiento. Los mayores porcentajes de EMP los tuvo la dosis de 0,75 µg/g con 56,8 y 56,3 %, registrados en las mediciones de los 30 y 120 minutos, respectivamente. Sin embargo, corroborar este efecto es difícil por el alto número de muertes (Figura 26). Además, a las dosis de 0,50 y 0,75 µg/g se presentaron varias muertes: a la dosis de 0,50 µg/g murieron tres ratones después de la medición realizada a los 30 minutos, para la dosis de 0,75 µg/g se registraron tres muertes antes de los 30 minutos y una más después esta. Los ratones que presentaron priapismo no fallecieron, este signo se evidenció pasada la primera medición y perduró hasta el final del experimento.

Tiempo de medición

Figura 26. Determinación de actividad analgésica por el método *Tail Flick* de la fracción 2 del veneno de *P. boliviensis* (vía s.c.), obtenida por fraccionamiento del veneno completo en un cartucho Sep-Pack C18. La gráfica representa la media + SEM del % EMP.

5.10.2.6.2. Fracciones obtenidas por RP-HPLC

La fracción 2 de la separación con el cartucho Sep-Pack se sometió a una segunda purificación por RP-HPLC (gradiente 2) y algunas de sus fracciones se seleccionaron para la evaluación de la actividad analgésica. Se evaluaron por vía i.cr., empleando la máxima dosis disponible (de 0,1 a 0,6 μ g/g). Se detectó un aumento en el efecto máximo posible producido por algunas fracciones, además de efectos tóxicos que en algunos casos llegaron a producir muerte y priapismo (Tabla 20).

El aumento del efecto máximo posible fue poco en la mayoría de las facciones; no obstante, la fracción de 38,4 % de ACN, que además genera toxicidad y muerte, alcanzó a tener un efecto máximo posible del 70,61 % a los 30 minutos de haber sido inyectado, pero que disminuyó con el paso del tiempo (Tabla 20). Una alícuota de la fracción de 38,4 % de ACN con efecto analgésico se corrió por RP-HPLC (gradiente 1), eluyendo a 43,9 % (Figura 27); bajo este gradiente 1 se obtuvo una fracción del veneno completo con una

masa molecular determinada de 5.180,22 Da (Figura 4 y Tabla 6). Aunque muchas de las fracciones no presentaron un efecto tan notorio como la fracción de 38,4 % de ACN, en algunas se evidenció un aumento del período de latencia que oscilo entre el 30 y 48 % (resultados subrayados en la Tabla 20).

Figura 27. Perfil cromatográfico de la co-elución del veneno de *P. boliviensis* por RP-HPLC, gradiente 1 (línea azul) con la fracción de 38,4 % de ACN (gradiente 2) repurificada bajo gradiente 1 (línea roja).

Los efectos tóxicos que se observaron fueron los presenciados en la prueba de toxicidad aguda: dificultad motora, espasmos, disnea, sialorrea, pero además se evidenciaron opistótonos en las fracciones de 37,2 y 38,4 % de ACN. En estas dos fracciones además se presentaron otros efectos notorios. La fracción de 37,2 % de ACN presentó priapismo, que no se observó en otras fracciones.

Tabla 20. Evaluación de la actividad analgésica por el método *Tail-Flick* de las fracciones obtenidas por RP-HPLC (gradiente 2) de la fracción 2, de la separación en el cartucho Sep-Pack, del veneno de *P. boliviensis* y efectos adicionales observados.

% de ACN de la fracción	Dosis (µg/g)	% Efecto Máximo Posible*				Signos y síntomas
		30 min	60 min	90 min	120 min	
SSN		10,09	13,29	18,08	7,54	
Morfina	0,1	100	98,42	73,72	67,06	
25,6	0,1	4,84	8,18	<u>31,44</u>	20,41	
26,2	0,1	10,23	11,45	21,17	1,76	
27,8	0,1	27,25	0,0	18,28	3,53	
29,9	0,1	6,64	8,19	11,32	13,99	
30,7	0,1	10,38	25,91	13,95	10,76	

31,0	0,1	<u>34,34</u>	<u>35,09</u>	14,05	11,09	
31,7	0,1	23,71	<u>32,33</u>	13,39	19,63	
31,9	0,1	4,97	4,95	11,29	10,99	
32,3	0,1	17,33	4,79	9,13	4,32	Toxicidad-Muerte de 2 ratones (60-90 min)
32,7	0,1	17,61	<u>32,16</u>	14,84	16,13	
32,9	0,1	22,18	11,62	16,75	3,59	
33,1	0,1	16,37	19,71	25,14	14,02	
33,7	0,2	12,48	3,9	0,0	11,07	
34,0	0,3	6,27	0,0	0,0	9,50	
34,3	0,4	14,33	6,92	9,28	26,6	
34,7	0,3	10,53	19,08	0,0	13,20	
35,1	0,6	8,29	11,09	9,15	2,78	
35,8	0,2	22,53	6,39	4,13	12,74	
36,0	0,2	22,08	6,24	3,79	0,0	Toxicidad en 2 ratones–Muertes: 1 ratón
36,4	0,3	11,40	15,49	15,64	13,81	Toxicidad, mioclonos–Muertes: 1 ratón
36,7	0,2	17,59	15,65	18,63	13,98	
37,2	0,4	41,17	25,0	6,37	15,24	Priapismo y toxicidad–Muertes: 2 ratones
37,8	0,2	18,12	23,85	0,0	16,45	Toxicidad–Muertes: 3 ratones
38,1	0,4	0,0	-	-	-	Toxicidad–Muertes: 5 ratones
38,4	0,3	<u>70,61</u>	<u>48,22</u>	<u>59,49</u>	<u>66,19</u>	Toxicidad–Muertes: 4 ratones
39,1	0,15	15,48	<u>33,19</u>	1,82	0,0	Toxicidad–Muertes: 1 ratón
39,7	0,2	10,72	3,84	1,92	4,76	
40,2	0,25	<u>38,80</u>	17,32	24,58	<u>31,47</u>	
40,5	0,3	15,04	8,37	16,87	10,71	Toxicidad, hemorragia v.oMuertes: 2 ratones
41,7	0,25	17,65	15,02	16,33	28,59	
42,0	0,4	10,47	18,33	16,45	16,19	
42,3	0,4	29,35	16,66	19,78	7,57	
42,5	0,4	<u>37,87</u>	23,18	16,66	<u>32,45</u>	
43,1	0,2	18,58	10,90	20,03	25,70	
43,4	0,25	<u>37,35</u>	<u>30,34</u>	<u>36,54</u>	<u>34,52</u>	
43,7	0,15	47,78	28,66	27,08	<u>32,72</u>	
43,9	0,15	<u>39,70</u>	27,82	<u>36,79</u>	<u>37,00</u>	

* Se presenta la media del porcentaje de Efecto Máximo Posible para cada tiempo de medición. Los valores subrayados representan una respuesta de % EMP superior al 30 %.

El análisis estadístico realizado para las muestras que no presentaron muertes, únicamente evidenció diferencias significativas entre la SSN y la fracción de 43,7 % de ACN (0,15 µg/g; i.cr.) en la medición de los 30 minutos después de la inyección (p < 0,01), lo que sugiere que, de las fracciones que no mostraron toxicidad letal, sólo esta fracción produce un aumento significativo en el tiempo de retirada de la cola del estímulo doloroso. Además, la fracción de 43,9 % de ACN obtenida mediante la separación del veneno en el gradiente 2 (0,15 µg/g; i.cr.) fue la única que no presentó diferencia estadística con respecto a la morfina en la medición de los 120 minutos después de la administración, planteando que su efecto en este tiempo puede ser similar al que presenta la morfina. Cabe aclarar que en los grupos que presentaron muertes durante la experiencia, no se pudo realizar el análisis estadístico correspondiente (ANOVA de medidas repetidas y pos hoc de Bonferroni).

5.10.2.5.3. Péptido recombinante Ctx-4

El péptido recombinante, crudo y después de ser plegado, se usó para evaluar la actividad analgésica por el método *Tail Flick* administrándolo tanto de manera intraperitoneal como intracraneal, con el fin de determinar si ambas conformaciones presentaban actividad.

Los ratones tratados con el péptido recombinante Ctx-4 crudo (i.p.) a dosis de 0,50, 0,75 y 1,0 µg/g no aumentaron significativamente el efecto máximo posible (EMP) con respecto al EMP registrado para la morfina, únicamente con las dosis de 0,50 y 0,75 µg/g se vio aumento del efecto máximo posible dos horas de la administración del 24,5 y 32,5 %, respectivamente. De acuerdo al análisis estadístico no se encontró diferencia significativa entre la morfina y estas dosis en este momento, aunque es notoria la disminución del efecto en la morfina (Figura 28).

El péptido crudo, administrado por vía i.cr., a dosis de 0,10 y 0,55 μ g/g mostró un aumento del EMP de 25,5 y 42,3 %, respectivamente, después de una hora de la administración. Este resultado es dependiente de la dosis observándose en todos los tiempos de medición un EMP superior en la dosis de 0,55 μ g/g; además, se evidencia que el EMP de la dosis de 0,55 μ g/g incrementa en las mediciones realizadas a los 30 y 60 minutos, y luego disminuye paulatinamente a los 90 minutos, hasta ser notoria a los 120

minutos. Sin embargo, de acuerdo al análisis estadístico, solo cuando disminuye el efecto generado por la morfina, no hay diferencia significativa con las dosis administradas del péptido. En ninguno de los tiempos de medición se encontró diferencia estadísticamente significativa entre el control negativo (SSN) y los ratones tratados con elpéptido recombinante Ctx-4 (Figura 29).

Tiempo de medición

Figura 28. Determinación de actividad analgésica por el método *Tail Flick* del péptido recombinante Ctx-4 crudo (vía i.p.). La gráfica representa la media + SEM del % EMP (ANOVA de medidas repetidas – *post hoc* Bonferroni, del grupo de animales tratados con los controles negativos y positivos (animales tratados con solución salina y morfina) contra los grupos de animales tratados con Ctx-4, a diferentes dosis).

Tiempo de medición

Figura 29. Determinación de actividad analgésica por el método *Tail Flick* del péptido recombinante Ctx-4 crudo (vía i.cr.). La gráfica representa la media + SEM del % EMP (ANOVA de medidas repetidas – *post hoc* Bonferroni, del grupo de animales tratados con los controles negativos y positivos (animales tratados con solución salina y morfina) contra los grupos de animales tratados con Ctx-4, a diferentes dosis). El EMP de la SSN a los 90 y 120 minutos fue 0 %.

Por otro lado, el péptido plegado administrado a dosis de 3 ug/g por vía intracraneal mostró un mostró un efecto máximo posible poco potente. En las mediciones realizadas a los 30 y 60 minutos de la administración, para la dosis de 3 µg/g logró un efecto máximo posible de 32,8 y 37,1 %, pero disminuyó a los 90 y 120 minutos registrando EMP de 20,9 y 29,1 %, respectivamente. Cabe resaltar que no se encuentra diferencia estadísticamente significativa contra la morfina en la última medición dos horas después de la inyección, aunque el efecto de la morfina disminuye con el tiempo (Figura 30).

Tiempo de medición

Figura 30. Determinación de actividad analgésica por el método *Tail Flick* del péptido recombinante Ctx-4 plegado (vía i.cr.). La gráfica representa la media + SEM del % EMP (ANOVA de medidas repetidas – *post hoc* Bonferroni, del grupo de animales tratados con los controles negativos y positivos (animales tratados con solución salina y morfina) contra los grupos de animales tratados con Ctx-4, a diferentes dosis).

5.10.2.6. Evaluación de la actividad analgésica del Ctx-4 recombinante plegado por el método de *Hot Plate*

Para la actividad analgésica por el método de *Hot plate*, se evidenció un efecto máximo posible. El péptido recombinante Ctx-4 plegado, a dosis de 1,25 ug/g, aplicado por vía i.cr., mostró aumentos en el tiempo de latencia registrando 82,1, 78,5, 92,5 y 75,4 % de EMP en las mediciones de 30, 45, 60 y 75 minutos, respectivamente. De acuerdo al análisis estadístico, la ausencia de diferencias significativas encontradas entre la morfina y la dosis de 1,25 µg/g del péptido recombinante plegado, indican que los efectos inducidos por la morfina y el péptido recombinante Ctx-4 plegado son similares. Por otra parte, se evidencia

un aumento del efecto máximo posible dependiente de la dosis del péptido recombinante (Figura 31).

Tiempo de medición

Figura 31. Determinación de actividad analgésica por el método *Hot Plate* del péptido recombinante Ctx-4 plegado (vía i.cr.). La gráfica representa la media + SEM (ANOVA de medidas repetidas – *post hoc* Bonferroni, del grupo de animales tratados con los controles negativos y positivos (animales tratados con agua y morfina) contra los grupos de animales tratados con Ctx-4, a diferentes dosis).

5.10.2.7. Evaluación de la actividad analgésica del Ctx-4 recombinante plegado por el método de *Siegmund*

El péptido recombinante plegado Ctx-4 a dosis de 1,25, 2,00 y 3,00 µg/g, por vía i.cr. produjo en los animales de experimentación, previamente estimulados químicamente con fenilquinona, unos porcentajes de protección del dolor de 30,2, 43,4 y 34,2 %, respectivamente; mientras que la protección de la morfina fue de 100 % (Figura 32). En el análisis estadístico se encontraron diferencias estadísticamente significativas entre el grupo

de animales tratados con morfina con respecto a los tratados con el péptido recombinante Ctx-4, a todas las dosis. Mientras que, al comparar el número de estiramientos inducidos por el agente algésico de los grupos tratados con SSN con respecto al péptido Ctx-4 plegado, a diferentes dosis, no se encontraron diferencias significativas.

Figura 32. Determinación de actividad analgésica por el método *Siegmund* del péptido recombinante Ctx-4 plegado (vía i.cr.). La gráfica representa la media + SEM (ANOVA de una vía – *post hoc* Bonferroni, del grupo de animales tratados con morfina y Ctx-4 a diferentes dosis).

6. ANÁLISIS DE RESULTADOS Y DISCUSIÓN

6.1. Fraccionamiento del veneno

Los resultados de esta investigación, demostraron que los cromatogramas obtenidos en esta tesis del veneno completo, de ambos sexos, de *P. boliviensis* por RP-HPLC (gradiente 2) muestra similitudes con las purificaciones realizadas por el mismo método, de manera independiente, de los venenos tanto del macho como de la hembra de *P. boliviensis* en el estudio de Estrada-Gomez *et al.* (2015), con excepción de la fracción que eluye cuando el gradiente de ACN alcanza el 100 %. Tanto en las separaciones reportadas en este trabajo, como en las publicadas por Estrada-Gomez, se evidencia la presencia de una fracción que eluye cuando el gradiente de ACN es 0 %, siendo mucho más notoria en el fraccionamiento del veneno de las hembras, al igual que la fracción que eluye cuando el gradiente de ACN está alrededor del 13 %, sugiriendo que en el veneno obtenido para la realización de este trabajo de tesis los componentes pueden presentar una mayor similitud con el veneno de las hembras o el veneno de arañas de este sexo se encunetra en mayor porporción.

En estudios previos de venenos de género *Phoneutria* se han publicado perfiles cromatográficos similares a los obtenidos en este trabajo en los que se pueden observar que la gran mayoría de las fracciones se obtienen entre el rango de gradiente de 25 % hasta 45 % de ACN. Una de las principales similitudes entre los cromatogramas de los venenos de *Phoneutria*, incluido el de *P. boliviensis*, es la presencia de una fracción de gran intensidad que eluye cerca de 34 % de ACN (Richardson *et al.*, 2006a).

No obstante, se aprecian diferencias entre los perfiles cromatográficos obtenidos para los venenos completos de *P. nigriventer*, *P. reidyi* y *P. keyserlingi*, con el de *P.*

boliviensis. Una de ellas es la ausencia de una fracción obtenida en el gradiente del 20% de ACN para el veneno de *P. boliviensis* que está presente en los demás venenos; además, el fraccionamiento por RP-HPLC del veneno completo de P. boliviensis muestra una fracción de gran intensidad en el gradiente de 13 % de ACN, a diferencia de los otros venenos de *Phoneutria* en los que no es tan intensa y casi inapreciable en el veneno de *P. keiserlingi* (Richardson et al., 2006a). Sin embargo, el perfil cromatográfico de P. boliviensis muestra más similitud con el de *P. keiserlingi* cuando el gradiente supera el 23 % de ACN; para los venenos de *P. reidyi* y especialmente para *P. nigriventer*, se observan fracciones que eluyen entre el 23 % y 26 % de ACN, que no son tan destacables en el cromatograma de P. boliviensis. Al igual que los otros venenos de las especies de este género, el veneno de P. boliviensis mostró la elución de fracciones en gradientes superiores al 42 % de ACN, mientras que para las otras especies de *Phoneutria* se pueden apreciar fracciones con gran intensidad entre el 40 y 50 % de ACN, las fracciones de P. boliviensis no son de tanta intensidad (Richardson et al., 2006a). Esto sugiere que, aunque haya muchas similitudes, puede haber mayor diferencia entre los componentes del veneno de P. boliviensis o la proporciónde los mismos, en comparación con otros venenos de Phoneutria.

Adicionalmente, se observa correlación entre la mayor concentración de proteína obtenida por cuantificación espectrofotométrica de las fracciones obtenidas por separación en el cartucho Sep-Pack y la mayor cantidad de fracciones obtenidas en el cromatograma (Tabla 6 y Figura 5).

6.2. Perfil electroforético de veneno de P. boliviensis

Las similitudes mostradas en el perfil electroforético de *P. boliviensis* con los evidenciados en otras especies de *Phoneutria* al presentar una gran densidad de proteínas entre 5 y 15 kDa y algunas bandas entre 25 y 45 kDa (Figura 6); no obstante, el hallazgo de dos bandas con masas relativas de 50 y 75 kDa no había sido reportado para el veneno de esta especie. Las bandas presentes en el rango 5 a 15 kDa podrían relacionarse con toxinas

109

que alteran canales iónicos e inhibidores enzimáticos encontrados en otros venenos de *Phoneutria*, las bandas superiores podrían deberse a tequilectinas (Richardson *et al.*, 2006b), Proteínas Secretoras Ricas en Cisteínas (CRISP) (Richardson *et al.*, 2006a) o enzimas, ya que se han detectado estas proteínas de alto peso molecular en otros venenos de arañas del género *Phoneutria* (Langenegger *et al.*, 2018) (Anexo I).

En estudios previos se ha reportado la ausencia de bandas con masas moleculares superiores a 45 kDa tanto para el veneno de machos como de hembras de *P. boliviensis*, a pesar que se evidencia dimorfismo sexual en este veneno, observándose tres bandas con masas entre 25 y 45 kDa únicamente en el veneno de las hembras (Estrada-Gomez et al., 2015). Estas tres bandas reportadas por Estrada-Gomez pueden apreciarse en el perfil obtenido en este trabajo de tesis y que es de esperarse, ya que no se hizo separación del veneno con respecto al sexo de la araña. La presencia de las bandas de alta masa molecular puede deberse a la presencia que el veneno de machos P. boliviensis o a que el veneno sufra variaciones ontogénicas, dado que no se tuvo en cuenta el estado de crecimiento de los especímenes durante la recolección del veneno; estas variaciones se han reportado para el veneno de *P. nigriventer* en el que se observaron bandas de alto peso molecular únicamente en el venenos de los machos y en el veneno de las hembras pequeñas se evidenció ausencias de proteínas presentes en el veneno de hembras adultas (Herzig *et al.*, 2002). De igual manera, se han reportado componentes proteicos de masas moleculares superiores a los 100 kDa en venenos de otras especies de arañas, como α -Latrotoxina (130 kDa) y α -Latroinsectotoxina (120 kDa) de Lactrodectus mactans (McCormick & Meinwald, 1993).

6.3. Análisis de masas moleculares

Las masas moleculares de las diferentes fracciones del veneno de *P. boliviensis* se encontraron entre 3.536,58 Da y 8.715,45 Da. En el veneno de *P. keiserlingi* se han reportado neurotoxinas cuyos pesos se encuentran entre 3.099 y 8.769,66 Da (Richardson *et al.*, 2006a). Este rango también es semejante al reportado para las neurotoxinas de *P*.

nigriventer, para el que casi todas las masas se encuentran entre 3.510,2 y 9.559 Da. En el veneno de *P. reidyi* también se encontraron neurotoxinas, con masas comprendidas entre 3.465,7 y 8.249,9 Da. Las masas moleculares obtenidas para las fracciones de *P. boliviensis* pueden ser neurotoxinas del veneno, ya que algunas de estas fueron evaluadas por el método de hiperalgesia térmica, encontrando toxicidad y signos de envenenamiento compatibles con neurotoxicidad (Anexo I).

6.4. Caracterización enzimática del veneno de P. boliviensis

6.4.1. Evaluación de actividad fosfolipasa A2 del veneno de P. boliviensis

Existen diferentes tipos de fosfolipasas (A2, B, D) que se encuentran presentes en los venenos de alacranes, arañas y serpientes, y son responsables de la degradación de la membrana celular generando daño en los tejidos circundantes al sitio de la inyección del veneno (Vines & Bill, 2015); además, se ha encontrado que las fosfolipasas de venenos de arañas causan toxicidad local y sistémica (Sannaningaiah *et al.*, 2014). Por otra parte, los reportes sobre la presencia o el aislamiento de PLA2 a partir del proteoma en venenos de arañas no son abundantes, encontrándose en los venenos de *Atrax versutus* (ahora *Hadronyche versuta*) y *Eresus niger* (Sannaningaiah *et al.*, 2014; Usmanov & Nuritova, 1994).

La falta de actividad de fosfolipasa A2 *in vitro*, tanto para las fracciones como para el veneno completo de *P. boliviensis*, concuerda con los resultados obtenidos en el transcriptoma, donde solo se encontraron cinco secuencias codificantes para fosfolipasas A2, las cuales a su vez, presentan bajos niveles de expresión en la glándula venenosa (12,30 TPM), de ahí que sea poco probable que se encuentre su actividad *in vitro*. Además, en los resultados de la presente investigación no se presentaron signos locales del envenenamiento, como el daño tisular local, adicionalmente, tampoco se han reportado en los envenenamientos producidos por las arañas de este género.

La presencia de fosfolipasas A2 en el veneno de *P. boliviensis*, con una Dosis Hemolítica mínima (DHm) de 202 µg de veneno completo, reportado por Estrada-Gómez *et al.*, (2015), ha sido la única publicación que sugiere la presencia de PLA2 en el veneno de una especie del género *Phoneutria*. Esta dosis se considera una cantidad muy alta de veneno, y confirma que, a juzgar por los signos de envenenamiento evidenciados, estás enzimas no parecen tener un papel fundamental en el veneno de estas arañas como lo hacen para el veneno de las serpientes.

6.4.2. Evaluación de actividad proteasa del veneno de P. boliviensis

Las proteasas son enzimas presentes en los venenos de diferentes animales que hidrolizan específicamente los enlaces peptídicos de las proteínas favoreciendo la difusión del veneno en el tejido (Kini, 2005). Para los venenos de arañas se han reportado actividades metaloproteolítica y serin proteolítica (Feitosa *et al.*, 1998; Veiga *et al.*, 2000). Las metaloproteasas son enzimas que dependen completamente de los iones metálicos para su actividad y que generan varios efectos farmacológicos como hemorragia, edema, dermo / mionecrosis y trastornos hemostáticos (Nagaraju *et al.*, 2007a, b), las cuales han sido reportadas en venenos de varias especies del género *Loxosceles*; además, se han purificado de los venenos de *L. intermedia* y de *Hippasa partita* (Nagaraju *et al.*, 2007a, b; Zanetti *et al.*, 2002). Por otro lado, las serin proteasas pueden causar efectos como dermonecrosis, alteraciones en la hemostasis y función plaquetaria, además de actividad tipo Factor Xa (Sannaningaiah *et al.*, 2014). A partir de la glándula venenosa de *Hippasa agelenoides* se han caracterizado dos serin proteasas de bajo y medio peso molecular que causan algunos de los efectos mencionados (Devaraja *et al.*, 2008, 2010, 2011).

Específicamente, para arañas del género *Phoneutria*, la actividad proteolítica ha sido reportada para el veneno de la especie *P. nigriventer*, para el que además se han identificado dos serin proteasas (Schenberg & Pereira-Lima, 1971; Peigneur *et al.*, 2018). En este trabajo se pudo comprobar la actividad proteolítica del veneno completo y de dos de las fracciones de *P. boliviensis*; aunque el zimograma no da cuenta si la actividad es

debida a serin proteasas o metaloproteasas. Por otra parte, aunque se encontraron varios transcritos putativos de proteasas en la glándula venenosa de *P. boliviensis*, estas enzimas podrían ser reguladas por los inhibidores de proteasas, para los que se encontraron una cantidad considerable de transcritos, lo que podría explicar que el veneno de *P. boliviensis* no posea una actividad proteasa tan evidente como el veneno de *B. ammodytoides*. Adicionalmente, es probable que no todos los transcritos se traduzcan en proteínas, ya que estos procesos de transcripción y traducción, están sujetos a una regulación y dinámica diferentes (Tan *et al.*, 2015).

6.4.3. Evaluación de actividad hialuronidasa del veneno de P. boliviensis

Las hialuronidasas son endo-β-glucosidasas que hidrolizan el ácido hialurónico y el sulfato de condroitina (Manzel & Farr, 1988; da Silveira *et al.*, 2007a,b,c). En los venenos, las hialuronidasas se conocen como un "factor de propagación" ya que facilitan la difusión de las toxinas sistémicas en la circulación de la presa. La actividad hialuronidasa se ha reportado en el veneno de diferentes arañas del suborden Araneomorphae como *Lycosa raptorial, Ctenus nigriventer* (ahora *P. nigriventer*) (Kaiser, 1956), *Cupiennius salei* (Kuhn-Nentwig *et al.*, 1994), y en arañas de los géneros *Lycosa, Lampona, Loxosceles e Hippasa* (Barbaro *et al.*, 2005; da Silveira *et al.*, 2007a; Nagaraju *et al.*, 2006; Rash & Hodgson, 2002; Wright *et al.*, 1973; Young & Pincus, 2001) y Mygalomorphae como las tarántulas *Brachypelma vagans* y *Dugesiella hentzi* (Schanbacher *et al.*, 1973).

La presencia de hialuronidasas en el veneno de *P. boliviensis* podría explicar el rápido desarrollo de signos de envenenamiento observados en la prueba de toxicidad. No obstante, mediante los fragmentos obtenidos de la secuenciación, no se logró relacionar la identidad entre estos fragmentos y secuencias codificantes para estas enzimas en el transcriptoma. Esto puede deberse a que los fragmentos obtenidos durante la secuenciación no hayan sido suficientemente largos, o que, por otro lado, haya habido una contaminación en la muestra al cortar las bandas del zimograma, lo cual puede ser muy factible debido a la

proximidad en las bandas entre 37 y 75 kDa como se observa en la electroforesis, y a que la banda con actividad hialuronidasa es muy pequeña (Figura 8).

6.5. Análisis transcriptómico de la glándula de P. boliviensis

6.5.1. Componentes del veneno

6.5.1.1. Enzimas

Las secuencias codificantes para diferentes enzimas encontradas en el transcriptoma de *P. boliviensis* coinciden con los reportes de varias enzimas que han sido aisladas y caracterizadas, a partir de venenos de arañas; tales como: hialuronidasas, serin proteasas y metaloproteasas (Davletov *et al.*, 2012; Isbister & Gray, 2002; King & Hardy, 2013; Nimmrich & Gross, 2012; Windley *et al.*, 2012).

6.5.1.1.1. Serin proteasas

Las serin proteasas son las enzimas con el mayor número de secuencias codificantes (89) encontradas en el transcriptoma de las glándulas venenosas de *P. boliviensis*; no obstante, estos transcritos no tienen altos niveles de expresión de acuerdo al análisis de cuantificación de RNA-Seq (229,62 TPM); esto podría explicar que en el zimograma de gelatina se haya evidenciado poca actividad proteolítica (Figura 7). Por otra parte, en el transcriptoma de la glándula venenosa de *P. boliviensis* se evidencian un gran número de secuencias codificantes para inhibidores de serin proteasas (71) con un nivel de expresión menor que el de las serin proteasas, que podrían disminuir el efecto de estas enzimas del veneno.

Aunque la actividad proteolítica de los venenos de arañas tiene una larga historia, estas endopeptidasas son las enzimas menos exploradas de estos venenos. Las serin proteasas escinden los enlaces peptídicos en las proteínas, razón por la cual en un envenenamiento se producen efectos como dermonecrosis, alteraciones en la hemostasis y en la función plaquetaria, además de actividad anticoagulante, a través de la inhibición del Factor Xa (Sannaningaiah *et al.*, 2014). Sin embargo, estas también pueden actuar en maduración de toxinas, digestión de la presa y daño directo del tejido (Diniz *et al.*, 2018). Aunque en las pruebas de toxicidad del veneno de *P. boliviensis* no se evidenció dermonecrosis, las zonas hemorrágicas observadas en pulmones e hígado pueden ser el reflejo de las alteraciones en la coagulación y el daño de estos tejidos ocasionadas por estas enzimas, adicionalmente, y debido a sus efectos, pueden causar alteraciones en la homeostasis, que se puede evidenciar en la disminución del peso corporal en los días posteriores a la administración del veneno en el ratón sobreviviente de la dosis de 0,9 μ g/g del veneno completo de *P. boliviensis* (Anexo X).

A pesar que la cantidad de secuencias de las serin proteasas son mucho mayores para el transcriptoma de *P. boliviensis* que en otros análisis de glándulas venenosas de arañas de este género, se podría decir que estas enzimas podrían representar una gran parte del veneno de las arañas del género *Phoneutria*, ya que en el análisis de las secuencias obtenidas de las glándulas venenosas de *P. nigriventer*, la familia de las serin proteasas fue la tercera más representada dentro de los componentes del veneno (42 secuencias codificantes) (Diniz *et al.*, 2018). Por el contrario, en las glándulas venenosas de *P. pertyi* solo se encontraron dos secuencias codificantes para serin proteasas; aun así, en este estudio se describieron como una de las principales familias encontradas en este transcriptoma (Paiva *et al.*, 2019).

En el transcriptoma de *P. boliviensis* se encontraron dos secuencias con identidad hacia U21-ctenitoxin-Pn1a, una toxina con actividad serin proteasa del veneno de *P. nigriventer*, ambas con identidad del 94,3 %, confirmando que, a pesar de la similitud de los componentes del veneno, se evidencian diferencias entre ellos dentro de las especies de este género. Además, estás enzimas se han reportado en análisis transcriptómicos de glándulas venenosas de otras arañas como *Cupiennius salei*, una de las arañas con las que

más se observó que tenían identidad las secuencias obtenidas, dado que pertenecen a la misma familia (Kuhn-Nentwig *et al.*, 2019).

6.5.1.1.2. Colinesterasas

Las colinesterasas son enzimas que lisan los ésteres de la colina, muchos de los cuales son neurotransmisores, como por ejemplo, la acetilcolina. La actividad catalítica de esta enzima es esencial para la transmisión colinérgica y la función neuromuscular (Colović *et al.*, 2013). El ejemplo no sináptico más común es el veneno de serpiente, en el que se desconoce su función; aunque por su actividad catalítica, podría sospecharse que inhibiría la transmisión de las señales de la acetilcolina que está ampliamente distribuida en los circuitos extrapiramidales dentro del SNC y en el sistema nervioso autónomo dentro del SNP (Ahmed *et al.*, 2012).

Las secuencias codificantes para colinesterasas encontradas en el transcriptoma de *P. boliviensis* (46) tuvieron identidad con acetilcolinesterasas putativas de otras arañas, como *Pardosa pseudoannulata, Stegodyphus mimosarum, Trichonephila clavipes y Araneus ventricosus*. La actividad de estas enzimas en el veneno de *P. boliviensis* podría estar relacionada con la perturbación de las funciones nerviosas ocasionando las alteraciones motoras y sialorrea evidenciadas en los ensayos de toxicidad en ratones. Estas enzimas también fueron reportadas en el análisis transcriptómico de *P. nigriventer* en bajas proporciones con 10 secuencias codificantes (Diniz *et al.*, 2018); no obstante, esta familia no fue reportada en el análisis transcriptómico de *P. pertyi* (Paiva *et al.*, 2019).

6.5.1.1.3. Metaloproteasas

Dentro de la familia de las enzimas, las metaloproteasas presentaron el tercer lugar de representación, con un total de 35 secuencias; no obstante, el análisis de cuantificación de RNA-Seq mostró que sus niveles de expresión eran relativamente bajos, por lo que es justificable que, además de la baja expresión de serin proteasas y la presencia de inhibidores, no se haya visto un efecto muy notorio en el zimograma de gelatina. La actividad de las metaloproteasas ha sido reportada en muchos venenos de arañas del género *Loxosceles* e *Hippasa* (Atkinson & Wright, 1992; da Silveira *et al.*, 2002; Nagaraju *et al.*, 2007a,b; Pincus *et al.*, 1999; White *et al.*, 1995; Young & Pincus, 2001; Zanetti *et al.*, 2002); y dos de ellas han sido purificadas, una de cada veneno (Nagaraju *et al.*, 2007a, b; Zanetti *et al.*, 2002).

De igual manera a lo encontrado en este análisis transcriptómico de las glándulas venenosas de *P. boliviensis*, las metaloproteasas también fueron reportadas en el transcriptoma de *P. nigriventer* con 33 secuencias codificantes (Diniz *et al.*, 2018).

6.5.1.1.4. Hialuronidasas

Las hialuronidasas se encargan de la hidrólisis de hialuronano en fragmentos de tamaño molecular variado, reduciendo drásticamente la viscosidad del medio envenenado y favoreciendo así la rápida difusión de toxinas en la circulación, que de otro modo se difundiría más lentamente (Kemparaju & Girish, 2006; Girish *et al.*, 2002). La actividad hialuronidasa se ha reportado en diferentes venenos de arañas de los géneros *Cupiennius, Lycosa, Lampona, Loxosceles, Hippasa* y *Vitalius* (Barbaro *et al.*, 2005; da Silveira *et al.*, 2007a; Kuhn-Nentwig *et al.*, 1994; Nagaraju *et al.*, 2006; Rash & Hodgson, 2002; Rocha-E-Silva *et al.*, 2009a,b; Wright *et al.*, 1973; Young & Pincus, 2001).

Las secuencias codificantes para hialuronidasas en el transcriptoma de las glándulas venenosas de *P. boliviensis* (11) están en consonancia con la actividad evidenciada en el zimograma de ácido hialurónico, aunque no se registró de forma notoria la hidrólisis, podría ser debido a que son pocas las secuencias codificantes para estas enzimas con bajos niveles de expresión (133,51 TPM), lo que explica que la cantidad empleada de las fracciones (2 µg) no es suficiente para que se evidencie una notoria degradación potente del ácido hialurónico en el gel. Estas enzimas también han reportado en análisis transcriptómicos de otras especies de la familia Ctenidae en bajas proporciones, como en el

de *C. salei* representando el 2,2 % de las secuencias (Kuhn-Nentwig *et al.*, 2019); y en el de *P. nigriventer*, donde reportaron cuatro secuencias codificantes (Diniz *et al.*, 2018).

6.5.1.1.5. Fosfolipasas

Las fosfolipasas hidrolizan los fosfolípidos en ácidos grasos y otras sustancias lipofílicas. La toxicidad local y sistémica de las fosfolipasas del veneno de araña está relacionada con la producción de edema, inflamación, dermonecrosis, hemólisis, alteración de hemostasis y de la función plaquetaria (Sannaningaiah *et al.*, 2014). En los venenos de arañas se ha identificado la actividad fosfolipasa A2 en el veneno de la araña *Hadronyche versuta* (Sheumack *et al.*, 1984) y de *Eresus niger* (Usmanov & Nurtova, 1994). Además, se han identificado isoformas de fosfolipasas D en el veneno de las arañas del género *Loxosceles* las cuales inhiben la agregación plaquetaria en humanos (da Silveira *et al.*, 2006).

En el transcriptoma de *P. boliviensis* se encontraron pocas secuencias codificantes anotadas como fosfolipasas, cinco de estas codificantes para fosfolipasas A2 y una para fosfolipasa B. A pesar de haber encontrado estas secuencias en el transcriptoma, en las placas de agarosa con yema de huevo no se evidenció esta actividad para las fracciones obtenidas por RP-HPLC ni para el veneno completo, lo que puede explicarse por la baja cantidad de secuencias codificantes, que además no tienen altos niveles de expresión, por lo que podría requerirse de cantidades mucho mayores para que el efecto de estas enzimas sea visible; lo que puede confirmar que este tipo de enzimas no representan un papel importante en este envenenamiento. La duda sobre la relevancia de estas enzimas como componentes del veneno se ha planteado para otras arañas de la familia como C. salei, ya que la expresión de esta enzima comparada con otras proteínas del veneno es mucho menor (Kuhn-Nentwig *et al.*, 2019). En el análisis transcriptómico de *P. nigriventer* se reporta esta familia como una de las familias con menor proporción de secuencias en relación con las otras familias de toxinas encontradas, con siete transcritos anotados como fosfolipasas (Diniz et al., 2018). Ahora bien, en el análisis transcriptómico reportado para P. pertyi no se indica la presencia de transcritos codificantes para fosfolipasas (Paiva *et al.*, 2019).

6.5.1.1.6. Otras enzimas

El análisis transcriptómico de las glándulas venenosas de *P. bolilviensis* reportó la presencia de otras enzimas con una abundancia y expresión relativa menor. Entre estas se encuentran las **carboxilesterasas**, enzimas que hidrolizan los ésteres de ácido carboxílico en sus correspondientes ácidos y alcoholes (Torres *et al.*, 2014), y para las que se encontraron nueve secuencias codificantes cuyos niveles de expresión son relativamente bajos comparados con los niveles de expresión de los otros componentes. Las carboxilesterasas pueden catalizar algunos medicamentos, pesticidas y productos veterinarios que contienen restos éster (Hatfield & Potter 2011); es probable puedan estar involucradas en la desintoxicación xenobiótica y en la resistencia a los insecticidas (Werren *et al.*, 2010; Bonasio *et al.*, 2010). A pesar de esta función fisiológica, se ha demostrado que la carboxilesterasa del veneno de *Apis mellifera* causa reacciones alérgicas en humanos (Blank *et al.*, 2008), y contribir en la presentación de algunos a los signos de las mordeduras por la araña *P. boliviensis*.

Entre otras enzimas encontradas como componente integral del veneno de *P*. *boliviensis* están las **kinasas**, con cinco secuencias codificantes con bajos niveles de expresión, y que modifican otras proteínas al agregarles químicamente grupos fosfato. Las kinasas se han encontrado en venenos de endoparásitos que les ayudan a inhibir el sistema inmune de su huésped (Xiu *et al.*, 2017); pudiendo pensar que para *P. boliviensis* también podrían potencialmente actuar como toxinas de defensa o en el momento de la mordedura, inhibir el sistema inmune de la presa que no pueda causar una respuesta de defensa al envenenamiento. Cabe resaltar que esta enzima no se reportó en el análisis transcriptómico de *P. nigriventer* ni de *P. pertyi*, y no se cuenta con un registro de la presencia de estas enzimas en venenos de arañas, lo cual podría ser resaltable en cuanto a que es un reporte de un componente no descrito previamente el veneno de las arañas de este género.

Las secuencias codificantes para **oxidorreductasas** encontradas en el análisis transcriptómico de *P. boliviensis* (cinco secuencias) con bajos niveles de expresión (5,45 TPM), están relacionadas con el dominio amino oxidoreductasa, que comprende entre otras las L-aminoácido oxidasas (L-AAO), unas flavoenzimas responsables de dar el color amarillo de los venenos de serpientes y catalizar de manera especifica la desaminación oxidativa de un L-aminoácido. Estas enzimas son capaces de inducir apoptosis de varios tipos de células, incluidas las endoteliales vasculares (VEC); aunque el mecanismo aún no está claro, parece que implica la producción de H₂O₂ que se logra mediante la oxidación de algunas proteínas de la membrana plasmática de VEC (Ciscotto *et al.*, 2008). Otras actividades de las L-AAO incluyen inducción o inhibición de la agregación plaquetaria, actividad anticoagulante, estimulación de la formación de edema, hemorragia y funciones antibacterianas, antivirales y leishmanicidas (Ciscotto *et al.*, 2008).

Por otra parte, se encontraron cuatro secuencias codificantes para **glutamato sintasa** que también tienen este dominio amino oxidorreductasa con bajo nivel de expresión (14,86 TPM). Este tipo de efectos no fueron especialmente visibles durante la evaluación macroscópica de los órganos en la prueba de toxicidad, ya que fueron pocas las secuencias codificantes y con bajos niveles de expresión.

Las **fosfodiesterasas** son un grupo de enzimas que rompen el enlace fosfodiéster. Se ha reportado la actividad fosfodiesterasa en el veneno de las arañas *Aphonopelma robustus, Aphonopelma cratus y Latrodectus mactans*. La farmacología de la fosfodiesterasa en los venenos de arañas es desconocida, aunque se ha postulado que altera los niveles extracelulares de nucleótidos para contribuir a la muerte de las presas; adicionalmente, al regular la concentración del AMP cíclico y del GMP cíclico dentro de las células por degradación, puede generar vasoconstricción y aumento de la presión arterial (Sannaningaiah *et al.*, 2014; Santoro *et al.*, 2009); la hipertensión ha sido un síntoma descrito durante el envenenamiento por arañas del género *Phoneutria* (Quintana & Patiño, 2002). En el transcriptoma de *P. boliviensis* se detectaron dos secuencias codificantes para fosfodiesterasas que tienen niveles de expresión bajos (85,32 TPM). Entre las enzimas que degradan los ácidos nucleicos, se encuentran las **endonucleasas**, que en el análisis transcriptómico de las glándulas venenosas de *P*. *boliviensis* su abundancia fue de una secuencia codificante y un bajo nivel de expresión (7,35 TPM). Las endonucleasas son especialmente abundantes en venenos de serpientes, actuando directamente en mono y/o polinucleótidos, liberando nucleótidos y nucleósidos que controlan varios sistemas biológicos, entre ellos la función plaquetaria, ya que los nucleótidos son almacenados en las plaquetas en grandes cantidades, para ser secretados cuando estas se activan (Santoro *et al.,* 2009). Al igual que las fosfodiesterasas, estas enzimas podrían aportar con diferentes efectos del envenenamiento que alteren la homeostasis, como la presión arterial.

Otras enzimas que también fueron encontradas en el transcriptoma de *P. boliviensis*, tales como las **fosfatasas**, **transferasas** y **carboxipeptidasas**, que hacen parte del tipo de enzimas **hidrolasas**, pueden mejorar la acción de las toxinas al descomponer los refuerzos intercelulares y las moléculas de la membrana basal (Yan & Wang, 2015).

Entre las secuencias con menor abundancia que codifican para enzimas en el análisis transcritómico de las glándulas venenosas de *P. boliviensis* están las **lipasas** y **ligasas**. Las lipasas hidrolizan los triglicéridos y los colesteril ésteres; se han reportado previamente en venenos de animales como la serpiente *Micrurus altirostris* hallada en el proteoma del veneno y en el transcriptoma de la glándula venenosa, y su contribución biológica en el veneno es desconocida (Corrêa-Netto *et al.*, 2011). La secuencia codificante catalogada como ligasa, está relacionada con el dominio asociado a SPRY, cuya función es desconocida. Las proteínas obtenidas a partir de venenos de animales con este dominio se han denominado serpina (vespryn - *Venom PRY-SPRY domain-containing proteins*); sin embargo, solo se han identificado unas pocas proteínas que pertenecen a esta familia a partir de los venenos de varias serpientes y lagartos. Uno de los miembros de esta familia, es la ohanina que induce hipolocomoción e hiperalgesia en ratones (Chatrath *et al.*, 2011).

Estos signos fueron evidenciados en los ratones durante el ensayo de toxicidad aguda del veneno de *P. boliviensis*. Por otra parte, en el análisis transcriptómico de las glándulas venenosas de la tarántula *Chilobrachys jingzhao*, las ligasas se encontraron asociadas al metabolismo, pudiendo ejercer la misma función en el veneno de *P. boliviensis* (Chen *et al.*, 2008).

6.5.1.2. Neurotoxinas

El propósito principal del veneno de araña es paralizar a la presa; por lo tanto, es una rica fuente de variedad de toxinas que afectan el sistema nervioso. Predominantemente, las neurotoxinas caracterizadas a partir de estos venenos son proteínas / péptidos o acil poliaminas, que ejercen una variedad de acciones en todo el sistema nervioso. Por tanto, la mayoría de estas neurotoxinas parecen apuntar a los receptores neuronales, los canales iónicos neuronales o las proteínas de membrana presináptica que están involucradas en la liberación de neurotransmisores (Davletov *et al.*, 2012). Las neurotoxinas se han estudiado ampliamente en las arañas *Atrax robustus, Hadronyche versuta* y especies de *Loxosceles* (Browne, 1997; del Brutto, 2013; Hodgson, 1997; Miller *et al.*, 2000).

Dado que el veneno de las arañas del género *Phoneutria* se caracteriza por afectar el Sistema Nervioso, era de esperarse que el análisis transcriptómico de las glándulas venenosas de *P. boliviensis* revelara una gran cantidad de transcritos con identidad para este tipo de toxinas, y de hecho se encontraron 156 secuencias, que además, es la familia de secuencias con más altos niveles de expresión. Este resultado concuerda con lo encontrado por Diniz *et al.* (2018), en las glándulas venenosas de *P. nigriventer*, donde 84 de las secuencias encontradas fueron anotadas como moduladores de canales iónicos de calcio, sodio o potasio. Además, en el análisis transcriptómico de *P. pertyi*, se encontraron 38 secuencias que tuvieron identidad con toxinas que alteran canales iónicos de sodio y calcio (Paiva *et al.*, 2019).

Adicionalmente, las neurotoxinas encontradas en el transcriptoma de *P. boliviensis* tienen identidad con toxinas que alteran canales de calcio dependientes de voltaje (49 secuencias); estos canales juegan un rol fundamental en funciones cardiaca, muscular y neuronal. La función biológica de las toxinas que alteran los canales de calcio en el veneno de araña podría estar relacionada con la producción de parálisis muscular de la presa por el bloqueo de la entrada de calcio y la liberación presináptica de neurotrasmisores resultando en parálisis flácida (Escoubas *et al.*, 2000a, b). Por otra parte, la acción de las toxinas de calcio sobre los canales de calcio en el corazón pueden ser las responsables de las arritmias generadas durante el envenenamiento por arañas de este género.

En el transcriptoma de *P. boliviensis* también se encontraron toxinas que alteran canales de sodio dependientes de voltaje (26 secuencias), que tienen los más altos niveles de expresión de los componentes del veneno (5.376,60 TPM). Los canales de sodio dependientes de voltaje están presentes principalmente en neuronas y células musculares y son responsables de la fase de despolarización del potencial de acción, contribuyendo en la generación y propagación del potencial de acción en células excitables, aumentando el flujo de iones de sodio a través de la membrana. Luego, las células se despolarizan de manera fuerte y duradera, y esto induce una estimulación neuronal presináptica que produce una liberación masiva de neurotransmisores y parálisis (Escoubas *et al.*, 2000a, b). Aunque la parálisis no fue un signo evidenciado en las pruebas de toxicidad del veneno de *P. boliviensis*, sí se observaron alteraciones motoras, principalmente dificultades en la marcha, que pueden estar mediadas por este tipo de neurotoxinas que generan potenciales de acción y liberación de neurotransmisores. Entre estos neurotrasmisores se encuentra la acetilcolina que está relacionada con la sialorrea observada en las pruebas de toxicidad y el priapismo evidenciado en fracciones del veneno de *P. boliviensis*.

Aunque en este análisis no se encontraron secuencias de neurotoxinas que pudieran alterar canales de potasio, es importante destacar que a una gran proporción de las secuencias anotadas como neurotoxinas (74 secuencias) aun no se les ha identificado su posible diana. Adicionalmente, en *P. boliviensis* se identificaron seis secuencias con

identidad hacia atracotoxinas pertenecientes a la familia de atracotoxinas tipo MIT, relacionado con el péptido no tóxico Atracotoxin-Hvf17 de *Hadronyche versuta*, que carece de actividad insecticida y no afecta la contractilidad del músculo liso (Wen *et al.*, 2005). En el análisis realizado para *P. nigriventer* se encontraron tres secuencias (Diniz *et al.*, 2018).

6.5.1.3. Inhibidores enzimáticos

La presencia de inhibidores enzimáticos es fundamental para la regulación de enzimas, las cuales podrán generar daños a nivel celular (Armstrong, 2001). Consecuentemente, en el transcriptoma de las glandulas venenosas de *P. boliviensis* se detectaron relaciones directamente proporcionales entre los niveles de expresión de las enzimas y sus inhibidores. Los niveles de expresión promedio observados para estos inhibidores fueron un poco menores a los niveles de expresión de las enzimas que inhiben en la mayoría de los casos, con excepción de las metaloproteasas para las que el nivel de expresión de su inhibidor es mucho mayor (Figura 13).

Se han reportado inhibidores de proteasa en el veneno de *L. laeta*, con actividad anticoagulante con acción sobre el factor Xa, y *L. intermedia* (Fernandes-Pedrosa *et al.*, 2008; Gremski *et al.*, 2010; Gremski *et al.*, 2014). Además, se han identificado inhibidores de serin proteasa en venenos de tarántula con un fuerte efecto sobre la tripsina y también pueden bloquear el canal de potasio (Yuan *et al.*, 2008). Los resultados reportados para los análisis transcriptómicos de otras especies de *Phoneutria* concuerdan con lo encontrado en el análisis de las glándulas venenosas de *P. boliviensis*, ya que los inhibidores enzimáticos se destacaron por la gran cantidad de secuencias codificantes, en su mayoría con acción sobre serin proteasas (85,5 %), entre los que se encontraron inhibidores de tripsina tipo Kunitz y de tipo TIL (Trypsin Inhibitor like), de serin proteasa tipo Kazal y de serin proteasa de la familia Squash. Adicionalmente, se encontraron cistatinas, con dominio tiroglobulina, una secuencia codificante para un inhibidor de metaloproteasas y otras de peptidasas.

Los inhibidores del dominio TIL se han descrito en las secreciones de algunos arácnidos, como las garrapatas (Fogaça *et al.*, 2006) y los escorpiones (Chen *et al.*, 2013). En el transcriptoma de las glándulas de *P. nigriventer* se encontraron inhibidores de proteasas de diferentes clases como: con dominio tiroglobulina, de tipo TIL, cistatinas, de tipo Kunitz y serpinas, uno específico de elastasa y uno de metaloproteasas (TIMP) (Diniz *et al.*, 2018). Además, en el análisis transcriptómico de las glándulas venenosas de *P. pertyi*, se encontraron inhibidores tipo TIL y de tipo Kunitz (Paiva *et al.*, 2019). Adicionalmente, los de tipo Kunitz, con dominio tiroglobulina y cistatinas también se reportaron en el análisis transcriptómico de *C. salei*, pero con una abundancia menor a la que se apreció en el transcriptoma de *P. boliviensis* (Kuhn-Nentwig *et al.*, 2019).

6.5.1.4. Factores de crecimiento

Las proteínas relacionadas con factores de crecimiento, tales como el endotelio vascular (VEGF), se han reportado en venenos de serpientes, como los de *Vipera ammodytes ammodytes, Daboia russelli russelli y Bothrops insularis* (Junqueira de Azevedo *et al.*, 2001; Suto *et al.*, 2005). En el veneno de *Vipera aspis* se encontró una proteína con una fuerte similitud con los VEGF, que genera hipotensión, tiene efectos angiogénicos y es capaz de aumentar la permeabilidad vascular de los VEGF (Junqueira de Azevedo *et al.*, 2001; Suto *et al.*, 2005). En el transcriptoma de *P. boliviensis* se anotaron 31 secuencias codificantes con este dominio de VEGF, cuyo nivel de expresión promedio se encuentra entre los más bajos de los componentes del veneno. Sería posible que estas secuencias posean este efecto y contribuyan a la hipotensión que ha sido descrita durante el envenenamiento que producen las arañas del género *Phoneutria*, sin embargo, se requieren estudios para confirmarlo.

Las cinco secuencias codificantes anotadas para el **factor de crecimiento derivado de plaquetas** de las glándulas venenosa de *P. boliviensis* tienen niveles de expresión promedio muy bajos (2,45 TPM); podrían cumplir una función protectora en la glándula venenosa al ser mitogénico para diversas células conectivas de tejido (Golde *et al.*, 1980).
Este tipo de factor se reportó en el veneno de *Vipera ammodytes ammodytes*, con VEGF-F que se une a su receptor KDR (receptor que contiene dominio de quinasa, receptor VEGF 2) e induce una variedad de efectos biológicos, como el crecimiento endotelial, la permeabilidad vascular y la hipotensión (Yamazaki & Morita, 2007, 2008). Las secuencias anotadas con identidad a este factor en el transcriptoma de *P. boliviensis* podrían producir estos efectos generando hipotensión, pero se requeriría comprobar este efecto en el envenenamiento.

Las secuencias codificantes para factor de crecimiento tipo insulina se han reportado en análisis transcriptómicos de glándulas venenosas de arañas, relacionándose con la protección de la integridad de la araña, ya que esta proteína podría estimular el crecimiento de las células de la glándula venenosa, previniendo su rompimiento por la acción citolítica de algunos componentes del veneno (dos Santos *et al.*, 2009). No obstante, la insulina y los péptidos relacionados (péptidos y factores de crecimiento tipo insulina y relaxinas) se han encontrado como un componente mayoritario en el veneno del caracol marino *Connus geographus*, jugando un papel principal en su estrategia de caza (Robinson & Safavi-Hemami, 2016). Además, este factor de crecimiento tipo insulina se ha encontrado en el veneno y en el transcriptoma de la glándula venenosa de la cobra rey Ophiophagus hannah, también se reportó en el análisis transcriptómico de las glándulas venenosas de la araña C. salei; su rol aún no se ha determinado, pero se sugiere que su diana podría ser en el metabolismo alterando las vías de señalización de la insulina y la homeostasis de la glucosa (Kuhn-Nentwig et al., 2019; Robinson & Safavi-Hemami, 2016; Vonk et al., 2013). Aunque faltan estudios que lo comprueben, se sugiere que las 10 secuencias codificantes para este factor podrían tener estas dos funciones biológicas en el veneno de P. boliviensis: la conservación de la integridad de la glándula venenosa, así como alterar la homeostasis en la presa.

Adicionalmente, en el transcriptoma de *P. bolivensis* se encontraron dos secuencias codificantes para **factor de crecimiento nervioso**, cuyos niveles de expresión promedio están entre los más bajos niveles de las familias identificadas como componentes del

veneno. Estos factores se han detectado previamente en venenos de serpientes, cuya función probablemente sea hacer el sitio de inyección de veneno más susceptible a los compuestos venenosos y conduzca a una distribución óptima de sustancias que de otro modo difícilmente se infiltrarían en el tejido. El factor de crecimiento nervioso de la serpiente *Naja naja atra*, puede influenciar el sistema hemodinámico al causar una disminución en la presión arterial en ratas (Kostiza & Meier, 1996). Esto podría indicar que este factor de crecimiento, así como los mencionados previamente, generan hipotensión y subsecuente alteración de la homeostasis en el envenenamiento por *P. boliviensis*, pero faltan estudios que lo comprueben.

6.5.1.5. CRISP

Las proteínas CRISP forman parte de la superfamilia CAP (por sus siglas en inglés) que incluye familias como la de Antigeno-5 y otras proteínas relacionadas con patogenicidad tipo 1, que son proteínas producidas en plantas en caso de un ataque por patógenos con actividad antifúngica (van Loon, 1985). Se han identificado miembros de esta superfamilia en muchos reinos animales, incluidos aquellos donde se encuentran los animales venenosos, como uno de los componentes más comunes en los venenos. La contribución de las CRISP a la toxicidad del veneno, sus dianas moleculares exactas y el mecanismo de acción siguen siendo desconocidos. El dominio de proteína de recubrimiento de esperma (SCP, sperm-coating protein por sus siglas en inglés), típico en estas moléculas y presente en las secuencias identificadas, puede funcionar como endopeptidasas. Este dominio también puede tener una función quelante de Ca²⁺, actuando sobre procesos de señalización y deteriorando canales y receptores que son sensibles a este ion. El uso de enfoques experimentales para revelar las posibles acciones de CRISP en el envenenamiento, la contracción del músculo liso, la inflamación, la inducción de la expresión de las moléculas de adhesión de las células endoteliales vasculares y la inhibición de la angiogénesis, indica que estas moléculas, pueden tener un papel en el envenenamiento (Diniz et al., 2018).

En el transcriptoma de *P. boliviensis* se identificaron 36 secuencias codificantes para CRISP con altos niveles de expresión (1.065,36 TPM), indicando que bien podría ser unos de los componentes principales en el veneno de esta araña. El hallazgo de estas secuencias concuerda con la identificación previa de una proteína CRISP en el veneno de *P. keyserlingii*; además de una abundante presencia de componentes putativos del veneno en el análisis de la glándula venenosa de *P. nigriventer* (22 secuencias); sin embargo, en el análisis de las secuencias de *P. pertyi*, la presencia de esta familia no fue tan abundante (Paiva *et al.*, 2019). Aunque ya se ha confirmado la presencia de estas proteínas en el veneno, la diferencia en su abundancia en los análisis de los transcriptomas podrían sugerir variaciones entre la composición de los venenos de las especies de este género. Adicionalmente, se ha reportado su presencia en análisis de las glándulas venenosas de *Grammostola rosea y C. salei* (Kimura *et al.*, 2012; Kuhn-Nentwig *et al.*, 2019).

6.5.1.6. Proteínas tumorales controladas traduccionalmente – TCTP

Las funciones fisiológicas de TCPT aun no se han explorado. Tras el envenenamiento, las proteínas TCPT promueven la liberación de histamina en los basófilos e inducen la producción de interleucinas a partir de basófilos y eosinófilos (Bheekha-Escura *et al.*, 2000; Sun *et al.*, 2008). Los estudios han sugerido que la histamina liberada por las proteínas TCTP se une a sus receptores al inducir edema, aumentar la permeabilidad vascular y la vasodilatación (Chaim *et al.*, 2011; Weisel-Eichler & Libersat, 2004). Por lo tanto, las TCTP también están teniendo varias aplicaciones terapéuticas en oncología experimental y en el desarrollo de medicamentos contra el cáncer. Las proteínas tumorales controladas por traducción o los factores de liberación de histamina se identificaron en los venenos de las arañas *L. intermedia*, *L. laeta* y *Hogna aspersa* con la ayuda de enfoques transcriptómicos (Gremski *et al.*, 2010).

En el transcriptoma de las glándulas venenosas de *P. boliviensis* se encontraron 17 secuencias codificantes para esta familia de proteínas que representan una baja proporción del transcriptoma y sus niveles de expresión promedio no fueron particularmente altos

(167,57 TPM). La presencia de estas proteínas en las secuencias obtenidas de las glándulas venenosas y en el veneno, podría explicar el edema ocasionado en el envenenamiento por este tipo de arañas; por otro lado, la vasodilatación generada por estas proteínas puede producir hipotensión. Las TCTP se han reportado previamente en análisis de glándulas venenosas de otras arañas, entre ellas de *Grammostola rosea* (Kimura *et al.*, 2012). Particularmente en arañas del género *Phoneutria*, se hallaron en el análisis transcriptómico de *P. nigriventer*, con 3 secuencias codificantes y altos niveles de expresión (Diniz *et al.*, 2018); mientras para el de *P. pertyi* no revela la presencia de estas proteínas (Paiva *et al.*, 2019).

6.5.1.7. Péptidos tipo fibrinógeno

Las secuencias anotadas como péptidos tipo fibrinógeno encontradas en el análisis transcriptómico de la glándula venenosa de P. boliviensis, tuvieron identidad con tequilectinas. Este tipo de proteínas con el dominio tipo fibrinógeno se ha reportado previamente en el veneno de la serpiente de agua con cara de perro Cerberus rynchops, en el que identificaron las proteínas ryncolin 1 y 2, por la similitud de su secuencia con las ficolinas, se ha sugerido que estas podrían estar relacionadas con la agregación plaquetaria y/o coagulación, e iniciar la activación del complemento de las lectinas, un importante sistema efector de la inmunidad innata humoral (OmPraba et al., 2010; Utkin, 2017). En P. boliviensis se encontraron 78 secuencias relacionadas con péptidos tipo fibrinógeno con identidad hacia tequilectinas, con un nivel de expresión considerable, aunque bajo si se compara con los evidenciados para neurotoxinas (348,11 TPM), que podrían ejercer un efecto similar al que se les relaciona en el veneno de serpiente causando agregación plaquetaria en la presa durante el envenenamiento, además de participar en la inmunidad innata. Una de estar proteínas fue reportada en el veneno de *P. nigriventer* como una lectina involucrada en la inmunidad innata (Richardson et al., 2006); además, se ha reportado en las glándulas venenosas de otros ctenidos (Kuhn-Nentwig *et al.*, 2019).

6.5.1.8. Otros componentes del veneno

Los péptidos antimicrobianos están presentes en todos los seres vivos y son parte del sistema de defensa innato contra agentes externos (Hancock *et al.*, 2016). Algunos de esos péptidos, además de tener actividad antimicrobiana, pueden modular el sistema inmune (Cuperus *et al.*, 2013; Steinstraesser *et al.*, 2011). Las secuencias codificantes para **defensinas** se reportaron en las glándulas venenosas de *Cuppiennius getazi* y *C. salei* (Kuhn-Nentwig *et al.*, 2019). En el transcriptoma de las glándulas venosas de *P. boliviensis* se anotaron dos secuencias codificantes para defensinas, una de ellas con identidad hacia un péptido con actividad antimicrobiana; estas secuencias cuentan con un nivel de expresión promedio muy bajo (21,15 TPM). Así como una secuencia como antimicrobiano, presentando un nivel de expresión más alto (271 TPM), pero no más que las neurotoxinas. El bajo número de secuencias encontradas que podrían tener esta acción antimicrobiana, así como sus niveles de expresión, podría explicar que no se haya encontrado una inhibición en el crecimiento bacteriano sobre las cepas evaluadas y a las concentraciones trabajadas.

Las seis secuencias codificantes con niveles de expresión promedio muy bajos (7,89 TPM) para factor von Willebrand tipo C, son caracteristicas del dominio único de factor von Willebrand tipo C (SVWC, por las siglas *Single domain von Willebrand factor type C*), y responden a desafíos ambientales, como la infección bacteriana y el estado nutricional, también están involucrados en la inmunidad antiviral (Chen *et al.*, 2011). Además, una secuencia del transcriptóma de *P. boliviensis* tuvo identidad con un péptido diurético tipo hormona HD-31, una hormona que aumenta la producción de cAMP activando los cotransportadores de Na⁺, K⁺ y Cl²⁻, y además incrementa la secreción de fluidos en los túbulos de Malpighian de varias especies de insectos (Alexander *et al.*, 2018). Los niveles de expresión de este péptido de tipo hormona diurética son considerables en comparación con los niveles de las otras clases (428,94 TPM), sugiriendo que podría ejercer un papel importante durante el envenenamiento, pudiendo sospechar que por su activación de cotransportadores de iones en las células, podría alterar la cantidad de fluido extracelular y generar una alteración de la homeostasis.

Es común identificar transcritos con anotación de componentes de veneno sin función conocida. Se anotan como tal porque no tienen un dominio asociado que corresponda a alguna familia de proteínas u otra información de actividad o diana molecular (Romero-Gutierrez, 2018). Para el transcriptoma de *P. boliviensis* se identificaron 15 secuencias con identidad hacia péptidos a los que aún no se conoce su función ni se pudieron relacionar con un dominio PFAM que pudiese dar un indicio de su actividad; sin embargo, estos transcritos tienen niveles de expresión promedio relativamente alto en comparación con los niveles de las otras clases (597,40 TPM), lo cual podría indicar que son secuencias que codifican para péptidos que posiblemente jueguen un papel importante en el envenenamiento de *P. boliviensis*.

6.6. Diseño, expresión y purificación de un péptido recombinante con posible actividad analgésica

El diseño de la toxina recombinante contiene 6His en el extremo amino, que permitieron la purificación del producto heterólogo, seguidas del gen de interés, flanqueado por los sitios de digestión *Bam*HI / *Pst*I. La expresión de prueba del péptido recombinante Ctx-4 se realizó en la cepa XL1 Blue de *E. coli*, una cepa hospedera sugerida para clonaciones de rutina. El péptido se expresó en células *E. coli* M15 y Origami, utilizadas preferiblemente para proteínas tóxicas y de proteínas insolubles, respectivamente. A pesar del uso preferencial de M15, se ha reportado que este sistema y el vector pQE-30 en la expresión de algunas proteínas tienen una toxicidad inherente no atribuible al IPTG y, en consecuencia, produce una marcada inhibición en el crecimiento celular (Metz *et al.*, 2017). Esto podría explicar el hecho que, aunque en ambas cepas se haya observado la producción de una proteína de tamaño esperado, Origami haya tenido mejores rendimientos aparentes.

La expresión del péptido recombinante Ctx-4 en la fracción insoluble, formando cuerpos de inclusión. Los cuerpos de inclusión o agregados insolubles de proteínas, pueden llegar a formarse porque algunos productos puedes se tóxicos para el huésped cuando se expresan, o no logran adquirir una conformación correcta, o sufran degradación proteolítica, o se asocien entre ellos (Baneyx & Mujacic, 2004). En este caso, es probable que parte de la insolubilidad del péptido se deba a su contenido de cisteínas, que promuevan su agregación por formación de algunos puentes disulfuro y/o por la unión de las regiones hidrófobas. No obstante, la formación de estos cuerpos de inclusión permite la expresión continua de proteína recombinante sin comprometer la viabilidad de *E. coli* (Samaniego-Hernández, 2007). La formación de estos cuerpos de inclusión se ha reportado previamente en la expresión recombinante de otros péptidos con el mismo número de cisteínas, provenientes del veneno la araña *Oxyopes lineatus* (Estrada *et al.*, 2016).

La expresión de proteínas de venenos de arañas en la fracción soluble se ha logrado para proteínas dermonecróticas del veneno de *L. intermedia*, que tienen alto peso molecular y pocas cisteínas en sus secuencias (Araujo *et al.*, 2003; da Silveira *et al.*, 2006); y para el péptido Ph α 1 β , de 10,894 Da y de 12 cisteínas, mediante la adición de proteínas de fusión a las secuencias codificantes (de Souza *et al.*, 2008). Para la expresión heteróloga de Hainantoxin-IV, un péptido de 35 aminoácidos y seis cisteínas, del veneno de la araña *Selenocosmia hainana*, se combinó la etiqueta glutation-S-transferasa (GST) y un modificador pequeño relacionado con la ubiquitina (SUMO, por sus siglas en inglés), para promover la solubilidad y el plegamiento de la proteína recombinante, sin necesidad de realizar procesos de plegamiento posteriores, y logrando obtener el péptido recombinante tanto en la fracción soluble como en la insoluble (Zhang *et al.*, 2015). Aunque esta estrategia podría resultar promisoria para la obtención del péptido recombinante Ctx-4 en fracción soluble, esto podría disminuir el rendimiento del péptido obtenido (Quintero-Hernández *et al.*, 2011); ya que para algunos péptidos que emplean estas estrategias, los rendimientos son menores al 10 % (Zhang *et al.*, 2015).

El cromatograma obtenido de la purificación por RP-HPLC del péptido recombinante plegado (Figura 17), donde las tres fracciones obtenidas tienen masas similares, sugiriere la formación de isoformas generadas durante el plegamiento por la oxidación de los grupos thiol en la formación de los enlaces disulfuro, como ha sucedido para otros péptidos ricos en cisteínas de venenos de arañas expresados de manera recombinante (Estrada *et al.*, 2016). La presencia de diferentes isoformas durante el plegamiento sería factible dada la riqueza de residuos de cisteína del péptido recombinante (10), pudiendo formarse cinco enlaces disulfuro, con multiples posibilidades de unión y, en consecuencia, una gran variedad de isoformas del péptido. No obstante, se ha observado que, incluso después del plegamiento de péptidos de araña ricos en cisteína, no todas las isoformas obtenidas después de la purificación por RP-HPLC son biológicamente activas; tal es el caso del péptido Ba1 de *Brachypelma albiceps*, para la que sólo una de las isoformas obtenidas del péptido recombinante Ctx-4 obtenidas en la purificación del plegamiento fueron tóxicas sobre grillos, se sugiere que la estrategia de plegamiento empleada es adecuada para el péptido recombinante Ctx-4, aunque otras estrategias podrían evaluarse para lograr una única isoforma con la actividad biológica.

El modelo de expresión seleccionado en *E. coli*, ha sido ampliamente empleado en la expresión heteróloga de toxinas provenientes de venenos de arañas y puede ser rentable obteniendo grandes cantidades del péptido recombinante (10-20 mg/L), aunque este rendimiento disminuye después del plegamiento y purificación del péptido (Li *et al.*, 2000). El rendimiento obtenido después del plegamiento y la purificación por RP-HPLC de la fracción con actividad (1,5 mg/L), que si bien no es una gran cantidad de péptido recombinante, se considera en esta investigación que es aceptable teniendo en cuenta qué los rendimientos pueden reducirse en más de 10 % del producto original. Sin embargo, podrían probarse otros procesos o sistemas que puedan mejorar este rendimiento.

6.7. Validación del ensamble

6.7.1. Búsqueda de las enzimas secuenciadas en el transcriptoma

6.7.1.1. Sequencias obtenidas del zimograma de gelatina

Las dos isoformas de serin proteasas en el transcriptoma de *P. boliviensis* con alta identidad encontradas a partir de las bandas de actividad proteasa del veneno completo de *P. boliviensis* de ~ 30 kDa y la banda de la fracción de 47,2 % de ACN, sugiere que los parámetros establecidos para la realización del ensamble de los reads, fueron adecuados. La diferencia en un aminoácido entre los fragmentos secuenciados del zimograma y la obtenida del transcriptoma observado en el alineamiento (Figuras 18 y 19), puede deberse a una mutación genómica o a una isoforma del gen, sin que esto represente evidencia suficiente para considerar que haya habido un error en la secuenciación o en el ensamblado. Las mutaciones o cambios en algunos aminoácidos de las proteínas puede ocurrir sin que implique necesariamente que un cambio de la función cuando este ocurre fuera del sitio activo de la proteína y no altere su estructura tridimencional, aunque son mucho más comunes los cambios en los que hay una reducción o pérdida completa de la misma (Griffiths *et al.*, 1999).

Los fragmentos obtenidos para a banda con actividad proteolítica de ~ 23 kDa del veneno completo, y las bandas con actividad proteolítica de la fracción de 46,2 % de ACN, no son concluyentes debido a la ausencia identidad con alguno de los transcritos de *P*. *boliviensis*, ya que un único fragmento de 11 residuos no es suficiente para asegurar identidad hacia una secuencia de esta masa molecular aparente.

6.7.1.2. Secuencias obtenidas en el zimograma de ácido hialurónico

La ausencia de identidad de los fragmentos obtenidos por secuenciación para la banda con actividad hialuronidasa de la fracción de 47,2 % de ACN, puede ser debida a que estas secuencias, aunque unicamente se encontraron tres, no fueran suficiente para determinar la actividad o las secuencias no eran demasiado largas para generar una búsqueda certera de un transcrito con el que tengan una alta identidad, con un *e-value* que asegure que el alineamiento no se de por azar.

A los fragmentos obtenidos de la fracción de 52,6 % de ACN del veneno de *P*. *boliviensis*, no se les encontró identidad con transcritos relacionados con esta actividad

enzimática, da cuenta de las dificultades en el aislamiento de la banda con actividad, ya que al ser tan pequeña y por la oscura tinción del gel, se pudo haber extraido bandas adicionales que no estén relacionadas con esta actividad. La muestra aislada pudo contener proteínas relacionadas con tequilectinas y neurotoxinas que afectan canales de sodio al encontrar fragmentos secuenciados a partir del veneno con identidades del 100,0 % con secuencias del transcriptoma, lo que podría confirmar que, como se mencionó previamente, en esta zona de el perfil electroforético se encuentran estos péptidos. Los altos porcentajes de identidad encontrados en estos fragmentos sugieren que el ensamble del transcriptoma de la glándula venenosa de *P. boliviensis* se realizó correctamente.

6.7.2. Búsqueda de la secuencia del gen codificante del péptido recombinante en la glándula venenosa

Los alineamientos de las secuencias de los plásmidos con los transcritos obtenidos, tanto para el resultado de blastn (94,34 %) como de blastx (98,11 %), muestran que las diferencias entre las secuencias son pocas, ya que las secuencias resultantes de la búsqueda de identidad representan isoformas del gen. En el alineamiento entre la secuencia resultado del blastn y la obtenida para el plásmido TOPO/Ctx-4, algunos aminoácidos no coinciden (A₁-G₁, R₂-K₂, P₃₉-A₃₉). Sin embargo, con el transcrito que se empleó para obtener la secuencia inicial para clonar el péptido, la diferencia radica en un solo aminoácido, mientras que para el transcrito es leucina, la secuencia de los plásmidos tienen una valina en su lugar. Esta diferencia de aminoácidos ocurre por el cambio de dos nucleótidos en el codón, que puede deberse a una mutación génicao o puede ser una isoforma. La desigualdad en un aminoácido entre dos secuencias puede implicar o no un cambio en la función del péptido. Sin embargo, debe tenerse en cuenta que tanto el veneno como el mRNA, son dinámicos y pueden variar por diferentes circunstancias como respuesta a estímulos externos e internos, las proteínas pueden ser modificadas post-traduccionalmente, translocadas, sintetizadas o degradadas (Tan *et al.*, 2015). Sin embargo, el haber encontrado la secuencia de un gen para el péptido obtenido de la glándula venenosa de una araña en el transcriptoma de la glándula venenosa de otra araña de P. boliviensis, conlleva a proponer que tanto la secuenciación del cDNA como el ensamble de los *reads* se realizó con los parametros adecuados.

6.8. Evaluación de actividades biológicas

6.8.1. Determinación de actividad antimicrobiana

Se ha sugerido que los péptidos antimicrobianos activos sobre membrana están ampliamente distribuidos en el infraorden Araneomorphae, ya que se han aislado más de 40 de ellos en cuatro diferentes familias de este infraorden, que suelen tener un amplio rango de antividad antimicrobiana, tanto en bacterias Gram negativas como Gram positivas (Saez *et al.*, 2010). La familia Ctenidae se encuentra entre estas cuatro familias para las que se han reportado actividad antimicrobiana. Las Cupieninas 1a, y d, aisladas de *C. salei*, son péptidos antimicrobianos de 35 aminoácidos, con actividad hemolítica, insecticida y antimicrobiana en bacterias Gram-positivas y Gram-negativas (Kuhn-Nentwig *et al.*, 2002). Sin embargo, las fracciones evaluadas del veneno de *P. boliviensis* no mostraron esta actividad. Esto puede explicarse de acuerdo a las secuencias anotadas en el transcriptoma de las glándulas de esta araña, tan solo dos están relacionadas con péptidos con actividad antimicrobiana. De tal forma, a partir de síntesis química o expresión heteróloga, podrían obtenerse las secuencias del transcriptoma que se anotaron como antimicrobianos putativos para evaluar su actividad.

6.8.2. Evaluación de actividades biológicas in vivo

6.8.2.1. Evaluación de toxicidad aguda del veneno de P. boliviensis

Los signos de envenenamiento observados en los ratones se desarrollaron en cortos periodos de tiempo. Como se mencionó previamente, el veneno de *P. boliviensis* tiene

actividad hialuronidasa débil, que actúa como un factor dispersor del veneno. Sin embargo, la histamina, que ha sido identificada como un componente farmacológico principal en los venenos de varias arañas, entre ellas *Phoneutria, Loxosceles y Cupiennius,* tiene un papel relevante en el desarrollo de dolor, edema, eritema, aumento de la permeabilidad vascular y vasodilatación. Estos efectos generados por la histamina la hacen otro factor de difusión del veneno, potenciando la toxicidad de algunos compuestos y facilitando la rápida aparición de signos de envenenamiento (Kuhn-Nentwig *et al.*, 2002; Sade *et al.*, 2012). No obstante, sería necesario realizar la cuantificación de histamina en el veneno de *P. boliviensis*.

El dolor en el sitio de la inyección fue uno de los primeros signos observados en las dosis administradas de veneno de *P. boliviensis*, y pudo evidenciarse por el acicalamiento en la zona y elevación la parte posterior, esta última puede ser ocasionada en parte por la generación de edema en el sitio de la inyección, en el que podrían influir las TCTP, ocasionando no solo dolor sino también la evasión del roce de esta área.

Adicionalmente, el envenenamiento por *P. boliviensis* presentó sialorrea como uno de los primeros signos de toxicidad y que se evidenció en todas las dosis ensayadas. Este signo puede deberse al desbalance adrenérgico / colinérgico ocasionado por las toxinas que alteran los canales iónicos en la membrana celular; este efecto también es ocasionado por algunos fármacos colinérgicos muscarínicos que suelen causar salivación excesiva como un efecto secundario al incrementar la acetilcolina en el sistema nervioso autónomo, estimulando las glándulas y aumentando la producción de saliva (Quintana & Otero, 2002). Este mecanismo se identificó en una fracción de *P. nigriventer* (PhTx2), que además de alterar la inactivación de los canales de sodio e incrementar el sodio y el calcio intracelulares, provoca la liberación de acetilcolina de manera dependiente a la entrada de calcio (Moura *et al.*, 1998).

Se ha sugerido que el desbalance adrenérgico / colinérgico es responsable de otros síntomas como el priapismo en el envenenamiento por *Phoneutria* (Quintana & Otero,

2002). Este signo no se observó en los ensayos realizados en machos con el veneno completo de *P. boliviensis*, pero sí fue evidente en la administración de la fracción de 37,2 % de ACN (0,4 μ g/g; i.cr.). El efecto de inflamación en genitales mostrado en las hembras por la administración i.p. de la misma fracción y el priapismo pueden ser ocasionados por alteración de la fracción sobre los canales Na_v, desencadenando el incremento de la fluencia de calcio, llevando a un aumento de la síntesis de óxido nítrico, que es un vasodilatador y su inyección en el cuerpo cavernoso a concentraciones muy bajas produce la erección, como se ha sugerido para δ -ctenitoxin-Pn2a, de *P. nigriventer* (Oldrati *et al.*, 2012). Se ha reportado que la toxicidad del veneno de *P. nigriventer* ejercería una especie de antagonismo funcional al priapismo, donde pequeñas dosis de veneno pueden inducir priapismo en ratones sin manifestaciones tóxicas (Schenberg & Pereira-Lima, 1971).

Uno de los síntomas más evidentes en los ratones evaluados con veneno completo de *P. boliviensis* se reflejó en las alteraciones motoras como dificultad en la marcha, mioclonos y brincos (corea). Estas alteraciones motoras están relacionadas con el efecto que ejercen las neurotoxinas sobre los canales iónicos en el sistema nervioso, especialmente canales de sodio expresados en neuronas y células musculares (Escoubas *et al.*, 2000a, b). Como se mencionó anteriormente, las toxinas de sodio en el veneno también pueden provocar la liberación de acetilcolina, que, al unirse a los receptores nicotínicos de la placa motora de las fibras musculares, causa potenciales excitatorios postsinápticos, que derivan en la generación de un potencial de acción en la fibra muscular con su correspondiente contracción (Moura *et al.*, 1998). Los ratones evaluados no mostraron signos de parálisis de las patas traseras y la cola; ni se percibió que la cola permaneciera, durante un cierto período, doblada sobre la espalda del animal, como se ha visto en estudios de toxicidad de otros venenos de arañas de este género. Por otro lado, los ratones aquí evaluados, no presentaron postración ni ningún síntoma prematuro de *rigor mortis* (Schenberg & Pereira-Lima, 1971).

Por otra parte, los ratones evaluados presentaron disnea, ocasionalmente con jadeos, y muerte. Estos signos pueden ser ocasionados por extravasación de plasma, lo que sería

compatible con la observación de zonas hemorrágicas en la evaluación macroscópica de los pulmones en algunos de los ratones. Este escape de plasma puede ser mediado por la activación del sistema kalicreina-kininógeno-kinina, llegando a generar edema pulmonar (Quintana & Otero, 2002); también puede ser ocasionada por las metaloproteasas del veneno, y que también se encontraron en el análisis transcriptómico de las glándulas venenosas de *P. boliviensis*, estas enzimas podrían explicar, no solo las zonas hemorrágicas encontradas en los pulmones de los ratones, si no también el hígado hemorrágico.

La DL_{50} determinada en este estudio (0,9 µg/g) es similar a las reportadas para otras especies de este género, y es la misma que la reportada para el veneno de *P. keiserlingi*, haciéndolo uno de los venenos menos tóxicos estudiados hasta ahora de este género (Valenzuela-Rojas *et al.*, 2019).

6.8.2.2. Evaluación de toxicidad aguda del péptido recombinante Ctx-4 en ratones

La ausencia de toxicidad presentada por el péptido recombinante Ctx-4 (1,5 μ g/g) en animales de experimentación, puede deberse a que, aunque se anotó en el transcriptoma como una neurotoxina de sodio, puede no afectar canales de sodio en mamíferos, pero sí en invertebrados, lo cual podría explicar su toxicidad sobre grillos, pero no en ratones, y su efecto podría encontrarse sobre otra diana en el sistema nervioso central y / o con un efecto no relacionado a toxicidad en mamíferos. Adicionalmente, el péptido δ -ctenitoxin-Pn1a, a partir del cual se obtuvo el transcrito con el que se contruyó el gen Ctx-4, no produjo síntomas aparentes de intoxicación con la administración i.cv. de la toxina (dosis ~ 1,5 μ g/g) (Figueiredo *et al.*, 1995).

6.8.2.3. Evaluación de toxicidad del péptido recombinante Ctx-4 en peces

La inocuidad del péptido recombinante Ctx-4 plegado a dosis de 5 µg (i.to.) sobre peces cebra puede ser debido a que los canales celulares de sodio de este pez son similares

a los canales de sodio en mamíferos. Este pez se ha empleado como modelo para cuantificar la toxicidad de los piretroides, cuyos efectos tóxicos son compatibles con una acción excitatoria sobre el sistema nervioso, atribuible en parte, como en mamíferos, a acciones sobre canales de sodio sensibles a voltaje (Texeira *et al.*, 2013). Aunque se sabe que hay especies de arañas que comen peces como *Dolomedes mizhoanus* y *Dolomedes sulfurous* (Xu *et al.*, 2015), hasta el momento no se conoce la preferencia de *Phoneutria* sobre peces en su dieta ni hay estudios sobre su toxicidad en peces.

6.8.2.4. Evaluación de toxicidad del péptido recombinante Ctx-4 en grillos

Dado que los efectos altamente tóxicos mostrados por las tres fracciones plegadas del péptido recombinante Ctx-4 sobre grillos, estas isoformas del péptido recombinante podrían variar en el patrón de unión de los enlaces disulfuro formados durante el plegamiento. Los resultados obtenidos de toxicidad del péptido recombinante Ctx-4 plegado, son comparables con los reportes del péptido que fue su referencia δ -ctenitoxin-Pn1a de *P. nigriventer*, ya que se demostró que el péptido nativo es altamente tóxico sobre moscas (*Musca domestica*) (DL₅₀ 3,8 ± 2 ng/mosca) produciendo efectos neurotóxicos que incluían incapacidad para revertirse, temblores y movimientos no coordinados; y sobre cucarachas (*Periplaneta americana*) noqueándolas inmediatamente con pérdida completa de la coordinación y contracción abdominal (0,5 – 2,5 µg/g) (Figueiredo *et al.*, 1995).

Estudios similares han sido realizados para otros péptidos de venenos de araña con actividad insecticida. La neurotoxina insecticida Ba1 de *Brachypelma albiceps*, se expresó de manera heteróloga y su actividad insecticida fue probada sobre grillos, reportando exitosamente dicha actividad en una de las isoformas obtenidas después del plegamiento. Se ha sugerido que la diana molecular de esta neurotoxina pueden ser los canales de sodio dependientes de voltaje de los insectos por su acción rápida y fuerte actividad insecticida, que asemeja la de las toxinas de sodio conocidas en los venenos de araña (Clement *et al.*, 2015). El péptido δ -ctenitoxin-Pn1a ejerce su efecto insecticida ya que ralentiza la inactivación de las corrientes de sodio en el SNC de insectos al unirse a los canales de sodio dependientes de voltaje (de Lima *et al.*, 2002). Dado que el péptido recombinante Ctx-4 está asociado a una secuencia en el transcriptoma de *P. boliviensis* codificante para una toxina que altera canales de sodio, se sugiere que el péptido recombinante Ctx-4 también podría ejercer este mismo efecto sobre los canales de sodio de insectos, ya que las actividades biológicas son similares, tanto en invertebrados como en mamíferos.

<u>6.8.2.4. Determinación de la Dosis Paralizante media (DPm) del péptido</u> <u>recombinante Ctx-4 en grillos</u>

La DPm determinada para la fracción de 38,7 % de ACN del péptido recombinante Ctx-4 sobre grillos no puede compararse a profundidad contra las dosis tóxicas halladas para el péptido de referencia δ -ctenitoxin-Pn1a, ya que los modelos animales empleados son diferentes y por tanto, podrían poseer una abundancia diferente de canales de sodio, lo que conllevaría a tener sensibilidad diferente hacia los péptidos. No obstante, en la base que todas estas especies son insectos, se podría decir que el efecto tóxico del péptido recombinante Ctx-4 es comparable con el péptido de *P. nigriventer*, pues su DPm está en el rango en el que se observaron efectos tóxicos para las cucarachas (0,5 – 2,5 µg/g), aunque la dosis determinada (1,22 ± 0,22 µg/g) es muy superior a la reportada para toxicidad en moscas.

<u>6.8.2.5. Evaluación de la actividad analgésica de las fracciones del veneno de *P. boliviensis* por el método de *Tail-Flick*</u>

Los efectos observados en evaluación de la actividad analgésica por el método de hiperalgesia térmica de la fracción 2 del veneno de *P. boliviensis*, obtenida por Sep-Pack (Figuras 24 y 25), es interesante desde el punto de vista biológico y farmacológico, ya que adicional a dicha actividad analgésica, se evidenciaron efectos tóxicos conducentes a la muerte de los ratones, además de priapismo. Adicionalmente, el gradiente 2 permitió identificar la fracción de 38,4 % de ACN como la fracción con mayor potencial analgésico en el veneno. Es destacable que tanto la fracción 2 obtenida por separación en el cartucho Sep-Pack como las fracciones de RP-HPLC, pueden generar tanto el efecto analgésico

como tóxico por diferentes vías de administración, lo cual podría indicar que algunos de los compuestos del veneno podrían actuar tanto a nivel del SNP como del SNC, podría ocurrir que varios compuestos que tengan ambas actividades, analgésica y tóxica, a nivel periférico o a nivel central, o bien que un mismo receptor se exprese en ambas regiones. Estos resultados dan cuenta de la gran cantidad de componentes que integran esta fracción del veneno de *P. boliviensis*.

Los mayoria de los efectos evidenciados en las fracciones del veneno de *P*. *boliviensis*, concentrados en los gradientes entre el 31 y el 44 % de ACN, pueden compararse con las fracciones de *P nigriventer*, PhTx3 (~ 28 y ~ 34 % ACN) que tiene la mayor diversidad de grupos de toxinas y mayor potencial farmacológico, incluidos los efectos tóxicos y muerte, y péptidos con actividad analgésica; la fracción PhTx4 (~34 y ~ 37 %) presenta actividad insecticida y tiene poca toxicidad en ratones; y PhTx2 (~ 37 y ~ 44 %), una fracción altamente tóxica en ratones e insectos, la cual produce priapismo, salivación, convulsiones y parálisis espástica en miembros anteriores y posteriores (Peigneur *et al.*, 2018); algunas de las fracciones de *P. boliviensis* podrían emplearse para comprobar su efecto sobre invertebrados.

Se destaca la ausencia de signos de toxicidad con las fracciones del veneno de *P*. *boliviensis*, obtenidas con los gradientes 25,6 y 34 %; ya que al compararlas con la alta toxicidad de fracciones similares de *P. nigriventer*, sugiere que, aunque las especies de este género produzcan envenenamientos parecidos, pueden existir diferencias marcadas en los componentes del veneno y sus funciones biológicas.

De acuerdo con los signos observados posteriores a la administración de la fracción de 37,2 % de ACN de *P. boliviensis*, podría sugerirse que esta fracción tenga un péptido similar a δ-ctenitoxin-Pn2c de *P. nigriventer* que genera priapismo y efectos neurotóxicos; mientras que la fracción de 38,2 % de ACN podría ser el comparable con δ-ctenitoxin-

Pn2a, ya que ambas muestran efecto neurotóxico y de la que se ha derivado el péptido PnPP-19, que tiene efecto antinociceptivo activando el receptor cannabinoide 1 y los receptores opioides μ y δ . Sin embargo, aunque se puede realizar una comparación por la similitud en sus efectos biológicos, como se demostró en la comparación de toxinas obtenidas del transcriptoma de *P. boliviensis* y las toxinas reportadas de *P. nigriventer*, sus secuencias, aunque similares presentan algunas diferencias que podrían expresarse en actividades biológicas diferentes. Por tanto, se deberían realizar más experimentos para comprobar estos mecanismos.

6.8.2.6. Evaluación de la actividad analgésica del péptido recombinante Ctx-4

La actividad analgésica moderada registrada para el péptido recombinante Ctx-4 crudo en el modelo de hiperalgesia térmica, por diferentes vías de administración, sugiere que su diana terapéutica se encuentra en mayor proporción a nivel del SNC, que a nivel periférico, ya que fue más efectivo administrado por vía i.cr., alcanzado porcentajes de 42,3 % de EMP. Por otro lado, el retraso en mostrar un efecto analgésico al ser administrada por vía i.p. podría ser ocasionado por el tiempo que tarda en llegar al SNC.

Por otra parte, la evaluación del péptido recombinante Ctx-4 plegado en los modelos de hiperalgesia térmica y química, sugiere que en dosis superiores a 1,25 μ g/g (i.cr.) presenta un efecto analgésico leve con una relación de dosis-dependencia, sin generar efectos tóxicos. Estos resultados son similares a los obtenidos para el péptido δ -ctenitoxin-Pn1a de *P. nigriventer*, evaluado en modelos de dolor inflamatorio, neuropático y agudo (Emerich *et al.*, 2016).

7. CONCLUSIONES, PERSPECTIVAS Y RECOMENDACIONES

El veneno de la araña *P. boliviensis* posee actividad proteolítica, posiblemente debido a serin proteasas, que son las enzimas con mayor representación encontradas en el transcriptoma de la glándula venenosa. Las secuencias de la proteasa obtenida a partir del zimograma de gelatina, tienen similitud tanto con el transcriptoma como con una serin proteasa putativa de *P. fera*.

Se identificaron 682 transcritos en el transcriptoma de las glándulas venenosas de *P*. *boliviensis*, principalmente neurotoxinas que afectan canales de sodio y de calcio, y enzimas como serin proteasas, metaloproteasas, colinesterasas y hialuronidasas que podrían explicar algunos de los efectos producidos durante el envenenamiento.

El análisis transcriptómico permitió identificar: carboxilesterasas, kinasas, oxidorreductasas, fosfodiesterasas, endonucleasas, fosfatasas, transferasas, carboxipeptidasas, lipasas, ligasas, factor de crecimiento del endotelio vascular, tipo insulina, derivado de plaquetas, relacionado a nervios, factor von Willebrand tipo C y la hormona HD-31, que no han sido reportados previamente en los venenos de otras arañas de este género.

En la cuantificación del transcriptoma se demostró que los transcritos con identidad de neurotoxinas son los que tienen mayor nivel de expresión, lo cual es consecuente con los efectos a nivel del SNC que se observan en el envenenamiento por la araña *P. boliviensis*.

Se encontraron secuencias con identidad dentro del transcriptoma, a partir de secuencias obtenidas de los zimogramas; aunque sólo las serin proteasas concordaron tanto

en actividad como en secuencia con los transcritos, se logra validar el ensamble de los reads y el análisis transcriptómico.

Adicionalmente, a partir del *contig* empleado para construir el péptido Ctx-4, se pudo encontrar el gen codificante del péptido en el cDNA de la glándula venenosa de otro espécimen de la araña de *P. boliviensis*, y esto complementa esta validación.

Se diseñó y expresó el péptido recombinante Ctx-4 construido a partir de información obtenida del transcriptoma de las glándulas venenosas de la araña de *P*. *boliviensis*, con actividad insecticida potente y analgésica moderada.

El veneno de *P. boliviensis* demostró ser tóxico en un modelo murino, determinándose su DL_{50} en 0,9 µg/g. Esta sería una de las arañas del género *Phoneutria* con menor toxicidad, no sólo por tener una de las dosis letales más altas, sino por la ausencia de algunos signos de envenenamiento.

El péptido recombinante Ctx-4 demostró tener actividad tóxica sobre grillos; mientras que no presentó toxicidad en peces óseos y ratones. Esto representa un potencial uso agroindustrial en el control de plagas de insectos. Adicionalmente, posee actividad analgésica moderada en modelos de dolor térmico y químico. La dosis - dependencia mostrada en algunos experimentos alientan a seguir investigando con el uso de dosis diferentes.

El veneno de la araña *P. boliviensis* es un coctel de sustancias interesantes que posee que similitudes con los de las otras especies de este género, del que se pueden obtener diferentes compuestos con posible uso farmacológico y/o agroindustrial. Por tanto, futuros estudios sobre este veneno son prometedores y, aunque las herramientas actuales

empleadas en esta tesis son muy útiles y previenen la captura y sacrificio de grandes cantidades de especímenes, se debe procurar la preservación de esta especie para corroborar los resultados de estos estudios con la fuente natural.

Algunos puntos destacables de los resultados obtenidos en este trabajo, podrían relacionarse con las siguientes perspectivas de profundización en el estudio de los péptidos obtenidos del veneno de *P. boliviensis*.

- Evaluar otras propiedades del veneno en miras a identificar compuestos con actividades biológicas promisorias, como priapismo o alteraciones a nivel cardiaco.
- Se podría realizar la expresión del péptido recombinante Ctx-4 con un isótopo radiactivo y, mediante una análisis de resonancia magnética nuclear, evaluar su estructura 3D.
- El péptido recombinante Ctx-4 podría ser candidato a un nuevo insecticida, podrían realizarse estudios a dosis más elevadas del péptido, de otro modelo animal para actividad insecticida o su actividad sobre canales iónicos en invertebrados mediante *patch clamp*.
- El péptido recombinante Ctx-4 podría ser evaluado a dosis más elevadas, en otro modelo animal para actividad analgésica, contra otro tipo de analgésicos u otros métodos de dolor, e incluso estudiar su posible efecto como coadyuvante en tratamientos de dolor crónico con opioides, pudiendo disminuir la tolerancia y continuo cambio de medicamentos.
- Se requieren más estudios para corroborar las secuencias de la proteasa obtenida a partir del zimograma de gelatina, especialmente para identificar la proteasa de menor masa molecular.
- Se podrían efectuar más investigaciones para identificar con mayor precisión la actividad hialuronidasa y la secuencias obtenidas a partir del veneno.

8. REFERENCIAS

- Ahmed, J., Shehu, D.M., Ndams, I.S. (2018). Transcriptomic analysis of *Agelenopsis naevia* (Aranae: Agelenidae) venom gland. *Int. Res. J. Biological Sci.*, 7(3):9-23.
- Alexander, J., Oliphant, A., Wilcockson D.C., Webster S.G. (2018). Functional Identification and Characterization of the Diuretic Hormone 31 (DH31) Signaling System in the Green Shore Crab, *Carcinus maenas*. *Frontiers in Neuroscience*, 12:454.
- Aller Reyero, M.A., Rodríguez Gómez, J., Rodríguez Fabián, G. (2000). Normas éticas para el cuidado y utilización de los animales de experimentación. *Cirugía Española*, 67(1):10-13.
- Araujo, S.C., Castanheira, P., Alvarenga, L.M., Mangili, O.C., Kalapothakis, E., Chávez-Olórtegui, C. (2003). Protection against dermonecrotic and lethal activities of *Loxosceles intermedia* spider venom by immunization with a fused recombinant protein. Toxicon, 41(3):261-267.
- Armstrong, P.B. (2001). The contribution of proteinase inhibitors to immune defense. *Trends in Immunology*, 22(1), 47–52.
- Atkinson, R.K. & Wright, L.G. (1992). The involvement of collagenase in the necrosis induced by the bites of some spiders. Comparative Biochemistry and physiology. *C*, *Comparative Pharmacology and Toxicology*. 102(1):125-128.
- Baneyx, F. & Mujacic, M. (2004). Recombinant protein folding and misfolding in *Escherichia coli*. *Nat Biotechnol*, 22, 1399–1408.
- Barbaro, K.C., Ferreira, M.L., Cardoso, D.F., Eickstedt, V.R., Mota, I. (1996). Identification and neutralization of biological activities in the venoms of *Loxosceles* spiders. *Brazilian Journal of Medical and Biological Research*, 29(11):1491-1497.

- Barbaro, K.C., Knysak, I., Martins, R., Hogan, C., Winkel, K. (2005). Enzymatic characterizations, antigenic cross reactivity and neutralization of dermonecrotic activity of five *Loxosceles* spider venoms of medical importance in the America. *Toxicon*, 45:489–99.
- Barriga, J.C. & Moreno, A.G., 2013. Listado de las Arañas de Colombia (Arachnida: Araneae). Biota Colombiana 14 - Suplemento especial - Artículos de datos: 21-33.
- Bernáldez, J., Román-González, S.A., Martínez, O., Jiménez, S., Vivas, O., Arenas, I., Corzo, G., Arreguín, R., García, D.E., Possani, L.D., Licea, A. (2013) A Conus regularis Conotoxin with a Novel Eight-Cysteine Framework Inhibits Ca V 2.2 Channels and Displays an Anti-Nociceptive Activity. *Mar. Drugs*, 11:1188-1202.
- Bheekha-Escura, R., MacGlashan, D.W., Langdon, J.M., MacDonald, S.M. (2000). Human recombinant histamine-releasing factor activates human eosinophils and the eosinophilic cell line, AML14-3D10. *Blood*, 96(6):2191–2198.
- Blank, S., Seismann, H., Bockisch, B., Braren, I., Bredehorst, R., Grunwald, T., Ollert, M.,
 Spillner, E. (2008). Identification and recombinant expression of a novel IgE-reactive
 70 kDa carboxylesterase from *Apis mellifera* venom. Available: http://www.uniprot.org/uniprot/B2D0J5. Consultado el 23 de marzo de 2020.
- Bonasio, R., Zhang, G., Ye, C., Mutti, N. S., Fang, X., Qin, N., Donahue, G., Yang, P., Li, Q., Li, C., Zhang, P., Huang, Z., Berger, S. L., Reinberg, D., Wang, J., Liebig, J. (2010) Genomic comparison of the ants *Camponotus floridanus* and *Harpegnathos saltator*. Science 329: 1068–1071.
- Browne, G. (1997). Near fatal envenomation from the funnel-web spider in an infant. *Pediatr Emerg Care*. 13:271–3.
- Bucaretchi, F., Deus Reinaldo, C.R., Hyslop, S., Madureira, P.R., de Capitani, E.M., Vieira,R.J. (2000). A clinico-epidemiological study of bites by spiders of the genusPhoneutria. *Rev. Inst. Med. trop. S. Paulo*, 42(1):17-21.

- Bucherl, W. (1969). Biology and venoms of the Most Important Soutli American Spiders of the Genera *Phoneutria*, *Loxosceles*, *Lycosa*, and *Latrodectus*. *An. Zoologist*, 9:157-159.
- Bugli, F., Graffeo, R., Sterbini, F.P., Torelli, R., Masucci, L., Sali, M., Grasso, A., Rufini, S., Ricci, E., Fadda, G., Pescatori, M. (2008). Monoclonal antibody fragment from combinatorial phage display library neutralizes alpha-latrotoxin activity and abolishes black widow spider venom lethality, in mice. *Toxicon*, 51, 547–554.
- Carneiro, A.M.D., Kushmerick, C., Koenen, J., Arndt, M.H.L., Cordeiro, M.N., Chavez-Olortegui, C., Diniz, C.R., Gomez, M.V., Kalapothakis, E., Prado, M.A.M., Prado, V.F. (2003). Expression of a functional recombinant *Phoneutria nigriventer* toxin active on K⁺ channels. *Toxicon*, 41(3):305-313.
- Cereghino, J.L. & Cregg, J.M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. *FEMS Microbiol. Rev.*, 24:45–66.
- Cevallos, M.A., Navarro-Duque, C., Varela-Julia, M., Alagón, A.C. (1992). Molecular mass determination and assay of venom hyaluronidases by socium dodecyl sulfate-cpolyacrylamide gel electrophoresis. *Toxicon*, 30(8):925-930.
- Chaim, O.M., Trevisan-Silva, D., Chaves-Moreira, D., Wille, A.C.M., Ferrer, V.P., Matsubara, F.H., Mangili, O.C., Silveira, R.B.d., Gremski, L.H., Gremski, W., Senff-Ribeiro, A., Veiga, S.S. (2011). Brown spider (*Loxosceles* genus) venom toxins: tools for biological purposes. *Toxins*, 3:309–44.
- Chatrath, S.T., Chapeaurouge, A., Lin, Q., Lim, T.K., Dunstan, N., Mirtschin, P., Kumar, P.P., Kini, R.M. (2011). Identification of novel proteins from the venom of a cryptic snake *Drysdalia coronoides* by a combined transcriptomics and proteomics approach. *J. Proteome Res.* 10, 739e750
- Chavez-Moreira, D., Senff-Ribeiro, A., Martins-Wille, A.C., Gremski, L.H., Chaim, O.M.,Veiga, S.S. (2017). Highlights in the knowledge of brown spider toxins. *Journal ofVenomous Animals and Toxins including Tropical Diseases*, 23:6

- Chen, J., Zhao, L., Jiang, L., Meng, E., Zhang, Y., Xiong, X., Liang, S. (2008). Transcriptome analysis revealed novel possible venom components and cellular processes of the tarantula *Chilobrachys jingzhao* venom gland. *Toxicon*, 52:794–806.
- Chen, J., Zhang, Y., Rong, M., Zhao, L., Jiang, L., Zhang, D., Wang, M., Xiao, Y., Liang, S. (2009). Expression and characterization of jingzhaotoxin-34, a novel neurotoxin from the venom of the tarantula *Chilobrachys jingzhao*. *Peptides*, 30:1042–1048.
- Chen, Y-H., Jia, X-T., Zhao, L., Li, C-Z., Zhang, S., Chen, Y-G., Weng, S-P., He J-G. (2011). Identification and functional characterization of Dicer2 and five single VWC domain proteins of *Litopenaeus vannamei*. *Developmental and Comparative Immunology*, 35:661-671.
- Chen, Z., Luo, F., Feng, J., Yang, W., Zeng, D., Zhao, R., Cao, Z., Liu, M., Li, W., Jiang, L, Wu, Y. (2013). Genomic and structural characterization of Kunitz-type peptide LmKTT-1a highlights diversity and evolution of scorpion potassium channel toxins. *PLoS One*, 8(4):e60201.
- Cheng, T.C., Long, R.W., Wu, Y.Q., Guo, Y.B., Liu, D.L., Peng, L., Li., D.Q., Yang, D.W., Xu, X., Liu, F.X., Xia, Q.Y. (2016). Identification and characterization of toxins in the venom gland of the Chinese bird spider, *Haplopelma hainanum*, by transcriptomic analysis. *Insect Science*, 23, 487–499.
- Chomczynski, P. & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidine thio-cyanate-phenol-chloroform extraction. *Anal. Biochem.*, 162:156-159.
- Chow, C.Y., Cristofori-Armstrong, B., Undheim, E.A.B., King, G.F., Rash, L.D. (2015).
 Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an
 Important Analgesic Target, from the Venom of an Australian Tarantula. *Toxins*, 7:2494-2513
- Ciscotto, P., Machado de Avila, R.A., Coelho, E.A.F., OliveiraJ., Chávez-Olórtegui, C., Diniz, C.G., Farías, L.M., de Carvalho, M.A.R., Maria, W.S., Sanchez, E.F., Borges, A. (2008). Antigenic, microbicidal and antiparasitic properties of an l-amino acid oxidase isolated from *Bothrops jararaca* snake venom. *Toxicon*, 53(3):330-341.

- Clarke, T.H., Garb, J.E., Hayashi, C.Y., Haney, R.A., Lancaster, A.K., Corbett, S., Ayoub, N.A. (2014). Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. *BMC Genomics*, 15:365.
- Clement, H., Olvera, A., Rodriguez, M., Zamudio, F., Palomares, L.A., Possani, L.D., Odell, G.V., Alagon, A., Sanchez-Lopez, R. (2012). Identification, cDNA cloning and heterologous expression of a hyaluronidase from the tarantula *Brachypelma vagans* venom. *Toxicon*, 60:1223-1227.
- Clement, H., Flores, V., Diego-Garcia, E., Corrales-García, L., Villegas, E., Corzo, G. (2015). A comparison between the recombinant expression and chemical synthesis of a short cysteine-rich insecticidal spider peptide. J *Venom Anim Toxins Incl Trop Dis* 21:19
- Craig, A.G., Bandyopadhyay, P., Olivera, B.M. (1999). Post-translationally modified neuropeptides from Conus venoms. *European Journal of Biochemistry*/FEBS 264, 271–275.
- Colović, M.B., Krstić, D.Z., Lazarević-Pašti, T.D., Bondžić, A.M., Vasić, V.M. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. *Current Neuropharmacology*. Bentham Science Publishers Ltd. 11(3):315–35.
- Corrêa-Netto, C., Junqueira-de-Azevedo, I.deL.M., Silva, D.A., Ho, P.L., Leitão-de-Araújo, M., Alves, M.L.M., Sanz, L., Foguel, D., Zingali, R.B., Calvete, J.J. (2011).
 Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, *Micrurus altirostris* and *M. corallinus. Journal of Proteomics*. 74(9):1795-1809.
- Costa, S.K.P., Brain, S.D., Antunes, E., de Nucci, G., Docherty, R.J. (2003). *Phoneutria nigriventer* spider venom activates 5-HT 4 receptors in rat-isolated vagus nerve. *British Journal of Pharmacology*, 139:59–64.
- Cuperus, T., Coorens, M., van Dijk, A., Haagsman, H.P. (2013). Avian host defense peptides. *Developmental and Comparative Immunology*, 41(3):352–369.

- da Fonseca Pacheco, D., Freitas, A.C.N., Pimenta, A.M.C., Duarte, I.D.G., de Lima, M.E. (2016). A spider derived peptide, PnPP-19, induces central antinociception mediated by opioid and cannabinoid systems. *J. Venom. Anim. Toxins Incl. Trop.* Dis. 22, 34.
- da Silveira, R:B., dos Santos Filho, J.F., Mangili, O.C., Veiga, S.S., Gremski, W., Nader, H.B., von Dietrich, C.P. (2002). Identification of proteases in the extract of venom glands from brown spiders. *Toxicon*, 40(6):815–822.
- da Silveira, R.B., Pigozzo, R.B., Chaim, O.M., Appel, M.H., Dreyfuss, J.L., Toma, L., Mangili, O.C., Gremski, W., Dietrich, C.P., Nader, H.B., Veiga, S.S. (2006).
 Molecular cloning and functional characterization of two isoforms ofdermonecrotic toxin from *Loxosceles intermedia* (brownspider) venom gland. *Biochimie*. 88:1241–1253.
- da Silveira, R.B., Chaim, O.M., Mangili, O.C., Gremski, W., Dietrich, C.P., Nader, H.B., Veiga, S.S. (2007a). Hyaluronidases in *Loxosceles intermedia* (Brown spider) venom are endo-b-N-acetyl-D-hexosaminidases hydrolases. *Toxicon*, 49:758–68.
- da Silveira, R.B., Pigozzo, R.B., Chaim, O.M., Appel, M.H., Silva, D.T., Dreyfuss, J.L., Toma, L., Dietrich, C.P., Nader, H.B., Veiga, S.S., Gremski, W. (2007b). Two novel dermonecrotic toxins LiRecDT4 and LiRecDT5 from brown spider (*Loxosceles intermedia*) venom: from cloning to functional characterization. *Biochimie*, 89:289–300.
- da Silveira, R.B., Wille, A.C., Chaim, O.M., Appel, M.H., Silva, D.T., Franco, C.R., Toma, L., Mangili, O.C., Gremski, W., Dietrich, C.P., Nader, H.B., Veiga, S.S. (2007c). Identification, cloning, expression and functional characterization of an astacin-like metalloprotease toxin from *Loxosceles intermedia* (brown spider) venom. *J Biochem*, 406:355–63.
- Dalmolin, G.D., Silva, C.R., Rigo, F.K., Gomes, G.M., Cordeiro, Mdo.N., Richardson, M., Silva, M.A., Prado, M.A., Gomez, M.V., Ferreira, J. (2011). Antinociceptive effect of Brazilian armed spider venom toxin Tx3-3 in animal model of neuropathic pain. *Pain*, 152:2224-2232.

- Dantas, A.E., Carmo, A.O., Horta, C.C., Leal, H.G., Oliveira-Mendes, B.B., Martins, A.P., Chavez-Olortegui, C., Kalapothakis, E. (2016). Description of Loxtox protein family and identification of a new group of phospholipases D from *Loxosceles similis* venom gland. *Toxicon*, 120:97–106.
- Davletov, B., Ferrari, E., Ushkaryov, Y. (2012). Presynaptic neurotoxins: An expanding array of natural and modified molecules. Cell Calcium, 52(3-4):234-240.
- de Lima, M.E., Stankiewicz, M., Hamon, A., de Figueiredo, S.G., Cordeiro, M.N., Diniz, C.R., Martin-Eauclaire, M.F., Pelhate, M. (2002). The toxin Tx4(6-1) from the spider *Phoneutria nigriventer* slows down Na+ current inactivation in insect CNS via binding to receptor site 3. *J. Insect Physiol*, 48 (1), 53–61.
- de Lima, M.E., Figueiredo, S.G., Matavel, A., Nunes, K.P., da Silva, C.N., Almeida, F.M., Diniz, M.R.V.Samaniego-Hernandez, 2007, Cordeiro, M.N., Stankiewicz, M., Beirao, P.S. (2016). *Phoneutria nigriventer* venom and toxins: a review. In: Gopalkrishnakone, P. (Ed.), Spider Venoms, Toxinology. Springer, pp. 71–99.
- de Oliveira, L.C., Campos, F.V., Figueiredo, S.G., Cordeiro, M.N., Adaime, B.R., Richardson, M., Pimenta, A.M.C., Martin-Eauclaire, M.-F., Beirão, P.S.L., De Lima, M.E. (2015). β/δ-PrIT1, a highly insecticidal toxin from the venom of the Brazilian spider *Phoneutria reidyi* (F. O. Pickard-Cambridge, 1897). *Toxicon*, 104:73-82.
- de Roodt, A.R., Lago, N.R., Lanari, L.C., Laskowicz, R.D., de Oliveira, V.C., de Román, E.N., de Titto, E.H., Damin, C.F. (2016). Lethality and histopathological alterations caused by *Phoneutria nigriventer* spider venom from Argentina: Neutralization of lethality by experimental and therapeutic antivenoms. *Toxicon*, 125:24e31.
- de Souza, A.H., Ferreira, J., Cordeiro, Mdo N., Vieira, L.B., De Castro, C.J., Trevisan, G., Reis, H., Souza, I.A., Richardson, M., Prado, M.A., Prado, V.F., Gomez, M.V. (2008)
 Analgesic effect in rodents of native and recombinant Ph alpha 1beta toxin, a high-voltage-activated calcium channel blocker isolated from armed spider venom. *Pain*; 140: 115–26.
- de Souza, A.H., Castro Jr, C.J, Rigo, F.K., de Oliveira, S.M., Gomez, R.S., Diniz, D.M., Borges, M.H., Cordeiro, M.N., Silva, M.A.R., Ferreira, J., Gomez, M.V. (2012). An

Evaluation of the Antinociceptive Effects of Ph α 1 β b, a Neurotoxin from the Spider *Phoneutria nigriventer*, and ω -Conotoxin MVIIA, a Cone Snail *Conus magus* Toxin, in Rat Model of Inflammatory and Neuropathic Pain. *Cell Mol Neurobiol.*, 33(1):59-67.

- del Brutto, O.H. (2013). Neurological effects of venomous bites and stings: snakes, spiders, and scorpions. In Neuroparasitology and Tropical Neurology. Ed. Elsevier Inc. Chapters.
- Devaraja, S., Nagaraju, S., Mahadeshwara swamy, Y.H., Girish, K.S., Kemparaju, K. (2008). A low molecular weight serine protease: purification and characterization from *Hippasa agelenoides* (Funnel web) spider venom gland extract. *Toxicon*, 52:130–8.
- Devaraja, S., Girish, K.S., Devaraj, V.R., Kemparaju, K. (2010). Factor Xa-like and fibrin(ogen)olytic activities of a serine protease from *Hippasa agelenoides* spider venom gland extract. *J Thromb Thrombolysis*, 29:119–26.
- Devaraja, S., Girish, K.S., Gowtham, Y.N., Kemparaju, K. (2011). The Hag-protease-II is a fibrin(ogen)ase from *Hippasa agelenoides* spider venom gland extract: purification, characterization and its role in hemostasis. *Toxicon*, 57:248–58.
- Diego-García, E., Peigneur, S., Waelkens, E., Debaveye, S., Tytgat, J. (2010). Venom components from *Citharischius crawshayi* spider (Family Theraphosidae): exploring transcriptome, venomics, and function. *Cell. Mol. Life Sci.*, 67:2799-2813.
- Diego-García, E., Takeno-Cologna, C., Silva-Cassoli, J., Corzo, G. (2016). Spider Transcriptomes from Venom Glands: Molecular Diversity of Ion Channel Toxins and Antimicrobial Peptide Transcripts. In: Spider Venoms. Springer.
- Diniz, M.R.V., Theakston R.D.G., Crampton, J.M., do Nascimento Cordeiro, M., Pimenta, A.M.C., De Lima, M.E., Diniz, C.R. (2006). Functional expression and purification of recombinant Tx1, a sodium channel blocker neurotoxin from the venom of the Brazilian "armed" spider, *Phoneutria nigriventer*. *Protein Expression and Purification*, 50:18–24.

- Diniz, M.R.V., Paiva, A.L.B., Guerra-Duarte, C., Nishiyama, M.Y. Jr, Mudadu, M.A., de oliveira, U., Borges, M.H., Yates, J.R., Junqueira-de-Azevedo, I.de.L. (2018). An overview of *Phoneutria nigriventer* spider venom using combined transcriptomic and proteomic approaches. PloS ONE, 13(8):e0200628.
- Dixon, W.J. (1965). The Up-and-Down Method for small samples. *Journal of the American Statistical Association*, 60(312): 967-978.
- dos Santos, L.D., Dias, N.B., Pinto, J.R.A.S., Palma, M.S. (2009). Brown recluse spider venom: proteomic analysis and proposal of a putative mechanism of action. *Protein Pept. Lett.* 16, 933–943.
- Down, R.E., Fitches, E.C., Wiles, D.P., Corti, P., Bell, H.A., Gatehouse, J.A., Edwards, J.P. (2006). Insecticidal spider venom toxin fused to snow-drop lectin is toxic to the peach-potato aphid, *Myzus persicae* (Hemiptera: aphididae) and the rice brown planthopper, *Nilaparvata lugens* (Hemiptera: Delphacidae). Pest Manag. Sci. 62, 77–85.
- Duan, Z., Cao, R., Jiang, L., Liang, S. (2013). A combined *de novo* protein sequencing and cDNA library to the venomic analysis of Chinese spider *Araneus ventricosus*. J *Proteomics*, 78:416–27.
- Emerich, B.L., Ferreira, R.C., Cordeiro, M.N., Borges, M.H., Pimenta, A.M., Figueiredo, S.G., Duarte, I.D., de Lima, M.E. (2016). δ-Ctenitoxin-Pn1a, a peptide from *Phoneutria nigriventer* spider venom, shows antinociceptive effect involving opioid and cannabinoid systems, in rats. *Toxins*, 8(4):106.
- Escoubas, P., de Weille, J.R., Lecoq, A., Diochot, S., Waldmann, R., Champigny, G., Moinier, D., Ménez, A., Lazdunski, M. (2000a). Isolation of a Tarantula Toxin Specific for a Class of Proton-gated Na⁺ Channels. *Journal of Biological Chemistry*. 275(33):25116-25121.
- Escoubas, P., Diochot, S., Corzo, G. (2000b). Structure and pharmacology of spider venom neurotoxins. *Biochimie*, 82(9–10):893-907.

- Escoubas, P., Bernard, C., Lambeau, G., Lazdunski, M., Darbon, H. (2003). Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels. *Prot. Sci.*, 12:1332–1343.
- Estrada, G., Villegas, E., Corzo, G. (2006). Spider venoms: a rich source of acylpoliamines and peptides as new leads for CNS drugs. Nat. Prod. Rep., 24:145-161.
- Estrada, G., Silva, A.O., Villegas, E., Ortiz, E., Beirão, P.S.L., Corzo, G. (2016). Heterologous expression of five disulfide-bonded insecticidal spider peptides. *Toxicon*, 119:152-158.
- Estrada-Gomez, S., Muñoz, L.J., Lanchero, P., Latorre, C.S. (2015). Partial characterization of the venom from the colombian spider *Phoneutria boliviensis* (Aranae:Ctenidae). *Toxins*, 7(8):2872-2887.
- Feitosa L, Gremski W, Veiga SS, Elias, M.C., Graner, E., Mangili, O.C., Brentani, R.R. (1998). Detection and characterization of metalloproteinases with gelatinolytic, fibronectinolytic and fibrinogenolytic activities in brown spider (*Loxosceles intermedia*) venom. *Toxicon*, 36:1039–51.
- Fernandes-Pedrosa, M.deF., Junqueira-de-Azevedo, I.deL.M., Gonçalves-de-Andrade,
 R.M., Kobashi, L.S., Almeida, D.D., Ho, O.L., Tambourgi, D.V. (2008).
 Transcriptome analysis of *Loxosceles laeta* (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics, 9:279.
- Figueiredo, S.G., Garcia, M.E., Valentim, A.C., Cordeiro, M.N., Diniz, C.R., Richardson, M. (1995). Purification and amino acid sequence of the insecticidal neurotoxin Tx4(6-1) from the venom of the 'armed' spider *Phoneutria nigriventer* (Keys). *Toxicon*, 33(1):83-93.
- Fitches, E., Edwards, M.G., Mee, C., Grishin, E., Gatehouse, A.M., Edwards, J. P., Gatehouse, J.A. (2004). Fusion proteins containing insect-specific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. *J. Insect. Physiol.*, 50, 61–71.

- Fogaça, A.C., Almeida, I.C., Eberlin, M.N., Tanaka, A.S., Bulet, P., Daffre, S. (2006). Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick *Boophilus microplus* with inhibitory activity against serine proteinases. *Peptides*,27(4):667–674.
- Freitas, A.C.N., Pacheco, D.F., Machado, M.F.M., Carmona, A.K., Duarte, I.D.G., de Lima, M.E. (2016). PnPP-19, a spider toxin peptide, induces peripheral antinociception through opioid and cannabinoid receptors and inhibition of neutral endopeptidase. *Br. J. Pharmacol.* 173 (9):1491–1501.
- Freitas, A.C.N., Peigneur, S., Macedo, F.H.P., Menezes-Filho, J.E., Millns, P., Medeiros, L.F., Arruda, M.A., Cruz, J., Holliday, N.D., Tytgat, J., Hathway, G., de Lima, M.E. (2018). The peptide PnPP-19, a spider toxin derivative, activates μ-opioid receptors and modulates calcium channels. *Toxins*, 10 (1).
- Galvis, W. (3 de noviembre de 2019). Arácnidos de Colombia. Recuperado de https://aracnidsco.wordpress.com/aranas/ (Actualizado el 2019-10-29).
- Girish, K.S., Jagadeesha, D.K., Rajeev, K.B., Kemparaju, K. (2002). Snakevenom hyaluronidase: an evidence for isoforms and extracel-lular matrix degradation. *Mol Cell Biochem*; 240:105–110.
- Golde, D.W., Herschman, H.R., Lusis, A.J., Groopman, J.E. (1980). Growth factors. *Annals of Internal Medicine*, 92(5), 650.
- Gomez, M.V., Castro-Junior, C.J., Nascimento, M., Santiago, R., Ferreira, J. (2014). *Phoneutria* spider toxins target channels involved in cardiac arrhythmias, ischemia and pain. *J. Pharmacy and Pharmacology*, 2:439-452.
- Gomes-Fegueiredo, S., Lima-Perez, M.E., Valentim, A.doC., Cordeiro, M.N., Diniz, C.R., Richardson, M. (1995). Purification and amino acid sequence of the insecticidal neurotoxin Tx4(6-1) from the venom of the "armed" spider *Phoneutria nigriventer* (Keys). *Toxicon*, 33(1):83-9.
- Gopalakrishnakone, P., Corzo, G., De Lima, M.E., Diego-García, E. (2016). Spider Venoms. Springer.

- Gremski, L.H., da Silveira, R.B., Chaim, O.M., Probst, C.M., Ferrer, V.P., Nowatzki, J., Weinschutz, H.C., Madeira, H.M., Gremski, W., Nader, H.B., Senff-Ribeiro, A., Snaches, S. (2010). A novel expression profile of the Loxosceles intermedia spidervonomous gland revealed by trasncriptome analysis. *Mol. BioSys.*, 6:2403-2416.
- Gremski, L.H., Trevisan-Silva, D., Ferrer, V.P., Matsubara, F.H., Meissner, G.O., Wille, A,C,, Vuitika, L., Dias-Lopes, C., Ullah, A., de Moraes, F.R., Chávez-Olórtegui, C., Barbaro, K.C., Murakami, M.T., Arni, R.K., Senff-Ribeiro, A., Chaim, O.M., Veiga, S.S. (2014). Recent advances in the understanding of brown spider venoms: from the biology of spiders to the molecular mechanisms of toxins. *Toxicon*, 83:91–120.
- Griffiths, A.J.F., Gelbart, W.M., Miller, J.H., Lewontin, R. (1999). Modern Genetic Analysis. En: The Molecular Basis of Mutation. Freeman, W.H. New York.
- Guatimosim, C., Romano-Silva, M.A., Cruz, J.S., Beirafo, P.S.L., Kalapothakis, E., Moraes-Santos, T., Cordeiro, M.N., Diniz, C.R., Gomez, M.V., Prado, M.A.M. (1997). A toxin from the spider *Phoneutria nigriventer* that blocks calcium channels coupled to exocytosis. *British Journal of Pharmacology*, 122:591-597.
- Haberman, E. & Hardt, K.L. (1972). A sensitive and specific plater test for the quantitation of Phospholipases. *Analytical biochemestry*, 50:163-173.
- Hancock, R.E.W., Haney, E.F., Gill, E.E. (2016). The immunology of host defence peptides: beyond antimicrobial activity. *Nature Reviews Immunology*, 16(5):321–334.
- Haney, R.A., Ayoub, N.A., Clarke, T.H., Hayashi, C.Y., Garb, J.E. (2014). Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. *BMC Genomics*, 15:366.
- Haney, R.A., Clarke, T.H., Gadgil, R., Fitzpatrick, R., Hayashi, C.Y., Ayoub, N.A., Garb, J.E. (2016). Effect of gene duplication, positive selection, and shifts in genen expression on the evolution of the venom gland transcriptome in widow spiders. *Genome Biol. Evol.* 8(1):228–242.

- Hatfield, M.J. & Potter, P.M. (2011). Carboxylesterase inhibitors. *Expert Opin Ther* 8: 1159–1171.
- Hazzi, N.A., Valderrama-Ardila, C., Brescovit, A.D., Polotow, D., Simó, M. (2013). New records and geographical distribution of ctenid spiders (Araneae: Ctenidae) in Colombia. *Zootaxa*, 3709(3):243-254.
- Hazzi, N.A. (2014). Natural history of *Phoneutria boliviensis* (Araneae: Ctenidae): habitats, reproductive behavior, postembryonic development and prey-wrapping. *J Arachnol.*, 42(3):303-310.
- He, Q., Duan, Z., Yu, Y., Liu, Z., Liu, Z., Liang, S. (2013). The venom gland transcriptome of *Latrodectus tredecimguttatus* reveaked by deep sequening and cDNA lybrary analysis. PloS ONE, 8(11): e81357.
- Hernández, RV. (1993) Arañas, escorpiones y abejas de interés médico. Iatreia, 6(2):75-86.
- Hernandez-Campuzano, B., Suarez, R., Lina, L., Hernandez, V., Villegas, E., Corzo, G., Iturriaga, G. (2009). Expression of a spider venom peptide in transgenic tobacco confers insect resistance. *Toxicon*, 53:122–128.
- Herzig, V., Ward, R.J., Ferreira dos Santos, W. (2002). Intersexual variations in the venom of the Brazilian 'armed' spider *Phoneutria nigriventer* (Keyserling, 1891). *Toxicon*, 40:1399-1406.
- Heussen, C. & Dowdle, E.B. (1980). Electrophoretic analysis of a plasminogen activators in polyacrilamide gels containing sodium dodecyl sulfate and copolimerized substrates. *Analytical biochemestry*, 102:196-202.
- Hodgson, W.C. (1997). Pharmacological action of australian animal venoms. *Clinical and Experimental Pharmacology and Physiology*. 24:10-17.
- Hoffmann, A. (1993). *El Maravilloso Mundo De Los Arácnidos*. Ed. Fondo De Cultura Economica, USA.
- Hughes, S.R., Dowd, P.F., Hector, R.E., Panavas, T., Sterner, D.E., Qureshi, N., Bischoff, K.M., Bang, S.S., Mertens, J.A., Johnson, E.T., Li, X.L., Jackson, J. S., Caughey,

R.J., Riedmuller, S.B., Bartolett, S., Liu, S., Rich, J.O., Farrelly, P.J., Butt, T.R., Labaer, J., Cotta, M.A. (2008). Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a coproduct in an ethanologenic *Saccharomyces cerevisiae strain*. *J. Pept. Sci.* 14:1039–1050.

- Ichtchenko, K., Khvotchev, M., Kiyatkin, N., Simpson, L., Sugita, S., Sudhof, T.C. (1998). Alpha-Latrotoxin action probed with recombinant toxin: receptors recruit a-latrotoxin but do not transduce an exocytotic signal. *EMBO J.*, 17:6188–6199.
- Isbister, G.K. & Gray, M.R. (2002). A prospective study of 750 definite spider bites, with expert spider identification. QJM 95:723–31.
- Ji, W., Zhang, X., Hu, H., Chen, J., Gao, Y., Liang, S., An, C. (2005). Expression and purification of Huwentoxin-I in baculovirus system. *Protein Expr. Purif.* 41:454–458.
- Jiang, L., Peng, L., Chen, J., Zhang, Y., Xiong, X., Liang, S. (2008) Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider *Ornithoctonus huwena*. *Toxicon.*, 51(8):1479–89.
- Jiang, L., Peng, L., Zhang, Y., Chen, J., Zhang, D., Liang, S. (2009). Expression, purification and characterization of a group of lectin-like peptides from the spider *Ornithoctonus huwena*. *Peptides*, 30:669–674.
- Jiang, L., Liu, C., Duan, Z., Deng, M., Tang, X., Liang, S. (2013). Transcriptome analysis of venom glands from a single fishing spider Dolomedes mizhoanus. *Toxicon*. 73:23-32.
- Junqueira de Azevedo, I.deL.M., Poliselli Farsky, S.H., Oliveira, M.L.S., Ho, P.L. Molecular Cloning and Expression of a Functional Snake Venom Vascular Endothelium Growth Factor (VEGF) from the *Bothrops insularis* Pit Viper: A NEW MEMBER OF THE VEGF FAMILY OF PROTEINS. Journal of Biological Chemistry, 276(43):39836-39842.
- Kaiser, E. (1956). Enzymatic activity of spider venoms. In: Buckley EE, Porges N, eds. Venoms. Washington DC: American Association for the Advancement of Science, 91–3.

- Kalapothakis, E., Penaforte, C.L., Beirao, P.S., Romano-Silva, M.A., Cruz, J.S., Prado, M.A., Guimaraes, P.E., Gomez, M.V., Prado, V.F. (1998a). Cloning of cDNAS encoding neurotoxic peptides from the spider *Phoneutria nigriventer*. *Toxicon*, 36 (12):1843–1850.
- Kalapothakis, E., Penaforte, C.L., Leao, R.M., Cruz, J.S., Prado, V.F., Cordeiro, M.N., Diniz, C.R., Romano-Silva, M.A., Prado, M.A., Gomez, M.V., Beirao, P.S. (1998b).
 Cloning, cDNA sequence analysis and patch clamp studies of a toxin from the venom of the armed spider (*Phoneutria nigriventer*). *Toxicon*, 36 (12):1971–1980.
- Kalapothakis, E., Araujo, S.C., de Castro, C.S., Mendes, T.M., Gomez, M.V., Mangili, O.C., Gubert, I.C., Chavez-Olortegui, C. (2002). Molecular cloning, expression and immunological properties of LiD1, a protein from the dermonecrotic family of *Loxosceles intermedia* spider venom. *Toxicon*, 40:1691–9.
- Kemparaju, K. & Girish, K.S. (2006). Snake venom hyaluronidase: a therapeutic target. *Cell Biochem. Funct.*, 24:7-12.
- Khan, S.A., Zafar, Y., Briddon, R.W., Malik, A., Mukhtar, Z. (2006). Spider venom toxin protects plants from insect attack. *Transgenic Res.*, 15:349–357.
- Kimura, T., Ono, S., Kubo, T. (2012). Molecular cloning and sequence analysis of cDNA encoding toxin-like peptides from the venom glands of tarantula *Grammostola rosea*. *Int J Pept.*, Article ID 731293.
- King, G.F. & Hardy, M.C. (2013). Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. *Annu Rev Entomol*, 58:475–96.
- Kini, R.M. (2005). Serine proteases affecting blood coagulation and fibrinolysis from snake venoms. *Pathophysiol Haemost Thromb*, 34:200–4.
- Kiyatkin, N.I., Kulikovskaya, I.M., Grishin, E.V., Beadle, D.J., King, L.A. (1995). Functional characterization of black widow spider neurotoxins synthetised in insect cells. *Eur. J. Biochem.*, 230:854–859.
- Konno, K., Picolo, G., Gutierrez, V.P., Brigatte, P, Zambelli, VO., Camargo, A.C.M., Curi,Y. (2008). Crotalphine, a novel potent analgesic peptide from the venom of the SouthAmerican rattlesnake *Crotalus durissus terrificus*. *Peptides*, 29(8):1293-1304.
- Kostiza, T. & Meier, J. (1996). Nerve growth factors from snake venoms: Chemical properties, mode of action and biological significance. *Toxicon*, 34(7):787-806.
- Kozlov, S., Malyavka, A., McCutchen, B., Lu, A., Schepers, E., Herrmann, R., Grishin, E. (2005). A novel strategy for the identification of toxinlike structures in spider venom. *Proteins Struct Funct Bioinf.*, 59(1):131–40.
- Kozlov, S.A., Lazarev, V.N., Kostryukova, E.S., Selezneva, O.V., Ospanova, E.A., Alexeev, D.G., Govorun, V.M., Grishin, E.V. (2014). Comprehensive analysis of the venom gland transcriptome of the spider *Dolomedes fimbriatus*. *Scientific Data*, 1:140023.
- Krapcho, K.J., Kral Jr., R.M., Vanwagenen, B.C., Eppler, K.G., Morgan, T.K. (1995). Characterization and cloning of insecticidal peptides from the primitive weaving spider *Diguetia canities*. *Insect Biochem. Mol. Biol.*, 25:991–1000.
- Kuhn-Nentwig, L., Schaller, J., Nentwig, W. (1994). Purification of toxic peptides and the aminoacid sequence of CSTX-1 from the multi-component venom of *Cupiennius salei* (Araneae: ctenidae). Toxicon, 32:287–302.
- Kuhn-Nentwig, L., Müller, J., Schaller, J., Walz, A., Dathe, M., Nentwig, W. (2002).
 Cupiennin 1, a New Family of Highly Basic Antimicrobial Peptides in the Venom of the Spider *Cupiennius salei* (Ctenidae). Journal of Biological Chemistry, 277(13):11208-11216.
- Kuhn-Nentwig, L., Langenegger, N., Heller, M., Koua, D., Nentwig, W. (2019). The Dual Prey-Inactivation Strategy of Spiders—In-Depth Venomic Analysis of *Cupiennius salei*. *Toxins*, 11(3):167.
- Kusma, J., Chaim, O.M. Wille, A.M.C., Ferrer, V.P., Sade, Y.B., Donatti, L.; Gremski, W., Mangili, O.C., Veiga, S.S. (2008). Nephrotoxicity caused by brown spider venom phospholipase-D (dermonecrotic toxin) depends on catalytic activity. *Biochimie*, 90(11-12):1722-1736.

- Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, 227(5259): 680–685.
- Lajoie, D. M., Zobel-Thropp, P. A., Kumirov, V. K., Bandarian, V., Binford, G. J., & Cordes, M. H. (2013). Phospholipase D toxins of brown spider venom convert lysophosphatidylcholine and sphingomyelin to cyclic phosphates. *PloS one*, 8(8):e72372.
- Lampe, R.A. (1999). Analgesic peptides from venom of Grammostola spatulata and use thereof. U.S. Patent 5,877,026.
- Langenegger, N., Koua, D., Schürch, S., Heller, M., Nentwig, W., Kuhn-Nentwig, L. (2018). Identification of a precursos processing protease from the spider *Cupiennius salei* essential for the venom neurotoxin maturation. *J. Biol.Chem.*, 293(6):2079-2090.
- Lausten, A.H., Solà, M., Jappe, E.C., Oscoz Cob, S., Lauridsen, L.P., Engmark, M. (2016). Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins, 8(8):226.
- Lazo, F., Málaga, O., Yarlequé, A., Severino, R. (2007). Algunas propiedades bioquímicas de una L-aminoácido oxidasa aislada del veneno de la serpiente *Bothrops atrox*. Revista de la Sociedad Química del Perú, 73(3):131-141.
- Le Sueur, L.P., Collares-Buzato, C.B., da Cruz-Höfling, M.A. (2004). Mechanisms involved in the blood-brain barrier increased permeability induced by *Phoneutria nigriventer* spider venom in rats. *Brain Res.*, 1027(1-2):38-47.
- Li, M., Li, L.Y., Wu, X., Liang, S.P. (2000). Cloning and functional expression of a synthetic gene encoding huwentoxin-I, a neurotoxin from the Chinese bird spider (*Selenocosmia huwena*). *Toxicon*, 38:153–162.
- Lucas, S. (1988). Spiders in Brazil. Toxicon, 26(9):759-772.
- Maggio, F. & King, G.F. (2002). Scanning mutagenesis of a Janus-faced atracotoxin reveals a bipartite surface patch that is essential for neurotoxic function. *J. Biol. Chem.*, 277:22806–22813.

- Manzel, E.J. & Farr, C. (1988). Hyaluronidases and its substrate: biochemistry, biological activities and therapeutic uses. *Cancer Lett*, 131:3–11.
- McCormick, K.D. & Meinwald, J. (1993). Neurotoxic acylpolyamines from spider venoms. *Journal of Chemical Ecology*, 19(10):2411-2451.
- Mena-Muñoz, L.M., Maguina-Vargas, C., Lachira-Alban, A. (2016). Phoneutrismo en Piura: reporte de un caso clinico. Acta Medica Peru, 33:70-74.
- Metz, G.E.; Abeyá, M.M.; Serena, M.S.; Panei, C.J.; Diaz, S. Echaverría, M.G. (2017). Expression of M Protein from LP02/C Equine Arteritis Virus Inhibits Growth of *Escherichia Coli* M15-pQE30 System. *Virology: Research and Reviews*, 1(2):1-5
- Meymandi, M.S., Keyhanfar, F., Yazdanpanah, O. and Heravi, G. (2015). The Role of NMDARs Ligands on Antinociceptive Effects of Pregabalin in the Tail Flick Test. *Anesth Pain Med.*, 5(5):e28968.
- Miljanich, G.P. (2004). Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 11:3029–3040.
- Miller, M.J., Gomez, H.F., Snider, R.J., Stephens, E.L., Czop, R.M., Warren, J.S. (2000). Detection of *Loxosceles* venom in lesional hair shafts and skin: Application of a specific immunoassay to identify dermonecrotic arachnidism. *The American Journal* of *Emergency Medicine*. 18(5):626-628.
- Moura, J.R., Prado, M.A., Gomez, M.V., Kalapothakis, E., Diniz, C.R., Cordeiro, M.N., Romano-Silva, M.A. (1998). Investigation of the effect of PhTx2, from the venom of the spider *Phoneutria nigriventer*, on the release of [3H]-acetylcholine from rat cerebrocortical synaptosomes. *Toxicon*, 36(8):1189-1192.
- Nagaraju, S., Mahadeshwara swamy, Y.H., Girish, K.S., Kemparaju, K. (2006). Venom from spiders of the genus *Hippasa*: Biochemical and pharmacological studies. *Comp Biochem Physiol*, 144:1–9.
- Nagaraju, S., Devaraja, S., Kemparaju, K. (2007a). Purification and properties of hyaluronidase from *Hippasa partita* (funnel web spider) venom gland extract. Toxicon 50:383–93.

- Nagaraju, S., Girish, K.S., Fox, J.W., Kemparaju, K. (2007b). 'Partitagin' a hemorrhagic metalloprotease from *Hippasa partita* spider venom: role in tissue necrosis. Biochimie 89:1322–31.
- National Research Council. (2011). Guide for the care and use of laboratory animals. The National Academies Press. 8^a edición. United States of America.2008).
- Nimmrich, V. & Gross, G. (2012). P/Q-type calcium channel modulators. *Br J Pharmacol* 167:741–59.
- Nunes, K.P., Costa-Gonçalves, A., Lanza, L.F., Cortes, S.F., Cordeiro, M.N., Richardson, M., Pimenta, A.M.C., Webb, R.C., Leite, R., de Lima, M.E. (2008). Tx2-6 toxin of the *Phoneutria nigriventer* spider potentiates rat erectile function.Toxicon, 51(7):1197-1206.
- Nunes da Silva, C., Silva-Lomeo, R. & Silva-Torres, F., Borges, M.H., Cordeiro, M., Rodrigues, M.H., Rapôso, C., Monteriro de Castro, A., da Cruz-Höfling, M.A, Gomes, D., de Lima, M.E. (2018). PnTx2-6 (or δ-CNTX-Pn2a), a toxin from *Phoneutria nigriventer* spider venom, releases L-glutamate from rat brain synaptosomes involving Na⁺ and Ca²⁺ channels and changes protein expression at the blood-brain barrier. *Toxicon*, 150:280-288.
- OECD Guideline, 2009. Acute Inhalation Toxicity Acute Toxic Class Method. (September).)
- Oldrati, V., Bianchi, E., Stöcklin, R., Nentwig, W. (2012). Spider Venom Components as Drug Candidates. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg.
- Oldrati, V., Koua, D., Allard, P-M., Hulo, N., Arrell, M., Nentwig, W., Lisacek, F., Wolfender, J-L., Kuhn-Nentwig, L. (2017). Peptidomic and transcriptomic profiling of four distinct spider venoms. *PLoS ONE*, 12(3): e0172966.
- Oliveira, L.C., de Lima, M.E., Pimenta, A.M.C., Mansuelle, P., Rochat, H., Cordeiro, M.N., Richardson, M., Figueiredo, S.G. (2003). PnTx4-3, a new insect toxin from

Phoneutria nigriventer venom elicits the glutamate uptake inhibition exhibited by PhTx4 toxic fraction. *Toxicon*, 42:793-800.

- Olvera, A., Ramos-Cerrillo, B., Estevez, J., Clement, H., de Roodt, A., Paniagua-Solis, J., Vazquez, H., Zavaleta, A., Arruz, M.S., Stock, R.P., Alagon, A. (2006). North and South American *Loxosceles* spiders: development of a polyvalent antivenom with recombinant sphingomyelinases D as antigens. *Toxicon*, 48:64–74.
- Olvera, A., Stock, R.P., Ramos, B.M., Sanchez, R., Alagón, A. (2007). Inmunógeno y antiveneno contra el veneno de la araña violinista. UNAM, Mexico.
- OmPraba, G., Chapeaurouge, A., Doley, R., Devi, K.D., Padmanaban, P., Venkatraman, C., Velmurugan, D., Lin, Q., Kini, R.M. (2010). Identification of a Novel Family of Snake Venom Proteins Veficolins from *Cerberus rynchops* Using a Venom Gland Transcriptomics and Proteomics Approach. *Journal of Proteome Research*, 9(4):1882-1893.
- Ostrow, K.L., Mammoser, A., Suchyna, T., Sachs, F., Oswald, R., Kubo, S., Chino, N., Gottlieb, P.A. (2003). cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. *Toxicon* 42:263–274.
- Paiva, A.L.B., Mudadu, M.A., Pereira, E.H.T., Marri, C.A., Guerra-Duarte, C., Diniz, M.R.V. (2019). Transcriptome analysis of the spider *Phoneutria pertyi* venom glands reveals novel venom components for the genus Phoneutria. *Toxicon*, 163:59-69.
- Park, S.P., Kim, B.M., Koo, J.Y., Cho, H., Lee, C.H., Kim, M., Na, H.S., Oh, U. (2008). A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain. *Pain*, 137:208–217.
- Peigneur, S., de Lima, M.E., Tytgat, J. (2018). *Phoneutria nigriventer* venom: A pharmacological treasure. *Toxicon*, 151:96-110.
- Peng, Y., Leung, H.C., Yiu, S.M., Chin, F.Y. (2011) Meta-IDBA: a *de Novo* assembler for metagenomic data. *Bioinformatics* 27: i94-101.
- Peralta, L. (2013). Las arañas del banano (*Phoneutria* spp.), las más temidas de Centro y Sur América. *Bioma*, Enero:15-17.

- Pimenta, A.M.C., Rates, B., Bloch, C., Gomes, P.C., Santoro, M.M., de Lima, M.E., Richardson, M., Cordeiro, M.D. (2005). Electrospray ionization quadrupole time-offlight and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometric analyses to solve micro-heterogeneity in post-translationally modified peptides from *Phoneutria nigriventer* (Aranea, Ctenidae) venom. *Rapid Commun. Mass Spectrom.* 19 (1):31–37.
- Pincus, S.J., Winkel, K.D., Hawdon, G.M. & Sutherland, S.K. (1999). Acute and recurrent skin ulceration after spider bite. Medical Journal of Australia, 171:99-102.
- Pineda, D. & Florez, E. (2002). Mordeduras de arañas. In 'Accidentes por Animales Venenosos.
- Pineda, S.S., Wilson, D., Mattick, J.S., King, G.F. (2012). The lethal toxin from Australian funnel-web spiders is encoded by an intronless gene. *PLoS One*, 7(8):e43699.
- Posnien, N., Zeng, V., Schwager, E.E., Pachmann, M.,Hilbrant, M., Keefe, J.D., Damen, W.G.M., Prpic, N.M., McGregor, A.P. (2014). A comprehensive reference transcriptome resource for the common house spider *Parasteatoda tepidariorum*. *PloS ONE*, 9(8): e104885.
- Quintana, J.C. & Patiño, R.O. (2002). Envenenamiento aracnídico en las Américas. MedUnab, 5(4), pp.1–9.
- Quintero-Hernández, V., Ortiz, E., Rendón-Anaya, M., Schwartz, E.F., Becerril, B., Corzo, G., Possani, L.D. (2011). Scorpion and spider venom peptides: Gene cloning and peptide expression. *Toxicon*, 58:644-663.
- Rash, L.D., & Hodgson, W.C. (2002). Pharmacology and Biochemistry of Spider Venoms. *Toxicon*, 40(3): 225–254.
- Resh, V.H. & Cardé, R.T. (2009). Encyclopedia of Insects. Academic Press.
- Richardson, M., Pimienta, A.M.C., Bemquerer, M.P., Santoro, M.M., Beirao, P.S.L., Lima,M.E., Figueiredo, S.G., Bloch Jr., C., Vasconcelos, E.A.R., Campos, F.A.P., Gomes,P.C., Cordeiro, M.N. (2006). Comparison of the partial proteomes of the venom of

Brazilian spiders of the genus *Phoneutria*. *Comparative Biochemestry and Physiology*, Part C, 142:173-187.

Robinson, S.D. & Safavi-Hemami, H. (2016). Insulin as a weapon. Toxicon, 123:56-61.

- Rocha-E-Silva, T.A.A., Sutti, R., Hyslop, S. (2009a). Milking and partial characterization of venom from the Brazilian spider *Vitalius dubius* (Theraphosidae). *Toxicon*. 78(1):153-161.
- Rocha-E-Silva, T.A.A., Collares-Buzato, C.B., da Cruz-Höfling, M.A. (2009b). Venom apparatus of the Brazilian tarantula *Vitalius dubius* Mello-Leitão 1923 (Theraphosidae). Cell and tissue research. 335(3):617-629.
- Rodríguez de la Vega, R.C., Schwartz, E.F., Possani, L.D. (2010). Mining on scorpion venom biodiversity. *Toxicon*, 56(7),1155–61.
- Rodríguez-Vargas, A.L., Rodriguez-Buitrago, J., Diaz, G.J. (2012). Comportamiento general de los accidentes provocados por animales venenosos en Colombia, 2006-2010. *Rev salud pública*, 14(6):1001-1009.
- Romero-Gutierrez, T. (2018). Caracterización del transcriptoma de la glándula venenosa y elproteoma del veneno del alacrán *Thorellius atrox*. (Tesis doctoral). Universidad Nacional Autonoma de México. Cuernavaca, Morelos. México.
- Romero-Gutierrez, T., Peguero-Sanchez, E., Cevallos, M.A., Batista, C.V.F., Ortiz, E., Possani, L.D. (2017). A deeper examination of *Thorellius atrox* scorpion venom components with omic technologies. Toxins, 9:399.
- Sade, Y.B., Bóia-Ferreira, M., Gremski, L.H., da Silveira, R.B., Gremski, W., Senff-Ribeiro, A., Chaim, O.M., Veiga, S.S. (2012). Molecular cloning, heterologous expression and functional characterization of a novel translationally-controlled tumor protein (TCTP) family member from *Loxosceles intermedia* (brown spider) venom. *Int J Biochem Cell Biol*, 44(1):170–177.
- Saez, N.J., Senff, S., Jensen, J.E., Er, S.Y., Herzig, V., Rash, L.D., King, G.F. (2010). Spider-Venom Peptides as Therapeutics. *Toxins*, 2(12): 2851–2871.

- Samaniego-Hernández, M. (2007). Clonación, sobre-expresión y purificación de las proteínas NSP5 y NSP6 de rotavirus en *Escherichia coli*. Instituto Potosino de Investigación Científica y Tecnológica, A.C. San Luis Potosí, S.L.P., México.
- Sannaningaiah, D., Subbaiah, G.K., Kempaiah, K. (2014). Pharmacology of spider venom toxins. *Toxin Rev*, 33(4): 206–220.
- Santoro, M.L., Vaquero, T.S., Paes Leme, A.F., Serrano, S.M.T. (2009). NPP-BJ, a nucleotide pyrophosphatase/phosphodiesterase from Bothrops jararaca snake venom, inhibits platelet aggregation. *Toxicon*, 54(4):499-512.
- Satake, H., Villegas, E., Oshiro, N., Terada, K., Shinada, T., Corzo, G. (2004) Rapid and efficient identification of cysteine-rich peptides by random screening of a venom gland cDNA library from the hexathelid spider *Macrothele gigas*. *Toxicon*, 44:149–56.
- Schanbacher, F.L., Lee, C.K., Wilson, I.B., Howell, D.E., Odell, G.V. (1973). Purification and characterization of tarantula *Dugesiella hentzi* (Girard) venom hyaluronidase. *Comp Biochem Physiol*, 44B:389–96.
- Schenberg, S. & Pereira-Lima, F.A. (1971). Phoneutria nigriventer venom Pharmacology and biochemestry of itscomponents. In: Wolfgang, B. & Buckley, E.E. Venomous Animals and their Venoms. Academic Press. 279-297.
- Schwartz, E.F., Camargos, T.S., Zamudio, F.Z., Silva, L.P., Bloch, C., Caixeta, F., Schwartz, C.A., Possani, L.D. (2008). Mass spectrometry analysis, amino acid sequence and biological activity of venom components from the Brazilian scorpion *Opisthacanthus cayaporum. Toxicon*, 51, 1499–1508.
- Shao, J.H., Cui, Y., Zhao M.Y., Wu, C.F., Liu, Y.F., Zhang, J.H. (2014). Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion *Buthus martensi* Karsch. *Peptides*, 53:89–96.
- Sheumack, D.D., Baldo, B.A., Carroll, P.R., Hampson, F., Howden, M.E.H., Skorulis, A. (1984). A comparative study of properties and toxic constituents of funnel web spider

(Atrax) venoms. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 78(1):55-68.

- Shikata, Y., Watanabe, T., Teramoto, T., Inoue, A., Kawakami, Y., Nishizawa, Y., Katayama, K., Kuwada, M. (1995). Isolation and characterization of a peptide isomerase from funnel web spider venom. *J. Biol. Chem.* 270 (28):16719–16723.
- Shlyapnikov, Y.M., Andreev, Y.A., Kozlov, S.A., Vassilevski, A.A., Grishin, E. V. (2008). Bacterial production of latarcin 2a, a potent antimicrobial peptide from spider venom. *Protein Expr. Purif.*, 60:89–95.
- Siegmund, E., Cadmus, R. & Lu, G. (1957). A method for evaluating both non-narcotic and narcotic analgesics. *Proc. Soc. Exp. Biol. Med.*, 95, 729-731.
- Smith, J.J., Cummins, T.R., Alphy, S., Blumenthal, K.M. (2007). Molecular interactions of the gating modifier toxin ProTx-II with NaV 1.5: implied existence of a novel toxin binding site coupled to activation. *J. Biol. Chem.*, 282:12687–12697.
- Steinstraesser, L., Kraneburg, U., Jacobsen, F., Al-Benna, S. (2011). Host defense peptides and their antimicrobial-immunomodulatory duality. *Immunobiology*, 216(3):322–333.
- Sun, J., Wu, Y., Wang, J., Ma, F., Liu, X., Li, Q. (2008). Novel translationally controlled tumor protein homologue in the buccal gland secretion of *Lampetra japonica*. *Biochimie*, 90:1760–1768.
- Suto, K., Yamazaki, Y., Morita, T., Mizuno, H. (2005). Crystal Structures of Novel Vascular Endothelial Growth Factors (VEGF) from Snake Venoms. *The Journal of Biological Chemetry*, 280(3):2126-2131.
- Takeuchi, K., Park, E., Lee, C., Kim, J., Takahashi, H., Swartz, K., Shimada, I. (2002) Solution structure of omega-grammotoxin SIA, a gating modifier of P/Q and N-type Ca(2+) channel. *J Mol Biol*. 321:517–26.
- Tan, C.H., Tan, K.Y., Fung, S.Y., Tan, N.H. (2015). Venom-gland transcriptome and venom proteome of the Malaysian king cobra (*Ophiophagus hannah*). BMC Genomics 16, 687.

- Tang, X., Zhang, Y., Hu, W., Xu, D., Tao, H., Yang, X., Li, Y., Jiang, L., Liang, S. (2010). Molecular diversification of peptide toxins from the tarantula *Haplopelma hainanum* (*Ornithoctonus hainana*) venom based on transcriptomic, peptidomic, and genomic analyses. J Proteome Res., 9(5):2550–64.
- Tedford, H.W., Gilles, N., Ménez, A., Doering, C.J., Zamponi, G.W., King, G.F. (2004). Scanning mutagenesis of omega-atracotoxin-Hv1a reveals a spatially restricted epitope that confers selective activity against insect calcium channels. *J. Biol. Chem.* 279:44133–44140.
- Terpe, K. (2006). Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. *Appl. Microbiol. Biotechnol.*, 72:211–222.
- Texeira, J., Etchartea, A., Rodriguez-Ithurralde, D. (2013). El embrión de pez cebra (*Danio rerio*), herramienta biotecnológica para determinar la toxicidad de sustancias, fármacos y contaminantes ambientales: efectos de los insecticidas piretroides. Conference: Encuentro de Presentaciones Científicas del Programa Acortando Distancias.
- Tonello, R., Rigo, F., Gewehr, C., Trevisan, G., Pereira, E.M., Gomez, M.V., Ferreira, J. (2014). Action of Phα1β, a peptide from the venom of the spider *Phoneutria nigriventer*, on the analgesic and adverse effects caused by morphine in mice. *J. Pain*, 15(6):619-631.
- Torres, A.F., Huang, C., Chong, C.M., Leung, S.W., Prieto-da-Silva, A.R., Havt, A., Quinet, Y.P., Martins, A.M., Lee, S.M., Rádis-Baptista, G. (2014). Transcriptome analysis in venom gland of the predatory giant ant *Dinoponera quadriceps*: insights into the polypeptide toxin arsenal of hymenopterans. *PloSone*, 9(1), e87556.
- Undheim, E.A., Sunagar, K., Herzig, V., Kely, L., Low, D.H., Jackson, T.N., Jones, A., Kurniawan, N., King, G.F., Ali, S.A., Antunes, A., Ruder, T., Fry, B.G. (2013). A proteomics and transcriptomics investigation of the venom from the barychelid spider *Trittame loki* (brush-foot trapdoor). *Toxins*, 5(12):2488–503.

- Usmanov, P.V. & Nuritova, F.A. (1994). The anticoagulant action of a phospholipase A from *Ereus niger* spider venom. *Toxicon*, 32:625–8.
- Utkin, Y.N. (2017). Modern trends in animal venom research-omics and nanomaterials. *World journal of biological chemistry*, 8(1):4-12.
- Valenzuela-Rojas, J.C., González-Gómez, J.C., van der Meijden, A., Cortés, J.N., Guevara, G., Franco, L.M., Pekár, S., García, L.F. (2019). Prey and venom efficacy of male and female wandering spider, *Phoneutria boliviensis* (Araneae: Ctenidae). *Toxins*, 11:622-634.
- van Loon, L.C. (1985). Pathogenesis-related proteins. Plant Mol Biol, 4:111–116.
- Veiga, S.S., da Silveira, R.B., Dreyfuss, J.L., Haoach, J., Pereira, A.M., Mangili, O.C., Gremski, W. (2000). Identification of high molecular weight serine-proteases in *Loxosceles intermedia* (brown spider) venom. *Toxicon*, 38:825-839.
- Vines, C.M., & Bill, C.A. (2015). Phospholipases. ELS, (May), 1–9.
- Vonk, F.J., Casewell, N.R., C.V. Henkel, C.V., Heimberg, A.M., Jansen, H.J., McCleary, R.J.R., Kerkkamp, H.M.E., Vos, R.A., Guerreiro, I., Calvete, J.J., Wüster, W., Woods, A.E., Logan, J.M., Harrison, R.A., Castoe, T.A., de Koning, A.P.J., Pollock, D.D., Yandell, M., Calderon, D., Renjifo, C., Currier, R.B., Salgado, D., Pla, D., Sanz, L., Hyder, A.S., Ribeiro, J.M.C., Arntzen, J.W., van den Thillart, G.E.E.J.M., Boetzer, M., Pirovano, W., Dirks, R.P., Spaink, H.P., Duboule, D., McGlinn, E., Kini, R.M., Richardson, M.K. (2013). King cobra genome and snake venom evolution. *Proceedings of the National Academy of Sciences*, 110 (51):20651-20656.
- Wang, Z., Fang, B., Chen, J., Zhang, X., Luo, Z., Huang, L., Chen, X., Li, Y. (2010). *De novo* assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (*Ipomoea batatas*). *BMC Genomics* 11, 726.
- Weisel-Eichler, A. & Libersat, F. (2004). Venom effects on monoaminergic systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 190:683–90.

- Werren, J.H., Richards, S., Desjardins, C.A., Niehuis, O., Gadau, J., Colbourne, J.K., Beukeboom, L.W., Desplan, C., Elsik, C.G., Grimmelikhuijzen, C.J., Kitts, P., Lynch, J.A., Murphy, T., Gibbs, R.A. (2010). Functional and evolutionary insights from the genomes of three parasitoid *Nasonia* species. *Science*, 327:343–348.
- Wen, S., Wilson, D.T.R., Kuruppu, S., Korsinczky, M.L.J., Hedrick, J., Pang, L., Szeto, T., Hodgson, W.C., Alewood, P.F., Nicholson, G.M. (2005). Discovery of an MIT-like atracotoxin family: Spider venom peptides that share sequence homology but not pharmacological properties with AVIT family proteins. *Peptides*. 26(12):2412-2426.
- White, J., Cardoso, J.L., Fan, H.W. (1995). Clinical toxicology of spider bites. In: Meier, J., White, J. (eds) Clinical toxicology of animal venom and poisons. CRC, Boca Raton.
- Windley, M.J., Herzig, V., Dziemborowicz, S.A.; Hardy, M.C.; King, G.F.; Nicholson, G.M. (2012). Spider-venom peptides as bioinsecticides. *Toxins* (Basel) 4:191–227.
- Winnebeck, E.C., Millar, C.D., Warman, G.R. (2010). Why Does Insect RNA Look Degraded? Journal of Insect Science, 10(159), 1–7.
- Wong, E.S., Hardy, M.C., Wood, D., Bailey, T., King, G.F. (2013). SVM-Based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula. *PLoS One*, 8 (7):e66279.
- World Spider Catalog. (1 de junio de 2020). Currently valid spider genera and species (2020-06-01). Recuperado de: <u>https://wsc.nmbe.ch/statistics/</u>
- Wright, R.P., Elgert, K.D., Campell, B.J., Barrett, J.T. (1973). Hyaluronidase and esterase activities of the venom of poisonous brown recluse spider. *Arch Biochem Biophys*, 159:415–26.
- Xiu, B., Liu, P., Xu, X., Zhang, S., Zheng, Y. (2017). Identification of Venom Proteins of the Indigenous Endoparasitoid Chouioia cunea (Hymenoptera: Eulophidae). *J Econ Entomol.*, 110(5):2022-2030.
- Xu, X., Wang, H., Zhang, F., Hu, Z., Liang, S., Liu, Z. (2015). A comparative analysis of the venom gland transcriptomes of the fishing spiders *Dolomedes mizhoanus* and *Dolomedes sulfurous*. *PloS ONE*, 10 (10):e0139908.

- Yamazaki, Y. & Morita, T. (2007). Snake Venom Components Affecting Blood Coagulation and the Vascular System:Structural Similarities and Marked Diversity. *Current Pharmaceutical Design*, 13(28):2872-2886.
- Yamazaki, Y. & Morita, T. (2008). Snake Venoms and Other Toxic Components Affecting Thrombosis and Hemostasis. In: Tanaka K., Davie E.W., Ikeda Y., Iwanaga S., Saito H., Sueishi K. (eds) Recent Advances in Thrombosis and Hemostasis 2008. Springer, Tokyo.
- Yan, S. & Wang, X. (2015). Recent Advances in Research on Widow Spider Venoms and Toxins. *Toxins*, 7:5055-5067.
- Yang, S., Xiao, Y., Kang, D., Liu, J., Li, Y., Undheim, E.A.B., Klint, J.K., Rong, M., Lai, R., King, G.F. (2013). Discovery of a selective Na V 1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. PNAS, 110(43):17534-17539.
- Young, A.R. & Pincus, S.J. (2001). Comparison of enzymatic activity from three species of necrotizing arachnids in Australia: *Loxosceles rufescens*, *Badumma insignis* and *Lampona cylindrata*. *Toxicon*, 39:391–400.
- Yuan, C.H., He, Q.Y., Peng, K., Diao, J-B., Jiang, L-P., Tang, X., Liang, S-P. (2008). Discovery of a distinct superfamily of Kunitz-type toxin (KTT) from tarantulas. PLoS One 3:e3414.
- Zanetti, V.C., da Silveria, R.B., Dreyfuss, J.L., Haoach, J., Mangili, O.C., Veiga, S.S., Gremski, W. (2002). Morphological and biochemical evidence of blood vessel damage and fibrinogenolysis triggered by brown spider venom. *Blood Coagul Fibrinolysis*, 13:135–48.
- Zhang, Y., Chen, J., Tang, X., Wang, F., Jiang, L., Xiong, X., Wang, M., Rong, M., Liu, Z., Liang, S. (2010). Transcriptome analysis of the venom glands of the Chinese wolf spider *Lycosa singoriensis*. *Zoology*, 113:10–8.

- Zhang, Y., Huang, Y., He, Q., Liu, J., Luo, J., Zhu, L., Lu, S., Huang, P., Chen, X., Zeng,X., Liang, S. (2014). Toxin diversity revealed by a transcriptomics study of *Ornithoctonus huwena*. *PLoS One*, 9(6):e100682.
- Zhang, F., Liu, C., Tan, H., Wang, H., Jiang, Y., Liang, S., Zhang, F., Liu, Z. (2015). A survey of the venom of the spider *Lycosa vittata* by biochemical, pharmacological and transcriptomic analyses. *Toxicon*, 107:335-343.
- Zhang, H., Huang, P-F., Meng, E., Li, W-Y., Zhou, L., Zhu, L-Y., Wu, L., Li, M-J., Liang, S-P., Zhang, D-Y. (2015) An Efficient Strategy for Heterologous Expression and Purification of Active Peptide Hainantoxin-IV. *PLoS ONE*, 10(2):e0117099.
- Zobel-Thropp, P.A., Correa, S.M., Garb, J.E., Binford, G.J. (2014a). Spit and venom from *Scytodes* spiders : a diverse and distinct cocktail. *J. Proteome Res.* 13 (2), 817–835.
- Zobel-Thropp, P.A., Thomas, E.Z., David, C.L., Breci, L.A., Binford, G.J. (2014b). *Plectreurys tristis* venome: a proteomic and transcriptomic analysis. *J Venom Res.*, 5:33–44.
- Zou, X., He, Y., Qiao, J., Zhang, C., Cao, Z. (2016). The natural scorpion peptide, BmK NT1 activates voltage-gated sodium channels and produces neurotoxicity in primary cultured cerebellar granule cells. *Toxicon*, 109:33e41.

ANEXOS

Anexo I. Descripción general de las toxinas reportadas en los venenos de especies del género *Phoneutria*.

<u>Phoneutria fera</u>									
Nombre recomendado	Nombres alternativos	Nivel de evidencia	UNIPROT	AA	MW (Da)	Actividad in vivo	Diana molecular y acción	Función molecular	Referencia
Putative PQM protease		NA	A0A2I5YNW5	280	30417		Actividad serin endopeptidasa	Pr	Langenegger et al., 2018
Phoneutria keiserlingi									
(Brazilian wandering sj	pider) (Ctenus keyserlingii)								
Nombre recomendado	Nombres alternativos	Nivel de evidencia	UNIPROT	AA	MW (Da)	Actividad in vivo	Diana molecular y acción	Función molecular	Referencia
U1-ctenitoxin-Pk1a	U1-CNTX-Pk1a Neurotoxin PKTx19C5	р	P83895	45	5101,8	Parálisis flácida (5 μg/ratón)		Ν	Richardson et al., 2006a.
U2-ctenitoxin-Pk1a	U2-CNTX-Pk1a Neurotoxin PKTx20C2	Р	P83905	50	5493	Insecticida	Inhibor de NMDA Inactiva iNaV	Ν	Richardson et al., 2006a.
U3-ctenitoxin-Pk1a	U3-CNTX-Pk1a Neurotoxin PKTx21C2	Р	P83915	32	3478,1			Ν	Richardson et al., 2006a.
U4-ctenitoxin-Pk1a	U4-CNTX-Pk1a Neurotoxin PKTx28C4	р	P83896	ND	5001,1	Parálisis espástica (3 μg/ratón)		Ν	Richardson et al., 2006a.
U5-ctenitoxin-Pk1a	U5-CNTX-Pk1a Neurotoxin PKTx15C1 Neurotoxin PKTx1A	р	P84062	78	8769,66	Parálisis espástica y muerte en ratón (1,5 µg i.c.v.)		N	Richardson et al., 2006a.

U5-ctenitoxin-Pk1b	U5-CNTX-Pk1b Neurotoxin PKTx16C1 Neurotoxin PKTx1B	Р	P84063	ND	3099	Parálisis espástica y muerte en ratón (1,5 μg i.c.v.)		Ν	Richardson et al., 2006a.
U6-ctenitoxin-Pk1a	U6-CNTX-Pk1a Neurotoxin PKTx32C4	Р	P83910	36	3996,2	Parálisis espástica y muerte en ratón	No inhibe CaV1.2 (L)	Ν	Richardson et al., 2006a.
U7-ctenitoxin-Pk1a	U7-CNTX-Pk1a Neurotoxin PKTx36C1	Р	P84012	54	5970,2	Parálisis espática y muerte en ratón (1,5 μg)	Bloqueador de NaV	Ν	Richardson et al., 2006a.
U8-ctenitoxin-Pk1a	U8-CNTX-Pk1a Neurotoxin PKTx23C3	Р	P83902	58	6592,6	No es tóxica en ratón (5 µg)		Ν	Richardson et al., 2006a.
U9-ctenitoxin-Pk1a	U9-CNTX-Pk1a Venom protein PKTx22C1	Р	P84013	ND	4734,4			Ν	Richardson et al., 2006a.
CRISP-1	Cysteine-rich venom protein Venom allergen	Р	P85860	ND	16592	Reacción alérgica en humano		CRISP	Richardson et al., 2006a.
Hyaluronidase-Pk1a	Hyaluronoglucosaminidas e	Р	P86274	ND	3879		Hidroliza ácido hialurónico	Gl	Richardson et al., 2006a.

<u>Phoneutria nigriventer</u>

(Brazilian armed spider) (Ctenus nigriventer)

Nombre recomendado	Nombres alternativos	Nivel de evidencia	UNIPROT	AA	MW (Da)	Actividad in vivo	Diana molecular y acción	Función molecular	Referencia
Mu-ctenitoxin-Pn1a μ-ctenitoxin-Pn1a	Mu-CNTX-Pn1a PNTx1 PhTx1	P NA	P17727	78	8597,7	Parálisis espática en ratón. LD50 0,05 mg/kg (i.c.v.) ratón	Inhibidor reversible de NaV1.2 neuronal	N	Diniz <i>et al.</i> , 1990, 1993, 2006. Mattiello- Sverzut <i>et</i> <i>al.</i> , 1998. Santos <i>et al.</i> , 1999.

									Martin- Moutot <i>et al.</i> , 2006. Richardson <i>et al.</i> , 2006a.
U2-ctenitoxin-Pn1a	U2-CNTX-Pn1a Neurotoxin Tx2-1	P NA	P29423	53	5841,7	Insecticida Tóxica en ratón LD50 1,62 mg/ratón ¹	Inhibor de NaV	N	Kalapothakis et al., 1998. Cordeiro et al., 1992. Richardson et al., 2006a.
U2-ctenitoxin-Pn1b	U2-CNTX-Pn1b Neurotoxin Pn2-1A	P NA	O76198	54	6070,0		Bloqueador de NaV	N	Kalapothakis et al., 1998.
Delta-ctenitoxin-Pn2c δ-ctenitoxin-Pn2c	Delta-CNTX-Pn2c Neurotoxin Pn2-5A Neurotoxin Tx2-5 U4-ctenitoxin-Pn1b	P NA	O76199	48	5112,8	Insecticida Induce función eréctil Tóxica en ratón (0,24mg/ ratón)	Inhibidor reversible de NaV neuronal.	N	Kalapothakis et al., 1998. Cordeiro et al., 1992. Matavel et al., 2009. Richardson et al., 2006a. Rezende et al., 1991.
Delta-ctenitoxin-Pn2a δ-ctenitoxin-Pn2a	Delta-CNTX-Pn2a Delta-CNTX-Pn1c Neurotoxin Tx2-6 PnTx2-6	P NA	P29425	48	5288,2	Insecticida Potencia función eréctil Tóxica en ratón ¹ LD50 0,79 mg/ratón	Retraza la inactivación mNaV Inductor de producción de NO	Ν	Matavel <i>et</i> <i>al.</i> , 2002, 2009. Cardeiro <i>et</i> <i>al.</i> , 1992. Richardson <i>et al.</i> , 2006a.

									Nunes <i>et al.,</i> 2008, 2010.
U5-ctenitoxin-Pn1a	U5-CNTX-Pn1a Neurotoxin Tx2-9	Р	P29426	32	3736,5	Tóxica en ratón (1,4 mg/ratón)	Bloquedor de NaV	N	Cordeiro <i>et</i> <i>al.</i> , 1992. Richasrdson <i>et al.</i> , 2006a.
U7-ctenitoxin-Pn1b	U7-CNTX-Pn1b Neurotoxin Tx3	Р	P31010	ND	ND	LD50 21,9 pmol/g ratón	Antagonista de CaV1 (L)	Ν	Rezende <i>et</i> <i>al.</i> , 1991.
U6-ctenitoxin-Pn1a	U6-CNTX-Pn1a Neurotoxin Pn3A	P NA	P81793	34	3771,4		Antagonista de CaV1 (L)	Ν	Kalapothakis et al., 1998.
Kappa-ctenitoxin-Pn1a κ-ctenitoxin-Pn1a	Kappa-CNTX-Pn1a Neurotoxin Tx3-1 PNTx3-1	P NA	076200	40	4575,2	Parálisis en miembros posteriores con disminución de agresividad (5 µg/ratón)	Antagonista de CaV1 (L)	N	Kushmerick et al., 1999. Cordeiro et al., 1993. Richardson et al., 2006a.
Omega-ctenitoxin-Pn1a ω-ctenitoxin-Pn1a	Omega-CNTX-Pn1a Neurotoxin Tx3-2 PNTx3-2	P NA	076201	34	3533,2	Induce rotación y parálisis flácida (5 µg/ratón)	Antagonista de CaV1 (L)	N	Kalapothakis et al., 1998. Cordeiro et al., 1993.
Omega-ctenitoxin-Pn2a ω-ctenitoxin-Pn2a	Omega-CNTX-Pn2a Neurotoxin Tx3-3 Omega-PnTx3-3 PnTx3-3	Р	P81789	ND	ND	Parálisis flácida rápida y muerte en 10-30 min (5 µg/ratón)	Antagonista de CaV1 (L), 2.1 (P/Q), 2.3 (R)	N	Cordeiro <i>et</i> <i>al.</i> , 1993. Richardson <i>et al.</i> , 2006a. Guatimosim <i>et al.</i> , 1997.
U9-ctenitoxin-Pn1a	U9-CNTX-Pn1a Neurotoxin Pn3-3A	Р	P0C2S6	36	9559		Antagonista de CaV1 (L)	N	Cardoso et al., 2003.

Omega-ctenitoxin-Pn3a ω-ctenitoxin-Pn3a	Omega-CNTX-Pn3a Neurotoxin Tx3-4 Omega-phonetoxin-2A Pn3-4A PNTx3-4	Р	P81790	76	8449,6	Parálisis flácida y muerte en ratón (5 μg/ratón)	Antagonista de CaV2.1 (P/Q), 2.2 (N) y 2.3 (R)	N	Cardoso <i>et</i> <i>al.</i> , 2003. Cassola <i>et</i> <i>al.</i> , 1998. Richardson <i>et al.</i> , 2006a. Cordeiro <i>et</i> <i>al.</i> , 1993. Dos Santos <i>et</i>
U7-ctenitoxin-Pn1a	U7-CNTX-Pn1a Neurotoxin Tx3-5 PnTx3-5	P NA	P81791	45	4145,8	Parálisis en miembros posteriores con disminución de agresividad (5 µg/ratón)	Antagonista de CaV1 (L)	N	Cardoso <i>et</i> <i>al.</i> , 2003. Richardson <i>et al.</i> , 2006a. Cordeiro <i>et</i> <i>al.</i> , 1993.
Omega-ctenitoxin-Pn4a ω-ctenitoxin-Pn4a	Omega-CNTX-Pn4a Neurotoxin Tx3-6 PnTx3-6 Ph-alpha-1-beta toxin	P NA	P81792	55	6032,9	Efecto analgésico en rata	Antagonista de CaV2.1 (P/Q), 1 (L) y 2.2 (N)	N	Cardoso <i>et</i> <i>al.</i> , 2003. Cordeiro <i>et</i> <i>al.</i> , 1993. Richardon <i>et</i> <i>al.</i> , 2006a. Vieira <i>et al.</i> , 2005. de Souza <i>et</i> <i>al.</i> , 2008.
Delta-ctenitoxin-Pn1b δ-ctenitoxin-Pn1b	Delta-CNTX-Pn1b PnTx4-3	Р	P84034	48	5199,9	Insecticida (i.to.) LD50 20 ng/mosca No es tóxica en ratón (i.c.v.)	Inhibidor reversible de NMDA. Inhibe la inactivación de NaV	N	Oliveira <i>et</i> <i>al.</i> , 2003. Richardson <i>et al.</i> , 2006a.
GAMMA-ctenitoxin-	GAMMA-CNTX-Pn1a	Р	P59367	47	5174,8	Tóxica en insectos	Inhibidor de NMDA	N	Penaforte <i>et</i>

Pn1a Γ-ctenitoxin-Pn1a	PnTx4(5-5) Toxin Pn4A	NA				LD50 9,3 ng/mosca No tiene efecto en ratón (i.c.v.)	Ralentiza la inactivación de iNaV Inhibe mNaV		<i>al.</i> , 2000. De Figueiredo <i>et</i> <i>al.</i> , 2001. Richardson <i>et al.</i> , 2006a. Paiva <i>et al.</i> , 2016. Silva <i>et al.</i> , 2016.
Delta-ctenitoxin-Pn1a δ-ctenitoxin-Pn1a	Delta-CNTX-Pn1a Insecticidal neurotoxin Tx4(6-1) PnTx4(6-1) Tx4(6-1)	P NA	P59368	48	5241,1	Insecticida LD50 3,8 ng/mosca Efecto antinociceptivo (rata) No es tóxica en ratón (286,2 pmol/g)	Agonista NaV Inhibidor de NMDA	Ν	Penaforte <i>et</i> <i>al.</i> , 2000. Figueiredo <i>et</i> <i>al.</i> , 1995. Richardson <i>et al.</i> , 2006a. De Lima <i>et</i> <i>al.</i> , 2002. Emerich <i>et</i> <i>al.</i> , 2016.
U1-ctenitoxin-Pn1a	U1-CNTX-Pn1a Toxin Pn4B	NA	P61229	47	5815,4	Insecticida	Inhibidor de NMDA. Inhibidor de iNaV	Ν	Penaforte <i>et</i> <i>al.</i> , 2000.
U10-ctenitoxin-Pn1a	U10-CNTX-Pn1a Neurotoxin Pn3-5A	NA	P0C2S9	ND	8866			Ν	Cardoso <i>et</i> al., 2003.
U11-ctenitoxin-Pn1a	U11-CNTX-Pn1a Neurotoxin Pn3-6A	P NA	P0C2S7	58	6589,4			N	Cardoso <i>et</i> al., 2003.
U11-ctenitoxin-Pn1b	U11-CNTX-Pn1b Venom protein PNTx22C3	Р	P84011	58	6571,3	No es tóxica en ratón		Ν	Richardson et al., 2006a.
U12-ctenitoxin-Pn1a	U12-CNTX-Pn1a	Р	P0C2S8	58	6370,3			Ν	Cardoso et

	Neurotoxin Pn3-6B	NA							al., 2003.
U13-ctenitoxin-Pn1a	U13-CNTX-Pn1a Neurotoxin PNTx13C3	Р	P83894	32	3549,5			N	Richardson et al., 2006a.
U13-ctenitoxin-Pn1b	U13-CNTX-Pn1b Neurotoxin PNTx24A0C3	Р	P84017	31	3510,2			Ν	Richardson <i>et al.</i> , 2006a.
U13-ctenitoxin-Pn1c	U13-CNTX-Pn1c Neurotoxin PNTx24A0C4	Р	P84018	33	3683,3			Ν	Richardson <i>et al.</i> , 2006a.
U14-ctenitoxin-Pn1a	U14-CNTX-Pn1a Neurotoxin PNTx22A0C1	р	P83998	35	4080,8	No es tóxica en ratón ni insecto	Inhibidor de serin proteasa	Ν	Richardson et al., 2004d.
U17-ctenitoxin-Pn1a	U17-CNTX-Pn1a Neurotoxin PNTx27C4	Р	P83996	36	4062,8	Parálisis espástica y muerte en ratón (3 µg/ratón)	Inhibidor moderado de CaV1 (L)	Ν	Richardson <i>et al.</i> , 2006a. Lucio <i>et al.</i> , 2008.
U18-ctenitoxin-Pn1a	U18-CNTX-Pn1a Neurotoxin PNTx30C3	Р	P83999	47	7876,6	Parálisis espástica y muerte en ratón (3 µg/ratón)		N	Richardson et al., 2004c.
U19-ctenitoxin-Pn1a	U19-CNTX-Pn1a Non-toxic venom protein PNTx16C1	Р	P83997	68	7666,6	No es tóxica en ratón ni insecto		µ-cntx	Richardson et al., 2004b.
U20-ctenitoxin-Pn1a	U20-CNTX-Pn1a Omega-phonetoxin PNTx22C5	Р	P84093	ND	9215,3	Parálisis flácida y muerte en ratón (3 μg/ratón, i.c.v.)	Antagonista de CaV	Ν	Richardson et al., 2006a.
U21-ctenitoxin-Pn1a	U21-CNTX-Pn1a Proteinase PN47	Р	P84033	245	22088,99		Hidroliza gelatina y succinil caseína	SP	Richardson et al., 2006a.
U23-ctenitoxin-Pn1a	U23-CNTX-Pn1a	Р	P84015	33	3672,7	No es tóxica en ratón		Ν	Richardson

	Venom protein PN10C5								et al., 2006a.
U24-ctenitoxin-Pn1a	U24-CNTX-Pn1a Venom protein PN16C3	Р	P84032	128	14778,05		Inhibidor de cistein proteinasa	Inh. T-P	Richardson <i>et al.</i> , 2004e.
U27-ctenitoxin-Pn1a	U27-CNTX-Pn1a Toxin PnV2	Р	Q9TWR5	ND	ND	Actividad contractora de corta duración de MLV		Tx	Bento <i>et al.</i> , 1993.
U28-ctenitoxin-Pn1a	U28-CNTX-Pn1a Spasmogenic toxin PnV1	Р	Q7M3P1	125	ND	Actividad espasmogénica de MLV		Tx	Marangoni <i>et</i> al., 1993.
Techylectin-like protein		Р	P85031	225	25783	Implicada en inmunidad innata		Т	Richardson <i>et al.</i> , 2006b.
Tachykinin-like peptide- I	PnTkP-I U29-ctenitoxin-Pn1a	Р	P86298	7	871,7			Т	Pimenta <i>et al.</i> , 2005.
Tachykinin-like peptide- II	PnTkP-II U29-ctenitoxin-Pn1b	Р	P86299	8	999,88			Т	Pimenta <i>et al.</i> , 2005.
Tachykinin-like peptide- III	PnTkP-III U29-ctenitoxin-Pn1c	Р	P86300	8	1027,95			Т	Pimenta <i>et al.</i> , 2005.
Tachykinin-like peptide- IV	PnTkP-IV U29-ctenitoxin-Pn1d	Р	P86301	9	1147,3			Т	Pimenta <i>et</i> <i>al.</i> , 2005.
Tachykinin-like peptide- V	PnTkP-V U29-ctenitoxin-Pn1e	Р	P86302	9	1174,8			Т	Pimenta <i>et al.</i> , 2005.
Tachykinin-like peptide- VI	PnTkP-VI U29-ctenitoxin-Pn1f	Р	P86303	10	1217			Т	Pimenta <i>et al.</i> , 2005.
Tachykinin-like peptide- VII	PnTkP-VII U29-ctenitoxin-Pn1g	Р	P86304	10	1232,79			Т	Pimenta <i>et al.</i> , 2005.
Tachykinin-like peptide- VIII	PnTkP-VIII U29-ctenitoxin-Pn1h	Р	P86305	10	1337,89			Т	Pimenta <i>et al.</i> , 2005.

Tachykinin-like peptide- IX	PnTkP-IX U29-ctenitoxin-Pn1i	Р	P86306	12	1509,87			Т	Pimenta <i>et al.</i> , 2005.
Tachykinin-like peptide- X	PnTkP-X U29-ctenitoxin-Pn1j	Р	P86307	13	1610,12			Т	Pimenta <i>et</i> <i>al.</i> , 2005.
Tachykinin-like peptide- XI	PnTkP-XI U29-ctenitoxin-Pn1k	Р	P86308	13	1623,92			Т	Pimenta <i>et</i> <i>al.</i> , 2005.
Tachykinin-like peptide- XII	PnTkP-XII U29-ctenitoxin-Pn11	Р	P86309	13	1626,36			Т	Pimenta <i>et</i> <i>al.</i> , 2005.
Tachykinin-like peptide- XIII	PnTkP-XIII U29-ctenitoxin-Pn1m	Р	P86310	13	1637,93			Т	Pimenta <i>et</i> <i>al.</i> , 2005.
Tachykinin-like peptide- XIV	PnTkP-XIV U29-ctenitoxin-Pn1n	Р	P86311	13	1653,83			Т	Pimenta <i>et</i> <i>al.,</i> 2005.
Tachykinin-like peptide- XV	PnTkP-XV U29-ctenitoxin-Pn1o	Р	P86297	14	1653.94			Т	Pimenta <i>et</i> <i>al.</i> , 2005.
Neurotoxin PRTx26An0C3		Р	P86418	36	4058,7	Parálisis espástica y muerte en ratón.	Inhibidor moderado de CaV1 (L)N	N	Richardson <i>et al.</i> , 2006a. Lucio <i>et al.</i> , 2008.
Oligoventin		Р	B3EWR9	8	1061,4		Actividad antibacterial débil	AB	Candido- Ferreira <i>et</i> <i>al.</i> , 2016.
Phoneutria pertyi									
(Brazilian wandering sp	bider)								
Nombre recomendado	Nombres alternativos	Nivel de evidencia	UNIPROT	AA	MW (Da)	Actividad in vivo	Diana molecular y acción	Función molecular	Referencia
Toxin Tx1	PpTx1	Р	C0HJM7	ND	ND			Ν	Sousa <i>et al.,</i> 2014.

<u>Phoneutria reidyi</u>

(Brazilian Amazonian armed spider) (Ctenus reidyi)

Nombre recomendado	Nombres alternativos	Nivel de evidencia	UNIPROT	AA	MW (Da)	Actividad in vivo	Diana molecular y acción	Función molecular	Referencia
Beta/delta-ctenitoxin- Pr1a	Beta/delta-CNTX-Pr1a Beta/delta-PrIT1	р	P0DPG7	ND	5597,86	Insecticida No es tóxica en ratón (30 μg/ratón i.c.v.)	Inhibidor de la inactivación de NaV Inhibe NMDA	Ν	de Oliveira <i>et</i> <i>al.,</i> 2015.
Delta-ctenitoxin-Pr2d δ-ctenitoxin-Pr2d	Delta-CNTX-Pr2d Neurotoxin PRTx32C1	Р	P83904	47	5088,4	Parálisis espástica en ratón (2 µg/ratón)	Bloqueador de NaV	Ν	Richardson et al., 2006a.
Omega-ctenitoxin-Pr1a ω-ctenitoxin-Pr1a	Omega-CNTX-Pr1a Neurotoxin PRTx17C3 Tx3-7	Р	P83911	43	4627,9	Agitación y giro en sentido horario, parálisis flácida (5 µg/ratón i.c.v.)	Inhibidor de CaV1 (L), 2.1 (P/Q) y 2.3 (R)	N	Richardson <i>et al.</i> , 2006a. Vieira <i>et al.</i> , 2007.
Omega-ctenitoxin-Pr2a ω-ctenitoxin-Pr2a	Omega-CNTX-Pr2a Neurotoxin PRTx23C2	Р	P84014	55	6051,9	Parálisis de miembros posteriores, disminución de agresividad (3 µg/ratón i.c.v.)	Agonista de CaV1 (L)	Ν	Richardson et al., 2006a.
U1-ctenitoxin-Pr1a	U1-CNTX-Pr1a Neurotoxin PRTx18C2	Р	P83903	ND	8248,9	Parálisis flácida y muerte entre 10-30 min (5 µg/ratón)	Antagonista de CaV	N	Richardson et al., 2006a.
U2-ctenitoxin-Pr1a	U2-CNTX-Pr1a Neurotoxin PRTx22C1	Р	P83909	40	4546,2			Ν	Richardson et al., 2006a.
U4-ctenitoxin-Pr1a	U4-CNTX-Pr1a Neurotoxin PRTx27C3	Р	P83892	36	4051	Parálisis espástica y muerte en ratón	Inhibidor moderado de CaV1 (L)	N	Richardson <i>et al.</i> , 2006a. Lucio <i>et al.</i> , 2008.

U6-ctenitoxin-Pr1a	U6-CNTX-Pr1a Venom protein PRTx17C1	Р	P84016	32	3465,7		N	Richardson et al., 2006a.
U7-ctenitoxin-Pr1a	U7-CNTX-Pr1a PRTx19 PRTx20C1	Р	P84031	58	6549,1		N	Richardson et al., 2006a.
U8-ctenitoxin-Pr1a	U8-CNTX-Pr1a PRTx34C2	Р	P83901	58	6330,9	No es tóxica en ratón (5 µg/ratón)	N	Richardson <i>et al.,</i> 2006a.
U9-ctenitoxin-Pr1a	U9-CNTX-Pr1a Non-toxic venom protein PRTx16C0	Р	P83893	64	6981,39	No es tóxica en ratón ni insecto	µ-cntx	Richardson et al., 2004f.
U10-ctenitoxin-Pr1a	U10-CNTX-Pr1a Non-toxic venom protein PRTx22C5	Р	P84000	ND	4234,2	No es tóxica en ratón ni insecto	N	Richardson et al., 2006a.

AA: número de residuos de aminoácidos. MW: masa moleculas (promedio). P: nivel de proteína. NA: nivel de ácido nucléico. ND: no disponible. Pr: proteasa. N: Neutrotoxina. GI: Glicosidasa. μ-cntx: μ-ctenitoxina. SP: Serin proteasa. Inh T-P: Inhibidor de Thiol Proteasa. Tx: Toxina. T: Tachkikinina. AB: Antimicrobana. Los datos fueron tomados de la base de datos UniProt.

NMDA: receptor de N-metil-D-aspartato. NaV: Canal de sodio dependiente de voltaje (le antecede una i si es de insecto o m si de mamífero). CaV: Canal de calcio dependiente de voltaje (le antecede una i si es de insecto o m si de mamífero). NO: Oxido nítrico. i.c.v.: administración intracerebroventricular. i.to.: administración intratorácica. MLV: músculo liso vascular ¹ La toxina causa rascado, lagrimeo, hipersalivación, sudoración y agitación, seguido de parálisis espástica de las extremidades anterior y posterior.

Anexo II. Reactivos, soluciones y buffers generales

Soluciones y preparación de geles SDS-PAGE al 12,5 %

Acrilamida 30% w/v, Bis-acrilamida 0.8% w/v. Disolver 49.5 g de acrilamida y 1.32 de bis-acrilamida en un volumen final de 165 mL de agua destilada.

Buffer separador (Tris-base 1.5 M, SDS 0.4 % w/v). Disolver 18.17 g de Tris-base en 50 mL de agua destilada y adicionar 2 mL de SDS al 20 %. Ajustar el pH a 8.8 con HCl concentrado. Aforar a 100 mL con agua destilada.

Buffer concentrador (Tris-base 0.5 M, SDS 0.4 % w/v). Disolver 6 g de Tris-base en 50 mL de agua destilada y adicionar 2 mL de SDS al 20 % v/v. Ajustar el pH a 8.8 con HCl concentrado. Aforar a 100 mL.

Buffer de corrida 10X (Tris-base 0.025 M, glicina 0.19 M, SDS 0.1 % w/v, pH 8.6). Disolver 15.2 g de Tris-base y 72 g de glicina en 300 mL agua destilada y adicionar 25 mL de SDS 20 % v/v. Ajustar el pH a 8.6 con NaOH 10 N. Aforar a 500 mL.

Buffer desnaturalizante 5X (glicerol 25 % v/v, SDS 6.25 % w/v, Tris-HCl 125 mM, pH 6.8, 2-b mercaptoetanol 12.5 % w/v, azul de bromofenol 0.005% w/v). Disolver 2.5 mL de glicerol, 3.12 mL de SDS 20 % v/v, 12.5 mL de Tris-HCl 1M, pH 6.8, 1.25 mL de 2-b mercaptoetanol y 0.5 mL de azul de bromofenol al 1 % v/v. Aforar a 10 mL con agua destilada.

Persulfato de amonio 10% w/v (PSA). Disolver 0.1 g de PSA en 1 mL de agua destilada.

Solución de tinción (isopropanol 50 % v/v, ácido acético 10% v/v, azul de Coomassie G250 0.2 % w/v). Disolver 1 g de azul de Coomassie en 250 mL de isopropanol, agregar 50 mL de ácido acético glaciar y aforar a 500 mL con agua destilada.

Solución de destinción (isopropanol 10% v/v, ácido acético 10 % v/v). Diluir 400 mL de agua destilada, 50 mL de isopropanol y 50 mL de ácido acético.

Gel separador. Mezclar 1.5 mL de buffer separador, 3 mL de acrilamida, 1.5 mL de agua destilada, 5 μ L de TEMED y 20 μ L de PSA 10 % w/v. Se vierte la mezcla entre dos placas de vidrio del sistema de electroforesis vertical (Mini Protean 3 Cell, Bio-Rad) y se agrega un poco de agua destilada para evitar la formación de un menisco en el gel. Se deja polimerizar a temperatura ambiente.

Gel concentrador. Mezclar 0.63 mL de buffer concentrador, 0.33 mL de solución de acrilamida, 1.54 mL de agua destilada, 12.5 µL de PSA 10% y 2.5 µL de TEMED. Se retira el agua depositada sobre el gel concentrador. Se coloca el peine adecuado al número de pozos y se deja polimerizar.

Desnaturalización de muestras. Mezclar 20 µL de la muestra más 5 µL de buffer desnaturalizante 5X. Desnaturalizar por calentamiento a 100 °C por 10 minutos y centrifugar 1 min a 14,000 rpm.

Las condiciones de migración son a voltaje constante, se agrega 16 μ L de la muestra desnaturalizada por pozo y se migra con el buffer de corrida a 50 V hasta que el colorante de referencia atraviese el gel concentrador. Posteriormente, se aumenta el voltaje a 150 V y se continúa la corrida hasta 0.5 cm del extremo inferior del gel. Una vez concluida la electroforesis se tiñe por 2 horas con agitación y después se destiñe durante toda la noche en agitación

Solventes para fraccionamiento por Sep-Pack y cromatografía RP-HPLC

Solvente A (TFA 0.1% v/v). Diluir 1 mL de TFA en 999 mL de agua tetradestilada. Filtrar a través de una membrana de 0.22 micras.

Solvente B (ACN, TFA 0.1% v/v). Diluir 1 mL de TFA en 999 mL de acetonitrilo. Filtrar a través de una membrana de 0.22 micras. Glutatión reducido (GSH) 10 mM. Disolver 15.3 mg de GSH en la solución de plegamiento. Se debe preparar en el momento.

Glutatión oxidado (GSSH) 1 mM. Disolver 3 mg de GSSH en la solución de plegamiento. Se debe preparar en el momento.

Anexo III. Aval del Comité de Ética para la Experimentación con Animales

Medellín, 26 de julio de 2016

Investigadora **Dora María Benjumea** Programa Ofidismo/Escorpionismo Universidad de Antioquia

Proyecto: "Actividad analgésica de péptidos de venenos de arácnidos colombianos"

Resultado de la revisión: Otorgar aval.

Cordial saludo.

El **Comité de Ética para la Experimentación con Animales** le expresa que se otorga el aval solicitado, luego de presentadas las modificaciones y/o aclaraciones sugeridas, tal y como constará en el acta No. 104 de la reunión ordinaria realizada el 15 de junio a las 2:00 pm, en la sala de reuniones del Bioterio de la Sede de Investigación Universitaria de la Universidad de Antioquia.

Con toda atención.

JOSÉ JANCO CALLE ROSADA

JOSE IGNACIO CALLE POSADA Coordinador (e) Comité de Ética para la Experimentación con Animales Universidad de Antioquia

> Vicerrectoría de Investigaciones (U de A) - Teléfono (574) 2195190-6612 http://www.udea.edu.co/wps/portal/udea/web/inicio/investigacion Correo electrónico: cicuanimal@udea.edu.co Medellín - Colombia

N	Segunda parte de _ la serie	k para series de prueba cuya primera parte es					Error estándar
		0	00	000	0000		de DPm
2	X	- 0,500	- 0,388	- 0,378	- 0,377	0	0.88σ
3	X0	0,842	0,890	0,894	0,894	0X	0.76σ
	XX	- 0,178	0,000	0,026	0,028	0X	
4	<i>X00</i>	0,299	0,314	0,315	0,315	OXX	0.67σ
	X0X	- 0,500	- 0,439	- 0,432	- 0,432	0X0	
	XXO	1,000	1,122	1,139	1,140	00X	
	XXX	0,194	0,449	0,500	0,506	000	
5	<i>X000</i>	- 0,157	- 0,154	- 0,154	- 0,154	OXXX	0.61σ
	X00X	- 0,878	- 0,861	- 0,860	- 0,860	<i>0XX0</i>	
	X0X0	0,701	0,737	0,741	0,741	OXOX	
	X0XX	0,084	0,169	0,181	0,182	0X00	
	XX00	0,305	0,372	0,380	0,381	00XX	
	XX0X	- 0,305	- 0,169	- 0,144	- 0,142	00X0	
	XXX0	1,288	1,500	1,544	1,549	000X	
	XXXX	0,555	0,897	0,985	1,000 +1	0000	
6	X0000	- 0,547	- 0,547	- 0,547	- 0,547	OXXXX	0.56σ
	X000X	- 1,250	- 1,247	- 1,246	- 1,246	0XXX0	
	<i>X00X0</i>	0,372	0,380	0,381	0,381	OXXOX	
	X00XX	- 0,169	- 0,144	- 0,142	- 0,142	0XX00	
	X0X00	0,022	0,039	0,040	0,040	OXOXX	
	X0X0X	- 0,500	- 0,458	- 0,453	- 0,453	0X0X0	
	X0XX0	1,169	1,237	1,247	1,248	0X00X	
	X0XXX	0,611	0,732	0,756	0,758	<i>0X000</i>	
	XX000	- 0,296	- 0,266	- 0,263	- 0,263	OOXXX	
	XX00X	- 0,831	- 0,763	- 0,753	- 0,752	00XX0	
	XX0X0	0,831	0,935	0,952	0,954	00X0X	
	XXOXX	0,296	0,463	0,500	0,504 +1	00X00	
	XXX00	0,500	0,648	0,678	0,681	000XX	
	XXX0X	- 0,043	0,187	0,244	0,252 +1	000X0	
	XXXX0	1,603	1,917	2,000	2,014 +1	0000X	
	XXXXX	0,893	1,329	1,465	1,496 +1	00000	
		X	XX	XXX	XXXX	Segunda parte de la serie	

Anexo IV. Valores de *k* para estimar la DPm de secuencia *up-and-down* de ensayos de longitud nominal N. Si la tabla se comienza desde el pie, el signo de *k* debe cambiarse.

- k para series de prueba cuya primera parte es

Anexo V. Separación de fracciones obtenidas por Sep-Pack C18 del veneno de *P. boliviensis.*

Perfil cromatográfico de la fracción Eluato del veneno obtenida por separación en el cartucho Sep-Pack C18 del veneno de *P. boliviensis* por RP-HPLC, usando una columna C18 (250 x 4,6 mm), con el gradiente 2, durante 130 minutos con un flujo de 1 mL/min (gradiente 2). La corrida fue monitorizada a 230 nm.

Perfil cromatográfico de la fracción 1 obtenida por separación en el cartucho Sep-Pack C18 del veneno de *P. boliviensis* por RP-HPLC, usando una columna C18 (250 x 4,6 mm), con el gradiente 2, durante 130 minutos con un flujo de 1 mL/min (gradiente 2). La corrida fue monitorizada a 230 nm.

Perfil cromatográfico de la fracción 2 obtenida por separación en el cartucho Sep-Pack C18 del veneno de *P. boliviensis* por RP-HPLC, usando una columna C18 (250 x 4,6 mm), con el gradiente 2, durante 130 minutos con un flujo de 1 mL/min (gradiente 2). La corrida fue monitorizada a 230 nm.

Perfil cromatográfico de la fracción 4 obtenida por separación en el cartucho Sep-Pack C18 del veneno de *P. boliviensis* por RP-HPLC, usando una columna C18 (250 x 4,6 mm), con el gradiente 2, durante 130 minutos con un flujo de 1 mL/min (gradiente 2). La corrida fue monitorizada a 230 nm.

Anexo VI. Placas de agarosa con yema de huevo para evaluación de la actividad Fosfolipasa A2 del veneno de *P. boliviensis* y sus fracciones.

Evaluación de actividad fosfolipasa A2 del veneno de *P. boliviensis*. Placa de agarosa con yema de huevo. **A)** Fracciones de veneno de *P. boliviensis* (5 µg por fracción), **1.** C+: veneno de *B. ammodytoides* (5 µg), **2.** Fracción 33,2, **3.** Fracción 35,6, **4.** Fracción 37,0, **5.** Fracción 37,5, **6.** Fracción 38,1, **7.** Fracción 40,2, **8.** Veneno completo de *P. boliviensis* (5 µg), **9.** C-: agua. **B)** Veneno completo, **1.** C+: veneno de *B. ammodytoides* (5 µg), **2.** Veneno de *P. boliviensis* (53,07 µg), **3.** Veneno de *P. boliviensis* (106,14 µg), **4.** C-: agua.

Anexo VII. Gráficos de calidad de la secuenciación.

La calidad phred refleja directamente la confiabilidad de la secuenciación a través de cada una de las bases de los reads. Este indicador está basado el código ASCII y su valor indica la probabilidad de que una base específica sea asignada a una posición en las lecturas. Una calidad phred de 0 a 20 tiene una probabilidad de 99% de que una base sea asignada correctamente a una posición en la lectura (en la figura es el área coloreada de rojo); si el valor de calidad está entre 21 y 30, la probabilidad sube a 99.99% y si está en el área verde, arriba de 28, se tiene una certeza de la secuenciación de un 99.999%.

Gráfico de caja y bigotes de la calidad phred acumulada resultado de la secuenciación del cDNA en un formato de 2x97pb. En el eje X aparece cada una de las 97 posiciones que conforman una lectura y en el eje Y aparece la calidad phred asociada. La línea azul es la medida total de calidad por base. También se representan la mediana y los cuartiles.

El programa fastQC da un panorama global de la calidad de la secuenciación. En la figura se muestra el contenido de GC (guanina-citosina) de la muestra secuenciada. La línea
azul corresponde al contenido de GC teórico calculado a partir de la secuenciación misma y la línea roja muestra el porcentaje experimental. Si se observa que el contenido GC teórico es diferente que el experimental, podría indicar que existe una contaminación por alguna secuencia sobrerrepresentada o que hubo un error sistemático durante la secuenciación.

Contenido de GC de la secuenciación. La línea azul indica la distribución teórica del contenido de GC, la línea roja indica el contenido de GC experimental.

ID	Posición en el transcriptoma	Longitud	Longitud efectiva	TPM	Número de <i>reads</i>	Clasificación
PhbNtxNav14	1	597	419443	62338,7	845088	Neurotoxina (Na)
PhbNtxCav18	2	572	394481	38429,9	489966	Neurotoxina (Ca)
PhbNtxNav22	3	562	384496	32939,7	409339	Neurotoxina (Na)
PhbNtxCav25	4	721	543373	31258,3	548952	Neurotoxina (Ca)
PhbCRI20	5	2702	2524,32	29072,8	2371930	CRISP
PhbFibTec39	7	671	493388	23227,8	370397	Tequilectina
PhbNtxCav19	8	516	338614	20647	225961	Neurotoxina (Ca)
PhbNtxNav12	9	586	408454	20268,8	267574	Neurotoxina (Na)
PhbEnzSeP15	11	1113	935318	16175,8	488984	Serin proteasa
PhbNtxNav15	12	572	394481	15756,6	200891	Neurotoxina (Na)
PhbNtxNSp68	14	553	375515	12658,3	153629	Neurotoxina
PhbNtxNSp70	15	317	144875	12529,1	58666	Neurotoxina
PhbNtxNSp35	17	569	391485	10066,4	127368	Neurotoxina
PhbOthUnd07	18	547	369532	8836,03	105531	Comp. de veneno
PhbNtxNSp72	20	991	813347	6744,19	177287	Neurotoxina
PhbCRI24	22	3579	3401,32	6298,7	692419	CRISP
PhbEnzCes08	30	983	805347	4748,99	123610	Carboxilesterasa
PhbNtxCav16	31	288	119004	4538,69	17456,8	Neurotoxina (Ca)
PhbNtxNSp13	33	215	61,7821	4227,41	8441,28	Neurotoxina
PhbNtxCav43	34	591	413449	3692,1	49336,3	Neurotoxina (Ca)
PhbNtxNav04	43	792	614358	3310	65723,6	Neurotoxina (Na)
PhbFibTec38	45	822	644355	3067,62	63884,9	Tequilectina
PhbNtxNav06	52	446	269095	2702,34	23502,6	Neurotoxina (Na)
PhbNtxNSp65	53	349	174668	2407,38	13590,4	Neurotoxina
PhbTCT01	54	765	587365	2404,81	45652	TCTP
PhbPInSeP56	62	694	516379	1951,87	32575,4	Serin proteasa
PhbNtxNSp23	65	642	464402	1837,35	27577,6	Neurotoxina
PhbCRI14	69	1451	1273,32	1770,33	72855,5	CRISP
PhbNtxNSp39	74	436	259214	1588,01	13304	Neurotoxina
PhbEnzSeP39	87	993	815347	1230,25	32419,6	Serin proteasa
PhbNtxNSp58	88	647	469401	1218,1	18479,9	Neurotoxina
PhbNtxNav08	96	400	223829	1129,45	8170,59	Neurotoxina (Na)
PhbEnzHya08	97	1141	963318	1112,3	34630,9	Hialuronidasa
PhbNtxCav35	110	545	367,54	957835	11378	Neurotoxina (Ca)
PhbEnzSeP10	112	1237	1059,32	928923	31803,7	Serin proteasa

Anexo VIII. Cuantificación de RNA-Seq

PhbNtxCav06	115	925	747349	913385	22062,2	Neurotoxina (Ca)
PhbNtxCav36	118	1599	1421,32	851,71	39125	Neurotoxina (Ca)
PhbCRI15	127	1510	1332,32	772141	33248,8	CRISP
PhbNtxNSp57	128	518	340608	770054	8477,11	Neurotoxina
PhbEnzSeP37	132	741	563,37	734557	13374,9	Serin proteasa
PhbNtxNav11	145	2783	2605,32	630262	53070,4	Neurotoxina (Na)
PhbEnzCho36	172	5783	5605,32	519415	94099,1	Colinesterasa
PhbNtxCav04	179	3782	3604,32	496818	57875,1	Neurotoxina (Ca)
PhbNtxNSp02	189	417	240498	450707	3503,29	Neurotoxina
PhbNtxNSp69	195	553	375515	429507	5212,77	Neurotoxina
PhbOthHDH01	196	664	486,39	428,94	6743	Hormona DN31
PhbNtxNSp42	201	612	434426	418929	5882,03	Neurotoxina
PhbNtxNSp44	220	612	434426	384072	5392,61	Neurotoxina
PhbEnzCho24	229	5776	5598,32	362704	65626,8	Colinesterasa
PhbNtxNSp05	233	426	249346	359659	2898,44	Neurotoxina
PhbNtxNSp40	238	497	319695	348414	3600	Neurotoxina
PhbEnzHya11	245	4002	3824,32	339005	41901,6	Hialuronidasa
PhbNtxNSp34	262	1031	853318	307603	8483,46	Neurotoxina
PhbTCT10	264	878	700349	303693	6874,17	TCTP
PhbOthAMB01	294	1760	1582,32	271	13859,1	Antimicrobiano
PhbNtxNSp64	302	283	114691	263839	978	Neurotoxina
PhbCRI08	316	4893	4715,32	247962	37789,2	CRISP
PhbFibTec25	327	1246	1068,32	234129	8084	Tequilectina
PhbEnzSeP33	337	1394	1216,32	227418	8940,12	Serin proteasa
PhbNtxNSp33	349	1093	915318	217386	6430,93	Neurotoxina
PhbNtxCav02	355	501	323673	209608	2192,73	Neurotoxina (Ca)
PhbNtxNSp38	361	620	442419	201972	2888	Neurotoxina
PhbEnzSeP16	373	1248	1070,32	191652	6629,75	Serin proteasa
PhbNtxNav03	398	341	167111	174421	942052	Neurotoxina (Na)
PhbEnzPhd01	406	1603	1425,32	166456	7668	Fosfodiesterasa
PhbEnzCho34	412	5770	5592,32	163403	29534	Colinesterasa
PhbNtxNSp32	442	614	436424	147754	2084,1	Neurotoxina
PhbEnzSeP26	455	326	153,12	140927	697425	Serin proteasa
PhbNtxNSp63	459	999	821318	139589	3705,39	Neurotoxina
PhbEnzCho37	469	5763	5585,32	134208	24226,8	Colinesterasa
PhbNtxNSp04	476	2634	2456,32	130853	10388,2	Neurotoxina
PhbEnzSeP11	479	2641	2463,32	129072	10276	Serin proteasa
PhbNtxCav07	509	2641	2463,32	118535	9437,08	Neurotoxina (Ca)
PhbNtxNSp59	513	2038	1860,32	117208	7047,19	Neurotoxina

PhbNtxNav23	526	1413	1235,32	112951	4509,64	Neurotoxina (Na)
PhbNtxNSp37	531	511	333628	112123	1209	Neurotoxina
PhbNtxCav31	533	2174	1996,32	111688	7206,19	Neurotoxina (Ca)
PhbFibTec01	542	2428	2250,32	109611	7972	Tequilectina
PhbGrFIns01	543	1137	959318	109473	3394,24	F. Crecimiento (Insu.)
PhbNtxNSp03	545	346	171829	108,78	604113	Neurotoxina
PhbNtxNSp46	559	1708	1530,32	104802	5183,48	Neurotoxina
PhbNtxNSp12	584	978	800347	98,3892	2545,06	Neurotoxina
PhbNtxNav24	585	571	393482	98,2268	1249,18	Neurotoxina (Na)
PhbFibTec71	587	1953	1775,32	97,8087	5612,09	Tequilectina
PhbNtxNSp56	630	2592	2414,32	90,0823	7029,19	Neurotoxina
PhbNtxNSp25	634	505	327655	89,4257	947	Neurotoxina
PhbEnzSeP23	673	4061	3883,32	82,5635	10362,4	Serin proteasa
PhbNtxNSp19	680	831	653354	81,7127	1725,48	Neurotoxina
PhbNtxNav07	691	440	263162	80,0092	680509	Neurotoxina (Na)
PhbNtxCav34	697	251	88,2481	78,9832	225274	Neurotoxina (Ca)
PhbPInSeP06	727	544	366543	74,6201	884	Inh. Serin proteasa
PhbNtxNSp60	802	1076	898318	65,6897	1907,21	Neurotoxina
PhbNtxNSp16	806	756	578365	65,4406	1223,26	Neurotoxina
PhbNtxCav01	816	238	78226	64,3697	162744	Neurotoxina (Ca)
PhbFibTec24	829	1624	1446,32	62,8945	2940	Tequilectina
PhbNtxNSp61	832	1922	1744,32	62,7516	3537,71	Neurotoxina
PhbNtxCav41	919	637	459405	54,8151	813892	Neurotoxina (Ca)
PhbEnzSeP24	934	6185	6007,32	53868	10458,8	Serin proteasa
PhbPInSeP41	938	800	622358	53,6968	1080,09	Inh. Serin proteasa
PhbPInCyP01	953	1003	825318	52,8599	1410	Inh. Cistein proteasa
PhbEnzSeP13	956	2118	1940,32	52,4331	3288,13	Serin proteasa
PhbEnzSeP43	969	2952	2774,32	51,7091	4636,55	Serin proteasa
PhbPInSeP62	976	9626	9448,32	51096	15603,2	Inh. Serin proteasa
PhbEnzSeP78	996	1162	984318	49,8536	1586	Serin proteasa
PhbNtxNav09	1013	459	281,96	48,9674	446237	Neurotoxina (Na)
PhbGrFIns05	1027	624	446412	47,8951	691032	F. Crecimiento (Insu.)
PhbTCT12	1031	1036	858318	47,6986	1323,2	TCTP
PhbCRI17	1046	1538	1360,32	46,9673	2064,94	CRISP
PhbFibTec08	1065	1326	1148,32	46,1099	1711,31	Tequilectina
PhbNtxNav16	1066	208	57,0718	46,1019	85,0377	Neurotoxina (Na)
PhbEnzPA205	1085	1268	1090,32	45,6028	1607	Fosfolipasa A2
PhbNtxNSp10	1088	1776	1598,32	45,4524	2347,96	Neurotoxina
PhbNtxCav20	1100	423	246392	44,6375	355466	Neurotoxina (Ca)

PhbEnzMtP14	1115	871	693,35	43,9554	985	Metaloproteasa
PhbCRI32	1130	275	107865	43027	150	CRISP
PhbPInSeP54	1151	1232	1054,32	42,1123	1435	Inh. Serin proteasa
PhbNtxNav18	1152	764	586365	42,1017	797883	Neurotoxina (Na)
PhbPInSeP42	1187	800	622358	40,8057	820789	Inh. Serin proteasa
PhbFibTec49	1220	535	357567	39,8845	460928	Tequilectina
PhbEnzCxp05	1221	1628	1450,32	39,8843	1869,55	Carboxipeptidasa
PhbNtxCav03	1258	238	78226	38,3663	97	Neurotoxina (Ca)
PhbOthDef02	1279	336	162414	37,7198	198	Defensina
PhbFibTec22	1375	422	245408	34,5454	274	Tequilectina
PhbNtxCav38	1382	555	377,51	34,4468	420289	Neurotoxina (Ca)
PhbOthvWC01	1456	573	395,48	32546	416	F. von Willebrand (C)
PhbEnzCho25	1466	428	251315	32,3127	262,46	Colinesterasa
PhbEnzCxp01	1488	2061	1883,32	31,4611	1915	Carboxipeptidasa
PhbPInSeP39	1527	925	747349	30,5062	736857	Inh. Serin proteasa
PhbPInPep08	1541	709	531376	30,1505	517807	Inh. Peptidasa
PhbNtxNSp73	1552	211	59,0704	29,7983	56,8895	Neurotoxina
PhbPInSeP22	1562	831	653354	29,6452	626	Inh. Serin proteasa
PhbEnzSeP45	1588	948	770347	29,0206	722545	Serin proteasa
PhbFibTec02	1599	799	621358	28,8029	578429	Tequilectina
PhbNtxCav26	1675	1211	1033,32	27,3761	914273	Neurotoxina (Ca)
PhbEnzGlS04	1686	4913	4735,32	27,2274	4167,03	Glutamato sintasa
PhbNtxCav48	1714	4762	4584,32	26,7013	3956,2	Neurotoxina (Ca)
PhbNtxNSp28	1747	747	569369	26,1271	480,79	Neurotoxina
PhbTCT11	1819	696	518379	24,7906	415342	TCTP
PhbNtxNav05	1877	695	517379	24,0668	402437	Neurotoxina (Na)
PhbEnzSeP27	1879	255	91,4268	24,0068	70938	Serin proteasa
PhbCRI16	1895	1451	1273,32	23,7693	978193	CRISP
PhbEnzSeP34	1919	4811	4633,32	23,4749	3515,33	Serin proteasa
PhbNtxCav21	2006	522	344596	22,0248	245297	Neurotoxina (Ca)
PhbEnzOxR01	2012	1991	1813,32	21,9942	1289	Oxidorreductasa
PhbOthUnd05	2055	689	511379	21,4302	354193	Comp. de veneno
PhbNtxNSp22	2062	784	606359	21,3042	417509	Neurotoxina
PhbNtxCav39	2063	321	148522	21,2982	102236	Neurotoxina (Ca)
PhbEnzGlS03	2091	8176	7998,32	20,9744	5421,99	Glutamato sintasa
PhbOthUnd03	2095	384	208268	20,9471	141	Comp. de veneno
PhbEnzSeP44	2111	998	820341	20,7027	548898	Serin proteasa
PhbNtxNSp27	2132	371	195699	20,4908	129604	Neurotoxina
PhbPInSeP37	2186	681	503385	19,8974	323719	Inh. Serin proteasa

PhbNtxNSp31	2192	802	624358	19,8684	400929	Neurotoxina
PhbEnzCho11	2209	804	626358	19716	399127	Colinesterasa
PhbEnzSeP07	2223	1460	1282,32	19,6166	813	Serin proteasa
PhbNtxNSp62	2248	2828	2650,32	19,2826	1651,72	Neurotoxina
PhbFibTec26	2264	1214	1036,32	19,1677	642	Tequilectina
PhbOthUnd01	2384	1122	944318	17988	549	Comp. de veneno
PhbEnzSeP32	2385	1428	1250,32	17,9845	726757	Serin proteasa
PhbEnzSeP81	2420	2298	2120,32	17,7444	1216	Serin proteasa
PhbEnzCxp02	2438	579	401467	17,5035	227116	Carboxipeptidasa
PhbEnzCho32	2448	7619	7441,32	17441	4194,62	Colinesterasa
PhbTCT13	2544	714	536374	16,7326	290069	ТСТР
PhbEnzSeP46	2603	1163	985318	16,2013	515939	Serin proteasa
PhbNtxNSp52	2662	2351	2173,32	15,7907	1109,17	Neurotoxina
PhbGrFIns02	2682	459	281,96	15,6652	142756	F. Crecimiento (Insu.)
PhbEnzCxp03	2690	1255	1077,32	15,5917	542884	Carboxipeptidasa
PhbEnzSeP28	2693	2382	2204,32	15,5611	1108,63	Serin proteasa
PhbTCT04	2745	739	561,37	15,2428	276558	ТСТР
PhbFibTec36	2749	1230	1052,32	15221	517681	Tequilectina
PhbNtxNav10	2760	812	634357	15,1209	310015	Neurotoxina (Na)
PhbNtxNav17	2780	1490	1312,32	14983	635489	Neurotoxina (Na)
PhbPInSeP26	2795	331	157758	14,9057	76	Inh. Serin proteasa
PhbNtxCav13	2804	558	380503	14,8379	182474	Neurotoxina (Ca)
PhbEnzSeP42	2815	3032	2854,32	14,7565	1361,31	Serin proteasa
PhbEnzSeP14	2824	1971	1793,32	14717	853	Serin proteasa
PhbNtxCav11	2846	1649	1471,32	14,6565	696961	Neurotoxina (Ca)
PhbNtxNSp71	2914	210	58,4032	14304	27	Neurotoxina
PhbTCT08	2962	2017	1839,32	14,0013	832333	ТСТР
PhbOthUnd04	2989	509	331635	13,9013	149	Comp. de veneno
PhbPInSeP04	2996	593	415448	13864	186156	Inh. Serin proteasa
PhbEnzPLB01	3008	1973	1795,32	13,8045	801	Fosfolipasa B
PhbPInSeP45	3053	695	517379	13635	228	Inh. Serin proteasa
PhbNtxCav14	3070	409	232641	13,5409	101813	Neurotoxina (Ca)
PhbEnzSeP35	3080	919	741349	13,4939	323319	Serin proteasa
PhbPInSeP57	3085	596	418444	13,4708	182,18	Inh. Serin proteasa
PhbEnzMtP08	3209	1821	1643,32	12,8973	685	Metaloproteasa
PhbEnzCho30	3222	7619	7441,32	12,8304	3085,76	Colinesterasa
PhbOthUnd08	3226	619	441,42	12808	182728	Comp. de veneno
PhbFibTec35	3283	1045	867318	12,5818	352688	Tequilectina
PhbOthUnd12	3355	4450	4272,32	12,1993	1684,49	Comp. de veneno

PhbPInSeP36	3400	797	619358	11,9966	240143	Inh. Serin proteasa
PhbGrFIns06	3415	520	342602	11,9363	132,17	F. Crecimiento (Insu.)
PhbNtxNSp41	3424	695	517379	11,9104	199162	Neurotoxina
PhbPInSeP03	3450	800	622358	11,7748	236844	Inh. Serin proteasa
PhbEnzTra05	3468	4641	4463,32	11,6981	1687,5	Transferasa
PhbNtxNav19	3502	1929	1751,32	11,5571	654159	Neurotoxina (Na)
PhbNtxNav02	3513	2668	2490,32	11515	926,81	Neurotoxina (Na)
PhbEnzPA203	3514	1231	1053,32	11,5148	392	Fosfolipasa A2
PhbEnzKin01	3572	6682	6504,32	11,2804	2371,36	Kinasa
PhbEnzMtP30	3638	503	325664	11,0467	116271	Metaloproteasa
PhbCRI07	3657	695	517379	11,0037	184	CRISP
PhbNtxNSp66	3672	709	531376	10,9274	187668	Neurotoxina
PhbNtxNav26	3716	1645	1467,32	10,7543	510,01	Neurotoxina (Na)
PhbGrFIns07	3729	477	299821	10,7325	104	F. Crecimiento (Insu.)
PhbNtxCav17	3797	494	316,71	10,5041	107,52	Neurotoxina (Ca)
PhbPInSeP38	3919	672	494388	10,1562	162281	Inh. Serin proteasa
PhbNtxNSp08	3955	448	271073	10,0707	88,2303	Neurotoxina
PhbPInSeP43	3963	636	458406	10,0569	149	Inh. Serin proteasa
PhbEnzGlS02	3984	8127	7949,32	9,98327	2564,92	Glutamato sintasa
PhbNtxCav22	3992	1088	910318	9,96047	293052	Neurotoxina (Ca)
PhbEnzSeP02	4018	1194	1016,32	9,89424	325	Serin proteasa
PhbNtxAtx03	4043	821	643355	9,83207	204441	Atracotoxina
PhbNtxCav49	4051	787	609359	9,80014	193009	Neurotoxina (Ca)
PhbNtxCav05	4074	601	423438	9,72034	133028	Neurotoxina (Ca)
PhbNtxCav23	4203	594	416446	9,34152	125732	Neurotoxina (Ca)
PhbEnzCxp06	4208	1629	1451,32	9,33023	437649	Carboxipeptidasa
PhbFibTec50	4248	508	330,64	9,2475	98,8212	Tequilectina
PhbEnzSeP21	4411	3959	3781,32	8,85506	1082,2	Serin proteasa
PhbGrFCys12	4425	4249	4071,32	8,81176	1159,49	F. Crecimiento (Ciste.)
PhbNtxNav13	4436	2915	2737,32	8,79589	778173	Neurotoxina (Na)
PhbPInSeP28	4531	480	302802	8,5832	84	Inh. Serin proteasa
PhbGrFIns04	4567	1845	1667,32	8,49857	457968	F. Crecimiento (Insu.)
PhbPInSeP69	4670	7107	6929,32	8,26057	1850	Inh. Serin proteasa
PhbCRI33	4680	710	532376	8,24111	141,8	CRISP
PhbPInMtP01	4691	851	673353	8,22506	179	Inh. Metaloproteasa
PhbCRI09	4771	4609	4431,32	8,07614	1156,67	CRISP
PhbNtxNSp09	4779	5882	5704,32	8,05471	1484,99	Neurotoxina
PhbNtxCav24	4805	608	430431	8,01677	111526	Neurotoxina (Ca)
PhbEnzSeP52	4846	2490	2312,32	7,93107	592721	Serin proteasa

PhbPInCyP02	4857	588	410453	7,91508	105	Inh. Cistein proteasa
PhbNtxNSp54	4883	2159	1981,32	7,84485	502354	Neurotoxina
PhbFibTec28	5065	1202	1024,32	7,54418	249757	Tequilectina
PhbFibTec54	5100	1595	1417,32	7,48783	343	Tequilectina
PhbPInSeP27	5123	331	157758	7,45284	38	Inh. Serin proteasa
PhbEnzCho15	5166	7606	7428,32	7,38998	1774,21	Colinesterasa
PhbFibTec03	5186	797	619358	7,36802	147,49	Tequilectina
PhbEnzEnd01	5201	217	63,1479	7,34956	15	Endopeptidasa
PhbPInSeP46	5230	478	300815	7,30278	71	Inh. Serin proteasa
PhbCRI05	5231	1906	1728,32	7,30109	407833	CRISP
PhbFibTec43	5371	916	738349	7,09097	169215	Tequilectina
PhbNtxNSp36	5413	341	167111	7,03572	38	Neurotoxina
PhbCRI18	5456	629	451408	6,96477	101612	CRISP
PhbEnzHyd03	5507	1767	1589,32	6,89162	354	Hidrolasa
PhbOthUnd11	5593	449	272062	6,78701	59,6784	Comp. de veneno
PhbEnzSeP47	5622	1015	837318	6,76577	183096	Serin proteasa
PhbEnzMtP19	5629	742	564,37	6,75818	123272	Metaloproteasa
PhbPInSeP30	5697	478	300815	6,68564	65	Inh. Serin proteasa
PhbEnzSeP77	5820	1540	1362,32	6,53921	287922	Serin proteasa
PhbEnzHyd06	5935	2222	2044,32	6,41721	424	Hidrolasa
PhbOthUnd13	5958	589	411451	6,39189	85	Comp. de veneno
PhbNtxNSp20	6085	853	675353	6,27045	136868	Neurotoxina
PhbGrFPDG01	6156	1105	927318	6,20602	186	F. crecimiento (Plaq.)
PhbEnzSeP25	6159	3594	3416,32	6,20385	685	Serin proteasa
PhbNtxNav25	6190	1091	913318	6,1723	182197	Neurotoxina (Na)
PhbEnzMtP09	6223	2388	2210,32	6,13124	438	Metaloproteasa
PhbEnzMtP22	6232	3191	3013,32	6,12012	596041	Metaloproteasa
PhbNtxCav47	6253	702	524377	6,09911	103367	Neurotoxina (Ca)
PhbNtxNSp29	6293	560	382,5	6,06671	74999	Neurotoxina
PhbOthUnd06	6356	1089	911318	6,02239	177382	Comp. de veneno
PhbPInSeP58	6430	1210	1032,32	5,93748	198101	Inh. Serin proteasa
PhbEnzTra03	6443	1713	1535,32	5,92616	294065	Transferasa
PhbEnzCho23	6517	6452	6274,32	5,85163	1186,63	Colinesterasa
PhbPInSeP70	6530	7547	7369,32	5,84293	1391,65	Inh. Serin proteasa
PhbCRI23	6636	4080	3902,32	5,74147	724,13	CRISP
PhbFibTec07	6692	1173	995318	5,69788	183293	Tequilectina
PhbFibTec13	6743	576	398475	5,66827	73	Tequilectina
PhbEnzSeP38	6830	2887	2709,32	5,60884	491139	Serin proteasa
PhbGrFCys09	6856	4378	4200,32	5,5909	758988	F.crecimiento (Cistei.)

PhbTCT07	6929	1030	852318	5,5294	152318	ТСТР
PhbEnzCho27	6969	7606	7428,32	5,49367	1318,94	Colinesterasa
PhbPInSeP49	7107	1717	1539,32	5,38686	268	Inh. Serin proteasa
PhbFibTec29	7174	744	566,37	5,33566	97,6696	Tequilectina
PhbNtxCav44	7186	703	525377	5,32897	90,4868	Neurotoxina (Ca)
PhbFibTec51	7491	498	320,69	5,12045	53,0719	Tequilectina
PhbEnzCho28	7499	1467	1289,32	5,11548	213166	Colinesterasa
PhbEnzSeP48	7518	3197	3019,32	5,10191	497866	Serin proteasa
PhbFibTec19	7544	277	109556	5,08351	18	Tequilectina
PhbFibTec23	7582	219	64,5114	5,06321	10,5568	Tequilectina
PhbEnzSeP36	7623	415	238,53	5,04022	38,8565	Serin proteasa
PhbNtxCav12	7671	560	382,5	5,00729	61902	Neurotoxina (Ca)
PhbNtxNSp50	7861	1066	888318	4,89584	140562	Neurotoxina
PhbEnzMtP18	7890	709	531376	4,87525	83,7279	Metaloproteasa
PhbEnzCho10	8268	718	540373	4,65668	81,3283	Colinesterasa
PhbTCT09	8345	2251	2073,32	4,61901	309518	TCTP
PhbPInSeP17	8383	3339	3161,32	4,60229	470233	Inh. Serin proteasa
PhbOthDef01	8416	306	134,93	4,58616	20	Defensina
PhbPInSeP71	8570	7544	7366,32	4,50418	1072,35	Inh. Serin proteasa
PhbEnzSeP12	8758	2271	2093,32	4,41942	299	Serin proteasa
PhbEnzMtP33	8766	1131	953318	4,41669	136084	Metaloproteasa
PhbOthvWC04	8787	967	789347	4,4073	112438	F. von Willebrand (C)
PhbEnzSeP09	8809	1257	1079,32	4,39538	153326	Serin proteasa
PhbCRI36	8831	1194	1016,32	4,38391	144	CRISP
PhbNtxCav42	8884	848	670353	4,35896	94,4403	Neurotoxina (Ca)
PhbEnzSeP63	8890	3104	2926,32	4,35617	412	Serin proteasa
PhbOthvWC02	8891	824	646355	4,35611	91	F. von Willebrand (C)
PhbEnzSeP29	8934	2398	2220,32	4,33791	311291	Serin proteasa
PhbFibTec45	8951	593	415448	4,32843	58,1189	Tequilectina
PhbEnzMtP29	9029	2746	2568,32	4,30076	356997	Metaloproteasa
PhbPInSeP40	9138	1104	926318	4,2506	127257	Inh. Serin proteasa
PhbCRI27	9179	1054	876318	4,23542	119958	CRISP
PhbNtxNav01	9209	311	139418	4,2166	19	Neurotoxina (Na)
PhbEnzPhd02	9287	2539	2361,32	4,17989	319	Fosfodiesterasa
PhbEnzCho12	9470	2648	2470,32	4,11124	328244	Colinesterasa
PhbFibTec72	9656	3145	2967,32	4,04162	387607	Tequilectina
PhbPInSeP07	9818	5498	5320,32	3,97784	684	Inh. Serin proteasa
PhbFibTec20	9820	1018	840318	3,97657	108	Tequilectina
PhbGrFIns10	9930	491	313,73	3,94488	40	F. Crecimiento (Insu.)

PhbEnzSeP17	10034	1404	1226,32	3,91073	155	Serin proteasa
PhbFibTec05	10205	778	600,36	3,83998	74,5096	Tequilectina
PhbEnzSeP30	10206	2627	2449,32	3,83974	303961	Serin proteasa
PhbTCT02	10484	1188	1010,32	3,75182	122,51	TCTP
PhbEnzSeP31	10503	1516	1338,32	3,74758	162099	Serin proteasa
PhbGrFNeR02	10549	916	738349	3,73169	89051	F. Crecimiento (Nerv.)
PhbEnzSeP68	10925	3281	3103,32	3,61724	362807	Serin proteasa
PhbCRI34	10967	1594	1416,32	3,60456	165	CRISP
PhbPInSeP33	11016	1925	1747,32	3,58554	202487	Inh. Serin proteasa
PhbFibTec09	11037	270	103675	3,58124	12	Tequilectina
PhbEnzHya10	11169	3561	3383,32	3,54381	387511	Hialuronidasa
PhbEnzCho08	11304	267	101178	3,50848	11473	Colinesterasa
PhbEnzSeP51	11480	3909	3731,32	3,4635	417684	Serin proteasa
PhbEnzHya01	11485	2445	2267,32	3,46287	253758	Hialuronidasa
PhbNtxCav37	11643	2989	2811,32	3,41763	310532	Neurotoxina (Ca)
PhbFibTec40	11653	847	669353	3,4157	73,8935	Tequilectina
PhbNtxNSp24	11709	4539	4361,32	3,40475	479926	Neurotoxina
PhbTCT15	11828	1592	1414,32	3,37236	154153	TCTP
PhbPInSeP35	11889	1748	1570,32	3,35939	170498	Inh. Serin proteasa
PhbNtxAtx05	11940	724	546373	3,34901	59,1393	Atracotoxina
PhbPInSeP08	12039	3592	3414,32	3,32562	366984	Inh. Serin proteasa
PhbEnzSeP76	12137	983	805347	3,30403	86	Serin proteasa
PhbEnzHya02	12155	1106	928318	3,30012	99,0143	Hialuronidasa
PhbPInSeP23	12265	725	547373	3,27849	58	Inh. Serin proteasa
PhbPInPep04	12411	640	462402	3,24383	48,4785	Inh. Peptidasa
PhbEnzHyd07	12598	2446	2268,32	3,20548	235	Hidrolasa
PhbEnzCho13	12689	2635	2457,32	3,18551	252995	Colinesterasa
PhbEnzSeP67	12720	3327	3149,32	3,17893	323,57	Serin proteasa
PhbEnzCes06	12945	727	549373	3,12745	55,5301	Carboxilesterasa
PhbGrFNeR01	13158	919	741349	3,0863	73949	F. Crecimiento (Nerv.)
PhbNtxNav21	13316	334	160546	3,05303	15,8417	Neurotoxina (Na)
PhbOthvWC06	13396	968	790347	3,03943	77,6392	F. von Willebrand (C)
PhbFibTec66	13564	455	277999	3,00503	27	Tequilectina
PhbEnzCes05	13652	721	543373	2,98764	52,4684	Carboxilesterasa
PhbPInPep06	14051	2443	2265,32	2,9229	214	Inh. Peptidasa
PhbEnzCes04	14243	3180	3002,32	2,89692	281103	Carboxilesterasa
PhbEnzSeP88	14323	4494	4316,32	2,88165	402	Serin proteasa
PhbEnzSeP69	14796	3137	2959,32	2,80854	268623	Serin proteasa
PhbEnzHya09	14834	1313	1135,32	2,80704	103	Hialuronidasa

PhbEnzMtP31	14897	388	212144	2,7981	19,1852	Metaloproteasa	
PhbPInSeP47	14986	364	188974	2,7834	17	Inh. Serin proteasa	
PhbCRI04	14994	1970	1792,32	2,7822	161167	CRISP	
PhbFibTec52	15328	645	467401	2,73408	41,3021	Tequilectina	
PhbEnzSeP49	15432	767	589365	2,71883	51,7889	Serin proteasa	
PhbEnzCes07	15519	1055	877318	2,71062	76,8594	Carboxilesterasa	
PhbPInSeP66	15528	4667	4489,32	2,70858	393	Inh. Serin proteasa	
PhbFibTec33	15536	1641	1463,32	2,70801	128074	Tequilectina	
PhbNtxNav20	15721	337	163352	2,68174	14,1583	Neurotoxina (Na)	
PhbNtxNSp11	16082	1702	1524,32	2,63946	130035	Neurotoxina	
PhbFibTec53	16163	541	363552	2,6278	30,8767	Tequilectina	
PhbPInSeP09	16540	3417	3239,32	2,58343	270472	Inh. Serin proteasa	
PhbEnzHyd01	16649	2103	1925,32	2,57126	160	Hialuronidasa	
PhbNtxNSp48	16757	276	108709	2,56156	9	Neurotoxina	
PhbOthvWC03	16831	688	510,38	2,55372	42,1248	F. von Willebrand (C)	
PhbFibTec48	16846	1195	1017,32	2,55094	83,8741	Tequilectina	
PhbGrFIns08	16904	370	194737	2,54214	16	F. Crecimiento (Insu.)	
PhbNtxNSp07	17018	1842	1664,32	2,53163	136178	Neurotoxina	
PhbGrFIns03	17178	426	249346	2,51199	20,2438	F. Crecimiento (Insu.)	
PhbFibTec04	17186	813	635357	2,51143	51,5714	Tequilectina	
PhbEnzHyd05	17266	215	61,7821	2,50401	5	Hidrolasa	
PhbEnzSeP05	17513	1023	845318	2,47355	67579	Serin proteasa	
PhbNtxNSp26	17594	301	130457	2,46571	10,3963	Neurotoxina	
PhbGrFCys13	17842	5018	4840,32	2,43934	381608	F. crecimiento (Cistei.)	
PhbGrFPDG02	18148	2214	2036,32	2,40552	158316	F. crecimiento (Plaq.)	
PhbOthUnd02	19023	643	465402	2,32685	35	Comp. de veneno	
PhbEnzOxR05	19422	1934	1756,32	2,29018	130	Oxidorreductasa	
PhbEnzHyd08	19493	3219	3041,32	2,28389	224496	Hidrolasa	
PhbEnzPA202	19546	884	706349	2,27779	52	Fosfolipasa A2	
PhbFibTec67	19817	1014	836318	2,25929	61,0681	Tequilectina	
PhbEnzKin02	19930	8321	8143,32	2,25105	592457	Kinasa	
PhbNtxCav08	19971	2957	2779,32	2,24824	201954	Neurotoxina (Ca)	
PhbEnzHya07	20090	786	608359	2,24049	44,0529	Hialuronidasa	
PhbPInSeP02	20145	565	387492	2,23352	27972	Inh. Serin proteasa	
PhbEnzSeP66	20370	1614	1436,32	2,21879	103	Serin proteasa	
PhbEnzCho39	20750	6439	6261,32	2,19074	443331	Colinesterasa	
PhbEnzMtP25	20775	1228	1050,32	2,18879	74,3014	Metaloproteasa	
PhbEnzCho09	20953	267	101178	2,17293	7,10563	Colinesterasa	
PhbFibTec12	21074	2493	2315,32	2,16488	162	Tequilectina	

PhbEnzCho46	21423	284	115553	2,14209	8	Colinesterasa
PhbNtxCav09	21540	496	318,7	2,13584	22	Neurotoxina (Ca)
PhbPInSeP64	21573	9773	9595,32	2,13142	660998	Inh. Serin proteasa
PhbEnzSeP79	21838	4178	4000,32	2,11557	273523	Serin proteasa
PhbNtxCav45	21852	5100	4922,32	2,11404	336321	Neurotoxina (Ca)
PhbEnzSeP20	21853	1093	915318	2,11403	62,5396	Serin proteasa
PhbNtxNSp43	21920	1102	924318	2,10731	62,9537	Neurotoxina
PhbNtxCav28	21935	269	102842	2,10613	7,00047	Neurotoxina (Ca)
PhbEnzSeP08	22335	1471	1293,32	2,0832	87078	Serin proteasa
PhbNtxNSp53	22768	3256	3078,32	2,05526	204,48	Neurotoxina
PhbNtxCav29	22958	372	196661	2,04528	13	Neurotoxina (Ca)
PhbEnzSeP73	22966	3116	2938,32	2,04476	194184	Serin proteasa
PhbEnzSeP80	23100	4137	3959,32	2,03553	260477	Serin proteasa
PhbFibTec77	23322	309	137624	2,02338	9	Tequilectina
PhbFibTec06	23353	536	358565	2,01982	23,4073	Tequilectina
PhbFibTec44	23365	1771	1593,32	2,01843	103941	Tequilectina
PhbEnzCho44	24106	238	78226	1,97764	5	Colinesterasa
PhbOthUnd14	24421	217	63,1479	1,95988	4	Comp. de veneno
PhbFibTec60	24877	728	550373	1,93806	34,4743	Tequilectina
PhbEnzHyd02	24895	2062	1884,32	1,93757	118	Hidrolasa
PhbCRI03	25358	1441	1263,32	1,91034	78	CRISP
PhbEnzSeP03	25447	1201	1023,32	1,90484	63	Serin proteasa
PhbNtxCav40	25962	288	119004	1,87886	7,22653	Neurotoxina (Ca)
PhbPInSeP65	26573	4406	4228,32	1,85132	253	Inh. Serin proteasa
PhbGrFCys10	26583	5147	4969,32	1,85004	297132	F. crecimiento (Cistei.)
PhbGrFCys04	26591	266	100348	1,85001	6	F. crecimiento (Cistei.)
PhbNtxNSp17	26705	628	450408	1,84205	26815	Neurotoxina
PhbFibTec74	26719	342	168052	1,84113	10	Tequilectina
PhbGrFCys05	27029	4393	4215,32	1,82552	248707	F. crecimiento (Cistei.)
PhbPInSeP59	27688	1906	1728,32	1,79718	100389	Inh. Serin proteasa
PhbPInSeP01	27773	679	501386	1,79132	29028	Inh. Serin proteasa
PhbPInSeP55	28320	201	52,5167	1,76747	3	Inh. Serin proteasa
PhbEnzPho05	28690	1765	1587,32	1,75431	90	Fosfodiesterasa
PhbCRI22	28923	202	53,1591	1,74611	3	CRISP
PhbPInSeP11	29023	3315	3137,32	1,74532	176972	Inh. Serin proteasa
PhbEnzPho04	29118	2186	2008,32	1,7409	113	Fosfodiesterasa
PhbFibTec14	29256	390	214087	1,73428	12	Tequilectina
PhbEnzMtP17	29287	499	321684	1,7313	18	Metaloproteasa
PhbNtxAtx02	29658	537	359562	1,72102	20	Atracotoxina

PhbEnzSeP01	29674	1419	1241,32	1,71988	69,0003	Serin proteasa
PhbCRI02	29755	1758	1580,32	1,7151	87,6	CRISP
PhbFibTec76	29874	430	253288	1,71018	14	Tequilectina
PhbFibTec55	29887	496	318,7	1,70922	17,6056	Tequilectina
PhbTCT16	30543	765	587365	1,68566	32	TCTP
PhbEnzKin05	31393	233	74,5056	1,66112	4	Kinasa
PhbFibTec27	33480	1056	878318	1,59378	45,2429	Tequilectina
PhbGrFCys07	33992	5635	5457,32	1,57518	277832	F. crecimiento (Cistei.)
PhbEnzKin04	34165	211	59,0704	1,57138	3	Kinasa
PhbEnzSeP64	34438	1088	910318	1,56348	46	Serin proteasa
PhbEnzSeP60	35130	266	100348	1,54167	5	Serin proteasa
PhbPInPep01	35179	519	341606	1,53976	17	Inh. Serin proteasa
PhbNtxCav33	35203	2329	2151,32	1,53805	106941	Neurotoxina (Ca)
PhbFibTec62	35216	241	80,4898	1,53762	4	Tequilectina
PhbPInSeP61	35919	10856	10678,3	1,51972	524489	Inh. Serin proteasa
PhbFibTec63	36121	639	461403	1,51569	22,6027	Tequilectina
PhbEnzTra01	36896	861	683351	1,49417	33	Transferasa
PhbFibTec75	37422	271	104509	1,48029	5	Tequilectina
PhbNtxNSp14	37446	808	630358	1,47972	30,1466	Neurotoxina
PhbNtxCav10	37470	1567	1389,32	1,47869	66397	Neurotoxina (Ca)
PhbNtxNSp30	37503	890	712349	1,47673	33,9989	Neurotoxina
PhbGrFCys02	37790	272	105342	1,46858	5	F. crecimiento (Cistei.)
PhbFibTec37	38509	1081	903318	1,45143	42,3748	Tequilectina
PhbNtxNSp75	38552	322	149,44	1,44945	7,0007	Neurotoxina
PhbFibTec61	38779	987	809347	1,44132	37,7022	Tequilectina
PhbEnzSeP82	38932	219	64,5114	1,43884	3	Serin proteasa
PhbNtxAtx01	39231	324	151275	1,43172	7	Atracotoxina
PhbNtxNSp55	39794	2395	2217,32	1,41564	101,45	Neurotoxina
PhbGrFCys06	40224	3808	3630,32	1,40627	165	F. crecimiento (Cistei.)
PhbEnzSeP40	40274	636	458406	1,4049	20,8146	Serin proteasa
PhbEnzMtP15	40521	450	273051	1,39977	12,3529	Metaloproteasa
PhbPInSeP51	40568	4664	4486,32	1,3974	202,62	Inh. Serin proteasa
PhbEnzSeP74	40839	1298	1120,32	1,39193	50,4	Serin proteasa
PhbNtxNSp06	40989	1050	872318	1,38886	39,1566	Neurotoxina
PhbEnzSeP53	41566	1055	877318	1,37542	39	Serin proteasa
PhbTCT17	42025	426	249346	1,36496	11	ТСТР
PhbNtxCav30	42027	332	158687	1,3649	7,00021	Neurotoxina (Ca)
PhbEnzCho05	42130	2026	1848,32	1,35961	81,2198	Colinesterasa
PhbEnzCho43	42313	451	274041	1,35486	12	Colinesterasa

PhbFibTec42	42724	1092	914318	1,34548	39,7598	Tequilectina
PhbFibTec68	43209	1039	861318	1,33554	37,1785	Tequilectina
PhbNtxNSp49	43456	285	116412	1,32921	5,00109	Neurotoxina
PhbGrFPDG03	44564	2235	2057,32	1,30366	86,6838	F. crecimiento (Plaq.)
PhbEnzSeP57	45021	391	215,06	1,29483	9	Serin proteasa
PhbEnzTra02	45062	1015	837318	1,29332	35	Transferasa
PhbFibTec73	45064	440	263162	1,2933	11	Tequilectina
PhbGrFPDG05	45073	1997	1819,32	1,29251	76	F. crecimiento (Plaq.)
PhbEnzPho02	45162	489	311,74	1,29027	13	Fosfodiesterasa
PhbEnzPA201	45782	468	290886	1,2764	12	Fosfolipasa A2
PhbGrFCys03	45957	291	121618	1,27204	5	F. crecimiento (Cistei.)
PhbEnzCho42	46083	231	73,0437	1,27077	3	Colinesterasa
PhbEnzSeP55	46092	231	73,0437	1,27077	3	Serin proteasa
PhbEnzSeP06	46202	871	693,35	1,26828	28421	Serin proteasa
PhbEnzMtP12	46483	422	245408	1,26078	10	Metaloproteasa
PhbEnzGlS01	46715	8407	8229,32	1,2559	334033	Glutamato sintasa
PhbEnzMtP03	46813	264	98,6992	1,25394	4	Metaloproteasa
PhbEnzMtP24	46914	4329	4151,32	1,25124	167879	Metaloproteasa
PhbFibTec18	46930	796	618358	1,25092	25	Tequilectina
PhbGrFIns09	47153	233	74,5056	1,24584	3	F. crecimiento (Insul.)
PhbPInSeP48	47384	322	149,44	1,24227	6	Inh. Serin proteasa
PhbEnzMtP13	47744	234	75,2428	1,23363	3	Metaloproteasa
PhbEnzCho01	47746	266	100348	1,23334	4	Colinesterasa
PhbEnzCho07	48099	2150	1972,32	1,2248	78,0752	Colinesterasa
PhbFibTec78	48117	506	328,65	1,22388	13	Tequilectina
PhbNtxNSp18	49187	999	821318	1,20257	31,9223	Neurotoxina
PhbGrFCys15	49204	299	128676	1,20226	5	F. crecimiento (Cistei.)
PhbPInSeP21	49314	616	438423	1,19973	17	Inh. Serin proteasa
PhbEnzCes03	49796	3192	3014,32	1,18882	115818	Corboxilesterasa
PhbEnzSeP87	49963	986	808347	1,18657	31	Serin proteasa
PhbGrFCys28	50174	358	183231	1,18203	7	F. crecimiento (Cistei.)
PhbEnzSeP65	50410	1700	1522,32	1,17815	57,9665	Serin proteasa
PhbFibTec16	51368	333	159615	1,16307	6	Tequilectina
PhbEnzCes01	52328	360	185144	1,14594	6,85714	Corboxilesterasa
PhbCRI01	52402	1758	1580,32	1,1434	58,4	CRISP
PhbGrFCys29	52669	307	135828	1,13896	5	F. crecimiento (Cistei.)
PhbPInSeP68	53584	205	55,0976	1,12312	2	Inh. Serin proteasa
PhbFibTec56	54166	1040	862318	1,11325	31,0265	Tequilectina
PhbEnzOxR03	54742	457	279978	1,10511	10	Oxidorreductasa

PhbNtxNSp51	54855	1087	909318	1,10375	32,4384	Neurotoxina
PhbEnzMtP05	54995	246	84,3346	1,10064	3	Metaloproteasa
PhbNtxAtx06	55151	807	629358	1,09806	22,3355	Atracotoxina
PhbGrFCys27	56403	283	114691	1,0791	4	F. crecimiento (Cistei.)
PhbEnzHya04	56974	826	648354	1,06954	22412	Hialuronidasa
PhbEnzCho02	57677	350	175614	1,05711	6	Colinesterasa
PhbEnzCho03	57678	350	175614	1,05711	6	Colinesterasa
PhbGrFCys25	57694	350	175614	1,05711	6	F. crecimiento (Cistei.)
PhbEnzMtP35	57816	286	117273	1,05534	4	Metaloproteasa
PhbEnzSeP61	58045	251	88,2481	1,05183	3	Serin proteasa
PhbGrFPDG04	58064	1443	1265,32	1,05147	43	F. crecimiento (Plaq.)
PhbEnzSeP71	58244	650	472,4	1,04795	16	Serin proteasa
PhbFibTec21	58520	778	600,36	1,0449	20,2749	Tequilectina
PhbEnzMtP01	59279	507	329644	1,03247	11	Metaloproteasa
PhbEnzPho01	59304	289	119874	1,03243	4	Fosfodiesterasa
PhbEnzMtP27	59360	2846	2668,32	1,03151	88,9573	Metaloproteasa
PhbEnzMtP10	59412	1793	1615,32	1,03019	53,7829	Metaloproteasa
PhbFibTec30	59540	834	656354	1,02705	21,7871	Tequilectina
PhbNtxCav27	59683	213	60,4173	1,02423	2	Neurotoxina (Ca)
PhbPInSeP50	60027	4653	4475,32	1,01893	147,38	Inh. Serin proteasa
PhbPInSeP16	60161	3393	3215,32	1,01658	105642	Inh. Serin proteasa
PhbPInCyP03	60740	515	337617	1,00808	11	Inh. Cistei proteasa
PhbEnzPho03	61666	329	155,9	0,992321	5	Fosfodiesterasa
PhbGrFCys24	61969	295	125131	0,989067	4	F. crecimiento (Cistei.)
PhbEnzCes09	62152	523	345593	0,984819	11	Carboxilesterasas
PhbCRI31	62163	396	219927	0,984801	7	CRISP
PhbGrFCys01	62348	259	94,6377	0,980812	3	F. crecimiento (Cistei.)
PhbEnzLip01	62417	259	94,6377	0,980812	3	Lipasa
PhbGrFCys30	62488	217	63,1479	0,979941	2	F. crecimiento (Cistei.)
PhbEnzMtP16	62582	450	273051	0,979836	8,64706	Metaloproteasa
PhbCRI26	62711	685	507381	0,975696	16	CRISP
PhbPInSeP67	63009	432	255264	0,969683	8	Inh. Serin proteasa
PhbPInSeP52	63315	1011	833318	0,965365	26	Inh. Serin proteasa
PhbEnzOxR04	63895	262	97,0635	0,9563	3	Oxidorreductasa
PhbCRI13	64193	3441	3263,32	0,950676	100268	CRISP
PhbEnzCho40	64257	220	65,1995	0,949105	2	Colinesterasa
PhbEnzMtP32	64554	1405	1227,32	0,94681	37557	Metaloproteasa
PhbEnzSeP85	65006	606	428435	0,938832	13	Serin proteasa
PhbPInPep07	65192	1138	960318	0,934355	29	Inh. Serin proteasa

PhbPInSeP29	65325	476	298827	0,931861	9	Inh. Serin proteasa
PhbPInSeP32	65496	2222	2044,32	0,929484	61,4132	Inh. Serin proteasa
PhbEnzMtP20	65498	1942	1764,32	0,929454	53	Metaloproteasa
PhbGrFCys22	65554	222	66,5942	0,929229	2	F. crecimiento (Cistei.)
PhbGrFCys23	65556	222	66,5942	0,929229	2	F. crecimiento (Cistei.)
PhbCRI35	65738	679	501386	0,925653	15	CRISP
PhbEnzKin03	65760	266	100348	0,925003	3	Kinasa
PhbCRI25	66269	306	134,93	0,917232	4	CRISP
PhbEnzSeP56	66386	343	168993	0,915439	5	Serin proteasa
PhbEnzMtP21	66482	856	678352	0,912228	20	Metaloproteasa
PhbPInSeP05	67159	225	68,7118	0,90059	2	Inh. Serin proteasa
PhbGrFCys26	67453	488	310746	0,896119	9	F. crecimiento (Cistei.)
PhbEnzMtP28	67599	1310	1132,32	0,894036	32,7186	Metaloproteasa
PhbEnzHya05	67650	2563	2385,32	0,893399	68,8752	Hialuronidasa
PhbOthUnd09	68160	1228	1050,32	0,884134	30013	Comp. de veneno
PhbGrFCys18	68186	386	210208	0,883144	6	F. crecimiento (Cistei.)
PhbEnzOxR02	68437	350	175614	0,880926	5	Oxidorreductasa
PhbPInSeP31	68535	712	534375	0,878306	15,1692	Inh. Serin proteasa
PhbNtxNSp67	69228	441	264149	0,866859	7,40064	Neurotoxina
PhbEnzSeP58	69452	354	179414	0,862268	5	Serin proteasa
PhbEnzCes02	69614	360	185144	0,859458	5,14286	Carboxilesterasa
PhbEnzCxp04	69877	276	108709	0,853853	3	Carboxilpeptidasa
PhbEnzMtP07	70039	687	509,38	0,850384	14	Metaloproteasa
PhbOthUnd15	70089	318	145783	0,848947	4	Comp. de veneno
PhbEnzPA204	70347	849	671353	0,844099	18,3154	Fosfolipasa A2
PhbGrFCys17	70645	320	147605	0,838469	4	F. crecimiento (Cistei.)
PhbEnzSeP04	70932	995	817347	0,832809	22	Serin proteasa
PhbFibTec57	71008	1042	864318	0,831123	23,2172	Tequilectina
PhbNtxNSp45	71017	2410	2232,32	0,83104	59,9583	Neurotoxina
PhbEnzSeP70	71548	705	527377	0,821365	14	Serin proteasa
PhbTCT06	71552	2147	1969,32	0,821251	52,2712	ТСТР
PhbCRI29	71866	596	418444	0,813363	11	CRISP
PhbEnzLig01	71883	325	152196	0,813176	4	Ligasa
PhbEnzSeP54	72323	327	154046	0,803414	4	Serin proteasa
PhbEnzSeP18	72480	1018	840318	0,800974	21,7537	Serin proteasa
PhbEnzMtP06	72633	369	193777	0,798355	5	Metaloproteasa
PhbPInSeP53	73158	728	550373	0,787046	14	Inh. Serin proteasa
PhbFibTec34	73185	896	718349	0,786317	18,2559	Tequilectina
PhbGrFCys16	73187	886	708349	0,786238	18	F. crecimiento (Cistei.)

PhbPInSeP63	73713	577	399473	0,774536	10	Inh. Serin proteasa
PhbEnzMtP34	73807	417	240498	0,771914	6	Metaloproteasa
PhbEnzCho16	74094	6870	6692,32	0,765936	165669	Colinesterasa
PhbEnzSeP59	74315	828	650354	0,7612	16	Serin proteasa
PhbEnzSeP84	74652	933	755347	0,753308	18,3904	Serin proteasa
PhbEnzCho41	74668	671	493388	0,752526	12	Colinesterasa
PhbPInSeP24	75655	388	212144	0,729236	5	Inh. Serin proteasa
PhbFibTec17	75921	390	214087	0,722616	5	Tequilectina
PhbEnzMtP23	76099	4333	4155,32	0,718808	96,5358	Metaloproteasa
PhbCRI11	76429	3435	3257,32	0,71144	74,8979	CRISP
PhbFibTec32	76439	690	512379	0,710995	11,7741	Tequilectina
PhbEnzSeP86	76608	395	218955	0,706553	5	Serin proteasa
PhbCRI12	76904	3437	3259,32	0,697594	73,4853	CRISP
PhbEnzSeP50	77256	2951	2773,32	0,688376	61,7016	Serin proteasa
PhbGrFCys19	77398	766	588365	0,683637	13	F. crecimiento (Cistei.)
PhbEnzCho04	77517	2020	1842,32	0,681008	40,5497	Colinesterasa
PhbPInSeP25	77587	357	182276	0,678984	4	Inh. Serin proteasa
PhbEnzHyd04	77661	863	685351	0,677185	15	Hidrolasa
PhbFibTec15	77770	309	137624	0,674459	3	Tequilectina
PhbEnzSeP89	77801	545	367,54	0,673465	8	Serin proteasa
PhbEnzSeP62	78088	456	278988	0,665418	6	Serin proteasa
PhbFibTec31	78186	661	483393	0,663432	10365	Tequilectina
PhbPInSeP44	78423	412	235583	0,65668	5	Inh. Serin proteasa
PhbEnzCho33	79248	6472	6294,32	0,631972	128563	Colinesterasa
PhbGrFCys21	79274	422	245408	0,630391	5	F. crecimiento (Cistei.)
PhbNtxNSp21	79344	924	746349	0,627837	15,1447	Neurotoxina
PhbEnzMtP04	79814	267	101178	0,611607	2	Metaloproteasa
PhbGrFCys31	79838	378	202455	0,611307	4	F. crecimiento (Cistei.)
PhbEnzCho45	80257	436	259214	0,596816	5	Colinesterasa
PhbCRI06	80741	778	600,36	0,577232	11,2004	CRISP
PhbPInSeP34	80776	2030	1852,32	0,575151	34,4325	Inh. Serin proteasa
PhbFibTec70	80901	960	782347	0,570137	14,4162	Tequilectina
PhbGrFCys20	80905	503	325664	0,570047	6	F. crecimiento (Cistei.)
PhbFibTec69	81343	676	498386	0,549842	8,85677	Tequilectina
PhbOthUnd10	81386	207	56,4103	0,548492	1	Comp. de veneno
PhbPInPep03	81603	551	373,52	0,537777	6,49212	Inh. Peptidasa
PhbTCT05	81725	2069	1891,32	0,532265	32,5359	ТСТР
PhbEnzMtP02	81981	212	59741	0,517912	1	Metaloproteasa
PhbEnzMtP26	82054	1425	1247,32	0,51356	20,7033	Metaloproteasa

PhbEnzSeP83	82352	1005	827318	0,49616	13,2668	Serin proteasa
PhbEnzTra04	82370	924	746349	0,494787	11,9352	Transferasa
PhbGrFCys08	82576	4191	4013,32	0,479544	62,2019	F. crecimiento (Cistei.)
PhbNtxNSp74	82825	445	268105	0,461619	4	Neurotoxina
PhbPInSeP12	82848	3347	3169,32	0,459386	47056	Inh. Serin proteasa
PhbCRI30	82883	585	407455	0,455617	6	CRISP
PhbOthvWC05	83301	968	790347	0,422732	10,7983	F. von Willebrand (C)
PhbCRI10	83436	3445	3267,32	0,409882	43,2834	CRISP
PhbFibTec11	83474	1322	1144,32	0,405283	14,9891	Tequilectina
PhbNtxNSp47	83761	2379	2201,32	0,375275	26,6995	Neurotoxina
PhbFibTec59	83910	826	648354	0,35702	7,48128	Tequilectina
PhbFibTec47	83913	249	86,6737	0,356978	1	Tequilectina
PhbPInPep05	83964	621	443418	0,35094	5,02941	Inh. Peptidasa
PhbEnzSeP75	83991	1298	1120,32	0,347983	12,6	Serin proteasa
PhbGrFCys11	84019	4831	4653,32	0,344056	51,7443	F. crecimiento (Cistei.)
PhbFibTec10	84025	2514	2336,32	0,342798	25,8846	Tequilectina
PhbEnzCho19	84041	6857	6679,32	0,341069	73,6284	Colinesterasa
PhbEnzMtP11	84140	1802	1624,32	0,327957	17,2171	Metaloproteasa
PhbNtxNSp15	84248	777	599,36	0,315067	6,10326	Neurotoxina
PhbFibTec58	84302	963	785347	0,307849	7,81396	Tequilectina
PhbGrFCys14	84324	4960	4782,32	0,304092	47,0019	F. crecimiento (Cistei.)
PhbPInSeP14	84513	3425	3247,32	0,273541	28709	Inh. Serin proteasa
PhbEnzCho18	84654	6459	6281,32	0,243148	49,3621	Colinesterasa
PhbEnzSeP72	84667	2851	2673,32	0,240927	20,8165	Serin proteasa
PhbPInSeP18	84944	3323	3145,32	0,175019	17,7919	Inh. Serin proteasa
PhbNtxCav32	84974	2018	1840,32	0,165901	9,86764	Neurotoxina (Ca)
PhbCRI19	85021	3430	3252,32	0,146684	15,4187	CRISP
PhbPInSeP60	85070	11003	10825,3	0,1296	45,3436	Inh. Serin proteasa
PhbPInSeP19	85125	3401	3223,32	0,108003	11,2515	Inh. Serin proteasa
PhbNtxNSp01	85272	5799	5621,32	0,0179803	3,26668	Neurotoxina
PhbFibTec41	85310	1947	1769,32	0,0033343	0,19067	Tequilectina
PhbEnzCho06	85313	2156	1978,32	0,00242857	0,155281	Colinesterasa
PhbCRI28	85324	1053	875318	0,00148633	0,0420487	CRISP
PhbEnzHya06	85342	2444	2266,32	0,000345671	0,0253195	Hialuronidasa
PhbNtxCav46	85360	1601	1423,32	5,84026E-05	0,00268661	Neurotoxina (Ca)
PhbFibTec65	85396	1119	941318	3,92207E-07	1,19323E-05	Tequilectina
PhbPInPep02	85503	447	270084	0	0	Inh. Peptidasa
PhbNtxAtx04	85711	718	540373	0	0	Atracotoxina
PhbTCT03	85976	1965	1787,32	0	0	TCTP

85977	1835	1657,32	0	0	TCTP
85986	8018	7840,32	0	0	Serin proteasa
85987	5894	5716,32	0	0	Serin proteasa
86000	2564	2386,32	0	0	Hialuroidasa
86054	538	360,56	0	0	Tequilectina
86074	675	497387	0	0	Tequilectina
86094	3612	3434,32	0	0	Inh. Serin proteasa
86095	3542	3364,32	0	0	Inh. Serin proteasa
86096	3620	3442,32	0	0	Inh. Serin proteasa
86097	3534	3356,32	0	0	Inh. Serin proteasa
86135	286	117273	0	0	Neurotoxina (Ca)
86149	218	63,8284	0	0	CRISP
86217	1152	974318	0	0	Serin proteasa
86234	6864	6686,32	0	0	Colinesterasa
86235	6858	6680,32	0	0	Colinesterasa
86236	6473	6295,32	0	0	Colinesterasa
86237	7607	7429,32	0	0	Colinesterasa
86238	6871	6693,32	0	0	Colinesterasa
86239	6466	6288,32	0	0	Colinesterasa
86240	6453	6275,32	0	0	Colinesterasa
86241	7620	7442,32	0	0	Colinesterasa
86242	6851	6673,32	0	0	Colinesterasa
86243	6460	6282,32	0	0	Colinesterasa
	85977 85986 85987 86000 86054 86094 86095 86095 86096 86097 86135 86149 86217 86234 86234 86235 86236 86237 86238 86239 86239 86240 86241 86242	85977 1835 85986 8018 85987 5894 86000 2564 86054 538 86074 675 86094 3612 86095 3542 86096 3620 86097 3534 86135 286 86135 286 86135 286 86237 1152 86236 6473 86237 7607 86238 6871 86239 6466 86240 6453 86241 7620 86242 6851 86243 6460	8597718351657,328598680187840,328598758945716,328600025642386,3286054538360,56860746754973878609436123434,328609535423364,328609636203442,328609735343356,32861352861172738614921863,82848623776077429,328623868586680,328623964666288,328624064536275,328624176207442,328624268516673,328624364606282,32	85977 1835 1657,32 0 85986 8018 7840,32 0 85987 5894 5716,32 0 86000 2564 2386,32 0 86001 2564 2386,32 0 86002 538 360,56 0 86074 675 497387 0 86094 3612 3434,32 0 86095 3542 3364,32 0 86096 3620 3442,32 0 86097 3534 3356,32 0 86135 286 117273 0 86149 218 63,8284 0 86234 6864 6686,32 0 86235 6858 6680,32 0 86236 6473 6295,32 0 86237 7607 7429,32 0 86238 6871 6693,32 0 86239 6466 6288,32 0 86240 6453 6275,32 0 86241 7	85977 1835 1657,32 0 0 85986 8018 7840,32 0 0 85987 5894 5716,32 0 0 86000 2564 2386,32 0 0 86001 2564 2386,32 0 0 86002 538 360,56 0 0 86074 675 497387 0 0 86094 3612 3434,32 0 0 86095 3542 3364,32 0 0 86096 3620 3442,32 0 0 86097 3534 3356,32 0 0 86135 286 117273 0 0 86149 218 63,8284 0 0 86237 7607 7429,32 0 0 86236 6473 6295,32 0 0 86237 7607 7429,32 0 0 86238 6871 6693,32 0 0 86239 6466

Anexo IX. Determinación de actividad antimicrobiana

Figura 29. Evaluación de actividad antimicrobiana para: **A.** *P. aeruginosa* (ATCC 27853), **1.** Agua, **2.** Ampicilina (5 μg), **3.** Fracción 33,2 (3 μg), **4.** Fracción 35,6 (3 μg), **5.** Fracción 37,0 (3 μg), **6.** Fracción 37,5 (3 μg), **7.** Fracción 38,1 (3 μg), **8.** Fracción 40,2 (3 μg), **9.** Fracción 41,2 (3 μg), **10.** Fracción 47,2 (3 μg), **11.** Fracción 48,5 (1 μg), **12.** Fracción 49,0 (1 μg); **B.** *S. aureus* (ATCC 25923), **1.** Agua, **2.** Ampicilina (5 μg), **3.** Fracción 33,2 (3 μg), **4.** Fracción 35,6 (3 μg), **5.** Fracción 37,0 (3 μg), **6.** Fracción 37,5 (3 μg), **7.** Fracción 38,1 (3 μg), **8.** Fracción 40,2 (3 μg), **9.** Fracción 7 (3 μg), **10.** Fracción 40,2 (3 μg), **11.** Fracción 48,5 (1 μg), **12.** Fracción 49,0 (1 μg).

Anexo X. Gráfico de variación de peso del ratón sobrviviente en el ensayo de toxicidad aguda del veneno completo de *P. boliviensis* a dosis de 0,9 μg/g

Dosis	Ratón	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Ctx-4 0,9 µg/g	1	23,4	23,9	24,3	25,0	24,9	24,7	25,2	25,7	25,9	26,1	26,6	27,0	27,4	27,4
	2	23,0	23,6	23,6	24,4	24,0	23,6	24,1	24,0	24,6	24,7	25,8	25,5	25,8	25,6
	3	23,6	23,8	24,2	24,7	24,5	24,0	24,8	25,2	25,6	26,0	26,5	26,8	27,3	27,6
Ctx-4 1,0 µg/g	1	22,6	22,2	22,6	23,6	23,1	23,7	23,9	24,4	24,6	24,9	25,6	25,7	25,9	26,1
	2	22,8	23,4	23,9	24,1	24,0	23,9	24,6	24,2	24,3	24,5	25,1	25,2	24,9	24,8
	3	21,8	21,6	21,7	22,2	22,1	21,8	22,4	22,7	23,3	23,5	24,3	24,4	,24,2	24,4
Ctx-4 1,5 µg/g	1	23,3	22,8	22,3	22,7	23,1	23,6	23,6	238	23,9	24,0	23,9	24,7	24,9	25,3
	2	24,1	24,7	24,4	24,4,	24,9	25,1	25,8	26,4	26,8	27,2	27,6	28,0	28,7	29,1
	3	22,6	22,3	21,7	22,3	23,7	24,9	25,7	24,9	24,2	24,1	24,6	24,7	25,3	25,8

Anexo XI. Peso corporal de los ratones tratados con el péptido Ctx-4 recombinante (i.cr.) para determinación de toxicidad aguda

Anexo XII. Determinación de actividad analgésica de la fracción eluato del veneno (fracción 0) y la fracción 1 del veneno de *P. boliviensis* obtenida por fraccionamiento del veneno completo en un cartucho Sep-Pack C18, por el método *Tail Flick*.

Tiempo de medición

Figura 32. Determinación de actividad analgésica de la fracción eluato del veneno (fracción 0) de *P. boliviensis* (vía i.p.) obtenida por fraccionamiento del veneno completo en un cartucho Sep-Pack C18, por el método *Tail Flick*. La gráfica representa la media + SEM del % EMP (ANOVA de medidas repetidas – *post hoc* Bonferroni. *** p < 0,0001)

Tiempo de medición

Figura 33. Determinación de actividad analgésica de la fracción 1 del veneno de *P. boliviensis* (vía i.p.) obtenida por fraccionamiento del veneno completo en un cartucho Sep-Pack C18, por el método *Tail Flick*. La gráfica representa la media + SEM del % EMP (ANOVA de medidas repetidas – *post hoc* Bonferroni).

GLOSARIO

- **Ahusado:** que tiene forma cilíndrica y alargada, más estrecho en los extremos, como el huso.
- Algesia: sensibilidad al dolor, hiperestesia.
- **Analgesia:** falta o supresión de toda sensación dolorosa, sin pérdida de los restantes modos de la sensibilidad.
- **Barrera hematoencefálica:** sistema de protección altamente selectivo contra la entrada de sustancias extrañas formada por células endoteliales que recubren los capilares del cerebro. Sirve para controlar y restringir el paso de sustancias tóxicas entre la circulación sanguínea y el fluido cerebral.
- **Cefalotorax o Prosoma:** uno de los tagmas en que se divide el cuerpo de los quelicerados; los quelicerados no tienen una cabeza diferenciada del resto del cuerpo. En arañas y amblipigios existe una constricción o cintura (pedicelo) que separa el prosoma del opistosoma.
- **Corea:** trastorno neurológico denominado disquinesia, caracterizado por movimientos involuntarios anormales de los pies y manos.
- **Cribelo:** órgano de las arañas que se encuentra delante de las hileras, y se presume que es el homólogo al octavo par de hileras de las arañas primitivas, Mesothelae y Mygalomorphae.

Disnea: dificultad para respirar.

- **Ecdisis:** muda de la cutícula de muchos invertebrados del clado Ecdysozoa. La cutícula de forma un exoesqueleto fundamentalmente inelástico por lo tanto es necesario desprenderse de él para crecer.
- **Escópula:** formación de pelos cortos y apretados, a modo de cepillo, en los tarsos y metatarsos de las patas de las arañas.

Estupor: estado de insensibilidad e inmovilidad, sin reacción a estímulos externos.

- **Ganglio supraesofágico o cerebro:** principal centro de asociación del sistema nervioso, situado en el prosoma; consta de tres pares de lóbulos: protocerebro, deutocerebro (vestigial en los quelicerados) y tritocerebro.
- **Genómica:** tiene como objetivo la caracterización colectiva y la cuantificación de los genes, que dirigen la producción de proteínas con la ayuda de enzimas y moléculas mensajeras. Se enfoca en la estructura, función, evolución y mapeo de los genomas.La genómica también implica la secuenciación y el análisis de genomas.
- **Genómica funcional:** campo de la biología molecular que se propone utilizar la vasta acumulación de datos producidos por los proyectos de genómica (como los "proyectos genoma" de los distintos organismos) para describir las funciones e interacciones entre genes (y proteínas).
- Hiperalgesia: aumento de la sensibilidad al dolor.
- **Hiperestesia:** sensibilidad cutánea excesiva y dolorosa. Se debe a una disminución del umbral o a un aumento de la respuesta a los estímulos.
- **Isoforma:** una de las distintas formas de la misma proteína. Las distintas formas de una proteína podrían ser generadas por genes relacionados, o podrían generarse por el mismo gen a través del proceso de splicing alternativo, o maduración diferencial.
- **Ligando:** sustancia que forma un complejo con una biomolécula. En un sentido más estricto, es una molécula que envía una señal al unirse al centro activo de una proteína.
- Marcador de secuencia expresada *Expressed Sequence Tags* (EST): es una pequeña subsecuencia de una secuencia nucleotídica transcrita (codificante de una proteína o no), con una lóngitud entre 500 y 800 nocleótidos, y representan porciones de genes expresados. Se puede usar para identificar genes que se transcriben y en el descubrimiento de genes, y para determinación de secuencias.
- **Mioclono:** sacudida repentina e involuntaria de un músculo o grupo de músculos. Describe un signo médico y generalmente no constituye el diagnóstico de una enfermedad.

- **Morfología:** parte de la biología que estudia la forma de los seres orgánicos y de las modificaciones o transformaciones que experimenta.
- **Neurotóxico:** sustancia capaz de provocar efectos adversos en el sistema nervioso central, el sistema nervioso periférico y los órganos de los sentidos.
- **Ooteca u Ovisaco:** cápsula para contener huevos formada por secreciones diversas de las hembras, en el momento de la puesta.
- **Opistosoma:** uno de los tagmas en que se divide el cuerpo de los quelicerados. El opistosoma es a veces denominado abdomen, término desaconsejado ya que no es homólogo del abdomen de los crustáceos e insectos. En el opistosoma se localizan las funciones vegetativas.
- **Parálisis espástica:** tipo de parálisis cerebral caracterizada por la imposibilidad de relajar los músculos o tenerlos rígidos. Los músculos tienden a estirarse y debilitarse, lo cual dificulta el movimiento.
- **Parálisis flácida:** tipo de parálisis en la cual el músculo se torna laxo y blando, no resistiendo a un estiramiento pasivo, lo que da lugar a una debilidad extrema y la pérdida completa de los reflejos tendinosos y cutáneos.

Priapismo: erección continua y dolorosa del miembro viril, sin apetito venéreo.

Proteómica: estudio a gran escala de las proteínas, en particular de su estructura y función.

Quelícero: cada uno de los dos primeros apéndices del cuerpo (primer par) en las arañas; ocupan una posición anatómicamente preoral y se caracterizan por ser órganos prehensores, bien en forma de pinza (quela) bien en forma de gancho (subquela).

Seda cribelar: seda que tiene una estructura similar a la lana que se origina en el cribelo.

Sialorrea: flujo exagerado de saliva.

Silúrico: división de la escala temporal geológica que pertenece a la Era Paleozoica; esta se divide en seis periodos de los que el Silúrico ocupa el tercer lugar siguiendo al Ordovícico y precediendo al Devónico. Comenzó hace 444 millones de años y terminó hace 419 millones de años.

- **Sinantrópico:** capacidad de algunas especies de flora y fauna que habitan en ecosistemas urbanos o antropizados, adaptándose a las condiciones ambientales creadas o modificadas como resultado de la actividad humana.
- **Transcriptoma:** conjunto de todas las moléculas de RNA (también llamadas transcritos) presentes en una célula o grupo de células en un momento determinado. El término transcriptoma engloba tanto al RNA mensajero (mRNA), que puede traducirse en una proteína, como al RNA no codificante (ncRNA), que no se traduce; sin embargo, en ocasiones se utiliza de manera más laxa para referirse únicamente al conjunto de RNAs mensajeros. Dado que diferentes células expresan diferentes genes, cada tejido o tipo celular posee un transcriptoma único y distinto.
- **Transcriptómica:** estudio del conjunto de RNA (RNAr, RNAt, RNAm, RNAi, miRNA) que existe en una célula, tejido u órgano.