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Abstract objective To map at a fine spatial scale, the risk of malaria incidence for the important endemic

region is Urab�a-Bajo Cauca and Alto Sin�u, NW Colombia, using a new modelling framework based

on GIS and remotely sensed environmental data.

methods The association between environmental and topographic variables obtained from remote

sensors and the annual parasite incidence (API) for the years 2013–2015 was calculated using

multiple regression analysis; subsequently, a model was constructed to estimate the API and to

project it to the entire endemic region in order to design the risk map. The model was validated by

relating the obtained API values with the presence of the three main Colombian malaria vectors,

Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari.

results Temperature and Normalized Difference Water Index (NDWI) showed a significant

correlation with the observed API. The risk map of malaria incidence showed that the zones at higher

risk in the Urab�a-Bajo Cauca and Alto Sin�u region were located south-east of the region, while the

northern area presented the lowest malaria risk. A method was generated to estimate the API for

small urban centres, instead of the used reports at the municipality level.

conclusions These results provide evidence of the utility of risk maps to identify environmentally

vulnerable areas at a fine spatial resolution in the Urab�a-Bajo Cauca and Alto Sin�u region. This

information contributes to the implementation of vector control interventions at the microgeographic

scale at areas of high malaria risk.
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Introduction

Malaria is one of the most important problems of public

health in Colombia, the country reported 17% of cases

of the Americas in 2016 [1], and the disease remains a

threat in areas where various human activities such as

mining and coca-cultivation have become prevalent [2].

Particularly, the Urab�a-Bajo Cauca and Alto Sin�u (UCS)

region has historically reported the highest numbers of

malaria cases in the country [3], but currently, is second

in number after the Pacific region with 16.600 cases [4].

Recent advances in Geographic Information Systems

(GIS) and methods of spatial analysis enable mapping

vector-borne diseases and thus, help in the evaluation of

the malaria risk by identifying the environmental vari-

ables that influence malaria incidence [5]. Thereby map-

ping capabilities provided by high- to medium-resolution

satellite imagery allow to identify target areas and popu-

lations at risk [6]. Various methods have been used to

model malaria risk and include the Generalized Linear

Model [7, 8], the Generalized Additive Model and the

Bayesian estimation method [9]. These statistic tools

allow the evaluation of the relationship between the envi-

ronmental conditions and malaria transmission at a wide

geographic scale [10]; however, at the local level, the fac-

tors influencing this relationship are not clear [5] and

new approaches should be assessed.

In Colombia, various studies using GIS to model

malaria risk have been conducted. Two of them focused

on the effects of climatic change associated with El Ni~no/

Southern Oscillation-ENSO on the number of malaria

cases [11, 12]. Another study that mapped malaria risk

for the Pacific Coast municipality of Buenaventura and

showed a 78.8% reduction in areas under malaria risk

when environmental and anthropic variables were

included in the model [13]. In addition, a high spatial res-

olution (90 9 90 m) malaria risk map for Colombia,

based on environmental and human population data,

helped to demonstrate the relationship between mean risk

scores with total cases by the municipality, and provided
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an accurate spatial representation of risk potential to vec-

tor exposure [14].

The limited resources available in Colombia for the

control of infectious diseases and the need for regular

surveillance of vector-transmitted parasites make it essen-

tial to implement novel and effective methods to improve

vector control interventions. Therefore, this study pro-

poses a new modelling framework based on GIS and

remotely sensed environmental data to map at a fine spa-

tial scale, the risk of malaria incidence for the important

endemic region UCS, covering the years 2013–2015.

Methods

Study area

The malaria endemic region Urab�a-Bajo Cauca and Alto

Sin�u (UCS), in the northwest of Colombia, includes 35

endemic municipalities of the Antioquia and C�ordoba

departments (Figure 1). UCS has an estimated area of

43506 km2 and is characterised by broad areas of flat

lands, with some low mountains in the south of Alto

Sin�u. The region has a humid subtropical climate [15]. In

2010, the population at risk was 2500000 people [16].

Epidemiological data

The number of malaria cases by Plasmodium vivax, per

municipality and for the years 2013 to 2015, was obtained

from the Sistema Nacional de Vigilancia en Salud P�ublica

(Sivigila), Instituto Nacional de Salud [4]. Plasmodium

vivax was selected to construct the risk map considering

that for decades this species has been the predominant

malaria parasite in the UCS region, representing an annual

incidence of 28.7/1000 in 2015; while in the same year, the

incidence for Plasmodium falciparum was of 10.2/1000

[4]. For each municipality, the annual parasite incidence,

here denominated ‘observed API’, was calculated accord-

ing to the following formula: observed API = No.

cases 9 1000/population at risk per year. These incidence

rates were calculated separately for each year (2013–
2015). Then, the arithmetic mean of the observed APIs for

these three years was calculated using ArcGIS 10.2 soft-

ware (ESRI Corporation, Redlands, CA). This arithmetic

mean was converted in a grid layer with a spatial resolu-

tion of 1 km2, with each pixel representing the mean value

of the observed API for the respective municipality.

Environmental predictors of malaria risk

Topographic attributes and environmental variables were

used to evaluate their possible association with malaria

incidence. The selection of covariates was based on previ-

ous studies, their biological significance for the parasite

and the vectors [5, 17, 18], and included annual precipi-

tation, annual mean temperature, Normalized Difference

Vegetation Index (NDVI) and Normalized Difference

Water Index (NDWI). The arithmetic means for the

NDVI and NDWI were calculated for the years 2013 to

2015. The Topographic Wetness Index (TWI) [19] and

the percentage of forest were estimated (Table 1). All

covariate layers were gridded to spatial resolution of

1 km2, consistent with the highest resolution of the

WorldClim dataset. Boundary shapefiles (polygons of

urban areas) were used to generate a buffer of 2.5 km of

radius from each urban centre [20]. The information on

environmental covariate layers was extracted from the

mask of urban areas. Finally, a database was created and

contained the information of an urban centre per munici-

pality, which was selected under the criterion of greater

nocturnal luminosity, as estimated by the maximum aver-

age value per pixel. These average values were chosen to

carry out the statistical analyses. The urban centre with

greater luminosity was selected in order to reduce the

error that the observed API presents in small urban

centres.

Data analysis and risk map design

To estimate the association between the observed API

and covariates, a Generalized Linear Model (GLM) was

implemented in R software v. 3.3.2 (R Development Core

Team, 2008); a P < 0.05 was considered statistically sig-

nificant. The API for each municipality was modelled

with a Poisson distribution, and an iterative approach

was used to choose the explanatory covariates in the

GLM [21]. The best GLM model was selected using

pseudo-R-squared measures [22]. The values for the vari-

ables in the GLM were included in the following function

[23]:

Log ðAPIÞ ¼ interceptþ coef. Var1þ coef. Var2

where Var1 and Var2 are the environmental variables

that most influenced the model.

The estimated API for the entire endemic area was

generated using ENVI software v. 5.3. The product

was a map of estimated API with a 1 km2 spatial reso-

lution, which was reclassified into four risk categories

by dividing the estimated API values into four classes

using the quartiles of incidence data. Because the risk

of malaria is associated with the presence of human

populations, the risk map was cut using the layer of

nocturnal luminosity.
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Risk map evaluation

A simple linear regression analysis was performed to

evaluate the relationship between the observed and esti-

mated API. Additionally, the relationship between the

presence of the three main Colombian malaria vectors,

Anopheles darlingi, Anopheles nuneztovari and Anophe-

les albimanus (data obtained during the mosquito collec-

tions for this work) with the malaria risk categories, was

evaluated. Species occurrence and the proportion of occu-

pied area were calculated for each incidence risk cate-

gory, and a Chi-squared test was used to evaluate the

independence of these data.

Results

At the municipality level, the observed API showed that

Caceres in the Bajo Cauca subregion is the municipality

with the highest value (Figure 2a, represented by red col-

our). The GLM indicated that the annual mean tempera-

ture and NDWI had a significant correlation with the

observed API (R2 = 0.66, P < 0.05), suggesting that these

variables are good predictors of the API spatial variability

(Table 2). Based on the GLM results, the following

model was defined:

Log ðAPIÞ ¼ 7:4252þ 21:1421 ðNDWI layer dataÞ
þ 0:2722 ðTemperature layer dataÞ

Application of the inverse equation (1) to all the pixels

of the endemic region helped to generate the malaria risk

map.

API ¼ expð7:4252Þ � exp½ð21:1421Þ ðNDWI layer dataÞ�
� exp½ð0:2722Þ ðTemperature layer dataÞ�

ð1Þ

The malaria incidence risk map for the region showed

that the areas under higher malaria risk were located in

the Urab�a and Bajo Cauca subregions (Figure 2b). A

malaria risk map based on the layer of nocturnal lumi-

nosity evidenced that the areas under very low risk were
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Figure 1 Study area. Malaria endemic region the Urab�a-Bajo Cauca and Alto Sin�u, Colombia. [Colour figure can be viewed at
wileyonlinelibrary.com].
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those north of the endemic region, in the Alto-Sin�u subre-

gion (Figure 3).

The simple linear regression analysis revealed a signifi-

cant statistical relationship between the observed and

estimated API (R2 = 0.45, P < 0.05, t = 1.19) (Figure 4).

There was a significant and positive relationship among

the risk categories of malaria incidence and the presence

of two of the three main malaria vector species (Fig-

ure 5), Anopheles albimanus (X2 = 12.2, P < 0.05,

df = 3) and An. nuneztovari (X2 = 15.3, P < 0.05,

df = 3). Finally, a significant difference was found

between the number of vector species and the risk cate-

gories of malaria incidence (X2 = 18.7, P < 0.05, df = 3)

(Figure 6).

Discussion

Mapping vector-borne disease environmental determi-

nants and entomological risk is a central feature for an

efficient and integrated vector control management [24].

However, the malaria risk maps produced in Latin Amer-

ica have been of wide spatial scale, difficulting their prac-

tical application [10]. This is the first study, using GIS

and remotely sensed data, performed to understand the

malaria risk incidence in the UCS endemic region. The

results indicated that temperature and NDWI values are

important in the prediction of malaria risk incidence.

This corroborates results of a study in Swaziland which

showed that malaria transmission occurs mainly in areas

Table 1 Variables used to analyse malaria incidence risk in the Urab�a-Bajo Cauca and Alto Sin�u region of Colombia

Variable Source Initial spatial resolution References

Annual precipitation Worldclim 1 km Hijmans et al. (2005)
Annual mean temperature Worldclim 1 km Hijmans et al. (2005)
Normalized difference
vegetation index (NDVI)

Moderate Resolution Imaging Spectroradiometer
(MODIS)

250 m Hassan et al. (2007)

Normalized difference

water index (NDWI)

Moderate Resolution Imaging Spectroradiometer

(MODIS)

250 m Gao (1997)

Topographic wetness
index (TWI)

Calculated from Shuttle Radar Topography Mission
Digital Elevation Data

90 m Jarvis et al. (2008)

Forests National Geographic and Atmospheric Administration

(NOAA)

1 km http://www.noaa.gov/
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with highest NDWI values [25]. Also, NDWI was the

determinant variable for the presence of Anopheles larval

habitats in Senegal [26]. Regarding temperature, this vari-

able is a known factor that affects both, the parasites and

their hosts [27]; its spatial and temporal variations

greatly affect transmission dynamics [28].

Human activities such as deforestation, agriculture,

migration and urbanisation have a profound effect on

malaria transmission [29]. The risk map of malaria

incidence for the UCS region showed that the areas

under higher risk were located in the Urab�a and Bajo

Cauca subregions; during the last decades, these areas

have undergone extensive transformation due to defor-

estation for agriculture, urbanisation and open-pit min-

ing [30]. Thus, we hypothesise that anthropic activities

may be favouring the ecological and epidemiological

suitable conditions for malaria transmission in these

subregions; further studies should be conducted to test

this. Moreover, localities north of the endemic region,

in Alto Sin�u subregion, presented a low risk. In the

Table 2 General linear model results showing the relationship between observed API and environmental and topographic covariates

Covariates Estimate Std. Error z value P-value

(Intercept) 7.17E+00 2.12E+00 3.381 0.000723***

NDVI �4.15E+00 2.12E+00 �1.242 0.214171

NDWI 2.00E+01 1.85E+00 10.823 <2e-16***
TWI 5.81E-02 3.80E-02 1.531 0.12569

Forest �4.74E-02 2.87E-02 �1.649 0.099146

Precipitation �3.83E-05 2.75E-04 �0.139 0.889225

Temperature �2.24E-01 6.65E-02 �3.366 0.000764***

Std: standard error, *p < 0.05; **p < 0.01; ***p < 0.001.
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period 2001–2012; this subregion reported on average

26000 annual malaria cases, corresponding to an API

of 16.23 [31]. Various localities of this subregion are

in areas far away from the wetlands of the Sin�u and

San Jorge rivers [32], where formation of appropriate

larval habitats and subsequent mosquito proliferation

are less likely, and consequently fewer people are

exposed to mosquito bites and thus at lower risk of

malaria [33].

There was a significant and positive relationship among

the risk categories of malaria incidence and the presence

of the main vectors An. albimanus and An. nuneztovari.

These two species co-occurred in some areas of UCS.

Accordingly, a previous study in five Departments of NW
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Figure 4 Simple linear regression plot between the observed and estimated API for the Urab�a-Bajo Cauca and Alto Sin�u endemic

region of Colombia.

50

45

40

35

30

25

20

15

10

5

0
Very low risk
IPA(0–0.996)

Low risk
IPA(0.996–1.616)

Medium risk
IPA(1.617–2.925)

High risk
IPA(2.926–25.319)

Very low risk
IPA(0–0.996)

Low risk
IPA(0.996–1.616)

Medium risk
IPA(1.617–2.925)

High risk
IPA(2.926–25.319)

Very low risk
IPA(0–0.996)

Low risk
IPA(0.996–1.616)

Medium risk
IPA(1.617–2.925)

High risk
IPA(2.926–25.319)

P
er

ce
nt

ag
e 

of
 p

re
se

nc
e

50

45

40

35

30

25

20

15

10

5

0

P
er

ce
nt

ag
e 

of
 p

re
se

nc
e

50

45

40

35

30

25

20

15

10

5

0

P
er

ce
nt

ag
e 

of
 p

re
se

nc
e

(a) (b)

(c)

Figure 5 Relationship among risk categories of malaria incidence and the presence of the main malaria vectors. (a) Anopheles albi-
manus, (b) Anopheles nuneztovari and (c) Anopheles darlingi, in the Urab�a-Bajo Cauca and Alto Sin�u region of Colombia.

1106 © 2018 John Wiley & Sons Ltd

Tropical Medicine and International Health volume 23 no 10 pp 1101–1109 october 2018

M. Altamiranda-Saavedra et al. Malaria incidence risk mapping in Colombia



and W Colombia showed a positive association between

the number of malaria vector species and the API; this

association was attributed to the vectors preference for

feeding on humans, and also to the co-occurrence of vari-

ous species, which increases the exposure to infected bites

[23]. Also, the presence of the three main vector species,

An. albimanus, An. nuneztovari and An. darlingi was

previously considered a risk factor for malaria occurrence

in localities of the Alto Sin�u subregion [34]. Additionally,

An. nuneztovari and An. darlingi have been detected nat-

urally infected with Plasmodium in various localities of

the UCS region [35, 36]. Together, these results suggest

that the presence and co-occurrence of the main vectors

species constitute important risk factors that should

include in futures studies about malaria incidence risk

characterisation.

Malaria risk maps are used to optimise human and

financial resources available for disease prevention and

control [37]. In Colombia, decisions on malaria control

are based on municipality API values [4], which have low

spatial resolution, do not allow discrimination of ade-

quate risk levels and thus are of little practical use [7]. In

this context, the results from this work provide evidence

of the utility of risk maps to identify environmentally vul-

nerable areas at a fine spatial resolution. The method we

implemented also constitutes a useful and improved

approach to identify areas at higher risk of malaria in an

important Colombian endemic region.

Knowledge of favourable local environmental condi-

tions for the occurrence of malaria may be used for the

design of area-specific malaria prevention and control

interventions. The method proposed here is recommended

as the foundation of national and subnational programme

strategies for malaria control. Furthermore, this proposal

could be expanded to include epidemiological informa-

tion related to other malaria parasites and be projected

to other spatial and temporal scales.
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