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Abstract  
 

This work evaluated the perovskite solar technology’s outdoor performance. An emerging technology that was not 
commercial at the beginning of this work (Velilla et al., 2017). Therefore, minimodules with an inverted 
mesoporous MAPbI3 structure (NiOx/Al2O3/MAPbI3/PCMB/rhodamine/Au), were fabricated in a drybox by spin 
coating (Ramirez et al., 2019). The devices formed for 4 cells interconnected in series and 8.0 cm2 of an active 
area were fabricated on ITO substrates of 5 x 5 cm and manually encapsulated with ethylene-vinyl acetate (EVA). 
These were analyzed by impedance frequency response and ideality factor following the procedure shown in (Yoo 
et al., 2021, 2020), providing physical insight into the recombination mechanism dominating the performance and 
fully characterize the devices under indoor conditions.  

Accordingly, a methodology based on the international standard IEC 61853-1 to evaluate the perovskite 
technology’s outdoor performance was proposed (Velilla et al., 2019b) because no international standards have 
been fully established, and most published works have focused on laboratory-scale cells (i.e., 1 cm2 or smaller in 
size). This methodology was implemented as Python’s functions (scripts) in a remote server to estimate the 
photovoltaic device’s outdoor performance. Hence, the developed I-V curve tracers (Cano et al., 2015) were 
synchronized with a weather station (to record the irradiance levels and ambient/device temperatures). This 
procedure allowed validated the power rating conditions for commercial modules of different technologies such 
as silicon, HIT, and CIGS according to the manufacturers’ reported values in its datasheets (Velilla et al., 2019a). 
Then, the procedure was extended to evaluate perovskite minimodules performance under outdoor conditions.  

The perovskite minimodules outdoor evaluation under natural sunlight without a tracker in the Solar Cell Outdoor 
Performance Laboratory (OPSUA, University of Antioquia, Medellín-Colombia) allowed observation of three 
maximum power (Pmax) evolution patterns, named convex, linear, and concave patterns because of the exhibited 
shapes. In this sense, all the analyzed minimodules can be statistically associated with one of these three patterns, 
commonly described for degradation processes in the literature to study possible degradation paths and estimate 
the failure time. Therefore, to analyze these degradation behaviors, well-known statistical models such as linear 
regression models were used to estimate the degradation rate and lifetime (T80).  

Relating to ideality factor also called quality factor or shape curve factor, which is the most reported parameter for 
different solar cell technologies. This parameter has been used to define the electrical behavior of solar devices 
due to its relationship with conduction, transport, recombination, and behavior at interface junctions, providing 
physical insight into the recombination mechanism dominating the performance. Consequently, the changes in nID 
could be correlated with the recombination mechanisms or degradation processes occurring in the device, 
highlighting the importance of this parameter to complete the device’s characterization. 

Therefore, the nID values were estimated from the relationship between the open-circuit voltage and light intensity, 
from the impedance frequency response (IFR) under different light intensities calculating the recombination 
resistance (Rrec) (Yoo et al., 2021, 2020), and fitting the I-V curve to one-diode model to extract this parameter. In 
these cases, an agreement has been shown between the nID value estimated from the recombination resistance 
extracted through IFR analysis and the value calculated from Voc at different light intensities (Almora et al., 2018; 
Yoo et al., 2020). Therefore, an Autolab’s procedure was implemented to record the device’s Voc and IFR as a 
light function. Besides, to estimate the Rrec fitting the IFR to a circuit model or extract the one-diode model’s 
parameters fitting the I-V curve to this model, a global optimization process involving a genetic algorithm (GA) 
and the simplex method was implemented, following the previous work’s methodology (Velilla et al., 2018).  

Moreover, due to the day-night cycles, including dawn and noon conditions, which can naturally provide a broad 
range of illumination conditions, it was proposed to estimate nID from the open-circuit voltage (Voc) dependence 
on irradiance and ambient temperature (outdoor data). Consequently, the changes in nID could be correlated with 
the recombination mechanisms or degradation processes occurring in the device. In this context, it was observed 
that the three different degradation patterns identified for Pmax can also be identified by nID. Hence, these three 
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representative power loss tendencies were compared with their corresponding ideality factor (nID). To this end, we 
defined TnID2 as the time at which nID first reaches a value of 2, with a physical meaning related to the transition 
point between bulk SRH recombination through a single level to recombination through multiple levels because 
of device degradation. Thus, based on the linear relationship between T80 and the time to reach nID=2 (TnID2) is 
demonstrated that nID analysis could offer important complementary information with important implications for 
this technology’s outdoor development. 

Finally, we must admit that the photovoltaic industry has invested efforts in developing diagnostic tools intended 
to improve the energy production’s reliability and the installations’ safety. In this sense, although nID has not been 
employed to monitor device evolution to see how the relevant processes evolve, for example, in degradation, this 
work proposed a methodology to characterize the technology’s outdoor performance evolution and improve the 
conventional Pmax analyses, using the nID as a figure of merit (Velilla et al., 2021). This methodology could be 
quickly adapted by research groups to estimate the status and evaluate the device’s performance evolution and by 
the industrial sector to develop equipment or tools to perform diagnostic devices. 
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1. Introduction 
 

Perovskite solar cells (PSC) are expected to significantly impact the future if they can provide significant 
performance outdoors. Outdoor conditions are highly demanding, as they are characterized by day-night, seasonal, 
and weather cycles that correspond to drastic variations in irradiation, temperature, and moisture. While 
accelerated performance tests help predict the devices’ behavior, continuous outdoor tests are also required to 
provide information on the applicability of this technology in the real world. The outdoor exploitation of solar 
devices requires encapsulation to protect the electrodes and active areas of cells against the environment, avoid 
corrosion processes, increase the electrical insulation to eliminate leakage currents, and provide thermal and 
mechanical support (Hasan and Arif, 2014). In this context, international standards such as IEC 61215 suggest 
various accelerated tests intended to identify potential failures in silicon photovoltaic modules (broken 
interconnects, cracked cells, delamination, dielectric breakdown, bypassed diodes, and corrosion). Thus, based on 
the experience gained in recent decades through such accelerated tests and field evaluations, these failures in 
photovoltaic modules have been correlated with various degradation modes, such as corrosion, delamination, 
discoloration, glass breakage, cell cracking, potential-induced degradation, current leakage, ion migration, hot 
spots, and soiling (Oliveira et al., 2018; Wang et al., 2013). Nevertheless, because the standards do not include all 
possible degradation modes and, in real operation, photovoltaic devices can be affected by different degradation 
modes simultaneously, it is not always possible to estimate the real lifetime from these tests (Osterwald and 
McMahon, 2009). 

In emerging technologies such as PSC, no international standards have been fully established, and most published 
works have focused on laboratory-scale cells (i.e., 1 cm2 or smaller in size). The first certificated minimodule of 
this technology was reported in 2016 by SJTU team, which corresponded to 12.1% of efficiency, 10 serial cells, 
and an illuminated area of 36.13 cm2 (Green et al., 2017). Toshiba reported the last certified PSC module with an 
efficiency of 16.1%, 55 serial cells, and an illuminated area of 802 cm2 (Green et al., 2020). Consequently, various 
upscaling works have been published (Green et al., 2018; Hu et al., 2019; Qiu et al., 2019), and different methods 
and materials have been used to evaluate the stability and degradation performance of this technology (Anoop et 
al., 2020; Cheacharoen et al., 2018; Domanski et al., 2018; Holzhey and Saliba, 2018; Tress et al., 2019; Yang et 
al., 2015). In this regard, a broadly-supported consensus statement on reporting data related to stability assessment 
was recently published, highlighting certain particularities of PSC technology that must be taken into account 
(Khenkin et al., 2020). For instance, in contrast to mature photovoltaic technologies such as Si and GaAs, PSCs 
show performance loss reversibility under day-night cycles (Domanski et al., 2017; Khenkin et al., 2018); a 
hysteresis effect in the current-voltage (I-V) curves, which could induce errors in the performance determination 
(Christians et al., 2015); and a lower dependence of performance and Voc on temperature (Schwenzer et al., 2018).  

While these peculiarities of PSC could be seen as drawbacks for their systematic analysis, they also provide new 
opportunities for PSC’s characterization (Hoye et al., 2017). This technology is in its infancy, and there are scarce 
statistical data available for large devices operated outdoors (Hu et al., 2019). Therefore, there is not enough 
available data to fully establish or identify the degradation modes and mechanisms of PSCs and their impact on 
outdoor performance evolution. Moreover, under high-irradiance conditions, PSCs show significant differences 
from conventional Si cells. It has been demonstrated for perovskite minimodules operating outdoors (Velilla et al., 
2019b) and for non-encapsulated solar cells under simulated weather conditions in the laboratory (Tress et al., 
2019). These results indicate that PSCs show lower correlations of their performance and open-circuit voltage 
(Voc) with temperature than other commercial technologies, such as silicon (Deng et al., 2019), for which the 
deleterious effects of temperature on performance are well known (Green et al., 1985; Osterwald et al., 1987). 
This difference in temperature sensitivity is an essential aspect of PSC technology to consider. 
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Conventionally, the performance evolution of solar cell devices is monitored through the systematic measurement 
of I-V curves as a function of the temperature and illumination conditions. In the laboratory, it is relatively easy 
to set up tests to track the performance, for instance, at the maximum power point; however, such control is 
intrinsically unreasonable outdoors. The illumination and temperature variations induced by day-night, seasonal, 
and weather conditions necessitate a systematic analysis of a high quantity of data, depending on the measurement 
sampling rate and exposure time (Wang et al., 2018). Hence, in such power loss studies, it is common to correct 
the I-V curves for temperature and irradiance in accordance with the standard test conditions (STC, corresponding 
to an irradiance of 1000 W/m2 and a module temperature of 25 °C). However, such conditions are difficult to reach 
outdoors (Velilla et al., 2019a). Although the conventional method of monitoring outdoor module performance 
based on I-V curves produces rich numerical data, it offers no direct indication of the physical processes occurring 
in the device and thus provides no information about degradation modes. 

In this context, to evaluate the photovoltaic device’s lifetime, a parameter that refers to the time at which the device 
reaches 80% of its initial rated power (T80) is commonly used as a figure of merit. T80 depends on various factors, 
such as the materials and procedures used for device fabrication, cell interconnects, weather conditions, seasonal 
variations, installation conditions, shading and soiling effects, and electrical mismatch between cells, among others 
(Makrides et al., 2014). This parameter is commonly obtained from the relationship between the maximum power 
and time in a long-term analysis of a device under real outdoor operating conditions. Moreover, considering that 
the performance over time shows seasonal behavior and a gradual performance loss tendency, T80 has been 
commonly fitted using statistical methods, such as linear regression, to estimate the degradation rate (Phinikarides 
et al., 2014). As a complementary analysis to this scheme, it is proposed to take advantage of the outdoor 
conditions’ variability to track the perovskite minimodule performance by the determination of ideality factor 
(nID), also called the quality factor or shape curve factor.  

Despite the potential of nID, this parameter has not been employed to monitor device evolution over time to see 
how the relevant processes evolve, for example, in degradation. Therefore, this work proposed to take advantage 
of the weak dependence of Voc on T in PSCs (Schwenzer et al., 2018; Tress et al., 2019; Velilla et al., 2019b) to 
calculate nID and use it as a figure of merit for monitoring and characterizing the outdoor performance of this 
technology. Hence, day-night cycles, including dawn and noon conditions, can naturally provide a broad range of 
illumination conditions, allowing nID to be determined. Moreover, taking advantage of this exciting parameter to 
determine the physical processes acting on devices, this parameter was linked with the degradation modes. For 
this purpose, the outdoor performance for MAPbI3 minimodules was tracked, recording the evolution of the 
maximum power (Pmax) under power rating conditions suggested by the IEC61853-1 standard, precisely the 
nominal operating cell temperature (NOCT) conditions, to compare the resulting data with the nID evolution 
estimated only from Voc, light irradiance, and ambient temperature. It was showing that this new methodology 
identifies similar features to those found using the classical approach based on Pmax, enabling tracking of the 
physical processes occurring in the device. Finally, the linear relationship between the time at which the module 
reaches nID = 2 (TnID2) and T80, suggested the complementarity of these two parameters. This complementarity has 
important implications for improving the characterization and understanding of the degradation processes and, 
consequently, for the PSC’s outdoor optimization. 
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2. MAPI Perovskite Devices Fabrication and Characterization  
 

This chapter presented the fabrication and electrical performance characterization of MAPbI3 minimodules of 8.0 
cm2 in size formed of 4 cells interconnected in series, with an inverted mesoporous structure 
(ITO/NiOx/Al2O3/MAPI/PCMB/Rhodamine/Au, Figure 2-1a-b). This structure has been demonstrated to be 
feasible for fabricating large-area devices up to 100 cm2 in dry-box conditions by spin coating (Ramirez et al., 
2019; Velilla et al., 2019b). In this structure, the incorporation of NiOx and mesoporous layer (Al2O3) improves 
the reproducibility for fabrication over large-areas and reduces hysteresis (Ciro et al., 2017b; Ramirez et al., 
2018a), while the incorporation of rhodamine improves the electronic effects (Ciro et al., 2017a). Moreover, to 
evaluate these devices at outdoor conditions, the electrical contacts (ITO and Au contact) were extended using an 
adhesive silver tape and encapsulated in a glovebox with ethylene-vinyl acetate (EVA)/glass. The borders were 
covered with epoxy resin to minimize the direct exposure of the EVA (Figure 2-1c). Finally, fabricated devices 
were characterized by impedance frequency response (IFR) and ideality factor (nID). Therefore, an experimental 
procedure was implemented to estimate the nID from the relationship between Voc and light intensity and from the 
relationship between the bias and Rrec in IFR test. This procedure was used in previous works (Yoo et al., 2021, 
2020), allowing identification of the device’s recombination mechanism and demonstrating an excellent agreement 
with the nID values calculated for both methodologies. Therefore, it was possible to identify the Shockley-Read-
Hall (SRH) recombination mechanism dominating the devices, based on the nID values ranged between 1 and 2. 

 
Figure 2-1. MAPI devices. 

a) scheme of layers involved in the devices. b) unencapsulated solar cell and c) encapsulated minimodule. Devices were 
fabricated on ITO substrate of 5 x 5 cm. 

 

2.1 Device Fabrication 
 
2.1.1 Perovskite Solar Cells  
The spin coating procedure carried out in dry-box conditions enables us to obtain uniform films of perovskite and 
interlayers also on large areas substrates, as was mentioned in (Ramirez et al., 2019). Thus, similar conditions 
related to the preparation of precursor solution and spin-coating parameters were exploited to deposit each layer 
and fabricate the whole device on an ITO substrate of 5 x 5 cm.  

2.1.1.1 Layers Deposition 
The NiOx hole transporting layer was dynamically spin-coated at 3000 rpm for 30 s using a concentration of 23 
mg/mL in deionized water. The nanoparticles of NiOx were synthesized by our laboratory personnel using the 
chemical precipitation method, as was mentioned in (Ciro et al., 2017b). The mesoporous layer of Al2O3 was 
dynamically spin-coated at 4000 rpm for 30 s using a commercial alumina nanoparticles dispersion diluted in 
isopropanol with a ratio of 1:5. MAPI layer was dynamically spin-coated at 3000 rpm for 30 s, by using a molar 
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ratio of 1.06 between methyl ammonium (MAI) and lead iodide (PbI2), dissolved in acetonitrile/methylamine 
solvent. A surface treatment with methyl ammonium chloride (5 mg/mL in IPA) was carried out by dynamical 
spin-coated at 4000 rpm for 30 s. Next, the substrate was thermally annealed at 100 °C for 10 min. PCBM was 
dynamically spin-coated at 2000 rpm using a concentration of 20 mg/mL in chlorobenzene. Rhodamine was 
dynamically spin-coated at 4000 rpm using a concentration of 0.5 mg/mL in anhydrous ethanol. Finally, the contact 
layer of gold was thermally evaporated under vacuum at 0.1 nm/s, Figure 2-1.  

The complete characterization of the MAPI layer, which included a solvent treatment with methyl ammonium 
chloride (MACl), was shown in previous works (Ramirez et al., 2019), remarking the advantage of incorporating 
the Al2O3 layer to avoid pin-holes and increase the reproducibility in the fabrication process. In this context, Figure 
2-2 shows the top-view SEM images taken at different locations of the perovskite film deposited on the top of 
NiOx/Al2O3 substrates of 10 x 10 cm, which were cut on pieces of 2x8 cm. Therefore, it was possible to observe 
pin-holes in the film deposited on the top of the planar NiOx substrate (Figure 2-2a). At the same time, the 
morphologies improve on the top of the mesoporous layer (Figure 2-2d-f), indicating a more uniform film in the 
case of the mesoporous device due that the Al2O3 layer completely covers the ITO layer. 

 

 
Figure 2-2. SEM of MAPI layer deposited on ITO substrate of 10 x 10 cm. 

a-c) related to a perovskite layer on the planar structure, being evident the pin-holes on the sample (a). d-f) related to a 
perovskite layer on top of the mesoporous layer, which allowed to fully cover the substrate and obtained homogenous 

layers. a) and d) on the top of the samples. b) and e) on the center of the samples and c) and f) on the bottom of the samples. 
These SEM corresponding to pieces of 2 x 8 cm from the central region. 

Figure 2-3 shows the cross-section SEM images of layers deposited on ITO substrate of 5 x 5 cm to validate 
aspects related to morphology and layers thickness. From these SEM images, it is observed the thickness of the 
NiOx and the mesoporous layer of approximately 20 nm and 100 nm, respectively. Also, it is observed that the 
mesoporous layer covers the NiOx layer creating a uniform layer between MAPI and the hole transport layer. On 
the other hand, Figure 2-4 shows some representative AFM images of the layers on the NiOx film’s top. From 
this, it is possible to observe the effect of incorporating different layers, which help to fill spaces or passive defects 
on the previous layers, reducing the roughness of the final films based on the lower deviation measured (STD) on 
the region evaluated. 
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Figure 2-3. Cross-section SEM images of MAPI mesoporous devices deposited on ITO substrate of 5 x 5 cm. 
a) intended to illustrate the layer morphology. b) intended to illustrate the thickness of the NiOx layer of approximately 20 

nm. c) intended to illustrate the thickness of the mesoporous layer of approximately 100 nm. d-f) related to another sample. 
d) intended to illustrate the effect of depositing the PCBM layer on MAPI. e) the thickness of mesoporous layer (Al2O3) and 

f) secondary electrons image of the image showed in e. 

 
Figure 2-4. AFM of layers involved in the device. 

Corresponding a) to NiOx/Al2O3/MAPI (STD=10.181nm). b) to NiOx/Al2O3/MAPI/PCMB (STD=3.063nm) and c) to 
NiOx/Al2O3/MAPI/PCMB-Rhodamine (STD=3.461nm). The layers were deposited on ITO subtracted of 5x5 cm. 

 

2.1.1.2 Area Effect on the Electrical Performance  
Once uniform layers were obtained on ITO substrate of 5 x 5 cm, solar cells of MAPI inverted structure were 
fabricated, changing the active areas between 1 and 11.2 cm2, Figure 2-5a-b. A laser etching on the ITO substrate 
was performed on the borders (width of 0.5 cm) to limit the active area. Therefore, the ITO effective area was 16 
cm2. Finally, regarding the contact electrodes width of 0.7 cm for ITO and 0.5 for gold (left part and right part on 
Figure 2-5 a-b), the maximum active area for the device was limited to 11.2 cm2. Figure 2-5c shows some 
representative I-V curves to illustrate the electrical operative range of the variables involved in the fabricated 
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devices’ performance. It is to highlight that the I-V curves were measured using an Oriel Sol3A sun simulator and 
a 4200SCS Keithley system, being the maximum current limit of 120 mA. For that reason, the maximum active 
area of the cell was limited to 10 cm2. 

 
Figure 2-5. Solar cell fabricated on ITO substrate of 5 x 5 cm. 

a) photo of the fabricated device with an active area of approximately 8.4 cm2. b) photo of the fabricated device with an 
active area of approximately 7.0 cm2. The photo shows the silver tape used to extend the electrical contacts. c) 

Representative I-V curves of perovskite solar cells (monolithic) to illustrate the electrical performance of devices according 
to active areas ranging between 2 and 11 cm2.  

Figure 2-6 shows the parameters extracted from the I-V curves in the form of scatter plots. These plots included 
trend lines corresponding to the fitted second-order polynomial to visually guide the effect of the area on the 
electrical performance. From these results, it is easy to observe that larger active areas correlated with higher Pmax 
and lower efficiencies (Figure 2-6a-b). The areas of approximately 2 cm2 correlated with higher efficiencies 
(greater than 10 %) and higher FF (greater than 50%), Figure 2-6a-c. Also, the behavior shown by Pmax and Isc as 
a function of area (Figure 2-6d) suggested a stabilization trend as the active area increase, pointing to the 
performance losses because of the larger areas.  

On the other hand, because similar Voc values were obtained for the large-area solar cells and small-area solar cells 
ranging between 0.09 and 0.52 cm2 as was shown in (Ramirez et al., 2019), the area effect on the Voc could be 
neglected (Figure 2-6e). These results mainly suggested that similar perovskite layer thickness was obtained for 
the active areas up to 9 cm2 (as can be seen in Figure 2-3 and Figure 2-4). Finally, the linear relationship between 
Voc and Isc illustrated the central aspect related to the ITO losses (Figure 2-6f). Higer Isc correlates with lower Voc 

(involving in the large areas), while higher Voc correlates with lower Isc (involving in the smaller areas). This fact 
suggested that the drop in Voc is related to ohmic resistances (series resistances). This aspect is evidenced in the 
behavior of the I-V curves near the Voc (Figure 2-5c). 
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Figure 2-6. Effect of the active area on the electrical performance of solar cells. 

Corresponding to a) the maximum power. b) the efficiency. c) the fill factor. d) the short-circuit current. e) the open-circuit 
voltage and f) the relationship between the open-circuit voltage and short circuit current. The dots correspond to the data, 

and continuous lines correspond to the data fit (second-order polynomial functions). 

 

2.1.2 Perovskite Solar Minimodules  
Despite that perovskite technology is an emerging technology, different works in the literature allowing the 
determination of the architecture, area, number of cells, and electrical performance in the upscaling of PSC devices 
(Green et al., 2018; Hu et al., 2019; Qiu et al., 2019). Highlighting that most of these devices used three scribe 
lines or patterns (P1, P2, and P3) to interconnect the cells in series. This technique is widely employed in other 
thin-film photovoltaic technologies as silicon, CIGS, and polymer (Booth, 2010; Harald et al., 2012), Figure 2-7a-
b.  

In the case of perovskite cell interconnection, a complete description of these patterns was shown in (Moon et al., 
2015). Briefly, the P1 scribe line is performed on the transparent conductive oxide layer (ITO or FTO) to limit the 
sub-cells area. The P2 scribe line is performed on the charge transport layers (electron and hole layers) and 
perovskite layer, intended to clear the ITO or FTO layer and allow interconnection between the back electrode and 
the charge transport layers. Finally, the P3 scribe is performed to remove the back-contact layer and separate the 
cells. Therefore, the active area is limited by P1 and P3 lines. In contrast, the death-area is limited by P3 and P1 
lines (Figure 2-7c).  

 
Figure 2-7. Schematic of scribe patterns. 

a) thin-film silicon cell interconnection (Booth, 2010). b) polymer cell interconnection (Harald et al., 2012). c) perovskite 
cell interconnection (Galagan, 2018). 

 

2.2.2.1 Minimodule Design 
The experience in the fabrication of PSC in large-areas (Figure 2-6) and minimodules using the three scribe lines 
to interconnect the cells (Ramirez et al., 2019; Velilla et al., 2019b) indicated that an active area of approximately 
2 cm2 per sub-cell is required to reach efficiencies higher than 10% and mitigate the series resistances issues 
(evidenced in large-areas devices). Thus, 4 cells were determined, fixing the distance between cells to 0.7 cm 
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(distance between P3 lines) to reduce electrical losses (Moon et al., 2015) and the distance between P1 and P3 to 
0.1 cm to limit width cell to 0.6 cm. Therefore, the maximum active area of the minimodule was limited to 9.6 
cm2 (estimated area after excluding the edge, death, and conductor areas, see Figure 2-8). Here, it is remarked that 
P1 is the scribe line performed on the ITO layer to delimit the active area of sub-cells, which is filled with the 
following layers. P2 is a scribe line intended to connect the cells in series when the gold contacts the ITO. For that, 
this scribe must remove previous layers to clear the ITO (NiOx/Al2O3/MAPI/PCBM/Rhodamine). P3 is a scribe 
line performed on the gold layer to insulate the cells electrically. Finally, the designed device could be considered 
as minimodule following the device’s definition shown in (Hu et al., 2019) because the device has 4 cells 
interconnected in series and an active area per cell of approximately 2 cm2. 

 
Figure 2-8. Designed and fabricated minimodule. 

a) minimodule scheme including the dimensions. The gray region corresponds to the edges in which the laser etching was 
performed. The blue regions correspond to the death areas in which the scribe lines must be included (P1, P2, and P3). The 
brown regions correspond to the active area of 4 cells. The dark brown and beige regions are intended to contact the gold 
(Au) and ITO, respectively. The orange regions are intended to extend the electrodes from the device with silver tape. b) 

fabricated device. 

 

2.2.2.2 Effect of Scribe Lines (P1, P2, and P3) on the Active Area 
Figure 2-9 shows representative scribe lines on different devices. Corresponding the dark line to P1 (laser scribe 
on ITO), yellow line to P2 (laser scribe to remove previous layers and clear the ITO), and orange line to P3 
(mechanical scribe to remove the gold and insulate the cells electrically). From these representative cases, it is 
observed that the death area could be different and, therefore, the active area. At this point, some aspects must be 
highlighted: 

a) P1 and P2 are laser scribe lines, so the alignment between the substrate and equipment is visually carried 
out. For that, keeping similar alignment in both cases could be tricky, resulting in different gaps between 
P1 and P2 (Figure 2-9).  

b) P3 is a mechanical scribe line carried out using a 3D printer adapted with a needle (Figure 2-10a). A G-
code was written to control the printer and perform the mechanical scribe on the defined area (Figure 
2-8a). However, the needle was located manually on the marked guides performed at the top and bottom 
of the device to start the scribe process (run the G-code). Hence, it is possible that the needle cannot always 
be over and center on the marks, resulting in distances between P1 and P3 greater than expected (1000 
µm), Figure 2-10c. This visual error could increase the death area, reducing the cell width from 0.6 to 
approximately 0.5 cm and the active area of each cell from 2.4 to 2.0 cm2.  

c) The marked guides for P3 are carried out by laser at the top and bottom of the device while the P2 scribe 
line is performed. So, P2 scribe lines and P3 guides are in alignment, but may not be aligned with P1, due 
that both scribes are performed at different times in the fabrication process. Besides, to keep the guides, 
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these guides on both sides are cover with a Kapton tape of 0.63 cm of width before the gold evaporation 
(Figure 2-5). So, the Kapton tape could reduce the cell length from 4 cm to 3.7 cm.  

d) P3 is a mechanical scribe line. Hence, the line width may not always be the same, as is shown in Figure 
2-9. This effect is observed in a better way in the SEM images of Figure 2-10b-c. So, the gold electrode’s 
mechanical deformation or delamination caused by the needle (P3 scribe line) could introduce a deviation 
in the effective active area that is not easy to estimate. Moreover, the delamination (Figure 2-9b) or 
particles of Au could affect the cell insulation or produce short circuits between cells, effects reflected on 
the Voc. 

e) The ITO substrates of 5 x 5 cm were obtained, cutting 10 x 10 cm substrates manually. Hence, some 
imperfections on the borders could be difficult for the alignment to perform the scribe lines, affecting the 
device’s active area. 

f) Finally, despite drawbacks related to scribe lines (P1, P2, and P3), it is expected that these were parallel 
to each other to avoid short circuits and connect the cells in series. Corresponding the ideal case to P2 
centered between P1 and P3. Nevertheless, if the gap between P2 and P3 is greater than the defined gap 
(500 µm), the probability of short circuits between cells is reduced, corresponding to the most common 
case obtained. 

 

 
Figure 2-9. Representative scribe lines measured with an optic microscope. 

In the photos, P1 lines are on the left (dark color), P2 lines are on the center (yellow color related to gold), and P3 lines are 
on the right (orange color). 

 
Figure 2-10. P3 scribe line. 

a) 3D printed adapted with a needle and an optical microscope to perform the mechanical scribe on the gold electrode. b) 
Transversal SEM on minimodule to observe the P3 pattern on the device. c) zoom on the transversal SEM image. 

 

2.2.2.3 Minimodules Electrical Performance 
Figure 2-11 shows the electrical performance of minimodules fabricated from different batches considering the 
inverted structure (Figure 2-1). The I-V curves were measured using similar conditions as were performed in solar 
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cells Figure 2-6. Hence, from the I-V curve data, electrical performance parameters such as Pmax, Isc, Voc, and FF 
were extracted and analyzed in the form of boxplots to illustrate the data dispersion and median values. These 
plots allowed highlighting some aspects.  

a) In large-area cells (Figure 2-6a), a Pmax of approximately 26 mW is reached with a minimodule equivalent 
area of 8 cm2 (Figure 2-11). However, in minimodules, an average Pmax of approximately 57 mW was 
reached. These results evidenced the advantage of minimodules over the large area cells. 

b) Based on the results of Figure 2-6c, an FF of approximately 35% for active areas of approximately 8 cm2 

is expected. However, the average FF in the minimodules was higher than 54%. This fact highlighted the 
advantages of interconnecting the minimodules cells instead of large-area cells, considering similar areas. 

c) Considering that the minimodule has 4 cells in series and the Isc corresponded to the minimal current of 
one of the cells (current correlated with the active area), the dispersion on Isc suggested that the active area 
was not constant. This result allowed validation of the drawbacks mentioned before, related to different 
factors that affect the device’s active area.  

d) Considering the behavior shown in Figure 2-6d related to Isc as a function of the area in cells, which was 
fitted appropriately to second-order polynomial function (𝐼!"(𝐴) = −2.25𝐴# + 30.93𝐴 − 17.4), this 
result may be used to estimate the active area of the minimodules cell as a function of the current, Figure 
2-11a. Therefore, 50% of the Isc data ranging between 26 and 38 mA, corresponding this current to an 
active area of the minimodule cell ranging between 1.6 and 2.1 cm2. Thus, the mean Isc of approximately 
29 mA correlated with an active area of 1.7 cm2. 

e) Considering the efficiency commonly related to the total area, aperture area, or illuminated area (Hu et al., 
2019), if the polynomial function fitted to reproduce the behavior between Isc and area is used to estimate 
the illuminated area, the average efficiency value increase from 6.8 to 8.1%, and the maximum efficiency 
increase from 12.2 to approximately 15 % (Figure 2-11b).  

f) Based on the Voc results show in Figure 2-11b, the data dispersion suggested a mean value of 
approximately 4 V for the minimodules. In this context, the Voc obtained in minimodules allowed us to 
validate the series connection of the 4 cells because an average Voc of approximately 1.01 V was obtained 
on large-area cells (Figure 2-6e).  

g) Furthermore, it is well known that the ITO sheet resistance (Rsheet) is related to the electrical losses (Harald 
et al., 2012). This parameter is the main issue on large-area devices (Figure 2-6) and studied in the 
literature (Galagan et al., 2016; Li et al., 2020) that directly affect the Pmax, FF, and Voc. 

h) The drawbacks related to the manual fabrication process can be seen in the data dispersion shown in the 
form of boxplots in Figure 2-11. Being the data dispersion mainly due to the changes in the active area of 
devices, as was mentioned before (this area is not constant). Moreover, it highlights that these diagrams 
included all fabricated devices from different batches (history of devices). Thus, these diagrams illustrated 
the devices’ reproducibility status and allowed visualization of the trend and operative range of variables. 
Figure 2-11c shows representative cases of the last batch fabricated, intended to illustrate the 
improvement in the fabrication process based on the higher FF and Voc reached, corresponding the brown 
I-V curve to the higher efficiency reached (12,2% considering an area of 2 cm2 per sub-cell).  

i) Finally, despite that the structure used in this work is not considered as the most efficient in the literature 
(Huang et al., 2019), various devices reached values in the range of efficiencies reported in the literature, 
this is between 10 and 17 % for minimodules with the similar area (Liu et al., 2020). 
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Figure 2-11. Electrical performance of minimodules fabricated. 

a-b) variables related to the electrical performance of devices are shown in the form of boxplots to illustrate the data 
deviation due to the evolution in the fabrication process. c) Representative cases from the last batch in which the higher 

efficiency was reached (12.2 %). 

 

2.1.3 Encapsulation Process  
The electrode contacts were extended using silver tape (Figure 2-12a). Then, they were encapsulated with EVA 
between the device and another glass. EVA was annealed on the glass at 140 0C on a hotplate in a glovebox for 10 
minutes. Then, it was put on the device and annealing at 80 0C on another hotplate for 5 minutes. Finally, the 
borders of devices were covered with epoxy resin (Figure 2-12b-c).  

 
Figure 2-12. Fabricated devices. 

a) extending the contact with silver tape. b) encapsulated devices and covered borders with epoxy resin. c) representative 
batch. 

The selection of EVA for encapsulating the perovskite devices was due to different reasons. a) it is commonly 
used in the silicon solar industry (Hasan and Arif, 2014; Osterwald and McMahon, 2009; Wang et al., 2013). b) 
there are different accelerated tests included in International Standards for solar modules as IEC 61215 and their 
older version IEC 61646, intended to identify potential failures, such as break interconnects, cracked cells, 
delamination, dielectric breakdown, bypass diode, and corrosion (IEC 61215-1-2, 2004; IEC 61646, 2008). c) 
perovskite solar cells have been successfully encapsulated with EVA to withstand the temperature cycles 
(Cheacharoen et al., 2018). The temperature cycles test is one of the accelerated tests suggested by IEC 61215 and 
applied in perovskite solar cells using different encapsulating materials (Shi et al., 2017).    

Consequently, the conditions to encapsulate the devices resulted from different accelerated tests carried out to 
evaluate the encapsulation process. For instance, Figure 2-13 shows an accelerated test performed using a Xenon 
Test Chamber to evaluate EVA encapsulation on MAPI layers and cells exposed to light intensity (0.1 Sun) and 
temperature (85 0C). A significant color change was observed from these tests on the back electrode of devices 
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with silver as the electrode (Figure 2-13b). This effect correlated with the faster device’s performance degradation 
(Figure 2-13c). Hence, after this, all the devices were fabricated using gold instead of silver.  

 
Figure 2-13. Light and temperature accelerated test. 

a) Xenon test chamber used to set the temperature at 85 0C and light intensity to 0.1 Sun. b) image collage to show the 
accelerated test’s visual effect on devices after 17 h of exposure, images on the left are for the front part of devices, while 

the images on the right are for the back part of devices. c) effect on the electrical performance of the accelerated test for 60 
h. Two representative cases are shown: the device with gold as the electrode and another for the device with silver as the 

electrode. 

The EVA encapsulation process required annealing the devices at 140 0C and extract the air to avoid the air bubbles 
(with vacuum during the process). To mitigate the effect of the temperature on the MAPI devices, the annealing 
process was divided into two parts. The first, in which the EVA over a clean glass is annealing at 140 0C in a 
hotplate for 10 minutes. The second, in which the perovskite devices (layers on ITO) are put on the EVA and 
annealing at 80 0C in another hotplate for 5 minutes. Finally, the borders of devices are sealed with an epoxy resin.  

To evaluate the moisture withstands of encapsulating devices, these are exposed to 100 % of humidity, Figure 
2-14a. Figure 2-14b shows encapsulated devices evaluated for 5 days using two different epoxy resins. According 
to the manufacturer, the transparent Epoxy Quick resin by Loctite is suitable for temperatures lower than 100 0C, 
while the white Epoxy Bonder resin by Loctite is suitable for temperatures lower than 200 0C. From different tests, 
the transparent resin better withstands the humidity test because the white resin in only two days showed visual 
degradation (Figure 2-14b), which can be observed in a better way under a microscope (Figure 2-14d-f). After 5 
days of exposure, a complete degradation was observed (Figure 2-14c). Devices sealed with a transparent Epoxy 
Quick Set resin by Loctite did not show visual degradation effects during the exposure, even under a microscope. 
Hence, the transparent resin was selected to seal the devices.  

To validate the batch encapsulation process, a 100% humidity test is performed on randomly selected samples for 
one day, Figure 2-15. The batch passes the test if the performance of the tested devices does not show significant 
changes. Then, the devices belong to this batch are suitable for other tests (such as outdoor conditions). Figure 
2-15b shows the I-V curves of three devices belonging to the same batch. Here, the batch’s encapsulation process 
is successful because no significant changes were observed in the performance (black marks on the figure). 
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Figure 2-14. Humidity Accelerate test. 

a) experimental setup, corresponding to a sealed glass container with deionized water and devices. The glass container is 
put on a hotplate at 40 0C. The devices are placed on a rubber container to avoid direct contact with water. b) devices 

sealed with different epoxy resins after 2 days of exposure. c) failure of encapsulation that allowed the humidity ingress of 
device tested, photo corresponding to 2 days of exposure. d-f) microscope images related to samples showed in Figure 
2-14b-c with visual degradation. The paths or marks shown in these images correlated with the ingress of moisture or 

humidity. 

 
Figure 2-15. Testing the encapsulated process. 

a) samples randomly selected and exposed at 100 % of humidity for 1 day. b) Changes in the electrical performance after 
the test. Corresponding the blue, orange, and green lines to device 1 (blue to the unencapsulated device, orange to the 

encapsulated device, and green after the test). Pink and red lines to device 4 (pink to the encapsulated device, and red after 
the test). Brown, gray, and yellow lines to device 5 (brown to the unencapsulated device, gray to the encapsulated device, 

and yellow after the test). The black marks are visual guides to illustrate the deviation in the performance between 
encapsulated and exposed device. 

 

2.2 Device Characterization 
 
Conventionally, the performance of photovoltaic devices is characterized by the I-V curve considering the 
ambient/device temperature and illumination conditions, such as the Standard Test Conditions (1000 W/m2 and 
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25 0C of cell temperature). From this curve, main variables such as Voc, Isc, and Pmax are extracted to define the 
electrical performance. However, due that the ideality factor (nID) is the most reported parameter for different solar 
cell technologies based on their relationship with conduction, transport, recombination process, and interface 
junctions, here this parameter is calculated to improve the device characterization. Therefore, different 
methodologies to estimate this parameter were implemented, including the impedance frequency response and the 
relationship between Voc and irradiance (Almora et al., 2018; Yoo et al., 2021, 2020). 

 

2.2.1 Impedance Frequency Response (IFR)  
Impedance Frequency Response (IFR) is a non-invasive nor destructive technique widely used in different 
modeling applications within power systems, high-speed interconnects, electronic packages, and microwave 
systems (Gustavsen and Semlyen, 1999). Briefly, in solar cells, it has been used to characterize electrical properties 
of materials and their interfaces (Barsoukov and Macdonald, 2005), to characterize the corrosion-induced 
degradation and life prediction of organic coatings on metals (Kendig and Scully, 1990), to observe degradation 
effects in Dye-Sensitized Solar Cell (Wang and Gra, 2005), to identify the photovoltaic behavior related to 
transport and recombination mechanism and to compare different architectures of perovskite solar cells (Gonzalez-
Pedro et al., 2014), to study the surface recombination on perovskite devices (Zarazua et al., 2016), to observe 
insights related to degradation of perovskite solar cells because the moisture ingress (Ma et al., 2017), to show the 
link between Dye-Sensitized and perovskite solar cells (Yoo et al., 2019), to classify new nanoscale perovskite-
sensitized solar cell (Yoo et al., 2020), to model the drift-diffusion on perovskite solar cells (Riquelme et al., 2020), 
among others. All these applications have been possible because the IFR scans the impedance of devices, changing 
the frequency of input sinusoidal wave and measure the output signal in a broad range of frequencies (typically 
between 100m Hz and 1 MHz). This result is considered as a fingerprint of devices, which is a function of the 
operative condition such as bias and light intensities conditions (Pitarch-Tena et al., 2018).   

Considering that the impedance is a complex term formed by resistance (real part) and admittance (imaginary 
part), the impedance is displayed in the form of complex diagrams such as Nyquist, Bode, or capacitance-
frequency, Figure 2-16. In the Nyquist diagram, the x-axis corresponds to the resistance, and the y-axis 
corresponds to admittance. In this context, the impedance behavior is characterized by semi-arcs representing 
different dynamic characteristics (physical processes), corresponding to the high-frequency response to the data 
close to the y-axis and the low-frequency response to the data far from the y-axis. In the Bode diagram, the 
magnitude and phase are plotted as a function of frequency, allowing observation of the main impedance features 
in the analyzed frequency spectrum. Here, because both patterns are observed simultaneously, it is possible to 
observe a better correlation with electrical elements such as an inductor, capacitor, and resistance (Gustavsen and 
Semlyen, 1999). Finally, the capacitance-frequency diagrams show different capacitive processes and features in 
the analyzed frequency spectrum (Guerrero et al., 2016a). This last diagram commonly shows three patterns or 
plateaus that correlate with separated polarization processes depending on the frequency range. For instance, the 
low-frequency region (frequencies close to 0 Hz) correlates with electronic/ionic accumulation at electrode 
interfaces (oxide properties). The intermediate-frequency region (frequencies close to 1000 Hz) correlates with 
photogenerated carriers and surface recombination, and the high-frequency region (frequencies close to 1 MHz) 
correlates with the geometric capacitance and bulk of the device.  
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Figure 2-16. Diagrams used in literature to represent the Impedance frequency response. 

a) Nyquist diagram to illustrate the semi-arcs related to different kinetic relaxation constant (Ghahremanirad et al., 2017). 
b) Bode diagram to illustrate the effect of changing the TiO2-layer thickness on the impedance of dye solar cells (Kern et al., 
2002). c) Capacitance-frequency diagram for MAPI solar cell under different applied bias and dark conditions (Almora et 

al., 2016). 

2.2.1.1 IFR of Fabricated Devices 
To characterize the impedance patterns for the fabricated devices, nine devices were analyzed: 3 without electron 
transport layers (ETL free, without Rhodamine and PCBM) and an active area of approximately 4 cm2, 3 cells, 
and an active area between 2 and 3.6 cm2, and finally 3 minimodules of 4 cells interconnected in series and an 
active area of approximately 8 cm2. These were analyzed under dark and one sun conditions considering open-
circuit conditions following the experimental setup shown in Figure 2-17. Hence, a LED light system by Newport 
and potentiostat by Autolab PGSTAT-30 were used. Subsequently, the bias of a potentiostat was set to Voc. In this 
operative point, the IFR response analysis was performed in the range of 100 mHz and 1 MHz, using an AC signal 
of 10 mV in amplitude and scanning first from high to low frequency (down) and then from low to high frequency 
(up) to ensure the reliability of the measurement while avoiding parasitic effects. 

 
Figure 2-17. Impedance frequency response experimental setup. 

To record the impedance, a potentiostat by Autolab PGSTAT-30 was used. To change the light conditions, a LED light 
system by Newport was used. 

The IFR results are shown in the form of Nyquist diagrams (Figure 2-18) and Bode diagrams (Figure 2-19). From 
these results, it is possible to characterize the impedance of devices, for instance: 

a) In a general way, Nyquist diagrams show two semi-arcs as it is conventionally observed for other solar 
cells.  

b) Considering that both conditions showed different magnitude orders (W for light and kW for dark), the 
Bode diagram allows us to visualize in a better way both results at the same time to correlate some features 
with the frequency. In this way, cells and minimodules show similar behavior to the low pass filter, which 
is mainly characterized by two cut-off frequencies at which the impedance shows a “knee curve” defining 
a transition of the impedance by the two straight-line regions. Under dark conditions, one at approximately 
10 Hz for cells and 100 Hz for minimodules, another at 100 kHz for cells, and 500 kHz for minimodules. 
Under light conditions, one at 50 kHz for cells and 100 kHz for minimodules, another at 200 kHz for cells, 
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and 1 MHz for minimodules. These cut-off frequencies define three regions. 1) Low-frequency region, in 
which the impedance is constant. 2) Intermediate region, in which the impedance decreases as the 
frequency increases. 3) High-frequency region, in which the impedance increases as the frequency 
increases. 

c) In the ETL-free devices, the impendence patterns show four cut-off frequencies under dark conditions, 
approximately at 0 Hz, 10 Hz, 100 kHz, and 100 kHz. Nevertheless, under light conditions, the impedance 
patterns show similar behavior to other devices. These results allowed us to evidence the function of the 
ETL layer in the complete device, which changes the impedance pattern to get closer to the pattern 
behavior of the low pass filter, allowing the electrons collection and the electron direction as it can be seen 
in the Nyquist plots under illumination conditions test (Figure 2-18d-f). Besides, the ETL layer reduces 
the resistance at high frequencies (Figure 2-19a-c) and increases the impedance at low frequencies. This 
fact could be attributed to the capacitive effect of introducing the ETL to complete the device, which is 
reflected in the impedance angle behavior that tends to -900 (Figure 2-19d-e). 

d) Based on the impedance phase, it is possible to observe well-defined peaks at approximately 100 kHz 
(high frequencies) under light conditions. Under dark conditions, two peaks appear in a short bandwidth 
at the intermedia frequencies for cells and minimodules. For devices without ETL, the peaks appear at 10 
Hz and 10 kHz, respectively. These facts suggest that the first peak could be correlated with the interaction 
between the perovskite and the mesoporous layer. To confirm this, Figure 2-20 shows the impedance 
pattern for different devices in ITO substrate of 2.5x2.5 cm. One related the perovskite layer between gold 
contacts (Caram et al., 2020), another related to mesoporous layer (NiOx/Al2O3) between ITO and Cu tape 
as contacts, and other related to planar device (ITO/NiOx/MAPI/Au). From these impedances, it is possible 
to observe that none of these devices shows a phase peak a low frequency as it was observed in the 
incomplete cell (without ETL) in  Figure 2-19c. In contrast, the perovskite layer between electron contacts 
shows an ideal capacitive behavior, acting as the low pass filter, reaching the maximum phase value of -
900 at approximately 30 kHz. It suggests that the phase peak at low frequency could be correlated with the 
interaction between perovskite and the mesoporous layer as it was observed in dye solar cells according 
to the TiO2-layer thickness (Kern et al., 2002). Hence, this interaction is improved when the electron layer 
is included, as was mentioned in (Ramirez et al., 2018a). 

e) Relating to the capacitance results, when complete devices are considered (cells and minimodules), it is 
observed that for frequencies lower than 10 kHz, the capacitance changes according to light intensities. 
For frequencies between 10 kHz and 100 kHz, the capacitance is almost constant, but at a higher 
frequency, the capacitance shows a decreasing trend. 

f) Finally, based on these results, it is possible to see the advantages of connecting cells in series over the 
large area cells (monolithic). On the one hand, based on the parameters extracted from the I-V curve, the 
electrical losses reduction allowed the increase of FF and efficiency, as it was shown in Figure 2-11, on 
the other hand, based on the IFR, a significant reduction of minimodules capacitance versus the cell 
capacitances, allowed improving the impedance over the frequency range evaluated (insulation), fact that 
it is evidenced in the impedance phase which tends to -900, pointing to a more capacitive effect (Figure 
2-19g-i).  
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Figure 2-18. Nyquist diagrams of the impedance frequency response of encapsulated devices. 

a-c) Nyquist diagrams of impedance under dark conditions. d-f) Nyquist diagrams of impedance under 1 sun of light 
condition. Corresponding a) and d) to electron transport layer free (ITO/NiOx/Al2O3/MAPI/Au), b) and e) to complete cells, 

and c) and e) to complete minimodules. Markers are related to experimental data measured from high to low frequency 
(down), and from low to high frequency (up). The solid lines are related to data fit using the equivalent circuit shown in 

Figure 2-21. 
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Figure 2-19. Bode diagrams of the impedance frequency response of encapsulated devices. 

a-c) impedance magnitude as a function of frequency. d-f) impedance angle as a function of frequency. g-i) capacitance as 
a function of frequency. Corresponding a), d), and g) to electron-free layers (ITO/NiOx/Al2O3/MAPI/Au), b), e,) and h) to 

cells, and c), e), and i) to minimodules. 

 
Figure 2-20. The impedance frequency response of the unencapsulated devices. 

Corresponding a) to the impedance magnitude and b) to the impedance phase. MAPI layer corresponds to the MAPI layer 
deposited on the glass between the gold layer (Caram et al., 2020). The mesoporous layer corresponds to NiOx and Al2O3 

layer deposited on the ITO substrate, and the planar device corresponds to NiOx/MAPI/Au layers deposited on the ITO 
substrate. The IFRs were performed under dark conditions. 

 

2.2.1.2 Equivalent Circuit to Represent the IFR 
It is worth noting that different equivalent circuits have been used to reproduce the impedance spectra in the 
literature. Nevertheless, the equivalent circuits showed in Figure 2-21 allowing reproduction of both arcs observed 
in the impedance spectra, and it is a simple circuit, allowing a better interpretation of the extracted parameters. 
Therefore, to complete the IFR characterization, impedances were fitting to this equivalent circuit model used in 
previous work to reproduce the impedance features (Yoo et al., 2020). Corresponding the series inductance (Ls) to 
electrical wires, series resistance (Rs) to wires and cell contacts, recombination resistance (Rrec) to resistance 
between electrical contacts of the device, geometric capacitance (Cg) to capacitance between electrical contacts of 
the device. Thus, Rrec and Cg are intended to reproduce the main features of impedance spectrum related to the low 
pass filter behavior, and other elements such as Rd and Cd are intended to produce some specific features of the 
spectrum and correlated with the second arc.  

For impedance fitting, a global optimization process involving a genetic algorithm (GA) and the simplex method 
was implemented to minimize the square error between the measured impedance (Z) and the calculated impedance 
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using the equivalent circuit (Zmodel) at the frequencies considered (f), considering all samples recorded (NS), 
Equation 1, in accordance with the methodology reported in previous work (Velilla et al., 2018). Therefore, the 
main parameters of the genetic algorithm considered to perform the optimization process were a randomly 
initialized population with a size of 200, tournament selection, a two-point crossover function, uniform mutation, 
and 600 generations as the stopping criterion. Once the GA finds the solution, it is used as the initial condition in 
the Simplex method to improve the error. 

Equation 1. 𝐸𝑟𝑟𝑜𝑟 = %∑ '𝑍(𝑓(𝑘)) − 𝑍!"#$%(𝑅&, 𝐿&, 𝑅# , 𝐶# , 𝐶',𝑅)$* , 𝑓(𝑘))2
+,-

./0  

Figure 2-21 shows the parameters of one representative sample of each device analyzed in Figure 2-18 and Figure 
2-19. In this scheme, Cg shows similar values to those obtained at dark conditions in a wide frequency range 
(Figure 2-19g-i), being this value almost constant under dark and light conditions, defining the electrical insulation 
of devices, it means the capacitance between electrical contacts including the perovskite capacitance and other 
interlayers. In addition, this parameter is approximately equal for the cell and the ETL free device, suggesting that 
this capacitance is mainly related to perovskite layer (bulk) or geometrical capacitance. In the case of minimodule, 
because four series cells are connected, this circuit could be approached as the connection of four circuits in series, 
resulting in four series capacitances. For that, the equivalent capacitance is lower, as it was observed in Figure 
2-21c. Other parameters are sensible on light, pointing that these parameters are mainly related to the 
photoconversion processes or are affected by the current flow in the device. For instance, the Rrec values in light 
conditions are lower than in the dark, suggesting a lower recombination process under light conditions. Finally, 
the values of the extracted parameters can be used as initial conditions to track the device evolution over time, 
intended to identify or correlate the changes on the parameters with physical elements of the device. 

 

Figure 2-21. Equivalent circuits to represent the IFR of devices. 
Extracted parameter for a) ETL free, b) cell, and c) minimodule. Corresponding the subscript “d” to dark conditions and 

“l” to light conditions. 

 

2.2.2 Ideality Factor (nID) 
The ideality factor also called the quality factor or shape curve factor, is the most reported parameter for different 
solar cell technologies. This parameter has been used to define the electrical behavior of solar devices due to its 
relationship with conduction, transport, recombination, and behavior at interface junctions, providing direct 
information on the dominating recombination processes. Therefore, in silicon, nID has been widely studied and 
estimated in various ways, such as using the relationship between the open-circuit voltage (Voc) and light intensity 
to overcome the effects of series resistance (Kerr and Cuevas, 2004), performing numerical calculations (Santakrus 
Singh et al., 2009), and extracting this parameter from I-V curves at different light intensities and temperatures 
using equivalent circuit models (Bashahu and Nkundabakura, 2007). For perovskite, although there are relatively 
few reports related to this parameter, Tress and coworkers have reported a full interpretation of nID for 
nonencapsulated cells, establishing the relationship between the dominating recombination process, the light 
intensity and Voc (Tress et al., 2018). Besides, nID has been estimated through impedance/frequency-response (IFR) 
analysis (Almora et al., 2018; Contreras-Bernal et al., 2019; Yoo et al., 2020), from the I-V curve at standard test 
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conditions using a one-diode model (Velilla et al., 2018), and from the dark I-V curve through numerical 
simulation considering the continuity and Poisson’s equations (Agarwal et al., 2014). Moreover, an agreement has 
been shown between the nID value estimated from the recombination resistance extracted through IFR analysis and 
the value calculated from Voc at different light intensities (Almora et al., 2018; Yoo et al., 2020). 

In the case of silicon solar cells, nID values are between 1 and 2. Close to 1 indicates ideal junctions, while equal 
to 2 would be related to degradation of the solar cell, non-uniformities on recombination centers, and shunt 
resistance effects (Jain and Kapoor, 2005). In dye-sensitized solar cells, nID values are between 2 and 3 (Murayama 
and Mori, 2006). In organic-solar cells, nID values are higher than 2 (Chegaar et al., 2006). In perovskite solar 
cells, ideality factors close to 2 have been reported due to carrier recombination and trap-assisted recombination 
under dark conditions (Agarwal et al., 2014; Wetzelaer et al., 2015). When several hole transport layer thicknesses 
are considered under dark conditions, the ideality factor ranging between 1.3 and 2.5 has been found (Marinova et 
al., 2015). However, due to the estimation of this parameter could be affected by different aspects such as 
hysteresis, slow relaxation processes, the open-circuit voltage dependence of light intensity and temperature, 
capacitive effects, and parasitic resistances, among others, the perovskite ideality factor estimated from the dark 
I-V curve could be higher than 2 (Almora et al., 2018). 

 

2.2.2.1 Estimated nID from the I-V curve 
Commonly this parameter is estimated fitting the I-V curve to circuital models based on Kirchhoff’s current law 
as the one-diode model. This model is characterized to be implicit, nonlinear, and multivariable, Equation 2. 
Therefore, there is no way to calculate an exact solution from the I-V data. Hence, up to 34 methods have been 
proposed in the literature to extract or estimate the five parameters related to the model  (Bashahu and 
Nkundabakura, 2007; Cotfas et al., 2013). The shunt resistance (Rsh) is related to the leakage current across the 
surfaces involving pin-holes, grain boundaries, and charge recombination processes (Mialhe et al., 1986). The 
series resistance (Rs) is reflected in the voltage drops and is related to the conductivity of the layers and interphases; 
this parameter is affected by space charges, traps, or other barriers (Li et al., 2013). Virtually, a proportional 
relationship between the photo-generated current (Iph) and irradiance intensity is observed. The diode saturation 
current (Io) is related to the material properties, junction configuration, recombination processes, and temperature. 
Thermal voltage (VT) depends on the temperature (T), the Boltzmann constant (k), and electron charge (q), 
Equation 3. Finally, the ideality factor (nID) is related to the Shockley theory involving conduction, interfacial 
layers, transport, and recombination processes in the bulk and surface regions, directly affecting the shunt 
resistance and the open-circuit voltage (Khan et al., 2013). 

Equation 2. 𝐼 = 𝐼12 − 𝐼3 4𝑒
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Equation 3. 𝑉; = 𝑘 ∗ 𝑇/𝑞 

However, since the estimation of the parameters of this model depends on different physical aspects (such as 
temperature, light condition, number of series cells, among others), mathematical assumptions to simplify or 
transform the problem, and the numerical method, which can be initial value-dependent (Bashahu and 
Nkundabakura, 2007) or instable in the results (Ishibashi et al., 2008), it is possible to obtain large relatively-errors 
in the optimization process due to unrealistic parameters, such as negative resistances (Chan et al., 1986) or higher 
diode ideality factors (Araki and Yamaguchi, 2003). This instability in the estimated parameters has been observed 
under measurement uncertainty when data noise or fewer points of the I-V curve are considered (Caracciolo et al., 
2012). These facts remark the complexity that is involved in estimating reliable parameters from the I-V curve. 

Standard classification of methods to extract the parameters is exact and numerical methods. Some methods are 
called exact because these parameters are expressed explicitly from algebraic manipulation. To obtain an analytical 
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expression for the involved parameters, the most exact methods evaluate the one-diode model equation and its 
derivative at specific points of the I-V curve, such as (Voc, 0), (0, Isc), and (Vmpp, Impp). Moreover, to extract the 
parameters, some assumptions have been incorporated to simplify the iterative process or reduce the number of 
variables to be estimated (Bai et al., 2014; Cubas et al., 2014; de Blas et al., 2002; Khan et al., 2013; Phang et al., 
1984; Toledo and Blanes, 2016). Other methods are called numerical because they evaluate the one-diode equation 
and its derivate in different points of the I-V curve, obtaining a set of nonlinear equations that can be solved using 
the Newton-Raphson method (Hasan et al., 2016; Karatepe et al., 2006), iterative processes (Carrero et al., 2011), 
among others. Additionally, when the numerical methods used to estimate the parameters required to calculate the 
slope numerically at Voc and/or the slope at Isc as the initial conditions, instability and non-convergence of the 
solution can appear. Moreover, some of these methods can be sensitive to the initial conditions (Ishibashi et al., 
2008). To figure out these problems, numerical methods that are related to artificial intelligence, such as particular 
swarm (Boutana et al., 2017), Genetic Algorithm (GA), has been successfully used to extract the five parameters 
of the one-diode model (Mellit and Kalogirou, 2008; Zagrouba et al., 2010). In these cases, one common way to 
express the parameter estimation as an optimization problem is minimizing the mean square error (MSE) Equation 
4, which related the current measured (iexp) and the current calculated evaluating the Equation 2, where the samples 
corresponding to the number of points that are considered in the I-V curve. 

Equation 4. 𝑀𝑆𝐸 = 0
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In order to illustrate common problems related to the fitting process of I-V to one-diode model, Figure 2-22 shows 
a sensitivity analysis of the estimated parameters for solar cells of different efficiencies (ranging between 4.6 and 
12 %) and an active area of approximately 1 cm2 (Velilla et al., 2018). From this analysis, it is easy to see why 
numerical methods that search for local solutions could be trapped in a specific region and why methods, such as 
GA, which explore global solutions could perform better. Additionally, these kinds of plots show that the 
estimation of the one-diode model parameters from the I-V curve is susceptible to minor differences in the involved 
parameters. Hence, different parameter combinations lead to MSE reduction even by solutions lacking physical 
meaning as negative resistances, being these feasible and local solutions, but not global and realistic solutions. 
However, MSE lower than 1 × 10−9 could be considered as an excellent metric to evaluate the fitting performance 
and determine meaningful and reliable parameters. Thus, solutions with lower MSE could be considered as a 
global minimum. In this sense, Table 2-1 shows the estimated parameters related to the minimal MSE of the 
evaluated cells. Corresponding the lower ideality factor to the device with higher efficiency. Devices with nID in 
the expected range discussed in the literature (between 1 and 2) are characterized by an average series resistance 
of approximately 10 Ω, average shunt resistances higher than 800 Ω, Fill Factor higher than 0.5, and Voc close to 
1 V. Other cases related to nID higher than 2.9 correlated with lower efficiencies and FFs. This result is congruent 
with a defective cell or high losses effect because variables such as Rsh, Io, and nID are reflected in the recombination 
processes. 
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Figure 2-22. Sensitivity analysis of extracted parameters of one diode model. 

Corresponding to a-c) to the cell 1 with an efficiency of 4.6%. d-f) to the cell 5 with an efficiency of 9.3%.  g-i) to the cell 8 
with an efficiency of 10.4 %. j-l) to the cell 11 with an efficiency of 12%. The color bar shows the estimated error in the 

logarithmic scale using Equation 4. 

 

Table 2-1. Electrical performance and estimated parameters of the one diode model for solar cells. The 
solutions corresponded to the procedure mixing GA with the Simplex method to minimize the MSE 
between the data and model (Velilla et al., 2018). 

Cell n (%) FF 
Voc  

(V) 

J  

(mA/cm2) 
MSE 
10−10 

Iph  
(mA/cm2) Io (nA) nID Rs 

 (Ω·cm2) 
Rsh  

(Ω·cm2) 

1 4.67 0.67 0.88 7.89 4.80  7.90 0.023 2.70 6.44 3392.12 

2 4.68 0.32 0.78 18.38 7.21 18.51 12,943.355 5.01 0.46 59.02 

3 4.62 0.34 0.79 17.04 7.83 17.16 3088.873 4.10 0.20 67.63 

4 5.02 0.33 0.85 17.86 1.10 17.93 1401.235 4.06 0.20 64.98 

5 9.35 0.59 0.97 16.31 4.20 16.58 39.718 2.95 5.51 352.36 

6 9.41 0.64 0.99 14.81 3.97  15.06 0.002 1.70 11.32 828.66 

7 9.81 0.63 0.99 15.51 1.18 15.66 0.238 2.15 9.98 1195.98 
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Cell n (%) FF 
Voc  
(V) 

J  
(mA/cm2) 

MSE 
10−10 

Iph  
(mA/cm2) Io (nA) nID Rs 

 (Ω·cm2) 
Rsh  

(Ω·cm2) 

8 10.45 0.65 1.02 15.72 9.91 15.85 0.240 2.22 9.66 1491.74 

9 10.68 0.59 0.95 18.87 1.78  19.1 0.331 2.07 9.65 586.06 

10 10.95 0.67 1.01 16.22 2.06 16.26 3.976 × 10−3 1.78 9.98 3951.71 

11 12.18 0.67 1.01 17.98 5.19 18.05 5.993 × 10−5 1.48 9.75 3184.29 

 

2.2.2.2 Estimated nID from the Relationship Between Voc and Light Intensity  
Because the nID can be accurately estimated from the I-V curve using proper optimization methods, this procedure 
could be considered as successful if the I-V curves are well defined. In cases in which the I-V curves show an S-
shape, this procedure could not be suitable, and other elements in the equivalent circuit such as another diode have 
been included to reproduce the I-V behavior, increasing the complexity and accurate interpretation of ideality 
factor (Bashahu and Nkundabakura, 2007; Cotfas et al., 2013). The S-shape behavior is associated with the 
chemical degradation of electrical contacts or charge accumulation on electrodes affecting the series resistance of 
the device (Guerrero et al., 2016b). In this sense, to avoid the series resistances issues, another method is used to 
estimate the nID the relationship between Voc and light intensities, Equation 5. This equation shows the relationship 
between the Voc, bandgap (Eg), thermal voltage, ideality factor, and logarithmic dependence on light.  

Equation 5.	𝑒 ∙ 𝑉?@ = 𝑚 ∙ 𝐸' + 𝑛8> ∙ 𝑘A ∙ 𝑇 ∙ 𝑚 ∙ 𝑙𝑛 B
B+

 

Where e is the electron charge, m is the number of equal cells connected in series, Eg is the light absorber bandgap, 
kB is the Boltzmann constant, T is the temperature, G is the irradiance or light intensity, and G0 is a constant with 
the same units than G.  

A complete interpretation of nID for PSC was reported in (Tress et al., 2018), corresponding Figure 2-23 to the 
figure of merit of their work intended to illustrate its interpretation. In this scheme, they suggested three examples 
according to the slope between Voc and light intensities. Example A is related to the band to band recombination, 
characterized by higher Voc and moderate slope of 60 mV/dec. Example B is related to SRH recombination in bulk, 
characterized by intermedium Voc values and a higher slope of 100 mV/dec. Example C is related to surface 
recombination on contacts, characterized by lower Voc and a decreasing slope at high light intensities. 
Consequently, a general overview between the involved variables is established, allowing identification of the 
dominant recombination mechanism in the device. 

 
Figure 2-23. Interpretation of Ideality factor. 

Here three different recombination mechanisms are illustrated and correlated with the Voc sensitivity to light intensities, 
taken from (Tress et al., 2018). 
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To characterize perovskite devices according to Equation 5, a procedure using a solar simulator and optical filters 
was implemented to estimate the nID values. Figure 2-24 shows some results published in previous works (Yoo et 
al., 2021, 2020), allowing identification of the surface recombination of this kind of perovskite devices, according 
to the behavior depicted at higher irradiances (Voc decreases as the irradiance increases, indicating a decreasing 
slope, Case C in Figure 2-23). Hence, the Voc was calculated as the average value recorded for one minute at every 
light condition (Figure 2-24b). Then, the nID values were estimated according to Equation 5 (Figure 2-24c). 

   
Figure 2-24. Procedure to estimate the ideality factor value. 

a) Experimental setup to measure the Voc dependence on light using an Oriel sol3A sun simulator (Newport Corporation, 
Irvine, CA, USA), optical filters to change the light intensity, and a 4200SCS Keithley system (Tektronix, Beaverton, OR, 
USA) to record the Voc. b) Voc recorded for one minute at each light intensity. c) estimated nID according to Equation 5. 

Figure 2-25 shows 5 representative cases obtained for the evaluation of various minimodules following the 
procedure shown in Figure 2-24. The estimated nID values ranged between 1.1 and 2.1, suggesting in a general 
way the SRH recombination in bulk according to the interpretation shown in (Tress et al., 2018). Besides, based 
on the behavior displayed by Voc as a function of light intensity (plot-shapes), it is not observed surface 
recombination in the modules. Hence, this procedure allows us to estimate reliable nID values representing the Voc 
dependence on the light in a broad range of the light intensities (100 – 1000 W/m2), pointing to the recombination 
process in the device.  

 
Figure 2-25. Ideality factor estimation for minimodules under indoor conditions. 

Representative cases of evaluated minimodules are displayed. Each color corresponds to a particular minimodule. Color 
points correspond to experimental data, and solid color lines correspond to the fit between irradiance and Voc. nID values 

were estimated in accordance with Equation 5. 
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2.2.2.3 Estimated nID from Impedance Frequency Response  
In indoor tests, excellent agreement between the nID values estimated from Voc-light intensity data in accordance 
with Equation 5 and the results of IFR analysis in accordance with Equation 6 has been observed (Almora et al., 
2018; Yoo et al., 2020). In this sense, an Autolab procedure was implemented to systematize the experimental 
process and estimate the nID values using both methodologies, Figure 2-26. Hence, the first step is defined by the 
number of light conditions (LC) related to 1 sun. For instance, 0 is related to the dark condition, and 1 is associated 
with 1 sun; other values are related to the fraction of 1 sun. The loop allows the evaluation of each LC, which is 
defined by the optic filter. Once the time the filter is located and the LC is reached (gray box), the open-circuit 
voltage is recorded for 1 minute (light blue box). From the Voc behavior over time, the average value is estimated 
(green box). This average value is used to estimate the nID value from the relationship between Voc and light 
intensity in accordance with Equation 5. Besides, the last value is set up as bias (blue box) to perform the IFR in 
two directions to check the reproducibility of the measurements, from high to low frequencies (down) and from 
low to high frequencies (up). After the evaluation of the LCs, the sample is kept for 1 minute at the open circuit to 
stabilize the Voc. Finally, the I-V curve at 1 sun is recorded (orange box) between -0.5 V and 1.2Voc. Usually, all 
tests are performed using an AC amplitude signal of 10 mV and room temperature (approximately 25ºC). After 
the test, the IFRs are fitted to the equivalent circuit shown in Figure 2-21 to calculate the recombination resistance 
(Rrec) considering negligible transport and charge transfer resistances in both bulk and contact layers and interfaces 
(Contreras-Bernal et al., 2019; Fabregat-Santiago et al., 2011; Yoo et al., 2020). Then, nID can be calculated from 
the slope of the logarithmic plot of Rrec vs. Voc  in accordance with Equation 6 (Contreras-Bernal et al., 2019; 
Fabregat-Santiago et al., 2011; Yoo et al., 2020).  

Equation 6. 𝑅)$* = 𝑅33𝑒
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Where R00 is an independent parameter with resistance units. 

 

Figure 2-26. Flowchart to measure the IFR and Voc dependence on light. 
The light conditions (LC) are related to 1 Sun, corresponding 0 to dark and 1 to 1 Sun. These conditions are changed by 
optical filters. In this way, the impedance frequency response is performed at each light intensity considering the average 
Voc recorded during 1 minute as bias and scanned in two ways, from high to low frequencies (down) and from low to high 

frequencies (up). Finally, at 1 sun, the I-V curve is recorded. 
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To illustrate the procedure shown in Figure 2-26, Figure 2-27 shows the results of evaluating this procedure for 
the cells analyzed in Figure 2-24. From these results, important facts could be highlighted. First, the IFR changing 
the light intensity (Figure 2-27a) allowed reducing electrical noise comparing with the IFR changing the bias and 
fixing the light intensity at 0.1 sun (Figure 2-27b). Consequently, better-defined impedance patterns are obtained. 
Second, in both cases for the evaluated cases, the equivalent circuit used to fit the impedances adequately 
reproduces the impedance behaviors, indicating the accuracy of the optimization process employed to fit the 
impedance and extract the electrical parameters. Third, from the calculated Rrec values as a function of bias or Voc 

(for IFR changing the light intensity), the nID values calculated using Equation 5 (light) show excellent agreement 
with the nID values calculated using Equation 6 (bias), Figure 2-27c. The implemented procedure validated the 
calculation of nID and the recombination process of devices (surface recombination). 

 

Figure 2-27. Ideality factor estimated from IFR. 
a) Nyquist diagrams of impedance as a function of the light intensities (dots) and their corresponding fit (solid lines). b) 
Nyquist diagrams of impedance as a function of the bias (dots) keeping constant the light intensity (0.1 suns) and their 
corresponding fit (solid lines). c) Estimated nID values considering both conditions: changing the light conditions and 

changing the bias keeping constant the light condition at 0.1 suns. 
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2.3 Conclusions 
 
Here, minimodules of approximately 8 cm2 and 4 sub-cells connected in series were fabricated. These 
were optimized, considering the active area allowing efficiencies higher than 10 % on monolithic 
solar cells and performing the scribe lines called P1, P2, and P3. Moreover, these were encapsulated 
with EVA. Finally, fabricated devices were characterized by the I-V curve, impedance frequency 
response, and ideality factor.  

From the I-V curves, the reached higher efficiencies (close to 12 %) were in the current range reported 
in the literature for minimodules with a similar area, that is, between 10 and 17 % (Liu et al., 2020). 
The extracted parameters from the minimodule’s I-V curves demonstrated consistent Voc values (close 
to 4 V corresponding to the voltage of 4 cells connected in series) comparing with those obtained for 
monolithic solar cells. Besides, the higher FF allowed validation of the interconnection process 
performed to reduces electrical losses. This is the main advantage of the series connection of cells 
instead of large-area solar cells.  

From impedance frequency response, the impedance spectra of the incomplete cells (without ETL), 
cells, and minimodules were analyzed. Observing the advantages of the electron transport layer to 
increase the dielectric effect and extract the electrons. Also, main features related to the frequency 
behavior, such as the phase peak, cut-off frequencies, among others features, were observed. Hence, 
to improve the characterization of the IFR spectra, an optimization process was developed to fit the 
impedances to the equivalent circuit shown in Figure 2-21, which combined the genetic algorithm 
and the Simplex method to reduce the error between the experimental and calculated data. The fitted 
circuit model successfully reproduced the impedance patterns under different light conditions (dark 
and 1 sun).  

Relating to the ideality factor, an experimental procedure was implemented to estimate the nID based 
on the relationship between Voc and light intensities and based on the relationship between the bias 
and Rrec obtained from the IFR analysis. Demonstrating an excellent agreement with the nID values 
calculated for both methodologies, as was shown in Figure 2-27. Based on the previous literature 
reports, it was possible to identify the SRH recombination mechanism dominating this kind of device 
based on the nID values ranging between 1 and 2. Therefore, a numerical and experimental tool to 
characterize the devices were developed. Moreover, the I-V curves of nonencapsulated perovskite 
solar cells of approximately 2 cm2 of an active area were fitted to the one-diode model to reproduce 
the electrical behavior, Figure 2-22. Hence, an optimization process combining genetic algorithm 
and Simplex method was implemented to illustrate some drawbacks reported in the literature related 
to the parameter extraction, such as local solutions. Therefore, the results also indicated that efficient 
devices are correlated with nID ranging between 1 and 2. Nevertheless, it is worth noting that in this 
process to estimate the ideality factor, the effect of series resistance is involved, while in the procedure 
to estimate this parameter from the Voc and light intensity, this effect is neglected. Hence, this last 
procedure could be considered more suitable to characterize these devices to study the recombination 
process and correlate this behavior with the performance. 

Therefore, the devices were characterized not only by the I-V curve data but also by the ideality factor 
and impedance spectrums. In this regard, a Autolab procedure was implemented to estimate the nID 
under indoor conditions, in accordance with the flowchart shown in Figure 2-26. This 
characterization could be used to track the performance evolution or degradation process for the 
devices under indoor or outdoor conditions.  
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3. Outdoor Performance (OP) 
 

This chapter proposed a methodology to evaluate the perovskite solar devices’ outdoor performance. 
This methodology was previously described in (Velilla et al., 2019b), considering the five power 
rating conditions according the International Standard IEC 61853-1, including the Standard Test 
Condition (STC) and Nominal Operative Cell Temperature condition (NOCT). Hence, a monitoring 
system was implemented to register and process the weather (temperature and irradiance) and 
electrical data (extracted from the I-V curve) in accordance with the proposed methodology. 
Moreover, based on the well-agreement between power rating conditions measured under outdoor 
conditions for different commercial technologies such as silicon, HIT, and CIGS,  and the 
manufacturers’ reported values in its datasheets, the monitoring system, and methodology were 
validated (Velilla et al., 2019a). Finally, from the outdoor performance of perovskite minimodules, a 
positive dependence of Voc and Pmax on temperature and irradiance was observed. The results indicate 
that PSCs show lower correlations of their performance and open-circuit voltage with the temperature 
than other commercial technologies, such as silicon, for which the deleterious effects of temperature 
on performance are well known. This difference in temperature sensitivity is a significant and 
competitive aspect of PSC technology that could provide new characterization opportunities. 

 

3.1 Outdoor Performance Evaluation 
The I-V curves conventionally defined the performance of solar devices according to temperature and 
illumination conditions. In this way, the Standard Test Conditions (STC) defined as 1000 W/m2 of 
irradiance and 25 0C of cell temperature is the most common conditions to measure the I-V curve in 
order to extract the main parameters to describe the electrical performance of the solar device as 
efficiency, Pmax, Voc and Isc (IEC 61215, 2003). STC is commonly measured under indoor conditions, 
addressed in the datasheet, and used to evaluate different solar technologies’ progress over time 
(Green et al., 2020). As the STC conditions rarely occur outdoor (Dash et al., 2017), to evaluate the 
performance in real operating conditions, a systematic analysis of high quantity data is required to 
take into account the illumination and temperature variations induced by day-night, seasonal, and 
weather conditions (Wang et al., 2018). Nevertheless, considering that NOCT is defined as the 
equilibrium mean solar cell junction temperature of the module in the describe environment (IEC 
61215, 2003) and these conditions are possible to achieve under outdoor test conditions (Velilla et 
al., 2019a), the outdoor performance of solar devices could be evaluated in a proper way at NOCT. 
In this way, considering various conditions such as STC and NOCT allows improving the 
characterization of weather variables’ impact on the device’s performance under outdoor conditions. 

Related to performance, International Electrotechnical Commission (IEC) published a series of 
standards in IEC 61853 intended to establish the requirements for evaluating the performance of all 
photovoltaic technologies in term of power (IEC 61853-1, 2011) or term of energy and performance 
ratio (IEC 61853-3). In the case of energy, it is worth noting that the study involves another inverter’s 
performance. For that, the performance depends not only on the solar device to be evaluated but also 
depends on the electronic device’s efficiency and the maximum power tracking algorithm (Eltamaly 
et al., 2018). In the case of power, the study is mainly based on the I-V curve’s extracted parameters 
representing the device’s performance. Allowing the device’s characterization at the maximum power 
point (MPP) or other operative points as the short circuit current, open-circuit voltage, Etc. Therefore, 
the standard called “Photovoltaic (PV) module performance testing and energy rating – Part 1: 
Irradiance and temperature performance measurements and power rating” allows status validation 



 3 

devices of any solar technology, defining a pass/fail criteria, in which the success is reached if the 
power rating conditions measured fall within the power range specified by the manufacturer (IEC 
61853-1, 2011). Corresponding the 5 power rating conditions to:  

• Standard Test Condition (STC), defined at 1000 W/m2 and cell temperature of 25 0C 
• Nominal Operating Cell Temperature (NOCT), defined at 800 W/m2 and ambient 

temperature of 20 0C  
• Low Irradiance Condition (LIC), defined at 200 W/m2 and cell temperature of 25 0C 
• High Temperature Condition (HTC), defined at 1000 W/m2 and cell temperature of 75 0C  
• Low Temperature Condition (LTC), defined at 500 W/m2 and cell temperature of 15 0C) 
 

Consequently, the evaluation provides a complete device’s characterization under various values of 
irradiance and temperature, allowing determination of the impact of weather variables on Pmax, Voc, 
Isc. Besides, this characterization could be carried out using a solar simulator and specialized 
equipment to set up the temperature and illumination conditions or natural sunlight with and without 
a tracker.  

Conventionally, solar device’s performance evolution is monitored through the systematic 
measurement of I-V curves considering the temperature and illumination conditions. It is relatively 
easy to set up tests in the laboratory to track the performance at the maximum power point; however, 
such control is intrinsically unreasonable outdoors. The illumination and temperature variations 
induced by day-night, seasonal, and weather conditions necessitate a systematic analysis of a high 
quantity of data, depending on the measurement sampling rate and exposure time (Wang et al., 2018). 
Hence, in such power loss studies, it is common to correct for temperature and irradiance in the I-V 
curves in accordance with the standard test conditions (STC, corresponding to an irradiance of 1000 
W/m2 and a module temperature of 25 °C). However, such conditions are difficult to reach outdoors 
(Velilla et al., 2019a). Nevertheless, in a general way, the outdoor performance mainly is referenced 
to the observation of one variable over time, as the efficiency (Gaglia et al., 2017; Hamou et al., 2014; 
Makrides et al., 2008), maximum power (Velilla et al., 2014), series resistance (Deceglie et al., 2015), 
among others. In these cases, the evaluation could be affected by different factors such as weather 
conditions, seasonal variations, installation conditions, shading and soiling effects, Etc (Makrides et 
al., 2014; Visa et al., 2016). Nevertheless, the evolution of these variables over time has been 
commonly fitted using statistical methods such as linear regression to estimate the performance loss 
over time (Phinikarides et al., 2014).  

In the case of emerging technologies such as PSCs, no international standards have been fully 
established, and most published works have focused on laboratory-scale cells (i.e., 1 cm2 or smaller 
in size); consequently, various methods and materials have been used to evaluate the stability and 
degradation performance of these technologies (Anoop et al., 2020; Cheacharoen et al., 2018; 
Domanski et al., 2018; Holzhey and Saliba, 2018; Tress et al., 2019; Yang et al., 2015). In this regard, 
a broadly-supported consensus statement on reporting data related to stability assessment was 
recently published, highlighting certain particularities of PSC technology that must be taken into 
account (Khenkin et al., 2020). For instance, in contrast to mature photovoltaic technologies such as 
Si and GaAs, PSCs show performance loss reversibility under day-night cycles (Domanski et al., 
2017; Khenkin et al., 2018); a hysteresis effect in the current-voltage (I-V) curves, which could induce 
errors in performance determination (Christians et al., 2015); and a lower dependence of performance 
and Voc on temperature (Schwenzer et al., 2018). Nevertheless, while these peculiarities of PSCs could 
be seen as drawbacks for their systematic analysis, they also provide new characterization 
opportunities (Hoye et al., 2017). This technology is in its infancy, and there are few statistical data 
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available for large devices operated outdoors (Hu et al., 2019). Therefore, insufficient data are 
available to fully establish or identify the degradation modes and mechanisms of PSCs and their 
impact on outdoor performance evolution. 

Related to perovskite, the International Summit on Organic Photovoltaic Stability (ISOS) suggests 3 
protocols for outdoor. ISOS-O-1 suggests periodically record the J-V curve at STC using a solar 
simulator (indoor). ISOS-O-2 suggests periodically record the J-V curve under outdoor conditions, 
keeping the device at the Maximum Power Point (MPP) or open-circuit voltage. In contrast, the ISOS-
O-3 suggests periodically recording the J-V curve using a solar simulator, keeping the device at MPP. 
Despite that these cases are related to outdoor, the electrical characterization is usually performed 
under indoor conditions to evaluate the performance degradation over time or device stability under 
the conditions suggested by the protocols. Hence, the protocols suggest reporting the normalized data 
(per unit) considering the first value to normalize the data and obtain the degradation behavior to 
estimate degradation rate or lifetime according to the accepted definition. 

Considering that ISOS-O protocols and IEC 61853-1 standard are based on the data extracted from 
the I-V curve, the outdoor performance of perovskite technology could be estimated with no trouble 
based on the IEC, including different power rating conditions to evaluate the impact of weather 
variables on performance. This procedure could be applied to evaluate any technology.  

 

3.2 Monitoring System to Evaluate the Outdoor Performance 
 

The outdoor monitoring station was implemented in the facilities of the Solar Cell Outdoor 
Performance Laboratory of the University of Antioquia (OPSUA) in Medellín-Colombia (6° 15′ 38′′ 
N 75° 34′ 05′′W, facing south at a fixed angle of 10°) intended to evaluate the outdoor performance 
of solar devices under natural sunlight without a tracker. The performance of photovoltaic 
technologies could be evaluated in terms of power (Figure 3-1) measuring the I-V curve of devices 
under different illumination and temperature conditions. In this sense, the monitoring system was 
implemented to record and store the weather variables (irradiance and temperatures, Figure 3-2a) and 
electrical data (I-V curve, Figure 3-2b). These data are processed to estimate the impact of weather 
variables on performance (Outdoor performance). Finally, based on the outdoor performance (OP), 
the status and performance of photovoltaic devices could be estimated considering the power rating 
conditions suggested by IEC 61853-1. 
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Figure 3-1. Schematic to evaluate the outdoor performance. 

 

  
Figure 3-2. The Outdoor Monitoring Station to evaluate the outdoor performance. 

a) zoom to weather sensors. b) Photo of the developed solar cell tracer installed to record the I-V curves 
under outdoor conditions. 

 

3.2.1 Weather Variables 
To record the weather variables, the irradiance was measured using two Spektron 210 sensors by 
TRITEC International located at the end of the solar station, to validate the values recorded. Ambient 
and panel/cell temperatures were measured using PT-1000 sensors by TRITEC International. 
Ambient temperature sensors were located close to irradiance sensors (Figure 3-2a), and the surface 
temperature sensors were located on the back of the devices under test. The weather data were 
collected using a Sensor Box Datalogger by FRONIUS International. These data are available online. 
Besides, two Raspberries were programmed to read the weather data from the datalogger via Ethernet 
communication every minute for local storage, keeping the same text file (CSV) and including the 
timestamp. Finally, the records (irradiance levels and temperatures) are synchronized every hour with 
a remote server using Rsync service on SSH (Figure 3-1).  
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3.2.2 I-V Curve Tracers 
To measure the I-V curve of solar devices, different hardware techniques have been used (Duran et 
al., 2008). For instance, a resistor is connected to the device under test (DUT), changing the resistance 
between a value close to zero (short circuit) and a higher value considered as the open circuit 
(Nikoletatos and Halambalakis, 2018). It is remarked that additional hardware is required to change 
the resistance value, such as potentiometer-motor systems, relay commuted series and parallel 
resistors arrays, digital potentiometers, among others (Van Dyk et al., 2005). Moreover, MOSFET 
transistors have been used as variable loads for I-V curve measurement,  allowing easier control of 
the DUT operation point without the intervention of mechanical or electromechanical devices 
(Hassaine et al., 2014; Papageorgas et al., 2015; Willoughby et al., 2014; Willoughby and Osinowo, 
2018). In both cases, heat dissipation is a concern, limiting the applicability to high-power solar 
panels. Furthermore, DC/DC converters are used on I-V curve characterization (Enrique et al., 2005; 
Faifer et al., 2015). In this case, a Pulse Width Modulation (PWM) signal controls the operation points 
of DUT, allowing controlling the sweep over the I-V curve. However, this technique’s complexity 
and the number of components increase compared to the resistive or transistor load technics. 

On the other hand, capacitive loads have also been reported to measure the I-V curve (Agroui, 2012; 
Cano et al., 2015). These devices work by connecting a discharged capacitor to the DUT, registering 
the voltage and current waveforms during the transient response. This technique has several 
advantages; it is suitable for high-power applications; the capacitor dynamics achieve the sweep over 
the curve without using any external mechanism; the capacitor has no heat dissipation issues. 
However, it is impossible to modify the scan direction (from short circuit to open circuit) and the 
sweep speed because it depends on the capacitance, DUT characteristics, and light conditions.  

Also, it is possible to use a controlled voltage source to trace the I-V curve (Duran et al., 2008), 
allowing a complete characterization including the reverse bias region and voltages higher than the 
open-circuit voltage. Therefore, it is possible to directly control the voltage change rate (V/s rate) and 
control the sweep direction (forward and reverse), making it practical for hysteresis measurements 
(Li et al., 2017). However, this technique involves an additional power supply increasing costs and 
system complexity.  

Taking into account the advantages and disadvantages of the aforementioned techniques, two 
different types of I-V curve tracers (solar analyzer, SA) were implemented. The I-V curve tracers are 
an improved version of previous work (Cano et al., 2015), intended to improve portability, local data 
storage, low cost, and faster response (Velilla et al., 2019a). One SA is based on the capacitive load 
technique due to simplicity, power dissipation, and cost concerns. This prototype is intended for 
devices that operate for voltages up to 250 V and currents up to 12.5 A (solar panels, Figure 3-3a-b). 
Another SA is based on the four-quadrant DC supply due to greater flexibility on sweep direction and 
speed. This prototype is intended for devices that operate for voltages up to 8 V and currents up to 3 
A (solar cells and solar minimodules, Figure 3-3c-d). 
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Figure 3-3. Developed I-V curve tracers. 

a-c) Box diagram of I-V curve tracers. b-d) printed circuit boards. Corresponding to potentiostat for solar 
panel a-b) and c-d) for solar cells or minimodules. 

In the case of the solar analyzer for panels, the potentiostat involved different elements, Figure 3-3a. 
A capacitive load, solid-state relays for charging and discharging control, voltage sensor (AMC1200-
Isolation amplifier, Texas Instruments), current sensor (ACS-711 series - Hall effect, Allegro), an 
analog to digital converter (ADC), and the microcontroller. The control and communication systems 
were implemented on a 32 bits microcontroller (PIC32MX230F064D, Microchip). For safety reasons, 
isolation between power (load, sensors, relays) and control circuit sections (microcontroller, 
communications) was implemented because the panel’s voltage and current levels. Voltage and 
current signals are digitalized by a sigma-delta analog to digital converter (AD7172-2, Analog 
devices). Serial port interface communication was implemented between the converter and 
microcontroller. This setup allows sampling times of 0.32 ms for each I-V curve point (the total time 
to take a voltage sample sequentially and a current sample). Sampling time is critical to determine the 
minimum capacitance value required to measure the charging transient. A serial port emulation 
protocol was implemented over USB, providing a command set to control analyzer functions and 
retrieve data. Finally, the expansion sensors block allows direct connection to microcontroller’s 
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analog-digital converter, intended for external sensor interfaces such as irradiance and temperature 
variables. 

In the case of the solar analyzer for cells, the potentiostat circuit was implemented using linear circuits 
(operational amplifiers) due to the low voltage, current, and power of the solar cells (Figure 3-3c). 
The operational amplifiers series OPA548T by Texas Instruments was selected due to their output 
current characteristics. A trans-resistance amplifier configuration is used as a current sensor 
considering the identical operational amplifiers. A differential amplifier (LT1167, Linear 
Technologies) was used as a voltage sensor. A digital to analog converter (TLV5638, Texas 
Instruments) was used for the generation of the voltage references for the solar cells. Signal 
digitalization, processing, sensor expansion, and communications were carried out using the same 
components described for the panel analyzer. 

In both cases, the potentiostats are programmed to connect the devices under test and record the Voc. 
Then, the current and voltage values are registered (cell or panel). After the measure, the device is 
disconnected and keep in the open-circuit condition. Then, the data are sent via a USB port. Finally, 
to optimize the I-V curve process, an embedded computer (The Raspberry Pi 3) is connected to 
control each potentiostat and execute the following tasks:  

a) System date and time are keeping updated using the Network Time Protocol Daemon 
(NTPD). It guarantees low error on measurement time stamps.  

b) An SSH (Secure Shell) interface allows remote access to modify the system configuration 
settings (as measurement frequency, sensor calibration, Etc.) or scripts edition. 

c) Cron service (Linux task programmer) is configured to execute every minute the python 
script to communicate the Raspberry with the potentiostat and start the measurement process. 
The registers (I-V data) are saved in a CSV file, including the timestamp.  

d) Finally, CSV files are synchronized every hour with the remote server, using the Rsync 
service over SSH. 

 
It is remarking that current and voltage sensors are calibrated to guarantee measurement accuracy 
before any on-field testing. 

 

3.2.3 Proposed methodology to Estimate the Outdoor Performance 
As mentioned before, electrical (I-V) and weather (irradiance and temperatures) records are uploaded 
to the remote server to provide backup, centralize the monitoring process, and process the data 
(Figure 3-1). In this sense, the implemented procedure to estimate the outdoor performance could be 
divided into two main parts: one part is related to the databases of exposed devices (which is framed 
into the flowchart shown in Figure 3-4), another part is related to the analysis.  
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Figure 3-4. Flowchart to evaluate the outdoor performance. 

Procedure to analyze and process the electrical data (I-V curve) and weather data (irradiance and 
temperature). In this way, atypical data o irradiance changes due to clouds or shades are minimized 

(linearity determination criteria). Then, the impact of weather variables on performance (OP), power rating 
conditions (PRCs), and ideality factor (nID) could be estimated. 

The next steps are followed to construct the databases of devices: 

a) The first step scans the text files related to weather variables (irradiance and temperatures) 
located in a specific folder (light blue box in the flowchart) to extract the values of the 
variables and organize the data by date (year-month-day-hour-minute-seconds). Here, two 
sensors of irradiance, ambient temperature, and surface temperature, are used to record the 
weather data during the exposure time.  

b) The second step scans the text files related to I-V curve data located in a specific folder 
according to the solar tracer identification (light blue box in the flowchart). Hence, the 
electrical data (I-V curve) recorded during the exposure time by the solar tracer is processed 
to estimate the main parameters from the I-V curve data (Yellow box in the flowchart). In 
this process, different fitting processes are performed to improve the estimation of the main 
parameters (Pmax, FF, Voc, and Isc). Moreover, the data is organized by date (year-month-day-
hour-minute-seconds). 

c) The third step correlates the weather data records (irradiance and temperature) with the I-V 
curve data records (Dark green box in the flowchart). Thus, for every set of main parameters 
extracted from the I-V curve records, their corresponding weather variables are assigned. 
With these organized data, a new text file is created, including the weather and electrical data 
(raw data). This CSV file could be read by other applications to perform different analyses. 
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The second part is related to the analysis. These analyses are included in the light green boxes in the 
flowchart, in which the arrows point out the sequences followed. In this sense, it is needed to highlight 
that before any analyses, the raw data were filtered based on the linearity determination criterion to 
minimize transient effects related to changes in irradiance, shadowing caused by clouds, or droplets. 
The linearity determination criterion is applied based on the linear behavior observed between Pmax 
and the irradiance and validated by the coefficient of determination (r-value) (Velilla et al., 2019b, 
2019a). Figure 3-5 shows this procedure in three steps, one related to the raw data registered during 
the exposure time considered (Figure 3-5a), another related to the fit process performed to establish 
the linear behavior between Pmax and irradiance. This consideration is reached if the estimated 
coefficient of determination (r-value) is close to 1 (Figure 3-5b). Finally, the best-fit data with a 
deviation of ±5 % is selected as the filtered data (Figure 3-5c), representing the exposure time’s 
average conditions during. 

 
Figure 3-5. Linearity determination criteria. 

a) Data distribution for 100 h of exposure. b) Procedure performed to filter the data from atypical data, 
related to unclear days, dirty or drop on the surface. At the top is shown the coefficient of determination (r-
value) estimated from the fitting process between Pmax and irradiance. Values close to 1 indicating a linear 
behavior between variables. The gray points correspond to data measured in the exposure time considered, 

and the color dots correspond to data considered as filtered and representative of the dataset. c) Filtered data 
marked as black points. In this case, the filtered data correspond to the average conditions during the 

exposure. 

Subsequently, the filtered data are used to perform the analyses: 

a) Outdoor performance (OP): the impact of weather variables on performance is estimated, 
considering the filtered data. The results are usually depicted in a map to illustrate the 
performance as a function of irradiance and temperature, representing the average outdoor 
performance during the evaluated time and indicating the variables’ operative range (Figure 
3-6a). A full description of these maps was shown in previous work (Velilla et al., 2019b, 
2019a). 

b) Power rating conditions (PRCs): the data shown in the form of maps (the average OP) are 
filtered considering a deviation of 5% from the irradiance levels corresponding to the power 
rating conditions indicated by IEC 61853-1 as previously mentioned, that is, 1000 W/m2, 
corresponding to standard test conditions (STC); 800 W/m2, corresponding to NOCT 
conditions; 500 W/m2, corresponding to low-temperature conditions (LTC); and 200 W/m2, 
corresponding to low-irradiance conditions (LIC). Hence, each power rating condition’s data 
deviation is considered by the median value of data considered in each sampling time, Figure 
3-6b. 
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c) Ideality factor (nID): nID is calculated in accordance with Equation 5 considering the filtered 
data and processing the data at different ambient temperatures between 25 and 35 0C (Figure 
3-6c). Consequently, because different ideality factors can be calculated, the median value is 
considered the average value to consider the data dispersion representing the evaluated time 
window.  

 
Figure 3-6. Outdoor analysis. 

a) Outdoor performance displayed in the form of a map to show the impact of weather variables on 
performance. This impact could be observed in other variables such as Isc, and Voc. b) Calculated PRCs over 

time by filtering the data by the irradiance levels defined by the power rating conditions. c) Ideality factor 
estimated considering the ambient temperature and the data shown in figure a). 

Finally, it is worth noting that these analyses are considered by the loop included in Figure 3-4. For 
that, it is possible to divide the data by sets (batches) to estimate the average impact of weather 
variables on performance (OP), the power rating conditions or power loss tendency (degradation-
shape), and ideality factor in every dataset (batch). Therefore, it is possible to analyze the 
performance’s changes over time. 

 

3.3 Evaluation of Outdoor Performance of Commercial Technologies 
To validate the monitoring system and the proposed methodology to estimate the OP, commercial 
photovoltaic modules such as monocrystalline silicon (Sharp NU-RC290 and Yingli YL275D-30b), 
HIT (VBHN330SJ47), and CIGS (Miasolé Flex-02 120N) were monitoring under outdoor conditions, 
Table 3-1. The selection of these devices was mainly based on the datasheet specifications, including 
the STC and NOCT conditions. Therefore, the status of devices according to the datasheet could be 
evaluated following the procedure shown in Figure 3-4. 

Accordingly, Figure 3-7a,d,g, and j show the relationship between irradiance and Pmax. These data 
are processed by the linearity determination criterion to minimize transient effects related to changes 
in irradiance, shadowing caused by clouds or droplets, or atypical data (Velilla et al., 2019b). Then, 
these filtered data are shown in the form of a map to visualize the impact of weather variables on 
performance, Figure 3-7b,e,h, and k. Finally, the outdoor performance over time was obtained by 
calculating the OP observed in the measurement sets, each of which contained measurements 
recorded over 200 hours of outdoor exposure (see Figure 3-7c,f,i, and l). The data in each set were 
filtered considering a deviation of 5% from the irradiance levels corresponding to the power rating 
conditions (PRCs) indicated by IEC 61853-1(IEC 61853-1, 2011). The variables were recorded every 
minute during daylight hours, and the time considered to obtain the average OP was 200 h. This time 
is long enough to consider the data recorded in each set to be statistically valid, allowing reliable 
average values for tracking the performance evolution. 
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Figure 3-7. Impact of weather variables on performance. 

Corresponding a-c) to Sharp NU-RC290 (silicon monocrystalline), monitored between 2018-07-05 and 2019-
01-20, d-f) to Yingli YL275D-30b (silicon monocrystalline), monitored between 2018-11-22 and 2019-04-24. 
g-i) to HIT VBHN330SJ47 (HIT), monitored between 2019-02-23 and 2019-06-03 and j-l) to Miasolé Flex-02 
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120N (CIGS), monitored between 2019-05-09 and 2019-06-03. a,d,g, and j) Relationship between Pmax and 
irradiance. b,e,h, and k) Power delivery map as a function of irradiance and ambient temperature, the 

maximum value of power delivery is displayed at the top of each map. The color bar indicates the variable 
range. c,f,i, and l) Power rating conditions estimated by the dataset of 200 h of exposure. The block colors 

are related to the PRC as follows: green to 1000 W/m2 (STC), blue to 800 W/m2 (NOCT), yellow to 500 W/m2 
(LTI), and gray to 200 W/m2 (LIC). 

Despite the maps of power delivery allowed us to graphically visualize the impact of irradiance and 
temperature on devices’ performance, two main points must be remarked. First, this performance is 
related to the most frequent conditions during the exposure time (average conditions). Second, due to 
the setup was carried out on tropical weather conditions, it is to expect that some PRC such as STC, 
HTC, and LTC rarely occur. Therefore, some PRC could not be included in the maps because these 
conditions could not be statistically representative. Figure 3-8 shows the outdoor performance 
considering the device temperature to illustrate that lower temperature (lower than 25 oC) correlated 
with lower irradiance (lower than 400 W/m2). Therefore, the LTC and STC defined at 15 and 25 oC, 
respectively, are omitted. Nevertheless, due to the exposure time exceeding 800 hours and the 
sampling time between measurements was 1 minute, the amount of data recorded is statistically, and 
the maps represent the average performance during the considered exposure time. Also, other PRC 
can be estimated using an extrapolation process as suggests (IEC 60891, 2009).  

 
Figure 3-8. Outdoor performance as a function of device temperature. 

Corresponding a) to Sharp NU-RC290 (silicon monocrystalline), monitored between 2018-07-05 and 2019-
01-20, b) to Yingli YL275D-30b (silicon monocrystalline), monitored between 2018-11-22 and 2019-04-24. c) 

to HIT VBHN330SJ47 (HIT), monitored between 2019-02-23 and 2019-06-03. The color bar indicates the 
variable range. 

Because the devices were not cleaned during the exposure, to observe the changes over time on the 
PRC suggested by IEC 61853-1, taking into account the soiling and seasonal effects, the databases 
were processed by batches, Figure 3-7c,f,i, and l. Every batch included the measurements recorded 
for 200 hours. These data are shown in the form of a boxplot to illustrate the measurements’ median 
and standard deviation. Besides, due to the manufacturers commonly supplied the STC and NOCT 
on the datasheet, but not other conditions, these two PRC’s average values over the exposure time 
were compared with manufacturers’ data (Table 3-1). Hence, it is remarking that the NOCT was the 
most suitable power rating condition representing the outdoor performance, being the error within the 
range ± 5% for the evaluated modules. Moreover, normalizing the NOCT mean values concerning 
the manufacturer data (Figure 3-9), it was observed that most parts of exposure time the devices were 
within the range of ± 5 % (Velilla et al., 2019a). Therefore, the evaluation of the NOCT under outdoor 
conditions could be used to check the status of devices concerning manufacturer data and define 
cleaning maintenance or to identify the most suitable conditions of the device. 
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Table 3-1. STC and NOCT conditions for solar devices supplied by the manufacturer and obtained 
for the outdoor test. 

 

Devices 

 

Variables 

STC (1000 W/m2) NOCT (800 W/m2) 

Data 

sheet 

Mean std Error 
(%) 

Data 
sheet 

Mean std Error 
(%) 

Sharp NU-
RC290 

Pmax (W) 290 257.33 8.31 11.26 212 212.78 6.78 -0.36 

Isc (A) 9.8 10.26 0.39 -4.69 7.93 8.16 0.38 -2.34 

Voc (V) 39.3 35.67 0.50 9.23 36.2 35.78 0.44 1.16 

Yingli YL275D-
30b 

Pmax (W) 275 243.12 8.34 11.59 200.6 200.56 7.03 0.02 

Isc (A) 9.34 9.62 0.37 -2.99 7.55 7.78 0.33 -3.04 

Voc (V) 38.9 34.15 0.58 12.21 35.90 34.18 0.51 4.79 

HIT 
VBHN330SJ47 

Pmax (W) 330 315.82 9.44 4.29 247.2 253.61 9.03 -2.59 

Isc (A) 6.07 6.56 0.26 -8.07 4.91 5.15 0.25 -4.89 

Voc (V) 69.7 64.35 0.80 -0.51 65.1 64.76 0.63 0.52 

 

Miasolé Flex-
02 120N 

Pmax (W) 120 113.10 3.70 5.75 N/A 93.67 4.20 N/A 

Isc (A) 4.53 4.57 0.17 -0.88 N/A 3.76 0.18 N/A 

Voc (V) 38.1 36.10 0.55 5.24 N/A 36.13 0.24 N/A 
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Figure 3-9. Normalized NOCT over time for commercial technologies. 

The Pmax at NOCT was normalized by dividing the NOCT over time with the NOCT reported by the 
manufacturers. Dot lines are included as a visual guide to indicate the tolerance of ± 5%. 

 

3.4 Evaluation of Outdoor Performance of Perovskite Devices 
Outdoor performance of perovskite solar modules (PSM) and monocrystalline silicon set as reference 
were carried out in the city of Medellin – Colombia on the terrace of the University Research Center-
SIU from the Universidad de Antioquia (60 15’ 38’’ N 750 34’ 05’’W), using the monitoring system 
developed in previous work (Velilla et al., 2019a) and described before, registering weather and 
electrical data every minute during the light-hours for 500 h to assure statistical validity of 
measurements. Therefore, we fabricated and encapsulated perovskite solar modules (Figure 3-10) 
considering active areas of 17, 50, and 70 cm2 and 8 cells interconnected in series (Ramirez et al., 
2019; Velilla et al., 2019b). Moreover, sensors and devices were frequently cleaned to eliminate dust 
issues.  

Accordingly, the linearity determination criterion was applied to validate the linear relationship 
between Pmax and the irradiance, represented by the high coefficient of determination (r-value) close 
to 1 (Figure 3-11a-c), and to minimize the influence of atypical data or data related to unclear days, 
shadowing, dirt, or droplets on the surface. From Figure 3-11a-c, some principal aspects can be 
remarked. First, the high r-values indicated that both technologies’ power delivery is a linear function 
of the irradiance. Second, the slopes defined as the ratio between the maximum power and irradiance 
represent the real outdoor ratio to transform solar power to electrical power during the exposure time 
involving ambient temperatures between 18 and 40 °C. Moreover, dividing these slopes by the active 
area of devices (the PSMs have 8 cells interconnected in series of 2.1 and 6.25 cm2 while the silicon 
panel has 60 of 243.4 cm2), it is possible to calculate an “average outdoor efficiency” of 4.76, 2.48 
and 15.2 % respectively for the tested devices shown in Figure 3-10. This set of results demonstrate 
the methodology’s adaptability to evaluate and compare different solar technologies under real 
operating conditions. Finally, considering the best-fit data with a deviation of ±5% as the filtered data, 
representing the average conditions during the exposure time, the outdoor performance could be 
estimated, Figure 3-11d-e, which can be normalized by dividing the filtered data by the maximum 
value of this data. Figure 3-12 shows the results for Pmax, Isc, and Voc. Hence, the plotted maps for the 
photovoltaic parameters as a function of temperature and irradiance allow us to graphically visualize 

Time (h) 
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the device’s performance in a broad range of measured atmospheric conditions during the exposure. 
The map’s width and length of the maps correspond to the ambient temperature (ranging between 18 
and 42 °C) and irradiance (ranging between 0 and 1200 W/m2), respectively. These are representative 
ranges of the geographical zone. 

   
Figure 3-10. Outdoor test for the perovskite minimodules and silicon module. 

a) photo of evaluated minimodules and silicon modules at the top. b) photo of PSM of 17 cm2 recently 
installed. c) photo of PSM of 50 cm2 (left part) and PSM of 70 cm2 (right part, which results were shown in 

previous work (Ramirez et al., 2019). 

 

 
Figure 3-11. Outdoor performance for the perovskite minimodules and silicon module. 

a-c) A linearity determination criterion based on the linear behavior observed between Pmax and the 
irradiance. The coefficient of determination (r-value) is shown at the top, and the fitted equation is included 
in the legend. d-f) Power delivery map as a function of irradiance and ambient temperature, the maximum 

value of power delivery is shown on the top of each map. The color bar indicates the variable range. 
Corresponding a and d) to perovskite minimodule of 17 cm2 of an active area. b and e) to perovskite 

minimodule of 50 cm2 of an active area. c and f) to Sharp NU-RC290 (silicon monocrystalline) as reference. 
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Based on the normalized contour maps behavior (Figure 3-12) is possible to see that Pmax exhibited 
similar trends for both perovskite and silicon technologies, indicating that these variables are mainly 
a function of the irradiance and changes according to this variable (Figure 3-12a-c). In terms of the 
normalized short circuit current, the entire contour color behavior indicates that lower Isc is obtained 
for the case of silicon when compared to the PSMs. For instance, at an irradiance of 400 W/m2 (blue 
region related to low irradiances), the normalized Isc for PSM was approximately 0.4, while for the 
silicon panel was approximately 0.3. Moreover, the higher relative values of normalized current 
(higher than 0.7, orange-red region) are achieved for PSM at 800 W/m2, while for the silicon panel, 
these values are achieved at 1000 W/m2. This fact suggests that perovskite technology can produce 
higher relative current values in a broader range of irradiances (Figure 3-12d-f). In terms of the 
voltage, the Voc maps show a remarkable non-homogenous distribution of this variable at the entire 
temperature and irradiance for the PSMs (Figure 3-12g-i).  

 

 

 
Figure 3-12. Normalized outdoor performance for the perovskite minimodules and silicon 

module. 
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Corresponding a-c) to Pmax. d-f) to Isc. g-i) to Voc. The color bar indicates the variable range. At the top is 
shows the value used to normalize the data. 

 

To get a thoughtful analysis of the obtained Voc and identify differences between the perovskite and 
silicon technology, we detached the contribution of temperature and irradiance to the Voc (Figure 
3-13). From this figure, it is observed that the Voc of perovskite exhibited a logarithmic dependence 
with irradiance as reported elsewhere for other solar cell technologies (Cowan et al., 2010). This 
dependence in solar cells indicated a voltage saturation that obeys a transition from monomolecular 
recombination at low light intensities to bimolecular recombination as the light intensity increases 
(Shao et al., 2014). In the case of silicon, the dependence of Voc related to irradiance can be neglected 
based on the low r-value. Thus, an almost constant Voc is observed in Figure 3-13c for the irradiance 
range studied. Interestingly, when considering the dependence of Voc with the ambient temperature 
(Figure 3-13d-f), the slopes of the linear fitted suggest that perovskite technology at outdoor exposure 
is affected positively by temperature (positive slope). In contrast, silicon is negatively affected as it 
is well known. This fact becomes more significant when the module area increases from 17 to 50 
cm2, as indicated by the coefficient of determination (0.14 to 0.722). 

 

 
Figure 3-13. Open-circuit voltage as a function of the irradiance and ambient temperature. 

Corresponding a) to PSM of 17 cm2. b) to PSM of 50 cm2. c) to the silicon module. 

Figure 3-14 shows the Voc dependence on the temperature at different irradiances (between 200 and 
1000 W/m2). These results suggested that the Voc as a function of the temperature is linear for the 
silicon module in accordance with IEC-61853-1. In contrast, it is nonlinear for the perovskite module 
because of the slope changes at higher irradiances (800 W/m2 for PSM 50 cm2 and 900 W/m2 for 
PSM 17 cm2). This unusual behavior of perovskite technology can be explained in terms of lead 
halide perovskite materials’ intrinsic properties. Through PL-temperature measurements, it has been 
proved an increase of the energy gap (Eg) with temperature contrary to other technologies such as Si, 
Ge, and GaAs. This behavior could result from the particular electron-phonon coupling in lead halide 
perovskites (Ramirez et al., 2018b). Due to the increase of the energy gap with the temperature and 
its direct relation to Voc, this technology can operate at higher Voc when the modules reach higher 
temperatures. This fact is relevant considering the limitation of current commercial silicon technology 
when exposed to a high-temperature environment.  
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Figure 3-14. Open-circuit voltage as a function of the irradiance and ambient temperature. 

Corresponding a) to PSM of 17 cm2. b) to PSM of 50 cm2. c) to the silicon module. The data were filtered by 
irradiance levels to show the temperature effect on Voc. 

 

 

  



 20 

3.5 Conclusions 
Here, the developed monitoring system to evaluate the outdoor performance of different photovoltaic 
technologies, including perovskite, was fully described. Hence, the developed solar tracers were 
synchronized with the monitoring system to measure the I-V curve of photovoltaic modules and 
photovoltaic cells/minimodules. Moreover, a methodology following IEC 61853-1 was proposed and 
implemented to provide a complete characterization of the devices under various irradiance and 
temperature conditions, allowing determination of the impact of weather variables on Pmax, Voc, and 
Isc. The impact was shown in the form of maps to improve the weather variables’ visualization on 
performance. 

The monitoring system and proposed methodology were successfully applied to commercial 
technologies such as silicon, HIT, and CIGs. In this way, processing the data according to the 
irradiance levels defined by the power rating conditions suggests by IEC 61583, it was possible to 
validate the datasheet’s power rating conditions for the evaluated photovoltaic modules. Remarking 
that the NOCT was the most suitable power rating condition representing the outdoor performance, 
with an error within the range ± 5% for the modules evaluated during the exposure time. Hence, 
NOCT could be considered as the most suitable condition to check the status of the devices.  

Finally, the outdoor performance shown in the form of maps allowed a comparison of this emerging 
perovskite technology with a well-known and optimized technology (silicon), observing similarities 
between photovoltaic parameters such as power delivery. Hence, higher values of the normalized 
short circuit current for perovskite modules were obtained when compared to the silicon modules, 
suggesting that perovskite technology can produce higher relative current values in a broader range 
of irradiances. Besides, the positive temperature dependence of the Voc under high irradiance levels 
was also observed for perovskites minimodules. These results show for the first time that perovskite 
minimodules can be a robust PV technology to be used under outdoor conditions. This positive 
performance dependence on temperature and irradiance is a competitive fact in development of this 
technology.  
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4. Performance Evolution  
 

This chapter analyzed the perovskite minimodules’ performance evolution, degradation rate, and 
lifetime (T80). The power loss tendencies or degradation-shape were compared with their 
corresponding estimated nID patterns under outdoor conditions, taking advantage of the lower 
correlations of performance and open-circuit voltage (Voc) with temperature. Therefore, based on the 
linear relationship between T80 and the time to reach nID=2 (TnID2), it was demonstrated that nID 
analysis could offer essential and complementary information with important implications for this 
technology’s outdoor development, providing physical insight into the recombination mechanism 
dominating the performance. Hence, the complementarity between Pmax and nID allowed improving 
the understanding of the degradation processes, device characterization, and lifetime estimation 
(Velilla et al., 2021).  

 

4.1 Perovskite Degradation  
Information on system state and performance collected over time is referred to as degradation data 
(Meeker et al., 2011). In solar devices (cells, modules, and panels), the natural indicator considered 
to evaluate the degradation is the performance, which is commonly obtained from the I-V curves data 
and contrasted to weather variables such as irradiance and temperature  (IEC 61853-2, 2016). In this 
sense, the failure for an individual device is defined as the time at which the output power dropped to 
20% below the initial output, being this the standard definition of the lifetime of photovoltaic devices 
(T80). It depends on different factors such as materials and procedures used in the device fabrication, 
cell interconnects, weather conditions, seasonal variations, installation conditions, shading and 
soiling effects, an electrical mismatch between cells, among others (Makrides et al., 2014). This 
parameter is commonly obtained from the relationship between the maximum power and time in long-
term analysis for devices under real outdoor operating conditions. Moreover, considering that the 
performance over time shows a seasonal behavior and a gradual performance loss tendency, it has 
been commonly fitted using statistical methods such as linear regression to estimate the degradation 
rate and the T80 (Phinikarides et al., 2014). Also, unsupervised machine learning has been employed 
for analyzing the time-series data and estimate the lifetime (Meyers et al., 2020). 

Currently, the long-term stability or lifetime (T80) of perovskite technology on average is only a few 
months, even for encapsulated devices, corresponding to a degradation rate higher than 100 %/year 
(He et al., 2020). This short lifetime is the result of intrinsic and external aspects (Boyd et al., 2019). 
The intrinsic degradation is mainly related to thermal and light soaking effects, while external 
degradation is mainly related to the ingress of water, moisture, or oxygen into the device. In a general 
way, the degradation effects can be observed as structural changes (MAPbI3 from orthorhombic to 
tetragonal at a high temperature above 330 K), separation or transition phase from “black” perovskite 
(a-phase) into “yellow” perovskite (d-phase). This effect is well-known as bleaching the perovskite 
to a yellow-white color (Domanski et al., 2018), passing before by the hydrated perovskite phase 
(MA4PbI6·2H2O) (Zhao et al., 2016). In these cases, chemical decomposition produces PbI2 solid and 
the formation of NH2CH3, HI, NH3, CH3I (MAPbI3 ® PbI2(s)+ CH3NH3I (MAI), CH3NH3I® 
CH3NH2+HI) (Bisquert and Juarez-Perez, 2019; McLeod and Liu, 2018) or I2 gases (for instance, 
under temperature: MAPbI3 ® CH3I(g) + NH3(g)) (Motti et al., 2019). On the other hand, the ion 
migration observed in devices both with and without hysteresis (Calado et al., 2016) could be 
associated with structural rearrangement, incorporation of MA+ ions or HI in the hole transporting 
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layer (for instance, spiro) that induces deep-level defects (Zhao et al., 2017) because MAI is very 
sensitive to moisture. This fact could quickly produce the release of MA+ ions from perovskite film 
(Ma et al., 2017). Also, this ion migration could produce interfacial charge accumulation or redox 
reactions between metal contacts and iodide, fact observed for silver and aluminum electrodes 
(Grancini et al., 2017). This metal contacts’ chemical degradation is characterized by the I-V curve’s 
S-shape, highlighting that noble metals as Au also lead to corrosion (Guerrero et al., 2016b). 
Furthermore, it has been shown that the illumination-induced degradation in the case of NiOx used as 
the hole transport layer, being the defects of this layer correlated to the interstitial oxygen or Ni

2+ 
vacancies that occur as results of the creation of Ni3+ (2NiO®2Ni3++Niv+2O2-) (Islam et al., 2017). 
These defects or deep traps sites act as sinks for electrons, with recombination of the trapped electrons 
occurring directly with the holes in the perovskite or the transporter layer (Wojciechowski et al., 
2015).  

Accordingly, it is possible to find different mechanisms to improve the lifetime, including the 
encapsulation process/method, kind of perovskite (2D, 3D, Etc.), selective charge contacts or other 
layers involved (Heo et al., 2019), passivation of the interfaces (Yang et al., 2020) or the grain 
boundaries (Zhang et al., 2020). Nevertheless, because the degradation is a complex process that 
depends on the structure (layers) and their interfaces, the degradation studies must be conducted in 
the complete device and not in isolated layers (Liu et al., 2020). Therefore, in this section, only 
encapsulated minimodules with an inverted structure were evaluated. 

 

4.2 Outdoor Test  
To evaluate the perovskite minimodules’ outdoor performance evolution, weather variables such as 
irradiance and ambient temperature (T) as well as the devices’ I-V curves were registered and stored 
every minute during daylight hours (5:30 AM to 6:30 PM) using a previously developed monitoring 
system (Velilla et al., 2019a). To ensure a complete I-V curve, Voc was measured and recorded before 
the measurement. Subsequently, the curve was scanned between -0.5 V and 1.1∙Voc in the forward 
direction. After the scanning, the I-V tracer was disconnected, and the device was in the open-circuit 
condition.  

The collected high-throughput data were processed following the flowchart shown in Figure 3-4. In 
brief, from the I-V curves, photovoltaic parameters such as Voc, the short-circuit current (Isc), the fill 
factor (FF), the photoconversion efficiency, and Pmax were extracted. The irradiances and ambient 
temperatures were also recorded during the I-V measurement (synchronously). Subsequently, the raw 
data were filtered based on the linearity determination criterion to minimize transient effects related 
to changes in irradiance, shadowing caused by clouds or droplets, or atypical data (Velilla et al., 
2019b). Hence, the best-fit data with a deviation of ±5% were selected as the filtered data, 
representing the average conditions of the time window.  

Moreover, the power loss tendency or degradation shape was obtained by calculating the OP observed 
in the measurement sets, each of which contained measurements recorded over 100 hours of outdoor 
exposure. The data in each set were filtered considering a deviation of 5% from the irradiance levels 
corresponding to the power rating conditions (PRCs) indicated by IEC 61853-1 (IEC 61853-1, 2011). 
That is, 1000 W/m2 corresponds to standard test conditions (STC); 800 W/m2 corresponds to NOCT 
conditions; 500 W/m2 corresponds to low-temperature conditions (LTC); and 200 W/m2 corresponds 
to low-irradiance conditions (LIC). The variables were recorded every minute during daylight hours, 
and the time considered to obtain the average OP was slightly longer than four days (100 h). This 
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time is long enough to consider the data recorded in each set to be statistically valid, allowing reliable 
average values for tracking the performance evolution. 

Accordingly, Figure 4-1 shows some photos of the perovskite minimodules exposed to natural 
sunlight, without a tracker, in the facilities of the Solar Cell Outdoor Performance Laboratory of the 
University of Antioquia (OPSUA) in Medellín, Colombia, during January-June 2019. The photos 
highlight physical changes observed for the evaluation of approximately 40 minimodules during 
January and June of 2019. 

 

 

 
Figure 4-1. Installation of perovskite minimodules for the outdoor test. 

a-i) Photos of installed minimodules. These were located close to other solar technologies studied for 
independent works. a-c) corresponding to some samples of the same batch during the first 912 h of exposure. 
d-f) corresponding to some samples of another batch during the first 552 h of exposure.  g-i) corresponding 
to samples that rapidly degraded. Some samples are highlighted with blue, green, and red circles to show 

physical changes observed during the test. 
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4.3 Pmax Patterns 
Figure 4-2 shows a summary of Pmax evolution for the minimodules evaluated under outdoor 
conditions following the procedure proposed in the last chapter (Figure 3-4). The NOCT conditions 
were selected because it is defined as the equilibrium mean solar cell junction temperature of the 
module in the describe environment (IEC 61215, 2003), these conditions reflecting adequately the 
real operating, indicating how the module temperature is affected by solar irradiation, ambient 
temperature and thermal properties of the photovoltaic material (Makrides et al., 2012), these 
conditions are included on the datasheets for commercial solar modules, and NOCT can be reached 
outdoors (Velilla et al., 2019a).  

In this context, the evaluated outdoor samples exhibited three different Pmax evolution patterns over 
time, named convex, linear, and concave patterns, because of the shapes they exhibit, Figure 4-2a. 
These three distinctive patterns are commonly described for degradation processes in the literature to 
study possible degradation paths and estimate the failure time (Meeker et al., 2011). Therefore, these 
Pmax behaviors were fitting to linear models to estimate the degradation rate and T80. In this way, the 
T80 values for the evaluated samples were analyzed in Figure 4-2b in a probability distribution plot. 
This plot indicates that the double Weibull distribution is more suitable to represent the data 
distribution with a shape parameter of c=0.6, suggesting higher mortality early of devices and that 
the failure rate decreases over time. Also, this plot shows three groups, one related to T80 lower than 
200 h, another related to T80 between 380 and 700 h, and the last one related to T80 higher than 1250 
h. These groups agree with the degradation shape of concave, linear, and convex patterns, 
respectively. Therefore, all the analyzed minimodules present behavior that can be statistically 
associated with these three patterns. Finally, Figure 4-2c highlights the behavior of one representative 
sample of each pattern, corresponding to the lower degradation rate of the initial Pmax of 0.29 %/day 
to the convex pattern, a moderate degradation rate of 1.39 %/day to the linear pattern, and faster 
degradation rate of 7.68 %/day to the concave pattern.  

 
Figure 4-2. Summary of Pmax evolution from the outdoor test. 

a) representative power loss tendencies for perovskite minimodules evaluated outdoor at NOCT, highlighting 
the three cases considered representative with thicker lines. b) Probability density of T80 for samples 
evaluated to outdoor test, considering the failure time as the first time at which the power drop 20%. 

Corresponding the blue bars to T80 data, black line to data fit to Normal Distribution function (being the 
parameters:  µ=276.8 and std=478) and green line to data fit to Double Weibull Distribution function (being 

the parameters: c=0.6, loc=80 and scale=453.7). This result suggested 3 degradation levels based on the 
likelihood of T80 values. The first was related to faster degradation (T80 < 200 h) and the most likely, the 

second related to moderate degradation (350 < T80 <700 h), and the third related to lower degradation (T80 > 
1250 h). These levels could be mainly attributed to the minimodules’ manual encapsulation goodness that 
allowed the moisture or water income. c) Degradation Rate (DR) of three representative patterns of each 
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group according to degradation levels suggested by the probability function distribution of T80. 
Corresponding the DR to the slope of linear fitting showed (color lines). The slope of the fitted curves 

provides the degradation rate in %/h units. 

Accordingly, Figure 4-3 shows in the form of boxplots the Pmax evolution of the three representative 
samples of each pattern at STC, NOCT, low irradiance, and low temperature conditions. In these 
cases, similar behaviors are observed for all evaluated power rating conditions related to each pattern, 
allowing validation of the pattern exhibited. In this way, these three Pmax patterns have all been 
previously observed for PSCs (He et al., 2020). For instance, the convex pattern has been observed 
for encapsulated PSCs stored at room temperature, for which the Pmax loss was attributed to interface 
deterioration inducing interfacial recombination, along with perovskite layer degradation related to 
the formation of deeper defect states (Khadka et al., 2018). The linear and convex patterns have both 
previously been observed in nonencapsulated cells under controlled relative humidity conditions, 
depending on the PbI2/MAI ratio (Ma et al., 2017), while the concave pattern has been observed in 
encapsulated cells exposed to different levels of sunlight, suggesting that light intensity is the main 
variable that accelerates the degradation process (Anoop et al., 2020). Moreover, this shape has also 
been observed in nonencapsulated PSCs under different atmospheres and light intensities, with faster 
degradation under higher relative humidity (Domanski et al., 2018), and in nonencapsulated devices 
tested under air exposure, suggesting an increase in electrical traps due to ion migration from the 
perovskite layer to other layers as the main reason for the degradation (Lee et al., 2019). In these 
cases, the controlled atmospheres enabled correlation with the physical origins of the degradation, 
whereas under outdoor conditions, because various factors may be involved in the degradation 
process, determining the physical origin of the degradation is not always possible. 

 
Figure 4-3. Degradation patterns in the maximum power. 

a-c) Maximum power under different power rating conditions suggested by IEC 61863 for the convex, linear, 
and concave patterns. Green boxes correspond to 1000 W/m2 (STC), blue boxes correspond to 800 W/m2 

(NOCT), yellow boxes correspond to 500 W/m2 (low-temperature condition), and gray boxes correspond to 
200 W/m2 (low-irradiance condition) for the (a) convex, (b) linear and (c) concave degradation behaviors. 

The thick black line on each box represents the average performance in the corresponding time window. The 
red line is included as a visual guide to illustrate the shapes related to the convex, linear, and concave 

patterns.  

Intended to obtain more information related to the Pmax patterns, Figure 4-4 shows in the form of 
contour the first 100 h of exposure for the main photovoltaic parameters extracted from the I-V curve. 
The corresponding maps show the average impact of weather variables on Pmax, Voc, and Isc over a 
broad set of T values and irradiances, ranging between 18 and 42 °C and up to 1200 W/m2, 
respectively. These ranges correspond to the most representative values of the weather variables and 
performances recorded during the time window considered. This figure allows us to identify some 
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trends, such as the low-temperature dependence of Voc, which was identified as a competitive 
advantage of perovskite in the last chapter and remarked in (Velilla et al., 2019b). In this regard, the 
data related to the convex pattern (Figure 4-4a,d,g) and the linear pattern (Figure 4-4b,e,h) follow 
the expected trend, with Pmax, Isc, and Voc increasing with increasing irradiance but showing only a 
low sensitivity to temperature. In contrast, concave pattern sample data do not exhibit this monotonic 
variation, instead of showing local maxima or minima at various irradiance levels and temperatures 
(Figure 4-4c,f,i). Moreover, when a lower total sampling time of 50 h is considered, the T80 of this 
sample is estimated to be 80 h (see Figure 4-5), indicating that during the first 100 h of exposure, fast 
degradation occurs, causing the nonmonotonic behavior depicted in Figure 4-4c,f,i. Also, based on 
Figure 4-2c, it is observed that the sample with the concave shape degrades faster (T80=80 h) than 
the sample with the linear pattern (T80=414.2 h), while the one with the convex pattern shows the 
slowest degradation rate (T80=1442.2 h).  

 

 

 
Figure 4-4. Normalized outdoor performance of the three representative samples. 

a-c) Maximum power; these data are also used to calculate the first point values for 100 h of exposition time 
plotted in Figure 4-3a-c. d-f) Short-circuit current. g-i) Open-circuit voltage. Panels (a), (d), and (g) 
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correspond to a device with a convex Pmax shape, according to Figure 4-3a. Panels (b), (e), and (h) 
correspond to a device with a linear Pmax shape, according to Figure 4-3b. Finally, panels (c), (f), and (i) 
correspond to a device with a concave Pmax shape, according to Figure 4-3c. The color bar indicates the 

variable range. At the top of each plot, the maximum recorded value used to normalize each variable’s data is 
shown. These figures only considered the data during the first 100 h of exposure. 

 
Figure 4-5. Concave Pmax pattern. 

Pmax at NOCT considering a sampling time of 50 h. The solid red line corresponds to a 20% loss of power and 
is used to calculate T80. Hence, the estimated T80 is 80 h. 

In this context, the degradation in Pmax can be mainly attributed to the decreases in Voc and Isc for the 
convex and linear patterns, respectively. In contrast, both parameters are significantly degraded for 
the concave pattern, as is shown in Figure 4-6 and  Figure 4-7. These trends can be observed in a 
proper way normalizing the variables extracted from the I-V curve (Figure 4-7) concerning the initial 
values (Figure 4-6a-c), in order to fit their behaviors to linear regression models and estimate the 
degradation rates (DR) by sections (Figure 4-6d-f). Therefore, it is possible to observe some features: 

a) Related to Pmax convex pattern, this variable, and the Voc can be modeled by 2 linear models, 
corresponding the DR value for the second section to 2 times first section’s value for both 
variables. In contrast, the Isc can be modeled by only one linear model characterized by a DR 
value of 0.0023 %/h. These results indicated that the main power drop is because of the 
changes in Voc. 

b) Related to Pmax linear pattern, this variable, and the Voc can be modeled by 2 linear models. 
Nevertheless, the corresponding DR value for the second section for Pmax is lower than the 
DR value of the first section (0.035 and 0.058 %/h, respectively). For Voc, the DR for the 
second section is 16 times the first section’s value (0.035 and 0.0022 %/h, respectively). Isc 
can be modeled by only one linear model characterized by a DR value of 0.0029 %/h. These 
results indicated that the main power drop is because of the changes in Isc. 

c) Related to Pmax concave pattern, all variables can be modeled by 2 linear models, 
corresponding the second section’s DR values to the lower DR values for each variable. 
Moreover, in the first section, similar DR values for Voc and Isc were obtained. These results 
indicated that the power drop is because of both variables’ changes (Isc and Voc). 

d) Accordingly, Pmax convex and linear patterns share similar trends, characterized by constant 
DR for Isc, indicating a constant reduction in the charge extraction. Also, both Voc patterns 
shown a double increase in the DR after a specific time (1400 and 1000 h for convex and 
linear patterns). This fact could be associated with surface traps allowing the charge 
recombination, increasing the device’s series resistance, and causing the voltage drop. 
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Figure 4-6. Normalized behavior for photovoltaic parameters. 

Corresponding a) for variables related to Pmax convex pattern, b) for Pmax linear pattern, and c) for Pmax 
concave pattern. d) Maximum power for all patterns. e) Isc for all patterns and f) Voc for all patterns. The 
green color corresponds to Pmax convex pattern, the blue color corresponds to Pmax linear pattern, and the 
gray color corresponds to Pmax concave pattern. Solid lines correspond to the fits and color markets to the 

data. The variables were normalized concerning each variable’s initial value shown in Figure 4-7. 
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Figure 4-7. Outdoor performance for photovoltaic parameters. 

Corresponding a-c) for Pmax, d-f) for Isc, and e-g) for Voc. a,c, and g) for convex pattern, b,e and h) for linear 
pattern and c,f, and i) for concave pattern. Black lines are related to STC and blue lines to NOCT. Thick lines 

correspond to the mean values of variables, while the thin lines correspond to the standard deviation of the 
variables in the window time. 

 

4.4 Ideality Factor Patterns 
The outdoor data related to the three representative samples correlated to each Pmax pattern (Figure 
4-3) were analyzed following the methodology explained in the chapter 2 related to the ideality factor. 
Therefore, the average nID values were calculated using Equation 5, considering different 
measurements of Voc recorded at different irradiance levels in every 100 hours of the high-throughput 
data under the flowchart Figure 3-4, taking advantage of the different levels of illumination caused 
by day-night cycles to collect a large amount of data across a broad range of illumination conditions.  

Figure 4-8 shows as an example the procedure to estimate the nID using the data for the sample with 
Pmax convex pattern during the first 100 h of exposure. The raw data (full data during the first 100 h) 
are filtered, applying a linearity determination criterion to minimize the influence of atypical data or 
data related to unclear days, shadowing, dirt, or droplets on the surface. In this regard, the best-fit 
data with a deviation of  ± 5% are selected as the filtered data, representing the average conditions 
during the exposure time,  

Figure 4-8a. Then, the data are filtered by the ambient temperature to extract the Voc and irradiance 
values correlated to this temperature. These Voc and irradiance values are used in accordance with the 
Equation 5 to estimate the nID values,  

Figure 4-8b. Accordingly, to consider the deviations from the average value due to temperature 
changes, nID values are estimated by calculating this parameter in the measurement sets, filtering the 
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data by temperatures between 25 and 37 °C in steps of 2 °C with a deviation of ±1 °C. Then the mean 
value of each dataset is considered as the average nID value. The results during the exposure time for 
the representative samples are shown in Figure 4-9 in the form of boxplots to illustrate the deviations 
from the average value and data distribution for the samples analyzed. 

 
Figure 4-8. Procedure to estimate nID from Outdoor Data. 

a) Linearity determination criteria to filter the data from atypical data, related to unclear days, dirty or drop 
on the surface. At the top is shown the coefficient of determination (r-value), estimated from the fitting 

process between Pmax and irradiance. This value is close to 1, indicating a linear behavior between variables. 
The gray points correspond to data measured in the exposure time considered, and the color dots correspond 
to data considered as filtered and representative of the dataset. In this case, the filtered data correspond to 

the average conditions during the 100 h of exposure. b) Ideality factor estimated considering different 
ambient temperatures and the data registered between 0 and 100 h of exposure. The parameters estimation of 

nID for the linear regression in accordance with Equation 5 is shown in Table 4-1. 

 

Table 4-1. Parameters related to the fit of Voc and Irradiance to estimate nID. 

Temperature 
(0C) 

nID r-value Slope Intercept  

25 1.58 0.98 0.16 2.57 
28 1.67 0.98 0.17 2.48 
30 1.81 0.99 0.18 2.37 
32 1.86 0.99 0.19 2.32 
35 1.91 0.97 0.20 2.25 

 

The nID results showed in Figure 4-9 also exhibits three distinct evolution patterns or shapes. 
Precisely, a convex Pmax evolution pattern corresponds to a concave nID evolution pattern (Figure 
4-9a) and vice versa (Figure 4-9c). In contrast, for a linear Pmax pattern, a linear nID pattern is observed 
(Figure 4-9b). In the cases of convex Pmax/concave nID patterns (Figure 4-3a and Figure 4-9a) and 
linear patterns (Figure 4-3b and Figure 4-9b), at times earlier than T80 (1442.2 and 414.2 h, 
respectively), nID takes values between 1 and 2, indicating bulk Shockley-Read-Hall (SRH) 
recombination (Tress et al., 2018). It is a characteristic of most PSCs as this result was obtained from 
fresh devices characterized under indoor conditions in chapter one (Figure 4-11). For longer times, 
nID exhibits values above 2, characteristic of a multiple-trap distribution, originating from the 
formation of trap states, causing the performance degradation, as pointed out by Khadka et al. 
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(Khadka et al., 2018). In concave Pmax/convex nID patterns (Figure 4-3c and Figure 4-9c), the initial 
values of nID are higher than 2, indicating fast degradation in the first 100 h of exposure due to the 
formation of multiple trap states. Interestingly, after the initial increase in nID, a progressive decrease 
is observed in the concave (Figure 4-9c) and convex (Figure 4-9c) cases, suggesting evolution from 
bulk recombination to interfacial recombination. This behavior does not imply a recovery in device 
performance; it only indicates a transition between two different recombination regimes in the 
degradation process, from multiple-trap recombination to a regime with higher interfacial 
recombination. 

 
Figure 4-9. Patterns of the ideality factor. 

a-c) Ideality factor analysis of the three samples: (a) nID exhibits a concave pattern for samples exhibiting a 
convex Pmax pattern, (b) nID exhibits a linear pattern for samples exhibiting a linear Pmax pattern, and (c) nID 

exhibits a convex pattern for samples exhibiting a concave Pmax pattern. The average nID was calculated using 
all data points recorded during each 100 h period. The boxplots were estimated by calculating nID, filtering 
the data by T between 25 and 37 °C in steps of 2 °C with a deviation of ±1 °C, and obtaining the maximum 

and minimum nID to define the upper and lower bars, respectively. The thick black line on each box represents 
the average performance in the corresponding time window. The red line is included data as a visual guide to 

illustrate the shapes related to the convex, linear, and concave patterns. 

It is worth noting that results in Figure 4-9 were estimated in accordance with Equation 5 using the 
ambient temperature to simplify the methodology and the number of variables to record in the outdoor 
test. Nevertheless, to determine the impact of the device temperature in the estimation of the ideality 
factor, the data related to Pmax convex pattern were used to estimate this parameter. In this sense, 
Figure 4-10a shows the relationship between ambient and device temperature, which depicted a 
linear behavior characterized by the figure’s inset equation and demonstrated by the r-value close to 
1 shown at the top. Figure 4-10b shows the results of calculating the nID using the device temperature. 
This behavior is very similar to the nID behavior obtained in Figure 4-9a using the ambient 
temperature. Therefore, to compare in a better way both behaviors, Figure 4-10c shows the average 
values and standard deviation of the variable in the measurements sets, which contain the data over 
100 h of exposure. Hence, the error between both estimations was 4.3%, which was calculated using 
the Euclidean norm between the difference of both estimations. Consequently, it was possible to 
validate that using the ambient temperature instead of device temperature allowed us to estimate 
reliable values to track the evolution (because this estimation introduces a relative error lower than 
5%) and simplifies the number of outdoor variables. 
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Figure 4-10. Estimated ideality factor using the device temperature. 

a) Relationship between ambient and minimodule temperature during the first 100 h of exposure. 
Corresponding the points to measured data and the solid red line to the linear regression fit. The 

corresponding coefficient of determination of the fits is shown at the top. b) Ideality factor calculated 
considering the device temperature instead of the ambient temperature. The boxplots were obtained by 

calculating the variables observed in the measurement sets, each of which contained measurements recorded 
over 100 hours of outdoor exposure. The thick black line on each box represents the median value, while the 
blue boxes represent 50 % of the data in the corresponding time window. c) Comparison of ideality factor 
calculated using the device and ambient temperature. Solid lines of each color correspond to the estimated 

average nID values and dotted lines to the standard deviation of the variables. These values were estimated by 
calculating the nID values in the corresponding time window for ambient temperatures ranging between 25 

and 35 0C and device temperature between 25 and 45 0C in steps of 2 °C. 

Accordingly, two methods used for nID determination have been verified through indoor 
measurements in chapter one, Figure 2-24-Figure 2-27. In this way, considering the excellent 
agreement with the nID values calculated with the implemented procedure, two representative samples 
of minimodules were analyzed following procedure shown in Figure 2-24. Figure 4-11a shows the 
nID calculated from the Voc fitting at different light intensities using Equation 5, which is close to 1.6 
by the new device and higher than 3 for the degraded device. Figure 4-11b shows the impedance 
spectrum at various light intensities for both devices (fresh and degraded), which were fitted to the 
equivalent circuit to extract the Rrec and calculated the nID in accordance with Equation 6, considering 
negligible transport and charge transfer resistances in both the bulk and the contact layers and at 
interfaces (Yoo et al., 2019). Hence, nID value can be calculated from the slope of the logarithmic plot 
of Rrec vs. Voc, estimating a value close to 1.5 by the new device and 3.4 for the degraded device, 
Figure 4-11c. Here, both methodologies’ estimated values show similar results, validating the 
procedure, allowing us to observe that the degraded device shows surface recombination based on the 
higher nID value, while the fresh device is characterized by SHR recombination in bulk. 
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Figure 4-11. Ideality factor under indoor conditions for minimodules. 
a) Calculation of nID from the relationship between the open-circuit voltage and the irradiance level, where 

the solid lines correspond to fits in accordance with Equation 5. These data indicate that an nID = 1.6 for the 
new device and 3.5 for the degraded device. b) Nyquist diagrams of impedance at different light intensities 
(experimental data, plotted as dots) and their corresponding fits (plotted as solid lines) for the new device 

(upper plot) and for the degraded device (lower plot). The fits correspond to the best solutions obtained using 
a genetic algorithm combined with the simplex method to minimize the error between the experimental data 
and the circuit model according to Equation 1. c) Calculation of nID from the relationship between Rrec and 

Voc using Equation 6. The linear regression fits indicate that nID = 1.5 for the fresh or new device and 3.4 for 
the degraded device. The measurements were carried out at room temperature (25°C). 

 

4.5 Complementary Analysis between Pmax and nID Patterns 
A complementary analysis to the Pmax methodology can be performed by considering the average nID 
values over time. Hence, we normalized the average Pmax under NOCT conditions concerning the 
average value obtained for each sample during the first 100 hours of outdoor exposure in order to 
estimate the T80 (Figure 4-2c and Figure 4-6). This result is shown in Figure 4-12, and by defining 
TnID2 as the time in which the value of nID first reaches 2, it is possible to observe that for times longer 
than T80 (Figure 4-12a), nID exhibits values higher than 2 (Figure 4-12b). Accordingly, Figure 4-12c 
analyzes the relation between TnID2 and T80, showing a strong linear relationship. This linear 
relationship indicates that these parameters are correlated and complementary probes of the 
degradation processes occurring in the devices. T80 provides valuable commercial information and a 
clear idea of a fundamental property of a photovoltaic module, namely, its lifetime, which is a key 
concern for the customer.  

On the other hand, TnID2 has a physical meaning related to the transition point from bulk SRH 
recombination through a single level to recombination through multiple levels as a result of device 
degradation (Tress et al., 2018). The linear relationship between these parameters indicates that the 
degradation processes causing the reduction in device performance, as monitored by T80, manifest as 
a change in the recombination mechanism, as tracked by TnID2. Accordingly, the complementarity 
shown in Figure 4-12 between these two parameters allows us to correlate the commercial parameter 
with a parameter that has physical meaning. This fact has important implications for the commercial 
development of perovskite photovoltaics for outdoor applications. Therefore, although it is not 
possible to extract direct conclusions from T80 regarding the degradation mechanisms and how the 
recombination pathways evolve during the degradation process, it is possible to obtain 
complementary information from TnID2 to correlate changes in nID with recombination mechanisms 
or degradation processes occurring in a device. Establishing this correlation will provide critical 
complementary insight regarding the fundamental recombination within PSCs, which can be linked 
to T80. This relationship can then be used to improve the characterization and understanding of the 
outdoor degradation processes affecting PSC technologies, aid in evaluating other cell configurations 
and/or encapsulants, and potentially assist in linking outdoor data to indoor tests. 
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Figure 4-12. Relationship between T80 and nID. 

a) Average Pmax under NOCT conditions for samples normalized concerning the initial average value during 
the first 100 h of exposure. The red dashed line corresponds to a 20% loss of power and is used to calculate 
T80. The symbols represent the normalized average power (see Figure 4-3) for three samples exhibiting the 
three different characteristic patterns. The solid line of each color represents the corresponding fit to the 

experimental data (see Table 4-2). b) Ideality factor over time for the samples analyzed in (a). The red dashed 
line corresponds to nID = 2 and is used to calculate TnID2. The colored markers represent the average nID 

values extracted from the experimental data (see Figure 4-9). The solid line of each color corresponds to the 
fit to the data with the corresponding pattern (see Table 4-2). c) Relation between the time to reach a 20% 
power loss (T80) and time to reach an nID value higher than 2 (TnID2). The blue line corresponds to the fit to 

the data, T80=1.2TnID2 +60.1. In all cases, solid lines correspond to fits (see Table 4-2), while colored 
symbols correspond to the fitted data. 

Table 4-2. Fitted functions for Pmax and nID. 

Patterns Fitted function 
Pmax convex 
/nID concave 

Pmax(t)=100-15.9exp(6.4e-4t)+20.2exp(-2.8e-11t) 
nID(t)=1.3+0.02exp(0.003t)-3.0exp(-3.33t)  

Linear Pmax(t)=-0.04t+98.6 
nID(t)=0.002t+1.4 

Pmax concave 
/nID covex 

Pmax(t)=100-83.4exp(-2.01e-10t)+122.3exp(-0.008t)   
nID(t)= 6-0.5382exp(0.0022t)-47.1329exp(-0.0319t)+0.5451exp(-0.0063t) 

 

Therefore, the faster power loss observed for samples with concave Pmax/convex nID patterns can be 
associated with failures of the encapsulation that allowed moisture ingress, bleaching the perovskite 
to a yellow-white color (Domanski et al., 2018); see Figure 4-1. Similarly, a rapid power drop, within 
less than 5 days, has also been observed in encapsulated perovskite minimodules under outdoor 
conditions due to a breach of the edge sealant that allowed water ingress, along with the associated 
color change (Stoichkov et al., 2018). For devices exhibiting convex Pmax/concave nID data or linear 
data, there was no evidence of color change even after more than 900 hours of exposure; nevertheless, 
they also degraded, indicating another kind of degradation mechanism. Note that encapsulation 
protects against not only moisture ingress but also degradation originating from the release of organic 
components of MAPbI3 into the atmosphere. Different MAPbI3 degradation reactions result in the 
formation of a PbI2 solid and NH2CH3, HI, NH3, CH3I (Bisquert and Juarez-Perez, 2019; McLeod 
and Liu, 2018), or I2 gases (Motti et al., 2019). Correspondingly, samples exhibiting convex 
Pmax/concave nID or linear patterns show different degradation rates associated with differences in the 
quality of the encapsulation process. During the first stage (when nID<2), the samples undergo SRH 
recombination dominated by lead vacancies and interstitial halogen (Motti et al., 2019). However, the 
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formation of different types of gases leads to the appearance of multiple trap states, causing nID to 
become higher than 2. These gases can be released into the atmosphere through tiny pores formed 
during the encapsulant preparation or produced by its degradation. Convex Pmax/concave nID patterns 
could indicate of the latter case, where the rate of degradation increases after a specific time (see 
Figure 4-2c and Figure 4-6). 

 

4.6 Comparison between nID, Pmax and Rrec.  
The last section shows an essential and complementary analysis of nID to Pmax to extract direct 
conclusions regarding the degradation mechanisms and how the recombination pathways evolve 
during the degradation process. Therefore, tracking the ideality factor helps us observe changes in the 
device recombination process, for instance, from bulk to surface recombination. This nID values can 
be validated under indoor conditions. Moreover, because the agreement between the nID values 
estimated from the recombination resistance extracted through IFR analysis and the values calculated 
from Voc at different light intensities in accordance with Equation 5, it is also possible to correlate 
the Pmax behavior with the Rrec behavior in order to obtain complementary information.  

A comparative analysis intended to highlight the relationship between Pmax and nID/Rrec related to 
recombination processes was performed in this regard. Hence, we simultaneously monitoring two 
minimodules with similar structure to the minimodules fabricated in this work (between May and 
November of 2018), but in large areas (50 and 70 cm2, respectively) and using silver instead of gold 
as contact. Pmax and nID were estimated from the outdoor data in accordance with the procedure shown 
in Figure 3-4, while Rrec was estimated fitting the IFRs to the equivalent circuit shown in Figure 2-21 
to calculate the Rrec values.  

Figure 4-13 shows some photos of monitored minimodules, remarking an important fact about the 
color change in the back electrode, which was visibly in the first hours of exposure. This color change 
was more evident in the device with an active area of 50 cm2. Besides, considering that both samples 
never shown visual effects related to moisture ingress or bleaching the perovskite to a yellow-white 
color during the outdoor test, it was discarded that the color change in the back electrode could be 
related to moisture ingress. 

Consequently, considering that the color of the back electrode changed, it is expected that behavior 
could be reflected in the impedance of the devices. In this way, some points related to the IFR over 
the time for both minimodules are remarked: 

a) From the Nyquist diagram of impedances, Figure 4-14 shows significant changes in the 
device’s impedances with an active area of 50 cm2 compared with the impedance of another 
device. 

b) In a general way, related to the impedance at low frequencies, both samples showed a 
decreasing behavior until to reach the lower impedance values, corresponding these values 
to the impedance measured at 1541 h of exposure for both samples, Figure 4-14c,f. This 
decreasing behavior was more progressive in the device with an active area of 70 cm2, Figure 
4-14b,e.  

c) From the impedance patterns in the Nyquist diagram, another arc’s formation is observed at 
low frequencies. This arc could be correlated with superficial changes or charge accumulation 
in the surfaces of the device.  
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Figure 4-13. Evidence of electrode color change. 
a-b) photos of samples during a different time, a) installed day 0 h and b) 168 h after installation. c-e) photos 

of the back part of the same sample located at the left top of the panel (a) to show the color change in the 
electrode. Corresponding c) to mounted sample in the outdoor test and d) to unmounted sample to observe the 

full-back part of device and e) to minimodule of 70 cm2 located at the right top of the panel (a). 

 

 
Figure 4-14. Nyquist diagram of impedance for larger minimodules. 

Corresponding a-c) to minimodule with an active area of 50 cm2. d-f) to minimodule with an active area of 70 
cm2. a, and d) correspond to representative patterns, while b, c, e, and f) correspond to total measurements 

divided into two sets. 
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From the Bode diagrams, Figure 4-15 and Figure 4-16, other aspects could be remarking: 

a) The magnitude impedances spectrums clearly show that during the first 1000 h of exposure, 
the main changes were performed at low frequencies, while the impedances at high 
frequencies were almost constant, Figure 4-15b,e. Notably, for the device that not evidenced 
significant color change in the back electrode (the device with an active area of 70 cm2), the 
impedance at high frequencies was constant during the exposure. While the other device 
showed significant changes at high frequencies, suggesting that the impedance changes could 
be associate with the color change observed in the device, Figure 4-13.  

b) The capacitance spectrums shown in Figure 4-16 allowed us to validate the last statement 
because the bulk capacitance observed at high frequencies was almost constant for larger 
device (70 cm2). However, this bulk capacitance changed dramatically for the device that 
showed a significant color change in the back electrode. Suggesting that this behavior at high-
frequencies could be correlated with the charge accumulation on the surface of devices, 
affecting the device’s geometrical capacitance.  

 

 
Figure 4-15. Bode diagram of impedance magnitude for larger minimodules. 

Corresponding a-c) to minimodule with an active area of 50 cm2. d-f) to minimodule with an active area of 70 
cm2. a, and d) correspond to representative patterns, while b, c, e, and f) correspond to full measurements 

divided in two sets. 
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Figure 4-16. Bode diagram of capacitance for the larger minimodules. 

Corresponding a-c) to minimodule with an active area of 70 cm2. d-f) to minimodule with an active area of 50 
cm2. a, and d) correspond to representative patterns, while b, c, e, and f) correspond to total measurements 

divided into two sets. 

Accordingly, to compare the Pmax and nID behavior with the Rrec behavior, the Rrec values over time 
for both samples were estimated, fitting the IFR measurements to the equivalent circuit shown in 
Figure 2-21 to extract this parameter. Figure 4-17 compares the three variables normalized 
concerning the mean value of the first 100 h of exposure. The complete outdoor performance for both 
samples is shows in Figure 4-18 and Figure 4-19.  

From the results shown in Figure 4-17, it can be observed that Pmax exhibits monotonic behavior, 
while nID and Rrec show similar and richer patterns that allow the changes in the recombination 
mechanism to be tracked more directly than can be achieved with Pmax. For example, nID is constant 
in both examples during the first hours, while Rrec decreases, pointing to an increase in the SRH 
defects density. At 800 h, nID increases while Rrec increases. The nID evolution indicates multiple level 
defect formation while the Rrec increase points to an increase of transport resistance due to the 
apparition of defects, as recombination resistance and transport resistance are coupled in perovskite 
solar cells. These observations illustrate the valuable complementarity that the determination of nID 
can provide for studying and understanding outdoor PSM tests. This approach can be employed as a 
diagnostic tool to detect initial failures or validate the device’s status.  



 39 

 
Figure 4-17. Comparison between Pmax, nID, and Rrec from the outdoor test. 

a) data related to MAPI minimodule of 70 cm2 of active area (sample on the top of left part in Figure 4-13a-
b). b) data related to MAPI minimodule of 50 cm2 of active area (sample on the top of right part in Figure 

4-13a-b). Pmax and Rrec are represented in the left axis, while the right axis is related to nID. Also, red dashed 
lines are included to indicate the T80 and TnID2, while color lines are included as a visual guide to show the 

variables’ behavior. 

It is worth noting that despite both devices were fabricated and evaluated under similar conditions, 
and both devices exhibited similar trends between Pmax and Isc (Figure 4-18e and Figure 4-19e), 
hence, some particularities could be remarking: 

a) The Pmax evolution for the sample with an active area of 50 cm2 could be correlated to the 
convex pattern, Figure 4-18a and e. This pattern was also evidenced in the first 1500 h of 
exposure for the nID behavior depicted in Figure 4-18f. Nevertheless, the initial nID values 
are higher than 2, pointing to surface recombination, fact in accordance with the lower Voc 
(lower than 5.6 V), Figure 4-18d. The Voc exhibits a decreasing behavior that agrees with the 
impedance changes observed at high frequencies, which shown in a general way an increasing 
behavior over time (Figure 4-15a-c), suggesting changes on the surfaces or on the electrode 
contacts. Also, based on the capacitance behavior depicted in Figure 4-16a-c, it is observed 
changes in the capacitance at low frequency, suggesting changes in the bulk. In contrast, 
changes at high frequency suggesting changes on the electrodes.  

b) The Pmax evolution for the sample with an active area of 70 cm2 could be correlated to the 
linear pattern, Figure 4-19a and e. Behavior in accordance with the linear nID behavior 
depicted in Figure 4-19f. Which is characterized by nID values lower than 2 in the first hours 
of exposure and almost constant Voc values (close to 7 V considering the 8 cells in series). 
Also, based on the capacitance behavior depicted in Figure 4-16d-f, the capacitance’s main 
changes were at low frequency, which suggests charge accumulation or changes on the 
electrodes’ surface. This fact is evidenced in the formation of the second arc at low frequency 
in the Nyquist diagram.   

c) Finally, based on the decreasing behavior shown by the photocurrent, the almost constant 
behavior by Voc, and the increasing behavior shown by nID for both devices, it suggests that 
the decrease of the charge extraction observed by the Isc behavior could be correlated to 
surface recombination because of the multiple level defect formation indicated by the nID 
values.  
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Although other analyses are necessary to correlate the ion migration or other physical/chemical 
phenomena with the change color of the back electrode. It is possible to infer that the capacitance 
changes at low frequency observed as the formation of another arc in the impedance Nyquist diagrams 
could be correlated with the electrode’s charge accumulation (Caram et al., 2020). The charge 
accumulation on electrodes could produce the redox reactions between metal contacts and iodide for 
silver electrodes, as was pointed in (Grancini et al., 2017), producing the interfacial degradation of 
the metal contact (Guerrero et al., 2016b).  This accumulation of negatively charged ions (I-) in the 
ETL is because of the drift of ionic vacancies as it was observed in MAPI with symmetric gold 
electrodes (Li et al., 2018) or complete perovskite devices (Bertoluzzi et al., 2019). Therefore, this 
mechanism could be mainly correlated with the formation of multiple level defects observed in the 
nID/Rrec behavior.  

 

 
Figure 4-18. Outdoor performance for minimodules with an active area of 50 cm2. 

a) Maximum power. b) short-circuit current. c) Open-circuit voltage. d) Open-circuit voltage at STC and 
NOCT. e) Normalized variables concerning the mean values of first 100 h of exposure. f) Ideality factor from 

outdoor data. 
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Figure 4-19. Outdoor performance for minimodule with an active area of 70 cm2. 

a) Maximum power. b) short-circuit current. c) Open-circuit voltage. d) Open-circuit voltage at STC and 
NOCT. e) Normalized variables concerning the mean values of first 100 h of exposure. f) Ideality factor from 

outdoor data. 
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4.7 Conclusions 
This chapter presented a complementary methodology based on evaluating the ideality factor for 
monitoring the outdoor performance of halide perovskite solar cells, which can improve device 
characterization under outdoor testing conditions. This methodology takes advantage of the properties 
of this new class of photovoltaic technology and the direct relationship between nID and the 
recombination pathway to provide insight to enable improved data interpretation and understanding 
of the device degradation processes under outdoor conditions that are relevant to the commercial 
application of PSCs. By applying this methodology, a high-throughput outdoor performance analysis 
of MAPbI3 minimodules was carried out following the international standard IEC 61853-1 to evaluate 
the impact of weather variables on performance. The collected data were processed in measurement 
sets based on measurements recorded over 100 h of exposure. In each set, nID was calculated while 
taking advantage of the different illumination conditions encountered during day-night cycles. The 
outdoor performance was calculated based on the NOCT power rating conditions identified in the 
IEC 61853-1 standard. 

Taking advantage of the low dependence of PSCs on temperature, we proposed and then 
demonstrated an analysis of outdoor performance using nID. The main advantage of this approach is 
that it provides direct physical insight related to recombination processes. To this end, we defined 
TnID2 as the time at which nID first reaches a value of 2, with a physical meaning related to the 
transition point between bulk SRH recombination through a single level to recombination through 
multiple levels because of device degradation. We showed that the three different degradation patterns 
identified for Pmax can also be identified by monitoring nID. Also, based on the linear relationship 
between T80 and TnID2, these two indexes are correlated. Consequently, it is possible to take advantage 
of their complementarity for the future development of PSCs. While T80 provides direct commercial 
information, namely, the module lifetime, TnID2 provides direct information on recombination 
behavior and physical insight into the device state. Therefore, the proposed method provides a deeper 
understanding of the evolution of recombination processes originating from different degradation 
mechanisms, revealing not just the degradation profile but also how it is produced in terms of 
recombination pathways. This complementarity is especially interesting for photovoltaic devices 
whose outdoor behavior is under study, development, and optimization, as is currently the case for 
perovskite solar cells. 

Finally, it should be noted that each technology has its peculiarities, which often necessitate the 
revision of characterization methods, and PSCs are no exception. Proof of this is provided by the very 
recent consensus related to the stability measurement of PSCs. Here, we contribute to this discussion 
by providing a high-throughput analysis that takes advantage of the peculiarities of perovskite 
technology to determine the outdoor performance of PSCs. Regarding future systematic studies of 
PSCs operating outdoors, we recommend reporting data collected under the NOCT power rating 
conditions suggested by IEC 61853-1, which are commonly addressed in datasheets for commercial 
technologies and are possible to achieve under outdoor tests. The complementary analysis and 
determination of nID can provide critical information for device characterization and the 
understanding of degradation processes to accelerate the optimization of this technology or other 
technologies with similar properties that could be under development. 
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5. General Conclusions 
 

Here, minimodules of approximately 8 cm2 and 4 sub-cells connected in series were fabricated and 
encapsulated with EVA. The reached higher efficiencies (close to 12 %) were in the current range 
reported in the literature for minimodules with a similar area, that is, between 10 and 17 % (Liu et 
al., 2020). Besides, the higher FF and Voc allowed validation of the performed interconnection process 
to reduces electrical losses. This is the main advantage of the series connection of cells instead of 
large-area (monolithic) solar cells. 

The devices were characterized not only by the I-V curve data but also by the ideality factor and 
impedance spectra. In this regard, an Autolab procedure was implemented to estimate the nID under 
indoor conditions, in accordance with the flowchart shown in Figure 2-26. Therefore, an optimization 
process combining genetic algorithm and Simplex method was implemented to estimate the nID values 
from the impedance spectra as a function of light or form the I-V curve data. It is worth noting that 
the fitted impedance frequency response using the equivalent circuit model successfully reproduced 
the impedance patterns under different light conditions for minimodules, cells, and incomplete cells. 
This fact highlighted the accuracy of the implemented optimization process and the robustness of the 
selected equivalent circuit to model the perovskite devices’ impedance frequency response. 

To evaluate the outdoor performance of PV devices under natural sunlight without a tracker, the 
developed solar tracers were synchronized with the monitoring system to measure the I-V curve 
following IEC 61853-1, providing a complete characterization of the devices under various irradiance 
and temperature conditions, allowing determination of the impact of weather variables on Pmax, Voc, 
and Isc. This procedure was implemented in Python functions on remote server to estimate the power 
rating conditions of photovoltaic technologies such as silicon, HIT, CIGS and perovskite.  

The outdoor performance allowed a comparison of the emerging perovskite technology with a well-
known and optimized silicon technology, observing similarities between photovoltaic parameters 
such as power delivery. Hence, higher values of the normalized short circuit current for perovskite 
modules were obtained when compared to the silicon modules, suggesting that perovskite technology 
can produce higher relative current values in a broader range of irradiances. Besides, the positive 
temperature dependence of the Voc under high irradiance levels was also observed for perovskites 
minimodules. These results show for the first time that perovskite minimodules can be a robust PV 
technology to be used under outdoor conditions. This positive performance dependence on 
temperature and irradiance is a competitive fact in development of this technology. 
On the other hand, the perovskite minimodules outdoor evaluation allowed observation of three 
maximum power (Pmax) evolution patterns, named convex, linear, and concave patterns because of 
the exhibited shapes. In this sense, all the analyzed minimodules can be statistically associated with 
one of these three patterns, commonly described for degradation processes in the literature to study 
possible degradation paths and estimate the failure time. Therefore, to analyze these degradation 
behaviors (estimated at STC and NOCT), well-known statistical models such as linear regression 
models were used to estimate the degradation rate and lifetime (T80).  

Besides, due to the day-night cycles, including dawn and noon conditions, which can naturally 
provide a broad range of illumination conditions, it was proposed to estimate nID from the open-circuit 
voltage (Voc) dependence on irradiance and ambient temperature (outdoor data). Consequently, 
because this parameter has been used to define solar device’s electrical behavior due to its relationship 
with conduction, transport, recombination, and behavior at interface junctions, the changes in nID 



 44 

could be correlated with the recombination mechanisms or degradation processes occurring in the 
device. In this context, it was observed that the three different degradation patterns identified for Pmax 
can also be identified by nID, highlighting the importance for evaluating the ideality factor and 
monitoring the outdoor performance of halide perovskite solar cells.  

Finally, taking advantage of the low dependence of PSCs on temperature, it was proposed and then 
demonstrated an analysis of outdoor performance using nID. The main advantage of this approach is 
that it provides direct physical insight related to recombination processes. To this end, we defined 
TnID2 as the time at which nID first reaches a value of 2, with a physical meaning related to the 
transition point between bulk SRH recombination through a single level to recombination through 
multiple levels because of device degradation. Also, based on the linear relationship between T80 and 
TnID2, these two indexes are correlated. Consequently, it is possible to take advantage of their 
complementarity for the future development of PSCs. While T80 provides direct commercial 
information, namely, the module lifetime, TnID2 provides direct information on recombination 
behavior and physical insight into the device state.  

 

  



 45 

6. References 
 

Agarwal, S., Seetharaman, M., Kumawat, N.K., Subbiah, A.S., Sarkar, S.K., Kabra, D., 
Namboothiry, M.A.G., Nair, P.R., 2014. On the Uniqueness of Ideality Factor and Voltage 
Exponent of Perovskite-Based Solar Cells. J. Phys. Chem. Lett. 5, 4115–4121. 
https://doi.org/10.1021/jz5021636 

Agroui, K., 2012. Indoor and Outdoor Characterizations of Photovoltaic Module Based on 
Mulicrystalline Solar Cells. Energy Procedia 18, 857–866. 
https://doi.org/10.1016/j.egypro.2012.05.100 

Almora, O., Aranda, C., Mas-Marzá, E., Garcia-Belmonte, G., 2016. On Mott-Schottky analysis 
interpretation of capacitance measurements in organometal perovskite solar cells. Appl. Phys. 
Lett. 109, 173903. https://doi.org/10.1063/1.4966127 

Almora, O., Cho, K.T., Aghazada, S., Zimmermann, I., Matt, G.J., Brabec, C.J., Nazeeruddin, 
M.K., Garcia-Belmonte, G., 2018. Discerning recombination mechanisms and ideality factors 
through impedance analysis of high-efficiency perovskite solar cells. Nano Energy 48, 63–72. 
https://doi.org/10.1016/j.nanoen.2018.03.042 

Anoop, K.M., Khenkin, M. V., Di Giacomo, F., Galagan, Y., Rahmany, S., Etgar, L., Katz, E.A., 
Visoly-Fisher, I., 2020. Bias‐Dependent Stability of Perovskite Solar Cells Studied Using 
Natural and Concentrated Sunlight. Sol. RRL 4, 1900335. 
https://doi.org/10.1002/solr.201900335 

Araki, K., Yamaguchi, M., 2003. Novel equivalent circuit model and statistical analysis in 
parameters identification. Sol. Energy Mater. Sol. Cells 75, 457–466. 
https://doi.org/10.1016/S0927-0248(02)00204-0 

Bai, J., Liu, S., Hao, Y., Zhang, Z., Jiang, M., Zhang, Y., 2014. Development of a new compound 
method to extract the five parameters of PV modules. Energy Convers. Manag. 79, 294–303. 
https://doi.org/10.1016/j.enconman.2013.12.041 

Barsoukov, E., Macdonald, J.R., 2005. Impedance Spectroscopy, Second dit. ed, Impedance 
Spectroscopy: Theory, Experiment, and Applications. New Jersey. 
https://doi.org/10.1002/0471716243 

Bashahu, M., Nkundabakura, P., 2007. Review and tests of methods for the determination of the 
solar cell junction ideality factors. Sol. Energy 81, 856–863. 
https://doi.org/10.1016/j.solener.2006.11.002 

Bertoluzzi, L., Boyd, C.C., Rolston, N., Xu, J., Prasanna, R., O’Regan, B.C., McGehee, M.D., 
2019. Mobile Ion Concentration Measurement and Open-Access Band Diagram Simulation 
Platform for Halide Perovskite Solar Cells. Joule. https://doi.org/10.1016/j.joule.2019.10.003 

Bisquert, J., Juarez-Perez, E.J., 2019. The Causes of Degradation of Perovskite Solar Cells. J. Phys. 
Chem. Lett. 10, 5889–5891. https://doi.org/10.1021/acs.jpclett.9b00613 

Booth, H., 2010. Laser processing in industrial solar module manufacturing. J. Laser Micro 
Nanoeng. 5, 183–191. https://doi.org/10.2961/jlmn.2010.03.0001 

Boutana, N., Mellit, A., Haddad, S., Rabhi, A., Pavan, A.M., 2017. An explicit I-V model for 



 46 

photovoltaic module technologies. Energy Convers. Manag. 138, 400–412. 
https://doi.org/10.1016/j.enconman.2017.02.016 

Boyd, C.C., Cheacharoen, R., Leijtens, T., McGehee, M.D., 2019. Understanding Degradation 
Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 119, 3418–
3451. https://doi.org/10.1021/acs.chemrev.8b00336 

Calado, P., Telford, A.M., Bryant, D., Li, X., Nelson, J., O’Regan, B.C., Barnes, P.R.F., 2016. 
Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. 
Commun. 7, 13831. https://doi.org/10.1038/ncomms13831 

Cano, J.B., Valencia, J., Jaramillo, F., Velilla, E., 2015. Desarrollo e implementación de prototipo 
electrónico para la caracterización de paneles solares en condiciones de exteriores 11, 41–50. 

Caracciolo, F., Dallago, E., Finarelli, D.G., Liberale, A., Merhej, P., 2012. Single-Variable 
Optimization Method for Evaluating Solar Cell and Solar Module Parameters. IEEE J. 
Photovoltaics 2, 173–180. https://doi.org/10.1109/JPHOTOV.2011.2182181 

Caram, J., García-Batlle, M., Almora, O., Arce, R.D., Guerrero, A., Garcia-Belmonte, G., 2020. 
Direct observation of surface polarization at hybrid perovskite/Au interfaces by dark transient 
experiments. Appl. Phys. Lett. 116, 183503. https://doi.org/10.1063/5.0006409 

Carrero, C., Ramírez, D., Rodríguez, J., Platero, C.A., 2011. Accurate and fast convergence method 
for parameter estimation of PV generators based on three main points of the I–V curve. 
Renew. Energy 36, 2972–2977. https://doi.org/10.1016/j.renene.2011.04.001 

Chan, D.S.H., Phillips, J.R., Phang, J.C.H., 1986. A comparative study of extraction methods for 
solar cell model parameters. Solid. State. Electron. 29, 329–337. https://doi.org/10.1016/0038-
1101(86)90212-1 

Cheacharoen, R., Rolston, N., Harwood, D., Bush, K.A., Dauskardt, R.H., McGehee, M.D., 2018. 
Design and understanding of encapsulated perovskite solar cells to withstand temperature 
cycling. Energy Environ. Sci. 11, 144–150. https://doi.org/10.1039/C7EE02564E 

Chegaar, M., Azzouzi, G., Mialhe, P., 2006. Simple parameter extraction method for illuminated 
solar cells. Solid. State. Electron. 50, 1234–1237. https://doi.org/10.1016/j.sse.2006.05.020 

Christians, J.A., Manser, J.S., Kamat, P. V., 2015. Best practices in perovskite solar cell efficiency 
measurements. Avoiding the error of Making Bad Cells Look Good. J. Phys. Chem. Lett. 
https://doi.org/10.1021/acs.jpclett.5b00289 

Ciro, J., Mesa, S., Uribe, J.I., Mejía-Escobar, M.A., Ramirez, D., Montoya, J.F., Betancur, R., Yoo, 
H.-S., Park, N.-G., Jaramillo, F., 2017a. Optimization of the Ag/PCBM interface by a 
rhodamine interlayer to enhance the efficiency and stability of perovskite solar cells. 
Nanoscale 9, 9440–9446. https://doi.org/10.1039/C7NR01678F 

Ciro, J., Ramírez, D., Mejía Escobar, M.A., Montoya, J.F., Mesa, S., Betancur, R., Jaramillo, F., 
2017b. Self-Functionalization Behind a Solution-Processed NiO x Film Used As Hole 
Transporting Layer for Efficient Perovskite Solar Cells. ACS Appl. Mater. Interfaces 9, 
12348–12354. https://doi.org/10.1021/acsami.6b15975 

Contreras-Bernal, L., Ramos-Terrón, S., Riquelme, A., Boix, P.P., Idígoras, J., Mora-Seró, I., Anta, 
J.A., 2019. Impedance analysis of perovskite solar cells: A case study. J. Mater. Chem. A 7, 



 47 

12191–12200. https://doi.org/10.1039/c9ta02808k 

Cotfas, D.T., Cotfas, P.A., Kaplanis, S., 2013. Methods to determine the dc parameters of solar 
cells: A critical review. Renew. Sustain. Energy Rev. 28, 588–596. 
https://doi.org/10.1016/j.rser.2013.08.017 

Cowan, S.R., Roy, A., Heeger, A.J., 2010. Recombination in polymer-fullerene bulk heterojunction 
solar cells. Phys. Rev. B 82, 245207. https://doi.org/10.1103/PhysRevB.82.245207 

Cubas, J., Pindado, S., Victoria, M., 2014. On the analytical approach for modeling photovoltaic 
systems behavior. J. Power Sources 247, 467–474. 
https://doi.org/10.1016/j.jpowsour.2013.09.008 

Dash, P.K., Gupta, N.C., Rawat, R., Pant, P.C., 2017. A novel climate classification criterion based 
on the performance of solar photovoltaic technologies. Sol. Energy 144, 392–398. 
https://doi.org/10.1016/j.solener.2017.01.046 

de Blas, M.., Torres, J.., Prieto, E., Garcı́a, A., 2002. Selecting a suitable model for characterizing 
photovoltaic devices. Renew. Energy 25, 371–380. https://doi.org/10.1016/S0960-
1481(01)00056-8 

Deceglie, M.G., Silverman, T.J., Marion, B., Kurtz, S.R., 2015. Real-Time Series Resistance 
Monitoring in PV Systems Without the Need for I–V Curves. IEEE J. Photovoltaics 5, 1706–
1709. https://doi.org/10.1109/JPHOTOV.2015.2478070 

Deng, Y., Van Brackle, C.H., Dai, X., Zhao, J., Chen, B., Huang, J., 2019. Tailoring solvent 
coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. 
Adv. 5, eaax7537. https://doi.org/10.1126/sciadv.aax7537 

Domanski, K., Alharbi, E.A., Hagfeldt, A., Grätzel, M., Tress, W., 2018. Systematic investigation 
of the impact of operation conditions on the degradation behaviour of perovskite solar cells. 
Nat. Energy 3, 61–67. https://doi.org/10.1038/s41560-017-0060-5 

Domanski, K., Roose, B., Matsui, T., Saliba, M., Turren-Cruz, S.-H., Correa-Baena, J.-P., Carmona, 
C.R., Richardson, G., Foster, J.M., De Angelis, F., Ball, J.M., Petrozza, A., Mine, N., 
Nazeeruddin, M.K., Tress, W., Grätzel, M., Steiner, U., Hagfeldt, A., Abate, A., 2017. 
Migration of cations induces reversible performance losses over day/night cycling in 
perovskite solar cells. Energy Environ. Sci. 10, 604–613. 
https://doi.org/10.1039/C6EE03352K 

Duran, E., Piliougine, M., Sidrach-De-Cardona, M., Galan, J., Andujar, J.M., 2008. Different 
methods to obtain the I-V curve of PV modules: A review. Conf. Rec. IEEE Photovolt. Spec. 
Conf. https://doi.org/10.1109/PVSC.2008.4922578 

Eltamaly, A.M., Farh, H.M.H., Othman, M.F., 2018. A novel evaluation index for the photovoltaic 
maximum power point tracker techniques. Sol. Energy 174, 940–956. 
https://doi.org/10.1016/j.solener.2018.09.060 

Enrique, J.M., Duran, E., Sidrach-de-Cardona M, Andujar, J.M., Bohorquez, M.A., Carretero, J., 
2005. A new approach to obtain I-V and P-V curves of photovoltaic modules by using DC-DC 
converters, in: Conference Record of the Thirty-First IEEE Photovoltaic Specialists 
Conference, 2005. IEEE, pp. 1769–1772. https://doi.org/10.1109/PVSC.2005.1488493 



 48 

Fabregat-Santiago, F., Garcia-Belmonte, G., Mora-Seró, I., Bisquert, J., 2011. Characterization of 
nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. 
Phys. 13, 9083. https://doi.org/10.1039/c0cp02249g 

Faifer, M., Cristaldi, L., Piegari, L., Soulatiantork, P., 2015. Design of a converter for photovoltaic 
panels testing. 5th Int. Conf. Clean Electr. Power Renew. Energy Resour. Impact, ICCEP 
2015 674–681. https://doi.org/10.1109/ICCEP.2015.7177564 

Gaglia, A.G., Lykoudis, S., Argiriou, A.A., Balaras, C.A., Dialynas, E., 2017. Energy efficiency of 
PV panels under real outdoor conditions–An experimental assessment in Athens, Greece. 
Renew. Energy 101, 236–243. https://doi.org/10.1016/j.renene.2016.08.051 

Galagan, Y., 2018. Perovskite Solar Cells: Toward Industrial-Scale Methods. J. Phys. Chem. Lett. 
4326–4335. https://doi.org/10.1021/acs.jpclett.8b01356 

Galagan, Y., Coenen, E.W.C., Verhees, W., Andriessen, R., 2016. Towards scaling up of perovskite 
solar cells and modules. J. Mater. Chem. A 4, 5700–5705. 
https://doi.org/10.1039/C6TA01134A 

Ghahremanirad, E., Bou, A., Olyaee, S., Bisquert, J., 2017. Inductive Loop in the Impedance 
Response of Perovskite Solar Cells Explained by Surface Polarization Model. J. Phys. Chem. 
Lett. 8, 1402–1406. https://doi.org/10.1021/acs.jpclett.7b00415 

Gonzalez-Pedro, V., Juarez-Perez, E.J., Arsyad, W.-S., Barea, E.M., Fabregat-Santiago, F., Mora-
Sero, I., Bisquert, J., 2014. General Working Principles of CH 3 NH 3 PbX 3 Perovskite Solar 
Cells. Nano Lett. 14, 888–893. https://doi.org/10.1021/nl404252e 

Grancini, G., Roldán-Carmona, C., Zimmermann, I., Mosconi, E., Lee, X., Martineau, D., Narbey, 
S., Oswald, F., De Angelis, F., Graetzel, M., Nazeeruddin, M.K., 2017. One-Year stable 
perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684. 
https://doi.org/10.1038/ncomms15684 

Green, M.A., Blakers, A.W., Osterwald, C.R., 1985. Characterization of high‐efficiency silicon 
solar cells. J. Appl. Phys. 58, 4402–4408. https://doi.org/10.1063/1.336286 

Green, M.A., Dunlop, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Ho-Baillie, A.W.Y., 
2020. Solar cell efficiency tables (Version 55). Prog. Photovoltaics Res. Appl. 28, 3–15. 
https://doi.org/10.1002/pip.3228 

Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., Ho-Baillie, A.W.Y., 
2017. Solar cell efficiency tables (version 49). Prog. Photovoltaics Res. Appl. 25, 3–13. 
https://doi.org/10.1002/pip.2855 

Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Ho-Baillie, A.W.Y., 2018. 
Solar cell efficiency tables (version 51). Prog. Photovoltaics Res. Appl. 26, 3–12. 
https://doi.org/10.1002/pip.2978 

Guerrero, A., Garcia-Belmonte, G., Mora-Sero, I., Bisquert, J., Kang, Y.S., Jacobsson, T.J., Correa-
Baena, J.-P., Hagfeldt, A., 2016a. Properties of Contact and Bulk Impedances in Hybrid Lead 
Halide Perovskite Solar Cells Including Inductive Loop Elements. J. Phys. Chem. C 120, 
8023–8032. https://doi.org/10.1021/acs.jpcc.6b01728 

Guerrero, A., You, J., Aranda, C., Kang, Y.S., Garcia-Belmonte, G., Zhou, H., Bisquert, J., Yang, 



 49 

Y., 2016b. Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. ACS Nano 
10, 218–224. https://doi.org/10.1021/acsnano.5b03687 

Gustavsen, B., Semlyen, A., 1999. Rational approximation of frequency domain responses by 
vector fitting. IEEE Trans. Power Deliv. 14, 1052–1059. https://doi.org/10.1109/61.772353 

Hamou, S., Zine, S., Abdellah, R., 2014. Efficiency of PV module under real working conditions. 
Energy Procedia 50, 553–558. https://doi.org/10.1016/j.egypro.2014.06.067 

Harald, Ñ., Seeland, M., Muhsin, B., 2012. Optimal geometric design of monolithic thin-film solar 
modules: Architecture of polymer solar cells. Sol. Energy Mater. Sol. Cells 97, 119–126. 
https://doi.org/10.1016/j.solmat.2011.09.037 

Hasan, M.A., Parida, S.K., Lindroos, J., Savin, H., Humada, A.M., Hojabri, M., Mekhilef, S., 
Hamada, H.M., Gupta, N.D., Janyani, V., Courel, M., Pulgarín-Agudelo, F.A., Andrade-
Arvizu, J.A., Vigil-Galán, O., Kumar, P., Bilen, C., Vaughan, B., Zhou, X., Dastoor, P.C., 
Belcher, W.J., Chine, W., Mellit, A., Lughi, V., Malek, A., Sulligoi, G., Massi Pavan, A., 
Hejri, M., Mokhtari, H., Azizian, M.R., Söder, L., Barbato, M., Barbato, A., Meneghini, M., 
Cester, A., Mura, G., Tonini, D., Voltan, A., Cellere, G., Meneghesso, G., Yildiran, N., Tacer, 
E., Lan, D., Green, M.A., Wang, D., Wright, M., Elumalai, N.K., Uddin, A., Almosni, S., 
Rale, P., Cornet, C., Perrin, M., Lombez, L., Létoublon, A., Tavernier, K., Levallois, C., 
Rohel, T., Bertru, N., Guillemoles, J.F., Durand, O., Ma, J., Man, K.L., Guan, S.-U., Ting, 
T.O., Wong, P.W.H., Sharma, V., Singh, V., Arora, M., Arora, S., Tandon, R.P., Xiong, J., 
Yang, B., Cao, C., Wu, R., Huang, Y., Sun, J., Zhang, J., Liu, C., Tao, S., Gao, Y., Yang, J., 
Gretener, C., Perrenoud, J., Kranz, L., Cheah, E., Dietrich, M., Buecheler, S., Tiwari, A.N., 
Ghannam, M., Abdulraheem, Y., Shehada, G., Urbain, F., Smirnov, V., Becker, J.-P., 
Lambertz, A., Rau, U., Finger, F., Dubey, A., Adhikari, N., Venkatesan, S., Gu, S., 
Khatiwada, D., Wang, Q., Mohammad, L., Kumar, M., Qiao, Q., Ayodele, T.R., Ogunjuyigbe, 
A.S.O., Ekoh, E.E., Karakaya, E., Liao, T., Chen, X., Lin, B., Chen, J., Du, Y., Fell, C.J., 
Duck, B., Chen, D., Liffman, K., Zhang, Y., Gu, M., Zhu, Y., Belarbi, M., Boudghene-
Stambouli, A., Belarbi, E.-H., Haddouche, K., Huang, Q., Reuter, K.B., Zhu, Y., Deline, V.R., 
Shahbazi, M., Wang, H., Arredondo, B., Martín-López, M.B., Romero, B., Vergaz, R., 
Romero-Gomez, P., Martorell, J., Zhou, Y., Gray-Weale, A., Gong, J., Sumathy, K., Liang, J., 
Felekidis, N., Wang, E., Kemerink, M., 2016. Performance evaluation and parametric 
optimum design of a vacuum thermionic solar cell. Sol. Energy Mater. Sol. Cells 147, 4476–
4486. https://doi.org/10.1016/j.seta.2015.11.003 

Hasan, O., Arif, A.F.M., 2014. Performance and life prediction model for photovoltaic modules: 
Effect of encapsulant constitutive behavior. Sol. Energy Mater. Sol. Cells 122, 75–87. 
https://doi.org/10.1016/j.solmat.2013.11.016 

Hassaine, L., Mraoui, A., Khelif, M., 2014. Low cost electronic load for out-door testing of 
photovoltaic panels. IREC 2014 - 5th Int. Renew. Energy Congr. 1–6. 
https://doi.org/10.1109/IREC.2014.6826944 

He, S., Qiu, L., Ono, L.K., Qi, Y., 2020. How far are we from attaining 10-year lifetime for metal 
halide perovskite solar cells? Mater. Sci. Eng. R Reports 140, 100545. 
https://doi.org/10.1016/j.mser.2020.100545 

Heo, S., Seo, G., Lee, Y., Seol, M., Kim, S.H., Yun, D.-J., Kim, Y., Kim, K., Lee, Junho, Lee, 
Jooho, Jeon, W.S., Shin, J.K., Park, J., Lee, D., Nazeeruddin, M.K., 2019. Origins of High 



 50 

Performance and Degradation in the Mixed Perovskite Solar Cells. Adv. Mater. 31, 1805438. 
https://doi.org/10.1002/adma.201805438 

Holzhey, P., Saliba, M., 2018. A full overview of international standards assessing the long-term 
stability of perovskite solar cells. J. Mater. Chem. A 6, 21794–21808. 
https://doi.org/10.1039/C8TA06950F 

Hoye, R.L.Z., Schulz, P., Schelhas, L.T., Holder, A.M., Stone, K.H., Perkins, J.D., Vigil-Fowler, 
D., Siol, S., Scanlon, D.O., Zakutayev, A., Walsh, A., Smith, I.C., Melot, B.C., Kurchin, R.C., 
Wang, Y., Shi, J., Marques, F.C., Berry, J.J., Tumas, W., Lany, S., Stevanović, V., Toney, 
M.F., Buonassisi, T., 2017. Perovskite-Inspired Photovoltaic Materials: Toward Best Practices 
in Materials Characterization and Calculations. Chem. Mater. 29, 1964–1988. 
https://doi.org/10.1021/acs.chemmater.6b03852 

Hu, Y., Chu, Y., Wang, Q., Zhang, Z., Ming, Y., Mei, A., Rong, Y., Han, H., 2019. Standardizing 
Perovskite Solar Modules beyond Cells. Joule. https://doi.org/10.1016/j.joule.2019.08.015 

Huang, F., Li, M., Siffalovic, P., Cao, G., Tian, J., 2019. From scalable solution fabrication of 
perovskite films towards commercialization of solar cells. Energy Environ. Sci. 
https://doi.org/10.1039/c8ee03025a 

IEC 60891, 2009. Photovoltaic devices – Procedures for temperature and irradiance corrections to 
measured I-V, Order A Journal On The Theory Of Ordered Sets And Its Applications. 

IEC 61215-1-2, 2004. Terrestrial photovoltaic (PV) modules – Design qualification and type 
approval – Part 1-2: Special requirements for testing of thin-film Cadmium Telluride (CdTe) 
based photovoltaic (PV) modules. 

IEC 61215, 2003. Crystalline silicon terrestrial photovoltaic (PV) modules – Design qualification 
and type approval, International Electrotechnical Committee. 

IEC 61646, 2008. Thin-film terrestrial photovoltaic (PV) modules- Design qualification and type 
approval, International Electrotechnical Committee. 

IEC 61853-1, 2011. Photovoltaic (PV) module performance testing and energy rating - Part 1: 
Irradiance and temperature performance measurements and power rating, International 
Electrotechnical Committee. 

IEC 61853-2, 2016. Photovoltaic (PV) module performance testing and energy rating-Part 2_ 
Spectral responsivity, incidence angle and module operating temperature measurements. 

Ishibashi, K., Kimura, Y., Niwano, M., 2008. An extensively valid and stable method for derivation 
of all parameters of a solar cell from a single current-voltage characteristic. J. Appl. Phys. 103, 
094507. https://doi.org/10.1063/1.2895396 

Islam, M.B., Yanagida, M., Shirai, Y., Nabetani, Y., Miyano, K., 2017. NiO x Hole Transport Layer 
for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega 2, 2291–
2299. https://doi.org/10.1021/acsomega.7b00538 

Jain, A., Kapoor, A., 2005. A new method to determine the diode ideality factor of real solar cell 
using Lambert W-function. Sol. Energy Mater. Sol. Cells 85, 391–396. 
https://doi.org/10.1016/j.solmat.2004.05.022 



 51 

Karatepe, E., Boztepe, M., Colak, M., 2006. Neural network based solar cell model. Energy 
Convers. Manag. 47, 1159–1178. https://doi.org/10.1016/j.enconman.2005.07.007 

Kendig, M., Scully, J.R., 1990. Basic aspects of electrochemical impedance application for the life 
prediction of organic coatings on metals. Corrosion 46, 22–29. 
https://doi.org/10.5006/1.3585061 

Kern, R., Sastrawan, R., Ferber, J., Stangl, R., Luther, J., 2002. Modeling and interpretation of 
electrical impedance spectra of dye solar cells operated under open-circuit conditions. 
Electrochim. Acta 47, 4213–4225. https://doi.org/10.1016/S0013-4686(02)00444-9 

Kerr, M.J., Cuevas, A., 2004. Generalized analysis of the illumination intensity vs. open-circuit 
voltage of solar cells. Sol. Energy 76, 263–267. https://doi.org/10.1016/j.solener.2003.07.027 

Khadka, D.B., Shirai, Y., Yanagida, M., Miyano, K., 2018. Degradation of encapsulated perovskite 
solar cells driven by deep trap states and interfacial deterioration. J. Mater. Chem. C 6, 162–
170. https://doi.org/10.1039/C7TC03733C 

Khan, F., Baek, S.-H., Park, Y., Kim, J.H., 2013. Extraction of diode parameters of silicon solar 
cells under high illumination conditions. Energy Convers. Manag. 76, 421–429. 
https://doi.org/10.1016/j.enconman.2013.07.054 

Khenkin, M. V., Anoop, K.M., Visoly-Fisher, I., Galagan, Y., Di Giacomo, F., Patil, B.R.R., 
Sherafatipour, G., Turkovic, V., Rubahn, H.-G.G., Madsen, M., Merckx, T., Uytterhoeven, G., 
Bastos, J.P.J.P.A., Aernouts, T., Brunetti, F., Lira-Cantu, M., Katz, E.A., Glagan, Y., Di 
Giacomo, F., Patil, B.R.R., Sherafatipour, G., Turkovic, V., Rubahn, H.-G.G., Madsen, M., 
Merckx, T., Uytterhoeven, G., Bastos, J.P.J.P.A., Aernouts, T., Brunetti, F., Lira-Cantu, M., 
Katz, E.A., 2018. Reconsidering figures of merit for performance and stability of perovskite 
photovoltaics. Energy Environ. Sci. 11, 739–743. https://doi.org/10.1039/c7ee02956j 

Khenkin, M. V., Katz, E.A., Abate, A., Bardizza, G., Berry, J.J., Brabec, C., Brunetti, F., Bulović, 
V., Burlingame, Q., Di Carlo, A., Cheacharoen, R., Cheng, Y.-B., Colsmann, A., Cros, S., 
Domanski, K., Dusza, M., Fell, C.J., Forrest, S.R., Galagan, Y., Di Girolamo, D., Grätzel, M., 
Hagfeldt, A., von Hauff, E., Hoppe, H., Kettle, J., Köbler, H., Leite, M.S., Liu, S., Loo, Y.-L., 
Luther, J.M., Ma, C.-Q., Madsen, M., Manceau, M., Matheron, M., McGehee, M., Meitzner, 
R., Nazeeruddin, M.K., Nogueira, A.F., Odabaşı, Ç., Osherov, A., Park, N.-G., Reese, M.O., 
De Rossi, F., Saliba, M., Schubert, U.S., Snaith, H.J., Stranks, S.D., Tress, W., Troshin, P.A., 
Turkovic, V., Veenstra, S., Visoly-Fisher, I., Walsh, A., Watson, T., Xie, H., Yıldırım, R., 
Zakeeruddin, S.M., Zhu, K., Lira-Cantu, M., 2020. Consensus statement for stability 
assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 
5, 35–49. https://doi.org/10.1038/s41560-019-0529-5 

Lee, H., Lee, C., Song, H.-J., 2019. Influence of Electrical Traps on the Current Density 
Degradation of Inverted Perovskite Solar Cells. Materials (Basel). 12, 1644. 
https://doi.org/10.3390/ma12101644 

Li, C., Guerrero, A., Huettner, S., Bisquert, J., 2018. Unravelling the role of vacancies in lead halide 
perovskite through electrical switching of photoluminescence. Nat. Commun. 9, 5113. 
https://doi.org/10.1038/s41467-018-07571-6 

Li, C., Guerrero, A., Zhong, Y., Huettner, S., 2017. Origins and mechanisms of hysteresis in 



 52 

organometal halide perovskites. J. Phys. Condens. Matter 29, 193001. 
https://doi.org/10.1088/1361-648X/aa626d 

Li, J., Dewi, H.A., Wang, H., Lew, J.H., Mathews, N., Mhaisalkar, S., Bruno, A., 2020. Design of 
Perovskite Thermally Co‐Evaporated Highly Efficient Mini‐Modules with High Geometrical 
Fill Factors. Sol. RRL 4, 2000473. https://doi.org/10.1002/solr.202000473 

Li, Y., Huang, W., Huang, H., Hewitt, C., Chen, Y., Fang, G., Carroll, D.L., 2013. Evaluation of 
methods to extract parameters from current–voltage characteristics of solar cells. Sol. Energy 
90, 51–57. https://doi.org/10.1016/j.solener.2012.12.005 

Liu, Z., Qiu, L., Ono, L.K., He, S., Hu, Z., Jiang, M., Tong, G., Wu, Z., Jiang, Y., Son, D., Dang, 
Y., Kazaoui, S., Qi, Y., 2020. A holistic approach to interface stabilization for efficient 
perovskite solar modules with over 2,000-hour operational stability. Nat. Energy. 
https://doi.org/10.1038/s41560-020-0653-2 

Ma, C., Shen, D., Qing, J., Thachoth Chandran, H., Lo, M.-F., Lee, C.-S., 2017. Effects of Small 
Polar Molecules (MA + and H 2 O) on Degradation Processes of Perovskite Solar Cells. ACS 
Appl. Mater. Interfaces 9, 14960–14966. https://doi.org/10.1021/acsami.7b01348 

Makrides, G., Zinsser, B., Georghiou, G.E., Schubert, M., Werner, J.H., 2008. Outdoor efficiency 
of different photovoltaic systems installed in Cyprus and Germany, in: 2008 33rd IEEE 
Photovolatic Specialists Conference. IEEE, pp. 1–6. 
https://doi.org/10.1109/PVSC.2008.4922830 

Makrides, G., Zinsser, B., Norton, M., E., G., 2012. Performance of Photovoltaics Under Actual 
Operating Conditions, in: Third Generation Photovoltaics. InTech. 
https://doi.org/10.5772/27386 

Makrides, G., Zinsser, B., Schubert, M., Georghiou, G.E., 2014. Performance loss rate of twelve 
photovoltaic technologies under field conditions using statistical techniques. Sol. Energy 103, 
28–42. https://doi.org/10.1016/j.solener.2014.02.011 

Marinova, N., Tress, W., Humphry-Baker, R., Dar, M.I., Bojinov, V., Zakeeruddin, S.M., 
Nazeeruddin, M.K., Grätzel, M., 2015. Light Harvesting and Charge Recombination in CH 3 
NH 3 PbI 3 Perovskite Solar Cells Studied by Hole Transport Layer Thickness Variation. ACS 
Nano 9, 4200–4209. https://doi.org/10.1021/acsnano.5b00447 

McLeod, J.A., Liu, L., 2018. Prospects for Mitigating Intrinsic Organic Decomposition in 
Methylammonium Lead Triiodide Perovskite. J. Phys. Chem. Lett. 9, 2411–2417. 
https://doi.org/10.1021/acs.jpclett.8b00323 

Meeker, W., Hong, Y., Escobar, L., 2011. Degradation Models and Analyses, in: Encyclopedia of 
Statistical Sciences. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 1–23. 
https://doi.org/10.1002/0471667196.ess7148 

Mellit, A., Kalogirou, S.A., 2008. Artificial intelligence techniques for photovoltaic applications: A 
review. Prog. Energy Combust. Sci. 34, 574–632. https://doi.org/10.1016/j.pecs.2008.01.001 

Meyers, B., Deceglie, M., Deline, C., Jordan, D., 2020. Signal Processing on PV Time-Series Data: 
Robust Degradation Analysis Without Physical Models. IEEE J. Photovoltaics 10, 546–553. 
https://doi.org/10.1109/JPHOTOV.2019.2957646 



 53 

Mialhe, P., Charles, J.P., Khoury, A., Bordure, G., 1986. The diode quality factor of solar cells 
under illumination. J. Phys. D. Appl. Phys. 19, 483–492. https://doi.org/10.1088/0022-
3727/19/3/018 

Moon, S.J., Yum, J.H., Lofgren, L., Walter, A., Sansonnens, L., Benkhaira, M., Nicolay, S., Bailat, 
J., Ballif, C., 2015. Laser-Scribing Patterning for the Production of Organometallic Halide 
Perovskite Solar Modules. IEEE J. Photovoltaics 5, 1087–1092. 
https://doi.org/10.1109/JPHOTOV.2015.2416913 

Motti, S.G., Meggiolaro, D., Barker, A.J., Mosconi, E., Perini, C.A.R., Ball, J.M., Gandini, M., 
Kim, M., De Angelis, F., Petrozza, A., 2019. Controlling competing photochemical reactions 
stabilizes perovskite solar cells. Nat. Photonics 13, 532–539. https://doi.org/10.1038/s41566-
019-0435-1 

Murayama, M., Mori, T., 2006. Equivalent Circuit Analysis of Dye-Sensitized Solar Cell by Using 
One-Diode Model: Effect of Carboxylic Acid Treatment of TiO 2 Electrode. Jpn. J. Appl. 
Phys. 45, 542–545. https://doi.org/10.1143/JJAP.45.542 

Nikoletatos, J., Halambalakis, G., 2018. Standards, Calibration, and Testing of PV Modules and 
Solar Cells, in: McEvoy’s Handbook of Photovoltaics. Elsevier, pp. 452–467. 
https://doi.org/10.1016/B978-0-12-809921-6.00033-1 

Oliveira, M.C.C. de, Diniz Cardoso, A.S.A., Viana, M.M., Lins, V. de F.C., 2018. The causes and 
effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline 
silicon photovoltaic modules: A review. Renew. Sustain. Energy Rev. 81, 2299–2317. 
https://doi.org/10.1016/j.rser.2017.06.039 

Osterwald, C.R., Glatfelter, T., Burdick, J., 1987. COMPARISON OF THE TEMPERATURE 
COEFFICIENTS OF THE BASIC I-V PARAMETERS FOR VARIOUS TYPES OF SOLAR 
CELLS., in: Conference Record of the IEEE Photovoltaic Specialists Conference. pp. 188–
193. 

Osterwald, C.R., McMahon, T.J., 2009. History of accelerated and qualification testing of terrestrial 
photovoltaic modules: A literature review. Prog. Photovoltaics Res. Appl. 17, 11–33. 
https://doi.org/10.1002/pip.861 

Papageorgas, P., Piromalis, D., Valavanis, T., Kambasis, S., Iliopoulou, T., Vokas, G., 2015. A low-
cost and fast PV I-V curve tracer based on an open source platform with M2M communication 
capabilities for preventive monitoring. Energy Procedia 74, 423–438. 
https://doi.org/10.1016/j.egypro.2015.07.641 

Phang, J.C.H., Chan, D.S.H., Phillips, J.R., 1984. Accurate analytical method for the extraction of 
solar cell model parameters. Electron. Lett. 20, 406. https://doi.org/10.1049/el:19840281 

Phinikarides, A., Kindyni, N., Makrides, G., Georghiou, G.E., 2014. Review of photovoltaic 
degradation rate methodologies. Renew. Sustain. Energy Rev. 40, 143–152. 
https://doi.org/10.1016/j.rser.2014.07.155 

Pitarch-Tena, D., Ngo, T.T., Vallés-Pelarda, M., Pauporté, T., Mora-Seró, I., 2018. Impedance 
Spectroscopy Measurements in Perovskite Solar Cells: Device Stability and Noise Reduction. 
ACS Energy Lett. 3–7. https://doi.org/10.1021/ACSENERGYLETT.8B00465 



 54 

Qiu, L., He, S., Ono, L.K., Liu, S., Qi, Y., 2019. Scalable Fabrication of Metal Halide Perovskite 
Solar Cells and Modules. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.9b01396 

Ramirez, D., Schutt, K., Montoya, J.F., Mesa, S., Lim, J., Snaith, H.J., Jaramillo, F., 2018a. Meso-
Superstructured Perovskite Solar Cells: Revealing the Role of the Mesoporous Layer. J. Phys. 
Chem. C 122, 21239–21247. https://doi.org/10.1021/acs.jpcc.8b07124 

Ramirez, D., Uribe, J.I., Francaviglia, L., Romero-Gomez, P., Fontcuberta i Morral, A., Jaramillo, 
F., 2018b. Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH 3 
(CH 2 ) 2 NH 3 ) 2 (CH 3 NH 3 ) 2 Pb 3 Br 10 thin films. J. Mater. Chem. C. 
https://doi.org/10.1039/C8TC01582A 

Ramirez, D., Velilla, E., Montoya, J.F.J.F., Jaramillo, F., 2019. Mitigating scalability issues of 
perovskite photovoltaic technology through a p-i-n meso-superstructured solar cell 
architecture. Sol. Energy Mater. Sol. Cells 195, 191–197. 
https://doi.org/10.1016/j.solmat.2019.03.014 

Riquelme, A., Bennett, L.J., Courtier, N.E., Wolf, M.J., Contreras-Bernal, L., Walker, A., 
Richardson, G., Anta, J.A., 2020. Deducing the key physical properties of a perovskite solar 
cell from its impedance response: insights from drift-diffusion modelling. Appl. Phys. 

Santakrus Singh, N., Jain, A., Kapoor, A., 2009. Determination of the solar cell junction ideality 
factor using special trans function theory (STFT). Sol. Energy Mater. Sol. Cells 93, 1423–
1426. https://doi.org/10.1016/j.solmat.2009.03.013 

Schwenzer, J.A., Rakocevic, L., Gehlhaar, R., Abzieher, T., Gharibzadeh, S., Moghadamzadeh, S., 
Quintilla, A., Richards, B.S., Lemmer, U., Paetzold, U.W., 2018. Temperature Variation-
Induced Performance Decline of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 10, 
16390–16399. https://doi.org/10.1021/acsami.8b01033 

Shao, G., Glaz, M.S., Ma, F., Ju, H., Ginger, D.S., 2014. Intensity-Modulated Scanning Kelvin 
Probe Microscopy Intensity-Modulated Scanning Kelvin Probe Microscopy for Probing 
Recombination in Organic Photovoltaics 10799–10807. https://doi.org/10.1021/nn5045867 

Shi, L., Young, T.L., Kim, J., Sheng, Y., Wang, L., Chen, Y., Feng, Z., Keevers, M.J., Hao, X., 
Verlinden, P.J., Green, M.A., Ho-Baillie, A.W.Y., 2017. Accelerated Lifetime Testing of 
Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene. ACS Appl. Mater. 
Interfaces 9, 25073–25081. https://doi.org/10.1021/acsami.7b07625 

Stoichkov, V., Bristow, N., Troughton, J., De Rossi, F., Watson, T.M., Kettle, J., 2018. Outdoor 
performance monitoring of perovskite solar cell mini-modules: Diurnal performance, 
observance of reversible degradation and variation with climatic performance. Sol. Energy 
170, 549–556. https://doi.org/10.1016/j.solener.2018.05.086 

Toledo, F.J., Blanes, J.M., 2016. Analytical and quasi-explicit four arbitrary point method for 
extraction of solar cell single-diode model parameters. Renew. Energy 92, 346–356. 
https://doi.org/10.1016/j.renene.2016.02.012 

Tress, W., Domanski, K., Carlsen, B., Agarwalla, A., Alharbi, E.A., Graetzel, M., Hagfeldt, A., 
2019. Performance of perovskite solar cells under simulated temperature-illumination real-
world operating conditions. Nat. Energy 4, 568–574. https://doi.org/10.1038/s41560-019-
0400-8 



 55 

Tress, W., Yavari, M., Domanski, K., Yadav, P., Niesen, B., Correa Baena, J.P., Hagfeldt, A., 
Graetzel, M., 2018. Interpretation and evolution of open-circuit voltage, recombination, 
ideality factor and subgap defect states during reversible light-soaking and irreversible 
degradation of perovskite solar cells. Energy Environ. Sci. 11, 151–165. 
https://doi.org/10.1039/C7EE02415K 

Van Dyk, E.E., Gxasheka, A.R., Meyer, E.L., 2005. Monitoring current-voltage characteristics and 
energy output of silicon photovoltaic modules. Renew. Energy 30, 399–411. 
https://doi.org/10.1016/j.renene.2004.04.016 

Velilla, E., Cano, J., Jimenez, K., Valencia, J., Ramirez, D., Jaramillo, F., 2018. Numerical Analysis 
to Determine Reliable One-Diode Model Parameters for Perovskite Solar Cells. Energies 11, 
1963. https://doi.org/10.3390/en11081963 

Velilla, E., Cano, J.B.J.B., Jaramillo, F., 2019a. Monitoring system to evaluate the outdoor 
performance of solar devices considering the power rating conditions. Sol. Energy 194, 79–85. 
https://doi.org/10.1016/j.solener.2019.10.051 

Velilla, E., Jaramillo, F., Mora-Seró, I., 2021. High-throughput analysis of the ideality factor to 
evaluate the outdoor performance of perovskite solar minimodules. Nat. Energy 6, 54–62. 
https://doi.org/10.1038/s41560-020-00747-9 

Velilla, E., Ramirez, D., Uribe, J.-I.J.-I., Montoya, J.F.J.F., Jaramillo, F., 2019b. Outdoor 
performance of perovskite solar technology: Silicon comparison and competitive advantages 
at different irradiances. Sol. Energy Mater. Sol. Cells 191, 15–20. 
https://doi.org/10.1016/j.solmat.2018.10.018 

Velilla, E., Restrepo, S., Jaramillo, F., 2017. Cluster analysis of commercial photovoltaic modules 
based on the electrical performance at standard test conditions. Sol. Energy 144, 335–341. 
https://doi.org/10.1016/j.solener.2017.01.037 

Velilla, E., Valencia, J., Jaramillo, F., 2014. Performance evaluation of two solar photovoltaic 
technologies under atmospheric exposure using artificial neural network models. Sol. Energy 
107, 260–271. https://doi.org/10.1016/j.solener.2014.04.033 

Visa, I., Burduhos, B., Neagoe, M., Moldovan, M., Duta, A., 2016. Comparative analysis of the 
infield response of five types of photovoltaic modules. Renew. Energy 95, 178–190. 
https://doi.org/10.1016/j.renene.2016.04.003 

Wang, E., Yang, H.E., Yen, J., Chi, S., Wang, C., 2013. Failure modes evaluation of PV module via 
materials degradation approach. Energy Procedia 33, 256–264. 
https://doi.org/10.1016/j.egypro.2013.05.066 

Wang, M., Ma, X., Huang, W.H., Liu, J., Curran, A.J., Schnabel, E., Köhl, M., Davis, K.O., 
Brynjarsdóttir, J., Braid, J.L., French, R.H., 2018. Evaluation of Photovoltaic Module 
Performance Using Novel Data-driven I-V Feature Extraction and Suns-V OC Determined 
from Outdoor Time-Series I-V Curves, in: 2018 IEEE 7th World Conference on Photovoltaic 
Energy Conversion, WCPEC 2018 - A Joint Conference of 45th IEEE PVSC, 28th PVSEC 
and 34th EU PVSEC. IEEE, pp. 778–783. https://doi.org/10.1109/PVSC.2018.8547772 

Wang, Q., Gra, M., 2005. Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized 
Solar Cells. Response 14945–14953. 



 56 

Wetzelaer, G.-J.A.H., Scheepers, M., Sempere, A.M., Momblona, C., Ávila, J., Bolink, H.J., 2015. 
Trap-Assisted Non-Radiative Recombination in Organic-Inorganic Perovskite Solar Cells. 
Adv. Mater. 27, 1837–1841. https://doi.org/10.1002/adma.201405372 

Willoughby, A.A., Omotosho, T. V., Aizebeokhai, A.P., 2014. A simple resistive load I-V curve 
tracer for monitoring photovoltaic module characteristics. IREC 2014 - 5th Int. Renew. 
Energy Congr. 1–6. https://doi.org/10.1109/IREC.2014.6827028 

Willoughby, A.A., Osinowo, M.O., 2018. Development of an electronic load I-V curve tracer to 
investigate the impact of Harmattan aerosol loading on PV module performance in southwest 
Nigeria. Sol. Energy 166, 171–180. https://doi.org/10.1016/j.solener.2018.03.047 

Wojciechowski, K., Leijtens, T., Siprova, S., Schlueter, C., Hörantner, M.T., Wang, J.T.-W., Li, C.-
Z., Jen, A.K.Y., Lee, T.-L., Snaith, H.J., 2015. C 60 as an Efficient n-Type Compact Layer in 
Perovskite Solar Cells. J. Phys. Chem. Lett. 6, 2399–2405. 
https://doi.org/10.1021/acs.jpclett.5b00902 

Yang, B., Suo, J., Mosconi, E., Ricciarelli, D., Tress, W., De Angelis, F., Kim, H.-S., Hagfeldt, A., 
2020. Outstanding Passivation Effect by a Mixed-Salt Interlayer with Internal Interactions in 
Perovskite Solar Cells. ACS Energy Lett. 5, 3159–3167. 
https://doi.org/10.1021/acsenergylett.0c01664 

Yang, J., Siempelkamp, B.D., Liu, D., Kelly, T.L., 2015. Investigation of CH 3 NH 3 PbI 3 
Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ 
Techniques. ACS Nano 9, 1955–1963. https://doi.org/10.1021/nn506864k 

Yoo, S.-M., Lee, S.-Y., Kim, G., Hernandez, E.V., Mora-Seró, I., Yoon, S.J., Shin, T., Lee, S.-H., 
Ahn, S., Song, M.-K., Kim, M., Lee, H.J., 2021. Preparation of nanoscale inorganic 
CsPbIxBr3-x perovskite photosensitizers on the surface of mesoporous TiO2 film for solid-
state sensitized solar cells. Appl. Surf. Sci. 551, 149387. 
https://doi.org/10.1016/j.apsusc.2021.149387 

Yoo, S.-M., Lee, S., Velilla Hernandez, E., Kim, M., Kim, G., Shin, T., Nazeeruddin, M.K., Mora‐
Seró, I., Lee, H.J., 2020. Nanoscale Perovskite‐Sensitized Solar Cell Revisited: Dye‐Cell or 
Perovskite‐Cell? ChemSusChem 13, 2571–2576. https://doi.org/10.1002/cssc.202000223 

Yoo, S.-M., Yoon, S.J., Anta, J.A., Lee, H.J., Boix, P.P., Mora-Seró, I., 2019. An Equivalent Circuit 
for Perovskite Solar Cell Bridging Sensitized to Thin Film Architectures. Joule 3, 2535–2549. 
https://doi.org/10.1016/j.joule.2019.07.014 

Zagrouba, M., Sellami, A., Bouaïcha, M., Ksouri, M., 2010. Identification of PV solar cells and 
modules parameters using the genetic algorithms: Application to maximum power extraction. 
Sol. Energy 84, 860–866. https://doi.org/10.1016/j.solener.2010.02.012 

Zarazua, I., Han, G., Boix, P.P., Mhaisalkar, S., Fabregat-Santiago, F., Mora-Seró, I., Bisquert, J., 
Garcia-Belmonte, G., 2016. Surface Recombination and Collection Efficiency in Perovskite 
Solar Cells from Impedance Analysis. J. Phys. Chem. Lett. 7, 5105–5113. 
https://doi.org/10.1021/acs.jpclett.6b02193 

Zhang, S., Liu, Z., Zhang, W., Jiang, Z., Chen, Weitao, Chen, R., Huang, Y., Yang, Z., Zhang, Y., 
Han, L., Chen, Wei, 2020. Barrier Designs in Perovskite Solar Cells for Long‐Term Stability. 
Adv. Energy Mater. 2001610, 2001610. https://doi.org/10.1002/aenm.202001610 



 57 

Zhao, L., Kerner, R.A., Xiao, Z., Lin, Y.L., Lee, K.M., Schwartz, J., Rand, B.P., 2016. Redox 
Chemistry Dominates the Degradation and Decomposition of Metal Halide Perovskite 
Optoelectronic Devices. ACS Energy Lett. 1, 595–602. 
https://doi.org/10.1021/acsenergylett.6b00320 

Zhao, Y., Zhou, W., Tan, H., Fu, R., Li, Q., Lin, F., Yu, D., Walters, G., Sargent, E.H., Zhao, Q., 
2017. Mobile-Ion-Induced Degradation of Organic Hole-Selective Layers in Perovskite Solar 
Cells. J. Phys. Chem. C 121, 14517–14523. https://doi.org/10.1021/acs.jpcc.7b04684 

 

 

 

 


