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Abstract. Optimal control theory is applied to sideband cooling of nano-mechanical resonators. The formulation described here
makes use of exact results derived by means of the path-integral approach of quantum dynamics, so that no approximation is
invoked. It is demonstrated that the intricate interplay between time-dependent fields and structured thermal bath may lead to
improve results of the sideband cooling by an order of magnitude. Cooling is quantified by means of the mean number of phonons of
the mechanical modes as well as by the von Neumann entropy. Potencial extension to non-linear systems, by means of semiclassical
methods, is briefly discussed.

INTRODUCTION

Mechanical micro- and nano-resonators cooled to very low temperatures can be used to explore quantum effects
such as superposition of states, entanglement at macroscopic scales [1] and, when non-Markovian interactions are
considered, thermal equilibrium states different from the canonical Boltzmann distribution [2]. Additionally, when
they are coupled to optical systems or superconducting qubits at low temperatures, they can be used for performing
ultra precise measurements [3, 4], detecting gravitational waves [5] or as a tool for studying fundamental issues such
as the quantum-mechanical transition [6]. However, in the case of nanoresonators, e.g., the frequency of operation
is in the range of 1 MHz to 1 GHz. For this range of frequencies, the quantum nature of the resonator will only be
unveiled if the temperature is below 10 uK and 10 mK, respectively [7]. The nature and complexity of the problem
becomes evident when it is noticed that a cryostat only reaches temperatures of the order of 10 mK [8]. Given the
importance and relevance of these systems at low temperatures, recently, there have been developed [1, 5, 8, 9] and
proposed [10, 11] multiple techniques that will allow to bring these resonators to excitation levels near to the ground
state.

The time scales where cooling takes place are very short, of the order of the resonator period, and the temperature
involved in the process is very low; therefore, it is then expected that non-Markovian effects, arising form the resonator
and its environment interaction, dominate the transfer of energy and entropy between them [10, 12, 13]. However,
recently proposed schemes [11, 14, 15, 16, 17, 18] have been all performed under the assumption of Markovian
dynamics. So that, it is fair to say that a complete understanding of the cooling process is still under construction.
Therefore, in designing more robust techniques and analyzing all previous schemes [1, 5, 8, 9], it is necessary to
consider the effects of non-Markovian dynamics. To be sure, the role of non-Markovian dynamics in cooling process
has been studied in other physical systems like spins with very positive results [12, 13].

This work starts with the standard derivation of the Hamiltonian model [19, 20]. To quantify the effects of non-
Markovian interactions in the minimum phonon number at equilibrium, memory effects in the equations of motion for
the mechanical and optical modes are introduced next. Later, optimal control theory is applied to sideband cooling to
find an optimal control pulse to get (i) the minimum phonon number, under Markovian and non-Markovian dynamics,
and (ii) to maintain the minimum phonon number once it is reached. Finally, the squeezing generation and entropy
transfer during the cooling protocol are analyzed. The results obtained in this part justify the use the number of
phonons in the mechanical mode as the cooling measure.
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MODEL

Cavity optomechanics focuses on the study of the interaction between electromagnetic radiation and mechanical
systems. Light is typically confined to a volume separated by two mirrors, in the case of optomechanical systems; or
plates, in the case of electromechanical systems. Since one of the mirrors or plates can move, coupling between light
and matter is mediated by radiation pressure (see below). This setup can be used for different applications, e.g., to
obtain quantum effects in a nano-resonator that has around 10'* atoms, i.e., to reach phenomena predicted by quantum
mechanics in the regime of mesoscopic objects.

The starting point is the standard derivation of the Hamiltonian [19, 20] that describes the mechanical system
coupled to a radiation mode. The two modes are represented by two harmonic oscillators, one for the cavity or
electromagnetic mode with and angular frequency wc,y and other for the vibrational or mechanical mode with angular
frequency wy,. Hence, the typical energy scale of the optical and mechanical mode are 7w,y and fiwy,, respectively. To
derive the Hamiltonian in absence of thermal fluctuations and dissipation, consider the most common optomechanical
system analyzed in the literature and successfully used in the experiments to date, namely, the Fabry-Perot cavity
[11, 15, 18, 21, 22, 20, 23, 24, 25] (see Fig. 1). There, the end-mirror is moveable and corresponds to the vibrational
or mechanical mode. Therefore, the Hamiltonian reads

Hy = hwma'a + hw(2)b'b. )]

Because to the end-mirror is moving continuously, the coupling between optical and mechanical mode is parametric,
i.e., the cavity resonance frequency is modulated by the mechanical amplitude which changes with the displacement
of the end-mirror. Hence, in the linear approximation, the cavity frequency reads!

W(®) ~ Weyl + GR + ..., 2

where wc,, is the central frequency of the cavity Fabry Perot cavity of length L. The optical frequency shift per
displacement is defined as G = wc,y /L. Therefore, the second term in Eq. (1) is approximately given by

Hw(R)b'h ~ h(weay + GR)D'D, 3)

where £ = xzpp(a + a") with xzpr = VA/2mowy, the zero-point fluctuation amplitude of the mechanical oscillator.
The light-matter interaction term then reads [19, 20]

Hine = higob'b(a + a"), )

where g9 = Guxzpr is the vacuum optomechanical coupling strength. Because g is formed by a part of the optical
mode (G) and other from the mechanical mode (xzpr), it quantifies the interaction between radiation (a single photon)
with matter (a single phonon). Now, to avoid the time-dependent driving terms that arise from the laser pulse, it is
appropriated to apply a unitary transformation of the form U = exp(iwpb"bt) to change the description of the optical
mode to a frame rotating at the laser frequency wp . This unitary transformation generates a new Hamiltonian of the
form [19, 20]

H = hAD'D + hwpa'a + ligob"b(a + a"), (5)
where A = weay — wr is the laser detuning. Consider now the linearized approximate description of cavity optome-
chanics (b = @ + 6b), so that the Hamiltonian is then given by

A AAD'D + hwma'a + hgol(a + 6b) (@ + 6b))(a + a')
= BAD'D + hwma'a + hgo(@* + @(Sh + 6b") + 6b'sby@a’ + a), (6)

where @ = <B> is the average coherent amplitude of the cavity field and 6b is the fluctuating term due to vacuum noise.

In equation (6), the first term @ = (b"h) can be omitted because it corresponds to the average of the radiation pressure
force, it can be seen as a displacement from the average of the radiation pressure force. The third term 6576b can be
neglected because it is much smaller than the second term for a factor of @.

!For a formal Taylor expansion of function of an operator see, e.g., Ref. [26]
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FIGURE 1: Schematic representation of a generic optomechanical system in the optical domain with a laser-driven
optical cavity and a vibrating end mirror. wr,, weyy and wy, are the frequencies of the laser, cavity and mechanical
resonator, respectively. k and y,, are the dissipation parameters of the cavity and mechanical resonator, respectively.
The system consists of two mirrors, one of them is fixed and the end-mirror (mechanical mode) is moveable.

Therefore, the linearized Hamiltonian of the system reads [19, 20]
H = hAD'D + hwpa'a + hig(6b™ + sbya + ab), 0

where g = goa is the optomechanical coupling strength [15, 20]. The Hamiltonian described in Eq. (7) is the starting
point to define the most important aspects in optomechanical systems [20]. These aspects depend explicitly on the
system, the approximations in the Hamiltonian of Eq. (7) and the regimes which the system evolves. As for the system
described above, the moveable end-mirror modulates the frequency of the cavity, i.e., the frequency of the cavity
depends on the position of the end-mirror. This interplay between both systems is then generated by the oscillation of
the mechanical mode which is called optomechanical “backaction” [20] (see schematic representation in Fig. 1).

Let us, for the moment, denote the dissipation rate of the cavity by « and the dissipation rate of the mechanical
mode by yn,. Then, note that the dissipation rate of the cavity induces a delay between the motion and the changes
of the radiation pressure force, this effect is known as “dynamical backaction” and is a fundamental phenomenon
employed in the cooling process of the mechanical mode. Additionally, to reach a cooling process, the system has
to be in the good cavity regime wy, > 7y, and in the red-detuned regime A = wy,. Hence, if the rotating wave
approximation is assumed valid, the linearized Hamiltonian of the system reads [20, 27]

H = hAD'D + hwpa'a + hig(ash' + a'sb). (8)

The above conditions are those for achieving sideband cooling that have been extensively discussed in the literature
[15, 21, 20, 23, 28, 29]. Sideband cooling has been described in optomechanical systems as well as in analogous
systems such as electromechanical systems which use LC circuits and superconductors transmission lines coupled to
a capacitor with a oscillating plate [20, 30, 31]. The capacitive coupling in these systems is to generate a dependence
on the capacitance on the oscillating plate displacement to get the same change as in the Fabry-Perot cavity above.
Hence, the Hamiltonian in Eq. (8) describes these electromechanical systems, so that the cooling protocol introduced
here applies immediately to that kind of systems.

Minimum Phonon Number under Markovian and Non-Markovian Dynamics

The goal of this section is to derive the minimum phonon number as a function of the characteristics of the thermal bath
to which the mechanical model is attached to. To make connections with previous cooling strategies, dissipative and
decohering effects are considered here in a number of different alternatives ranging from quantum Langevin equations
and adjoint master equations to path integrals. Covering the specific details of each alternative deviates the attention
from the central aspects of this contribution. For this reason, details on the introduction of the non-unitary effects are
provided only for the path-integral derivation of the dynamics in the Sec. Sideband Cooling under Non-Markovian
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Evolution and appropriate references to other approaches are cited. In the present section, dissipative and decohering
effects are introduced by means of a quantum Langevin equation, for details see Ref. [32, 33].

Thus, from the application of the quantum-optical Langevin formalism [32, 33] to the linearized Hamiltonian
[Eq. (8)], the equations of motion for mechanical a(r) and optical b(r) modes read

a(f) = —iwma(t) - % f dsy(t — s)a(s) —ig(h" + b) — \yman(t), 9)
0
b(t) = =iAb(1) - % f dsk(t — $)b(s) —ig(@" + a) — Vke/2bw(t) = Vkobini(0). (10)
0

k. and kg are the rate associated to the input cooling and to the remaining loss rate, respectively, in the cavity mode.
Similarly, Bin and IA)in,i are the extrinsic and intrinsic fluctuating vacuum-electric-field operators coupled to the cavity
responsible of the optical loss channels whereas &, is the noise operator that arises from the mechanical-system bath
coupling. y(¢) and «(¢) are the dissipation kernels of the mechanical and cavity modes, respectively, which are discused
below. Optomechanical cooling can be represented by the minimum phonon number in the mechanical mode. Hence,
in the Fourier domain, the solution to Egs. (9) and (10) is given by [18]

_ = Vnltn(w) — ig(bw) + b (w)) — VI, (@) + ig(b(w) + b ()

; AT =
O ot m@2 T T Semr o m@r (o
. — VRe/2bin(w) = VRobini — ig(@(w) + a1 (@) . — Vke/2b! (w) = Vo] . +ig(a(w) + &' (w))
b(w) = : - , b'(w)= - — , (12)
(A - w) +k(w)/2 —i(A + w) + K(w)/2
where, using equations (11-12), the operator for the mechanical fluctuations reads
N _ - \/y_m&in(w) ig VKe/ZBin(w) + \/K_Olgin,i VKO/ZB?n(w) + \/El;iTn,i 13
W) = o)t 7 @)2  om—w) ¥ 7(0))/2[ b-w+iw2 | Serorrepz I

where Oy = Wy + 0wy and ¥ = ¥, + Yom. The terms dwrn, and youm are the mechanical frequency shift and the
optomechanical damping rate, respectively, due to the optical spring effect and are given by

P ! - !
= el ! - !
Yo = PR - S TR "

It is worth mentioning that in Eq. (15), the maximum optical damping occurs in the red-detuned regime A = wp,
which coincides with the regime where the maximum cooling takes place (see below). For both Markovian and non-
Markovian cases, the starting point to find the minimum phonon number is the quantum noise spectrum S ,,(w) of
operator a. This is defined next.

Quantum Noise Spectrum.—The optical mode is coupled to an optical bath that acts as a thermal bath with zero
thermal occupation whereas the mechanical mode is coupled to a thermal bath that has an average phonon number
nm =~ kT [hiwy,. Considering that both modes are coupled to independent thermal baths, then the noise correlations
associated to the input fluctuations are given by [18, 34]

(Gin(w)a (")) = (g + Dd(w + W), (16)
(&} (W)ain(w)) = Tpd(w + W), (17)
(bin(w)b] (")) = d(w + W), (18)
(B} (Whin(w)) = 0. (19)

The quantum noise spectrum for the operator a given in Eq. (13) is defined as

Su(@) = f " 4w (@ (@)@, 20)

00
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so that, from Egs. (13) and (20), the quantum noise spectrum is given by

Y(w)ni(w)
Saa w) = — . = . 5 21
@)= B2 = im + D)2 + iom + @] @D
being n¢(w) the the back-action modified phonon number. In terms of ¥(w) and &(w), ne(w) reads
n 2w 1
ne(w) = Y | 8 K(w) 22)

Yw) Y [[Kw)/2-iA-o)k(-w)/2+iA-w)]|

The dissipation kernel ¥(w) and &(w) are defined in terms of the spectral density (see next), which is a quantity that
incorporates the nature and characteristics of the respective thermal baths and that can be reconstructed experimentally
by means of spectroscopic techniques [35, 36].

Spectral Densities and Dissipation Kernels.—The spectral density Jp c(w) defines the structure of the bath and
provides the dissipation kernel by means of the relation

Yol = = f " 40 el e, (23)
mJy, © w

where Jp c(w) denotes the most commonly used spectral densities with a cutoff frequency, namely, (i) the spectral
density with a Drude cutoff frequency given by Jp(w) = mywws /(w? + wd), and (ii) the Ohmic spectral density with
a cutoff frequency wc given by Je(w) = yw exp(—w/wc). The Fourier transform of the dissipation kernels reads

2
. yw
o(w) = ——, (24)
W+ w
- ||
Yc(w) = yexp (—— ; (25)
we
and the quantum noise spectrum finally is given by
Y(w)ni(w)

S aa(w) =

F(w)/2] + (W + w)? (26)

The back-action modified phonon number n¢(w) is given by

Cymy | gR(w) |
@) =5 T 5w [[k(w)/2]2+(A—w>2]' @D

From equation (27), the minimum phonon occupation number or the cooling limit is reached when the system is in
the red-detuned regime (A = wy,) and the ns(w) is evaluated at w = —wp,.

Additionally, if it is assumed that the dissipation rate of the mechanical mode y — 0 and n, = 0 then, from
Egs. (15) and (27), the phonon number n(w) and the optomechanical damping rate yopm result as

2~
g k(W) [ 1 ]
n(w) = , 28
) Yom(w) | [K(w)/2]* + 4w? 29)
16g27<(a))u)2
= ) 29
TOM = R {[k(w@)/2F + 407} 29
Thus, the minimum phonon occupation number is given by
PYRY)
@

i) = S (30)

This result agrees with previous results in the Markovian case when wpc — oo [18, 20], for which &(w) = y = «.
In the non-Markovian regime, the cutoff frequency is of the order of the frequency of the mechanical mode. For the
particular case when wp ¢ = wy, the Fourier transforms of the dissipation kernels in Egs. (24) and (25) are

Y

Ip(w) = g e(w) = L. 31)
(&}
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Therefore, the Markovian minimum phonon occupation number 7y, the non-Markovian minimum phonon occupation
number with the Lorentzian spectral density np, and the non-Markovian minimum phonon occupation number with
the exponential spectral density nc, in the case y = «, are given by

P

- L 32

nm 1602, (32)
1{ &

= () = 0250w, 33

np =7 (1614),211) nm (33)
1 K>

= —=|——=]=0.135ny. 34

ne = (16w2m) M (34

The Markovian minimum phonon occupation ny, is obtained by taking the limit wp ¢ — oo in the Fourier transforms of
the dissipation kernel in Egs. (24) and (25). Therefore, as it was discussed in Ref. [2], the quantum thermal equilibrium
state depends explicitly on the structure of the environment and for the spectral densities considered here, that structure
allows for reaching a lower minimum phonon number [see, Eqs. 33 and 34].

10.0

5.0

1.0

051 2 5 10 20 40 wp o/w

FIGURE 2: Minimum phonon number at equilibrium in terms of the cutoff frequency wp, which is considered as a
measure of the non-Markovian character of the system. The dissipation parameter is x = 10~>w. The y-axis is scaled
by 1072, Here, ny, inve, and nnve are the Markovian minimum phonon occupation number, the non-Markovian
minimum phonon occupation number with the Lorentzian spectral density and the non-Markovian minimum phonon
occupation number with the exponential spectral density, respectively.

Figure 2 shows the minimum phonon number obtained from Eq. (30) in terms of the cutoff frequency. As the
cutoff frequency increases, the non-Markovian minimum phonon number approaches to the Markovian minimum
phonon number. Hence, results in Eqs. (33) and (34) confirm that under non-Markovian dynamics the minimum
phonon number is lower than in the Markovian case. However, to reach these lower phonon numbers, the system
has to go through a dynamics that involve memory effects (non-Markovian). Therefore, the next step is to solve the
dynamics of the system and apply optimal control theory to find the optical coupling function between the modes that
allows for the larger transfer of entropy from the mechanical mode to the optical one, both in the Markovian as in the
non-Markovian case.

SIDEBAND COOLING UNDER MARKOVIAN EVOLUTION

Recently, it was demonstrated that one can cool significantly better than traditional sideband cooling [11] by using
quantum control based on steepest descent method [37]. In general, cooling is characterized by the average phonon
number, {71y = (a'a). Because the system is linear, the dynamics is fully characterized by variances and covariances
of the the ladder operators. As in Ref. [11], the equations of motion for the variances and covariances can be derived
through the Markovian Brownian-motion master equation [11]. However, this set of equations violates the trace posi-
tivity of the density operator, in others words, the Markovian Brownian-motion master equation cannot be written in
the Lindblad form (see, e.g., Chap. 3 in Ref. [38]).
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For a first exploration here, a master equation in the Lindblad form is used, so that contrary to the equations of
motion derived from the Brownian-motion master equation, the adjoint master equation used here obeys the positivity
of the trace in the density operator. In deriving the adjoint master equation, it was assumed that the commutator of
the Liouvillian of the dissipative dynamics and the Liouvillian of the driving force can be neglected provided that the
time scale at which the system evolves is faster than the time scale of dissipative proceses. Note that if this is not the
case, the adjoint mater equation is not formally valid [38]. In the path-integral description, there is no need of this
assumption (see below).

Thus, the equation of motion of the variances of the position and momentum operators are found as follow. For the
resonator and cavity, the position ¢; and momentum p; operators are given by g, = (@ + ahy/ V2, Pm = —i(@-a"/ V2,
Geay = (b + ")/ V2 and peay = —i(b — b)/ V2, where the operators gm (§eay) and P (Peay) correspond to the position
and momentum operators of the mechanical (optical) mode. The Hamiltonian of the system in terms of the position
and momentum reads

2
N 1 1 . A
s = Z (Z_m,p’z + Emiwiqiz) + 804192, (35)

where m; and w; are the masses and frequencies of the modes. Once the Hamiltonian of the system is defined, the next
step is to find the equations of motion for the second moments, in this case, in terms of the ladders operators. This set
of equations is calculated using the Markovian adjoint master equation for a damped harmonic oscillator, which for
an observable Ay, in the Heisenberg picture, reads (see, e.g., Chap. 3 in Ref. [38])

d ; . 1 . 1
A0 = iwmld'a, Au(0)] + y(ng + 1) {a‘AH(r)a - Ea‘aAnm - EAHma*a}

1, 1 ~x PO PO 1 apn
+yng, {aAH(z)aT - EaaﬂAH(r) - zAH(r)aa*} + K(neay + 1) {b'AH(t)b - EbT bAu(1) - EAH(t)bT b} (36)
. PO O 1 aa
+ KNcay {bAH(t)bT — 5bb"An() - EAH(t)bb* }
v and « account for the non-unitary processes in the mechanical mode and optical mode, respectively. ny, (n.,y) denotes

the thermal occupation in the mechanical (optical) mode. Hence, the equations of motion of the second moments
expectation values are given by

(@ay(n) = —2iwm(aa) +ig()((ab) +(ab')) - y(aay, 37)
(@a"y(n) = —%ig(t) (b7ay — (b'a"y + (bay — (ba"y) - y(ny + 1)a"a) + ynu(aa’), (38)
(@by(1) = —2iwn(ab) + %ig(l) ((BB) +{aa) + b’y + <aeﬂ>) - %y(&fy) - %K(Bfl), (39)
@by = %ig(t) (¢Bb™) — ¢aa®y + (bH") - (aay) - %y<a13*> - %K@*ax (40)
(bayr) = ~2iwm(bay + %ig(l) (<bb) + (@) + (b'b) + (aa"y) - %y(&fy) - %K(i?fl), 41)
(ba(r) = —%ig(r) (<) — @' ay + (bb)y — (@'a"y) - %y<l§a*> - %K<Ba*>, (42)
BB)(t) = ~2iwn(bb) + ig(t)((hay + (ba'y) — k(bb), (43)
Bb'yo) = —%ig(t) (¢Ba'y - (ba"y + (ba) — (b'a)) = K(ncay + 1)(B'B) + kneay (BB'), (44)
@ayr) = %ig(t) (Ba'y + (b'a"y - (bay — (b ay) - y(nw + 1)a"a) + ynun(aa’), (45)
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(@'a")(r) = 2iwn(a'a’y - ig((b'a") + ba'y) - ya'a'), (46)

@by = —%ig(r) (678~ @'a) + (bb) - (@'a"y) - 2a'by - @b, 47)
@BY0) = 2iwn@'h"y - %ig(t) (c@'a’y + bTH") + (bb") + (a'a)) - %y@*% - %Ka}*am (48)
b = %ig(r) (<BbTy - <aa"y + (b — (aa)) - %ya}*f» - %x(am (49)
G aty) = 2iba’y - %ig(t) (c@"a"y + (bTD"y + (bb") + (@'a)) - %ya}"‘a"') - %K@"‘B“'), (50)
&' B = %ig(t) (¢BTay + (ba"y = (ba) — (ba'")) — kneay + 1)(D'BY + kncay (BB, (51)
B'B)e) = 2w (BB — ig(t)(Biay + (biay) — k(BTH). (52)

Optimal control theory is introduced next to find the coupling function g(¢) that minimizes the phonon number
in the resonator.

Optimal Control Theory Applied to Sideband Cooling

Optimal control theory has been well developed for over forty years to improve the efficiency of different kind of
systems or situations under a control parameter [37]. The advances of computer facilities make that optimal control
is now widely used in multi-disciplinary applications such as biological systems, communication networks and socio-
economic systems [39, 40, 41, 42]. The objective of optimal control theory is to determine the control of signals that
will cause a process to satisfy the physical constraints and at the same time minimizes some performance criterion.
This design is generally done by a trial-and-error process in which various methods of analysis are used iteratively to
determine the design parameters of an “aceptable” system. Acceptable performance is generally defined in terms of
time and frequency domain criteria such as rise time, settling time, peak overshoot and bandwidth.

To get an idea of how optimal control theory works, the problem at hand has to be formulated following three
specific steps:

1. Mathematical description (or model) of the process to be controlled, i.e., the description of the system in terms
of n first-order differential equations, as a state vector of the system x(#) and the control vector u(t). Hence, the
state equations can be written as

X =a(x@),u),?). (53)

2. A statement of the physical constraints, i.e., the initial (final) conditions of the system constraints x (7).
3. Specification of the physical criterion to minimize or maximize given by

J = h[x(t),t] + ffdz VIix(®),u(?),1], 54
0

where h [x(f), ] and V [x(?), u(?), ] are arbitrary functions, x(¢) and u() are the vector of the equations of motion
and the vector of the optimal functions, respectively.

Once the problem has been formally formulated, optimal control theory is aimed at solving the following prob-
lem. Find a control function u* that causes the system described by Eq. (53) follows the behaviour x* that minimizes
the condition in Eq. (54). Here u* is called the optimal control and x* is called the optimal trajectory. Note that, even,
if an optimal control exists, it may not be unique. The optimal control function may depend upon the initial condition
of the control function, i.e., one should explore different initials parameters for not to fall in a local minimum but to
reach the global minimum of the condition to minimize J.

As mentioned above, optimal control theory has been used in many disciplines with different algorithms or
methodologies. In the cooling context, two previous investigations are pioneers in the optimal cooling of open quantum
systems and the effects of the driving [10, 11]. In summary, the problem consists in finding an optimal coupling
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function between a nano-mechanical resonator and a cavity mode to obtain the minimum phonon number in the
Markovian as well as in the non-Markovian case.

To find the minimum phonon number in the mechanical mode under Markovian dynamics, Eqgs. (37-52) are
solved under the condition that

J= (a*a [x(1), t]> (55)

is minimum. Thus, the minimization criterium only depends on the state vector of the system. Hence, in Eq. (54),
VIx(t),u@®),t] =0, h[x(t),t] = <”a [x(1), t]> and u(¢) = g(¢) being g(¢) the total coupling function. To calculate the
costate equations [see Eq. (57) below], an auxiliary Hamiltonian Hopr is defined as Hopr = P * X, being p the vector
of the costate equations, which is explained in more detail below.

The algorithm used to solve the optimization problem, in the Markovian as well as in non-Markovian case, is the
method of steepest descent [37]. It consists in the following steps:

1. Subdivide the interval [#y, ] into N equal subintervals and assume an initial piecewise-constant control g0 =
g0)(tr), t € [tr, trr1] kK = 0,1,..., N — 1. In this case, the control function is the coupling function g(s) and the
vector of the optimal functions is composed by one function.

2. Apply the assumed control g to integrate the state equations from #y to .., With initial conditions x(#) = X
and store the state trajectory x”. Eqs. (37)-(52) are solved and the state trajectory is stored to modify the control
function.

3. Apply g” and x? to integrate costate equations backward in time, i.e., from [fco01,fo]. The “initial value”
PP (te001) is obtained by:

. 0 &T& X(i)(tcool)
P (teool) = w (56)
X
and according to optimal control theory, the costate equations to solve backward in time are calculated by
0H
= (57)
X
After integrating the costate equations, BHg)PT(t) /0g, t € [ty, teoo1] 1s evaluated and stored.
4.
OHY)
—Hl <e, (58)
“og
0 |? 0) 0]
OHpr = aHOPT aHOPT (59)
og to

then stop the iterative procedure. Here € is a preselected small positive constant used as a tolerance. If Eq. (58)
is not satisfied, adjust the control function as

. OHY
g0 =g -7 a‘;”(o, (60)

and replace g by g1 and return to step 2. Here, 7 is the step size to adjust the control function.

Results for optimal sideband cooling under Markovian evolution are shown in Fig. 3. The inset there shows two
coupling functions: (i) the blue curve depicts the optimal coupling function gqp(#) found with the equations of motion
derived from the adjoint master equation in the Lindblad form and (ii) the red curve depicts the optimal coupling
function g(¢) found with the equation of motions derive from the Brownian-motion master equation found in Ref. [11].
The limits of the coupling function g (#) are the double of the function coupling g(#). Despite the inadequateness of
the Brownian master equation, it seems that the only noticeable effect is a scaling factor of the field. Additionally,
Figure 3 shows the results for the minimum phonon number 7 = (&4'a) as a function of time for a number of values
of the dissipation rate. To compare with results from Ref. [11], the time at which the minimum phonon number in the
resonator is obtained is #f = f.oo) = 0.557,, being 7y, the period of the mechanical mode. As the dissipation rate of the
mechanical mode increases, the efficiency of the cooling protocol is undermined and the minimum phonon number
may remain far from that of the ground state.
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FIGURE 3: Cooling dynamics with the equations of motion derived using the adjoint master equation for different
parameters of dissipation. The initial parameters are ng = 100, nc,y = 0, k = 2.15X 10~*wy. Inset: The optimal control
pulse for the coupling rate gqp:(f) and the optimal 12-segment piecewise-constant control pulse for the coupling rate
g(?) (red line) and the coupling function g(¢) found by [11] (red dashed lines). The y-axis is in logarithmic scale.

0.05,
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.03
<_

n
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FIGURE 4: Phonon number as a function of time during the optimal control protocol aimed at maintaing the minimum
phonon number for different parameters of dissipation (a) ¥y = 10wy, (b) ¥ = 10wy, and (¢) ¥ = 10™*wy,. The
common initial parameters are ng, = 100, ne,y = 0, k = 2.15 X 10~*w,,. Insets: The optimal control pulse for the
coupling rate g(¢).

Optimal Control to Maintain the Minimum Phonon Number

Reaching a very low phonon number in a short period of time is a very desirable goal; however, since the resonator is
continuously coupled to its environment, keeping that phonon number is a challenge. Therefore, the next step is to find
the optimal coupling function that keeps phonon the number as close as possible to the minimum one obtained in the
cooling protocol. Specifically, optimal control theory is used to maintain the minimum phonon number for about fifty
periods of the resonator. To do so, the initial coupling function is chosen as a decaying exponential function which
tends to a constant value k given by

gm() = e +k, (61)

where « is the decay factor that should be large enough to prevent the system to recover the entropy released into the
optical mode. Details are discussed elsewhere [43].

In Figure 4, for a variety of different parameters of dissipation (y = 100wy, v = 10wy, ¥ = 107%wy), it is
seen that lowest phonon number corresponds to that with the smallest k factor. Despite of the control protocol, when
dissipation increases, the minimum phonon number also increases. Parameters in Fig. 4 are typical for some optome-
chanical systems such as microwave superconducting cavities, which operates in the GHz regime at temperature of
the order of millikelvins [44, 45]. Further, current experiments with nanomechanical resonators have these typical
parameters: wy, = 27 X 15 MHz, m = 1077 kg, g ~ 1073w?,, and a quality factor Q ~ 20000, which yields a damping
v = 5% 10wy, [46]. Thus, results in Fig. 4 are relevant at the experimental side.

Hence, the entire cooling process encompasses two processes: (i) reaching the minimum phonon number (see
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Fig. 3) and (ii) keeping that minimum phonon number (see Fig. 4). Therefore, the optimal pulse g (f) obtained from
Eq. (61) is the continuation of the optimal pulse to cool showed in Fig. 3. Thus, it takes into account that the minimum
phonon number is reached approximately at #.oo; = 0.557,, and the optimal pulse as [27]

] g® 0<1<0551,
<0 ‘{ gn() 1> 0.557, ©62)

The next step is to perform the optimal cooling process including non-Markovian interactions. As it is mentioned
above, when compared to results from the Markovian approximation, the minimum phonon number at equilibrium
is lower when the non-Markovian interactions are taking into account. Therefore, it is expected to have a similar
phenomenon in the out of equilibrium regime.

Sideband Cooling Under Non-Markovian Evolution

To solve the dynamics in the non-Markovian regime, the influence functional theory by Feynman-Vernon is employed
[47, 48, 49]. It allows for the study of the dynamics in open quantum systems without the rotating wave approximation
(RWA) nor Markovian approximation [50, 51, 52]. So that a description of the system without any approximation
can be performed, i.e., a full description of the non-Markovian dynamics. As above, the mechanical and the optical
modes are coupled to independent thermal baths described by the Caldeira-Leggett model [53, 54, 55]. The complete
Hamiltonian of the system (system+baths) is given by

2 N2 [ 52 2 2
-~ 1 2 1 2.2 - Pio MWy, [ Cia
H = Z (Z_m, i T ymwid; | = c(Dq1q2 + %: m. L Gie ~ ”117% , (63)

i=1 1 g e’

with @ = {1,2}, where the coefficients c;, are the coupling constants among each mode of the system of interest
with their own thermal bath modes, m;, and w;, are the masses and frequencies of each mode of each thermal bath,
respectively.

In solving the dynamics, initial correlations between coupled oscillators ps and their thermal baths prp, are
neglected [55], i.e., the total initial density operator is assumed to be given by

p(0) = ps(0) ® prs, ® P, - (64)

Additionally, the initial density matrix of the baths is taken as prg,(0) = ¢ Pollia /Z1B, at inverse temperatures
Bao = 1/kgT,. In this expression, Zrp denotes the partition function of each bath. Following the influence functional
approach, the state of the mechanical and the optical mode ps(qy,, 45, .47, q5 ) can be determined from

00

Ps(q)e> 45, a1 g5 - 1) = f dq),dq5,dq)_dg5_J(qY,. 45, 4\ a5 G 1 Gris 915 G55 0)

X Ps(G14s Grrs G- G5 0), (65)

’

where ps(q,, 45,4 q5_,0) accounts for the initial state and J(q7,. 45,4, .45 . t: 4}, 45, 4}_, 95_,0) is the propa-
gating function. As each mode is coupled to its own Ullersma-Caldeira-Leggett-type bath at a finite temperature 7,
the propagating function reads

N L7 A Y A S O A [ A ) e

1 T 1
NGO eXp{% fo ds {Z (Ema9§+(s) - gmawiqiis)) - c(s)q1+(s)cn+(s)l}

a=1

X exp {—%fo ds [Z (gmacﬁ_(s) - Emawiqﬁ_(s)) - C(S)‘II—(S)QZ—(S)}} Flg1+: g2+, 41-.42-1,

a=1
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being N(7) a normalization factor. The influence functional ¥ [q1+, g2+, q1-, g2-] is given by

2 . t
7_-[611+, q2+,91-, 6127] = ]—[ exp (_I;n_; {(Q:H + q:k).fo ds 70(5)[QQ+(5) - Q(tf(s)]

a=1

+ fo ds j(; du yo(s = w)ga+ (W) + Go-(0][Ga+(s) = qa(u)]})

X exp {—% fo t ds fo S du Ko (u = $)[qa+(5) = ga-(5)1[qa+ (1) — qa-(u)]} ; (66)
and y,(s) and K, (s) stands for the damping and noise kernels, which are given by
va(o) = = [ B o) (©7)
@ Jo T Wy
K,(s) = fow d%.](y(wa) coth (hﬂ”%) cos(wyS), (68)

being J,(w,) the spectral density. The complete dynamics depend on the characteritics of the spectral density. For the
present analysis, J,(w,) were chosen as spectral densities with Ohmic dissipation with a cutoff frequencies wgp.
As before, the mean value of the phonon number in the mechanical mode (7i(#)) is utilized as the cooling witness.
In terms of the second moments of the position (EI%) and momentum ( 13%), it is given by
. 1 [D®
f)=——
()() heor [ -

1
+ mlw%@%xt)} -3 (69)

where the index 1 refers to the mechanical mode. More details about calculations of the propagator, noise kernels and
the second moments can be found in Refs. [50, 51].

Measuring cooling or heating is related to the temperature of the considered system. The temperature of a micro-
scopic quantum system with a single degree of freedom is defined on its steady state which is in thermal equilibrium
with its finite-temperature environment. In that case, the mean phonon value characterizes well the temperature of the
oscillator. Nonetheless, the presence of the counter-rotating terms in the non-Markovian case could generate some
squeezing of the mechanical oscillator in its long-time steady state, and there is no apparent reason why the mean
phonon value could characterize well the cooling. This is in contrast to the case of the Born-Markovian dynamics,
where one can regard this squeezing as a rapid oscillatory effect that could be neglected. In the exact non-Markovian
effect, there is no reason to deem that the effect of this term could be ruled out. Squeezing would cause the long-time
steady state to deviate from a thermal equilibrium state. Hence, these last considerations may suggest that the mean
phonon value is insufficient in characterizing cooling. However, the squeezing parameter both in the Markovian case
and in the non-Markovian case remains almost equal as is explained below. Another meaningful mean value to char-
acterize cooling is the entropy of the system [10], this is calculated below to confirm the efficiency of the cooling
processes [43].

To calculate the second moments involved in the phonon number in Eq. (69), the half sum and difference coordi-
nates are introduced to simplify the above expressions and subsequent calculations as [50, 51, 52]

1
er = z(q(H + q(l/—)a 4o = 4o+ — Ya-—» (70)

where the Jacobian of the coordinates transformation is equal to one. Therefore, the differential equations of motion
for the coordinates Q; and g; take the form

. c(s) d
012() + w7, Q1.2(s5) + m—Qz,l(S) 3 f duyia(s —u)Qi2(u) =0,
;’(ZS) d 0 g 7
412(5) + 0] ,q12(8) + ——q2.1(8) — — f duyo(u—s)q12(u) =0,
ml’z dS s
and have the following boundary conditions
_ o s=0 P q, s=0
Qi(s) - { Q:‘,’ s=t ° l]z(S) = { q;/’ s=t ° (72)
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Hence, the solution of Egs. (71) can be expressed as

Q1(t,5) = Ui(t, )Q) + Ua(t, )0 + Us(t, $)Q; + Ua(t, 5)Q7 ,
Ox(t,5) = Vi(t, )Q + Va(t, )05 + V3(t, )0 + Va(t, )07,
q1(t, s) = ui(t, $)qy + ux(t, )qy + us(t, s)qs + ua(t, 8)q5 ,
qa(t, 8) = vi(t, 5)gs + va(t, )qy + v3(t, )q) + va(t, $)qy s

with the initial conditions

0/0)=qi(0)=1, Qi(0)=¢0)=1, Qi(0)=¢0)=0, and Qi(0) = 4(0) = 0.

(73)

The auxiliary functions U;(t, 5), Vi(t, 5), ui(t, s), vi(¢, s), in terms of the functions of the solution of the initial condition

problem ¢;(s), ¢:i(s), v;(s) and 3;(s), are given by [50, 51]

Uit s) = @1(s) - @1(DP2(8)$2(7) ©2(N¢3(1)¢4(s)

@2(D$2(1) = a(DPa(t)  2(D(1) — Pa(1)pa(D)
©2(5)3(D)pa(2) N @1(Da(8)P4(1)

02D () — @aOPa(t)  @2(DP2 (1) — Pa(Dpa(t)’

@2(85)¢2(1) ©4(8)¢a(1)

V) = 00— s 00aD)  @a020) - a0

Us(t, 5) = @3(s) — @2(8)¢2(Nep3(7) P1(D@2()pa(s)

©2(D2(1) = a(DPa(D) 2D (1) — Pa(1)pa(D)
G1(Dp2(8)p4(2) N @3 ()4 (8)P4(1)

©2(DP2(1) — ea(OPa(t)  ©2(DP2(1) — 4D Pa(1)’

Usttos) = — L2093 ¢29)¢a0)

©2(DP2(1) — a(Pa(t)  ©2(DP2(1) — @a(DPa(r)’

P1(p2(DPa(s) P3P (s)
©2(DP2(D) — Pa(DPa(t)  P2(D)P2(1) — a(B)Ppa(?)
A GIAGIAO)] N $2(8)p3()P4(1)

Vi(t,5) = ¢1(s) -

©2(DP2(1) — ea(OPa(t)  ©2(DP2(1) — @a(DPa(1)’

P2(D)2(s) @4()Pa(s)

Va(t, s) = - ,
26> ) ©2(DP2(1) — aOPa(t)  P2(D)P2(2) — a(D)P4(2)

©(d(De3() — @eiOP2(Da(s)
©2(DP2(1) — Pa(DPa(t)  P2(DP2(1) — Pa(D)Ppa(?)
&3(Dp4(D)pa(s) L (O2(s)pa(t)

Vi(t,s) = ¢3(s) -

T (0620 — s 0daD)  p202(0) — 23 Dpat)’

©2(O)P2(5) @4()Pa(s)

Va(t, s) = - ,
«55) ©2(DP2(1) — aOPa(t)  P2(D)P2(2) — a(D)P4(t)

via(s)dh(n)  nm@®F3(0)va(s)
vo(DF2 (1) = va(@®)Da(t)  v2(D)D2(1) — va(®)Da(t)

va()D3(H)va(?) N v1(O)v4(8)F4(2)
O (1) = va®)34(t)  va()92(1) — va(®)4(t)’

ui(t, s) = vi(s) -
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(77

(78)

(79)
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v2($)D2(2) _ Va($)94(2)
V()02 (1) = va()94(t)  va ()92 (1) — va(O)u(t)’

uy(t, s) =

v($)h@vi@)  F(@Oa)va(s)
va(D)ih (D) — va(D)F4(1)  va(D)F2(2) — va(D)F4(2)

F1(D)v2(s)va(?) N v3(D)v4($)F4(2)
Va9 (t) = va()04(t)  va ()92 (1) — va(O)a(2)’

uz(t, s) = v3(s) -

Va(£)va(s) V2 (s)d4(t)

1l S) = S 00— va@a®)  va09a(0) — Va0

vi(t, s) = %(s) — D1 (O)v2(0)F(s) _ P ()v3(H)4(s)
1, 1 Va(£)Fa (1) = va(®)F4(t)  va ()P (1) — va()Iu(2)
D1 (D)va(D)D4(s) 9 ()3 (1)Da(0)

V2()02 (1) — v4()94(0) " V(D)2 (t) — va(£)94(1)’

va ()2 (s) B va(®)Ia(s)
Va()02(1) = va(0)94(t)  v2(0)92(2) — va(®)a(t)’

w(t,s) =

vs3(t, 5) = 95(s) — v2(D)D2(s)v3(2) B Vi) (0)I4(s)
N T 0900 - va0040) V209200 — va(D)4(0)
P3O va(£)D4(s) V100 ($)04 (D)

V2(0)02(1) = va(0)34(1) ’ Va()a(1) = va(t)B4(1)’

va(D)a(s) B va()94(s)
Va()92(1) = va()94(t)  va(1)92(1) — va(1)F4(t)

V4(t, S) =

(83)

(84)

(85)

(86)

87)

(88)

(89)

Therefore, in terms of the solutions of the initial condition problem with ¢;, ¢;, v; and J;, the equations of motion

are transformed as [50, 51]

c(s d §

B13(5) + g 3(s) + S 1) + f duyi(s — upra(u) = 0,
m ds Jo
c(s d *

Bra(s) + Rp2a(s) + iy a(s) + — f duya(s — upra) = 0,
m ds Jo

. c(s d ¢

$13(5) + Wi 3(s) + 2903,1@) +— f duys(s — u)gy 3(u) = 0,
my ds Jo

. d §
Bra() + W2ra(s) + Dy + & f duya(s = udr.a(u) = O,
my ds Jo

c(s d "

F1(s) + Wvia(s) + Doy - L f duy1 (1 - $)v1.3(u) = O,
m ds J,
c(s d !

Taa(s) + w2vaa(s) + () - & f duya(u = 5)v2au) = 0,
m ds J,

. c(s d !

F1a(s) + 201400 + Dy 9 - L f dutyau — 5y 3(u) = 0,
my ds J

. ) c(s) d 7
Tha(s) + wyth 4(s) + —v4o(s) — — | duyz(u— $)dr4(u) = 0.
my ds J
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The dissipation kernels used in Egs. (90-91), for the mechanical and electromagnetic mode, are given by

wop s

s _
P, Yowape %,

v1(8) = y1wipe Y2(s) = 92)

which corresponds to the dissipation kernels that arise from the spectral density with a Drude cutoff frequency in
Eq. (23). These dissipation kernels have been chosen because they reduce Eqs. (90) and (91) from four integro-
differential equations to six differential equations.

Optimization Algorithm in the non-Markovian case.—The condition to minimize, the mean phonon number in
Eq. (69), is given in terms of the second moments of the position and momentum operators, which in turn are given
in terms of the functions ¢;, ¢;, v; and ;. This makes quite tedious the calculation of the “initial” conditions for the
costate equations. The optimization algorithm uses the same steps as before, but with a modification in the third step.
For the non-Markovian case, the “initial” (final) conditions for the costate equations [Eq. (56)] are given, in terms of
the seconds moments and the auxiliary function introduced in Eqgs. (90) and (91), by

Do (ty) = (5< 12 3(@2>) Do (1) = & (3< i) 3<5iz>)
s dp; 6‘Pj ’ i pjp dpjp ’ 93)
pa i) = L (a<ﬁ2> ) po (i) = L (6(132) . a<q2>)
i a¢/ ot (9¢jp a¢jp '
L ap? | o) P a SRR,
Prltp) = 2 dv; (91// * < ( ij, )Vi' +i:12#j( vij - vij )Vj" ’ G4
a<ﬁ2> a<@2> <132> 8 S (KD D
Poir) = 0t pa ( 519;1) i,+i;tj( FT )ﬂi’ ’ ©2)
with j =1,2,3,4 and v;, and ¥9;,, given by
= f ds fs du Ki(u — s)u;(s), = f ds fs du K>(u — s)vi(s),

= f ds fx du K1(u — $)u;(u), = f ds fs du K>(u — s)vi(u),
0 0 0 0

where K;(s) is the noise kernel generated by the dissipation kernels in Egs. (92) and calculated with Eq. (68) [51].

Table 1 summarizes the results under Markovian and non-Markovian dynamics for the minimum phonon number
at the cooling time 7.,,. To compare to the same theory and equations of motion, the Markovian approximation is
taking by a high cutoff frequency wp = 10wy, and the non-Markovian as wp = wp,. This comparison is shown in Fig.
5 for different values of dissipation rate y in the mechanical resonator. The insets of Fig. 5 show a magnification in the
final time, thus allowing for a better comparison between the three cooling scenarios: Markovian case [Eqs. (37-52)],
Markovian case with wp = 10wy, using the Egs. (90-91) and non-Markovian case.

TABLE 1: Minimum phonon number at time ¢ = 0.557,, using the coupling function g(#).

(A(ty))
Dissipation rates ~ Markovian Markovian Nofn-Markovian Non-Markovian ~ Percentage
(wp = )  (wp = 10wy,) (wp = wWn) Optimized
k=vy=10"%w, 9.03x1073 8.96x1073 8.86x1073 3.43x1073 61.29 %
k=y=10"w, 1.04x1072 1.03x1072 1.02x1072 4.79x1073 53.04 %
k=y=10"w, 3.28x1072 3.30x1072 2.39x1072 1.83x1072 23.43 %
k=y=10"wy, 2.61x107! 2.62x107! 1.61x107! 1.53%107! 4.97 %
k=vy=10"%wy 2.45 2.50 1.52 1.50 1.32 %
k=vy=10"wy 21.12 24.77 14.64 13.52 0.68 %

The three first columns in Table 1 show that under non-Markovian dynamics the mean phonon number is smaller
in than under Markovian dynamics, and that when dissipation increases, improvement of the results is more noticeable.
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FIGURE 5: Comparison of the cooling dynamics between the three processes, Markovian, non-Markovian and Marko-
vian with wp = 10wy, for different parameters for dissipation, from left to right, y = 10wy, y = 10~*w,, and
v = 10~ wy,. The initial parameters are ng, = 100, ey = 0. Insets: Magnification in the final time #coo; = 0.557,.

However, the coupling function g(¢) used in these three processes was found through an optimization process in the
Markovian approximation. Performing the optimization process to reach the optimal coupling function under non-
Markovian dynamics gives as result the optimal coupling function in the non-Markovian dynamics depicted in the
inset of Fig. 6 (black line). Optimal coupling gnm(?) has the same behaviour of the coupling function g(#) found in
the Markovian case and both are almost identical. Despite of the minimum variation in the coupling function, there
is a significant change in the minimum phonon number. The minimum phonon number found after optimization for
different values of the dissipation is shown in Table 1.

According to results in Eq. (33), the minimum phonon number in the non-Markovian dynamics is np ~ 0.38ny;.
Although there is a difference of 0.13 with the results at equilibrium, this result agrees with Eq. (33). The difference
being that the time has been chosen at hand and may not be the optimal time. Moreover, results at equilibrium have
been found when the dissipation parameter in the mechanical tends to zero whereas for the out-of-equilibrium case
v # 0 was used. Additionally, when dissipation increases, the minimum phonon number does not have a significant
decrease, e.g., when the dissipation rate is bigger than 1072, there is no cooling in the resonator (ate)) > 1).

Last results show that non-Markovian character of the dynamics plays an important role in sideband cooling and
suggest that the non-Markovian character should be included to reach more realistic results in many different kind of
systems. Another key result here is the robustness of the optimization process in the non-Markovian case [27].

Squeezing generation is analyzed next to confirm that the mean value of the phonon number characterizes the
cooling and consequently describes well the temperature of the oscillator.

Squeezing Generation by Non-Markovian Dynamics

Under non-Markovian dynamics, in general, the system of interest does not always thermalize and part of its quantum
coherence could be preserved in the steady state [2, 56]. In Ref. [2], it is shown that even at thermal equilibrium,
non-Markovian dynamics allow for (i) generating squeezing in a single harmonic mode that induces deviations from
the canonical thermal state and (ii) the presence of entanglement between two harmonic modes [51, 7]. As discussed
above, measuring cooling based on the mean phonon number may be problematic because the final state may not be
thermal.

For the case at hand, interest is in the mechanical mode that is assumed to be in a thermal state at ¢t = 0 with
kgT [fiwy, > 1. During the subsequent ultrafast dynamics, the time-dependent character of the coupling may squeeze
the normal modes of the optomechanical systems and, certainly, takes the system into a non-thermal state. Note that
this time-depedent-coupling-induced squeezing is also present in the Markovian case considered in Ref. [11] and in
all of the original proposal of sideband cooling [22, 57].

A possible way to characterize the deviations from a thermal state is the gz(t) correlation function; however, due
to the Gaussian character of the state of the mechanical and optical states, and for the present purposes, an equivalent
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FIGURE 6: Non-Markovian optimal dynamics of cooling. The initial parameters are ny = 100, ney = 0. Inset: The
optimal control pulse for the coupling rate gnmv(#) compare with the optimal control pulse for the coupling rate g(f)
shown in Fig. 3. The y-axis is in logarithmic scale.

calculation to the g® function is the direct calculation of the squeezing parameter r(f) defined as

_ 1 [(Ag)?
=3 log ((Ap)2 ) ) 97)

being (Ag)? and (Ap)? the dispersion of the position and momentum, respectively.
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FIGURE 7: Squeezing parameter r(¢) for the cooling protocol depicted by the black curve in Fig. 3 under Markovian
[blue curve, ry(f)] and non-Markovian [red curve, rny(#)] dynamics. The parameters are y = 10w, k = 2.15 %
10™*w,, ny = 100 and ng, = 0.

For the parameters used for the red curve and blue curve in the inset of Fig. 3, Fig. 7 depicts the time dependence
of the squeezing parameter of the mechanical mode state r(¢). Because the initial state is thermal at high temperature
and no initial system-bath correlations are considered, the initial squeezing parameter is #(0) = 0. The subsequent
time-modulation of the coupling induces squeezing that goes very close to zero at the end of the cooling protocol.
Specifically, ram(feoo) = 7.193 X 1072 and ry(feoor) = 3.572 % 1072

Therefore, non-Markovian dynamics generate more squeezing than the Markovian one; however, due to the
parameter regime, the excess of squeezing Ar(f) = rnm(f) — rv(f) at the cooling time 7.4 is very small Ar(teoo) =
3.621 x 1072. Thus, it is safe to consider the mean phonon number as an measure of cooling. Because in some cases
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the phonon number is not taken as a good measure of the cooling, calculations of the entropy transfer are performed
to also confirm that the initial energy in the mechanical mode is transfer to the optical mode.

Entropy Transfer

Interest concerns how to reduce the phonon number in the mechanical mode to achieve, as soon as possible, a state
near to the ground state. An alternative cooling witness is the entropy at the mechanical mode. If the entropy of the
mechanical mode decreases as the optical mode entropy increases, the effective temperature of the mechanical mode
decreases, i.e., mechanical mode is cooled although an absolute value for the temperature is not given. Figure 8 depicts
the von Newman entropy given by [10]

1 1 1 1
S(x) = (x + E)log (X+ 5) - (x - E)log (x - 5), x = \/<q2><p2> —{pq+aqp)*/4, (98)

for the mechanical and the optical mode as a function of time.
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FIGURE 8: von Neumann entropy of the both mechanical (S,,) and optical mode (S.). Parameters as in Fig. 1.
Continuous lines for non-Markovian dynamics (S and S, ) and dashed lines for Markovian dynamics (S n,,, and
S cy) When wp — oo.

mNm CNM

Cooling at this level is guaranteed by the fact that the entropy in the mechanical mode decreases; specifically,
it decreases from S ,(0) = 5.6101 to S (feoo1) = 2.23 X 1072 in the Markovian case and to S m(feoo) = 2.19 X 1072
in the non-Markovian case. Thus, the systems sits very close to its ground state (zero entropy). For the cavity mode,
it varies from S.(0) = 0 to Sc(fco0)) = 5.601 in the Markovian case and to S.(f.o01)) = 5.607 in the non-Markovian.
Although for this set of parameters, the entropy difference is not substantial, from the analysis above, it is clear that if
the dissipative rate y increases, then the entropy difference does so.

CONCLUSIONS

When non-Markovian dynamics are considered in the optimal cooling of resonators by sideband cooling, cooling
process is more effective than in the Markovian approximation. Therefore, previous works on sideband cooling
[15, 16, 11, 58] may benefict from the non-Markovian correlations. According to Figs. 3 and 6, ultrafast cooling
requieres ultrastrong optomechanical, g(r) > 1072, However, a tremendous increase in g was demonstrated recently
in an experiment by Teufel ef al. [9]. This has brought g within a factor of 10 of wy, which demonstrated that in the
future, the increase of the coupling g is feasible. Moreover, if the ultrafast condition is relaxed, then the coupling
amplitude decreases [27], e.g., if cooling is required to occur after of one period of the mechanical oscillation, then
the amplitude of g decreases, roughly, by an order of magnitude. The decrease of amplitude favors the current imple-
mentation of the present optimal cooling approach as well as guaranties that the optomechanical coupling is still in
the linear regime.
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On the technical side, the optimal protocol presented here would benefit from a reformulation in phase space
[59, 60] because the boundary problem translate by construction into initial condition problem [60, 61]. This would
also pave the way for the extension of the present protocol for analyzing non-linear systems in the semiclassical regime
[61, 62]. Work along tis line is in progress.
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