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Resumen

Se propone un método basado en la aproximación adiabática para estudiar la dinámica del átomo de Hooke
cuántico con frecuencia armónica variable en interacci´on con pulsos láser intensos. Se demuestra que
modificando este potencial de confinamiento en el tiempo, se puede enriquecer la dinámica de este sistema
modelo, dado que, en ausencia de tal perturbación, sólo esposible encontrar dos regı́menes posibles;
transparencia total a la radiación, o bien, absorción total.
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Abstract

We propose a method based on the adiabatic approximation to study the dynamics of the quantum Hooke’s
atom with varying oscillator frequencyω(t) when exposed to intense laser pulses. It is shown that by
modifying this confinement potential in time, we may enrich the outcome of this model system given that,
in absence of such perturbation, only total photo-transparency or total photo-absorption are possible.
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1. Introducción

The two-electron Hooke’s atom is a model system
similar to the Helium atom, where only the culombian
potential due to the electron-nucleus interaction is re-
placed by that of an harmonic oscillator. This quantum
system is known to have an analytical solution for a giv-
en set of oscillator frequencies [1]. Probably it is less
known that the Hooke’s atom subject to a radiation field
is also one of those few time-dependent exactly solvable
problems in Quantum Mechanics [2]. The underlying
reason for the exact solution comes from the separabil-
ity of the two-electron system in uncoupled center of
mass and relative motions. Only the center of mass mo-
tion is affected by the radiation field and its associated
equation is equivalent to that of the well-known forced

harmonic oscillator (FHO). The latter system in one di-
mension has been analyzed in extension by Nogami [3]
and Akridge [4], although to our surprise the solution is
already outlined in a textbook back in the early 60’s [5].
Curiously, the solution for the FHO merges the quan-
tum motion with the classical one, in such a way that
the wavepacket is driven by the classical trajectory. The
relevant quantities to be calculated are transition prob-
abilities between any two states and an analytical ex-
pression is readily available.

These ideas have been then extended to the full two-
electron Hooke’s atom [6]. The expression for the tran-
sition probabilities allows one to conclude that only two
possible regimes are possible: first, when the radiation
frequencyωL is equal to the harmonic frequencyω (res-
onant case) the system absorbs every photon contained
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Figura 1. From top to the bottom: (a). Electric fieldE(t) of the laser pulse with parametersωL = 0,5, E0 = 0,7 and T = 100. (b) Time
evolution of the ground state populationPo(t) for the resonant case (ω = ωL) with full depletion and the off-resonant case (ω = 2ωL) with
transparency.

in the pulse and the initial state becomes fully depleted,
and second, if both frequencies are off resonance, the
Hooke’s atom never absorbs a net number of photons,
i.e., its behaviour is transparency to the radiation. This
characteristic dichotomy between full depletion or full
transparency strongly reduces the possibility of control-
ling the system by tunable lasers. Therefore, in order
to enrich the outcome of the Hooke’s atom exposed to
laser pulses, we propose also to vary the confinement
frequencyω in time. An exact solution to this new prob-
lem is yet unknown. Then we must resort to the numeri-
cal solution of the time dependent Schrödinger equation
(TDSE). A procedure to solve the TDSE with an adi-
abatic basis expansion is here proposed. Atomic units
are used throughout unless otherwise stated.

2. Method of Solution

The TDSE for the Hooke’s atom of varying frequen-
cy ω(t) subject to a radiation fieldE(t) in the dipolar
approximation (length gauge) reads:

i∂tΨ(r1, r2, t) =

[

−
1

2
(∇2

1 + ∇2
2) +

ω2(t)

2
(r21 + r22)+

1

r12
− (r1 + r2) ·E(t)

]

Ψ(r1, r2, t)

(1)

For the laser pulse to be finite we use a co-
sine wave confined within a sine-squared envelope
E(t) = E0 sin2 (πt/T ) cos [ωL(t− T/2)]ε, whereE0

is the peak amplitude for the electric field,T is the
pulse duration andωL is the laser frequency. We al-
so propose a periodic variation for the confinement,
such thatω(t) is given by ω(t) = ω0 + (ω1 −
ω0) (sin [π(t/t1 − 1/2)] + 1) /2, whereω0 andω1 are
minimum and maximum values forω, respectively and
t1 corresponds to the half period.

Using the new coordinatesr = r1 − r2 and R =
1
2 (r1 + r2) Eq. (1) uncouples into

(
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ϕ(r, t) = 0

(2)

where Φ(R, t) is the center of mass (CM) wave-
function andϕ(r, t) the wavefunction for the relative
motion (RM), being the total functionΨ(R, r, t) =
Φ(R, t) · ϕ(r, t). These two TDSE equations admit an
unifying compact notation:

(

i∂t −HQ
0 −WQ

)

Υ(Q, t) = 0 (3)

whereQ = {R, r}, HR
0 = −

∇
2

R

4 + ω2(t)R2, Hr
0 =

−∇2
r+ ω

2(t)
4 r2+ 1

r
,WR = −2R·E(t) andWr = 0. To

solve Eq. (3) we make use of an adiabatic expansion in
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Figura 2. From top to the bottom: (a). Electric fieldE(t) of the laser pulse with parametersωL = 0,5, E0 = 0,7 andT = 100. (b) Variation
of ω(t) with two sets of parametersωa = [ω0,ω1] = [0,70, 1,30] and ωb = [0,795, 1,205] but the samet1 = 20 (see text). (c) Time
evolution of initial ground state populationP0(t) for the two sets in (b).

terms of the instantaneous eigensolutions ofHQ
0 (ω(t))

(i.e., for every givenω at timet)

Υ(Q, t) =
∑

n

cQn (t)·ψn(Q, ω(t)) exp (−i

∫ t

0

EQ
n (τ)dτ)

(4)
This is an appropriate method when the perturbation

varies smoothly. By inserting this ansatz into Eq. (3)
one obtains a set of coupled equations:

ċQm(t) =
∑

n

cQn (t)
[

−i〈ψm|∂t|ψn〉 + 〈ψm|WQ(t)|ψn〉
]

(5)
where the so called dynamical couplings〈ψm|∂t|ψn〉
may be readily obtained using the Hellman-Feynman
theorem, resulting into:

〈ψm(Q, ω(t))|∂t|ψn(Q, ω(t))〉 =

βQω(t)ω̇(t)〈ψm|Q2|ψn〉/(E
Q
n (t) − EQ

m(t))
(6)

whereβR = 2 and βr = 1/2. Dynamical couplings
have a closed form for the CM motion. As mentioned
above, the RM motion admits an exact solution for a dis-
crete set of natural frequenciesω but we do require a so-
lution for any arbitrary value ofω(t). We choose to ex-
pand the eigensolutions ofHr

0 in terms of B-splines ba-
sis sets, i.e.,ψn(r) =

∑

i
bni ·B

k
i
(r)/r ·Yℓm(θ, φ), that

provides a very accurate solution for the energiesEr
n

and the couplings〈ψm|r2|ψn〉. At variance, dipolar ma-
trix elements〈ψm(R, ω(t))|WR(t)|ψn(R, ω(t))〉, on-
ly relevant for the CM motion, are analytical. Since
the variation ofω(t) is periodic in time, energies and
couplings may be computed only once for a finite set
of values in[ω0, ω1], i.e., a set of instantaneous solu-
tions is prepared in advance. Being so, we make use

of an interpolation scheme for energies and couplings
during the time propagation. This procedure turns out
to be very accurate and stable when energies and cou-
plings are continuous and vary smoothly. A Bulirsch-
Stoer integrator has been used to propagate the set of
coupled equations, subject to an initial condition where
the Hooke’s atom is in its ground state.

3.Results and Conclusions.

As mentioned in the Introduction, an exact solution
for the Hooke’s atom exposed to a radiation field may
be obtained when the natural frequencyω is constant.
From this solutions one may conclude that the Hooke’s
atom shows quite a particular behaviour in photoab-
sorption processes. A net photon (energy) absorption is
only possible when the laser field is in resonance with
the natural frequency (ωL = ω). As a result the initial
state becomes fully depopulated at the end of the pulse
(see 1b). For any other case being off resonance (in-
cluding multiphoton transitions in the formω = nωL)
there is no photoabsorption after the field interaction,
at variance with many other real atomic systems. Being
off resonance, all the energy absorbed by the system is
promptly released in a symmetrical reversible process.
This effect of transparency is also illustrated in Figure
1 b.

A route to break down such simple behaviour in the
Hooke’s atom (either total depletion of the initial state
or total transparency) is here proposed by using tun-
able natural frequenciesω(t). The picture at hand may
be two electrons confined in an external time depen-
dent harmonic potential and driven by a laser pulse. As
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shown in Figure 2, by only varying the confinement
with ω(t) is not enough to produce any meaningful ef-
fect on the initial state (please notice that the laser pulse
starts at 20 a.u.). The dynamics with laser field and fixed
ω(t) = 1 ∀ t was included in Figure 1b and shows
transparency. It is just the joint effect of varyingω(t)
and the laser pulse that produces a distinct behaviour,
which is more amenable for dymanical control purpos-
es. In Figure 2 we also illustrate how to manipulate the
final outcome of the initial state populationPo by tun-
ing ω(t) in a laser field. By changing the boundaries
[ω0,ω1] of ω(t) (see Figure 2b), we may control the sys-
tem to yield total absorption (even being off resonance
sinceω(t) 6= ωL ∀ t ) or to select the final population
of the initial state (in fact, for any state) at will (in Fig-

ure 2 c, if P0(T ) = 0 and0,5 are required, thenω(t)
is shaped accordingly). The ideas here developed may
find applications in the dynamics of particles confined
by experimental Paul traps and exposed to intense laser
fields.

Referencias

[1] M. Taut, Phys. Rev. A, 48, 3561 (1993).
[2] U. Schwengelbeck,Phys. Lett. A, 253, 168 (1999).
[3] Y. Nogami, Am. J. Phys., 59(1), 64 (1991)
[4] R. Akridge, Am. J. Phys., 63(2), 141 (1995)
[5] I.I. Gol’dman and V.D. KrivchenkovProblems in Quantum

Mechanics, Pergamon Press (1961)
[6] O. Kidun and D. Bauer,J. Phys. B, 40, 779 (2007).

384

View publication statsView publication stats

https://www.researchgate.net/publication/28322373

