

Probabilistic damage tolerance analysis using inspection data from integrated sensors

Maria Isabel Vallejo Ciro

Manuel José Carvajal Loaiza

Degree work report as requirement to obtain the Title of Mechanical Engineer

External Advisor

Ph.D. Juan David Ocampo de los Ríos

Saint Mary’s University, San Antonio, TX, EEUU

Internal Advisor

Ph.D.(c) Liliana Marcela Bustamante Góez

Universidad de Antioquia

Universidad de Antioquia

Engineering Faculty

Mechanical Engineering

Medellín, Antioquia, Colombia

2021

Cite Vallejo Ciro & Carvajal Loaiza [1]

Reference

IEEE (2020)

[1] M. I. Vallejo Ciro & M. J. Carvajal Loaiza, “Probabilistic damage tolerance analysis

using inspection data from integrated sensors”, Bachelor’s degree project,

Mechanical Engineering, Universidad de Antioquia, Medellín, Antioquia, Colombia,

2021.

Mechanical Design Research Group.

Internship University: Saint Mary’s University

Centro de Documentación Ingeniería (CENDOI)

Repositorio Institucional: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - www.udea.edu.co

Chancellor: John Jairo Arboleda Céspedes.

Dean: Jesús Francisco Vargas Bonilla.

Chair: Pedro León Simanca.

“El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento

institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. Los autores asumen la

responsabilidad por los derechos de autor y conexos.”

https://co.creativecommons.org/?page_id=13
https://co.creativecommons.net/tipos-de-licencias/

Dedication

For my mom Ana Cecilia, my sister Claudia,

my grandmother Ana de Jesús,

 and family.

—M.I.V.C.

For my parents Nelson and Beatriz, my sister Daniela

my grandfather Ernesto,

my cousin Laura,

 and family.

—M.J.C.L.

Acknowledgments

The authors are grateful to Dr. Juan Ocampo, Liliana Bustamante, and Dr. Junes Villarraga,

who were our guides through all this process and taught us more than just academic. To Mechanical

Design Group from Universidad de Antioquia. To St. Mary’s University, Fundación Universidad

de Antioquia and Programa de Semilleros de Investigación. for the grants that made possible this

work. Likewise, to the Federal Aviation Administration for the grant that allowed the development

of the methodology in SMART-DT. And to our alma mater Universidad de Antioquia.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors I

TABLE OF CONTENTS

ABSTRACT ... 1

RESUMEN ... 2

I. INTRODUCTION .. 3

II. OBJECTIVES .. 5

A. General Objective .. 5

B. Specific Objectives .. 5

III. THEORETICAL FRAMEWORK ... 6

A. Fracture Mechanics ... 6

1. Stress Intensity Factor ... 6

2. Fracture Toughness ... 7

3. Crack Growth Rate Curve ... 8

B. Probabilistic Damage Tolerance Analysis ... 9

1. Failure Criteria .. 9

C. Monte Carlo Sampling ... 10

D. Bayesian Updating .. 12

1. Prior Distribution .. 12

2. Likelihood Distribution ... 13

3. Normalization Factor .. 17

4. Posterior Distribution .. 18

IV. METHODOLOGY ... 19

V. EXAMPLE PROBLEMS .. 27

A. Example with no detection .. 27

B. Example with detection ... 29

VI. CONCLUSION .. 33

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors II

REFERENCES ... 34

APPENDIX .. 35

APPENDIX A. CODE ... 35

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors III

LIST OF FIGURES

Fig. 1. Loading modes[2] ... 6

Fig. 2. a) Edge crack in a semi-infinite body. .. 7

Fig. 3. Fracture Toughness AFGROW[10] .. 7

Fig. 4. ∆σ through time[2]. ... 8

Fig. 5. Three regions of crack growth rate curve [11]. ... 9

Fig. 6. Circle circumscribed by a square. ... 11

Fig. 7. Monte Carlo sampling... 11

Fig. 8. Prior Distribution. ... 13

Fig. 9. Likelihood distribution.. 14

Fig. 10. Probability of Detection example. .. 14

Fig. 11. Function f(D) .. 15

Fig. 12. Probability of No Detection. ... 16

Fig. 13. Function f(ND) .. 17

Fig. 14. Likelihood of No Detection. ... 17

Fig. 15. Normalization Factor. ... 18

Fig. 16. Prior, Likelihood and Posterior Distributions. .. 18

Fig. 17. Flowchart for Bayesian Updating Script... 19

Fig. 18. Flowchart Bayesian Updating Script. ... 21

Fig. 19. Program graphical user interface .. 22

Fig. 20. Search window. ... 22

Fig. 21 . dat file example. ... 23

Fig. 22. Curve for the probability of failure. .. 23

Fig. 23. Crack size found. .. 24

Fig. 24. GUI after added inspection, example. ... 25

Fig. 25. Prior, Likelihood and posterior distributions, example. ... 26

Fig. 26. Likelihood function. .. 26

Fig. 27. No detection example setup. ... 27

Fig. 28. Updated probability of failure for no detection example. ... 28

Fig. 29. Prior, likelihood and posterior distributions for no detection example. 28

Fig. 30. Likelihood distribution for no detection example. .. 29

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors IV

Fig. 31. Example for one detection .. 30

Fig. 32. Updated probability of failure for detection example ... 30

Fig. 33. Prior, likelihood and posterior distributions for detection example. 31

Fig. 34. Likelihood distribution for detection example. ... 31

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 1

ABSTRACT

Fatigue failures are common failures within the aeronautical field. microcracks appear after

many repetitions of cyclic stresses, then, these microcracks grow until a point of no return is

reached and the growth becomes unstable and imminent. It is hard to do reliable estimations of a

system subject to fatigue due to multiple random factors that affect the material, geometry, and

stresses, among others. In this work, to estimate this type of failure, a probabilistic analysis is

performed, where each parameter from the model is represented as a probability density function.

This work presents a software application to perform fatigue failure analysis using MATLAB and

SMART|DT[1]. This last program follows the standards issued by the Federal Aviation

Administration of United States (FAA). The application implements a Bayesian inference process

to update the model’s crack size distribution when inspections are performed, to add more accuracy

to risk predictions. This application is expected to support decisions about when to perform

inspections based on an allowable desired risk for the fleet.

Keywords — Bayesian updating, Damage Tolerance, Probability of Failure, Residual

Strength, Fracture Toughness, Probabilistic methods.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 2

RESUMEN

Las fallas a fatiga son fallas comunes dentro del campo aeronáutico. Luego de muchas

repeticiones de esfuerzos cíclicos, microgrietas aparecen, estas crecen hasta alcanzar un punto de

no retorno en el cuál terminan de crecer de manera inestable e inminente. Es difícil hacer

estimaciones confiables de un sistema sujeto a fatiga debido a múltiples factores aleatorios que

afectan al material, la geometría y los esfuerzos, entre otros. En este trabajo, para estimar este tipo

de falla, se utiliza un análisis probabilístico, donde cada parámetro del modelo es representado

como una función de densidad de probabilidad. Este trabajo presenta una aplicación para realizar

análisis de falla por fatiga usando los programas MATLAB y SMART|DT[1], este último sigue las

normas emitidas por la administración federal de aviación de Los Estados Unidos (FAA), e

implementa un proceso de inferencia bayesiana para actualizar la distribución de tamaño de grietas

del modelo cada que se realiza una inspección para proporcionar más precisión a las predicciones

de riesgo. Se espera que esta aplicación sea de soporte a la hora de tomar decisiones sobre cuando

realizar inspecciones en la flota basadas en el riesgo que se quiera tomar.

Palabras clave — Actualización Bayesiana, Tolerancia al Daño, Probabilidad de Falla,

Esfuerzo Residual, Resistencia a la Fractura, Métodos probabilísticos.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 3

I. INTRODUCTION

Fatigue failures are common failures within the aeronautical field. They are present when

a material is subject to cyclic and variable loading and the magnitude of these stresses is always

less than the material yield point. If there are many stresses repetitions (cycles), microcracks begin

to appear. These microcracks grow with the following cycles until a point of no return is reached

and the crack grows unstably and imminently giving as result a failure and the separation of the

part [2]. For this type of cracks, it is hard to do reliable estimations of a system subject to fatigue

due to multiple random factors that affect the material, geometry, and stresses[3], [4]. However, in

recent years, the capacity of prognosis for crack behavior has been improved. There are better

devices and methods to detect cracks of smaller sizes, such as penetrant liquids, Eddy current,

ultrasound, or radiography. All of these has allowed, especially the aeronautical industry, to

develop better designs based on the denominated damage tolerance, which applies fracture

mechanics principles, and it has led to an increase in airplane safeness to fatigue. This means the

airplane is designed to bear cracks of a specific length without presenting a failure.

The damage tolerance analysis approach using fatigue crack growth has been the leading

tool for aircraft design and continuing airworthiness evaluation. Damage tolerance is used to

evaluate the fatigue life and the residual strength of aircraft components to establish the durability

and inspection requirements. To better assess the durability and inspection requirements, it is

required to assess variations in loading, material, and geometry. Therefore, a comprehensive

probabilistic damage tolerance analysis is essential.

A probabilistic analysis consists in representing each parameter from the model as

probability density functions instead of doing so through punctual estimations, just as it is done in

a deterministic model[5]. To better estimate the Probability of Failure within the probabilistic

damage tolerance analysis framework, it is required to develop distributions for loading, material,

and geometry to consider real-world airplane to airplane variations. When inspection data becomes

available, either as a finding or no finding, it can be used to update the probabilistic damage

tolerance analysis distribution modeling assumptions.

This work presents a software application created in MATLAB as support to perform

fatigue failure analysis through a probabilistic methodology which includes Bayesian inference to

update the crack size distribution at a given inspection and its subsequent Probability of Failure

using inspection information. Two examples are presented to demonstrate the methodology. This

application was developed using fracture mechanics together with Monte Carlo probabilistic

method, in addition to the program SMART|DT[6], and implements a Bayesian Inference process

to update crack size distributions every time an inspection is performed in order to increase the

accuracy for risk predictions [7], [8]. AFGROW is a software initially developed by the United

States Air Force (USAF) to model crack growth for different geometries and loads. SMART|DT is

based on design standards issued by the Federal Aviation Administration of United States (FAA).

With this application, it will be possible to include inspections data from integrated sensors in the

mathematical model, and this way, the application can work as support for scheduling future

inspections based on an updated curve of Probability of Failure that will be more accurate respect

to reality. Also, it is expected that this methodology will be added in a module in SMART|DT. This

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 4

work was developed during a research internship at Saint Mary’s University in San Antonio, TX,

USA.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 5

II. OBJECTIVES

A. General Objective

Create a software application based on damage tolerance analysis, probabilistic methods,

and Bayesian inference through SMART|DT that allows to compute the probability of failure in

airplanes, add inspections and update the probability of failure based on data found in each

inspection using integrated sensors.

B. Specific Objectives

• Understand fracture mechanics physical phenomena for metallic materials and implementing

damage tolerance using stresses spectrums and components geometries to estimate the crack

growth curve.

• Create a MATLAB code to carry out, within the crack growth analysis, a field inspection

and/or repair and to update the failure probability distribution executing SMART|DT.

• Implement Bayesian Inference to update the initial crack size distribution for each inspection.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 6

III. THEORETICAL FRAMEWORK

A. Fracture Mechanics

Materials, for example, steel or aluminum, often have imperfections due, in many cases, to

the manufacturing process. These imperfections may be due to dislocations, porosities, crystal

imperfections, welding, among others. The detection of these cracks depends on the inspection

method. To estimate the propagation of these cracks Fracture Mechanics principles are used.

Hence, it is necessary to know the initial crack size or be assumed, in addition to mechanical

properties such as yield strength, fracture toughness, and its geometry.

There are three different modes of loading for crack surface displacement: Mode I is

referent to opening, this mode is the most representative for damage and it is the most researched.

Mode II corresponds to planar shearing or sliding, this occurs when the crack faces slide in the

direction parallel to the principal crack direction, and Mode III is tearing mode, this occurs when

the crack faces slide in the direction perpendicular to the principal crack direction. The last mode

does not occur very often. The three modes are shown in Fig. 1.

Fig. 1. Loading modes[2]

1. Stress Intensity Factor

The stress intensity factor, K, is the energy or intensity of the stresses around the crack tip.

When this stress intensity factor reaches and exceeds a threshold (𝐾𝑇𝐻), the cracks start to grow. K

depends on the geometrical configuration, type of crack and the stresses involved.[2]

For loading mode I, which is the loading mode used for the analysis within this work, the

equation for K is the following

𝐾 = 𝛽 ∙ 𝜎 ∙ √𝜋𝑎 [𝑃𝑆𝐼√𝑖𝑛] [𝑀𝑃𝑎√𝑚] (1)

Where 𝜎 is the remote stress applied to the component, a is crack length, and 𝛽 is a

correction factor that depends on the specimen and cracks geometry, for example, for the

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 7

configuration shown in Fig. 2.a, 𝛽 = 1.12, and for the configuration shown in Fig. 2.b, 𝛽 =

√sec (
𝜋𝑎

𝑊
).

a) b)

Fig. 2. a) Edge crack in a semi-infinite body.

b) Centre crack in a strip of finite width.[9]

2. Fracture Toughness

Fracture toughness of the material is the value of the critical stress intensity factor, KC.

When Kc is reached, the crack grows rapidly and unstably. A similitude between Fracture

toughness and yield stress can be made saying that fracture toughness is the limiting value for stress

intensity factor and yield stress is the limiting value for applied stresses. Kc depends on the

specimen thickness, it varies until plane strain conditions are reached and it becomes constant, this

fracture toughness is represented by KIC.[2] Fig. 3 shows a schematic curve displaying the

relationship between thickness and the critical fracture toughness.

Fig. 3. Fracture Toughness AFGROW[10]

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 8

3. Crack Growth Rate Curve

da/dN represents the crack growth rate, where crack length, a, is differentiated in terms of

cycles, N, and it can be plotted vs ∆𝐾 using the following the equation.

∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 = 𝛽∆𝜎√𝜋𝑎 (2)

Where ∆𝜎 is the remote stress applied to the component, Fig. 4. shows ∆𝜎 schematically.

Fig. 4. ∆σ through time[2].

Fig. 5. shows a schematic plot for da/dN versus ΔK in logarithmic scale. This curve exposes

three different regions, the first one represents crack initiation, and it is associated with threshold

𝐾𝑇𝐻, the crack will only grow if ∆𝐾 exceeds 𝐾𝑇𝐻. This section is not commonly used for designing,

only parts for specific applications are designed within this region, for example power trains that

operate at very high speeds. The second region is the crack propagation, essentially linear, most

applications are designed within this region, and there are several research studies about this region

and some equations have been created to represent this phenomenon, for example, the Paris

Equation or the NASGRO equation. The third region represents a fracture with high ΔK, this

section is reached when KC is exceeded, it occurs in a very short time, the crack grows rapidly and

unstably.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 9

Fig. 5. Three regions of crack growth rate curve [11].

This study is focused on region II and the Paris equation, which is the most accepted for

describing the curve in this region, equation 3 is the Paris equation.

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (3)

Where C and m are material constants and ΔK is the stress intensity range. C and m can be

found in the literature.

B. Probabilistic Damage Tolerance Analysis

Damage tolerance refers to the ability of structures to sustain cracks for a time before

repairing it. Its analysis is based on the physics of fracture mechanics, and it is associated with the

second region in Fig. 5. in crack propagation. This concept was introduced by the FAA and the

USAF and they use it as “safety by inspection”. This approach assumes that components always

have cracks, and they propagate with usage. It relies on inspections to repair the cracks and extend

the service time of the component. A probabilistic analysis refers to the use of probabilistic

distributions or random variables for the different properties used within the methodology of

damage tolerance analysis and fracture mechanics.[1]

1. Failure Criteria

a) Probability of Failure (POF):

The probability of failure is defined as the probability that the maximum stress per flight

exceeds the Residual Strength of the part. [7]

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 10

𝑃𝑂𝐹 = 𝑃(𝜎𝑚𝑎𝑥𝑓𝑙𝑖𝑔ℎ𝑡 > 𝑅𝑆) (4)

b) Residual Strength (RS):

Residual Strength is the structural strength remaining in the presence of a crack, also the

residual strength determines the critical crack size.[2]

• RS by Fracture Toughness

To know the quantity of the residual strength at any time on the structure based on the

material property fracture toughness (𝐾𝑐), the following equation is used:

𝑅𝑆 =
𝐾𝑐

𝛽√𝜋𝑎(𝑡)
 (5)

This type of failure exists when ΔK reaches KC and imminent grow for the crack occurs.

• RS by Net Section Yielding

The amount of residual strength by net section yielding can be calculated using the

following equation:

𝑆𝑁𝑆𝑌 = 𝑆𝑦 (1 −
(𝐷+𝑎𝑖+𝑟𝑦𝑧)

𝑊
) (6)

Where 𝑆𝑦 is the yield stress, D is the hole diameter, 𝑎𝑖 is the crack length, 𝑟𝑦𝑧 is the radius

of the plastic zone near the crack tip and W is the width of the part.

This failure occurs when the part has been subjected to plastic deformation from the crack

tip to the opposite face of the part.

C. Monte Carlo Sampling

Monte Carlo methods are different computational techniques for the solution of

mathematical problems, which focuses on random samples. These techniques are used to generate

random samples based on a probability density function.[12]

As example, this methodology can be used to estimate the value of PI. It is assumed a circle

of radius 0.5 circumscribed by a square of width 1, as shown in Fig. 6. The area of the square is 1

and the area of the circle is
𝜋

4
, then, the area of the circle over the area of the square is

𝜋

4
.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 11

Fig. 6. Circle circumscribed by a square.

Assuming that uniformly distributed random points are generated inside a square from (0,0)

and (1,1), the points inside the circle are colored red and outside blue as shown in Fig. 7. Then, the

number of points inside the circle is divided by the total number of points, the result will be an

approximate value to the division of the areas as shown before, this is,
𝜋

4
. If this approximate result

is the multiplied by 4, then, the result will be an estimation of 𝜋.

Fig. 7. Monte Carlo sampling

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 12

D. Bayesian Updating

Bayes’ theorem relates the conditional probability between two events. It is used to

calculate the probability of an outcome based on prior knowledge or its association with another

event [13]. Bayes’ theorem formula is:

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)∙𝑃(𝐴)

𝑃(𝐵)
 (8)

Where P(A|B) is the probability of event A occurring, given event B has occurred, P(B|A)

is the probability of event B occurring, given event A has occurred, P(A) is the probability of event

A and P(B) is the probability of event B.

These two events A and B are independent, this is, the result of event A does not affect the

probability of event B.

Bayesian Inference, involves Bayes’ Theorem, is used to update a distribution of an event

based on new information. It uses probability distributions instead of deterministic estimations.

Bayesian inference is commonly used in machine learning, but it is also applied in fields such as

medical and pharmaceutical.

In this case, the Bayesian formula is used to update the probability distributions of the

parameters of crack size detected [14].

𝑃+(𝜃|𝑫) =
𝐿(𝑫|𝜃)∙𝑃−(𝜃)

𝑁𝐹
 (9)

Where:

- 𝜃 represents the parameters mean(μ) independent variable, and standard deviation(σ)

assumed, it will be fixed,

- 𝑫 represents the vector of the measurements (or inspections),

- 𝑃−(𝜃) represents the prior distribution of crack size at the time.

- 𝐿(𝑫|𝜃) represents the likelihood function of the parameters.

- 𝑁𝐹 Normalization Factor used to get a probability density function.

- 𝑃+(𝜃|𝑫) represents the posterior distribution given the detected crack sizes.

1. Prior Distribution

The prior distribution is known, based on the damage tolerance model at time t. the prior

distribution is equal to the crack size distribution predicted at time t. Assumed that it follows a Log-

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 13

normal distribution with mean and standard deviation known [8]. Fig. 8 shows the prior distribution

methodology used within this work.

Fig. 8. Prior Distribution.

2. Likelihood Distribution

The likelihood function reflects the degree of agreement between the obtained

measurements, D, and the output obtained from the mathematical model (Log-normal distribution)

used to physically describe the system [8].

It will be dependent on each inspection, and whether a crack is found or not and will have

the following equation:

𝐿(𝑫|𝜃) = 𝐿𝐷(𝜃) ∙ 𝐿𝑁𝐷(𝜃) (10)

Where 𝐿𝐷(𝜃) is the likelihood function when there is a crack detected and 𝐿𝑁𝐷(𝜃) when

there were no cracks found. Fig. 9 shows Likelihood distribution schematically.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 14

Fig. 9. Likelihood distribution.

• Likelihood of Detection 𝑳𝑫(𝜽):

The likelihood function for detections will have the following equation and will be

dependent on every crack detected:

L𝐷(𝜃) = ∏ 𝑃𝑂𝐷𝑖(𝐷𝑖(𝑡𝑖)) ∙ 𝑓(𝐷𝑖(𝑡𝑖)|𝜃)
𝑁𝐷
𝑖=1 (11)

- Probability of Detection (POD), which depends on the detection method, e.g., Eddy current

testing, corresponds to the probability of detection curve. Fig. 10 shows an example of this

curve for an inspection method following a log-normal distribution with a mean of 0.06 and

a standard deviation of 0.07.

Fig. 10. Probability of Detection example.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 15

- Function 𝑓(𝐷𝑖(𝑡𝑖)|𝜃) For this work, it represents the distribution of means for the crack

found 𝐷𝑖, and it is defined as:

LogNormal(𝐷𝑖|𝜑, ℎ)=
1

𝐷𝑖∙ℎ∙√2𝜋
∙ 𝑒𝑥𝑝 {

−(log(𝐷𝑖)−𝜑)2

2∙ℎ2
}, for 𝐷 > 0 (12)

𝜑 = 𝐿𝑜𝑔 (
𝜇2

√𝜎2+𝜇2
) (13)

ℎ = √𝐿𝑜𝑔 (
𝜎2

𝜇2
+ 1) (14)

Where 𝜇 is an independent variable representing the possible mean of cracks and 𝜎 follows

this statement: “There are two possible ways to decide on the value of 𝜎𝑘. The first would be

through estimation via the mean squared error of (𝐷𝑘 − 𝑀(𝜽)). The second would be to set it as

a fixed parameter based on prior calculations or knowledge.”[15]: In this case, it is used the

same as the standard deviation for the prior distribution.

For the probability density function shown in Eq. 12, the crack size is known, which is 𝐷𝑖

and the mean is a random variable. Fig. 11 shows an example of function f(D).

Fig. 11. Function f(D)

• Likelihood of NO Detection 𝑳𝑵𝑫(𝜽):

When no cracks are detected, the Likelihood function is defined as:

L𝑁𝐷(𝜃) = ∏ ∫ 𝑃𝑁𝐷𝑖(𝐷(𝑡𝑖)) ∙ 𝑓(𝐷(𝑡𝑖)|𝜃)𝑑𝐷
∞

0

𝑁𝑁𝐷
𝑖=1 (15)

- Probability of No Detection (𝑃𝑁𝐷) corresponds to the probability that the inspection

method will not detect a crack and it is defined as:

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 16

𝑃𝑁𝐷 = 1 − 𝑃𝑂𝐷 (16)

Fig. 12 shows an example of the probability of no detection for an inspection method

following a log-normal distribution with a mean of 0.06 and a standard deviation of 0.07.

Fig. 12. Probability of No Detection.

- Function 𝑓(𝐷(𝑡𝑖)|𝜃) represents is a probability density function (PDF), it follows the same

methodology as for detected cracks, but now it has D as a random variable too. Fig. 13

shows graphically a representation for distributions of means and crack sizes.

The integral considers all the values D can take.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 17

Fig. 13. Function f(ND)

Fig. 14 shows an example for Likelihood function curve for no detection.

Fig. 14. Likelihood of No Detection.

3. Normalization Factor

It’s a normalization factor, so when integrating the posterior distribution, the cumulative

density function is equal to 1. Fig. 15 shows a scheme for normalization factor.

𝑁𝐹=∫ L(𝐃|𝜃)∙P−(𝜃)∙𝑑𝜃
∞

0
 (17)

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 18

Fig. 15. Normalization Factor.

4. Posterior Distribution

After computing the posterior distribution, it becomes a laborious function, so it is fit to a

log-normal distribution and the new parameters are obtained. Fig. 16 shows a prior, likelihood and

posterior distribution.

𝑃+(𝜃|𝑫) =
𝐿(𝑫|𝜃)∙𝑃−(𝜃)

𝑁𝐹
 (18)

Fig. 16. Prior, Likelihood and Posterior Distributions.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 19

IV. METHODOLOGY

This study was performed with SMART|DT, which does a probabilistic crack growth

depending on different material, airplane, and flight properties, and there was a necessity to update

the model after each inspection based on what was found within each inspection. To update the

model, Bayesian updating was used, and a graphical user interface was created in MATLAB in

order to have the possibility to do many updates in a short time. A flowchart showing the

methodology followed for the script is exposed in Fig. 17.

Fig. 17. Flowchart for Bayesian Updating Script.

To do the Bayesian updating, the first step was to have an initial crack size distribution, this

distribution represents existing knowledge at the beginning of the analysis based on the

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 20

manufacturing process. The initial crack size distribution was grew using the damage tolerance

models in SMART|DT. This software gives an output file which contains the cumulative crack size

distribution, then a fitting was performed for this cumulative crack size following a log-normal

distribution and its parameters (mean and standard deviation) were obtained and used in MATLAB

using a symbolic variable within an equation.

Subsequently, it is known that the likelihood distribution is a representation of the degree

of agreement between the mathematical model and the obtained measurements, to accomplish this,

a new distribution was created. This distribution is assumed to follow a log-normal distribution

equation, but it has some changes, first, the independent variable is now the crack size mean, and

second, instead of “x” a measurement 𝐷𝑖 is set, this equation is shown in Eq.12, lastly, based on

the prior model, it is assumed that this equation will have the same standard deviation as the prior

distribution. Furthermore, there is also another important equation here, this other equation

represents how reliable is the measurement obtained, and it is the probability of detection

distribution. An example of the probability of detection for Eddy currents is shown in Fig. 10.

Assuming that an inspection in an airplane is performed and that inspection found a crack, the

likelihood distribution can be expressed as the multiplication of two equations as shown in Eq.11.

When cracks are not found during an inspection, a modification to Eq.12 needs to be done due to

the inexistence of measurement 𝐷𝑖. To include every possible size that the crack could have, an

integration is done from 0 to the infinite in terms of D, and the resulting equation is then multiplied

by the probability of detection equation of the method used during the inspection; this process is

shown in Eq.15. When there are multiple inspections, a likelihood distribution is created

independently for each inspection, then, all these likelihood distributions are multiplied together in

order to obtain just one likelihood distribution. Using MATLAB, these equations are created using

symbolic equations and the likelihood function is a variable containing the multiplication of them.

After that, the updated distribution needs to follow the rules of a probability density

function, and this is, the area under the curve must be 1, to achieve this, the prior and likelihood

distributions are multiplied, then, they are integrated in terms of “x” from 0 to the infinite, the

result of that integration is called the normalization factor. In MATLAB, this was done by using a

loop with increments of 0.001 from 0 to 2 and replacing that value in the equation resulting from

the multiplication between likelihood and prior distributions and performing the sum of each

resulting value.

Finally, the posterior distribution is going to be the result of the multiplication of the prior

and likelihood distributions over the normalization factor, Eq.17. This is then substituted by values

in order to have pairs of numbers to apply a fitting to the resulting equation. A log-normal

distribution is used to perform the fitting and the results are the mean and standard deviation of the

posterior distribution.

These two new parameters now represent the initial crack size distribution and are used to

restart the damage tolerance analysis from that time and update the probability of failure for the

analyzed part. A flowchart showing the followed process is shown in Fig. 18.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 21

Fig. 18. Flowchart Bayesian Updating Script.

When all the coding for Bayesian updating was ready, the next step was to do an

implementation of SMART|DT within MATLAB to run simulations from the first input file and to

simulate every update the user would like to do. Fig. 19 shows the resulting graphic user interface

created.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 22

Fig. 19. Program graphical user interface

This graphical user interface (GUI) includes a button at the top, this button is used to import

a preexisting .dat file used to do a simulation on SMART|DT. Those files contain aircraft

information, simulation method, material properties, inspection information, loading parameters,

and a description of that .dat file. When that button is clicked, a new window appears, shown in

Fig. 20. It is used for searching and importing a preexisting .dat file, an example of this type of

files is shown in Fig. 21. Then, SMART|DT runs the simulation with the selected file. After the

simulation is done, the GUI adds to the plot the resulting curve for the probability of failure from

the output file of the simulation, an example of this is shown in Fig. 22.

Fig. 20. Search window.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 23

Fig. 21 . dat file example.

Fig. 22. Curve for the probability of failure.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 24

After there is an existing curve in the plot, all the left panel is activated. This section is used

to input the field data. First, there are two options, to select maximum allowable risk or flight hours,

and a text box to input the respective risk or flight hours. When “Maximum allowable risk” is

selected, the text box is set to have a scientific number format and limits from 0 to 1. When it is

selected flight hours, the text box is set to have integer number format and limits from 0 to the

infinite.

The next section corresponds to the inspection method and its inherent probability of

detection curve. The GUI is programmed to use a log-normal distribution for the probability of

detection, and it has two textboxes to input the mean and standard deviation for that log-normal

distribution.

Additionally, there are two options to add the crack sizes found. First, it can be done by

importing a txt file. That txt file must have each crack size in a different line and when the

inspection didn’t detect a crack, that inspection must be represented by a 0. The second option is

to manually add each crack size found. For this option, the spinner must be set to the number of

crack sizes to add, and after the “Add Crack Sizes” button must be clicked. This will create a new

window that has a number of cells equal to the number set in the spinner. These cells must be filled

with integers equal or bigger than 0, where 0 also represents that there were no cracks found, then,

“Load” button must be clicked to add the input values. An example of this window is shown in

Fig. 23.

Fig. 23. Crack size found.

Before adding the inspection, there is one last step within the GUI before adding the

inspection, this is, to select a curve in which the Bayesian updating inspection will be performed

from the dropdown list. Every time there is a new inspection, that curve is added to the dropdown

list.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 25

Finally, “Add inspection” button can be clicked. When this button is clicked, it first

identifies which curve is selected to perform Bayesian updating and saves its indicative in a

variable and imports the values for POF output file from SMART|DT. it searches for the flight

hours or risk that was input before and creates a new .dat file to write crack size distribution at the

corresponding time. It runs SMART|DT with the .dat file. Then, it imports the crack size

distribution from that last file and follows the Bayesian updating process mentioned before using

this distribution as the prior distribution. With the resulting parameters from the posterior

distribution, it creates two new .dat files using these parameters as the initial crack distribution.

The first file only updates the distribution, and the second file, besides updating the distribution,

also simulates a repair in the part. These two files are then run in SMART|DT, and the two resulting

POF curves are plotted within the GUI, an example of this is shown in Fig. 24. It also adds the two

new curves to the dropdown list and sets it to the updated curve without repair. two new windows

are also created. The first new window displays 3 curves, they are the prior, likelihood and posterior

distributions, and the second window displays only the likelihood distribution, an example of these

two windows are shown in Fig. 25 and Fig. 26.

Fig. 24. GUI after added inspection, example.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 26

Fig. 25. Prior, Likelihood and posterior distributions, example.

Fig. 26. Likelihood function.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 27

V. EXAMPLE PROBLEMS

A. Example with no detection

This example begins with the probability of failure curve shown in Fig. 22, then, it is

assumed to do an inspection at the time when the risk is less than 10-7. The inspection method is

assumed to have a probability of detection that follows a log-normal distribution with mean 0.06

in and standard deviation 0.07. Finally, it is assumed that within one inspection there were not

cracks found. Fig. 27 shows these aspects mentioned before already selected and included within

the GUI.

Fig. 27. No detection example setup.

The results for this setup are presented in Fig. 28, including the new probability of failure

and the distributions used to perform Bayesian updating process. These last distributions are shown

in Fig. 29 and Fig. 30.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 28

Fig. 28. Updated probability of failure for no detection example.

Fig. 29. Prior, likelihood and posterior distributions for no detection example.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 29

Fig. 30. Likelihood distribution for no detection example.

From Fig. 28, it can be seen that the inspection should be done at 12,000 flight hours to

prevent reaching the risk of 10-7. From Fig. 29 it can be seen that due to no cracks found, the mean

for crack size distribution became less than the predicted model and as consequence, it can be seen

in Fig. 28 that the updated probability of failure is less risky than the initial one.

B. Example with detection

As continuation for the example before, it is assumed that there was no reparation because

there were no cracks found and a new inspection was planned at 17000 flight hours. Within this

inspection it is assumed that a crack of 0.1in of length was found using the same inspection method

than before, so it will follow the same probability of detection distribution. Fig. 31 shows the setup

for this example having what was found in the past example already in the GUI.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 30

Fig. 31. Example for one detection

The results for this setup are presented in Fig. 32, including the new probability of failure

and the distributions used to perform Bayesian updating process. These last distributions are shown

in Fig. 33 and Fig. 34.

Fig. 32. Updated probability of failure for detection example

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 31

Fig. 33. Prior, likelihood and posterior distributions for detection example.

Fig. 34. Likelihood distribution for detection example.

From Fig. 32. It can be seen that the inspection should be done at 16,800 flight hours to

prevent reaching the risk (although it was input 17,000 hours, the program takes the hours that the

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 32

probability of failure has, which is 16,800). From Fig. 33 it can be seen that due to the crack found

the mean for crack size distribution also became less than the predicted model and as consequence,

it can be seen in Fig. 34 that the updated probability of failure is less risky than the initial one.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 33

VI. CONCLUSION

As conclusion, the objective of this work, which was to create an application capable of

updating the crack size distribution for a fleet with information given by inspections, was fulfilled

through a MATLAB software application. This software application was made to first run a

simulation on SMART|DT with a preexisting setup for cracks in an airplane, and with the results

of that simulation, read a prior crack size distribution at a given time. Then, with information from

integrated sensors during inspections, the application creates a likelihood crack size distribution.

Finally, it computes a new crack size distribution called posterior distribution, using the prior and

likelihood distributions obtained before. Additionally, the application runs again a simulation with

the new setup to update the fleet probability of failure. The application can do this process as many

times as desired, but always based on a probability of failure without repair.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 34

REFERENCES

[1] H. Millwater, J. D. Ocampo, and T. Castaldo, “Probabilistic damage tolerance analysis for

general aviation,” in Advanced Materials Research, 2014, vol. 891–892, doi:

10.4028/www.scientific.net/AMR.891-892.1191.

[2] J. A. Bannantine, J. J. Comer, and J. L. Handrock, FUNDAMENTALS OF METAL

FATIGUE ANALYSIS, First. Englewood Cliffs, NJ: Prentice Hall, 1989.

[3] P. H. Wirsching, “Statistical Summaries of Fatigue Data for Design Purposes.,” NASA

Contract. Reports, no. July, 1983.

[4] F. G. Pascual and W. Q. Meeker, “Estimating Fatigue Curves With the Random Fatigue-

Limit Mode Estimating Fatigue Curves With the Random Fatigue-Limit Mode,” 1997, doi:

10.1080/00401706.1999.10485925.This.

[5] M. I. Vallejo, M. J. Carvajal, and J. Ocampo, “Probabilistic Structural Fatigue and Risk

Analysis on the PIPER -PA-28 Fleet, A Case Study.”

[6] J. Ocampo et al., “Development of a probabilistic linear damage methodology for small

aircraft,” in Journal of Aircraft, 2011, vol. 48, no. 6, pp. 2090–2106, doi:

10.2514/1.C031463.

[7] D. T. Rusk, K. Y. Lin, D. D. Swartz, and G. K. Ridgeway, “Bayesian updating of damage

size probabilities for aircraft structural Life-Cycle management,” 19th AIAA Appl. Aerodyn.

Conf., vol. 39, no. 4, 2001, doi: 10.2514/6.2001-1646.

[8] Y. T. Wu, M. Shiao, and H. R. Millwater, “A Bayesian-updating computational method for

probabilistic damage tolerance analysis,” Collect. Tech. Pap. -

AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., no. April, pp. 1–9, 2010,

doi: 10.2514/6.2010-2686.

[9] D. Broek, “Introduction To Fracture Mechanics.,” Fract Mech Des Methodol, Struct Mater

Panel, Delft, Oct 5-6, Munich, Oct 9-10, no. 97, 1978, doi: 10.13140/RG.2.1.1444.2408.

[10] J. Harter, AFGROW USER GUIDE AND TECHNICAL MANUAL. LexTech, Inc, 1999.

[11] D. Liu and D. Pons, “Crack Propagation Mechanisms for Creep Fatigue: A Consolidated

Explanation of Fundamental Behaviours from Initiation to Failure,” Metals (Basel)., vol. 8,

no. 8, p. 623, Aug. 2018, doi: 10.3390/met8080623.

[12] A. M. Johansen, “Monte Carlo Methods,” Int. Encycl. Educ., pp. 296–303, Jan. 2010, doi:

10.1016/B978-0-08-044894-7.01543-8.

[13] S. Theodoridis, “Probability and Stochastic Processes,” Mach. Learn., pp. 19–65, Jan. 2020,

doi: 10.1016/B978-0-12-818803-3.00011-8.

[14] E. Heredia-Zavoni and R. Montes-Iturrizaga, “A Bayesian model for the probability

distribution of fatigue damage in tubular joints,” J. Offshore Mech. Arct. Eng., vol. 126, no.

3, pp. 243–249, 2004, doi: 10.1115/1.1782645.

[15] A. Lye, A. Cicirello, and E. Patelli, “Sampling methods for solving Bayesian model updating

problems: A tutorial,” Mech. Syst. Signal Process., vol. 159, p. 107760, Oct. 2021, doi:

10.1016/J.YMSSP.2021.107760.

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 35

APPENDIX

This section presents the MATLAB graphical user interface code used for the software

application created for this work including the Bayesian updating methodology.

APPENDIX A. CODE

classdef BayesianUpdatingApp < matlab.apps.AppBase

 % Properties that correspond to app components

 properties (Access = public)

 UIFigure matlab.ui.Figure

 GridLayout matlab.ui.container.GridLayout

 LeftPanel matlab.ui.container.Panel

 LoaddatButton matlab.ui.control.Button

 ButtonGroup matlab.ui.container.ButtonGroup

 FIELDDATALabel matlab.ui.control.Label

 CurvetoinspectLabel matlab.ui.control.Label

 DropDown matlab.ui.control.DropDown

 ImportDatatxtLabel matlab.ui.control.Label

 ImportCS matlab.ui.control.Button

 AddCrackSizesButton matlab.ui.control.Button

 NumberofCrackSizesSpinner matlab.ui.control.Spinner

 NumberofCrackSizesSpinnerLabel matlab.ui.control.Label

 AddInspectionButton matlab.ui.control.Button

 PODin1 matlab.ui.control.NumericEditField

 MeanLabel matlab.ui.control.Label

 PODin2 matlab.ui.control.NumericEditField

 StdDevLabel matlab.ui.control.Label

 Iftherewasnotcrackfoundinput0inthetableLabel matlab.ui.control.Label

 CrackSizeFoundLabel matlab.ui.control.Label

 PODdd matlab.ui.control.DropDown

 ProbabilityofDetectionLabel matlab.ui.control.Label

 MARin matlab.ui.control.NumericEditField

 FlighthoursButton matlab.ui.control.RadioButton

 MaximumAllowableRiskButton matlab.ui.control.RadioButton

 RightPanel matlab.ui.container.Panel

 PROBABILISTICDAMAGETOLERANCEWITHBAYESIANUPDATINGLabel

matlab.ui.control.Label

 NI matlab.ui.control.NumericEditField

 FlighthoursforinspectionLabel matlab.ui.control.Label

 POFPlot matlab.ui.control.UIAxes

 end

 % Properties that correspond to apps with auto-reflow

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 36

 properties (Access = private)

 onePanelWidth = 576;

 end

 properties (Access = private)

 Txt; % Legend text

 file; % Imported file name

 file1; % Imported file name without extention

 risk; % Maximum allowable risk

 matrix; % Matrix with flights and probability of failure

 matrix1; % Matrix with flights and probability of failure for the first .dat file

 timeinsp; % Time for next inspection

 riskLine; % Risk Line curve object

 InsType; % Inspection Type

 InsID; % Number of Inspection to write new .dat file

 Inspections; % Time of repair

 RowInsp; % Row of inspection time

 timeinsplocal; % Local inspection time

 insp; % Number of inspection

 FieldCS; % List of crack sizes found

 curve; % list of curves to do inspections

 hplotPOF; % Handle for uninspected curve

 end

 methods (Access = public)

 % Method to create or update the crack sizes found

 function LoadCrackSize(app,CrackSizes)

 app.FieldCS=CrackSizes(:);

 end

 end

 % Callbacks that handle component events

 methods (Access = private)

 % Button pushed function: LoaddatButton

 function LoaddatButtonPushed(app, event)

 app.AddInspectionButton.Enable='off'; % Disables all the commands

 app.LoaddatButton.Enable='off';

 app.ButtonGroup.Enable='off';

 hold(app.POFPlot, 'off') % Hold off plot to erase everything when the new pdf is plotted

 datSearched = uigetfile('.dat'); %Search for a .dat file and imports it

 if datSearched==0 % datSearched is 0 when nothing was selected

 figure(app.UIFigure) % Focuses the gui

 waitfor(msgbox('Did not select any file, try again.')) % warning when nothing is

selected

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 37

 figure(app.UIFigure) % Focuses the gui

 if ~isempty(app.file) % app.file is not empty when there was a .dat file already

selected

 app.AddInspectionButton.Enable='on'; % Enables all the commands again

 app.LoaddatButton.Enable='on';

 app.ButtonGroup.Enable='on';

 end

 return % Exits the function

 end

 app.file=datSearched; % Saves the file name searched in app.file

 figure(app.UIFigure) % Focuses the gui

 f=waitbar(0.2, 'Running SMART...'); % Creates the loading bar in 20%

 Smart=strcat("smartdta.exe ",app.file); % Creates a string with smartdta.exe and the .dat

file name

 app.file1=app.file(1:end-4); % Saves the .dat file name without extension

 system(Smart); % Runs SMART|DT with file imported

 waitbar(.8,f, 'Plotting...'); % Updates the loading bar to 80%

 input=readtable(strcat(app.file1,'_pof.csv')); % Reads a table from .csv file from SMART

 app.matrix= input{:,1:end}; % Converts the table to matrix

 app.matrix1=app.matrix; % Saves the first matrix in matrix1

 semilogy(app.POFPlot,app.matrix(:,2), app.matrix(:,3), 'b') %Plots POF from simulation

 app.Txt={'Uninspected'}; % Adds Uninspected to txt variable for the plot legend

 legend(app.POFPlot,app.Txt) % Displays the legend

 hold(app.POFPlot, 'on') % Holds the plot

 app.insp=0; % Sets number of inspection to 0

 app.timeinsp(1)=0; % Sets the first time of inspection to 0

 app.timeinsplocal=0; % Sets the local time of inspection to 0

 app.curve="Uninspected"; % Adds uninspected to curve variable

 app.DropDown.Items=app.curve; % Sets the drop down list to curve variable

 waitbar(1,f, 'Finishing...'); % Updates the loading bar to 100%

 pause(0.5) % Waits 0.5 seconds

 close(f) % Closes the loading bar

 figure(app.UIFigure) % Focuses the gui

 app.FieldCS=[]; % Sets crack sizes found as empty

 app.NumberofCrackSizesSpinner.Value=1;

 app.AddInspectionButton.Enable='on'; % Enables all the commands again

 app.LoaddatButton.Enable='on';

 app.ButtonGroup.Enable='on';

 end

 % Value changed function: PODdd

 function PODddValueChanged(app, event)

 % Changes the labels for text boxs when it is selected deterministic or

 % Lognormal in the probability of detection drop down list

 value = app.PODdd.Value;

 switch value

 case 'DETERMINISTIC' % If deterministic is selected

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 38

 app.MeanLabel.Text='Depth (a)'; % Crack size a

 app.StdDevLabel.Text='Depth (c)'; % Crack size b

 case 'LOGNORMAL' % If lognormal is selected

 app.MeanLabel.Text='Mean (µ)'; % Mean

 app.StdDevLabel.Text='Std Dev(?)'; % Standard deviation

 end

 end

 % Button pushed function: AddInspectionButton

 function AddInspectionButtonPushed(app, event)

 if isempty(app.FieldCS) % If Crack sizes found is empty

 figure(app.UIFigure) % Focuses the gui

 waitfor(msgbox('There are not crack sizes, try again.')) % Displays a warning when

crack sizes found is empty

 figure(app.UIFigure) % Focuses the gui

 return % Exits the function

 end

 app.AddInspectionButton.Enable='off'; % Disables all the commands

 app.LoaddatButton.Enable='off';

 app.ButtonGroup.Enable='off';

 f=waitbar(0, 'Searching for inspections...'); % Creates the loading bar

 % Reads the pof table required to do the inspection based on the dropdown

 if app.DropDown.Value=="Uninspected" % If Uninspected is selected in the dropdown

list

 app.matrix= app.matrix1; % Uses the matrix from the first .dat file to do the process

 Ninspection="0"; % Sets the reference inspection as 0

 else % If Uninspected is not selected in the dropdown list

 Ninspection=split(app.DropDown.Value); % Splits the selected text from the

dropdown list by spaces

 Ninspection=string(Ninspection(2)); % Gets the number of the inspection from the

selected inspection in the dropdown list

 input=readtable(strcat(app.file1,'_Insp_Repair',Ninspection,'_pof.csv')); % Reads the

table from .csv file to analyze

 app.matrix= input{:,1:end-1}; % Saves the table in matrix and deletes the last column

 end

 if (app.matrix(end,2)+app.timeinsp(str2num(Ninspection)+1))<app.MARin.Value % If

the time desired to do the inspection is greater than the last time from the matrix plus its initial

time

 waitfor(msgbox('Flight hours selected are outside probability of failure boundaries')) %

Warning that flight time is higher than the upper limit

 close(f); % Closes the loading bar

 app.AddInspectionButton.Enable='on'; % Enables all the commands again

 app.LoaddatButton.Enable='on';

 app.ButtonGroup.Enable='on';

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 39

 return % Exits the function

 end

 %% Creates and runs a .dat file to get the CDF of crack size

 waitbar(.1,f, 'Predicting crack size...'); % Updates the loading bar

 selectedButton = app.ButtonGroup.SelectedObject.Text; % Saves the selected button,

Maximum allowable risk or fligh hours

 if app.insp==0 % If it is the first inspection

 if selectedButton == "Flight hours" % If flight hours is selected

 app.risk=app.MARin.Value; % Risk will be represented by the flight time typed

 for i=1:length(app.matrix) % Loop to go through the matrix

 if app.matrix(i,2)> app.risk % If time value at (i,2) is greater than the time input

 app.timeinsp(app.insp+2)=app.matrix(i-1,2); % Saves the time at i-1 in the

position of inspection number + 2

 app.RowInsp=i-1; % Saves the row number

 % Writes the .dat file in a matlab variable, crack size at timeinsp

 fileName=strcat(app.file1,'.dat'); % Saves the file name from dat file

 insp1=fopen(fileName,'r'); % Opens the initial dat file

 i = 1;

 tline = fgetl(insp1);

 % Writes the initial file in a matlab variable

 A{i} = tline;

 while ischar(tline)

 i = i+1;

 tline = fgetl(insp1);

 A{i} = tline;

 end

 fclose(insp1); % Closes the dat file

 % Writes a line to extract the crack size distribution at time of

 % inspection

 CrackSize=strcat("WRITE_CRACK_SIZE_CDF_AT =

",int2str(app.timeinsp(app.insp+2)));

 % Writes in a variable the body for a new dat file with the line to extract the

crack

 % size distribution

 CrackS={A{1:14},CrackSize,A{15:end-1}};

 % Creates a new dat file to write the body created

 fileCS=strcat(app.file1,'_',int2str(app.timeinsp(app.insp+2)),'_Cs','.dat');

 fileID = fopen(fileCS,'w'); % Opens the file

 formatSpec = '%s\n';

 [~,columns]=size(CrackS);

 for i = 1:columns

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 40

 fprintf(fileID,formatSpec,CrackS{i}); % Writes the body

 end

 fclose(fileID); % Closes the file

 Smart=strcat("smartdta.exe ",fileCS); % Creates a string with smartdta.exe and

the .dat file name

 system(Smart); % Runs SMART|DT with file imported

 break % Exits the loop

 end

 end

 else % when maximum allowable risk is selected

 app.risk=app.MARin.Value; % Saves the input risk in the variable

 for i=1:length(app.matrix) % Loop to go through the matrix

 if app.matrix(i,end-1)> app.risk % If risk value at (i, last-1) is greater than the

time input

 app.timeinsp(app.insp+2)=app.matrix(i-1,2); % Saves the time at i-1 in the

position of inspection number + 2

 app.RowInsp=i-1; % Saves the row number

 % Writes the .dat file in a matlab variable, crack size at timeinsp

 fileName=strcat(app.file1,'.dat'); % Saves the file name from dat file

 insp1=fopen(fileName,'r'); % Opens the initial dat file

 i = 1;

 tline = fgetl(insp1);

 % Writes the initial file in a matlab variable

 A{i} = tline;

 while ischar(tline)

 i = i+1;

 tline = fgetl(insp1);

 A{i} = tline;

 end

 fclose(insp1); % Closes the dat file

 % Writes a line to extract the crack size distribution at time of

 % inspection

 CrackSize=strcat("WRITE_CRACK_SIZE_CDF_AT =

",int2str(app.timeinsp(app.insp+2)));

 % Writes in a variable the body for a new dat file with the line to extract the

crack

 % size distribution

 CrackS={A{1:14},CrackSize,A{15:end-1}};

 % Creates a new dat file to write the body created

 fileCS=strcat(app.file1,'_',int2str(app.timeinsp(app.insp+2)),'_Cs','.dat');

 fileID = fopen(fileCS,'w'); % Opens the file

 formatSpec = '%s\n';

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 41

 [~,columns]=size(CrackS);

 for i = 1:columns

 fprintf(fileID,formatSpec,CrackS{i}); % Writes the body

 end

 fclose(fileID); % Closes the file

 Smart=strcat("smartdta.exe ",fileCS); % Creates a string with smartdta.exe and

the .dat file name

 system(Smart); % Runs SMART|DT with file imported

 break % Exits the loop

 end

 end

 end

 else % If it is not the first inspection

 if selectedButton == "Flight hours" % If flight hours is selected

 app.risk=app.MARin.Value-app.timeinsp(str2double(Ninspection)+1); % Converts

the input time into local time substracting the initial time of the inspection

 for i=1:length(app.matrix) % Loop to go through the matrix

 if app.matrix(i,2)> app.risk % If time value at (i,2) is greater than the time input

 if i==1 % If time in the first row is greater than input time

 msgbox("Higher hours were already selected") % Warning to input greater

flight hours

 app.AddInspectionButton.Enable='on'; % Enables all the commands again

 app.LoaddatButton.Enable='on';

 app.ButtonGroup.Enable='on';

 return % Exits the function

 end

 app.timeinsplocal=app.matrix(i-1,2); % Saves selected time from the matrix

in timeinsplocal

 % Computes the initial time for next inspection

app.timeinsp(app.insp+2)=app.timeinsp(str2double(Ninspection)+1)+app.timeinsplocal;

 app.RowInsp=i-1; % Saves the row number

 % Writes the .dat file in a matlab variable, crack size at timeinsp

 if Ninspection=="0" % If selected curve for inspection is uninspected

 fileName=app.file; % Uses the inital .dat file

 else % If selected curve for inspection is not uninspected

 fileName=strcat(app.file1,'_Updated',Ninspection,'.dat'); % Uses the

according .dat file

 end

 insp1=fopen(fileName,'r'); % Opens the that file

 i = 1;

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 42

 tline = fgetl(insp1);

 % Writes the initial file in a matlab variable

 A{i} = tline;

 while ischar(tline)

 i = i+1;

 tline = fgetl(insp1);

 A{i} = tline;

 end

 fclose(insp1); % Closes the dat file

 % Writes a line to extract the crack size distribution at time of

 % inspection

 CrackSize=strcat("WRITE_CRACK_SIZE_CDF_AT =

",int2str(app.timeinsplocal));

 % Writes in a variable the body for a new dat file with the line to extract the

crack

 % size distribution

 CrackS={A{1:14},CrackSize,A{15:end-1}};

 if Ninspection=="0" % If selected curve for inspection is uninspected

 % Creates new file name based on uninspected

 fileCS=strcat(app.file1,'_',int2str(app.timeinsp(app.insp+2)),'_Cs','.dat');

 else % If selected curve for inspection is not uninspected

 % Creates new file name based on selected inspection

fileCS=strcat(app.file1,'_Updated',Ninspection,'_',int2str(app.timeinsp(app.insp+2)),'_Cs','.dat');

 end

 fileID = fopen(fileCS,'w'); % Opens the file

 formatSpec = '%s\n';

 [~,columns]=size(CrackS);

 for i = 1:columns

 fprintf(fileID,formatSpec,CrackS{i}); % Writes the body

 end

 fclose(fileID); % Closes the file

 Smart=strcat("smartdta.exe ",fileCS); % Creates a string with smartdta.exe and

the .dat file name

 system(Smart); % Runs SMART|DT with file imported

 break % Exits the loop

 end

 end

 else % when maximum allowable risk is selected

 app.risk=app.MARin.Value; % Saves the input risk

 for i=1:length(app.matrix) % Loop to go through the matrix

 if app.matrix(i,end-1)> app.risk % If time value at (i,last-1) is greater than the

time input

 if i==1 % If risk in the first row is greater than input risk

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 43

 msgbox("Higher risk was already selected") % Warning to input greater risk

 app.AddInspectionButton.Enable='on'; % Enables all the commands again

 app.LoaddatButton.Enable='on';

 app.ButtonGroup.Enable='on';

 return % Exits the function

 end

 app.timeinsplocal=app.matrix(i-1,2); % Saves selected time from the matrix

in timeinsplocal

 app.RowInsp=i-1; % Saves the row number

 % Computes the initial time for next inspection

app.timeinsp(app.insp+2)=app.timeinsp(str2double(Ninspection)+1)+app.timeinsplocal; % Uses

the according .dat file

 % Writes the .dat file in a matlab variable, crack size at timeinsp

 if Ninspection=="0" % If selected curve for inspection is uninspected

 fileName=app.file; % Uses the inital .dat file

 else % If selected curve for inspection is not uninspected

 fileName=strcat(app.file1,'_Updated',Ninspection,'.dat'); % Uses the

according .dat file

 end

 insp1=fopen(fileName,'r'); % Opens the that file

 i = 1;

 tline = fgetl(insp1);

 % Writes the initial file in a matlab variabl

 A{i} = tline;

 while ischar(tline)

 i = i+1;

 tline = fgetl(insp1);

 A{i} = tline;

 end

 fclose(insp1); % Closes the dat file

 % Writes a line to extract the crack size distribution at time of

 % inspection

 CrackSize=strcat("WRITE_CRACK_SIZE_CDF_AT =

",int2str(app.timeinsplocal))

 % Writes in a variable the body for a new dat file with the line to extract the

crack

 % size distribution

 CrackS={A{1:14},CrackSize,A{15:end-1}};

 if Ninspection=="0" % If selected curve for inspection is uninspected

 % Creates new file name based on uninspected

 fileCS=strcat(app.file1,'_',int2str(app.timeinsp(app.insp+2)),'_Cs','.dat');

 else % If selected curve for inspection is not uninspected

 % Creates new file name based on selected inspection

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 44

fileCS=strcat(app.file1,'_Updated',Ninspection,'_',int2str(app.timeinsp(app.insp+2)),'_Cs','.dat');

 end

 fileID = fopen(fileCS,'w'); % Opens the file

 formatSpec = '%s\n';

 [~,columns]=size(CrackS);

 for i = 1:columns

 fprintf(fileID,formatSpec,CrackS{i}); % Writes the body

 end

 fclose(fileID); % Closes the file

 Smart=strcat("smartdta.exe ",fileCS); % Creates a string with smartdta.exe and

the .dat file name

 system(Smart); % Runs SMART|DT with file imported

 break % Exits the loop

 end

 end

 end

 end

 app.NI.Value=app.timeinsp(app.insp+2); % Sets flight hours for next inspection textbox

to time found in loop

 waitbar(.2,f, 'Updating crack size distribution...'); % Updates the waiting bar to 20%

 if app.insp==0 % If inspection number is the first one

 % Saves the following csv file name in namecs

namecs=strcat(app.file1,'_',int2str(app.timeinsp(app.insp+2)),'_Cs_JCSDPrior_',int2str(app.timei

nsp((app.insp+2))),'.csv');

 else % If inspection number is not the first one

 if Ninspection=="0" % If inspection is based on uninspected

 % Saves the following csv file name in namecs

namecs=strcat(app.file1,'_',int2str(app.timeinsp(app.insp+2)),'_Cs_JCSDPrior_',int2str(app.timei

nsp((app.insp+2))),'.csv');

 else % If inspection is not based on uninspected

 % Saves the following csv file name in namecs

namecs=strcat(app.file1,'_Updated',Ninspection,'_',int2str(app.timeinsp(app.insp+2)),'_Cs_JCSD

Prior_',int2str(app.timeinsplocal),'.csv')

 end

 end

 app.insp=app.insp+1; % Adds a new inspection

 fid = fopen(namecs, 'r'); % Opens the csv file

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 45

 % Counts the number of columns of the file

 n = csvread(namecs,4,1,[4,1,4,1]);

 N = n + 1;

 % Reads the sixth and n-th row

 % row 6 has the crack sizes

 % row n has the cumulative density function

 readData_1 = textscan(fid, '%f' ,N ,'EmptyValue', 0,'HeaderLines',6,'Delimiter',',');

 readData_2 = textscan(fid, '%f' ,N ,'EmptyValue', 0,'HeaderLines',n, 'Delimiter',',');

 fclose(fid);

 % Transforms the read data into numbers

 crack_length_r = readData_1{1};

 cdf_value_r = readData_2{1};

 % Deletes the first cell of each variable

 crackSize = crack_length_r(2:N);

 cdf = cdf_value_r(2:N);

%__

 %% Prior

 % fits the values of crack size and cdf to a lognormal distribution and gets the parameters

 fiteq=fittype(@(mu,h,x) 1./(x*h*sqrt(2*pi)).*exp((-1/2)*((log(x)-mu)/h).^2)); % Fitting

equation for Lognormal PDF

 fiteq2=fittype(@(mu,h,x) 1/2+1./2*erf((log(x)-mu)./(sqrt(2)*h))); % Fitting equation for

Lognormal CDF

 priorms=fit(crackSize,cdf,fiteq2,'StartPoint',[-1.5 0.2]); % Fits the prior distribution CDF

to a lognormal distribution to get its parameters

 priornorm = coeffvalues(priorms); % priornorm contains the parameters of the lognormal

distribution

 % priorsd contains the standar deviation of the distribution

 priorsd=sqrt(exp(2*priornorm(1)+priornorm(2)^2)*(exp(priornorm(2)^2)-1));

 % priormn contains the mean of the distribution

 priormn=exp(priornorm(1)+priornorm(2)^2/2);

 syms x % Symbolic variable x

 % prior contains the prior distribution equation in terms of x

 % prior --> P-(?)

 prior=1/(x*priornorm(2)*sqrt(2*pi))*exp((-1/2)*((log(x)-priornorm(1))/priornorm(2))^2);

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 46

%__

 %% Likelihood

 waitbar(.3,f, 'Creating likelihood function...'); % Updates the loading bar to 30%

 % Mean and standard deviation of detection method

 mean=app.PODin1.Value;

 sigma=app.PODin2.Value;

 % phi and h are the lognormal parameters

 phi=log(mean^2/sqrt(mean^2+sigma^2));

 h=sqrt(log(sigma^2/mean^2+1));

 %POD is probability of detection and has a lognormal cumulative distribution equation

 PODeq=1/2+1/2*erf((log(x)-phi)/(sqrt(2)*h));

 %PND is probability of no detection

 PNDeq=1-PODeq;

 % phi1 and h1 are the parameters for the f(D|theta) lognormal distrubion,

 % and the prior standard deviation is assumed as the standard deviation for

 % this distribution

 phi1=log(x^2/sqrt(x^2+priorsd^2));

 h1=sqrt(log(priorsd^2/x^2+1));

 %Variable to identify if there are no detections

 Ndet=false;

 L_final=1; % Initialization of variable to be replaced by likelihood function

 for i=1:length(app.FieldCS) % Loop for each crack size found

 if app.FieldCS(i)==0 % If there is not crack size found

 syms Dn % Symbolic variable Dn represents possible crack sizes.

 % f_D is the equation of f(D|theta)

 f_D=1/(Dn*h1*sqrt(2*pi))*exp((-1/2)*((log(Dn)-phi1)/h1)^2);

 % L_ND is the integral of PND times f_D with respect to Dn

 L=int(PNDeq*f_D,Dn,0,inf);

 Ndet=true; % Identifies that a no detection exists

 else

 % It is assumed that a crack of 0.3in is detected

 D=app.FieldCS(i);

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 47

 % f_D is the equation of f(D|theta)

 f_D=1/(D*h1*sqrt(2*pi))*exp((-1/2)*((log(D)-phi1)/h1)^2);

 % L_D is the likelihood function for one detected crack in one inspection

 L=PODeq*f_D;

 end

 L_final=L_final*L; % L_final value is replaced by likelihood function

 end

 if Ndet==true % If a no detection exists

 x=0.001:0.001:0.5; % Creates an array of numbers for x

 Likelihood=subs(L_final); % Substitutes values of x in L_final function

 end

%__

 %% Posterior

 waitbar(.4,f, 'Creating new crack size distribution...'); % Updates the loading bar to 40%

 %Equation of posterior distribution

 post=L_final*prior;

 %Duplicate of the posterior distribution to apply the normalization factor later on

 postF=post;

 %Assignation of values to x from 0.001 to 2

 x=0.001:0.001:2;

 NormFact=0; %Normalization factor

 % Substitution of the posterior distribution with the values of x

 Postval=double(subs(post));

 % Applying integral by definition to obtain the value of the normalization factor

 for i=1:(length(x)-1)

 NormFact=NormFact+((x(i+1)-x(i))*Postval(i+1));

 end

 % Posterior distribution divided by the normalization factor

 postF=postF/NormFact;

 % Substitution of the new posterior distrubtion with the values of x

 postFVal=double(subs(postF));

 x=transpose(x);

 postFVal=transpose(postFVal);

 % Fitting of posterior distribution to a lognormal distribution equation to obtain the

 % parameters

 postFms=fit(x,postFVal,fiteq,'StartPoint',[priornorm(1) priornorm(2)]);

 postFnorm = coeffvalues(postFms);

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 48

 % postmn contains the mean of the posterior distribution and postsd the standard

deviation

 postsd=sqrt(exp(2*postFnorm(1)+postFnorm(2)^2)*(exp(postFnorm(2)^2)-1));

 postmn=exp(postFnorm(1)+postFnorm(2)^2/2);

%__

 waitbar(.5,f, 'Creating new .dat file...'); % Updates the loading bar to 50%

 % Reads and writes the initial .dat file in a matlab variable

 insp1=fopen(app.file,'r'); % Opnes the initial file

 i = 1;

 tline = fgetl(insp1);

 IniDat{i} = tline;

 while ischar(tline)

 i = i+1;

 tline = fgetl(insp1);

 IniDat{i} = tline; % Saves the body from the initial file in IniDat

 end

 fclose(insp1); % Closes the initial file

 POI=strcat("PROB_OF_INSPECTION = DETERMINISTIC 1.0"); % Writes a line for

probability of inspection

 POD=strcat("POD = ",app.PODdd.Value," ",num2str(app.PODin1.Value),"

",num2str(app.PODin2.Value)); % Writes a line for probability of Detection with input

parameters

 CSrow=split(IniDat{19}); % Saves in CSrow the initial crack size distribution

 CS=strcat("REPAIR_CRACK_SIZE = LOGNORMAL ",CSrow(end-1)," ",CSrow(end));

% Writes the repaired crack size as the initial crack size

 ICS=strcat("INITIAL_CRACK_SIZE = LOGNORMAL ",num2str(postmn),"

",num2str(postsd)); % Writes the initial crack size as the parameters of posterior distribution

from bayesian updating

 % Writes the inspection

 app.Inspections="INSPECTIONS = 1";

 app.InsType="INSPECTION_TYPE = 1";

 app.InsID="INSPECTION_ID = 1";

 if Ninspection=="0" % If uninspected was selected

 % Writes a comment to clarify what curve was selected to perform bayesian

 % updating

 comment=strcat("! Inspection ",int2str(app.insp)," at

",int2str(app.timeinsp(app.insp+1)),"h"," based on Uninspected");

 else % If uninspected was not selected

 % Writes a comment to clarify what curve was selected to perform bayesian

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 49

 % updating

 comment=strcat("! Inspection ",int2str(app.insp)," at

",int2str(app.timeinsp(app.insp+1)),"h"," based on inspection ",Ninspection);

 end

B={IniDat{1:18},ICS,IniDat{20:24},app.Inspections,app.InsType,'',app.InsID,POI,POD,CS,IniD

at{26:end-1},comment}; % Writes a dat file for inspection and repair in a variable

 C={IniDat{1:18},ICS,IniDat{20:end-1},comment}; % Writes a dat file for inspection in a

variable

 % Input name of .dat file, Writes the new .dat file in a

 % variable and run smart with it

 filename=strcat(app.file1,'_Insp_Repair',int2str(app.insp),'.dat');

 fileID = fopen(filename,'w'); % Opens a new file to write

 formatSpec = '%s\n';

 [~,columns]=size(B);

 for i = 1:columns

 fprintf(fileID,formatSpec,B{i}); % Writes information for inspection and repair

 end

 fclose(fileID); % Closes the file

 Smart=strcat("smartdta.exe ",filename); % Creates a string with smartdta.exe and the

.dat file name

 waitbar(.6,f, 'Running SMART...'); % Updates the loading bar to 60%

 system(Smart); % Runs SMART|DT with file imported

 %-----------

 waitbar(.7,f, 'Creating new .dat files...'); % Updates the loading bar to 70%

 filename=strcat(app.file1,'_Updated',int2str(app.insp),'.dat');

 fileID = fopen(filename,'w'); % Opens a new file to write

 formatSpec = '%s\n';

 [~,columns]=size(C);

 for i = 1:columns

 fprintf(fileID,formatSpec,C{i}); % Writes information for inspection and update

 end

 fclose(fileID); % Closes the file

 Smart=strcat("smartdta.exe ",filename); % Creates a string with smartdta.exe and the .dat

file name

 waitbar(.8,f, 'Running SMART...'); % Updates the loading bar to 80%

 system(Smart); % Runs SMART|DT with file imported

 %-----------

 waitbar(.9,f, 'Plotting...'); % Updates the loading bar to 90%

 if app.insp==1 % If it is the first inspection

 hold(app.POFPlot, 'off') % Stops holding the plot

 % Creates a handle for the first POF curve (Uninspected)

 app.hplotPOF=semilogy(app.POFPlot,app.matrix1(1:app.RowInsp,2),

app.matrix1(1:app.RowInsp,3), 'b')

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 50

 app.Txt={'Uninspected'}; % Adds the legend

 hold(app.POFPlot, 'on') % Holds the plot

 end

 if Ninspection=="0" && app.insp~=1 % If the curve to inspect selected was Uninspected

and it is not the first inspection

 % Updates the POF curve for uninspected

set(app.hplotPOF,'XData',app.matrix1(1:app.RowInsp,2),'YData',app.matrix1(1:app.RowInsp,3))

;

 end

 % Creates a horizontal line at input risk

 app.riskLine=yline(app.matrix(app.RowInsp,3),'--r',strcat("Risk at

",int2str(app.timeinsp(app.insp+1))," for Upd",Ninspection),'Parent',app.POFPlot);

 % Omits the line for the legend

 app.Txt{(app.insp*3)-1}='';

 %% Prior, Likelihood and Posterior plot

 figure % Creates a new figure

 fplot(prior,[0,2],'b') % Plots the prior PDF between 0 and 2

 hold on % Holds the plot

 yyaxis right % Selects right y axis

 if Ndet==true % If there is at least one no detection

 x=0.001:0.001:0.5;

 plot(x,Likelihood,'r') % Plots the likelihood between 0 and 0.5

 else % If there are not no detection

 fplot(L_final,[0 postmn*2],'r') % Plots the likelihood between 0 and 2 times the

posterior distribution mean

 end

 set(gca,'ycolor','r') % Sets the left y axis color to black and the right one to red

 yyaxis left % Selects left y axis

 x=0.001:0.001:postmn*2;

 postPDF=lognpdf(x,postFnorm(1),postFnorm(2));

 plot(x,postPDF','g') % Plots the posterior distribution between 0 and 2 times the

posterior distribution mean

 title('Prior, Likelihood, Post','FontSize',14,'FontWeight','bold') % Adds a title to the plot

 % Creates a text for subtitle

 txt = strcat("Bayesian updating at ", int2str(app.timeinsp(app.insp+1)), "h based on Upd",

Ninspection);

 subtitle(txt) % Adds a subtitle

 xlim([0 postmn*2]) % Sets the x limits between 0 and two times the posterior

distribution mean

 xlabel('Crack size','FontSize',14,'FontWeight','bold') % Creates the label and sets font to x

axis

 ylabel('PDF','FontSize',14,'FontWeight','bold') % Creates the label and sets font to y axis

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 51

 grid on % Activates the grid

 grid minor

 legend(["Prior","Post","Likelihood (\mu of cs)"],'FontSize',11) % Adds legend

 %Likelihood plot

 figure % Creates a new figure

 if Ndet==true % If there is at least one no detection

 x=0.001:0.001:0.5;

 plot(x,Likelihood,'r') % Plots the likelihood between 0 and 0.5

 else % If there are not no detection

 fplot(L_final,[0 postmn*2],'r') % Plots the likelihood between 0 and 2 times the

posterior distribution mean

 end

 title('Likelihood','FontSize',14,'FontWeight','bold') % Adds a title to the plot

 % Creates a text for subtitle

 txt = strcat("Bayesian updating at ", int2str(app.timeinsp(app.insp+1)), "h based on Upd",

Ninspection);

 subtitle(txt) % Adds a subtitle

 xlabel('\mu of Crack size','FontSize',14,'FontWeight','bold') % Creates the label and sets

font to x axis

 ylabel('PDF','FontSize',14,'FontWeight','bold') % Creates the label and sets font to y axis

 grid on % Activates the grid

 grid minor

 input1=readtable(strcat(app.file1,'_Updated',int2str(app.insp),'_pof.csv')); % Reads

updated distribution POF

 app.matrix= input1{:,1:end-1}; % Converts the table into matrix

 semilogy(app.POFPlot,app.matrix(:,2)+app.timeinsp(app.insp+1), app.matrix(:,3)) %

Plots the updated distribution POF

 % Adds label of previous curve to txt variable

 app.Txt{app.insp*3}=strcat("Upd",int2str(app.insp), " w/o Repair at

",int2str(app.timeinsp(app.insp+1)),"h"," based on Upd",Ninspection);

 input2=readtable(strcat(app.file1,'_Insp_Repair',int2str(app.insp),'_pof.csv')); % Reads

POF of inspected and repaired distribution

 app.matrix= input2{:,1:end-1}; % Converts the table into matrix

 semilogy(app.POFPlot,app.matrix(:,2)+app.timeinsp(app.insp+1), app.matrix(:,5)) %

Plots the probability of failure for inspected and repaired distribution

 % Adds label of previous curve to txt variable

 app.Txt{(app.insp*3)+1}=strcat("Upd",int2str(app.insp)," w Repair at

",int2str(app.timeinsp(app.insp+1)),"h"," based on Upd",Ninspection);

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 52

 legend(app.POFPlot,app.Txt,'Location','Best') % Updates the legend and locates it at the

best position

 % Creates a line for drop down list

 var=strcat("Updated ",int2str(app.insp), " w/o Repair at

",int2str(app.timeinsp(app.insp+1)),"h");

 app.curve=horzcat(app.curve,var);

 app.DropDown.Items=app.curve; % Adds the line to drop down list

 app.DropDown.Value=var; % Sets the drop down list into the new line

 waitbar(1,f, 'Finishing...'); % Updates the loading bar to 100%

 pause(0.5) % Waits 0.5 seconds

 close(f) % Closes the loading bar

 app.AddInspectionButton.Enable='on'; % Enables all the commands again

 app.LoaddatButton.Enable='on';

 app.ButtonGroup.Enable='on';

 end

 % Selection changed function: ButtonGroup

 function ButtonGroupSelectionChanged(app, event)

 selectedButton = app.ButtonGroup.SelectedObject.Text;

 if selectedButton == "Flight hours" % If Flight hours is selected

 app.MARin.Limits=[0,inf]; % Sets the limits to 0 and the infinte

 app.MARin.Value=20000; % Sets the value of the textbox to 20000

 app.MARin.ValueDisplayFormat = '%d'; % Changes the text box format to integer

 else % If Risk is selected

 app.MARin.ValueDisplayFormat = '%11.5g'; % Changes the text box format to

scientific

 app.MARin.Value=1e-7; % Sets the value of the textbox to 1e-7

 app.MARin.Limits=[0,1] % Sets the limits to 0 and 1

 end

 end

 % Button pushed function: AddCrackSizesButton

 function AddCrackSizesButtonPushed(app, event)

 % Creates the table to input crack sizes based on the number of the spinner

 CrackSizeList(app,app.NumberofCrackSizesSpinner.Value,app.FieldCS);

 end

 % Button pushed function: ImportCS

 function ImportCSPushed(app, event)

 [CSfile,path,~]=uigetfile('.txt'); % Opens a window to select file with crack sizes

 if CSfile==0 % If nothing was selected

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 53

 figure(app.UIFigure) % Focuses the gui

 waitfor(msgbox('Did not select any file, try again.')) % Displays a warning

 figure(app.UIFigure) % Focuses the gui

 return % Exits the function

 end

 figure(app.UIFigure) % Focuses the gui

 filename=[path CSfile]; % Saves the path and name of file selected

 A=importdata(filename); % Imports the crack sizes from file selected into A

 A=double(A); % Converts the imported data into double format numbers

 LoadCrackSize(app,A) % Calls the function to create or update crack sizes

 app.NumberofCrackSizesSpinner.Value=size(A,1); % Sets the number of the spinner into

the number of crack sizes imported

 end

 % Close request function: UIFigure

 function UIFigureCloseRequest(app, event)

 % If the gui is closed with the close button, every plot that was created with

 % that instance is also closed

 delete(app)

 close all

 end

 % Changes arrangement of the app based on UIFigure width

 function updateAppLayout(app, event)

 currentFigureWidth = app.UIFigure.Position(3);

 if(currentFigureWidth <= app.onePanelWidth)

 % Change to a 2x1 grid

 app.GridLayout.RowHeight = {543, 543};

 app.GridLayout.ColumnWidth = {'1x'};

 app.RightPanel.Layout.Row = 2;

 app.RightPanel.Layout.Column = 1;

 else

 % Change to a 1x2 grid

 app.GridLayout.RowHeight = {'1x'};

 app.GridLayout.ColumnWidth = {262, '1x'};

 app.RightPanel.Layout.Row = 1;

 app.RightPanel.Layout.Column = 2;

 end

 end

 end

 % Component initialization

 methods (Access = private)

 % Create UIFigure and components

 function createComponents(app)

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 54

 % Create UIFigure and hide until all components are created

 app.UIFigure = uifigure('Visible', 'off');

 app.UIFigure.AutoResizeChildren = 'off';

 app.UIFigure.Position = [100 100 838 543];

 app.UIFigure.Name = 'MATLAB App';

 app.UIFigure.CloseRequestFcn = createCallbackFcn(app, @UIFigureCloseRequest, true);

 app.UIFigure.SizeChangedFcn = createCallbackFcn(app, @updateAppLayout, true);

 app.UIFigure.Pointer = 'hand';

 % Create GridLayout

 app.GridLayout = uigridlayout(app.UIFigure);

 app.GridLayout.ColumnWidth = {262, '1x'};

 app.GridLayout.RowHeight = {'1x'};

 app.GridLayout.ColumnSpacing = 0;

 app.GridLayout.RowSpacing = 0;

 app.GridLayout.Padding = [0 0 0 0];

 app.GridLayout.Scrollable = 'on';

 % Create LeftPanel

 app.LeftPanel = uipanel(app.GridLayout);

 app.LeftPanel.Layout.Row = 1;

 app.LeftPanel.Layout.Column = 1;

 % Create ButtonGroup

 app.ButtonGroup = uibuttongroup(app.LeftPanel);

 app.ButtonGroup.SelectionChangedFcn = createCallbackFcn(app,

@ButtonGroupSelectionChanged, true);

 app.ButtonGroup.Enable = 'off';

 app.ButtonGroup.BorderType = 'none';

 app.ButtonGroup.Position = [20 25 222 462];

 % Create MaximumAllowableRiskButton

 app.MaximumAllowableRiskButton = uiradiobutton(app.ButtonGroup);

 app.MaximumAllowableRiskButton.Text = 'Maximum Allowable Risk';

 app.MaximumAllowableRiskButton.WordWrap = 'on';

 app.MaximumAllowableRiskButton.Position = [11 396 110 44];

 app.MaximumAllowableRiskButton.Value = true;

 % Create FlighthoursButton

 app.FlighthoursButton = uiradiobutton(app.ButtonGroup);

 app.FlighthoursButton.Text = 'Flight hours';

 app.FlighthoursButton.Position = [128 407 85 22];

 % Create MARin

 app.MARin = uieditfield(app.ButtonGroup, 'numeric');

 app.MARin.Limits = [0 Inf];

 app.MARin.Position = [71 375 81 22];

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 55

 app.MARin.Value = 1e-07;

 % Create ProbabilityofDetectionLabel

 app.ProbabilityofDetectionLabel = uilabel(app.ButtonGroup);

 app.ProbabilityofDetectionLabel.HorizontalAlignment = 'center';

 app.ProbabilityofDetectionLabel.FontWeight = 'bold';

 app.ProbabilityofDetectionLabel.Position = [44 348 140 22];

 app.ProbabilityofDetectionLabel.Text = 'Probability of Detection';

 % Create PODdd

 app.PODdd = uidropdown(app.ButtonGroup);

 app.PODdd.Items = {'DETERMINISTIC', 'LOGNORMAL', 'TABULAR'};

 app.PODdd.ValueChangedFcn = createCallbackFcn(app, @PODddValueChanged, true);

 app.PODdd.Enable = 'off';

 app.PODdd.Position = [47 318 133 22];

 app.PODdd.Value = 'LOGNORMAL';

 % Create CrackSizeFoundLabel

 app.CrackSizeFoundLabel = uilabel(app.ButtonGroup);

 app.CrackSizeFoundLabel.HorizontalAlignment = 'center';

 app.CrackSizeFoundLabel.FontWeight = 'bold';

 app.CrackSizeFoundLabel.Position = [59 224 106 22];

 app.CrackSizeFoundLabel.Text = 'Crack Size Found';

 % Create Iftherewasnotcrackfoundinput0inthetableLabel

 app.Iftherewasnotcrackfoundinput0inthetableLabel = uilabel(app.ButtonGroup);

 app.Iftherewasnotcrackfoundinput0inthetableLabel.HorizontalAlignment = 'center';

 app.Iftherewasnotcrackfoundinput0inthetableLabel.WordWrap = 'on';

 app.Iftherewasnotcrackfoundinput0inthetableLabel.FontSize = 10;

 app.Iftherewasnotcrackfoundinput0inthetableLabel.Position = [27 99 170 41];

 app.Iftherewasnotcrackfoundinput0inthetableLabel.Text = '*If there was not crack found,

input 0 in the table.';

 % Create StdDevLabel

 app.StdDevLabel = uilabel(app.ButtonGroup);

 app.StdDevLabel.HorizontalAlignment = 'right';

 app.StdDevLabel.Position = [23 260 63 22];

 app.StdDevLabel.Text = 'Std Dev(?)';

 % Create PODin2

 app.PODin2 = uieditfield(app.ButtonGroup, 'numeric');

 app.PODin2.Limits = [0 Inf];

 app.PODin2.Position = [101 260 100 22];

 app.PODin2.Value = 0.07;

 % Create MeanLabel

 app.MeanLabel = uilabel(app.ButtonGroup);

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 56

 app.MeanLabel.HorizontalAlignment = 'right';

 app.MeanLabel.Position = [30 287 56 22];

 app.MeanLabel.Text = 'Mean (µ)';

 % Create PODin1

 app.PODin1 = uieditfield(app.ButtonGroup, 'numeric');

 app.PODin1.Limits = [0 Inf];

 app.PODin1.Position = [101 287 100 22];

 app.PODin1.Value = 0.06;

 % Create AddInspectionButton

 app.AddInspectionButton = uibutton(app.ButtonGroup, 'push');

 app.AddInspectionButton.ButtonPushedFcn = createCallbackFcn(app,

@AddInspectionButtonPushed, true);

 app.AddInspectionButton.FontWeight = 'bold';

 app.AddInspectionButton.Position = [60 8 104 31];

 app.AddInspectionButton.Text = 'Add Inspection';

 % Create NumberofCrackSizesSpinnerLabel

 app.NumberofCrackSizesSpinnerLabel = uilabel(app.ButtonGroup);

 app.NumberofCrackSizesSpinnerLabel.WordWrap = 'on';

 app.NumberofCrackSizesSpinnerLabel.Position = [115 182 98 49];

 app.NumberofCrackSizesSpinnerLabel.Text = 'Number of Crack Sizes';

 % Create NumberofCrackSizesSpinner

 app.NumberofCrackSizesSpinner = uispinner(app.ButtonGroup);

 app.NumberofCrackSizesSpinner.Limits = [1 Inf];

 app.NumberofCrackSizesSpinner.Position = [113 168 100 22];

 app.NumberofCrackSizesSpinner.Value = 1;

 % Create AddCrackSizesButton

 app.AddCrackSizesButton = uibutton(app.ButtonGroup, 'push');

 app.AddCrackSizesButton.ButtonPushedFcn = createCallbackFcn(app,

@AddCrackSizesButtonPushed, true);

 app.AddCrackSizesButton.Position = [109 136 104 22];

 app.AddCrackSizesButton.Text = 'Add Crack Sizes';

 % Create ImportCS

 app.ImportCS = uibutton(app.ButtonGroup, 'push');

 app.ImportCS.ButtonPushedFcn = createCallbackFcn(app, @ImportCSPushed, true);

 app.ImportCS.Icon = 'import-data-icon-20.jpg';

 app.ImportCS.Position = [39 177 44 37];

 app.ImportCS.Text = '';

 % Create ImportDatatxtLabel

 app.ImportDatatxtLabel = uilabel(app.ButtonGroup);

 app.ImportDatatxtLabel.HorizontalAlignment = 'center';

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 57

 app.ImportDatatxtLabel.Position = [27 148 68 27];

 app.ImportDatatxtLabel.Text = {'Import Data'; '(.txt)'};

 % Create DropDown

 app.DropDown = uidropdown(app.ButtonGroup);

 app.DropDown.Items = {};

 app.DropDown.Position = [1 53 222 22];

 app.DropDown.Value = {};

 % Create CurvetoinspectLabel

 app.CurvetoinspectLabel = uilabel(app.ButtonGroup);

 app.CurvetoinspectLabel.HorizontalAlignment = 'center';

 app.CurvetoinspectLabel.FontWeight = 'bold';

 app.CurvetoinspectLabel.Position = [63 80 99 22];

 app.CurvetoinspectLabel.Text = 'Curve to inspect';

 % Create FIELDDATALabel

 app.FIELDDATALabel = uilabel(app.ButtonGroup);

 app.FIELDDATALabel.HorizontalAlignment = 'center';

 app.FIELDDATALabel.FontWeight = 'bold';

 app.FIELDDATALabel.Position = [54 438 104 22];

 app.FIELDDATALabel.Text = 'FIELD DATA :';

 % Create LoaddatButton

 app.LoaddatButton = uibutton(app.LeftPanel, 'push');

 app.LoaddatButton.ButtonPushedFcn = createCallbackFcn(app, @LoaddatButtonPushed,

true);

 app.LoaddatButton.FontWeight = 'bold';

 app.LoaddatButton.Position = [78 498 94 24];

 app.LoaddatButton.Text = 'Load .dat';

 % Create RightPanel

 app.RightPanel = uipanel(app.GridLayout);

 app.RightPanel.Layout.Row = 1;

 app.RightPanel.Layout.Column = 2;

 % Create POFPlot

 app.POFPlot = uiaxes(app.RightPanel);

 title(app.POFPlot, 'POF')

 xlabel(app.POFPlot, 'Flight Hours')

 ylabel(app.POFPlot, 'Probability of Failure')

 zlabel(app.POFPlot, 'Z')

 app.POFPlot.XGrid = 'on';

 app.POFPlot.YGrid = 'on';

 app.POFPlot.Position = [22 66 526 391];

 % Create FlighthoursforinspectionLabel

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 58

 app.FlighthoursforinspectionLabel = uilabel(app.RightPanel);

 app.FlighthoursforinspectionLabel.HorizontalAlignment = 'right';

 app.FlighthoursforinspectionLabel.Position = [184 36 143 22];

 app.FlighthoursforinspectionLabel.Text = 'Flight hours for inspection';

 % Create NI

 app.NI = uieditfield(app.RightPanel, 'numeric');

 app.NI.ValueDisplayFormat = '%.0f';

 app.NI.Editable = 'off';

 app.NI.Position = [342 36 100 22];

 % Create

PROBABILISTICDAMAGETOLERANCEWITHBAYESIANUPDATINGLabel

 app.PROBABILISTICDAMAGETOLERANCEWITHBAYESIANUPDATINGLabel =

uilabel(app.RightPanel);

app.PROBABILISTICDAMAGETOLERANCEWITHBAYESIANUPDATINGLabel.Horizontal

Alignment = 'center';

app.PROBABILISTICDAMAGETOLERANCEWITHBAYESIANUPDATINGLabel.FontSize =

13;

app.PROBABILISTICDAMAGETOLERANCEWITHBAYESIANUPDATINGLabel.FontWeig

ht = 'bold';

app.PROBABILISTICDAMAGETOLERANCEWITHBAYESIANUPDATINGLabel.Position =

[45 467 485 32];

app.PROBABILISTICDAMAGETOLERANCEWITHBAYESIANUPDATINGLabel.Text =

'PROBABILISTIC DAMAGE TOLERANCE WITH BAYESIAN UPDATING';

 % Show the figure after all components are created

 app.UIFigure.Visible = 'on';

 end

 end

 % App creation and deletion

 methods (Access = public)

 % Construct app

 function app = ProgramMultiInspV3_exported

 % Create UIFigure and components

 createComponents(app)

 % Register the app with App Designer

 registerApp(app, app.UIFigure)

Probabilistic Damage Tolerance Analysis Using Inspection Data from Integrated Sensors 59

 if nargout == 0

 clear app

 end

 end

 % Code that executes before app deletion

 function delete(app)

 % Delete UIFigure when app is deleted

 delete(app.UIFigure)

 end

 end

end

	TABLE OF CONTENTS
	LIST OF FIGURES
	ABSTRACT
	RESUMEN
	I. IN TRODUCTION
	II. OBJECTIVES
	A. General Objective
	B. Specific Objectives

	III. THEORETICAL FRAMEWORK
	A. Fracture Mechanics
	1. Stress Intensity Factor
	2. Fracture Toughness
	3. Crack Growth Rate Curve

	B. Probabilistic Damage Tolerance Analysis
	1. Failure Criteria
	a) Probability of Failure (POF):
	b) Residual Strength (RS):

	C. Monte Carlo Sampling
	D. Bayesian Updating
	1. Prior Distribution
	2. Likelihood Distribution
	3. Normalization Factor
	4. Posterior Distribution

	IV. METHODOLOGY
	V. EXAMPLE PROBLEMS
	A. Example with no detection
	B. Example with detection

	VI. CONCLUSION
	REFERENCES
	APPENDIX

