

# Análisis energético de un sistema de acondicionamiento por absorción para diferentes zonas climáticas de Colombia.

Daniel Moreno Gaviria Jennifer Andrea Garzón Prada

Trabajo de grado presentado como requisito parcial para optar al título de: Ingeniero Químico

Asesor

Diego Fernando Mendoza Muñoz, Doctor (PhD) en Ingeniería Química Co-asesor Juan Carlos Quintero Díaz, Doctor (PhD) en Ingeniería Química y Ambiental

> Universidad de Antioquia Facultad de Ingeniería Departamento de Ingeniería Química Medellín, Colombia 2022.

| Cita               |     | Moreno Gaviria y Garzón Prada [1]                                                                                   |
|--------------------|-----|---------------------------------------------------------------------------------------------------------------------|
|                    | [1] | D. Moreno Gaviria y J. A. Garzón Prada, "Análisis energético de un sistema de                                       |
| Referencia         |     | acondicionamiento por absorción para diferentes zonas climáticas de Colombia",                                      |
| Estilo IEEE (2020) |     | Trabajo de grado profesional, Ingeniería Química, Universidad de Antioquia,<br>Medellín, Antioquia, Colombia, 2022. |



Grupo de Investigación GIPI, Bioprocesos.

Centro de Investigación Ambientales y de Ingeniería (CIA).



Centro de Documentación de Ingeniería (CENDOI)

Repositorio Institucional: http://bibliotecadigital.udea.edu.co

Universidad de Antioquia - www.udea.edu.co

Rector: John Jairo Arboleda Céspedes.

Decano/Director: Jesús Francisco Vargas Bonilla.

Jefe departamento: Lina María González Rodríguez.

El contenido de esta obra corresponde al derecho de expresión de los autores y no compromete el pensamiento institucional de la Universidad de Antioquia ni desata su responsabilidad frente a terceros. Los autores asumen la responsabilidad por los derechos de autor y conexos.

### DEDICATORIA

Para mis padres, Alexandra y Guillermo, que desde un principio de la carrera me estuvieron apoyando en todos los aspectos posibles, para ellos es este logro.

Para Andrea, mi compañera y mejor amiga incondicional durante todo este trayecto, la cual siempre supo sacar lo mejor de mí.

Daniel Moreno Gaviria.

Dedicado de manera muy especial a mi madre y a toda mi familia que me dieron el impulso para culminar mi carrera, sin duda cada uno de sus aportes fue indispensable.

Dedicado con mucho cariño a mi mejor amigo que sin él no habría sido posible.

Andrea Garzón Prada.

## AGRADECIMIENTOS

Al profesor Diego Fernando Mendoza y al profesor Juan Carlos Quintero por su apoyo y asesoramiento en todo momento y darnos la confianza para realizar este gran trabajo que nos brindó una de las mejores experiencias desarrolladas durante nuestra carrera.

Daniel Moreno & Andrea Prada.

| TABLA | DE | <b>CONTENIDO</b> |
|-------|----|------------------|
|-------|----|------------------|

| RESUMEN                                                                         | 14 |
|---------------------------------------------------------------------------------|----|
| ABSTRACT                                                                        | 15 |
| 1. INTRODUCCIÓN                                                                 | 16 |
| 2. PLANTEAMIENTO DEL PROBLEMA                                                   | 18 |
| 3. JUSTIFICACIÓN                                                                | 22 |
| 4. OBJETIVOS                                                                    | 23 |
| 5. HIPÓTESIS                                                                    | 24 |
| 6. MARCO TEÓRICO                                                                | 25 |
| 6.1 Sistemas de aire acondicionado                                              | 25 |
| 6.1.1 Tipos de sistemas de aire acondicionado                                   | 26 |
| 6.1.1.1 Compresión mecánica.                                                    | 26 |
| 6.1.1.2 Absorción.                                                              | 28 |
| 6.2 Sistema de aire acondicionado por absorción basado en una solución de CaCl2 | 29 |
| 6.2.1 Estructura y equipos                                                      | 29 |
| 6.2.1.1 Columnas de absorción y desorción                                       | 30 |
| 6.2.1.2 Sistemas de calentamiento y enfriamiento                                | 31 |
| 6.2.1.3 Sistemas de cambio de presión                                           | 31 |
| 6.2.2 Disecantes.                                                               | 32 |
| 6.2.2.1 Descripción y propiedades del CaCl <sub>2</sub>                         | 32 |
| 6.3 Condiciones climáticas y confort térmico                                    | 33 |
| 6.3.1 Psicometría                                                               | 33 |
| 6.3.1.1 Propiedades Psicrométricas                                              | 33 |
| 6.3.1.2 Construcción de la carta Psicrométrica.                                 | 34 |
| 6.3.2 Condiciones climáticas de distintas zonas del territorio colombiano       | 35 |
| 6.3.2.1 Región Caribe                                                           | 36 |
| 6.3.2.2 Región Andina                                                           |    |

| 6.3.2.3 Región Amazónica.                                   |    |
|-------------------------------------------------------------|----|
| 6.3.2.4 Región Orinoquia.                                   |    |
| 6.3.2.5 Región Pacífica.                                    | 36 |
| 6.3.2.6 Región Insular.                                     | 36 |
| 6.3.3 Confort térmico.                                      | 37 |
| 6.3.3.1 Teoría del confort                                  | 37 |
| 6.3.3.2 Tasas de renovación del aire.                       |    |
| 6.3.3.3 Cargas térmicas por componente humanos y no humanos | 40 |
| 6.4 Radiación y colectores solares                          | 41 |
| 6.4.1 Fenómenos de irradiación solar.                       | 42 |
| 6.4.1.1 Datos de radiación solar.                           | 42 |
| 6.4.2 Colectores solares.                                   | 43 |
| 6.4.2.1 Colector de placa plana.                            | 43 |
| 6.4.2.2 Colector de tubos de vacío.                         | 44 |
| 6.4.2.3 Colector de concentración.                          | 44 |
| 6.5 Modelado de los equipos                                 | 45 |
| 6.5.1 Sistemas de absorción                                 | 46 |
| 6.5.1.1 Condiciones de flujo mínimo de líquido              | 46 |
| 6.5.2 Sistema de desorción                                  | 47 |
| 6.5.2.1 Condiciones de flujo mínimo del gas                 | 47 |
| 6.5.3 Balances de masa y energía.                           | 47 |
| 6.5.4 Empaques.                                             | 48 |
| 6.5.5 Diámetro de la torre y caída de presión.              | 49 |
| 6.5.6 HETP                                                  | 51 |
| 6.5.7 Sistema de ventilación.                               |    |

| 6.5.7.1 Cambio de presión y temperatura        |    |
|------------------------------------------------|----|
| 6.5.7.2 Potencia adiabática teórica            |    |
| 6.5.8 Sistema de bombeo.                       |    |
| 6.5.8.1 Potencia adiabática teórica            | 53 |
| 6.5.8.2 Cambio de presión y temperatura        | 53 |
| 6.5.9 Sistema de calentamiento y enfriamiento. | 53 |
| 6.5.9.1 Carga térmica.                         | 53 |
| 6.6 Simulación                                 | 54 |
| 6.6.1 Modelo RadFrac de no equilibrio.         |    |
| 6.6.2 Modelado en Rated Based.                 |    |
| 6.6.3 Modelos de cambio de presión.            |    |
| 6.6.4 Modelos de cambio de temperatura.        |    |
| 6.6.5 Model analysis tools.                    |    |
| 6.7 Condiciones de diseño                      |    |
| 6.7.1 Torres de absorción y desorción.         |    |
| 6.7.2 Bombas.                                  |    |
| 6.7.2.1 Eficiencia                             |    |
| 6.7.2.2 Potencia real.                         |    |
| 6.7.2.3 Cabeza de bomba                        |    |
| 6.7.3 Ventiladores.                            |    |
| 6.7.3.1 Eficiencia                             |    |
| 6.7.3.2 Potencia real.                         |    |
| 6.7.4 Colector solar.                          |    |
| 6.7.4.1 Eficiencia y área de colector.         |    |
| 6.7.5 Enfriador.                               | 60 |

| 6.7.5.1 Área del enfriador                                                 | 60 |
|----------------------------------------------------------------------------|----|
| 7. METODOLOGÍA                                                             | 63 |
| 7.1 Identificación de la información base.                                 | 63 |
| 7.1.1 Revisión y búsqueda bibliográfica                                    | 63 |
| 7.1.2 Propiedades de las sustancias                                        | 63 |
| 7.1.3 Caracterización climática de las ciudades colombianas a estudiar     | 64 |
| 7.1.4 Condiciones ambientales                                              | 64 |
| 7.2 Psicrometría                                                           | 64 |
| 7.3 Zona de confort                                                        | 65 |
| 7.4 Construcción del caso base.                                            | 65 |
| 7.4.1 Espacio, carga térmica y flujo de aire                               | 65 |
| 7.4.2 Condiciones de flujo de líquido requerido                            | 66 |
| 7.5 Acondicionamiento del ciclo                                            | 68 |
| 7.6 Simulación caso base                                                   | 68 |
| 7.7 Requerimiento energético del sistema                                   | 70 |
| 7.8 Condiciones de operación y diseño                                      | 70 |
| 7.9 Análisis de sensibilidad                                               | 70 |
| 7.9.1 Temperatura y Humedad relativa                                       | 71 |
| 7.9.2 Temperatura y flujo de solvente.                                     | 72 |
| 7.9.3 Concentración del solvente.                                          | 73 |
| 7.9.4 Diámetro y altura del absorbedor y desorbedor                        | 74 |
| 8. RESULTADOS                                                              | 75 |
| 8.1 Análisis de grados de libertad y cálculos primarios para la simulación | 75 |
| 8.2 Resultados basados en la simulación                                    | 79 |
| 8.3 Condiciones de diseño                                                  |    |
| 8.4 Resultados del análisis de sensibilidad                                | 85 |

| 8.4.1 Temperatura y humedad relativa                                              | 85  |
|-----------------------------------------------------------------------------------|-----|
| 8.4.2 Temperatura, flujo y fracción másica de solvente.                           |     |
| 8.4.3. Diámetro y altura del absorbedor y desorbedor                              | 93  |
| 9. DISCUSIÓN                                                                      | 97  |
| 9.1 Acondicionamiento del aire y recuperación de solvente basado en la simulación | 97  |
| 9.2 Requerimientos energéticos basados en la simulación                           | 98  |
| 9.3 Características del diseño                                                    | 103 |
| 9.4 Variación de la temperatura y humedad relativa ambiental                      | 103 |
| 9.5 Variación de la temperatura, flujo y fracción másica del solvente             | 105 |
| 9.6 Variación del diámetro y altura de empaque                                    | 107 |
| 10. CONCLUSIONES                                                                  | 109 |
| 11. RECOMENDACIONES                                                               | 112 |
| REFERENCIAS                                                                       | 113 |
| ANEXOS                                                                            | 117 |

## LISTA DE TABLAS

Tabla 1. Propiedades del cloruro de calcio.

Tabla 2. Tasas de renovación por hora de espacios según la norma DIN 1946.

Tabla 3. Composición del aire seco.

Tabla 4. Datos de presión y elevación de cada ciudad.

Tabla 5. Condiciones críticas de temperatura y humedad relativa ambiental en cada cuidad.

Tabla 6. Tipos de empaque y sus dimensiones para el absorbedor.

Tabla 7. Tipos de empaque y sus dimensiones para el desorbedor.

Tabla 8. Variables para sensibilizar.

Tabla 9. Variables respuesta.

Tabla 10. Análisis de grados de libertad para el sistema acoplado.

Tabla 11. Condiciones de acondicionamiento para la corriente de aire en cada cuidad.

Tabla 12. Cargas térmicas y flujo recalculado requerido para cada ciudad.

Tabla 13. Flujos de corriente líquida en el absorbedor para cada ciudad.

Tabla 14. Flujos de corriente gaseosa en el desorbedor para cada ciudad.

Tabla 15. Dimensiones del interno anillos Pall para el absorbedor y desorbedor.

Tabla 16. Resultados de la simulación para el absorbedor.

Tabla 17. Resultados de la simulación para el desorbedor.

Tabla 18. Resultados de la simulación para los ventiladores.

Tabla 19. Resultados de la simulación para las bombas.

Tabla 20. Consumo eléctrico neto por el sistema de aire acondicionado.

Tabla 21. Requerimientos energéticos para el colector y el enfriador.

Tabla 22. Datos de acondicionamiento del sistema.

Tabla 23. Condiciones de diseño para el absorbedor.

Tabla 24. Condiciones de diseño para el desorbedor.

Tabla 25. Condiciones de diseño para las bombas y ventiladores.

Tabla 26. Condiciones de diseño para el colector.

Tabla 27. Condiciones de diseño para el enfriador.

Tabla 28. Potencia neta requerida por el compresor y diferencia con el sistema tradicional.

Tabla 29. Cargas térmicas del sistema tradicional y diferencias respecto al de absorción.

## LISTA DE FIGURAS

- Figura 1. Sistema de refrigeración por compresión de gases.
- Figura 2. Diagrama *p*-*h* del ciclo de compresión.
- Figura 3 Sistema de enfriamiento de gas por absorción.
- Figura 4. Sistema de acondicionamiento de aire por absorción.
- Figura 5. Distribución de las corrientes del absorbedor.
- Figura 6. Diagrama de fases del cloruro de calcio y agua.
- Figura 7. Líneas de propiedades constantes en la carta psicrométrica.
- Figura 8. Grafica de zona de confort.
- Figura 9. Diagrama de zonas de sensación térmica.
- Figura 10. Estados de sensación térmica según las condiciones ambientales.
- Figura 11. Flujos de energía radiante en procesos solares térmicos.
- Figura 12. Partes del colector de placa plana.
- Figura 13. Tipos de tubos de vacío: tubo de calor (parte superior) y tubo en U (parte inferior).
- Figura 14. Modelos termodinámicos disponibles en una simulación.
- Figura 15. Primer paso para para la selección de modelos termodinámicos.
- Figura 16. Procedimiento para sustancias polares y no electrolíticas.
- Figura 17. Opciones para cálculos en fase vapor con modelos de coeficientes de actividad.
- Figura 18. Tipos de empaque aleatorio y fabricantes.
- Figura 19. Tipos de empaques estructurados.
- Figura 20. Correlación generalizada de caída de presión de torres empacadas.
- Figura 21. Factor de corrección para la densidad de líquido.
- Figura 22. Factor de corrección para la viscosidad del líquido.
- Figura 23. Eficiencia total del ventilador según el grado FEG y el tamaño.
- Figura 24. Resultados experimentales para la eficiencia en un colector para calentamiento de agua.
- Figura 25. Eficiencia de colector basada en la configuración para calentamiento de agua.
- Figura 26. Rangos de temperatura de operación para el fluido de servicio.
- Figura 27. Factor de corrección para un intercambiador 2-4.
- Figura 28. Diagrama estructural de la metodología.
- Figura 29. Dimensiones de la oficina para acondicionamiento.
- Figura 30. Selección de sustancias.
- Figura 31. Modelo termodinámico para la fase líquida y gaseosa.
- Figura 32. Diagrama de flujo del proceso.
- Figura 33. Variables manipuladas en el análisis de sensibilidad de temperatura y humedad relativa.
- Figura 34. Variable respuesta en el análisis de sensibilidad de temperatura y humedad relativa.
- Figura 35. Variables manipuladas en el análisis de sensibilidad de temperatura del solvente.
- Figura 36. Variables manipuladas en el análisis de sensibilidad del flujo de solvente.
- Figura 37. Variable respuesta en el análisis de sensibilidad del flujo de solvente.
- Figura 38. Variables manipuladas en el análisis de sensibilidad de temperatura y flujo del solvente.
- Figura 39. Variables manipuladas en el análisis de sensibilidad de la concentración de CaCl<sub>2</sub>.

Figura 40. Variable respuesta para el análisis de sensibilidad de la concentración de CaCl<sub>2</sub>.

Figura 41. Variables manipuladas en el análisis de sensibilidad del diámetro y altura del absorbedor.

Figura 42. Variables manipuladas en el análisis de sensibilidad del diámetro y altura del desorbedor.

Figura 43. Temperatura vs humedad absoluta de acondicionamiento de la ciudad de Medellín.

Figura 44. Temperatura del aire vs temperatura de acondicionamiento para la ciudad de Medellín.

Figura 45. Condiciones de acondicionamiento en la zona de confort para ciudad de Medellín.

Figura 46. Potencia neta requerida para la bomba 1, ciudad de Medellín.

Figura 47. Carga térmica requerida en el colector, cuidad de Medellín.

Figura 48. Carga térmica requerida en el enfriador, cuidad de Medellín.

Figura 49. Humedad absoluta de acondicionamiento en función de la temperatura de solvente y flujo del solvente de Medellín.

Figura 50. Temperatura de acondicionamiento en función de la temperatura del solvente y flujo del solvente.

Figura 51. Potencia neta requerida de la bomba 1, ciudad de Medellín.

Figura 52. Carga térmica del colector, ciudad de Medellín

Figura 53. Humedad absoluta de acondicionamiento en función de la fracción másica de CaCl<sub>2</sub>.

Figura 54. Temperatura de acondicionamiento en función de la fracción másica de CaCl<sub>2</sub>.

Figura 55. Potencia neta requerida por la bomba 1 en función de la fracción másica de CaCl<sub>2</sub>.

Figura 56. Carga térmica requerida por el colector en función de la fracción másica de CaCl<sub>2</sub>.

Figura 57. Humedad absoluta de acondicionamiento en función del diámetro y HETP del absorbedor, en Medellín.

Figura 58. Potencia neta requerida en la bomba 1 en función del diámetro y HETP del absorbedor, en Medellín.

Figura 59. Potencia neta requerida en la bomba 2 en función del diámetro y HETP del desorbedor, en Medellín.

Figura 60. Carga térmica del colector en función del diámetro y HETP del absorbedor, ciudad de Medellín.

Figura 61. Carga térmica del enfriador en función del diámetro y HETP del absorbedor, ciudad de Medellín.

Figura 62. Carga térmica del enfriador en función del diámetro y HETP del desorbedor, ciudad de Medellín.

# SIGLAS, ACRÓNIMOS Y ABREVIATURAS

- A Área
- *a* Área superficial específica
- C Caudal
- *Cp* Capacidad calorífica
- D Diámetro
- g Gravedad
- H Entalpía
- *h* Entalpía específica, hora, coeficiente convectivo
- HETP Altura teórica de empaque
- *HR* Humedad relativa
- I Irradiancia
- *k* Coeficiente conductivo, relación de capacidades caloríficas
- *K* Coeficiente de distribución
- *l* Flujo de líquido por componente
- *L* Flujo de líquido total
- L', G' Flujo libre de agua
- LMTD Temperatura media logarítmica
- *m* masa
- *m* Flujo másico
- *N* Número de etapas
- *p* Presión de vapor
- *P* Presión total
- *PM* Peso molecular
- Pot Potencia
- $\overline{P}$  Presión parcial
- Q Calor
- q Calor específico
- $\dot{Q}$  Flujo de calor
- *R* Constante de los gases
- S Entropía
- *T*, *t* Temperatura
- THp Potencia teórica adiabática
- *u* Coeficiente de transferencia, velocidad de gas
- U Coeficiente global de transferencia
- *V* Flujo de vapor total, volumen

- v Velocidad, flujo de vapor del componente
- w Trabajo específico
- *W* Potencia neta
- *x* Calidad, fracción molar de líquido
- y Fracción de molar vapor
- Y Humedad absoluta
- *Z* Altura de empaque

## Subíndices y superíndices

- *0* Entrada del tope, corriente, estado de referencia
- *1,2* Salida del tope, corriente, etapa
- ∞ Lugar
- a Aire
- acond Acondicionado
- AJ Compuesto absorbido no clave
- *AK* Compuesto absorbido clave
- as Aire seco
- *bh* Bulbo húmedo
- bs Bulbo seco
- c Transversal
- *E* Equivalente
- esp Espacio
- G,g Gas
- h Húmedo
- *i,j* Sustancia
- in Entrada
- *k* Compuesto clave
- *L*,*l* Líquido
- min Mínimo
- *n* Componente no humano
- N Salida de fondos
- N+1 Entrada de fondos
- op Operación
- out Salida
- *p* Componente humano, empaque
- prom Promedio

- *r* Rocío, reducida
- ref Referencia
- s Saturación, isoentrópica
- sat Saturación
- sc Sobre calentado
- SJ Compuesto desorbido no clave
- *SK* Compuesto desorbido clave
- T Total, torre
- U Útil
- *V*,*v* Vapor
- w Pared

# Letras griegas

- $\delta$  Espesor
- $\eta$  Eficiencia
- $\lambda$  Calor de vaporización
- $\mu$  Viscosidad
- $\rho$  Densidad
- $\phi$  Fracción no absorbida/no desorbida
- Δ Cambio

#### **RESUMEN**

En el presente trabajo se realizó un análisis energético de un sistema de aire acondicionado por absorción que utiliza un colector solar de placa plana como principal fuente de energía para climatizar una oficina de 30m<sup>2</sup> ubicada en diferentes zonas climáticas del territorio colombiano. Las ciudades seleccionadas fueron Medellín, Arauca, Buenaventura, Cartagena, Inírida y San Andrés. Las condiciones de temperatura y humedad relativa de acondicionamiento de la oficina se fijaron en 23°C y 60%, respectivamente. El sistema de aire acondicionado analizado en este trabajo se desarrolló con una solución acuosa al 40% en peso de CaCl<sub>2</sub> como una solución disecante absorbente. Se simuló el sistema con ayuda del software Aspen Plus ®. Se tomó como caso base a la ciudad de Medellín, en donde se obtuvieron las siguientes cargas térmicas para los diferentes equipos: Colector 95.30 kW, enfriador 92.99 kW y el consumo eléctrico neto de 0.1654 kW en bombas y ventiladores. El ahorro energético y monetario debido al gasto eléctrico que se alcanzó al analizar el sistema de aire acondicionado por absorción es del 89.7% con respecto al sistema de acondicionadi.

*Palabras clave* — cloruro de calcio, acondicionamiento de aire, colector solar, análisis energético, simulación.

#### ABSTRACT

In this work, an energy analysis of an absorption air conditioning system using a flat plate solar collector as the main energy source to air condition a 30m<sup>2</sup> office located in different climatic zones of Colombia was carried out. The selected cities were Medellín, Arauca, Buenaventura, Cartagena, Inírida and San Andrés. The office conditioning temperature and relative humidity conditions were set at 23°C and 60%, respectively. The air conditioning system analyzed in this work was developed with a 40% by weight aqueous solution of CaCl<sub>2</sub> as an absorbent desiccant solution. The system was simulated with the help of Aspen Plus ® software. The base case was the city of Medellín, where the following thermal loads were obtained for the different equipment: collector 95.30 kW, chiller 92.99 kW and the net electrical consumption of 0.1654 kW in pumps and fans. The energy and monetary savings due to electricity consumption achieved by analyzing the absorption air conditioning system is 89.7% with respect to the traditional air conditioning system.

*Keywords* – calcium chloride, air conditioning, solar collector, energy analysis, simulation.

## 1. INTRODUCCIÓN

Hoy en día el uso de aire acondicionado es un recursos necesario y ampliamente utilizado para el confort térmico de espacios como oficinas, colegios, empresas, entre otros, y requieren grandes cantidades de aire para asegurar la comodidad y bienestar de las personas que hacen uso de dichos espacios y que a su vez afectan la condición térmica del recinto. El efecto térmico generado por las personas y sus actividades diarias, junto con las condiciones climáticas de un territorio, afectan la calidad de aire con el que interactúan generando condiciones donde el desarrollo de las actividades no es totalmente agradable para las personas.

Tradicionalmente para el acondicionamiento de estos espacios es común utilizar sistemas de aire acondicionado los cuales funcionan basados en un ciclo de compresión mecánica de un refrigerante de compuestos clorofluorocarbonados, los cuales no son muy amigables con el medio ambiente y además el uso prolongado de estos sistemas de aire acondicionado generan un alto consumo energético debido a la implementación de equipos de compresión de gases los cuales requieren altas demandas de potencia para poder operar.

En algunas regiones de Colombia el calor es una molestia y se hace difícil convivir con él. Pese a que hay espacios en donde se implementan sistemas de aire acondicionado tradicional, algunas zonas no cuentan con un buen servicio eléctrico, además de su costo, y por esta razón, se complica el uso de dicho sistema. Asimismo, es una prioridad disminuir la huella de carbono, que no solo es responsabilidad de las empresas, sino de cada uno de los habitantes, puesto que actualmente el 30% de la energía eléctrica en Colombia se genera a partir del carbón.

Como solución al problema de refrigeración, incluye reducción en el consumo energético, huella de carbono y emisión de gases de efecto invernadero, muchos centros de investigación han realizado numerosos estudios en sistemas de refrigeración que utilizan fuentes de energía alternativa, por ejemplo, sistemas de refrigeración por absorción implementando energía solar que no emitan gases contaminantes a la atmósfera al no usar refrigerantes a base de clorofluorocarbonos (CFC) y que sean de fácil adquisición por el bajo costo de sus materiales e instalación.

Este trabajo se desarrolla con el objetivo de determinar el comportamiento energético de un sistema de aire acondicionado por absorción basado en una solución de CaCl<sub>2</sub>, evaluado para diferentes condiciones climáticas de temperatura y humedad relativa tomando como espacio de

acondicionamiento una oficina de 30m<sup>2</sup> ubicada en distintas zonas del territorio colombiano. Para la implementación del proceso se empleó un software de simulación de procesos.

#### 2. PLANTEAMIENTO DEL PROBLEMA

El fenómeno del incremento de las temperaturas globales ya no es un problema particular para los países de climas cálidos con latitudes medias. Este fenómeno hace que el mundo se enfrente a una crisis energética debido a la demanda de sistemas de aire acondicionado, donde se espera que para el 2050, la demanda mundial de energía utilizada por sistemas de aire acondicionado se triplique. En el 2018, el uso de estos sistemas de aire acondicionado representaba la quinta parte de la electricidad total utilizada en los edificios de todo el mundo y un 10% del consumo mundial de electricidad. Lo anterior ocurre por el rápido crecimiento de países en desarrollo, pues a medida que sus ingresos y nivel de vida mejoran, el crecimiento de la demanda de sistemas de aire acondicionado también lo hará [1]. De acuerdo con estudios realizados por el Invemar e IDEAM, las zonas costeras e insulares en Colombia son altamente vulnerables al impacto del cambio climático [2], por ende, la necesidad de refrigerar los espacios aumentará.

En la actualidad, el uso de aires acondicionados y ventiladores eléctricos, para mantener fresco el ambiente, aumenta el consumo eléctrico entre un 35-42% en los hogares que lo implementan y representan el 20% de todo el consumo mundial de electricidad [3]. El aire acondicionado requiere grandes cantidades de energía eléctrica o combustible fósil, los cuales a su vez generan gases de efecto invernadero [4] y, en ocasiones, son recursos limitados o intermitentes en distintos sectores del territorio colombiano. Según Asoenergía entre enero y diciembre del 2020, los costos de restricción de la energía en Colombia registraron un aumento de 235.4% frente al 2019, lo que tendrá impacto sobre las tarifas durante el 2021 y los siguientes años [5]. Así, la energía renovable se vuelve más atractiva para ser implementada como alternativa de fuente de calor en sistemas de refrigeración. La energía solar es probablemente el sistema más adecuado como fuente de energía renovable en países subtropicales [4].

El tipo de tecnología de acondicionamiento térmico más utilizado es el enfriamiento por absorción, debido a que tiene un control de capacidad simple, es de fácil implementación, de alta confiabilidad, silencioso, tiene larga vida útil, de bajo costo de mantenimiento y es el sistema más factible para el uso eficiente de energía solar en aplicaciones de refrigeración [4]. Utilizar energía solar para hacer funcionar el sistema de aire acondicionado por absorción es una técnica para reemplazar la energía convencional y así, disminuir en gran proporción el consumo eléctrico asociado a los sistemas de refrigeración.

#### 2.1. Antecedentes

El sistema de refrigeración y aire acondicionado no es un descubrimiento reciente y su proceso se ha modificado e investigado con el pasar de los años.

La primera forma de refrigeración se sitúa en 1755 gracias a William Cullen un escocés que obtuvo una pequeña cantidad de hielo en una campana a presión reducida. Alguno años después, en 1810 John Leslie logra producir 3kg de hielo por hora al implementar un recipiente con agua para evaporar y otro recipiente con ácido sulfúrico, ambos dentro de una campana bajo vacío. En 1823, Michael Faraday usando un tubo en U, demostró que la absorción del gas de amoniaco podía ser usado para la producción de frío al evaporarse el amoniaco por un lado del tubo y absorberse el nitrato de plata por el otro [6].

El primer estudio que se tiene registrado de la primera máquina de refrigeración por absorción fue desarrollado por Edmond Carré en 1850 utilizando una solución de H<sub>2</sub>O-H<sub>2</sub>SO<sub>4</sub> como agente absorbente y refrigerante, respectivamente. Pero no fue hasta que, en 1859 su hermano Ferdinand Carré, prueba el funcionamiento de la máquina de refrigeración por absorción con una solución H<sub>2</sub>O-NH<sub>3</sub> y, un año después, el equipo es patentado en Estados Unidos para que en 1886 se empiece su comercialización. En 1930 se comienza a utilizar el LiBr-H<sub>2</sub>O como par absorbente/refrigerante y, en 1945 la empresa Carrier patenta la primera máquina de absorción utilizando ese fluido [7].

En 1976, Stuart L. Grassie y Norman R. Sheridan en su publicación "*Modeling of a solaroperated absorption air conditioner system with refrigerant storage*" modelan un sistema de aire acondicionado que implementa un colector solar para el calentamiento del generador de un sistema de aire acondicionado tradicional con la intención de generar un modelo para el evaporador y predecir el rendimiento del colector solar. Para un colector solar el cual opera con una razón de flujo másico de 0.011kg/s.m<sup>2</sup> logran obtener eficiencias de 0.77 [8].

En el año 1986, se realiza el primer estudio basado en el sistema de refrigeración con CaCl<sub>2</sub> como absorbente y NH<sub>3</sub> como refrigerante. El doctor O. C. Iloeje publica su artículo *"Closed cycle solar refrigeration with the calcium chloride system"* donde construye y testea el rendimiento de un sistema combinado por un colector solar de doble vidrio con área de  $1.14m^2$  de exposición, un absorbedor y un generador el cual produce agua condensada a temperaturas que varían entre 3 y  $10^{\circ}$ C sobre el ambiente; el rendimiento del sistema de aire acondicionado) y la temperatura del

evaporador se mantiene a -10°C lo que es beneficioso para almacenar vacunas y alimentos refrigerados [9].

En el 2007, Thosapon Katejanekarn y S. Kumar analizan el rendimiento de un sistema de ventilador pre acondicionado que usa disecantes líquidos y generación solar simulando un sistema híbrido para condiciones climáticas en Tailandia y analizan los efectos de la variación de la irradiación solar, flujos de aire y disecantes con la intención de mostrar los perfiles de operación y rendimiento en el sistema de aire acondicionado a lo largo de un día [10].

En 2014, en el artículo "Developrment and modelling of a solar assited liquid desiccant dehumidification air-conditioning system", Aqeel Kareem Mohaisen y Zhejun Ma, presentaron el desarrollo y la simulación de un sistema solar avanzado asistido por la deshumidificación de un disecante líquido en un sistema de aire acondicionado por absorción en el cual implementan un colector solar como fuente de energía para un tanque de almacenamiento térmico que provee la demanda energética del intercambiador de calor del generador en el ciclo. Usando una solución de cloruro de litio, sus resultados arrojan que se alcanzan entre 0.5-0.55COP en el sistema y logra 73.4% de energía térmica proveniente del colector solar [11].

La evolución del refrigerante a lo largo del tiempo se remonta incluso a varios años antes de la producción en masa de sistemas de aire acondicionado. El primer refrigerante utilizado en un sistema de compresión fue el éter, implementado por Perkins en su máquina de compresión de vapor manual [12]. Posteriormente se fueron utilizando variedades de compuestos orgánicos e inorgánicos como cloruro de etilo y metilo (C2H5Cl, CH3Cl) pasando hasta dióxido de sulfuro y dióxido de carbono (SO<sub>2</sub>, CO<sub>2</sub>) y durante la década de los 10's hasta los 30's se utilizaron refrigerantes como metano, etano, propano (CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>8</sub>). Según el tipo de aplicación y equipo se pueden utilizar los siguientes tipos de refrigerantes: Amoniaco (NH<sub>3</sub>) puede ser utilizado con compresores reciprocantes en almacenamiento fríos, plantas de hielo, refrigeración de alimentos entre otros. Dióxido de carbono (CO2) usado como sólido o hielo seco en transportes refrigerados de alimentos congelados. Refrigerante 11 (CCl<sub>3</sub>F) es usado con compresores centrífugos para plantas centrales de aire acondicionado de larga capacidad. Refrigerante 12 (CCl<sub>2</sub>F<sub>2</sub>) usado con compresores reciprocantes, en unidades pequeñas de refrigeración especialmente las domesticas, enfriadores de agua y similares. Refrigerante 22 (CHClF<sub>2</sub>) utilizado en gran variedad de procesos con compresores reciprocantes en plantas de aire acondicionado de gran capacidad, procesos de refrigeración de baja temperatura, almacenamiento frío, alimentos congelados y almacenados. En

la actualidad el refrigerante para aplicación en sistemas de aire acondicionado más utilizado y el reemplazo de los anteriormente mencionados, después de la década de los 2000, es el refrigerante 134a, un gas compuesto de hidrofluorocarbonos (HFC) más eficiente energéticamente que permite trabajar a presiones más bajas [12].

Años después, en el año 2017 M. Ahmed, P. Gandhidasan, S. Zubair y H. Bahaidarah, en su artículo *"Thermodynamic analysis of an innivative liquid desiccant air conditioning system to supply potable water"* analizan termodinámicamente un sistema de aire acondicionado basado cloruro de litio el cual consiste en una torre de deshumidificación y una torre regeneradora y se implementan tres intercambiadores para acondicionar las corrientes del proceso. El sistema da como resultado un rendimiento del 11.25% mejor que un sistema convencional y produce 86.4kg/h de agua fresca [13].

Debido al rápido crecimiento de la población mundial y su necesidad de refrigeración y climatización de espacios, durante los últimos 20 años el interés por los sistemas de refrigeración por absorción ha aumentado debido a que representan un ahorro notable en el consumo de energía y reducen, considerablemente, las emisiones de dióxido de carbono que tanto afectan el medio ambiente [6].

## **3. JUSTIFICACIÓN**

Algunas regiones del territorio colombiano son muy calurosas y la dificultad a la hora de trabajar o convivir es bastante incómoda, por esto constantemente se está en búsqueda de un confort térmico. La mayoría de las edificaciones como oficinas, empresas, centros comerciales, hospitales, hoteles, entre otros, cuenta con equipos convencionales de aire acondicionado para su climatización, lo que conlleva a un consumo desmedido de energía eléctrica y la cantidad de emisiones contaminantes que producen dichos sistemas de refrigeración es elevada. Pese a que la mayoría de los inmuebles cuenta con sistemas de aire acondicionado por compresión, en los linderos de algunas ciudades, por no ir muy lejos, no se cuenta con un buen servicio eléctrico y por tanto se dificulta el uso de sistemas de refrigeración afectando no solo su bienestar térmico sino el hecho de mantener frescos los alimentos perecederos.

El propósito de este proyecto es fortalecer el desarrollo de futuros procesos de refrigeración y con la información aquí presente, facilitar el diseño y construcción de sistemas de aire acondicionado por absorción para las zonas del territorio colombiano más calurosas con la búsqueda de optimizar su calidad de vida y disminuir el impacto negativo al medio ambiente implementando fuentes de energías alternativas autosustentables.

## **4. OBJETIVOS**

## A. Objetivo general

Analizar el comportamiento energético de un sistema de acondicionamiento de aire por absorción en diferentes zonas climáticas de Colombia.

## B. Objetivos específicos

- Simular el comportamiento de un sistema de acondicionamiento de aire por absorción en estado estacionario.
- Cuantificar los requerimientos energéticos del sistema en función de las condiciones del aire ambiental para diferentes zonas climáticas del territorio colombiano.
- Determinar condiciones de operación y diseño de un sistema de acondicionamiento de aire por absorción en función de la temperatura del aire ambiental y su contenido de humedad en diferentes zonas climáticas del territorio colombiano.
- Realizar un análisis de sensibilidad de las variables más importantes del proceso para determinar las más influyentes en la operación del sistema de acondicionamiento de aire por absorción.

# **5. HIPÓTESIS**

Utilizar cloruro de calcio como disecante líquido para el funcionamiento de un sistema de aire acondicionado por absorción genera un ahorro energético eléctrico mucho mayor frente a un refrigerante usado en sistemas de aire acondicionado convencional.

Los sistemas de aire acondicionado por absorción generan una mayor eficiencia energética comparado con los sistemas aire acondicionado tradicional operados por compresión mecánica.

Es posible emplear un colector solar de placa plana como fuente de calentamiento en sistemas de aire acondicionado por absorción.

## 6. MARCO TEÓRICO

#### 6.1 Sistemas de aire acondicionado.

Los sistemas de aire acondicionado pueden cumplir una variedad de funciones destinadas a proveer confort térmico, calidad interior del aire y bienestar de las personas durante el tiempo que este se encuentre en funcionamiento y aplicarlo en espacios como viviendas, oficinas, restaurantes entre otros ambientes donde conservar la calidad del aire sea requerido. Estos sistemas efectúan un procesamiento simultáneo de temperatura, humedad, purificación y distribución de la corriente de aire de acuerdo con las condiciones atmosféricas y requisitos de confort. Las instalaciones de acondicionamiento deben efectuar los siguientes procesos básicos [14]:

- Control de la temperatura y humedad: En este proceso el sistema puede cumplir 2 tipos de requerimientos, el primero el enfriamiento y la deshumidificación del aire, un proceso donde se remueve calor sensible y latente del aire debido al efecto de la condensación del vapor de agua que esta contenga. El segundo tipo es el calentamiento y humidificación del aire, este es el proceso contrario donde por efecto del calor suministrado se introduce vapor de agua en la corriente de aire.
- Ventilación y calidad del aire interior: Este proceso se encarga de retirar el aire en el espacio establecido, con el propósito de renovar permanentemente el aire de circulación para lograr el adecuado nivel de pureza y calidad de aire constante.
- Filtración: Este proceso se basa en la limpieza del aire de partículas de polvo o suciedad que puedan afectar el bienestar de las personas, el grado de limpieza que se requiera dependerá del tipo de espacio que se desea tratar.
- Circulación: Este proceso siempre es necesario puesto que el aire de la zona debe estar en constante movimiento con el fin de evitar estancamiento del aire.

Los sistemas de aire acondicionado tiene la siguiente estructura básica [15]:

- Fuente: Es el componente que provee los efectos de calentamiento primario y efectos de enfriamiento, los equipos tradicionales pueden ser enfriadores, calderas, torres de enfriamiento y equipos similares.
- Distribución: Es el componente que transporta los efectos de calentamiento y enfriamiento primarios desde la fuente hacia los espacios que se requieren acondicionar, elementos como conductores, tuberías, ventiladores y bombas.

- Entrega: Introducen efectos de calentamiento y enfriamiento en espacios acondicionados, estos incluyen difusores, radiadores, ventilo convectores, y un amplio rango de dispositivos terminales.
- Control: Son los componentes que regulan las operaciones de los equipos y sistemas para comodidad, proceso, seguridad y eficiencia energética.

## 6.1.1 Tipos de sistemas de aire acondicionado.

## 6.1.1.1 Compresión mecánica.

El principal sistema de refrigeración en sistemas de aire acondicionado está basado en el principio de compresión mecánica de los gases. El depósito principal básico es el compresor tipo pistón, aunque para diferentes tipos de espacios se pueden encontrar compresores a tornillo o centrífugos[14]. El esquema principal de estos dispositivos se muestra en la Figura 1.



Figura 1. Sistema de refrigeración por compresión de gases [12].

La parte superior del sistema corresponde a la sección de alta presión, el compresor incrementa la presión del refrigerante gaseoso hasta alcanzar un sobrecalentamiento del vapor lo que provoca un aumento de temperatura, este es dirigido por el ducto de descarga o la línea de distribución al condensador donde se le retira el calor y ocurre un enfriamiento del refrigerante alcanzado un estado líquido saturado, la salida del condensador se conduce por la línea de líquido hasta la válvula de expansión donde el refrigerante se expande bajando la presión hasta el punto donde ocurre una vaporización parcial produciendo una mezcla L-V a baja temperatura. A partir de este punto se sitúa la sección de baja presión del proceso donde el refrigerante, a baja

terminar de evaporar y elevar la temperatura del refrigerante por medio del intercambio de calor con el aire de un espacio el cual se encuentra a una condición de temperatura mayor, aquí es donde ocurre el acondicionamiento del aire y se enfría la cantidad requerida para disminuir la temperatura de la habitación, finalmente el refrigerante en fase vapor a alta temperatura es dirigido por la línea de succión hacia el compresor donde repetirá al ciclo. En un diagrama de presión versus entalpía se muestra el proceso anteriormente descrito.



Figura 2. Diagrama *p*-*h* del ciclo de compresión [12].

El proceso del punto 4 a 1 corresponde al evaporador del ciclo donde acurre el acondicionamiento del aire, este proceso es a presión constante y se describe energéticamente mediante el siguiente modelo matemático:

El proceso del punto 1 al punto 2 corresponde a la compresión del refrigerante, el cual es un proceso isoentrópico, por lo tanto, el calor generado es igual a cero El trabajo específico de compresión se modela con la siguiente ecuación:

$$w_{1-2} = -(h_2 - h_1)$$
 Ecuación 2

La sección comprendida entre los puntos 2 y 3 corresponde a la condensación del refrigerante, proceso que se lleva a cabo a presión contante. El modelo del calor especifico retirado del ciclo esta dado por:

$$q_{2-3} = h_2 - h_3$$
 Ecuación 3

Finalmente, el proceso comprendido entre los puntos 3 y 4 corresponde a la expansión isoentálpica generada por la válvula, en este punto es importante determinar la calidad con la que el refrigerante sale de la válvula con el modelo mostrado a continuación:

$$x_4 = \frac{h_3 - h_{f_4}}{h_1 - h_{f_4}}$$
 Ecuación 4

Cabe resaltar que el termino  $h_{f_4}$  corresponde a la entalpia especifica de saturación de líquido a las condiciones del punto 4 en la Figura 2.

#### 6.1.1.2 Absorción.

Los dispositivos de enfriamiento por absorción son una clase de unidades menos utilizadas en grandes instalaciones por ser de estructura más compleja y necesitar una mayor cantidad de equipos, estas requieren de plantas generadoras de vapor o una fuente de calentamiento equivalente además de un sistema de torre de enfriamiento, el esquema general de estos dispositivos se muestra en la Figura 3.

La principal diferencia con el sistema por compresión de gas es que ya no se utiliza un compresor mecánico para la circulación y aumento de presión del fluido. Además, el refrigerante estará mezclado con otro fluido denominado absorbente cuya finalidad es absorber vapor para concentrar el refrigerante.



Figura 3 Sistema de enfriamiento de gas por absorción [12].

Los sistemas más comunes en estos procesos son el sistema Amoniaco-Agua (NH<sub>3</sub>-H<sub>2</sub>O) y el sistema Bromuro de litio-Agua (LiBr<sub>2</sub>-H<sub>2</sub>O). En el primer sistema, el amoniaco cumple la función de refrigerante y el agua es el absorbente, el amoniaco forma soluciones altamente no ideales. El segundo sistema utiliza el bromuro de litio como absorbente y el agua como refrigerante. Estos sistemas solo se utilizan para aplicaciones de aire acondicionado por encima del punto de congelación del agua [12].

#### 6.2 Sistema de aire acondicionado por absorción basado en una solución de CaCl<sub>2</sub>.

El sistema absorción propuesto se diferencia del sistema de aire acondicionado por absorción tradicional descrito en la sección anterior debido a que su estructura y funcionamiento de equipos cuenta con principios fisicoquímicos diferentes en el ciclo, pero en especial la diferencia más recalcada es que se cuenta con un agente desecante capaz de absorber la humedad del aire por contacto directo con la corriente de acondicionamiento. El solvente entra a un ciclo de recuperación para reconcentrarlo y ser reutilizado durante todo el proceso; este compuesto durante el ciclo se mantiene en estado líquido.

Existen varios deshumidificadores que utilizan disecantes los cuales pueden proporcionar mejor control de humedad del espacio utilizando menor energía que los sistemas de enfriamiento convencionales [15]. Los deshumidificadores desecantes aplican materiales absorbentes (como sílice gel) que tienen una alta afinidad por la humedad, es decir para eliminar el vapor de agua directamente de una corriente de aire la humedad se mantiene dentro de la estructura porosa del desecante. Los desecantes pueden estar en forma sólida como gel de sílice o soluciones acuosa como CaCl<sub>2</sub>, BrLi y NH<sub>3</sub> [15].

#### 6.2.1 Estructura y equipos.

El sistema se compone por un absorbedor el cual se encarga de enfriar y deshumidificar una corriente de aire ambiental gracias a un solvente desecante que entra a la columna a una temperatura menor. El aire tratado, es enviado a la habitación para acondicionar dicho espacio. El solvente que absorbe el contenido de humedad del aire se dirige hacia a un sistema de calentamiento el cual consiste en un colector solar capaz de incrementar la temperatura de esta corriente. Luego la corriente ingresa a un desorbedor con el objetivo de concentrar el solvente mediante el uso de una corriente de aire que ingresa a una menor temperatura, la cual retira parte del agua contenida en el solvente. El agua contenida en la corriente de entrada de solvente se evapora y sale como aire

húmedo por el tope de la columna. El solvente concentrado ingresa a un sistema de enfriamiento con el fin de disminuirle su temperatura para luego regresar al absorbedor y cerrar el ciclo. En la Figura 4 se representa un esquema del sistema de aire acondicionado donde se considera una renovación del 100% del aire de la habitación.



Figura 4. Sistema de acondicionamiento de aire por absorción.

#### 6.2.1.1 Columnas de absorción y desorción.

La absorción de gases es una operación en la cual una mezcla gaseosa (aire) se pone en contacto con un líquido (solución de CaCl2), a fin de absorber de manera selectiva uno o más componentes del gas (la humedad del aire) mediante su transferencia a la fase líquida. La operación de absorción requiere la transferencia de masa de una sustancia en la corriente gaseosa al líquido y, para este caso, se trabaja en flujo contracorriente [16]. En la Figura 5 se muestra un esquema de la dirección de las corrientes en una columna de absorción.



Figura 5. Distribución de las corrientes del absorbedor.

La columna de absorción es un recipiente vertical que contiene una o más secciones de empaque o dispositivos de superficie grande que permiten que el líquido se distribuya y descienda a través del lecho empacado, de tal forma que expone una gran superficie de contacto con el aire que asciende por dicha columna. En la parte superior de la columna, hay un distribuidor encargado de esparcir uniformemente el líquido a través de la sección transversal [17].

El desorbedor es un equipo similar al absorbedor, pero el proceso es contrario a este, el objetivo de este proceso es tomar de una corriente líquida (solución de CaCl<sub>2</sub>) y mediante una corriente gaseosa (aire) desorber o retirar uno o más compuestos de la corriente líquida quedando estos en la corriente gaseosa, en este caso el fenómeno de transferencia de masa ocurre de la corriente líquida hacia la corriente gaseosa [16]. La distribución de corrientes cumple el mismo esquema mostrado en la Figura 5, con la siguientes diferencias: en el proceso de absorción por lo general la corriente de líquido a la entrada ( $L_0$ ) debe estar a una temperatura inferior a la temperatura de entrada de la corriente gaseosa ( $V_{N+1}$ ) con el fin de favorecer la transferencia de masa de la fase gaseosa a la fase líquida, por el contrario en la desorción la entrada de líquido ( $L_0$ ) debe estar a una temperatura mayor que la corriente gaseosa ( $V_{N+1}$ ) para favorecer la trasferencia de la fase líquida a la fase gaseosa.

### 6.2.1.2 Sistemas de calentamiento y enfriamiento.

El objetivo principal de los sistemas de calentamiento y enfriamiento es el de acondicionar la corriente de solvente (solución de CaCl<sub>2</sub>) para la correcta operación de las torres de absorción y desorción y lograr la separación correcta en estos equipos.

Los sistemas de enfriamiento para acondicionar la corriente por la general se encargan de retirar el calor residual de una corriente a mayor temperatura mediante una corriente de servicio a una menor temperatura, los equipos tradicionales son intercambiadores de doble tubo o tubos y camisa.

La fuente de calentamiento también, por lo general, son equipos de doble tubo o tubo y camisa correspondiente a calentadores, hervidores, o incluso hornos [15], los cuales utilizan corrientes de servicio que son un costo extra a la hora del diseño del sistema, por lo cual se podría hacer uso de fuentes de energía alternativas como energía solar, geotérmica, etc., debido a que son fuentes ilimitadas de energía, sin costo y amigables con el ambiente.

### 6.2.1.3 Sistemas de cambio de presión.

Los sistemas de cambio de presión cumplen con dos objetivos principales, el primero es el de producir los efectos de movimiento de los fluidos en el sistema, en el caso de las corrientes de aire son utilizados ventiladores, y en el caso de las corrientes de líquido se utilizan bombas. El

segundo objetivo aplica para las bombas donde también se encargarán de suplir las caídas de presión que se presenten en los sistemas de calentamiento y enfriamiento.

#### 6.2.2 Disecantes.

En los sistemas de absorción es deseable que el par refrigerante-absorbente posea algunas características como baja viscosidad para disminuir el trabajo de bombeo, baja temperatura de congelación, buena estabilidad química y térmica. Las reacciones irreversibles (descomposición, polimerización, corrosión) deben evitarse [12].

Sistema CaCl<sub>2</sub>-H<sub>2</sub>O: El cloruro de calcio es altamente soluble en agua, las soluciones que contienen entre el 30-45% en peso de cloruro de calcio son altamente usadas comercialmente. El CaCl<sub>2</sub> es extremadamente higroscópico y libera grandes cantidades de calor durante la absorción del agua y en disolución. Tiende a formar varios hidratos con uno, dos, cuatro o seis moles de agua por mol de cloruro de calcio [18].

#### 6.2.2.1 Descripción y propiedades del CaCl<sub>2</sub>.

El cloruro de calcio es un material utilizado para ahorrar energía térmica debido a su alto calor latente. Tiene una temperatura de fusión de 29.9°C, es de bajo costo, no es tóxico y posee baja corrosión en comparación a otros compuestos similares. De acuerdo con el diagrama de fases de la Figura 6 se puede generar un cambio de fase sólida a líquida y lo contrario ajustando la concentración de CaCl<sub>2</sub>, con la ventaja de que, al ajustar, por ejemplo, la concentración al 39-40% de CaCl<sub>2</sub> en agua, la temperatura de fusión y congelación se ajusta a la temperatura de trabajo [19].



Figura 6. Diagrama de fases del cloruro de calcio y agua [19].

Algunas propiedades del cloruro de calcio [20] se pueden observar en la siguiente la Tabla 1:

| Tabla 1. Propiedades | del cloruro | de calcio. | Adaptada de | [20]. |
|----------------------|-------------|------------|-------------|-------|
|----------------------|-------------|------------|-------------|-------|

| Propiedad                                      | CaCl2      |
|------------------------------------------------|------------|
| CAS                                            | 10043-52-4 |
| Peso molecular                                 | 110.99     |
| Composición (%CaCl <sub>2</sub> )              | 100        |
| Temperatura fusión, °C                         | 773        |
| Temperatura ebullición, °C                     | 1935       |
| Densidad a 25°C, $g/cm^3$                      | 2.16       |
| Calor de fusión, <i>cal/g</i>                  | 61.5       |
| Calor de solución en H <sub>2</sub> O, $cal/g$ | -176.2     |
| Calor de formación a 25°C, kcal/mol            | -190.1     |
| Capacidad calorífica a 25°C, $cal/g$ °C        | 0.16       |

### 6.3 Condiciones climáticas y confort térmico.

## 6.3.1 Psicometría.

La psicrometría corresponde a aquellas propiedades que se determinan de la mezcla gasvapor de un sistema aire-agua y es una herramienta muy importante a la hora de realizar los cálculos para los procesos de humidificación y deshumidificación en torreas de enfriamiento, secadores y sistemas de aire acondicionado.

#### 6.3.1.1 Propiedades Psicrométricas.

**Humedad relativa:** Usualmente expresada en porcentaje, corresponde a la razón entre la masa de vapor de agua en cierto volumen de aire húmedo que se da a una temperatura [12]. También se puede definir como la relación entre la presión parcial del vapor sobre la presión de vapor de saturación a una temperatura dada [21].

$$HR = \frac{\bar{P}}{p_s} * 100$$
 Ecuación 5

**Humedad absoluta:** También llamada humedad especifica, relación de humedad o contenido de humedad, es la razón entre la masa del vapor de agua sobre la masa de aire seco [21]. Las unidades más utilizadas en sistema internacional son kg/kg y en sistemas ingles lb/lb.

$$Y = \frac{m_v}{m_{as}}$$
 Ecuación 6

**Volumen húmedo:** Es la relación entre la masa de vapor por unidad de volumen de aire seco, es posible llegar a confundir este término con la humedad relativa, pero este término se

atribuye más a una medida de concentración por lo cual las unidades típicas son kg/m<sup>3</sup> en sistema internacional de unidades y lb/ft<sup>3</sup> en sistema ingles [21].

$$V_h = \frac{RT}{PM_a(P-p)}$$
 Ecuación 7

**Temperatura de roció:** Es la temperatura donde se tiene el máximo contenido de vapor de agua posible o la temperatura en donde la presión de vapor es igual a la presión parcial del agua en la mezcla [21].

**Temperatura de bulbo seco:** Es la temperatura alcanzada por el aire el cual es medido con un instrumento de precisión como lo es un termómetro.

**Temperatura de bulbo húmedo:** Es la temperatura de equilibrio dinámico que alcanza una superficie líquida donde el agua se evapora en una corriente de aire cuando la tasa de trasferencia sea calor por convección a la superficie es igual a la tasa de transferencia de masa desde la superficie [21].

**Entalpia de aire húmedo:** Es el calor contenido dada una temperatura de aire seco por unidad de masa de aire seco partiendo de un estado de referencia que por lo general es a 0 °C [21].

$$H = (Cp_{as} + Cp_{v}Y)(T - T_{0}) + \lambda_{0}Y$$
 Ecuación 8

6.3.1.2 Construcción de la carta Psicrométrica.

La carta psicrométrica es una guía visual donde se relaciona entre si todas las propiedades psicrométricas de una mezcla gas-vapor, en una gráfica paramétrica. Puesto que las propiedades psicométricas dependen fuertemente de la presión, esta se verá afectada dependiendo la ubicación de la zona que se esté estudiando, pues la elevación de una ciudad determina la presión atmosférica que se ejerza sobre esta. La distribución de la carta psicrométrica se muestra en la Figura 7.



Figura 7. Líneas de propiedades constantes en la carta psicrométrica [12].

En la Figura 7 se puede visualizar la relación de las propiedades psicométricas en un plano. El eje de la abscisa corresponde a la temperatura de bulbo seco y la ordenada corresponde a la humedad absoluta. La relación de estos ejes nos permite definir las líneas de humedad relativa y volumen húmedo a distintas condiciones. La línea de saturación corresponde a la línea donde la humedad relativa del aire alcanza el 100% y en estos puntos se pueden determinar las temperaturas de bulbo húmedo y de rocío en cualquier condición de humedad relativa y/o humedad absoluta y temperatura de bulbo seco. Para determinar estas temperaturas se puede seguir un proceso iterativo empleando las siguientes ecuaciones: la presión de vapor a determinada condición de bulbo húmedo se puede determinar cómo [21]:

$$p = p_{bh} - AP(T_{bs} - T_{bh})$$
 Ecuación 9

Donde:

$$A = 6.5x10^{-4}(1 + 0.000944T_{bh})$$
 Ecuación 10

La presión de vapor en cualquier estado de temperatura de bulbo seco y humedad relativa también puede definirse con la siguiente ecuación [21]:

$$p = \exp\left(73.649 - \frac{7258.2}{T_{bs}} - 7.3037Ln T_{bs} + 4.1653x10^{-6}T_{bs}^2\right)\frac{HR}{100}$$
 Ecuación 11

En el punto de rocío la presión de vapor en saturación es igual la presión de vapor a la temperatura de rocío de modo que [21]:

$$p = \frac{PY}{\frac{PM_v}{PM_{as}} + Y} = \exp\left(73.649 - \frac{7258.2}{T_r} - 7.3037Ln T_r + 4.1653x10^{-6}T_r^2\right)$$
 Ecuación 12

#### 6.3.2 Condiciones climáticas de distintas zonas del territorio colombiano.

El clima en Colombia es un conjunto fluctuante de condiciones atmosféricas. Colombia está situado en una posición estratégica en la zona tropical, lo que hace que nuestro territorio se vea afectado en gran medida por grandes cantidades de energía que el sol transfiere a la tierra. Identificar y describir las características del clima a lo largo de la región es fundamental para comprender los fenómenos naturales que suceden en cualquier momento dado [22].

Las propiedades o condiciones atmosféricas cuyo conjunto define el estado físico del clima en determinado lugar del territorio son conocidas como elementos climáticos y las principales que influyen en la sensación de confort térmico son la presión atmosférica, temperatura del aire, contenido de humedad y humedad relativa en el ambiente.

#### 6.3.2.1 Región Caribe.

El caribe en Colombia está ubicado en la zona norte del país y comprende territorios donde la mayoría de estos están ubicados en zonas costeras sobre el nivel del mar, por lo cual en cuanto a condiciones de humedad se refiere alcanza los niveles más altos, encontrándose valores que alcanzan el 100% de humedad relativa [23]. De igual forma se pueden alcanzar temperaturas considerablemente altas durante todo el año que van desde los 32 hasta los 38°C [24].

#### 6.3.2.2 Región Andina.

La región andina comprende la zona central del territorio colombiano y en su mayoría está formada por zonas donde se eleva la cordillera de los andes, por esta razón la humedad y temperatura de los departamentos no suele ser elevada debido a la altura de estos sobre el nivel del mar, sin embargo, en departamentos más próximos a la costa pacífica como en el caso de Antioquia la elevación sobre nivel del mar desciende y se pueden encontrar humedades relativas entre el 80% y 95% [23] y alcanzar temperaturas máximas hasta de 32°C [24] en los días más calurosos del año.

## 6.3.2.3 Región Amazónica.

La Amazonia colombiana está ubicada en la zona sur del territorio colombiano, aunque los departamentos no son costeros, los territorios por lo general son zonas selváticas donde la humedad relativa máxima del 100% [23] se alcanza en la mayoría de horas del día y pueden haber rangos de temperatura más variada desde los 23°C hasta alcanzar máximas de 34°C.

## 6.3.2.4 Región Orinoquia.

La Orinoquia por lo general es una zona muy calurosa pues está relacionada con los llanos del territorio colombiano, ubicada al oriente de Colombia, esta puede alcanzar en algunos sectores humedades relativas entre el 98% y100% [23]durante todo el día, además sus temperaturas pueden alcanzar puntos máximos hasta los 33°C [24].

## 6.3.2.5 Región Pacífica.

La región pacífica corresponde a los departamentos costeros del occidente del país, al ser zonas al nivel del mar se tienen humedades relativas del 100% [23] durante todo el día y temperaturas máximas hasta los 35°C [24] en días calurosos.

#### 6.3.2.6 Región Insular.

Las islas de San Andrés y Providencia ubicadas al noroccidente del territorio, las condiciones de humedad relativa durante el día son del 85 al 100% [23] y temperaturas entre el 28 y 32°C máximas
## 6.3.3 Confort térmico.

El confort térmico es una condición mental que expresa una persona debido a la satisfacción con respecto a la temperatura de un ambiente y depende de factores como la constitución física, la edad, la dieta, el grado de alimentación y las influencias culturales de los habitantes, así como su actividad al sol o la sombra. Además, si se trata de una zona rural o urbana, de la época del año, la hora del día, tipo de vivienda, entre otros [25].

Por las razones anteriores, el confort térmico puede variar bastante de una persona a otra. La temperatura corporal ideal para una persona es alrededor de 37°C, de no ser así, su salud podría verse afectada hasta el punto de causar la muerte. En zonas cálidas, la temperatura del aire es mayor a 25°C produciéndose una sensación de malestar en la piel acompañado de intensa transpiración y elevación de la temperatura corporal; la sensación térmica que se experimenta es más calurosa entre mayor sea la humedad presente en el aire [25].

# 6.3.3.1 Teoría del confort.

Cuando se habla de teoría del confort no se puede definir una condición estándar general, la sensación de bienestar en las personas depende de una gran variedad de factores como los son temperaturas del ambiente, estaciones del año, velocidad del viento, calor corporal, actividad física, tipo de ropa, entre otros. Puesto que no hay una condición especifica estos equipos se diseñan en base a un intervalo admitido y regulado de trabajo y la mayor fuente de información sobre esto se puede encontrar en la norma americana Standard 55 desarrollada por la sociedad americana de ingenieros de calefacción, refrigeración y aire acondicionado (ASHRAE). Dicha norma provee información sobre las condiciones de temperatura y humedad típicas en gráficas psicrométricas llamadas gráficas de zona de confort (Figura 8) en la cuales se relacionan ciertas variables para ubicar estas zonas dependiendo de la estación del año, tipo de ropa, radiación velocidad del aire [26].



Figura 8. Grafica de zona de confort [26].

En Colombia es posible estimar el grado de confort térmico con métodos como lo es el de la temperatura efectiva o equivalente [25].

$$T_E = 37 - \frac{37 - T_{as}}{0.68 - 0.0014HR \frac{1}{1.76 + 1.4\nu^{0.75}}} - 0.29T_{as} \left(1 - \frac{HR}{100}\right)$$
 Ecuación 13

Según la sensación térmica se tiene el diagrama mostrado en la Figura 9 [25].



Figura 9. Diagrama de zonas de sensación térmica [25].

Durante el verano que es el mayor estado climático en el territorio colombiano se tienen los siguientes parámetros de sensación térmica dependiendo de la temperatura del aire y la humedad relativa en el ambiente indicados en la Figura 10.



Figura 10. Estados de sensación térmica según las condiciones ambientales [25].

# 6.3.3.2 Tasas de renovación del aire.

La tasa de renovación es un valor relativo de número de cambios por hora de aire en un espacio determinado y puede variar según la norma DIN 1946 la cual aconseja las renovaciones/hora en función del tipo de establecimiento como se aprecia en la Tabla 2.

La intención de definir una relación de renovación del aire, además del hecho de acondicionar los espacios para estabilizar la temperatura y humedad para dar confort, es cumplir con el objetivo de proveer una calidad de aire aceptable para los ocupantes y minimizar los efectos adversos a la salud [27]. Esta ventilación cumple normas establecidas como el Standard 62.1 del ASHRAE dónde para diversos espacios se especifican distintas cantidades de ocupantes por metro cuadrado y en base a esto se define la ventilación necesaria del espacio.

| Tipo de local        | Renovación/h | Tipo de local      | Renovación/h |
|----------------------|--------------|--------------------|--------------|
| Armario/roperos      | 4-6          | Oficinas           | 4-8          |
| Lavanderías          | 10-20        | Piscinas           | 3-4          |
| Auditorios           | 6-8          | Cines/teatros      | 5-8          |
| Locales acumuladores | 5-10         | Cuartos de baño    | 5-7          |
| Aulas                | 5-7          | Salas de espera    | 4-6          |
| Bibliotecas          | 4-5          | Salas de fotocopia | 10-15        |
| Cabinas de pintura   | 25-50        | Gimnasios          | 4-6          |

Tabla 2. Tasas de renovación por hora de espacios según la norma DIN 1946. Adaptada de [28].

Especificando un espacio volumétrico y las renovaciones, el caudal requerido se calcula como:

$$C = V \frac{Renov}{h} = (Area superfical x Altura) \frac{Renov}{h}$$
 Ecuación 14

## 6.3.3.3 Cargas térmicas por componente humanos y no humanos.

Definir las tasas de renovación y el caudal solo suple el problema de la ventilación en el espacio a acondicionar, pero los espacios están sometidos a la carga térmica que puede generar el componente humano por motivo de cualquier actividad que desarrollen las personas y el componente no humano como lo pueden ser luces, dispositivos electrónicos o cualquier sistema que genere calor. Estos componentes afectan en cierto grado la calidad de aire interior provocando que la tasa de renovación no supla los requerimientos. De acuerdo con esto, se puede generar una relación para determinar la cantidad de caudal adicional que se debe tener en cuenta para un correcto acondicionamiento del espacio.

En primer lugar se puede determinar el flujo de calor en el espacio debido al proceso de acondicionamiento llevado a cabo desde la temperatura del espacio a la temperatura deseada [29] como:

$$q^{\infty} = u(T_{esp}^{\infty} - T_{acond})$$
 Ecuación 15

Donde:

$$\frac{1}{u} = \frac{1}{h_{\infty}} + \sum_{w=1}^{n} \frac{\delta_w}{k_w} + \frac{1}{h_i}$$
 Ecuación 16

Este flujo de calor corresponde al retirado del espacio debido a la tasa de renovación de aire que se elija. Se determina entonces el flujo de calor debido a los componentes humanos  $(q_p)$  y no humanos  $(q_n)$  [29] respectivamente como:

$$q_p = 5x10^{-4}(T_{prom} - T_{acond})$$
 Ecuación 17

Donde  $T_{prom}$  corresponde a un promedio entre la temperatura del cuerpo humano normalmente de 310.15 *K* y la temperatura dentro del espacio.

$$q_n = 5x10^{-5}(8 + 1.2F_0)$$
 Ecuación 18

Donde  $F_0$  corresponde al factor de ocupación del espacio por metro cuadrado.

Se define el porcentaje que aportan cada uno de los factores como una relación de cada flujo de calor sobre el flujo de calor debido al acondicionamiento del espacio.

$$\%p = \frac{q_p}{q^{\infty}} 100\%$$
 Ecuación 19

$$\%n = \frac{q_n}{q^{\infty}} 100\%$$
 Ecuación 20

Finalmente, el caudal neto para suplir todos los requerimientos de acondicionamiento, teniendo en cuenta todos los factores, se calcula como:

$$C_{neto} = C \left( 1 + \frac{\% p + \% n}{100} \right)$$
 Ecuación 21

#### 6.4 Radiación y colectores solares.

El fenómeno de radiación solar es una característica determinada por la naturaleza del sol debido a su energía radiante en el espacio. La energía producida en el interior del sol que se encuentra a millones de grados puede ser transferida al exterior de su superficie y posteriormente liberado al espacio por efeto del fenómeno de radiación electromagnética y un proceso convectivo que ocurre sucesivamente de emisión, absorción y re-radiación [30].

Esta es una forma de energía limpia, una alterativa a las energías no renovables como la de combustibles fósiles y la nuclear. Una de las aplicaciones es la instalación de paneles solares en casas u oficinas, lo que permite minimizar la dependencia del consumo eléctrico además de ser utilizada para calefacción y agua caliente.

La energía solar puede usarse para el calentamiento de algún sistema que posteriormente permitirá la climatización de viviendas, refrigeración, secado; además, si es aprovechada por medio de celdas fotoeléctricas, es capaz de convertir la luz en un potencial eléctrico sin pasar por un efecto térmico. Otro uso es la producción de frío con el uso de energía solar como fuente de calor (generador) en un ciclo de enfriamiento por absorción.

#### 6.4.1 Fenómenos de irradiación solar.

Para predecir el rendimiento de un proceso solar en el futuro no es práctico basarse en los cálculos de la radiación solar extraterrestre debido a que rara vez se dispone de información meteorológica adecuada, en cambio, se utilizan mediciones pasadas de radiación solar en un lugar en cuestión. Los datos de radiación solar se utilizan de varias formas y para una variedad de propósitos. La información más detallada disponible es el haz y la radiación solar difusa sobre una superficie horizontal que es útil en simulaciones de procesos solares. Los datos diarios por lo general están disponibles y la radiación por hora se pude estimar a partir de datos diarios [30].



Figura 11. Flujos de energía radiante en procesos solares térmicos [30].

En la Figura 11 se muestran los flujos de radiación primaria en una superficie en o cerca del suelo que son importantes en relación con los procesos térmicos solares. Hay dos rangos importantes de longitud de onda, una corta que se origina en el sol en un rango de 0.3 a 3  $\mu$ m, y una larga que es emitida por la atmósfera, un colector o cualquier otro cuerpo a temperaturas cercanas a la temperatura ordinaria y son las mayores a 3  $\mu$ m, si se origina en el suelo, se le llama radiación terrestre [30].

#### 6.4.1.1 Datos de radiación solar.

Las horas brillantes de sol, es decir, el tiempo en el que el disco solar es visible, son de utilidad para estimar los promedios de radiación solar a largo plazo. Es importante conocer ciertos aspectos de los datos de radiación solar: si son mediciones instantáneas se conoce como irradiancia, o si son valores integrados en un periodo de tiempo se conoce como irradiación (generalmente hora o día); el tiempo de las mediciones puede ser de haz, difusa o total; la orientación de la superficie receptora generalmente es horizontal, también puede ser inclinada o con una pendiente fija o normal a la radiación del haz; el periodo durante el cual se promedian los datos de radiación pueden ser mensual o diario [30].

### 6.4.2 Colectores solares.

El colector solar térmico es el principal componente del sistema de captación y el elemento más representativo de las instalaciones solares. Es el encargado de producir calor de manera eficiente y debe estar diseñado para soportar una exposición continua a condiciones externas (lluvia, polvo) y para resistir altas y bajas temperaturas a las que será sometido [31].

Un colector solar se diferencia de un intercambiador de calor porque la transferencia de energía es de una fuente distante de energía radiante a un fluido, mientras que en el intercambiador de calor es de fluido a fluido [30].

Existen varios tipos de colectores solares como el de placa plana, de tubos de vacío y concentradores.

### 6.4.2.1 Colector de placa plana.

Los colectores de placa plana se pueden diseñar para aplicaciones que requieran un suministro de energía en temperaturas moderadas hasta 100°C por encima de la temperatura ambiente. Utilizan tanto haz como radiación solar difusa, no requieren seguimiento del sol y requieren poco mantenimiento y son mecánicamente más simples que los colectores concentradores. La importancia de los colectores de placa plana en los procesos térmicos es tal que su rendimiento térmico se trata con considerable detalle. Su principal aplicación es el calentamiento de agua, calefacción de edificios, aire acondicionado y calor de proceso industrial [30].

Las partes importantes de un colector de placa plana se muestra en la Figura 12 y son: la superficie negra absorbente de energía solar encargada de transferir la energía absorbida hacia el fluido; cubiertas transparentes interiores y exteriores sobre la superficie del absorbedor solar las cuales reducen las pérdidas por convección y radiación a la atmosfera y viceversa; los conductos del fluido y la caja del colector dónde van todos los implementos anteriormente mencionados [30].



Figura 12. Partes del colector de placa plana [30].

#### 6.4.2.2 Colector de tubos de vacío.

El colector de tubos de vacío está compuesto por un conjunto de tubos conectados en un distribuidor, cada uno de los cuales está formado por más tubos por donde circula el fluido a calentar y un tubo de vidrio como cubierta exterior. Existen varios tipos de colectores de vacío, se destacan: los tubos de calor, los tubos en U y los de flujo directo. Este tipo de colectores reduce las pérdidas térmicas de convección y de conducción al realizarse el vacío en el espacio entre el absorbedor y el tubo exterior, con lo que se consigue alcanzar temperaturas elevadas[31].



Figura 13. Tipos de tubos de vacío: tubo de calor (parte superior) y tubo en U (parte inferior) [31].

## 6.4.2.3 Colector de concentración.

El concentrador, o sistema óptico, es la parte del colector que dirige la radiación hacia el receptor. El receptor es ese elemento del sistema dónde la radiación es absorbida y convertida en alguna otra forma de energía; incluye el absorbedor, sus cubiertas asociadas y el aislamiento.

En comparación con los de placa plana, estos colectores deben estar orientados para seguir el sol de modo que la radiación del haz se dirija hacia la superficie absorbente. Sin embargo, tienen una amplia gama de configuraciones que permite manipular nuevos conjuntos de parámetros de diseño. Además, requieren un mantenimiento más específico en el tiempo con respecto a la suciedad, clima y componentes atmosféricos que puedan ser oxidantes o corrosivos. Los concentradores pueden ser reflectores o refractores, cilíndricos o de superficies de revolución y pueden ser continuos o segmentados. Los receptores pueden ser convexos, planos o cóncavos y pueden estar cubiertos o no. Existe una amplia gama de diseños, por lo cual es difícil desarrollar análisis generales aplicables a todos los concentradores [30].

## 6.5 Modelado de los equipos.

El modelado de los equipos comprende una serie de cálculos iterativos donde se resuelven simultáneamente los balances de masa y energía o bien si el proceso es sencillo realizando un solo balance se podría especificar el equipo. En el caso de las columnas de absorción y desorción estos cálculos comprenden un método iterativo "short-cut" donde involucra los dos balances y especificar diversas propiedades que están involucradas en un sistema de separación multicomponente gas-líquido como lo es factores de separación y coeficientes de distribución, los cuales van de la mano con el modelo termodinámico elegido para cada fase.

Cada proceso en particular tiene un conjunto de modelos termodinámicos que permiten modelar las propiedades del sistema de manera correcta [32]. El software Aspen Plus cuenta con una herramienta útil para seleccionar correctamente el conjunto de modelos termodinámicos basado en el siguiente algoritmo de selección (Figura 14 - Figura 17) teniendo en cuenta la naturaleza de las sustancias involucradas en el proceso.



Figura 14. Modelos termodinámicos disponibles en una simulación [32].



Figura 15. Primer paso para para la selección de modelos termodinámicos [32].



Figura 16. Procedimiento para sustancias polares y no electrolíticas [32].



Figura 17. Opciones para cálculos en fase vapor con modelos de coeficientes de actividad [32].

#### 6.5.1 Sistemas de absorción.

Para poder modelar el sistema de separación es necesario primero definir las condiciones de las corrientes de líquido y gas en la entrada del equipo como se muestra en la Figura 5. Se definen condiciones de flujo ( $V_{N+I}$ ), temperatura ( $T_{N+I}$ ), presión y composición en la corriente de entrada de gas, además se recomienda trabajar en condiciones de baja temperatura para llevar a cabo la absorción [33].

Luego se debe definir el compuesto clave (k) en la separación el cual es el compuesto más ligero de los que se desee separar [33]. Posteriormente de la corriente líquida a la entrada ( $L_0$ ) se debe especificar temperatura ( $T_0$ ), presión y composición de la corriente.

En base al grado de separación se recomienda calcular la fracción no absorbida del compuesto clave como [33]:

$$\phi_{AK} = \frac{v_{1,k}}{v_{N+1,k}}$$
 Ecuación 22

### 6.5.1.1 Condiciones de flujo mínimo de líquido.

El flujo mínimo de líquido requerido es la cantidad necesaria para que ocurra la separación en el proceso, pude definirse a partir de la fracción no absorbida y el coeficiente de distribución del clave ( $K_k$ ) [33].

$$L_{0,min} = K_k V_{N+1} (1 - \phi_{AK})$$
 Ecuación 23

Para el proceso de deshumidificación es posible definir el flujo mínimo en base a las propiedades de las corrientes involucradas, una estimación inicial de temperaturas de líquido a la salida del equipo y el flujo de gas libre de agua [16].

$$L_{0,min} = \frac{H_{V_1} - H_{V_{N+1}}}{T_0 - T_N} \left( \frac{V'_{N+1}}{Cp_{L,prom}} \right)$$
 Ecuación 24

Una vez se define el flujo mínimo de líquido se recomienda calcular el flujo de operación  $(L_0)$  como un incremento al valor de flujo mínimo de modo que esté en un rango entre  $1.1L_{0,min} < L_0 < 2.0L_{0,min}$  para obtener la separación deseada y en caso de requerirlo se puede aumentar o disminuir el valor máximo de operación para alcanzar una óptima separación.

#### 6.5.2 Sistema de desorción.

Las corrientes de líquido y gas del equipo de desorción se muestran en la Figura 5. Se definen las condiciones de flujo (L<sub>0</sub>), temperatura (T<sub>0</sub>), composición y presión de la corriente líquida. Se recomienda baja presión y alta temperatura para llevar a cabo el proceso de desorción. Luego se debe definir el compuesto clave (k) en la separación el cual es el compuesto más pesado de los que se quiere desorber. Posteriormente de la corriente de gas a la entrada (V<sub>N+1</sub>) se debe especificar la temperatura (T<sub>N+1</sub>), presión y composición de la corriente.

En base al grado de separación se recomienda calcular la fracción no desorbida para el compuesto clave como:

$$\phi_{SK} = \frac{l_{N,k}}{l_{0,k}}$$
 Ecuación 25

#### 6.5.2.1 Condiciones de flujo mínimo del gas.

Puede definirse a partir de la fracción no desorbida como:

$$V_{N+1,min} = \frac{L_o(1 - \phi_{SK})}{K_K}$$
 Ecuación 26

Una vez definido el flujo mínimo de gas se determina el flujo de operación en un rango entre  $1.1V_{N+1,min} < V_{N+1} < 2.0V_{N+1,min}$  y este límite puede incrementar si se requiere una separación mayor.

#### 6.5.3 Balances de masa y energía.

Para realizar una estimación de los balances de masa y energía para determinar los flujos de salida del sistema de absorción y desorción se sigue el método corto descrito en el Anexo C.

48

## 6.5.4 Empaques.

El tipo de interno más utilizado en procesos de absorción es de tipo empaque aleatorio o empaque estructurado ya que estos procesos requieren de una alta área de transferencia. El recipiente por lo general contiene una o más secciones del empaque por el cual el líquido fluye como película entre cada elemento del empaque y el vapor fluye hacia arriba haciendo contacto con cada elemento del empaque y la película de líquido. El empaque aleatorio consta de elementos individuales de material y geometría variada la cual puede ser más eficiente de usar en determinado proceso y cada fabricante de empaque tiene su propio material y su propia geometría, un ejemplo de esto son los empaques aleatorios tipo anillo Raschig o sillas Berl de la marca Raschig, los cuales proveen una mayor área superficial para la transferencia de masa, alta capacidad de flujo y una baja caída de presión [17]. Cada empaque tiene sus ventajas y desventajas por lo cual siempre se busca que estos se adaptan bien al proceso teniendo en cuenta que, a mayor tamaño de empaque, la eficiencia de la transferencia de masa y la caída de presión disminuyen. Algunos tipos de empaque y su material se muestran en la Figura 18.



Figura 18. Tipos de empaque aleatorio y fabricantes [17].

La otra alternativa de empaque es el tipo estructurado, son estructuras de láminas corrugadas de metal o plástico y por lo general tienen mayor rendimiento que los empaques aleatorios y poseen una mayor capacidad de trabajo [17].



Figura 19. Tipos de empaques estructurados [17].

#### 6.5.5 Diámetro de la torre y caída de presión.

Para determinar el diámetro de la torre y la caída de presión primero se debe definir qué tipo de empaque se debe utilizar, debdo a que el diámetro y la caída de presión son muy dependientes de la capacidad y el tamaño del empaque, por lo que variables como el tamaño nominal  $(D_p)$ , factor de empaque  $(F_p)$ , área superficial de empaque especifica (a) y la fracción porosa del empaque  $(\epsilon)$ se deben tener en cuenta. Una vez definidos estos parámetros de diseño del empaque se procede a determinar el diámetro y la caída de presión con el método de correlaciones generalizadas de caída de presión (GPDC) [17]. En primer lugar, se define una fracción de inundación (f) usualmente es un valor entre 0.5 y 0.7 y se determina el valor de la abscisa en la Figura 20.

$$X = F_{LV} = \frac{L\overline{PM_L}}{V\overline{PM_V}} \left(\frac{\rho_V}{\rho_L}\right)^{0.5}$$
 Ecuación 27

Con el valor de *X* se lee el valor de *Y* cruzando con la curva de máxima inundación. Una vez determinado este valor se procede a encontrar la velocidad del gas  $(u_V)$  de la Ecuación 28.

$$Y = \frac{u_V^2 F_p}{g} \left( \frac{\rho_V}{\rho_{H_2 O(L)}} \right) f\{\rho_L\} f\{\mu_L\}$$
 Ecuación 28



Figura 20. Correlación generalizada de caída de presión de torres empacadas [17].

Para calcular el factor de corrección de densidad del líquido  $(f\{\rho_L\})$ , primero se define la relación de densidad entre la densidad el agua y la del líquido en la absorción  $(\rho_{H_2O(L)}/\rho_L)$  y se lee el valor de la siguiente figura:



Figura 21. Factor de corrección para la densidad de líquido [17].

Definiendo la viscosidad de la corriente líquida en la absorción se encuentra el factor de corrección de la viscosidad ( $f{\mu_L}$ ) por medio de la siguiente figura:



Figura 22. Factor de corrección para la viscosidad del líquido [17].

Una vez calculada la velocidad del gas se determina el diámetro de la torre como:

$$D_T = \left(\frac{4V\overline{PM_V}}{fu_V\pi\rho_V}\right)$$
 Ecuación 29

Se define el Y' como:

Se cruzan los valores de *X* y *Y*' en la Figura 20 y se define a que curva paramétrica pertenecen estas coordenadas. Esta curva paramétrica corresponde a la caída de presión por altura de empaque ( $\Delta P/z$ ).

#### 6.5.6 HETP.

El HETP corresponde a la altura teórica de empaque, es relativo al número teórico de etapas en equilibrio y depende principalmente del tipo y tamaño de empaque, viscosidad del líquido y tensión superficial. Para un estimado de este valor se tienen las siguientes relaciones [17]:

 Para anillos Pall y empaques aleatorios de alta eficiencia similares con una baja viscosidad de líquido:

$$HETP[ft] = 1.5D_P[in]$$
 Ecuación 31

2. Para empaques estructurados a una presión baja o moderada con bajas viscosidades de líquido:

$$HETP[ft] = \frac{100}{a[ft^2/ft^3]} + \frac{4}{12}$$
 Ecuación 32

- 3. Para absorción con líquidos viscosos el HETP debe estar entre 5 a 6 ft.
- 4. En procesos al vacío:

$$HETP[ft] = 1.5D_p[in] + 0.5$$
 Ecuación 33

- En procesos de alta presión (>200psia) en empaques estructurados, el HETP debe ser mucho mayor que el predicho por la Ecuación 32.
- 6. Para columnas de diámetros pequeño ( $D_T < 2ft$ ):

$$HETP[ft] = D_T[ft]$$
 Ecuación 34

Pero no es muy recomendado para valores por debajo de 1ft.

Por lo general se alcanzan valores de HETP con tamaños de empaque aleatorio muy pequeños, en particular con columnas de diámetros pequeño, y para empaque estructurado con altos valores de área superficial de empaque especifica (*a*) [17].

#### 6.5.7 Sistema de ventilación.

El objetivo de los sistemas de ventilación es permitir el movimiento de la corriente gaseosa desde el ambiente al sistema de acondicionamiento, esto conlleva a un aumento poco significativo de la presión y dependiendo de la carga de flujo es importante saber escoger el equipo de ventilación, ya sea entre un compresor o un ventilador. Los compresores son menos usados y tienden a gastar más energía y ser más costosos por lo cual se debe asegurar el uso de ventiladores.

## 6.5.7.1 Cambio de presión y temperatura.

Para procesos en los cuales hay un incremento desde la presión atmosférica hasta presiones no mayores a 40 inH<sub>2</sub>O se recomienda el uso de ventiladores [34].

La temperatura de salida del ventilador de gas está dada por:

$$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^a$$
 Ecuación 35

Siendo k la relación de capacidad calorífica Cp/Cv, a se define como:

$$a = \frac{k-1}{k}$$
 Ecuación 36

## 6.5.7.2 Potencia adiabática teórica.

La potencia teórica adiabática es calculada como [34]:

$$THp = SCFM\left(\frac{T_1}{8130a}\right) \left[\left(\frac{P_2}{P_1}\right)^a - 1\right]$$
 Ecuación 37

Dónde SCFM es 1ft<sup>3</sup> estándar por minuto (379SCF/lbmol)

#### 6.5.8 Sistema de bombeo.

Los sistemas de bombeo generan el movimiento del fluido en el ciclo de recuperación del solvente y suple las caídas de presión en los equipos.

## 6.5.8.1 Potencia adiabática teórica.

La potencia adiabática teórica es la energía requerida para que el dispositivo realice su trabajo de manera adiabática y es función del flujo volumétrico de líquido y el incremento de presión que experimente este [34]. Esta dada por:

$$THp = \frac{C[gpm] * \Delta P[psi]}{1714}$$
 Ecuación 38

## 6.5.8.2 Cambio de presión y temperatura.

Los cambios de presión en las bombas van a estar determinados por el efecto de caída de presión en el sistema de calentamiento y enfriamiento por lo cual se deben definir, en primera instancia, estos valores cuando se modelen los equipos de intercambio de calor.

Para el cálculo de temperatura se debe determinar la potencia adiabática teórica y mediante el balance de energía en estado estacionario se tiene que:

$$T_2 = T_1 + \frac{\dot{W}}{\dot{m}_L C p_L}$$
 Ecuación 39

Donde  $\dot{W}$  es la potencia adiabática teórica dada en watt calculada como:

$$\dot{W} = \frac{THp}{745.7}$$
 Ecuación 40

Por lo general el trabajo de bombe no genera un cambio de temperatura significativo por lo que la temperatura medida a partir de la potencia adiabática se asemeja a la temperatura real a la salida del sistema de bombeo.

## 6.5.9 Sistema de calentamiento y enfriamiento.

#### 6.5.9.1 Carga térmica.

La carga térmica de los sistemas de intercambio va a estar condicionada por la carga de flujo de trabajo y por el incremento o disminución de temperatura requerida. Estos requerimientos de temperatura estarán condicionados por el modelado de los sistemas de absorción y desorción pues aquí es donde se determinan las temperaturas requeridas de entrada y salida del solvente líquido. Partiendo de un balance global de energía donde no se ejerce trabajo sobre el sistema se tiene que:

$$\dot{Q} = \dot{m}_L C p_L (T_2 - T_1)$$
 Ecuación 41

## 6.6 Simulación.

La simulación es una herramienta muy poderosa a la hora de realizar cálculos de procesos industriales que requieren de un gran número de variables. La herramienta actual más potente en el ámbito de simulación de procesos en ingeniería química es Aspen Plus ®. Este software cuenta con un ambiente de trabajo intuitivo y una gran numero de paquetes que van desde la estimación de propiedades de diferentes sustancias hasta el modelado de equipos industriales complejos como torres de destilación fraccionada, además integra procesos de modelado, estimación de costos, análisis energético y seguridad que permiten un buen desempeño y eficiencia en procesos [35].

#### 6.6.1 Modelo RadFrac de no equilibrio.

*RadFrac* es un modelo riguroso de simulación para todos los tipos de operaciones multietapa líquido-vapor, estas operaciones incluyen: destilación ordinaria, absorción, absorción con rehervidor, columnas de Stripping, Stripping con rehervidor, destilación extractiva y azeotrópica. Puede ser utilizado en sistemas de 2 fases, 3 fases, de alta o baja ebullición y sistemas que contiene un alto grado de no idealidad en la fase líquida, incluso en columnas donde ocurre reacciones químicas [36].

La columna puede ser trabajada como un modelo en equilibrio o no equilibrio en *rate-controlled*. El modelo de equilibrio es un modelo de calculo que se asemeja más al método "*short-cut*" pero con variaciones para un sistema más real. El modelo *rate-controlled* tiene consigo un cálculo de parámetros más técnico donde se puede manipular incluso las características mecánicas y de diseño de la torre.

### 6.6.2 Modelado en Rated Based.

Al trabajar con un modelo de no equilibrio es importante definir el tipo de característica de interno que se empleará en la torre con el fin de estimar un diseño mecánico de este mismo. Una vez definido el tipo de interno y fabricante, es posible definir variables importantes para el cálculo de los parámetros de las torres como correlaciones para determinar los coeficientes de transferencia de masa, calor y área interfacial.

Para coeficientes de transferencia de masa es recomendable utilizar los parámetros establecidos por los fabricantes [36]. Por ejemplo, la marca Raschig define los parámetros de su empaque aleatorio, aunque estos datos se consideran privados para la empresa.

Para determinar los coeficientes de transferencia de calor es recomendado utilizar las correlaciones de Chilton y Colburn.

Las correlaciones para el área interfacial que incluyen en su base de datos las Scheffe, Zuiderweg, generalizadas y para empaque aleatorios en particular se recomienda la versión modificado del modelo de Mod-Tsai [36].

## 6.6.3 Modelos de cambio de presión.

Para simular los cambios de presión se utiliza el modelo *Pump* para líquidos. Este equipo puede cumplir con cálculos de tipo bomba o turbina y por defecto viene configurado para trabajar en una sola fase líquida, pero en caso especiales se puede configurar para trabajar con dos o tres fases. Este modelo es utilizando cuando se desea conocer los requerimientos de potencia de un cambio de presión. Se deben especificar en el equipo condiciones de operación, eficiencias, succión neta positiva, parámetros de cabezas de bomba, parámetros específicos de velocidad, fases válidas y parámetros de convergencia para cálculos flash [36].

En los cambios de presión de corrientes gaseosas se utiliza el modelo *Comp*. Este equipo simula compresores, ventiladores o turbinas. Dependiendo del tipo de aplicación y de equipo puede realizar los siguientes cálculos: compresores centrífugos politrópicos, compresores de desplazamiento positivo politrópicos y compresores isoentrópicos. Se aplica este tipo de simulación para conocer información energética, requerimientos de potencia y valores de diseño en corrientes que experimentan cambios de presión. Se debe especificar el modelo de compresor, tipo, especificaciones a la salida y eficiencias [36].

Estos modelos cuentan con sus respectivos balances de masa y energía para la resolución de la simulación.

### 6.6.4 Modelos de cambio de temperatura.

Para determinar los requerimientos energéticos en sistemas de intercambios de calor se utiliza en la simulación el modelo *Heater*. Se emplear para representar calentadores, enfriadores, válvulas y equipos como bombas y compresores donde los resultados de trabajo requerido no son necesarios. Se emplea este modelo para determinar las condiciones termodinámicas de las corrientes involucradas y si se especifica la condición de salida, este determinará las condiciones de fase y mezcla de una o más corrientes. Se deben especificar las condiciones del equipo y el tipo de fase válida y este aplica sus cálculos internos de balances de masa y energía [36].

#### 6.6.5 Model analysis tools.

Esta es una herramienta con un modelo de análisis que permite la manipulación de la simulación para realizar distintos trabajos como [36]:

- Sensitivity: Permite realizar análisis de sensibilidad examinado algunas variables clave del proceso.
- *Optimization*: Minimiza o maximiza una función objetivo especificada por el usuario por manipulación de variables en el diagrama de flujo de proceso.
- *Constraint*: Especifica restricciones de igualdad y desigualdad para problemas de optimización.
- Data Fit: Ajusta los modelos de simulación de Aspen Plus ® a datos de planta o laboratorio.

## 6.7 Condiciones de diseño.

Las condiciones de diseño son parámetros que se deben tener en cuenta a la hora de la construcción de los equipos y el montaje de estos.

### 6.7.1 Torres de absorción y desorción.

Cuando se habla de diseño de este tipo de torres se hace siempre referencia al código ASME de equipos sometidos a presión. Este código contiene un número de secciones que permiten especificar mecánicamente cada aspecto del equipo, pero se parte del conocimiento de dos propiedades fundamentales: la temperatura y presión de diseño. Estos parámetros son fundamentales a la hora de tomar decisiones de selección de material, espesores y tipo de accesorios que tendrá el equipo.

En primer lugar se deben definir la temperatura y presión de operación del equipo, estas son las condiciones más altas que se pueden alcanzar con el equipo en funcionamiento [33]. Posteriormente la temperatura y presión de diseño son las condiciones de operación adicionando un valor más en las variables llamado factor de seguridad con el propósito de que si rebasan estas condiciones de operación el equipo no se vea perjudicado. Estos valores están definidos por las siguientes ecuaciones.

$$T_{diseño} = T_{op} + 50^{\circ}F$$
 Ecuación 42

$$T_{diseño} = 1.25T_{op}$$
 Ecuación 43

$$P_{diseno} = 1.1(P_{op} + P_{hidrostática})$$
 Ecuación 44

$$P_{diseño} = P_{op} + P_{hidrostática} + 30psi$$
 Ecuación 45

La Ecuación 45 suele ser mayormente utilizada en procesos sometidos a altas presiones. Cada una de las ecuaciones debes ser evaluada y se elija la de mayor valor.

Cuando se trabaja con torres empacadas se debe definir la altura real de la sección de empaque ya que el HETP solo es la altura de etapa teórica. La altura real se determina entonces en base al número de etapas teóricas como [17]:

$$Z = N * HETP$$
 Ecuación 46

Donde el HETP estará definido en primera instancia por el tipo de empaque y las variables que reporte el proveedor de diámetro de empaque, factor de empaquetamiento, área superficial especifica y fracción porosa vistas en la sección de modelado del absorbedor (Ecuación 31 - Ecuación 34).

### 6.7.2 Bombas.

Los criterios de diseño para equipos de cambio de presión tienen que ver con la característica de líquido, la cabeza de presión deseada y la capacidad de la bomba, esto se traduce a la potencia real requerida. Para hacer una elección correcta se deben tener en cuenta los tipos de bombas disponible las cuales se clasifican en dos grupos: las bombas dinámicas en las que se encuentras las centrifugas y las de desplazamiento positivo donde se encuentran bombas reciprocantes y de diafragma [33].

# 6.7.2.1 Eficiencia.

En el proceso de compresión  $h_2 > h_{2s}$ , por lo tanto, se realiza más trabajo del requerido. La eficiencia isoentrópica se calcula como:

$$\eta = \frac{h_{2s} - h_1}{h_2 - h_1}$$
 Ecuación 47

El valor de  $\eta$  típicamente es entre 75-85% [37].

### 6.7.2.2 Potencia real.

Una vez determinada la eficiencia de la bomba la potencia real estará definida como:

$$\dot{W}_{real} = \frac{W}{\eta}$$
 Ecuación 48

En base a esto se determinan los criterios de selección de bomba.

## 6.7.2.3 Cabeza de bomba.

La cabeza de la bomba está directamente relacionada con la presión. Partiendo de un medidor en el fondo de un recipiente se mide la presión que genera el peso de determinada cantidad de líquido, la distancia entre la línea central del medido y la superficie del líquido se denomina la cabeza de la bomba [33]. La cabeza entonces se puede determinar cómo:

$$h = \frac{\dot{W}_{real}}{g}$$
 Ecuación 49

# 6.7.3 Ventiladores.

Las condiciones de diseño de los ventiladores normalmente no son tan rigurosas para los compresores ya que sus demandas energéticas no son tan elevadas.

## 6.7.3.1 Eficiencia.

La eficiencia de los ventiladores está clasificada por los grados de eficiencia (FEG) los cuales son indicadores de la habilidad aerodinámica de convertir la potencia del *impeler* en movimiento directo del aire. Estas eficiencias están en función de la curva en el punto de operación del ventilador y se encuentran divididas en diferentes categorías dependiendo de la velocidad y tamaño del ventilador [38].

La relación de la eficiencia y el área se muestra en la Figura 23:



Figura 23. Eficiencia total del ventilador según el grado FEG y el tamaño [38].

### 6.7.3.2 Potencia real.

Una vez determinados el tamaño y eficiencia del ventilador la potencia real cumple la misma relación presentada en la Ecuación 48.

## 6.7.4 Colector solar.

El diseño riguroso de los colectores solares por lo general es un proceso iterativo que involucra conceptos que van más allá del propósito del contenido de este trabajo, sin embargo, es posible estimar un área de colector a partir de la eficiencia la cual está basada en distintas configuraciones y experiencias de estudios previos.

## 6.7.4.1 Eficiencia y área de colector.

El desempeño de un colector solar estará determinado por la eficiencia que se define como la relación entre la ganancia de energía en un periodo de tiempo específico sobre la energía solar incidente en el mismo periodo de tiempo. Si las condiciones del medio son constantes en el mismo periodo de tiempo, la eficiencia estará definida por [30]:

$$\eta = \frac{Q_U}{I_T A_c}$$
 Ecuación 50

Por lo general las eficiencias de estos equipos no suele ser muy alta, y solamente es posible alcanzar buenas eficiencias en configuraciones particulares y dependiendo del fluido de trabajo [39]. La Figura 24 muestra algunas eficiencias alcanzadas por el colector.



Figura 24. Resultados experimentales para la eficiencia en un colector para calentamiento de agua [39].



Según el tipo de configurar también es posible definir la eficiencia (Figura 25).



Una vez definida la eficiencia y la configuración, teniendo en cuenta los datos de energía de radiación, se puede determinar el área del colector despejando de la Ecuación 50.

#### 6.7.5 Enfriador.

Al igual que el colector para el diseño del enfriador, que es un sistema de intercambio de calor, consta de cálculos rigurosos e iterativos para definir dichos intercambiadores de calor ya sean de doble tubo o de tubo y coraza.

## 6.7.5.1 Área del enfriador.

Un método para estimar el área inicial de intercambio se basa en la ecuación general de balance de energía para intercambiadores de calor, el cual se define como [40]:

$$Q = U x A x F_T x L M T D$$
 Ecuación 51

El coeficiente de transferencia global U depende de la combinación de los tipos de fluido de proceso y de servicio, por lo cual se debe definir el rango de temperatura de las terminales de cada corriente. Dependiendo de la carga térmica se escoge un fluido de servicio el cual se ajuste a dicho rango de temperaturas como se observa en la Figura 26:

| Medium            | Typical Temperature<br>Range (°F) | Mode       |
|-------------------|-----------------------------------|------------|
| Coolants:         |                                   |            |
| Ethylene          | -150 to -100                      | Vaporizing |
| Propylene         | -50 to 10                         | Vaporizing |
| Propane           | -40 to 20                         | Vaporizing |
| Ammonia           | -30 to 30                         | Vaporizing |
| Tetrafluoroethane | -15 to 60                         | Vaporizing |
| Chilled brine     | 0 to 60                           | Sensible   |
| Chilled water     | 45 to 90                          | Sensible   |
| Cooling water     | 90 to 120                         | Sensible   |
| Boiler feedwater  | 220 to 450                        | Vaporizing |
| Heat sources:     |                                   |            |
| Hot water         | 100 to 200                        | Sensible   |
| Steam             | 220 to 450                        | Condensing |
| Heating oils      | 30 to 600                         | Sensible   |
| Dowtherm A        | 450 to 750                        | Condensing |
| Molten salts      | 300 to 1,100                      | Sensible   |
| Molten metals     | 100 to 1,400                      | Sensible   |
| Combustion gases  | 30 to 2,000                       | Sensible   |

Figura 26. Rangos de temperatura de operación para el fluido de servicio [34].

Una vez elegido el fluido de servicio se selecciona el rango de temperaturas tal que no supere el *approach* mínimo. Para temperaturas que estén sobre el ambiente hasta 300°F este *approach* no debe ser menor a 20°F. [34].

Para definir el flujo del fluido de servicio en base a la carga térmica de refrigeración requerido, se realiza un balance general en el sistema de intercambio tal que:

$$\dot{m}_{servicio} = \frac{Q_{enfriamiento}}{Cp_{servicio}\Delta T_{servicio}}$$
Ecuación 52

Para determinar el coeficiente global de transferencia, una vez definidos los dos fluidos del proceso de intercambio, se hace uso de los valores experimentales reportados para la combinación de fluidos fríos y calientes. Cuando se trabajan con sistemas que involucran soluciones acuosas como fluido caliente y agua como fluido frío, el coeficiente global de transferencia U suele estar entre 250–500 BTU/h.Ft<sup>2</sup>.°F. Se recomienda utilizar valores altos de U para disminuir el área de transferencia de calor [40].

La temperatura media logarítmica (*LMTD*) se calcula en base a las temperaturas del fluido caliente (*T*) y la temperatura del fluido frío (t) como:

$$LMTD = \frac{(T_1 - t_2) - (T_2 - t_1)}{\ln\left(\frac{T_1 - t_2}{T_2 - t_1}\right)}$$
 Ecuación 53

Para determinar el valor del  $F_T$ , se hace uso de las figuras del factor de corrección para intercambiadores según la configuración del número de pasos por la camisa y los tubos. Por ejemplo, para un intercambiador 2-4 se tiene la Figura 27.



Figura 27. Factor de corrección para un intercambiador 2-4 [40].

Dónde,

$$R = \frac{T_1 - T_2}{t_2 - t_1}$$
Ecuación 54  
$$S = \frac{t_2 - t_1}{T_1 - t_1}$$
Ecuación 55

Cruzando los valores de R y S, se determina el  $F_T$  de la gráfica y siempre se recomienda que este valor no sea inferior a 0.7 [40].

Finalmente, se puede determinar el área del enfriador despejando de la Ecuación 51.

En esta sección se presentaron los fundamentos teóricos, procedimientos y modelos matemáticos para dimensionar un sistema de refrigeración por absorción



7. METODOLOGÍA

Figura 28. Diagrama estructural de la metodología.

## 7.1 Identificación de la información base.

## 7.1.1 Revisión y búsqueda bibliográfica.

Se emplean diferentes bases de datos disponibles para la consulta de información de artículos científicos, patentes, textos universitarios y materiales útiles con información disponible sobre distintos sistemas de acondicionamiento por absorción para analizar en qué estado se encuentra el desarrollo de las distintas tecnologías empleadas, mapas de irradiación solar, tasas de renovación del aire, heurísticas para equipos como ventiladores y bombas, información sobre colectores y enfriadores, características y concentración del cloruro de calcio, energía solar, entre otros.

#### 7.1.2 Propiedades de las sustancias.

Primero se identifica la composición del aire seco y, una vez con dichas fracciones, se define para cada sustancia las propiedades termofísicas en estado gaseoso como temperatura de ebullición, capacidad calorífica, densidad, presión de vapor, viscosidad, entre otras, listadas en el Anexo A.

| Compuesto          | Composición molar % |
|--------------------|---------------------|
| Nitrógeno          | 78                  |
| Oxígeno            | 21                  |
| Argón              | 0.93                |
| Dióxido de carbono | 0.07                |

Tabla 3. Composición del aire seco [41].

Luego, se definen las distintas concentraciones de la solución de cloruro de calcio (CaCl<sub>2</sub>) al igual que sus propiedades termofísicas en estado líquido (ver Anexo A). Para este trabajo se define una concentración del 40% en peso de CaCl<sub>2</sub> en agua.

Para el compuesto que se absorbe o se desorbe (agua) se definen las propiedades termofísicas para estado líquido y gaseoso listadas en el Anexo A.

#### 7.1.3 Caracterización climática de las ciudades colombianas a estudiar.

Para las distintas zonas climáticas del territorio colombiano se tiene en cuenta las regiones del país (Andina, Orinoquía, Pacífica, Caribe, Amazonía e Insular). Se consultan los datos de temperatura y humedad relativa en base a los datos históricos reportados por el IDEAM para definir las condiciones máximas en las ciudades representativas de cada una de las regiones entre las cuales se seleccionan para su estudio Medellín, Arauca, Buenaventura, Cartagena, Inírida y San Andrés.

### 7.1.4 Condiciones ambientales

Para cada una de las ciudades seleccionadas se buscan los datos promedios de temperatura y humedad relativa en el IDEAM durante cada hora del día en los meses de junio, julio y/o agosto del año 2021. Ver Anexo B.

Luego, se determina la temperatura promedio, máximas y mínimas, a lo largo de un mes (ya sea junio, julio o agosto del año 2021) para encontrar la tendencia de cada cuidad en dicho periodo de tiempo. De manera análoga se realiza para la humedad relativa. Ver Anexo B.

#### 7.2 Psicrometría.

En base a la elevación sobre el nivel del mar y presión atmosférica determinada para cada ciudad, se construye la carta psicrométrica con el fin de representar los datos de temperatura y humedad relativa en un mes sobre este diagrama. Cada diagrama se puede observar en el Anexo B.

| Ciudad               | Presión [mmHg] | Elevación [m] |
|----------------------|----------------|---------------|
| Medellín (caso base) | 640            | 1538          |
| Arauca               | 749            | 119           |
| Buenaventura         | 759.8          | 7             |
| Cartagena            | 760            | 0             |
| Inírida              | 747            | 95            |
| San Andrés           | 760            | 0             |

Tabla 4. Datos de presión y elevación de cada ciudad [42].

## 7.3 Zona de confort.

De acuerdo con la teoría del confort se selecciona un área que se considera térmicamente adecuada para determinar las condiciones del acondicionamiento ideal de temperatura (20-25°C) y humedad relativa (30-70%). Esta zona se dibuja sobre la carta psicométrica anteriormente realizada y se compara con los valores de temperatura y de humedad relativa para determinar la dispersión de los datos de la zona de confort. También se determinan las condiciones máximas de temperatura y humedad relativa para evaluar el sistema de aire acondicionado en cada ciudad seleccionada.

Tabla 5. Condiciones críticas de temperatura y humedad relativa ambiental en cada cuidad.

| Ciudad               | Temperatura [°C] | Humedad relativa [%] |
|----------------------|------------------|----------------------|
| Medellín (caso base) | 32               | 98                   |
| Arauca               | 33               | 100                  |
| Buenaventura         | 34.6             | 100                  |
| Cartagena            | 36.6             | 99                   |
| Inírida              | 34               | 100                  |
| San Andrés           | 31.8             | 100                  |

# 7.4 Construcción del caso base.

## 7.4.1 Espacio, carga térmica y flujo de aire.

Se selecciona un espacio para implementar el sistema de aire condicionado por absorción, asignándole las dimensiones de altura, ancho y longitud. Para este caso el espacio es una oficina con las dimensiones mostrada en la Figura 29:



Figura 29. Dimensiones de la oficina para acondicionamiento.

Con el área calculada de este espacio (30m<sup>2</sup>), se define el número de personas que pueden ocupar el lugar por m<sup>2</sup> en base a las heurísticas del Standar 62.1 que, para este caso, son 15 personas. Posteriormente, se define la renovación de aire por hora teniendo en cuenta la Norma DIN 1946, siendo para las oficinas 4 renovaciones de aire por hora. Con el volumen (75m<sup>3</sup>) de la oficina y la Ecuación 14 se calcula el caudal de aire seco a tratar, siendo de 300m<sup>3</sup>/h (360kg/h). Luego, se especifica la temperatura y humedad relativa de acondicionamiento para dicho lugar dónde, según la zona de confort, se selecciona una temperatura de 23°C y una humedad relativa del 60%. Las condiciones de confort de la oficina mencionada son las mismas para cada cuidad.

Para dicho espacio se debe considerar lo siguiente: el calor irradiado por los ocupantes y equipos (como sistema de cómputo o luces) son despreciables frente al calor debido a la convección natural; el material de los muros debe ser de ladrillo común de espesor de 0.2m y su conductividad térmica es  $k=8.65x10^{-3} kW/m.K$  y debe estar con dos capas de cemento plástico cada una de espesor de 0.02m ( $k=0.77x10^{-3} kW/m.K$ ); los coeficientes convectivos de transferencia de calor dentro y fuera de la habitación corresponden a  $h_{\infty}=35x10^{-3} kW/m^2.K$  y  $hi=8.5x10^{-3} kW/m^2.K$ , respectivamente [12]; el techo es de material aislante tal que se desprecian los efectos de transferencia de calor sobre este y no se consideran ganancias térmicas por radiación del edificio.

Por último, se determina las cargas térmicas debido a las interacciones por componentes humanos  $(q_p)$  y no humanos  $(q_n)$  y se estima el flujo adecuado para llevar a cabo el acondicionamiento de la oficina empleando desde la Ecuación 15 hasta la Ecuación 21. Estos datos se encuentran en la sección de resultados en la Tabla 12.

## 7.4.2 Condiciones de flujo de líquido requerido.

De acuerdo con la condición de acondicionamiento, se define que la temperatura de entrada de líquido al absorbedor debe ser menor a 23°C, es este caso se elige 22°C. Con la Ecuación 24 se

determina el flujo mínimo requerido de líquido y luego se calcula el flujo de operación utilizando el rango definido anteriormente. Los resultados se muestran en la Tabla 13

Para la estimación inicial de la temperatura de salida de líquido del absorbedor, se realizan los cálculos del método short-cut descrito en el Anexo C dónde, suponiendo la temperatura de entrada del líquido, se estima la separación inicial de los compuestos en el absorbedor.

Una vez definida las condiciones de operación del absorbedor se estima el diámetro y caída de presión de la torre utilizando el método de las correlaciones GPDC dónde se realiza un análisis para cuatro empaques diferentes con distintas dimensiones, listados en la Tabla 6.

| Tipo empaque                 | Material | Dp [in] | Fp [ft²/ft³] |
|------------------------------|----------|---------|--------------|
| Anillo Pall (Raschig)        | Plástico | 1       | 98.2960      |
| Anillo Ralu                  | Plástico | 1       | 69.7409      |
| Anillo Raschig               | Cerámica | 1 1/2   | 95           |
| Ralupak 250YC (estructurado) | Metal    | -       | 90.3171      |

Tabla 6. Tipos de empaque y sus dimensiones para el absorbedor [17].

Estos cuatro tipos de empaque se analizan para cada ciudad y se selecciona trabajar en la simulación con los anillos Pall (Raschig).

Finalmente se estima el HETP inicial requerido utilizando las relaciones consideradas en la Ecuación 31 hasta la Ecuación 34 y las características del interno para el absorbedor se muestran en la sección de resultados correspondiente a la Tabla 15

Con la estimación inicial de la separación en el absorbedor se determina el flujo de gas mínimo requerido por el desorbedor utilizando la Ecuación 26 y considerando una relación de flujo de operación más alta de lo permitida para obtener las condiciones adecuadas de recuperación de solvente. Dichos resultados se encuentran en la Tabla 14

Utilizando el método short-cut para el desorbedor, especificado en el Anexo C, se estima las condiciones de temperatura y flujos de salida del líquido.

De manera análoga al absorbedor se determina el diámetro, altura y caída de presión para el desorbedor dónde también se seleccionan los mismos tipos de empaques, pero teniendo en cuenta las dimensiones de la Tabla 15

| Tipo empaque          | Material | Dp [in] | Fp [ft²/ft³] |
|-----------------------|----------|---------|--------------|
| Anillo Pall (Raschig) | Plástico | 1 1/2   | 62.13        |
| Anillo Ralu           | Plástico | 1 1/2   | 46.52        |

Tabla 7. Tipos de empaque y sus dimensiones para el desorbedor [17].

| Anillo Raschig               | Cerámica | 1 1/2 | 95      |
|------------------------------|----------|-------|---------|
| Ralupak 250YC (estructurado) | Metal    | -     | 90.3171 |

### 7.5 Acondicionamiento del ciclo.

Después de definir las condiciones de temperatura y flujo del absorbedor y del desorbedor con el método corto, se determinan las condiciones de caída de presión en el colector solar (1psi [31]) y en el enfriador (5psi [40]) para implementar la estimación de potencia teórica requerida en las bombas dada en la Ecuación 38 y se calcula la temperatura inicial a la salida de cada bomba con la Ecuación 39. Además, se estiman las potencias teóricas de los ventiladores usando la Ecuación 37 en base al requerimiento de presión de cada una de las torres, teniendo en cuenta que el aumento de presión en los ventiladores es de 0.035psi [43] y se calcula la temperatura de salida de estos ventiladores con la Ecuación 35.

La carga térmica se calcula con la Ecuación 41. Para el colector solar en base a la temperatura de salida del líquido del sistema de absorción y el requerimiento de temperatura de entrada del sistema de desorción; y para el sistema de enfriamiento en base a la temperatura de salida del desorbedor y la temperatura de entrada al absorbedor.

### 7.6 Simulación caso base.

Teniendo en cuenta las condiciones de operación determinadas anteriormente, se realiza la simulación en el software Aspen Plus @ ingresando las sustancias involucradas en el proceso. Es de resaltar que el cloruro de calcio se encuentra disociado en los iones Ca<sup>2+</sup> y Cl<sup>-</sup> en presencia de agua.

| Select components |              |              |                  |       |
|-------------------|--------------|--------------|------------------|-------|
|                   | Component ID | Туре         | Component name   | Alias |
| •                 | N2           | Conventional | NITROGEN         | N2    |
| Þ                 | 02           | Conventional | OXYGEN           | 02    |
|                   | AR           | Conventional | ARGON            | AR    |
| ÷.                | CO2          | Conventional | CARBON-DIOXIDE   | CO2   |
|                   | H2O          | Conventional | WATER            | H2O   |
| $\rightarrow$     | CACL2        | Conventional | CALCIUM-CHLORIDE | CACL2 |
| ÷.                | CA++         | Conventional | CA++             | CA+2  |
|                   | CL-          | Conventional | CL-              | CL-   |
| •                 |              |              |                  |       |

Figura 30. Selección de sustancias.

Se especifica el modelo termodinámico que para este caso es ELECNRTL para el líquido, debido a que tiene mayor desempeño a la hora de simular las propiedades de las sustancias con

comportamiento electrolítico y se utiliza ESRKS para el gas el cual corresponde a la ecuación de estado Soave Redlich Kwong. Los parámetros de interacción binaria se eligen para el modelo según las bases de datos disponibles en la versión del software.

| Property methods & c     | ptions     | Method name                         |                   |
|--------------------------|------------|-------------------------------------|-------------------|
| Method filter            | COMMON -   | ELECNRTL                            | Methods Assistant |
| Base method              | ELECNRTL - |                                     |                   |
| Henry components         | -          | Modify —                            |                   |
| Petroleum calculation    | on options | Vapor EOS                           | ESRKS -           |
| Free-water method        | STEAM-TA - | Data set                            | 1 💌               |
| Water solubility         | 3 -        | Liquid gamma                        | GMENRTL -         |
|                          |            | Data set                            | 1 💌               |
| - Electrolyte calculatio | n options  | Liquid molar enthalpy               | HLMXELC -         |
| Chemistry ID             | GLOBAL -   | Liquid molar volume                 | VLMXELC -         |
| Use true compor          | ients      | Heat of mixing                      |                   |
|                          |            | Poynting correction                 |                   |
|                          |            | Use liquid reference state enthalpy |                   |

Figura 31. Modelo termodinámico para la fase líquida y gaseosa.

En el entorno de simulación se selecciona los equipos de separación *RadFrac* para el absorbedor y desorbedor definiendo las condiciones de operación calculadas, para los sistemas de cambio de presión de líquido se usan bombas *Pump*, para los cambios de presión en el gas se seleccionan equipos *Comp* y para el sistema del colector solar y el enfriador se usan equipos *Heater* (Figura 32). Ver Anexo E para la especificación de cada equipo.



Figura 32. Diagrama de flujo del proceso.

Para la Figura 32, inicialmente se considera un sistema abierto con el objetivo de ingresar la corriente líquida al absorbedor directamente y una vez calculadas la separación en el desorbedor se sigue un proceso iterativo ingresando una corriente fresca a un mezclador y la corriente de salida del desorbedor se combina con ésta para entrar luego al absorbedor de tal forma que el sistema se comporte como cerrado y la corriente fresca de líquido que ingresa al mezclador sea tan pequeña que su condición térmica no afecta el balance de masa y energía.

Este proceso se repite para cada una de las cuidades seleccionadas con sus respectivas condiciones. (Ver Anexo E).

### 7.7 Requerimiento energético del sistema.

De acuerdo con las simulaciones realizadas, se toman los resultados energéticos requeridos por las bombas, ventiladores, colector y enfriador. (Ver Anexo E).

Se listan cada uno de los flujos, temperaturas, presiones requeridas, eficiencias para cada ciudad elegida y así comparar cada una de ellas.

## 7.8 Condiciones de operación y diseño.

Las condiciones de operación son las condiciones finales utilizadas en las simulaciones de cada ciudad. Para las condiciones de diseño de las columnas de absorción y desorción, se utiliza el método descrito en la sección 6 correspondientes desde la Ecuación 42 hasta la Ecuación 46, para las bombas desde la Ecuación 47 hasta la Ecuación 49, para los ventiladores se emplea la Figura 23 y la Ecuación 48, para el colector solar se usa la Ecuación 50 y la Figura 24. Finalmente, para el enfriador se utiliza el método descrito desde la Ecuación 51 hasta la Ecuación 55.

## 7.9 Análisis de sensibilidad.

Se utiliza la herramienta *Model Analysis tools* para realizar el análisis multivariable y ver cómo afecta este cambio en las distintas variables respuesta más importantes de la simulación. Las variables para sensibilizar se observan en la Tabla 8 y las variables respuesta en la Tabla 9.

| Variable                               | Rango                                  |
|----------------------------------------|----------------------------------------|
| Temperatura ambiental, $^{\circ}C$     | 22-31 °C                               |
| Humedad relativa, %                    | 60 % - máxima alcanzada en cada cuidad |
| Temperatura del disecante, $^{\circ}C$ | 15-30 °C                               |
| Flujo de solvente, kmol/h              | 50-300 kmol/h                          |
| Fracción másica de CaCl <sub>2</sub>   | 0.05-0.5                               |
| Diámetro del absorbedor/desorbedor, m  | 0.305 <i>m</i>                         |
| HETP del absorbedor/desorbedor, m      | 0.2-0.8 <i>m</i>                       |

Tabla 8. Variables para sensibilizar.

| Variables                                                                                   | Unidades |
|---------------------------------------------------------------------------------------------|----------|
| Flujo de salida del agua por el absorbedor, $V_{I,H2O}$                                     | kg/h     |
| Temperatura de salida del absorbedor, $T_1$                                                 | °C       |
| Flujo de salida de líquida del desorbedor, $L_N$                                            | kmol/h   |
| Flujo de salida del agua por el desorbedor, $L_{N,H2O}$                                     | Kmol/h   |
| Fracción másica de agua a la salida del desorbedor, <i>w</i> <sub>H2O</sub>                 | -        |
| Fracción másica del CaCl <sub>2</sub> a la salida del desorbedor, <i>wCaCl</i> <sub>2</sub> | -        |
| Potencia del ventilador 1, Wventilador1                                                     | Watt     |
| Potencia del ventilador 2, W <sub>Ventilador2</sub>                                         | Watt     |
| Potencia de la bomba 1, $W_{Bomba1}$                                                        | Watt     |
| Potencia de la bomba 2, $W_{Bomba2}$                                                        | Watt     |
| Calor del colector, $Q_{colector}$                                                          | kW       |
| Calor del enfriador, Qenfriador                                                             | kW       |

#### Tabla 9. Variables respuesta.

# 7.9.1 Temperatura y Humedad relativa.

Para distintos datos de temperatura ambiental entre 22 y 31°C se varia la humedad relativa entre 60% hasta la máxima de cada cuidad para determinar los diferentes flujos de agua en el aire en las corrientes de entrada del sistema de absorción y de desorción.

| Variable | Active   | Manipulated variable                                     | Units   |
|----------|----------|----------------------------------------------------------|---------|
| 1        | <b>√</b> | Stream-Var Stream=AIRE-ABS Substream=MIXED Variable=TEMP | С       |
| 2        | <b>√</b> | Stream-Var Stream=AIRE-DES Substream=MIXED Variable=TEMP | С       |
| 3        | <b>V</b> | Mole-Flow Stream=AIRE-ABS Substream=MIXED Component=H2O  | kmol/hr |
| 4        | <b>V</b> | Mole-Flow Stream=AIRE-DES Substream=MIXED Component=H2O  | kmol/hr |

Figura 33. Variables manipuladas en el análisis de sensibilidad de temperatura y humedad relativa. Se toman los datos de las siguientes variable respuesta:

|   | Variable | Definition                                                                |
|---|----------|---------------------------------------------------------------------------|
| ► | TOOUT    | Stream-Var Stream=L0-OUT Substream=MIXED Variable=TEMP Units=C            |
|   | VHUMABS  | Stream-Var Stream=AIRE-ABS Substream=MIXED Variable=MASS-FLOW Units=kg/hr |
|   | VH2OABS  | Mass-Flow Stream=AIRE-ABS Substream=MIXED Component=H2O Units=kg/hr       |
|   | V1H2OAB  | Mass-Flow Stream=V1-ABS Substream=MIXED Component=H2O Units=kg/hr         |
|   | LNH2ODES | Mole-Flow Stream=LN-DESOR Substream=MIXED Component=H2O Units=kmol/hr     |
|   | TV1      | Stream-Var Stream=V1-ABS Substream=MIXED Variable=TEMP Units=C            |
|   | POTVEN1  | Block-Var Block=VENT-1 Variable=NET-WORK Sentence=RESULTS Units=Watt      |
|   | POTVEN2  | Block-Var Block=VENT-2 Variable=NET-WORK Sentence=RESULTS Units=Watt      |
|   | POTBOM1  | Block-Var Block=BOMBA-1 Variable=NET-WORK Sentence=RESULTS Units=Watt     |
|   | POTBOM2  | Block-Var Block=BOMBA-2 Variable=NET-WORK Sentence=RESULTS Units=Watt     |
|   | QCOLEC   | Block-Var Block=COLECTOR Variable=QCALC Sentence=PARAM Units=kW           |
|   | QENFRI   | Block-Var Block=ENFRIADO Variable=QCALC Sentence=PARAM Units=kW           |
|   |          |                                                                           |

Figura 34. Variable respuesta en el análisis de sensibilidad de temperatura y humedad relativa.

# 7.9.2 Temperatura y flujo de solvente.

En primer lugar, se varía por separado la temperatura de entrada del solvente entre 15 y 30°C y el flujo de solvente entre 50 hasta 300kmol/h. Para cambiar la temperatura del fluido se debe cumplir que la temperatura fresca sea igual a la de salida del enfriador. Se toman los datos variable respuesta de la Figura 34.

| Variable | Active   | Manipulated variable                                     | Units |
|----------|----------|----------------------------------------------------------|-------|
| 1        | <b>V</b> | Stream-Var Stream=L0-FRESC Substream=MIXED Variable=TEMP | С     |
| 2        | <b>V</b> | Stream-Var Stream=L0-IN Substream=MIXED Variable=TEMP    | C     |
| 3        | <b>V</b> | Block-Var Block=ENFRIADO Variable=TEMP Sentence=PARAM    | С     |

Figura 35. Variables manipuladas en el análisis de sensibilidad de temperatura del solvente.

Para el análisis del flujo, en la simulación se abre el sistema cerrado para variar en el rango establecido.

|   | Variable | Active | Manipulated variable                                       | Units   |
|---|----------|--------|------------------------------------------------------------|---------|
| Þ | 1        | 1      | Stream-Var Stream=L0-IN Substream=MIXED Variable=MOLE-FLOW | kmol/hr |

Figura 36. Variables manipuladas en el análisis de sensibilidad del flujo de solvente.

Se toman los datos de las siguientes variable respuesta:

| Variable | Definition                                                                |
|----------|---------------------------------------------------------------------------|
| VHUMABS  | Stream-Var Stream=AIRE-ABS Substream=MIXED Variable=MASS-FLOW Units=kg/hr |
| VH2OABS  | Mass-Flow Stream=AIRE-ABS Substream=MIXED Component=H2O Units=kg/hr       |
| V1H2OAB  | Mass-Flow Stream=V1-ABS Substream=MIXED Component=H2O Units=kg/hr         |
| LOOUT    | Stream-Var Stream=L0-OUT Substream=MIXED Variable=MOLE-FLOW Units=kmol/hr |
| LNH2ODES | Mole-Flow Stream=LN-DESOR Substream=MIXED Component=H2O Units=kmol/hr     |
| TV1      | Stream-Var Stream=V1-ABS Substream=MIXED Variable=TEMP Units=C            |
| POTVEN1  | Block-Var Block=VENT-1 Variable=NET-WORK Sentence=RESULTS Units=Watt      |
| POTVEN2  | Block-Var Block=VENT-2 Variable=NET-WORK Sentence=RESULTS Units=Watt      |
| POTBOM1  | Block-Var Block=BOMBA-1 Variable=NET-WORK Sentence=RESULTS Units=Watt     |
| POTBOM2  | Block-Var Block=BOMBA-2 Variable=NET-WORK Sentence=RESULTS Units=Watt     |
| QCOLEC   | Block-Var Block=COLECTOR Variable=QCALC Sentence=PARAM Units=kW           |
| QENFRI   | Block-Var Block=ENFRIADO Variable=QCALC Sentence=PARAM Units=kW           |
| WH2O     | Mass-Frac Stream=L0-OUT Substream=MIXED Component=H2O                     |
| WCA      | Mass-Frac Stream=L0-OUT Substream=MIXED Component=CA++                    |
| WCL      | Mass-Frac Stream=L0-OUT Substream=MIXED Component=CL-                     |
|          |                                                                           |

Figura 37. Variable respuesta en el análisis de sensibilidad del flujo de solvente.

Ahora se varían simultáneamente tanto la temperatura como el flujo de solvente teniendo en cuenta los rangos de cada variable. Se toman los datos variable respuesta de la Figura 34.
|   | Variable | Active | Manipulated variable                                       | Units   |
|---|----------|--------|------------------------------------------------------------|---------|
| ۲ | 1        | 1      | Block-Var Block=ENFRIADO Variable=TEMP Sentence=PARAM      | С       |
|   | 2        | 1      | Stream-Var Stream=L0-IN Substream=MIXED Variable=TEMP      | С       |
|   | 3        | 1      | Stream-Var Stream=L0-IN Substream=MIXED Variable=MOLE-FLOW | kmol/hr |

Figura 38. Variables manipuladas en el análisis de sensibilidad de temperatura y flujo del solvente.

## 7.9.3 Concentración del solvente.

Para la concentración se varían los flujos de las corrientes de entrada de agua y del cloruro de calcio en el absorbedor de modo que el flujo total de líquido siempre sea el flujo de operación calculado y además que la composición másica de cloruro de calcio este en un rango entre 0.05 y 0.5 aproximadamente.

|  | Variable | Active | Manipulated variable                                   | Units   |
|--|----------|--------|--------------------------------------------------------|---------|
|  | 1        | 1      | Mole-Flow Stream=L0-IN Substream=MIXED Component=H2O   | kmol/hr |
|  | 2        | 1      | Mole-Flow Stream=L0-IN Substream=MIXED Component=CACL2 | kmol/hr |

Figura 39. Variables manipuladas en el análisis de sensibilidad de la concentración de CaCl<sub>2</sub>. Las variables respuesta son las siguientes:

| Variable | Definition                                                                |
|----------|---------------------------------------------------------------------------|
| VHUMABS  | Stream-Var Stream=AIRE-ABS Substream=MIXED Variable=MASS-FLOW Units=kg/hr |
| VH2OABS  | Mass-Flow Stream=AIRE-ABS Substream=MIXED Component=H2O Units=kg/hr       |
| V1H2OAB  | Mass-Flow Stream=V1-ABS Substream=MIXED Component=H2O Units=kg/hr         |
| LOOUT    | Stream-Var Stream=L0-OUT Substream=MIXED Variable=MOLE-FLOW Units=kmol/hr |
| LNH2ODES | Mole-Flow Stream=LN-DESOR Substream=MIXED Component=H2O Units=kmol/hr     |
| TV1      | Stream-Var Stream=V1-ABS Substream=MIXED Variable=TEMP Units=C            |
| POTVEN1  | Block-Var Block=VENT-1 Variable=NET-WORK Sentence=RESULTS Units=Watt      |
| POTVEN2  | Block-Var Block=VENT-2 Variable=NET-WORK Sentence=RESULTS Units=Watt      |
| POTBOM1  | Block-Var Block=BOMBA-1 Variable=NET-WORK Sentence=RESULTS Units=Watt     |
| POTBOM2  | Block-Var Block=BOMBA-2 Variable=NET-WORK Sentence=RESULTS Units=Watt     |
| QCOLEC   | Block-Var Block=COLECTOR Variable=QCALC Sentence=PARAM Units=kW           |
| QENFRI   | Block-Var Block=ENFRIADO Variable=QCALC Sentence=PARAM Units=kW           |
| WH2O     | Mass-Frac Stream=L0-OUT Substream=MIXED Component=H2O                     |
| WCA      | Mass-Frac Stream=L0-OUT Substream=MIXED Component=CA++                    |
| WCL      | Mass-Frac Stream=L0-OUT Substream=MIXED Component=CL-                     |
| FTOTAL   | Stream-Var Stream=L0-IN Substream=MIXED Variable=MOLE-FLOW Units=kmol/hr  |
|          |                                                                           |

Figura 40. Variable respuesta en el análisis de sensibilidad de la concentración de CaCl<sub>2</sub>.

## 7.9.4 Diámetro y altura del absorbedor y desorbedor.

Se varía simultáneamente en primer lugar el diámetro del absorbedor en un rango entre 0.3 y 0.5 metros y la altura entre 0.2 y 0.8 metros.

| Variable | Active | Manipulated variable                                                       | Units |
|----------|--------|----------------------------------------------------------------------------|-------|
| 1        | 1      | Block-Var Block=ABS Variable=CA-DIAM Sentence=INTERNALS ID1=INT-1 ID2=CS-1 | meter |
| 2        | 1      | Block-Var Block=ABS Variable=CA-HETP Sentence=INTERNALS ID1=INT-1 ID2=CS-1 | meter |

Figura 41. Variables manipuladas en el análisis de sensibilidad del diámetro y altura del absorbedor.

En segundo lugar, se varía el diámetro y la altura del desorbedor en los mismos rangos establecidos para el absorbedor.

|  | Variable | Active       | Manipulated variable                                                          | Units |
|--|----------|--------------|-------------------------------------------------------------------------------|-------|
|  | 1        | 1            | Block-Var Block=DESORB Variable=CA-DIAM Sentence=INTERNALS ID1=INT-1 ID2=CS-1 | meter |
|  | 2        | $\checkmark$ | Block-Var Block=DESORB Variable=CA-HETP Sentence=INTERNALS ID1=INT-1 ID2=CS-1 | meter |

Figura 42. Variables manipuladas en el análisis de sensibilidad del diámetro y altura del desorbedor. Las variables respuesta, tanto para el absorbedor como desorbedor, se observan en la Figura 37.

Para todos los análisis de sensibilidad mencionados anteriormente los resultados de su simulación se muestran en el Anexo E para cada una de las ciudades.

En la presente sección se mostró cómo es el proceso a seguir para desarrollar cada uno de los aspectos del trabajo.

#### 8. RESULTADOS

A continuación, se describen los resultados obtenidos en cada apartado de la sección 7. En el apartado 8.1 se presentan los cálculos primarios requeridos para realizar la simulación en el software y el análisis de grados de libertad; en el ítem 8.2 se hace mención de los resultados basados en el método short-cut y los balances de energía en los equipos de acondicionamiento de las corrientes y se presentan los resultados más relevantes alcanzados en la simulación para cada una de las zonas climáticas seleccionadas; el ítem 8.3 muestra los resultados de los parámetros de diseño calculados para las condiciones de operación alcanzadas en la simulación y finalmente, el apartado 8.4 expone los resultados obtenidos por los análisis de sensibilidad de las variables más importantes del proceso. Todos lo resultados presentados a continuación pertenecen al análisis del caso base, es decir, de la ciudad de Medellín y algunos de los resultados de las demás zonas del territorio colombiano. Los resultados ampliados para todas las ciudades se encuentran en los Anexos.

### 8.1 Análisis de grados de libertad y cálculos primarios para la simulación

La Tabla 10 muestra el análisis de grados de libertad para el sistema de aire acondicionado.

| Variables            | Ventilador 1 | Ventilador 2 | Bomba 1 | Bomba 2 | Absorbedor | Desorbedor | Colector | Enfriador | Global | Proceso |
|----------------------|--------------|--------------|---------|---------|------------|------------|----------|-----------|--------|---------|
| N° Corrientes        | 2            | 2            | 2       | 2       | 4          | 4          | 2        | 2         | 4      | 12      |
| N° Comp. Ind.        | 8            | 8            | 2       | 2       | 10         | 10         | 2        | 2         | 16     | 31      |
| Temperaturas         | 2            | 2            | 2       | 2       | 4          | 4          | 2        | 2         | 4      | 12      |
| Q-W                  | 1            | 1            | 1       | 1       | 1          | 1          | 1        | 1         | 1      | 8       |
| Datos                |              |              |         |         |            |            |          |           |        |         |
| Ec. Balance de masa  | -5           | -5           | -2      | -2      | -6         | -6         | -2       | -2        | -5     | -30     |
| Balance de Energía   | -1           | -1           | -1      | -1      | -1         | -1         | -1       | -1        | -1     | -8      |
| Corrientes conocidas | -1           | 0            | 0       | 0       | 0          | 0          | 0        | 0         | -1     | -1      |
| Compos. Conocidas    | -4           | -4           | 0       | 0       | 0          | 0          | 0        | 0         | -8     | -8      |
| Temp. Conocidas      | -1           | -1           | 0       | 0       | 0          | 0          | 0        | 0         | -2     | -2      |
| Q-W. Conocido        | 0            | 0            | 0       | 0       | -1         | -1         | -1       | -1        | 0      | -4      |
| Relaciones           |              |              |         |         |            |            |          |           |        |         |
| Flujo                | -1           | -1           | -1      | -1      | -1         | -1         | -1       | -1        | 0      | -8      |
| Composición          | 0            | 0            | 0       | 0       | 0          | 0          | 0        | 0         | 0      | 0       |
| Recuperación         | 0            | 0            | 0       | 0       | -1         | -1         | 0        | 0         | 0      | -2      |
| Temperaturas         | 0            | 0            | 0       | 0       | 0          | 0          | 0        | 0         | 0      | 0       |
| Q-W                  | 0            | 0            | 0       | 0       | 0          | 0          | 0        | 0         | 0      | 0       |
| Total                | 0            | 1            | 3       | 3       | 9          | 9          | 2        | 2         | 8      | 0       |

Tabla 10. Análisis de grados de libertad para el sistema acoplado.

La Tabla 10 se construyó teniendo en cuenta las siguientes consideraciones:

- El flujo de los ventiladores, bombas, el colector y enfriador son constantes, es decir, el flujo a la entrada y salida son iguales.

- El flujo de entrada al ventilador 1 es el flujo requerido por el volumen del espacio, las renovaciones de aire por hora y las cargas térmicas que se consideran.

- Las temperaturas del ventilador 1 y 2 a la entrada corresponden a la temperatura ambiente.

- Las torres operan de manera adiabática ( $\dot{Q}=0$ ).

- El flujo de líquido a la entrada de absorbedor y el flujo de entrada de vapor al desorbedor se determinaron a partir de la relación de reflujo mínimo y el flujo de operación requerido.

- El colector y el enfriador operan de manera adiabática.

- Las trazas de N<sub>2</sub>, O<sub>2</sub>, CO<sub>2</sub> y Ar que se absorben o se desorben en el ciclo cerrado son tan pequeñas que se consideran despreciables y en la corriente líquida del ciclo se considera que solamente participan el CaCl<sub>2</sub> y el H<sub>2</sub>O.

- La recuperación en el absorbedor y desorbedor corresponden al flujo de vapor de acondicionamiento y el requerimiento de flujo de agua a la entrada del absorbedor, respectivamente.

Teniendo en cuenta el estado de acondicionamiento de la oficina, con una temperatura de 23°C y 60% de humedad relativa, la Tabla 11 muestra las condiciones necesarias de contenido de humedad determinadas a partir de la carta psicrométrica, las cuales serán objetivo para alcanzar a la hora de realizar la simulación.

| Aire ambiental (V <sub>N+1</sub> ) |                         |         |              |           |         |            |  |  |
|------------------------------------|-------------------------|---------|--------------|-----------|---------|------------|--|--|
| Propiedad                          | Medellín                | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |  |  |
| $T_{ambiente}$ , °C                | 32                      | 33      | 34.6         | 36.6      | 34      | 31.8       |  |  |
| HR, %                              | 98                      | 100     | 100          | 99        | 100     | 100        |  |  |
| HA, $kg_v/kg_{as}$                 | 0.03596                 | 0.03302 | 0.03574      | 0.03974   | 0.03513 | 0.03029    |  |  |
| m॑ <sub>v</sub> , kg∕h             | 15.6992                 | 14.5211 | 15.5339      | 17.0063   | 15.3571 | 13.6041    |  |  |
| $V_{N+1,v}$ , kmol/h               | 0.8877                  | 0.8058  | 0.8620       | 0.9437    | 0.8522  | 0.7549     |  |  |
|                                    | Aire acondicionado (V1) |         |              |           |         |            |  |  |
| $T_{ambiente}$ , °C                | 23                      | 23      | 23           | 23        | 23      | 23         |  |  |
| HR, %                              | 60                      | 60      | 60           | 60        | 60      | 60         |  |  |
| HA, $kg_v/kg_{as}$                 | 0.01254                 | 0.01068 | 0.01053      | 0.01053   | 0.01071 | 0.01053    |  |  |

Tabla 11. Condiciones de acondicionamiento para la corriente de aire en cada cuidad.

| m॑ <sub>v</sub> , kg∕h | 5.5782 | 4.6967 | 4.5767 | 4.5062 | 4.6816 | 4.7293 |
|------------------------|--------|--------|--------|--------|--------|--------|
| $V_{N+1,v}$ , kmol/h   | 0.3096 | 0.2606 | 0.2540 | 0.2501 | 0.2598 | 0.2624 |

Nota: Las propiedades psicrométricas están sujetas a las condiciones de presión y elevación de cada ciudad las cuales están descritas en la Tabla 4.

En la Tabla 11 se observa que la mayoría de las ciudades, excepto Medellín y Cartagena, alcanzan una condición de humedad relativa máxima (100%) lo que significa que se debe retirar mayor cantidad de vapor de agua en el ambiente.

Los datos para el cálculo de la carga de flujo de aire se muestran en la Tabla 12.

| Ciudad       | $q^{\infty}$ [kW/m <sup>2</sup> ] | $q_p$ [kW/m <sup>2</sup> ] | $\frac{q_n}{[\text{kW/m}^2]}$ | %p   | %n  | <i>ṁ<sub>as</sub>recalculado</i><br>[kg/h] |
|--------------|-----------------------------------|----------------------------|-------------------------------|------|-----|--------------------------------------------|
| Medellín     | 0.0155                            | 0.0031                     |                               | 20.2 | 3.4 | 444.8335                                   |
| Arauca       | 0.0170                            | 0.0032                     |                               | 19.1 | 3.1 | 439.7661                                   |
| Buenaventura | 0.0179                            | 0.0032                     | 0.0005                        | 17.8 | 2.9 | 434.6371                                   |
| Cartagena    | 0.0210                            | 0.0035                     | 0.0005                        | 16.4 | 2.5 | 427.9393                                   |
| Inírida      | 0.0170                            | 0.0031                     |                               | 18.4 | 3.1 | 437.1213                                   |
| San Andrés   | 0.0136                            | 0.0029                     |                               | 20.9 | 3.8 | 449.1286                                   |

Tabla 12. Cargas térmicas y flujo recalculado requerido para cada ciudad.

En la Tabla 12 se logra apreciar como la carga térmica de acondicionamiento  $(q^{\infty})$  está relacionada directamente con la temperatura del espacio a acondicionar, donde Cartagena es la ciudad con una temperatura ambiental más elevada  $(36.6^{\circ}C)$  por lo cual el flujo de calor en el espacio, debido al proceso de acondicionamiento, es mayor y para el caso de San Andrés, la ciudad con una temperatura ambiental menor  $(31.8^{\circ}C)$  sufre el efecto contrario. La variación de las cargas térmicas debido a la interacción del componente humano  $(q_p)$  entre cada ciudad son relativamente pequeñas mientras que para los componentes no humanos es la misma para cada ciudad debido a que no depende de la temperatura. Al relacionar las cargas se determina que San Andrés es la ciudad que requiere un mayor flujo de aire de acondicionamiento.

La Tabla 13 especifica los datos de flujo mínimo y flujo de operación de solvente para el absorbedor.

| Ciudad               | L <sub>0,min</sub> [kmol/h] | L <sub>0</sub> [kmol/h] |
|----------------------|-----------------------------|-------------------------|
| Medellín (caso base) | 212.6977                    | 233.9674                |
| Arauca               | 196.6606                    | 216.3267                |
| Buenaventura         | 220.4708                    | 242.5179                |
| Cartagena            | 252.2499                    | 277.4749                |

Tabla 13. Flujos de corriente líquida en el absorbedor para cada ciudad.

| Inírida    | 213.9651 | 235.3616 |
|------------|----------|----------|
| San Andrés | 177.4162 | 195.1579 |

La cantidad de flujo de solvente requerido dado en la Tabla 13 nos indica que las ciudades con una temperatura ambiental más elevada requieren mayor flujo. Cartagena al ser la ciudad más calurosa con una temperatura de 36.6°C tiene los mayores requerimientos de solvente líquido, por el contrario, San Andrés con una temperatura de 31.8°C es la ciudad con menor requerimiento de solvente.

El flujo gaseoso mínimo requerido y de operación estimado para el desorbedor se presentan en la Tabla 14.

| Ciudad               | V <sub>N+1min</sub> [kmol/h] | V <sub>N+1</sub> [kmol/h] |
|----------------------|------------------------------|---------------------------|
| Medellín (caso base) | 6.9514                       | 24.3298                   |
| Arauca               | 7.8579                       | 23.5737                   |
| Buenaventura         | 8.8786                       | 36.4021                   |
| Cartagena            | 9.4341                       | 38.6797                   |
| Inírida              | 8.5033                       | 29.7614                   |
| San Andrés           | 7.1822                       | 17.2372                   |

Tabla 14. Flujos de corriente gaseosa en el desorbedor para cada ciudad.

La cantidad de flujo gaseoso requerido en el desorbedor es directamente proporcional al aumento de temperatura ambiental de la ciudad, por esto la Tabla 14 muestra que Cartagena es la ciudad que mayor requerimiento necesita, seguido por Buenaventura y en último lugar Medellín, la cual su temperatura ambiental es de 32°C mientras que Cartagena es de 36.6°C como se observa en la Tabla 11.

Los datos estimados para el diámetro del empaque del absorbedor y desorbedor en cada ciudad se muestran en la Tabla 15.

|                      | <b>D</b> <sub>T</sub> [ <b>m</b> ] |            |  |  |  |
|----------------------|------------------------------------|------------|--|--|--|
| Ciudad               | Absorbedor                         | Desorbedor |  |  |  |
| Medellín (caso base) | 0.4224                             | 0.4261     |  |  |  |
| Arauca               | 0.4056                             | 0.4057     |  |  |  |
| Buenaventura         | 0.4076                             | 0.4938     |  |  |  |
| Cartagena            | 0.4155                             | 0.4900     |  |  |  |
| Inírida              | 0.4067                             | 0.4463     |  |  |  |
| San Andrés           | 0.4005                             | 0.3628     |  |  |  |

Tabla 15. Dimensiones del interno anillos Pall para el absorbedor y desorbedor.

El diámetro nominal del empaque tanto para el absorbedor como desorbedor se elige en un estándar de 0.45 m por practicidad en las simulaciones. La caída de presión del empaque ( $\Delta P/z$ ) para el absorbedor es de 0.5 inH<sub>2</sub>O/ft y para el desorbedor es de 0.7 inH<sub>2</sub>O/ft. La altura teórica de empaque (*HETP*) para el absorbedor es de 0.4572 m y para el desorbedor es de 0.6264 m. Lo anterior se cumple para todas las ciudades.

## 8.2 Resultados basados en la simulación

Los resultados basados en el método *short-cut* y los balances de energía se encuentran reportados en el Anexo C para todas las ciudades.

La Tabla 16 muestra los resultados de la simulación basados en las condiciones iniciales de  $L_0$  y  $V_{N+1}$  para el absorbedor y la condición de flujo fresco alimentado para simular el sistema cerrado.

Se definen las corrientes de entrada y salida tanto para el aire húmedo como para el solvente.

| Propiedad                                  | Medellín              | Arauca                         | Buenaventura          | Cartagena              | Inírida               | San Andrés            |  |
|--------------------------------------------|-----------------------|--------------------------------|-----------------------|------------------------|-----------------------|-----------------------|--|
| $T_{op}$ , °C                              | 32.2973               | 33.2550                        | 34.8525               | 36.8539                | 34.2564               | 32.0505               |  |
| $P_{op}$ , atm                             | 0.8445                | 0.9879                         | 1.0021                | 1.0024                 | 0.9853                | 1.0024                |  |
|                                            |                       | Corrient                       | te entrada gaseos     | sa (V <sub>N+1</sub> ) |                       |                       |  |
| $T_{N+1}$ , °C                             | 32.2973               | 33.2550                        | 34.8525               | 36.8539                | 34.2564               | 32.0505               |  |
| $V_{N+1}$ , kmol/h                         | 16.2425               | 15.9858                        | 15.8650               | 15.7155                | 15.9408               | 16.2581               |  |
| $V_{N+1,H20}$ , kmol/h                     | 0.8877                | 0.8058                         | 0.8620                | 0.9438                 | 0.8522                | 0.7549                |  |
|                                            |                       | Corrie                         | nte entrada líqui     | do (L <sub>0</sub> )   |                       |                       |  |
| $T_{0}, ^{\circ}C$                         | 22                    | 22                             | 22                    | 22                     | 22                    | 22                    |  |
| L <sub>0,fresco</sub> ,kmol/h              | $2.97 \times 10^{-5}$ | 9.86 <i>x</i> 10 <sup>-6</sup> | $5.31 \times 10^{-6}$ | $6.40 \times 10^{-6}$  | $5.83 \times 10^{-6}$ | $3.28 \times 10^{-6}$ |  |
| L <sub>0</sub> , <i>kmol/h</i>             | 279.7375*             | 258.6529*                      | 289.9705*             | 331.7638*              | 281.4122*             | 233.3424*             |  |
| L <sub>0,H20</sub> , kmol/h                | 211.1148              | 195.1971                       | 218.8300              | 250.3726               | 212.3727              | 176.0959              |  |
|                                            |                       | Corrie                         | nte salida gaseos     | sa (V1)                |                       |                       |  |
| $T_{l}, ^{\circ}C$                         | 23.3681               | 23.4715                        | 23.4740               | 23.4754                | 23.4685               | 23.4760               |  |
| V <sub>1</sub> , kmol/h                    | 15.6092               | 15.3864                        | 15.1979               | 14.9533                | 15.2908               | 15.7141               |  |
| V <sub>1,H20</sub> , kmol/h                | 0.2962                | 0.2537                         | 0.2478                | 0.2443                 | 0.2531                | 0.2552                |  |
| Corriente salida líquido (L <sub>N</sub> ) |                       |                                |                       |                        |                       |                       |  |
| $T_{N}, ^{\circ}C$                         | 24.4772               | 24.5565                        | 24.5523               | 24.5513                | 24.5553               | 24.5589               |  |
| $L_N$ , kmol/h                             | 280.3708*             | 259.2523*                      | 290.6376*             | 332.5260*              | 282.0622*             | 233.8863*             |  |
| L <sub>N,H20</sub> , kmol/h                | 211.7062              | 195.7492                       | 219.4443              | 251.0720               | 212.9718              | 176.5956              |  |

Tabla 16. Resultados de la simulación para el absorbedor.

\*L<sub>0</sub> y L<sub>N</sub> tienen en cuenta el flujo disociado del CaCl<sub>2</sub>.

La tendencia de temperaturas de operación no varía significativamente respecto a la temperatura ambiental de cada una de las ciudades al igual que con la presión. La temperatura más alta registrada corresponde a la ciudad de Cartagena con 36.85°C mientras que la menor es de 32.05°C correspondiente a la ciudad de San Andrés. Los flujos de líquido del solvente están representados por el flujo disociado del CaCl<sub>2</sub>, esto quiere decir que por cada mol de calcio Ca<sup>+</sup> hay dos de cloro Cl<sup>-</sup>, por lo tanto, estos flujos representan un valor mayor que los calculados mediante el método *short-cut* ya que en este no se contempla dicha disociación.

La Tabla 17 muestra los resultados de las condiciones de operación del desorbedor.

| Propiedad                                   | Medellín  | Arauca    | Buenaventura      | Cartagena             | Inírida   | San Andrés |  |  |
|---------------------------------------------|-----------|-----------|-------------------|-----------------------|-----------|------------|--|--|
| $T_{op}$ , °C                               | 51.63     | 53.52     | 53.39             | 55.12                 | 53.55     | 54.04      |  |  |
| $P_{op}$ , atm                              | 0.8445    | 0.9897    | 1.0021            | 1.0024                | 0.9853    | 1.0024     |  |  |
|                                             |           | Corrient  | e entrada gaseos  | a (V <sub>N+1</sub> ) |           |            |  |  |
| $T_{N+1}, ^{\circ}C$                        | 32.2973   | 33.2550   | 34.8525           | 36.8539               | 34.2564   | 32.0505    |  |  |
| $V_{N+1}$ , kmol/h                          | 24.3298   | 23.5737   | 36.4021           | 38.6797               | 29.7614   | 17.2372    |  |  |
| $V_{N+1,H20}$ , kmol/h                      | 1.3297    | 1.1883    | 1.9779            | 2.3228                | 1.5910    | 0.8004     |  |  |
| Corriente entrada líquido (L <sub>0</sub> ) |           |           |                   |                       |           |            |  |  |
| T₀, °C                                      | 51.63     | 53.52     | 53.39             | 55.12                 | 53.55     | 54.04      |  |  |
| L <sub>0</sub> , <i>kmol/h</i>              | 280.3708* | 259.2523* | 290.6376*         | 332.5260*             | 282.0622* | 233.8863*  |  |  |
| L <sub>0,H20</sub> , <i>kmol/h</i>          | 211.7062  | 195.7492  | 219.4443          | 251.0720              | 212.9718  | 176.5956   |  |  |
|                                             |           | Corrie    | nte salida gaseos | a (V1)                |           |            |  |  |
| $T_{l}, ^{\circ}C$                          | 49.5307   | 51.3085   | 50.9999           | 52.9948               | 51.2496   | 51.9256    |  |  |
| V <sub>1</sub> , kmol/h                     | 24.9632   | 24.1734   | 37.0689           | 39.4412               | 30.4116   | 17.7815    |  |  |
| V <sub>1,H20</sub> , kmol/h                 | 1.9213    | 1.7408    | 2.5919            | 3.0215                | 2.1902    | 1.3005     |  |  |
| Corriente salida líquido (L <sub>N</sub> )  |           |           |                   |                       |           |            |  |  |
| $T_{N}, ^{\circ}C$                          | 48.7014   | 50.4938   | 50.1344           | 51.9822               | 50.4324   | 51.1285    |  |  |
| L <sub>N</sub> , kmol/h                     | 279.7374* | 258.6526* | 289.9708*         | 331.7646*             | 281.4120* | 233.3420*  |  |  |
| L <sub>N,H20</sub> , kmol/h                 | 211.1146  | 195.1967  | 218.8303          | 250.3733              | 212.3726  | 176.0955   |  |  |

Tabla 17. Resultados de la simulación para el desorbedor.

\*L<sub>0</sub> y L<sub>N</sub> tienen en cuenta el flujo disociado del CaCl<sub>2</sub>, ver Anexo E para los resultados detallados.

Análogamente al absorbedor, la temperatura muestra el mismo comportamiento al igual que la presión y el flujo de solvente en el desorbedor, siendo Cartagena la de mayor temperatura de operación con 55.12°C y Medellín la de menor temperatura con 51.63°C.

Los requerimientos energéticos de los equipos como ventiladores (Tabla 18), bombas (Tabla 19), colector y enfriador (Tabla 20) se muestran a continuación.

|                       | Medellín | Arauca       | Buenaventura | Cartagena | Inírida | San Andrés |  |
|-----------------------|----------|--------------|--------------|-----------|---------|------------|--|
| Propiedades           |          |              | Venti        | lador 1   |         |            |  |
| THp, W                | 32.3306  | 27.2818      | 26.8302      | 26.7427   | 27.3667 | 27.2384    |  |
| ₩ <sub>neta</sub> , W | 39.4275  | 33.2705      | 32.7198      | 32.613    | 33.374  | 33.2175    |  |
|                       |          | Ventilador 2 |              |           |         |            |  |
| THp, W                | 48.4283  | 40.2315      | 61.5617      | 65.8202   | 51.0934 | 28.8787    |  |
| $\dot{W}_{neta}, W$   | 59.0589  | 49.0628      | 75.0752      | 80.2685   | 62.309  | 35.2179    |  |

Tabla 18. Resultados de la simulación para los ventiladores.

El incremento de presión en los ventiladores es de 0.035psi y las eficiencias para ambos ventiladores son de 82% para todas las ciudades. A excepción de Medellín, las potencias del ventilador 1 se mantienen en un rango similar de 32.6-33.4 W, mientras que Medellín alcanza el valor máximo de potencia de 39.43 W para el ventilador 1 y de 59.06 W para el ventilador 2.

Tabla 19. Resultados de la simulación para las bombas.

|                       | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |  |  |
|-----------------------|----------|---------|--------------|-----------|---------|------------|--|--|
| Propiedades           |          | Bomba 1 |              |           |         |            |  |  |
| THp, W                | 8.3281   | 7.7030  | 8.6358       | 9.8802    | 8.3807  | 6.9496     |  |  |
| ₩ <sub>neta</sub> , W | 11.1041  | 10.2707 | 11.5144      | 13.1736   | 11.1743 | 9.2661     |  |  |
|                       |          | Bomba 2 |              |           |         |            |  |  |
| THp, W                | 41.8685  | 38.7495 | 43.4352      | 49.7374   | 42.1579 | 34.9680    |  |  |
| $\dot{W}_{neta}, W$   | 55.8247  | 51.6660 | 57.9136      | 66.3165   | 56.2105 | 46.6240    |  |  |

El incremento de presión en la bomba 1 es de 1psi mientras que para la bomba 2 es de 5psi y las eficiencias para las dos bombas son de 75% para todas las ciudades. A excepción de San Andrés, las potencias de la bomba 1 se mantienen en un rango similar entre 10-13 W, mientras que en Cartagena se alcanza el valor máximo de potencia de 13.17 W para la bomba 1 y 66.32 W para la bomba 2. La bomba 2 se requiera mayor potencia debido que la caída de presión en el enfriador es más grande que el en colector.

La potencia eléctrica neta total requerida es la suma de las potencias individuales de cada bomba y ventilador. La Tabla 20 muestra dichos resultados,

| Propiedad             | Medellín | Arauca | Buenaventura | Cartagena | Inírida | San Andrés |
|-----------------------|----------|--------|--------------|-----------|---------|------------|
| $\dot{W}_{total}, W$  | 165.42   | 144.27 | 177.22       | 192.37    | 163.07  | 124.33     |
| $\dot{W}_{total}, kW$ | 0.1654   | 0.1443 | 0.1772       | 0.1924    | 0.1631  | 0.1243     |

Tabla 20. Consumo eléctrico neto por el sistema de aire acondicionado.

La ciudad que mayor consumo eléctrico requiere es Cartagena con 0.1924kW mientras el de menor es San Andrés con un consumo total de 0.1243kW.

La Tabla 21 muestra los resultados de las cargas térmicas de calentamiento y enfriamiento del colector y enfriador, respectivamente.

| Propiedades               | Medellín | Arauca  | Buenaventura | Cartagena | Inírida  | San Andrés |
|---------------------------|----------|---------|--------------|-----------|----------|------------|
| $\dot{Q}_{colector}, kW$  | 95.2966  | 94.1578 | 105.0835     | 127.6445  | 102.5544 | 86.5041    |
| $\dot{Q}_{enfriador}, kW$ | 92.9919  | 91.8864 | 101.6819     | 124.1707  | 99.7512  | 84.7776    |

Tabla 21. Requerimientos energéticos para el colector y el enfriador.

Tanto para el colector como el enfriador el calor requerido para calentar y enfriar es similar entre sí. Cartagena tiene mayor requerimiento debido a que es la ciudad más caliente.

Según los resultados de la simulación, la Tabla 22 muestra los datos de acondicionamiento alcanzados en el sistema planteado para cada una de las ciudades.

| Propiedades             | Medellín | Arauca | Buenaventura | Cartagena | Inírida | San Andrés |
|-------------------------|----------|--------|--------------|-----------|---------|------------|
| $T_{acond}$ , °C        | 23.37    | 23.47  | 23.47        | 23.47     | 23.47   | 23.48      |
| HR <sub>acond</sub> , % | 54.3     | 55     | 55           | 54.9      | 54.9    | 55.1       |

Tabla 22. Datos de acondicionamiento del sistema.

Se puede apreciar en la Tabla 22 que la temperatura de acondicionamiento está por encima de lo esperado, caso contrario ocurre con la humead relativa de acondicionamiento donde se alcanzan resultados menores a los esperados, pero, aun así, siguen siendo valores que se encuentra dentro de la zona de confort. Las temperaturas de acondicionamiento para todas las ciudades, excepto Medellín, están cerca de 23.47°C y la humedad relativa del 55%.

#### 8.3 Condiciones de diseño

A partir de los resultados de la simulación se presentan las condiciones de diseño para cada uno de los equipos del proceso (absorbedor, desorbedor, bombas, ventiladores, colector y enfriador) en cada ciudad.

En el caso del absorbedor las dimensiones del empaque son iguales para todas las ciudades, siendo el empaque elegido Anillo Pall de plástico de la marca Raschig con diámetro de empaque  $(D_p)$  de *1in*, un factor de empaque  $(F_p)$  de *171 m<sup>-1</sup>*, con un área específica de empaque (a) de 2.2  $cm^2/cm^3$  y fracción porosa de 0.91.

| Propiedad                  | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |
|----------------------------|----------|---------|--------------|-----------|---------|------------|
| $T_{dise 	ilde{n} o}$ , °C | 60.0751  | 61.0328 | 62.6303      | 64.6317   | 62.0342 | 59.8283    |
| P <sub>diseño</sub> , psi  | 23.5518  | 25.8699 | 26.0994      | 26.1043   | 25.8279 | 26.1043    |

Tabla 23. Condiciones de diseño para el absorbedor.

Dado que las características del empaque del absorbedor para cada una de las ciudades son las mismas, el diámetro de diseño es de 0.45m y el HETP (0.4572m) multiplicado por el número de etapas que, para este caso son 2 etapas, nos indica que la altura de empaque requerida es de 0.91m y como medida de seguridad la altura de diseño se fija en 1 m. Como es de esperar, las condiciones de diseño más altas corresponden a la ciudad con la mayor temperatura ambiental y mayor presión de operación, en este caso siendo Cartagena con 64.6°C y 24.1 psi.

En el caso de desorbedor el empaque elegido es el mismo que en el absorbedor y las dimensiones del empaque son iguales para todas las ciudades. El diámetro de empaque  $(D_p)$  es de  $1^{3/8}$  *in*, tiene un factor de empaque  $(F_p)$  de  $140 \text{ m}^{-1}$ , con un área específica de empaque (a) de  $1.6 \text{ cm}^2/\text{cm}^3$  y una fracción porosa de 0.93.

**Propiedad** Medellín Arauca **Buenaventura** Cartagena Inírida San Andrés  $T_{op}$ , °C 79.4078 81.2978 81.1678 82.8978 81.3278 81.8221 23.5518 25.8699 23.0994 26.1043 25.8279 26.1043  $P_{diseño}$ , psi

Tabla 24. Condiciones de diseño para el desorbedor.

Al igual que el absorbedor, las características del empaque del desorbedor son las mismas para todas las ciudades, dónde el diámetro de diseño es de 0.45m y la altura de diseño es de 1.3m. Se espera que las condiciones de diseño más bajas correspondan a la ciudad con la menor temperatura ambiental y presión de operación, en este caso es Medellín con 79.4°C y 23.5 psi.

Tabla 25. Condiciones de diseño para las bombas y ventiladores.

| Propiedad                 | Medellín | Arauca | Buenaventura | Cartagena | Inírida | San Andrés |  |
|---------------------------|----------|--------|--------------|-----------|---------|------------|--|
|                           |          |        | Bomba 1      |           |         |            |  |
| Pot <sub>diseño</sub> , W | 15       | 15     | 15           | 15        | 15      | 10         |  |
| Cabeza,m                  | 0.6415   | 0.6417 | 0.6418       | 0.6403    | 0.6418  | 0.6418     |  |
|                           |          |        | Bomba 2      |           |         |            |  |
| Pot <sub>diseño</sub> , W | 60       | 55     | 60           | 70        | 60      | 50         |  |
| Cabeza,m                  | 3.2316   | 3.2346 | 3.2342       | 3.2368    | 3.2345  | 3.2356     |  |
|                           | <u> </u> |        | Ventilador 1 | •         |         |            |  |
| Pot <sub>diseño</sub> , W | 40       | 35     | 35           | 35        | 35      | 35         |  |
| Ventilador 2              |          |        |              |           |         |            |  |
| Pot <sub>diseño</sub> , W | 60       | 50     | 65           | 85        | 65      | 40         |  |

84

De acuerdo con los resultados de la Tabla 25 la potencia de diseño de la bomba 1 es un valor estándar de 15W excepto para San Andrés el cual requiere una potencia de diseño menor de 10W. Para el resto de los equipos de cambio de presión la variación en el valor de diseño es más notoria, en el caso de la bomba 2 la de mayor requerimiento es Cartagena con 70W y San Andrés la menor con 50W. Para el ventilador 1 ocurre un fenómeno similar a la bomba 1, ya que para Medellín la potencia de diseño es de 40W y para el resto de las ciudades el requerimiento es menor siendo de 35W. En el caso del ventilador 2 es recurrente que Cartagena sea la ciudad con mayor requerimiento de potencia con un valor de 85W y la ciudad de San Andrés la de menor con un valor de 40W.

| Propiedad           | Medellín | Arauca   | Buenaventura | Cartagena | Inírida  | San Andrés |
|---------------------|----------|----------|--------------|-----------|----------|------------|
| <i>Q</i> , <i>W</i> | 95296.6  | 94157.8  | 105083.5     | 127644.5  | 102554.4 | 86504.1    |
| $I_T, W/m^2$        | 683.3    | 697.1    | 682.0        | 896.0     | 558.6    | 728.8      |
| A, $m^2$            | 185.9537 | 180.0943 | 205.4418     | 189.9472  | 244.79   | 158.26     |

Tabla 26. Condiciones de diseño para el colector.

Eligiendo la configuración más favorable para obtener la mayor eficiencia del colector, siendo de 75% basados en la Figura 24 para todas las ciudades dónde el colector es de placa plana, de doble vidrio antirreflector, con superficie de acero absorbente, con tubos de cobre y un cromado negro. Se puede notar en la Tabla 26 que las áreas del colector son considerablemente grandes para todas las ciudades, Inírida ocupa el área de colector más grande con 244.79 m<sup>2</sup> y San Andrés la de menor con 158.26m<sup>2</sup>.

| Propieded                    | Modellín | Arougo   | Ruenaventura | Cortogono | Inírido  | San      |
|------------------------------|----------|----------|--------------|-----------|----------|----------|
| rropieuau                    | Medenin  | Arauca   | Duenaventura | Cartagena | IIIITua  | Andrés   |
| $T_1, °F$                    | 119.67   | 122.90   | 122.25       | 152.58    | 122.79   | 124.04   |
| T <sub>2</sub> , $^{\circ}F$ | 71.60    | 71.60    | 71.60        | 71.60     | 71.60    | 71.60    |
| $t_1, ^{\circ}F$             | 51.93    | 48.70    | 49.35        | 46.02     | 48.81    | 47.56    |
| t <sub>2</sub> , °F          | 90       | 90       | 90           | 90        | 90       | 90       |
| $\dot{m}_{proceso},$ lb/h    | 13980.6  | 12926.9  | 14492.2      | 16580.9   | 14064.4  | 11661.99 |
| ṁ <sub>servicio</sub> , lb∕h | 8334.6   | 7590.3   | 8534.2       | 9630.1    | 8262.0   | 6814.3   |
| , BTU/h                      | 317318.3 | 313546.0 | 346971.4     | 423710.5  | 340383.2 | 289288.5 |
| A, $m^2$                     | 3.0289   | 2.5743   | 2.9541       | 3.0926    | 2.8059   | 2.2800   |

Tabla 27. Condiciones de diseño para el enfriador.

Para un intercambiador de calor de tubos y coraza de configuración 2-4, usando como fluido de servicio agua de enfriamiento, es posible lograr áreas pequeñas de intercambio de calor para el

acondicionamiento del enfriador. En la ciudad de Inírida es posible conseguir el área más pequeña siendo de  $2.28m^2$  y en Cartagena un área máxima de  $3.1m^2$ .

#### 8.4 Resultados del análisis de sensibilidad

#### 8.4.1 Temperatura y humedad relativa

La Figura 43 muestra la humedad absoluta de acondicionamiento en función de la temperatura ambiente y la humedad relativa ambiente en la ciudad de Medellín.



Figura 43. Temperatura vs humedad absoluta de acondicionamiento de la ciudad de Medellín.

Se puede notar de la Figura 43 que para lograr humedades absolutas de acondicionamiento más bajas se requieren temperaturas y humedades relativas ambientales menores, ya que la combinación de estas dos variables se traduce en menores contenidos de humedad en el ambiente. Valores entre el 30-70% de humedad relativa y temperaturas entre 20- 25°C se consideran dentro de la zona de confort.

La Figura 44 muestra la variación de la temperatura de acondicionamiento ( $T_{VI}$ ) en función de la temperatura y la humedad relativa ambiental en la ciudad de Medellín.



Figura 44. Temperatura del aire vs temperatura de acondicionamiento para la ciudad de Medellín.

86

El comportamiento de la temperatura de acondicionamiento en la Figura 44 es análogo a la humedad relativa de acondicionamiento, ya que se requieren bajas condiciones ambientales de temperatura y humedad relativa para alcanzar la zona de confort e incluso lograr temperaturas menores a los 23°C, valor asignado para el caso base.



Figura 45. Condiciones de acondicionamiento en la zona de confort para ciudad de Medellín.

Los resultados en conjunto de temperatura y humedad absoluta de acondicionamiento en la ciudad de Medellín se muestran en la carta psicrométrica y la zona de confort de la Figura 45.

En la Figura 46 se muestra el resultado de la potencia neta requerida de la bomba 1 en función de la temperatura y humedad relativa ambiental en la ciudad de Medellín.



Figura 46. Potencia neta requerida para la bomba 1, ciudad de Medellín.

Las potencias de las bombas y ventiladores aumentan directamente con la temperatura y humedad relativa ambiental. En la Figura 46 puede observarse que el requerimiento de la potencia de la bomba 1 para la ciudad de Medellín no varía de manera considerable manteniéndose casi en un valor de 11W. Esto ocurre de manera análoga para la bomba 2 cuyo requerimiento energético es alrededor de 55.5W a 55.8W. La potencia requerida por los ventiladores tiene un comportamiento similar variando ligeramente un poco más que las bombas, siendo para el ventilador 1 entre 36.5W y 39.5W y en el ventilador 2 entre 55W y 59W. Todos los resultados se pueden observar en el Anexo F de manera más amplia para cada una de las ciudades.

En la Figura 47 y Figura 48 se muestra, respectivamente, los resultados de las cargas térmicas para el colector y el enfriador en función de la temperatura ambiental en la ciudad de Medellín.



Figura 47. Carga térmica requerida en el colector, cuidad de Medellín.

El calor neto requerido por el colector en la Figura 47 es inverso a la temperatura y humedad relativa ambiental. Para la humedad máxima de 98% es posible alcanzar la menor cargar térmica de calentamiento (95kW) cuando se tiene la mayor temperatura ambiental de 32°C. Por el contrario, para una humedad relativa de 60% y la temperatura más baja de 22°C la carga térmica de calentamiento alcanza su punto máximo siendo de aproximadamente 103kW.



Figura 48. Carga térmica requerida en el enfriador, cuidad de Medellín.

En el caso de la carga térmica para el enfriador en la Figura 48 ocurre el fenómeno contrario al colector. Para una humedad relativa ambiental del 60% se alcanza el punto mínimo de carga de enfriamiento (82.1kW) con una temperatura de 22°C, mientras que para la humedad relativa ambiental de 98% se tiene el punto máximo de carga de enfriamiento posible (93kW) a una temperatura máxima de 32°C.

# 8.4.2 Temperatura, flujo y fracción másica de solvente.

La Figura 49 muestra la variación de la humedad absoluta respecto a la temperatura y flujo del solvente y la línea de humedad absoluta máxima en la zona de confort en la ciudad de Medellín.



Figura 49. Humedad absoluta de acondicionamiento en función de la temperatura y flujo del solvente de Medellín.

En la Figura 49 la humedad relativa de acondicionamiento varia de manera directa con la temperatura de solvente, pero es inversa al flujo de solvente. Para el flujo mínimo de 50 kmol/h a una temperatura de 15°C, es posible alcanzar un contenido de humedad de 0.014  $kg_v/kg_{as}$  mientras que a una temperatura de 30°C alcanzar un valor de 0.023  $kg_v/kg_{as}$  y de manera análoga para cada uno de los flujos mostrados en al grafica.

La Figura 50 muestra la variación de la temperatura de acondicionamiento con respecto a la temperatura y flujo del solvente y las líneas de temperatura máxima y mínima en la zona de confort en la ciudad de Medellín.





En la Figura 50 para la temperatura de acondicionamiento respecto al flujo y la temperatura del solvente tiene un comportamiento análogo a la Figura 49 en donde a mayor flujo de solvente menor temperatura de acondicionamiento mientras que a mayor temperatura de solvente, mayor es la temperatura de acondicionamiento.

La Figura 51 muestra la variación de la potencia neta requerida de la bomba 1 con respecto a la temperatura y flujo del solvente en la ciudad de Medellín.



Figura 51. Potencia neta requerida de la bomba 1, ciudad de Medellín.

En la Figura 51 para un flujo de solvente constante, se observa que la potencia requerida por la bomba 1 no depende de la temperatura del solvente. A mayor cantidad de flujo mayor será la potencia neta requerida siendo el máximo alcanzado (11.9W) con 300 kmol/h. La bomba 2 presenta un comportamiento igual, pero para un flujo de 50kmol/h la potencia neta requerida es mínima (10W) y para 300kmol/h será máxima (60W).

La Figura 52 muestra la variación de la carga térmica del colector con respecto a la temperatura y flujo del solvente en la ciudad de Medellín.



Figura 52. Carga térmica del colector, ciudad de Medellín

En la Figura 52 la carga térmica del colector aumenta con el incremento del flujo del solvente, pero disminuye con el aumento de temperatura. En el enfriador ocurre un fenómeno similar para la carga térmica de enfriamiento respecto a la temperatura y flujo de solvente. En ambos casos, para un flujo de 50 kmol/h y una temperatura de 30°C se alcanza un valor mínimo de 10kW y para un flujo de 300kmol/h y 15°C se alcanza un valor máximo de 125kW.

La Figura 53 muestra la variación de la humedad absoluta de acondicionamiento con respecto a la fracción másica de CaCl<sub>2</sub> para todas las ciudades analizadas.





La Figura 53 muestra que todas las ciudades excepto Medellín tienen un valor igual de humedad absoluta de acondicionamiento la cual disminuye con el aumento de la fracción másica de CaCl<sub>2</sub>. Para Medellín una fracción de 0.4 equivale a una humedad de 0.012  $kg_v/kg_{as}$  y para el resto de las ciudades la misma fracción equivale a una humedad de 0.010  $kg_v/kg_{as}$ .



Figura 54. Temperatura de acondicionamiento en función de la fracción másica de CaCl<sub>2</sub>.

La Figura 54 muestra que la temperatura de acondicionamiento no varía de manera considerable con la fracción másica del CaCl<sub>2</sub>, encontrándose este valor entre 23.2°C y 23.8°C. La temperatura de acondicionamiento alcanza un valor mayor en la ciudad de Arauca mientras que Medellín alcanza valores más bajos que cualquier otra ciudad.



Figura 55. Potencia neta requerida por la bomba 1 en función de la fracción másica de CaCl<sub>2</sub>.

Para cada ciudad en la Figura 55 la potencia no representa un cambio significativo debido a la variación en la fracción másica y solo se nota un cambio a partir de fracciones mayores a 0.4. San Andrés posee los valores menores de potencia alcanzando un mínimo de 9W y Cartagena el de mayor potencia neta requerida siendo de 13.2W aproximadamente. Para la bomba 2 sucede de manera similar, pero con requerimientos mayores entre 45W hasta los 65.5W.



Figura 56. Carga térmica requerida por el colector en función de la fracción másica de CaCl<sub>2</sub>.

La carga térmica en el colector para todas las ciudades disminuye con respecto al aumento de la fracción másica de CaCl<sub>2</sub> como se aprecia en la Figura 56. Buenaventura requiere menor

carga térmica a una fracción de 0.56 y Cartagena la mayor a una fracción de 0.09. Para el enfriador la carga térmica tiene un comportamiento similar en cada una de las ciudades, para Buenaventura en la fracción de 0.56 requiere una carga de enfriamiento de 75kW mientras que para Cartagena a 0.09 requiere 140kW.

## 8.4.3. Diámetro y altura del absorbedor y desorbedor

La Figura 57 muestra la variación de la humedad absoluta de acondicionamiento con respecto al cambio del diámetro y la altura del empaque en el absorbedor en ciudad de Medellín. Para el desorbedor no hay cambio en esta variable con respecto a estos dos parámetros.





La Figura 57 muestra que a medida que aumenta el diámetro aumenta la humedad absoluta de acondicionamiento y, después de aproximadamente 0.36m de diámetro, la humedad se mantiene relativamente constante. También se aprecia que al aumentar el HETP disminuye la humedad absoluta de acondicionamiento. El análisis anterior para la temperatura de acondicionamiento es análogo respecto al diámetro y HETP y el rango de variación esta entre 22.4°C y 24.6°C. Para el desorbedor no se presentan cambios en la humedad relativa y temperatura de acondicionamiento debido al diámetro y HETP.

La Figura 58 muestra la potencia neta requerida por la bomba 1 con respecto al cambio del diámetro y la altura del empaque del absorbedor en la ciudad de Medellín. Para las variables en el desorbedor no hay cambo en la bomba 1.



Figura 58. Potencia neta requerida en la bomba 1 en función del diámetro y HETP del absorbedor, en Medellín.

La variación de las potencias requeridas en las bombas disminuye con el aumento del diámetro hasta 0.36m y luego se mantiene constante, pero aumenta con el incremento del HETP del absorbedor. Aunque dicha variación es casi nula, como se aprecia en la Figura 58, dónde la bomba 1 se mantiene en un valor de 11.1W. Para la bomba 2 el comportamiento de la gráfica es homologo al de la bomba 1 y la potencia requerida es 55.8W para la ciudad de Medellín.

La Figura 59 muestra el cambio de la potencia requerida de la bomba 2 en función de las variables en el desorbedor.



Figura 59. Potencia neta requerida en la bomba 2 en función del diámetro y HETP del desorbedor, en Medellín.

Respecto al diámetro entre 0.32-0.4m la potencia requerida aumenta, para los demás valores de diámetros se mantiene constante. Respecto al aumento de HETP la potencia disminuye. Las variaciones no son muy significativas y la potencia se mantienen en 55.8W para Medellín.

La Figura 60 y Figura 61 muestran, respectivamente, la carga térmica requerida por el colector y el enfriador con respecto al cambio del diámetro y la altura del empaque del absorbedor en la ciudad de Medellín. Para el colector no hay cambio en la carga térmica con respecto a estos dos parámetros en el desorbedor, mientras que la Figura 62 muestra la carga térmica requerida por el enfriador, en la ciudad de Medellín.





La carga térmica del colector disminuye con el aumento del HETP y aumenta con el diámetro del absorbedor como se observa en la Figura 60. Para un HETP de 0.2m y un diámetro de 0.5m, la carga térmica es máxima con 96.2kW.



Figura 61. Carga térmica del enfriador en función del diámetro y HETP del absorbedor, ciudad de Medellín.

La carga térmica del enfriador es menor con la disminución HETP y con el incremento del diámetro del absorbedor como muestra la Figura 61. Para un HETP de 0.2m y un diámetro del absorbedor de 0.5m, la carga térmica mínima es de 92.9kW.





La carga térmica del enfriador disminuye con el aumento del HETP y aumenta con el incremento del diámetro del desorbedor como se observa en la Figura 62. Respecto al diámetro entre 0.32-0.4m la carga térmica aumenta considerablemente mientras que para los otros diámetros se comporta de manera constante. Para un HETP de 0.2m y un diámetro de 0.5m, la carga térmica es máximo con 95kW.

En esta sección se presentaron los resultados obtenidos en el desarrollo del trabajo.

# 9. DISCUSIÓN

A continuación, se discutirán los principales resultados presentados en el trabajo de acuerdo con lo obtenido en la sección 8. En este apartado, se analiza el acondicionamiento del espacio y las condiciones logradas en este, se discute si el desorbedor cumple o no con los requisitos para la recuperación del solvente en el ciclo, se habla sobre las potencias netas requeridas por los equipos, las cargas terminas, las diferencias y ventajas del sistema de aire acondicionado por absorción frente al sistema tradicional, se discuten las condiciones de diseño alcanzadas por los distintos equipos y cómo se comportan los análisis de sensibilidad frente a las variables más importantes.

#### 9.1 Acondicionamiento del aire y recuperación de solvente basado en la simulación

En primer lugar, se analiza si fue posible alcanzar la temperatura y el flujo de agua en la corriente de aire requeridos para el acondicionamiento del espacio en el absorbedor. Según la Tabla 11 por la psicometría de Medellín para obtener una temperatura de 23°C con un 60% de humedad relativa el flujo de agua en la corriente de aire requerido es de 0.3096 kmol/h. Según los resultados del método short-cut presentados en el Anexo C, para Medellín, se alcanza una temperatura menor a la requerida siendo esta de 22.66°C, pero no se alcanza la separación deseada obteniendo simplemente un flujo de agua de 0.4533 kmol/h que corresponde a una humedad relativa de acondicionamiento de 88%. Dado que en el short cut no se tienen en cuenta parámetros como diámetro, altura y características de empaque, no es posible llegar a la separación deseada con los datos inicialmente planteados. Introduciendo estas características a la simulación, las cuales están descritas en la sección 8.3, se logra llegar a un estado aceptable de acondicionamiento obteniendo una temperatura de 23.37°C que es un poco mayor a lo requerido con un flujo de 0.2962 kmol/h, siendo menor a lo esperado según la psicrometría. Lo anterior es positivo ya que al ubicar estos resultados en la zona de confort se obtiene una humedad relativa de acondicionamiento de 54.3% lo que nos indica que con las condiciones iniciales de entrada es posible adecuar el espacio de manera satisfactoria. Estos resultados son similares para las demás ciudades, alcanzando una temperatura y humedad relativa de acondicionamiento de 23.47°C y 55% como se observa en la Tabla 22.

En segundo lugar, se analiza si el desorbedor cumple con los requisitos de flujo de líquido a la salida ( $L_N$ ) el cual es fundamental a la hora de determinar si se logra recuperar el solvente. Se tiene en cuenta que el CaCl<sub>2</sub> es un compuesto que siempre estará en la corriente líquida ya que no se absorbe ni se desorbe durante el proceso, por lo cual el flujo de H<sub>2</sub>O en la corriente L<sub>N</sub> del desorbedor debe ser el mismo que el que ingrese a la corriente L<sub>0</sub> del absorbedor. De acuerdo con los resultados de la simulación del desorbedor en la Tabla 17 se tiene un flujo total de líquido de 279.7374 kmol/h y un flujo de H<sub>2</sub>O de 211.1146 kmol/h para la ciudad de Medellín que, comparado con los resultados de la Tabla 16 correspondiente al absorbedor, no presentan diferencia, es decir, se tiene que el flujo de solvente a la entrada del absorbedor (L<sub>0</sub>) es 279.7375 kmol/h y el flujo de H<sub>2</sub>O es 211.1148 kmol/h, esto es de esperar ya que para poder simular el sistema cerrado se sigue el proceso iterativo donde se determina el flujo fresco alimentado al proceso y además se deben tener en cuenta algunas pequeñas trazas de aire que son desorbidos. Por otro lado, cuando se analiza energética y másicamente dichas corrientes, estas son iguales entre sí cumpliéndose el balance de masa, dónde la fracción másica del H<sub>2</sub>O es 0.6, la del CaCl<sub>2</sub> es 0.4 y las trazas de las impurezas desorbidas el aire (N<sub>2</sub>,O<sub>2</sub>,CO<sub>2</sub>,Ar) no afectan la separación. Estos resultados se pueden observar con mayor detalle en el Anexo E y dicho análisis aplica de manera análoga para las demás ciudades.

Puesto que la condición de entrada del solvente líquido al absorbedor tiene una temperatura fija de 22°C, la condición de temperatura de operación en el absorbedor va a estar únicamente dada por la temperatura de entrada de aire al equipo ( $T_{N+1}$ ). Aunque las condiciones de temperatura en las ciudades son distintas, se puede determinar un rango de operación de este equipo el cual puede ser estandarizado entre 32-37°C como temperatura y presiones entre 0.8-1.03atm de operación máximas, con el fin de implementar este equipo no solo con las condiciones de las ciudades seleccionadas sino para cualquier otra zona climática del territorio colombiano. Lo anterior se puede realizar de manera similar para el desorbedor, donde las condiciones máximas de operación son 51-56°C y 0.8-1.03atm.

# 9.2 Requerimientos energéticos basados en la simulación

Las potencias netas requeridas por las bombas y los ventiladores representan el gasto eléctrico del sistema de aire acondicionado por absorción, las cuales son fundamentales ya que el objetivo del trabajo es disminuir el requerimiento energético que necesitan los sistemas de aire acondicionado tradicionales. El ventilador 1 tiene la función de mover el fujo de aire a tratar en el proceso de acondicionamiento mientras que el ventilador 2 es el encargado de suministrar el flujo de aire requerido para la recuperación del solvente en el desorbedor, en el caso de la ciudad de Medellín, los flujos molares son 16.2425kmol/h y 24.3298kmol/h, respectivamente. Tanto el absorbedor como el desorbedor operan a la misma presión por lo cual ambos ventiladores poseen

el mismo incremento de presión (0.035psi) en las corrientes, por ende, la diferencia en la potencia radica principalmente en la cantidad de flujo que mueven estos equipos y es de esperar que para el ventilador 2 demande mayor potencia ya que el flujo de aire requerido es mayor en el desorbedor (24.3298kmol/h). Las interacciones energéticas de la oficina mostradas en la Tabla 12, indican que Medellín es la ciudad con mayor flujo de aire requerido a tratar por lo tanto la potencia neta del ventilador 1 será mayor (39.43W) que en el resto de las ciudades. Por el contrario, en el ventilador 2 la carga de Cartagena es la mayor (80.87W) debido a que el flujo ya no depende de las interacciones energéticas sino del flujo requerido para la separación del solvente que a su vez depende de la temperatura de operación del equipo que, para Cartagena es de 55.12°C con un flujo aire de operación de 38.6797kmol/h.

La bomba 1 se encarga de mover el líquido de la salida del absorbedor pasando por el colector y desembocando en el tope del desorbedor la cual debe suplir una caída de presión de 1 psi en el colector; la bomba 2 se encarga de llevar el líquido a la salida del desorbedor pasando por el enfriador y terminado en el tope de la torre de absorción supliendo la caída de presión de 5psi en el enfriador. Puesto que la caída de presión en el colector es menor que en el enfriador, la potencia neta requerida por la bomba 2 será mayor. En el caso de Medellín, el flujo de salida tanto del absorbedor como en el desorbedor no difiere mucho ya que la cantidad de agua que se absorbe y desorbe es mínima, el flujo de salida ( $L_N$ ) del absorbedor tiene un valor de 280.3708kmol/h mientras que el valor del desorbedor es 279.7374kmol/h. La potencia neta requerida por la bomba 2 será mayo 1, para Medellín es de 55.82W y 11.10W respectivamente. Lo anterior nos confirma que la potencia de las bombas está condicionada a la caída de presión en el colector y el enfriador y no al flujo de trabajo.

La potencia neta requerida por el sistema de absorción debido a los ventiladores y bombas depende de la condición de temperatura ambiental de cada ciudad porque a mayor temperatura, mayor es el gasto eléctrico requerido, tal como se observa en la Figura 46 para la bomba 1, y para los demás equipos en el Anexo F. La ciudad más calurosa es Cartagena con una temperatura de 36.6°C y el sistema necesita una potencia de 0.1924kW para operar mientras que en el caso de Medellín es de 0.1654kW al presentarse una temperatura de 32°C.

El sistema de aire acondicionado tradicional, dependiendo de la capacidad de enfriamiento que posea, puede tener un requerimiento eléctrico entre 1.24-3.6kW para sistemas que funcionan con una tensión de 220V y una frecuencia de 50Hz [14]. La mayor parte de consumo energético de

estos aires acondicionados es debido al sistema de compresión del refrigerante. Se puede notar, entre el sistema de acondicionamiento tradicional y el sistema por absorción del caso base, un ahorro energético considerable para este último sistema. Para una comparación más precisa de la potencia eléctrica se realiza un cálculo de los requerimientos energéticos del sistema de aire acondicionado tradicional en base a la carga de flujo de aire seco en cada una de las zonas climáticas y se determina la potencia requerida por el compresor para el refrigerante. Según los resultados del cálculo reportado en el Anexo C, la potencia requerida en el compresor del sistema de aire acondicionado tradicional utilizando refrigerante 134a se muestra en la Tabla 28 junto con el cálculo de la diferencia relativa de las potencias totales requeridas por el sistema de aire acondicionado por absorción indicadas en la Tabla 20.

| Propiedad            | Medellín | Arauca | Buenaventura | Cartagena | Inírida | San Andrés |
|----------------------|----------|--------|--------------|-----------|---------|------------|
| $\dot{W}_{comp}, kW$ | 1.6088   | 1.5500 | 1.7341       | 1.9786    | 1.6841  | 1.4007     |
| Diferencia, %        | 89.72    | 90.69  | 89.78        | 90.28     | 90.31   | 91.13      |

Tabla 28. Potencia neta requerida por el compresor y diferencia con el sistema tradicional.

Como se observa en la Tabla 28 hay una diferencia sustancial entre la potencia en el compresor del sistema tradicional y la potencia total en el sistema de absorción alcanzándose un ahorro energético entre el 89-91% para todas las ciudades; es de resaltar que esto solo contempla el requerimiento en el compresor pero los sistemas de aire acondicionado tradicional poseen sistemas de ventilación que permiten el flujo de aire y estos también representan un gasto eléctrico que pueden elevar el consumo total de energía. La principal razón de este fenómeno es el cambio en el fluido de trabajo que, en el caso del sistema tradicional es un gas y para el de absorción es un líquido. Basados en la mecánica de fluidos y partiendo del balance de energía para un sistema en estado estacionario se cumple la siguiente igualdad [44].

$$W = H_1 - H_2 = \frac{P_1}{\rho_1} - \frac{P_2}{\rho_2} + g(z_1 - z_2) + \frac{v_1^2 - v_2^2}{2}$$
 Ecuación 56

Suponiendo que el efecto en los cambios de energía cinética y potencial son despreciables en la Ecuación 56, el trabajo realizado por un equipo de cambio de presión está inversamente relacionado con la densidad del fluido y, debido a que los fluidos gaseosos poseen menor densidad que los líquidos, los trabajos de compresión son mayores en este caso. Además, en el proceso de compresión del sistema tradicional el gas se lleva a un estado de sobrecalentamiento, así el cambio de temperatura produce una diminución en la densidad del fluido, por lo cual una de las desventajas del sistema tradicional es que la compresión genera un aumento de temperatura significativo lo que provoca la disminución en la densidad aumentando el trabajo de compresión. Lo anterior no ocurre cuando se trabaja con líquidos ya que por lo general en el bombeo de dicho fluido no hay cambios significativos de temperatura y por ende la densidad se puede considerar constante y además al ser mayor la densidad de un líquido que para un gas, el trabajo realizado por la bomba es mucho menor como se evidencia en los resultados de la Tabla 28.

Este ahorro energético se ve reflejado principalmente en los gastos monetarios eléctricos debido al uso del aire acondicionado. Para una oficina ubicada en la ciudad de Medellín, el costo de la tarifa de energía para el sector industrial y comercial es de 669.36COP/kWh [45] y, suponiendo que el horario laboral es de 8 horas diarias, el costo mensual en COP (pesos colombianos) para los distintos sistemas de aire acondicionado son:

$$Costo_{tradicional} = 1.6088kW * \frac{8h}{dia} * \frac{26dias}{mes} * 669.36 \frac{COP}{kWh} = 223288.2 \frac{COP}{mes}$$
$$Costo_{absorción} = 0.1654kW * \frac{8h}{dia} * \frac{26dias}{mes} * 669.36 \frac{COP}{kWh} = 23028.1 \frac{COP}{mes}$$

De los cálculos anteriores el ahorro que se puede alcanzar utilizando el aire acondicionado por absorción es de 200260COP al mes, lo que significa un 89.7% de ahorro monetario debido al gasto eléctrico frente al sistema tradicional.

Las cargas térmicas requeridas por el colector y el enfriador dependen de las temperaturas de acondicionamiento de las ciudades, las cuales no varían significativamente entre ellas, además, la dependencia de la carga térmica de calentamiento o enfriamiento también está ligada a la carga de flujo con la que opere el equipo. En el caso de las temperaturas del líquido en el colector a la entrada y a la salida, en Medellín son 24.48°C y 51.63°C mientras que en Cartagena son 24.55°C y 55.12°C, respectivamente (Anexo C) y se puede notar que la diferencia entre las temperaturas mayores no supera los 4°C; por otro lado, las cargas de flujo de líquido para Medellín y Cartagena son de 1.76 y 2.1kg/h respectivamente, así es de esperar que Cartagena sea la ciudad con mayor requerimiento energético en el colector. Este mismo análisis aplica para el enfriador donde la diferencia principal radica en la temperatura de entrada a este equipo, siendo para Medellín de 48.7°C y Cartagena de 52°C, además la temperatura de salida del enfriador se fija en 22°C para todas las ciudades y, en cuanto al flujo es aproximadamente igual al trabajado en el colector. Por lo anterior, Cartagena es la ciudad con mayores requerimientos energéticos de calentamiento y enfriamiento como se observa en la Tabla 21.

Un símil entre el colector y enfriador del sistema por absorción frente al de acondicionamiento tradicional corresponde al evaporador y al condensador ya que dichos equipos acondicionan las corrientes del ciclo. Nuevamente para comparar estos valores con la misma carga de flujo de aire en cada ciudad se calculan los requerimientos energéticos del evaporador y condensador como se muestra en el Anexo C y se evalúa la diferencia relativa frente al colector y enfriador respectivamente.

| Propiedad                   | Medellín | Arauca | Buenaventura | Cartagena | Inírida | San Andrés |
|-----------------------------|----------|--------|--------------|-----------|---------|------------|
| $\dot{Q}_{evaporador}, kW$  | 8.1620   | 7.8640 | 8.7980       | 10.0385   | 8.5441  | 7.1064     |
| Dif.colector, %             | -91.43   | -91.65 | -91.63       | -92.13    | -91.67  | -91.78     |
| $\dot{Q}_{condensador}, kW$ | 9.3686   | 9.0265 | 10.0985      | 11.5224   | 9.8072  | 8.1569     |
| Dif.enfriador, %            | -89.92   | -90.18 | -90.07       | -90.72    | -90.17  | -90.38     |

Tabla 29. Cargas térmicas del sistema tradicional y diferencias respecto al de absorción.

Una de las principales desventajas del sistema de aire acondicionado por absorción es que las cargas térmicas del colector y enfriador son mucho mayores que en el sistema tradicional como se muestra en la Tabla 29. Lo anterior ocurre debido a que el sistema tradicional trabaja con un refrigerante gaseoso que, para el caso de R-134a a una referencia de 25°C, su capacidad calorífica es mucho menor siendo 0.85kJ/kg.K [46] mientras que en el caso del sistema por absorción se usa es un solvente líquido, en este caso CaCl<sub>2</sub> en solución el cual, a una composición de 40% en peso y 25°C de referencia, posee una capacidad calorífica de 2.43kJ/kg.K [20]. Como el refrigerante gaseoso tiene una capacidad calorífica menor, el calor requerido para acondicionar la temperatura de la corriente también será menor. Otra desventaja frente al calor del colector es que el evaporador utiliza el calor de la corriente del aire a acondicionar para elevar la temperatura del refrigerante mientras que el equipo de calentamiento del sistema por absorción es un dispositivo que requiere utilidad de calentamiento ya sea por una corriente de servicio o alguna fuente externa de calor como se analiza en este trabajo siendo un colector solar; a su vez el enfriador también requiere una corriente de servicio que supla la utilidad de enfriamiento. Al ser la capacidad calorífica función de la temperatura y, como en las corrientes de proceso Cartagena tiene las temperaturas más elevadas, es de esperar que esta sea la ciudad que requiera mayor carga térmica de calentamiento y enfriamiento tanto en el sistema de aire acondicionado por absorción como el tradicional, como se observa en la Tabla 21 y la Tabla 29, respectivamente.

# 9.3 Características del diseño

Después de determinar las condiciones de diseño para cada uno de los equipos, el principal obstáculo que se tiene a la hora de construirlos se encuentra en el colector solar. Basados en las características del colector seleccionado, al tener una carga térmica de calentamiento tan alta, las áreas requeridas por el colector de placa plana son tan grandes que la superficie de construcción no es factible para utilizarla como dispositivo de calentamiento ya que incluso su área supera en gran proporción al de la oficina en el caso base. El principal problema radica en que los flujos de líquido tratados en el sistema son mayores que los implementados normalmente en aplicaciones de calentamiento con colectores solares de placa plana y, además los principales objetivos de estudio realizados en este campo son para aplicaciones en calentamiento de agua y no para sales en solución. Otra dificultad a la hora de construir el colector son las irradiancias que se presentan en cada ciudad, ya que al transcurrir el día estas pueden variar y afectar el rendimiento del colector solar. Las características de diseño de los otros equipos son más factibles de implementar como en el caso de las torres de absorción y desorción que no superan 1m de altura ni diámetros mayores a 0.45m lo que las convierte en equipos compactos y fáciles de implementar en cualquiera ciudad, también al no trabajar con sustancias químicas que representan un alto grado de corrosión se pueden implementar materiales que no representan un gasto elevado como acero inoxidable e incluso se puede optar por materiales como el PVC. En el caso de las bombas y ventiladores, los valores comerciales se encuentran en un rango bajo, económico y accesible respecto a un compresor tradicional. Las áreas del enfriador son tan pequeñas que, con un análisis al detalle de la longitud y del diámetro, se puede lograr construir de un tamaño compacto a la hora de implementarlo.

# 9.4 Variación de la temperatura y humedad relativa ambiental

La Figura 43 muestra que a mayor temperatura ambiental la humedad absoluta de acondicionamiento aumenta por lo cual la separación en el absorbedor es menor. Con respecto a la humedad relativa, mientras esta sea menor, se pueden alcanzar valores más bajos de humedad absoluta de acondicionamiento lo que implica que se alcance una mayor separación en el absorbedor. Esto indica que las condiciones de operación del equipo de absorción son versátiles y pueden utilizarse para un amplio rango de condiciones de temperatura y humedad relativa ambiental.

En la Figura 44 se puede observar que, a pesar de tener un amplio rango de temperaturas y distintas humedades relativas ambientales, las temperaturas de acondicionamiento siempre están en el rango de la zona de confort, es decir, nunca excede los 25°C ni está por debajo de 20°C lo cual es una ventaja debido a que es posible operar el sistema en distintas condiciones climáticas a lo largo del día en la ciudad de Medellín. Lo anterior ocurre también para el análisis de las demás ciudades y sus gráficas se pueden observar en el Anexo F.

En la Figura 45 se puede observar, de manera combinada, la temperatura y humedad relativa de acondicionamiento donde, para una humedad relativa en el ambiente a distintas condiciones de temperatura, se logra alcanzar un punto dentro de la zona de confort que se encuentra entre los 22-23.5°C y humedades relativas entre 50-60%. Lo anterior, comprueba que el absorbedor tiene un amplio rango de operación usando las mismas variables iniciales para distintas condiciones climáticas. El mismo análisis se obtiene para las demás ciudades.

La potencia neta requerida por las bombas es mayor cuando la temperatura y la humedad relativa en el ambiente aumentan, aunque desde el punto de vista práctico, el cambio de la potencia no tiene una variación significativa como se observa en el Figura 46 para la bomba 1. Lo anterior también es una ventaja a la hora de optar por una bomba ya que se puede seleccionar con una potencia estándar la cual se puede utilizar para distintas condiciones climáticas del ambiente.

El requerimiento de la potencia de los ventiladores es directamente proporcional al aumento de la temperatura y humedad relativa ambiental (Anexo F). A diferencia de la potencia requerida por las bombas, la variación de ésta es más considerable, por lo cual al momento de seleccionar un ventilador se debe tener muy en cuenta para cuales condiciones de acondicionamiento aplicaría o elegir un ventilador que abarque todas las condiciones posibles.

Las cargas térmicas del colector respecto a las condiciones ambientales son inversamente proporcionales, es decir, a temperatura y humedades relativas ambientales mayores, la carga térmica requerida es menor, lo cual se puede ver en la Figura 47. Lo anterior es de esperar ya que, cuando se tienen mayores temperaturas ambientales, la temperatura de operación del absorbedor es mayor al igual que la temperatura de salida de líquido (T<sub>N</sub>) por lo cual el colector requiere menor utilidad de calentamiento. Caso contrario ocurre con los requerimientos del enfriador como se aprecia en la Figura 48 donde, la carga térmica requerida aumenta a mayores temperaturas y humedades relativas ambientales, pero no está tan relacionado a la temperatura ambiental, sino que guarda mayor relación con el flujo de vapor en el proceso debido a que a menores humedades

relativas en el ambiente, la cantidad de agua absorbida y, por ende, la cantidad de líquido dentro del proceso de recuperación del solvente, serán menores. Como el flujo de líquido disminuye la carga térmica requerida también disminuirá.

El hecho de que la carga térmica requerida por el colector aumente mientras que la del enfriador disminuya puede ser una dificultad a la hora de implementar los sistemas de calentamiento y enfriamiento, ya que su comportamiento, al ser de manera inversa respecto a estas dos variables a distintas condiciones, puede beneficiar a un equipo, pero perjudicar a otro. Lo anterior se traduce en las áreas del colector y enfriador, es decir, mientras que, a condiciones ambientales altas, la carga térmica del colector disminuye y su área también, el enfriador aumentará su área neta requerida.

## 9.5 Variación de la temperatura, flujo y fracción másica del solvente

La humedad absoluta de acondicionamiento aumenta directamente con la temperatura del solvente y disminuye a mayor cantidad de flujo del solvente, como se observa en la Figura 49. Además, a medida que va aumentando el flujo, la diferencia en el valor de la humedad relativa de acondicionamiento disminuye hasta llegar a un punto en el cual no varía con el aumento de la cantidad de solvente. El rango de operación de temperatura de solvente del flujo de 50kmol/h solo va hasta 20.5°C que es menor que la condición planteada en el caso base de 22°C, por lo cual no es recomendado utilizar este flujo a mayores temperaturas debido a que supera el límite de humedad absoluta de acondicionamiento señalado en la Figura 49. Por otro lado, para flujos mayores de 100kmol/h las temperaturas de trabajo del solvente pueden llegar hasta 28.5°C y aun así sigue cumpliendo con dicho límite. Por ejemplo, para el caso base, se tiene un flujo de solvente de 279.7376kmol/h y en la Figura 49 se observa que es un valor muy próximo entre 250-300mol/h contemplando la posibilidad de disminuir el flujo ya que, para el mismo rango de temperatura, el valor de la humedad relativa de acondicionamiento es similar entre estos tres flujos, incluso se podría disminuir hasta 100kmol/h ya que los valores de humedad se encuentran aún en la zona de confort al menos hasta los 25°C y al estar disminuyendo el flujo a más de la mitad, las áreas de colector y enfriador disminuirían en esta misma proporción y se podría considerar más factible el uso del colector de placa plana inicialmente contemplado.

De la Figura 50 se puede confirmar que es posible disminuir el flujo sin afectar la temperatura de acondicionamiento. Para un flujo de 50 kmol/h donde solo se puede operar a una temperatura máxima de 16.8°C la temperatura de condicionamiento no sería óptima. Si se

considera disminuir el flujo a 100kmol/h, para alcanzar la temperatura de acondicionamiento de 23°C, se debería también considerar disminuir la temperatura del solvente al menos hasta 19°C. Si el requerimiento no es de 23°C, el rango de operación para este mismo flujo no puede exceder los 21°C de temperatura de solvente, por lo cual se considera mejor utilizar un flujo de 150kmol/h ya que puede ampliar el rango de operación hasta los 22.5°C sin exceder la temperatura de acondicionamiento máxima.

Puesto que en la Figura 51 se observa que la potencia no depende de la variación de la temperatura de entrada del solvente, nuevamente se confirma que es posible disminuir el flujo de solvente para obtener menores requerimientos de potencia en las bombas, considerando incluso disminuirlo hasta la mitad de su valor inicial. Partiendo del flujo de 279.7376kmol/h a 22°C se tienen una potencia de 11.1W para la bomba 1 y disminuyéndolo hasta un flujo de 100kmol/h en cualquiera de las condiciones de temperatura de solvente, su nuevo requerimiento de potencia disminuye hasta los 4W, lo que representa un ahorro energético y económico. Lo anterior aplica también para las condiciones de la bomba 2 y las bombas de las demás zonas climáticas seleccionadas como lo muestran los resultados del Anexo F.

Respecto a la condición térmica observada en la Figura 52 para el colector y lo reportado en el Anexo F para el enfriador, disminuir el flujo de solvente sigue siendo recomendable debido a que reducirá considerablemente las cargas térmicas en dichos equipos. En cuanto a las temperaturas del solvente, el efecto sobre la carga térmica es más notorio para flujos más grandes que para flujos más pequeños. Por ejemplo, para un flujo de solvente de 100kmol/h, la carga térmica del colector y el enfriador disminuye a más de la mitad teniendo en cuenta la misma condición de temperatura de solvente de 22°C, en el caso del colector pasa de 95.3kW hasta 30kW con la diminución del solvente. Al disminuir las cargas térmicas, disminuye en gran parte el área del colector y se podría considerar implementar, en ciudades con irradiación más alta, colectores de placa plana más compactos. Lo anterior aplica también para el enfriador y las demás ciudades mostrados en el Anexo F.

La Figura 53 indica que un aumento en la fracción másica de CaCl<sub>2</sub> disminuye la humedad absoluta de acondicionamiento, lo anterior debido a que mayor cantidad de CaCl<sub>2</sub> la corriente tendrá mayor capacidad absorbente. Teniendo en cuenta el diagrama de equilibrio sólido-líquido del CaCl<sub>2</sub> en solución, trabajar con fracciones másicas mayores del 45% puede acarrear la formación de sales hidratadas. En el caso de Medellín la humedad absoluta de acondicionamiento

es de 0.0125  $kg_{y}/kg_{as}$  por lo cual trabajar con fracciones másicas por debajo de 40% de CaCl<sub>2</sub> no es conveniente, lo mismo aplicaría para el resto de las ciudades. De la Figura 54, la variación de temperatura de acondicionamiento no es muy considerable frente a cambios en la concentración de la solución absorbente, manteniéndose entre 23.2°C y 23.4°C en el caso de Medellín y, dado el caso que se requiera disminuir la concentración para ahorrar absorbente, la fracción másica no es una variable para tener en cuenta debido a que la temperatura de acondicionamiento siempre estará en la zona de confort. Respecto a la variación de las potencias de las bombas, no hay un cambio significativo como se observa en la Figura 55, debido a que a la hora de seleccionar las potencias de diseño la disminución o aumento de la concentración de CaCl<sub>2</sub> en cualquiera de los valores tendrá la misma potencia, por ejemplo, en el caso de Medellín la bomba 1 requiere una potencia de 15W; de igual manera ocurre para la bomba 2 y las bombas de las demás ciudades como se puede observar en el Anexo F. Para el colector, de la Figura 56, el efecto de la disminución de la fracción másica si representa un cambio drástico aumentando la carga térmica del colector al igual que en el enfriador (Figura 56 y Anexo F) y utilizando valores altos de fracción másica de CaCl<sub>2</sub> se pueden lograr disminuir las cargas térmicas requeridas por estos equipos pero el problema radica, como ya se mencionó, en que a mayores fracciones másicas la posibilidad de formación de sales es más alta lo que puede provocar formación de sólidos obstruyendo algunos equipos y afectando la operación en las torres de absorción y desorción.

# 9.6 Variación del diámetro y altura de empaque

El efecto de utilizar mayores diámetros de empaque no es considerable a partir de los 0.36m como se muestra en la Figura 57 para el absorbedor, ya que el contenido de humedad no varía significativamente por lo cual el diámetro se podría fijar en este valor y podría seguir operando a distintas condiciones. Por el contrario, para la altura de empaque siempre es más favorable utilizar valores mayores de HETP, pero nunca excederse de 0.5m porque las diferencias entre una altura y otra empieza a ser menores y no es conveniente diseñar una torre más alta si no presenta una separación mejor que en una torre con una altura menor. El mismo análisis se presenta para cada una de las ciudades seleccionadas como se muestra en el Anexo F, además aplica para el análisis de la temperatura de acondicionamiento con la ventaja que en este caso la temperatura siempre estará en la zona de confort independientemente de la altura o del diámetro de empaque, en el desorbedor todos los cambios de diámetro y altura presentan el mismo valor para la temperatura y

humedad de acondicionamiento. Lo anterior es de esperar debido a que el estado de acondicionamiento esta mayormente ligado a la separación en el absorbedor.

Con respecto a la bomba 1, el aumento del diámetro y HETP en el absorbedor no afecta de manera significativa la variación de la potencia, manteniéndose en un valor de 11W como se observa en la Figura 58. Por lo anterior, al elegir la potencia de diseño de 15W en el caso de Medellín (Tabla 25), las variables diámetro y altura no son importantes en este caso al igual que en la bomba 2, donde la potencia de diseño es de 60W (Tabla 15). El análisis anterior aplica para la bomba 2 respecto al diámetro y HETP en el desorbedor como se observa en la Figura 59. Además, la carga térmica en el colector y enfriador respecto a estas variables en el absorbedor no representan un cambio significativo como se muestran en la Figura 60 y en la Figura 61. Para el desorbedor con respecto a la carga térmica del enfriador siempre va a ser preferible usar HETP mayores debido a que reducen dichas cargas, aunque no sea muy significativo como se observa en la Figura 62.

En la presente sección se analizaron los resultados más relevantes obtenidos a lo largo de desarrollo del trabajo.
### **10. CONCLUSIONES**

En este apartado se muestran las conclusiones a las que se llegaron mediante la realización de todos los aspectos del trabajo, y se determina el cumplimiento de los objetivos establecidos en base al análisis energético del sistema de aire acondicionado por absorción empleando una solución de CaCl<sub>2</sub>. Apoyado en todas las secciones anteriormente desarrolladas se concluye que:

- Mediante el uso del software Aspen Plus 

   fue posible simular de manera satisfactoria, en cada una de las zonas climáticas seleccionadas, el comportamiento en estado estacionario de un sistema de aire acondicionado por absorción empleando CaCl<sub>2</sub> y con un ciclo cerrado para recuperación del solvente.
- Se logró cuantificar los requerimientos energéticos del sistema de aire acondicionado en función de las condiciones de temperatura y humedad relativa del ambiente para 6 ciudades en las diferentes zonas climáticas del territorio colombiano. Para el caso base se requiere una carga térmica de 95.30kW en el colector solar y 92.99kW para el enfriador. Como requerimiento eléctrico en las bombas son de 11.10W y 55.82W y en ventiladores es de 39.43W y 59.06W. La zona climática con mayor requerimiento energético es Cartagena con una potencia eléctrica neta requerida de 0.19kW y cargas térmicas en el colector y en el enfriador de 127.64kW y 124.17kW, respectivamente.
- Se determinaron de manera satisfactoria las condiciones de operación y de diseño de los distintos equipos involucrados en el funcionamiento del sistema de aire acondicionado por absorción basados en la temperatura y humedad relativa ambiental para cada una de las ciudades seleccionadas. En el caso base, para la torre de absorción, la temperatura y presión de operación son de 32.30°C y 0.8445atm, con una carga de líquido de 279.7375kmol/h y una carga de vapor de 16.2425kmol/h; sus condiciones de diseño alcanzadas son 60.07°C y 1.6025atm. El desorbedor opera a 51.63°C y 0.8445atm; sus condiciones de diseño son 79.41°C y 1.6025atm. Para todas las ciudades, tanto en el absorbedor como en el desorbedor, el diámetro de diseño es de 0.45m, el empaque es tipo anillo Pall en plástico y su altura es 1m y 1.3m, respectivamente. Para Medellín, las potencias de diseño para las bombas son de 15W y 60W y para los ventiladores son de 40W y 60W. El área requerida del colector, para el caso base, es de 185.96m<sup>2</sup> y para el enfriador operando con agua de enfriamiento es de 3.03m<sup>2</sup>.

- Se realizó adecuadamente un análisis de sensibilidad de las variables más importantes que afectan el funcionamiento del sistema de aire acondicionado por absorción en todas las zonas climáticas colombianas seleccionadas. Las variables que representan un mayor cambio para los requerimientos energéticos de todos los equipos son la temperatura y flujo de solvente requerido. Para el caso base, disminuyendo el flujo de solvente desde 279.74kmol/h hasta 100kmol/h es posible disminuir los gastos energéticos a más del 50% de su valor inicial para todos los equipos.
- Se alcanzaron las condiciones de acondicionamiento dentro de la zona de confort para una oficina de 75m<sup>3</sup> con las condiciones de operación implementadas en el equipo de absorción del sistema de aire acondicionado para cada una de las zonas del territorio colombiano. Se pueden alcanzar temperaturas de acondicionamiento entre 23.37°C 23.48°C, y humedades relativas de acondicionamiento entre 54.3% 51.36% logrando alcanzar, para cada una de las ciudades, la zona de confort.
- Se probó, para todas las ciudades, que es posible realizar una recuperación del solvente líquido con las condiciones de operación del equipo de desorción para que el sistema opere en un ciclo cerrado en cada ciudad seleccionada. Para el caso base, el absorbedor requiere un flujo de solvente de 211.1148kmol/h y el desorbedor alcanza un flujo de líquido de 211.1146kmol/h.
- Se demostró que hay una disminución considerable en la demanda de potencia eléctrica del sistema de aire acondicionado por absorción al implementar equipos de ventilación y bombas frente al sistema de aire tradicional que emplea compresores y esto a su vez se ve reflejado en un ahorro monetario sustancial debido al uso del sistema de aire acondicionado. Lo anterior se cumple para todas las zonas climáticas del territorio colombiano. En Medellín, para un uso del equipo de 8 horas diarias, el ahorro monetario es del 89.7% con respecto al sistema tradicional.
- Las altas demandas energéticas de los sistemas de calentamiento y enfriamiento son un punto negativo a la hora de implementar el sistema de aire acondicionado por absorción frente a un equipo tradicional, debido a que la carga térmica requerida por el colector y el enfriador supera a las del evaporador y condensador de un sistema de aire por compresión además, las áreas requeridas por el colector de placa plana son tan grandes que su

construcción no justifica la inversión para el funcionamiento del sistema de aire acondicionado.

- Es viable seleccionar un único empaque con dimensiones y características iguales para el funcionamiento de los equipos de absorción y desorción del sistema de aire acondicionado para todas las condiciones climáticas de las ciudades estudiadas. Para los absorbedores se requiere un anillo Pall de 1in, con factor de empaque de 171 m<sup>-1</sup>, área específica de empaque de 2.2cm<sup>2</sup>/cm<sup>3</sup> y fracción poroso de 0.91. En el caso del desorbedor el diámetro de empaque es de 1<sup>3/8</sup>in, con factor de empaque de 140 m<sup>-1</sup>, área específica de empaque de 1.6cm<sup>2</sup>/cm<sup>3</sup> y fracción poroso de 0.93. Lo anterior se cumple para cada una de las ciudades.
- Se probó que la temperatura y la humedad absoluta de acondicionamiento, así como el requerimiento de la potencia de las bombas, ventiladores y la carga térmica del enfriador, tienen una relación directa con la variación de la temperatura y humedad relativa ambiental. En el caso base, a 32°C y 60% humedad relativa ambiental la condición de temperatura y humedad absoluta de acondicionamiento es de 22.85°C y 0.0111kgv/kgas. Para la misma condición de temperatura, pero a 98% de humedad relativa ambiente, las condicione son 23.4°C y 0.0120kgv/kgas. El mismo fenómeno ocurre en las demás ciudades.
- Se determinó que la carga térmica del colector tiene una relación inversa con la variación de la temperatura y húmeda relativa ambiental.
- Se comprobó que la temperatura y la humedad absoluta de acondicionamiento aumentan con el incremento de la temperatura de solvente además la temperatura de acondicionamiento no se ve afectada por el incremento del flujo del solvente.
- Se cumple que el requerimiento de las potencias netas de las bombas no depende de la variación de la temperatura de entrada de solvente y son independientes de la altura y el diámetro del empaque del absorbedor y desorbedor. Por el contrario, si dependen de la cantidad de flujo de solvente implementado.
- Se validó que la carga termina del colector y el enfriador dependen fuertemente del flujo del solvente y no significantemente de la temperatura.
- Un aumento en la fracción másica de CaCl<sub>2</sub> aumenta la capacidad de absorción del solvente disminuyendo la humedad absoluta de acondicionamiento. Además, se comprobó que es más favorable utilizar una fracción másica de CaCl<sub>2</sub> menor al 40% para evitar formar sales y posibles daños los equipos.

### **11. RECOMENDACIONES**

En la presente sección se especifican algunas recomendaciones finales basadas en los resultados obtenidos y el análisis realizado en secciones anteriores.

Se recomienda realizar un diseño a detalle de todos los equipos del sistema de aire acondicionado el cual pueda operar en los rangos de temperatura de 32.05–36.85°C y presión 0.8445–1.0021atm para el absorbedor. En el desorbedor, la temperatura entre 51.63-55.12°C en el mismo rango de presión. Para los ventiladores, un rango de 35-65W y en las bombas entre 10-70W.

Puesto que la principal desventaja del sistema radica en el área requerida por el colector de placa plana, se recomienda analizar otros tipos de colectores como el de concentración o implementar otro dispositivo de calentamiento como lo puede ser un intercambiador de tubo y camisa que implemente vapor como utilidad de calentamiento.

Se recomienda optimizar el flujo de solvente con el fin de reducir el área del colector solar, las potencias de las bombas y las cargas térmicas del enfriador, esto también influye en ahorros de costos de operación del sistema de aire acondicionado, sin afectar significativamente el resultado de confort deseado.

Se recomienda seguir implementando soluciones de CaCl<sub>2</sub> como absorbente ya que además de los buenos resultados en el acondicionamiento del ciclo, este compuesto es una sustancia refrigerante amigables con el medio ambiente, no es tóxico, tiene un tiempo de uso prolongado y capacidad de ser reutilizado además, su implementación no contribuye a la destrucción de la capa de ozono ya que no contiene CFCs (clorofluorocarbonado) ni HFCs (hidrofluorocarbonos)que se implementa en refrigerantes comerciales actuales [7].

En este trabajo se usa  $CaCl_2$  como solvente, sin embargo, es importante analizar otro tipo de solvente con respecto a los efectos de corrosión y erosión principalmente en el colector solar.

En el caso de ser utilizado este estudio para una posible fase de diseño de los equipos, para el absorbedor y desorbedor es posible utilizar materiales de construcción económicos y se recomienda la posibilidad de implementar PVC como material de construcción.

#### REFERENCIAS

- [1] L. Ojea, "El uso del aire acondicionado triplicará la demanda mundial de electricidad para 2050, según la AIE," *El Periodico de la Energía*, 2018. https://elperiodicodelaenergia.com/el-uso-del-aire-acondicionado-triplicara-la-demanda-mundial-de-electricidad-para-2050-segun-la-aie/ (accessed Nov. 29, 2021).
- [2] "Impacto del Cambio clímatico en Colombia | Ministerio de Ambiente y Desarrollo Sostenible." https://www.minambiente.gov.co/index.php/cambio-climatico/que-es-cambioclimatico/impacto-del-cambio-climatico-en-colombia (accessed Jun. 28, 2021).
- [3] T. Randazzo, E. De Cian, and M. N. Mistry, "Air conditioning and electricity expenditure: The role of climate in temperate countries," *Econ. Model.*, vol. 90, no. May, pp. 273–287, 2020, doi: 10.1016/j.econmod.2020.05.001.
- [4] I. Daut, M. Adzrie, M. Irwanto, P. Ibrahim, and M. Fitra, "Solar powered air conditioning system," *Energy Procedia*, vol. 36, pp. 444–453, 2013, doi: 10.1016/j.egypro.2013.07.050.
- [5] "Energía en Colombia costos Asoenergía."
   https://www.valoraanalitik.com/2021/01/22/asoenergia-aumento-costo-restriccionesenergia-colombia-en-2020/ (accessed Jun. 28, 2021).
- [6] J. Milián, "Uso de la energía solar en sistemas de aire acondicionado central por absorción.," Universidad de Matanzas, 2018.
- [7] J. Diaz Ortiz, "Identificación de barreras tecnológicas para operación de sistemas de aire acondicionado por absorción que utilicen LiBr-H2O para instalaciones menores de 10 kW," Instituto Tecnológico Metropolitano, 2012.
- [8] S. L. Grassie and N. R. Sheridan, "Modelling of a Solar-Operated Absorption Air Conditioner System With Refrigerant Storage.," *Sol. Energy*, vol. 19, pp. 691–700, 1976.
- [9] N. Vol, "Closed Cycle Solar Refrigeration With the Calcium Chloride System," *Niger. J. Technol.*, vol. 10, no. 1, pp. 1–13, 1986.
- [10] T. Katejanekarn and S. Kumar, "Performance of a solar-regenerated liquid desiccant ventilation pre-conditioning system," *Energy Build.*, vol. 40, no. 7, pp. 1252–1267, 2008, doi: 10.1016/j.enbuild.2007.11.005.
- [11] A. K. Mohaisen and Z. Ma, "Development and modelling of a solar assisted liquid desiccant dehumidification air-conditioning system," *Build. Simul.*, vol. 8, no. 2, pp. 123–135, 2015, doi: 10.1007/s12273-014-0196-1.

- [12] C. P. Arora, *Refrigeration and Air Conditioning Third Edition*, 3th ed. New Delhi: Tata McGraw-Hill Publishing Company Limited, 2009.
- [13] M. A. Ahmed, P. Gandhidasan, S. M. Zubair, and H. M. Bahaidarah, "Thermodynamic analysis of an innovative liquid desiccant air conditioning system to supply potable water," *Energy Convers. Manag.*, vol. 148, pp. 161–173, 2017, doi: 10.1016/j.enconman.2017.05.049.
- [14] N. Quiadri, Sistemas de aire acondicionado. Calidad del aire interior. 2001.
- [15] W. G. Hahn., Air-Conditioning system desing manual, Second Edi. ASHRAE, 2007.
- [16] R. E. Treybal, Mass Transfer Operations, Third Edit. Singapore: McGraw-Hill, 1981.
- [17] J. D. Seader, E. J. Henley, and D. K. Roper, Separation Process Principles: Chemical and Biochemical Operations, 3rd Editio. John Wiley & Sons, Inc., 2011.
- [18] Kirk and Othmer, "Volume 04: Bearing Materials to Carbon," in *Encyclopedia of Chemical Technology*, Fourth Edi., vol. 4, Watcher, Ed. 2004, p. 578.
- [19] A. Suwono, Y. S. Indartono, M. Irsyad, and I. C. Al-Afkar, "Application of calcium chloride as an additive for secondary refrigerant in the air conditioning system type chiller to minimized energy consumption," *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 88, no. 1, pp. 6–12, 2015, doi: 10.1088/1757-899X/88/1/012035.
- [20] OxyChem, *Calcium chloride*, vol. 262, no. 12. Occidental Chemical Corporation, 2002.
- [21] R. H. Perry and D. W. Green, *PERRY'S CHEMICAL ENGINEERS' HANDBOOK*, Eighth. United states of America: McGraw-Hill, 2008.
- [22] SIAC, "CLIMA IDEAM." http://www.ideam.gov.co/web/tiempo-y-clima/clima (accessed Jul. 08, 2021).
- [23] IDEAM, "Humedad del Aire 2 metros | Datos Abiertos Colombia." https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/Humedad-del-Aire-2metros/uext-mhny/data (accessed Oct. 19, 2021).
- [24] IDEAM, "Temperatura Máxima del Aire | Datos Abiertos Colombia." https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/Temperatura-M-xima-del-Aire/ccvq-rp9s/data (accessed Oct. 19, 2021).
- [25] O. C. González, "Metodología para el Calculo del Confort Climático en Colombia," *Ideam*,
   p. 47, 1998, [Online]. Available: http://documentacion.ideam.gov.co/openbiblio/bvirtual/007574/Metodologiaconfort.pdf.

- [26] ANSI/ASHRAE, Standard 55: Thermal Environmental Conditions for Human Occupancy. Atlanta, 2010.
- [27] R. L. Hedrick *et al.*, "Ventilation for acceptable indoor air quality," *ASHRAE Stand.*, vol. 2013, no. 62.1-2013, 2013, [Online]. Available: www.ashrae.org.
- [28] SODECA, "Información técnica Sodeca," 2021. https://www.sodeca.com/es/tecnica (accessed Oct. 25, 2021).
- [29] B. F. Santoro, D. Rincón, V. C. da Silva, and D. F. Mendoza, "Nonlinear model predictive control of a climatization system using rigorous nonlinear model," *Comput. Chem. Eng.*, vol. 125, pp. 365–379, 2019, doi: 10.1016/j.compchemeng.2019.03.014.
- [30] J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, 4th Editio. New Jersey: John Wiley & Sons, Inc., 2013.
- [31] J. C. Martínez, P. F. Noceto, and R. A. Suárez, "Manual Técnico de Energía Solar Térmica Volumen II : Aspectos Técnicos y Normativos," *Fac. Ing. Univ. la República*, p. 282, 2013.
- [32] E. C. Carlson, "Don't Gamble With Physical Properties For Simulations," *Chem. Eng. Progess*, p. 12, 1996.
- [33] H. Tapias García, L. A. Palacios Santos, and C. Saldarriaga Molina, Métodos y algoritmos de diseño en Ingeniería Química. Editoral Universidad de Antioquia, 2005.
- [34] W. D. Seider, J. D. Seader, and D. R. Lewin, "Chapter 5: Heuristics for Process Synthesis.," in *Product and Process Desing Principles: Synthesis, Analysis and Evaluation.*, 2nd ed., 2003, p. 820.
- [35] Aspentech, "Aspen Plus | Leading Process Simulation Software | AspenTech," 2021. https://www.aspentech.com/en/products/engineering/aspen-plus (accessed Oct. 27, 2021).
- [36] I. Aspen Technology, "Aspen Plus User Guide," in Aspen Technology, Inc., no. 1, Cambridge, 2010, p. 69.
- [37] M. J. Moran, H. N. Shapiro, D. D. Boettner, and M. B. Bailey, *Fundamentals of Engineering Thermodynamics*, vol. 29, no. 1. 2014.
- [38] AMCA, *Energy Efficiency Classification for Fans. Standard 205-10.* Harlynton Heights -Illinois: Air Movement and Control Association International, 2011.
- [39] J. E. Hill, J. P. Jenkins, and D. E. Jones, "Experimental Verification of a Standard Test Procedure for Solar Collectors," *NBS Buildibngs Sci.*, vol. Series 117, no. January 1979, p. 127, 1979.

- [40] D. Q. Kern, *Process Heat Transfer*, 21st ed. Tokyo: McGraw-Hill Book Company, 1983.
- [41] F. J. Gálvez, R. López, A. Llopis, and C. Rubio, *Física: curso teórico práctico de fundamentos físicos de la ingenería*. Madrid: Tébar Flores, 709.
- [42] E. A. Puerto, "1.2 PRESIÓN ATMOSFÉRICA | M. en I. Efraín A. Puerto," 2011. https://efrainpuerto.wordpress.com/2011/02/26/f1-2/ (accessed Nov. 02, 2021).
- [43] Salvador Escoda SA, "Manual Práctico de ventilación." Barcelona, p. 21.
- [44] V. L. Streeter, E. B. Wylie, and K. W. Betford, *Mecánica de Fluidos*, 9th ed. Santa Fé de Bogotá: McGraw-Hill Interamericana, S.A., 2000.
- [45] "Tarifas de Energía EPM." https://cu.epm.com.co/clientesyusuarios/energia/tarifas-energia (accessed Nov. 16, 2021).
- [46] Gasservel, "Ficha técnica R-134a." Ciudad de México, p. 4, Accessed: Nov. 17, 2021.[Online]. Available: www.gas-servei.com.

# ANEXOS

## ANEXO A. Propiedades de las sustancias.

| % CaCl <sub>z</sub> | 0° F<br>-17.8° C | 10° F<br>-12.2° C | 20° F<br>-6.7° C | 30° F<br>-1.1° C | 40° F<br>4.4° C | 50° F<br>10° C | 60° F<br>15.6° C | 70° F<br>21.1° C | 80° F<br>26.7° C | 90° F<br>32.2° C | 100° F<br>37.8° C |
|---------------------|------------------|-------------------|------------------|------------------|-----------------|----------------|------------------|------------------|------------------|------------------|-------------------|
| 2                   | -                | -                 | -                | -                | 8.56            | 8.54           | 8.51             | 8.48             | 8.45             | 8.42             | 8.40              |
| 4                   | -                | -                 | -                | 8.74             | 8.71            | 8.69           | 8.66             | 8.63             | 8.60             | 8.57             | 8.55              |
| 6                   | -                | -                 | -                | 8.89             | 8.86            | 8.84           | 8.81             | 8.78             | 8.75             | 8.72             | 8.70              |
| 8                   | -                | -                 | -                | 9.04             | 9.01            | 8.99           | 8.96             | 8.93             | 8.90             | 8.87             | 8.85              |
| 10                  | -                | -                 | -                | 9.19             | 9.16            | 9.14           | 9.11             | 9.08             | 9.05             | 9.02             | 9.00              |
| 11                  | -                | -                 | 9.30             | 9.27             | 9.24            | 9.22           | 9.19             | 9.16             | 9.13             | 9.10             | 9.08              |
| 12                  | -                | -                 | 9.38             | 9.35             | 9.32            | 9.30           | 9.27             | 9.24             | 9.21             | 9.18             | 9.16              |
| 13                  | -                | -                 | 9.47             | 9.44             | 9.41            | 9.39           | 9.36             | 9.33             | 9.30             | 9.27             | 9.25              |
| 14                  | -                | -                 | 9.54             | 9.51             | 9.48            | 9.46           | 9.43             | 9.40             | 9.37             | 9.34             | 9.32              |
| 15                  | -                | -                 | 9.63             | 9.60             | 9.57            | 9.55           | 9.52             | 9.49             | 9.46             | 9.43             | 9.41              |
| 16                  | -                | 9.74              | 9.71             | 9.68             | 9.65            | 9.63           | 9.60             | 9.57             | 9.54             | 9.51             | 9.49              |
| 17                  | -                | 9.82              | 9.79             | 9.76             | 9.73            | 9.71           | 9.68             | 9.65             | 9.62             | 9.59             | 9.57              |
| 18                  | -                | 9.90              | 9.87             | 9.84             | 9.81            | 9.79           | 9.76             | 9.73             | 9.70             | 9.67             | 9.65              |
| 19                  | 10.01            | 9.99              | 9.96             | 9.93             | 9.90            | 9.88           | 9.85             | 9.82             | 9.79             | 9.76             | 9.74              |
| 20                  | 10.09            | 10.07             | 10.04            | 10.01            | 9.98            | 9.96           | 9.93             | 9.90             | 9.87             | 9.84             | 9.82              |
| 21                  | 10.17            | 10.15             | 10.12            | 10.09            | 10.06           | 10.04          | 10.01            | 9.98             | 9.95             | 9.92             | 9.90              |
| 22                  | 10.26            | 10.24             | 10.21            | 10.18            | 10.15           | 10.13          | 10.10            | 10.07            | 10.04            | 10.01            | 9.99              |
| 23                  | 10.34            | 10.32             | 10.29            | 10.26            | 10.23           | 10.21          | 10.18            | 10.15            | 10.12            | 10.09            | 10.07             |
| 24                  | 10.41            | 10.39             | 10.36            | 10.33            | 10.30           | 10.28          | 10.25            | 10.22            | 10.19            | 10.16            | 10.14             |
| 25                  | 10.51            | 10.49             | 10.46            | 10.43            | 10.40           | 10.38          | 10.35            | 10.32            | 10.29            | 10.26            | 10.24             |
| 26                  | 10.61            | 10.59             | 10.56            | 10.53            | 10.50           | 10.48          | 10.45            | 10.42            | 10.39            | 10.36            | 10.34             |
| 27                  | 10.71            | 10.69             | 10.66            | 10.63            | 10.60           | 10.58          | 10.55            | 10.52            | 10.49            | 10.46            | 10.44             |
| 28                  | 10.81            | 10.79             | 10.76            | 10.73            | 10.70           | 10.68          | 10.65            | 10.62            | 10.59            | 10.56            | 10.54             |
| 29                  | 10.90            | 10.88             | 10.85            | 10.82            | 10.79           | 10.77          | 10.74            | 10.71            | 10.68            | 10.65            | 10.63             |
| 30                  | 11.00            | 10.98             | 10.95            | 10.92            | 10.89           | 10.87          | 10.84            | 10.81            | 10.78            | 10.75            | 10.73             |
| 31                  | 11.10            | 11.08             | 11.05            | 11.02            | 10.99           | 10.97          | 10.94            | 10.91            | 10.88            | 10.85            | 10.83             |
| 32                  | 11.20            | 11.18             | 11.15            | 11.12            | 11.09           | 11.07          | 11.04            | 11.01            | 10.98            | 10.95            | 10.93             |
| 33                  | 11.30            | 11.28             | 11.25            | 11.22            | 11.19           | 11.17          | 11.14            | 11.11            | 11.08            | 11.05            | 11.03             |
| 34                  | -                | -                 | 11.34            | 11.31            | 11.28           | 11.26          | 11.23            | 11.20            | 11.17            | 11.14            | 11.12             |
| 35                  | -                | -                 | -                | 11.41            | 11.38           | 11.36          | 11.33            | 11.30            | 11.27            | 11.24            | 11.22             |
| 36                  | -                | -                 | -                | -                | 11.48           | 11.46          | 11.43            | 11.40            | 11.37            | 11.34            | 11.32             |
| 37                  | -                | -                 | -                | -                | 11.58           | 11.56          | 11.53            | 11.50            | 11.47            | 11.44            | 11.42             |
| 38                  | -                | -                 | -                | -                | -               | 11.65          | 11.62            | 11.59            | 11.56            | 11.53            | 11.51             |
| 39                  | -                | -                 | -                | -                | -               | -              | 11.72            | 11.69            | 11.66            | 11.63            | 11.61             |
| 40                  | -                | -                 | -                | -                | -               | -              | -                | 11.79            | 11.76            | 11.73            | 11.71             |
| 41                  | -                | -                 | -                | -                | -               | -              | -                | 11.89            | 11.86            | 11.83            | 11.81             |
| 42                  | -                | _                 | -                | -                | _               | -              | -                | 11.98            | 11.95            | 11.92            | 11.90             |

Anexo A 1. Densidad del CaCl2 en solución a varias temperaturas y concentraciones (lb/gal) [20].

|                     | Specific | Density    | Liters per       | Liters per  | Freeze Point | Boiling Point |
|---------------------|----------|------------|------------------|-------------|--------------|---------------|
| % CaCl <sub>2</sub> | Gravity  | (kg/liter) | 1000 kg Solution | 1000 kg Dry | (°C)         | (°°)          |
| 0                   | 1.000    | 0.997      | 1003             | n/a         | 0            | 100           |
| 1                   | 1.009    | 1.006      | 994              | 99,406      | -1           | 100           |
| 2                   | 1.018    | 1.015      | 985              | 49,264      | -1           | 100           |
| 3                   | 1.027    | 1.024      | 977              | 32,555      | -2           | 100           |
| 4                   | 1.036    | 1.033      | 968              | 24,204      | -3           | 100           |
| 5                   | 1.045    | 1.042      | 960              | 19,196      | -4           | 101           |
| 6                   | 1.054    | 1.051      | 952              | 15,860      | -4           | 101           |
| 7                   | 1.063    | 1.060      | 944              | 13,479      | -5           | 101           |
| 8                   | 1.072    | 1.069      | 936              | 11,696      | -6           | 101           |
| 9                   | 1.081    | 1.078      | 928              | 10,309      | -6           | 101           |
| 10                  | 1.090    | 1.087      | 920              | 9202        | -7           | 102           |
| 11                  | 1.100    | 1.097      | 912              | 8289        | -8           | 102           |
| 12                  | 1.110    | 1.107      | 904              | 7530        | -9           | 102           |
| 13                  | 1.120    | 1.117      | 896              | 6889        | -10          | 102           |
| 14                  | 1.129    | 1.126      | 888              | 6346        | -11          | 102           |
| 15                  | 1.139    | 1.136      | 881              | 5871        | -12          | 103           |
| 16                  | 1.149    | 1.146      | 873              | 5456        | -13          | 103           |
| 17                  | 1.159    | 1.156      | 865              | 5091        | -15          | 103           |
| 18                  | 1.169    | 1.165      | 858              | 4767        | -17          | 104           |
| 19                  | 1.179    | 1.175      | 851              | 4478        | -18          | 104           |
| 20                  | 1.189    | 1.185      | 844              | 4218        | -20          | 105           |
| 21                  | 1.199    | 1.195      | 837              | 3984        | -22          | 105           |
| 22                  | 1.209    | 1.205      | 830              | 3771        | -24          | 106           |
| 23                  | 1.219    | 1.215      | 823              | 3577        | -27          | 106           |
| 24                  | 1.228    | 1.224      | 817              | 3403        | -29          | 107           |
| 25                  | 1.240    | 1.236      | 809              | 3236        | -32          | 107           |
| 26                  | 1.251    | 1.247      | 802              | 3084        | -35          | 108           |
| 27                  | 1.263    | 1.259      | 794              | 2941        | -39          | 108           |
| 28                  | 1.275    | 1.271      | 787              | 2810        | -43          | 109           |
| 29                  | 1.287    | 1.283      | 779              | 2687        | -47          | 110           |
| 29.6                | 1.294    | 1.290      | 775              | 2619        | -51          | 110           |
| 30                  | 1.298    | 1.294      | 773              | 2576        | -47          | 111           |
| 31                  | 1.310    | 1.306      | 766              | 2470        | -37          | 111           |
| 32                  | 1.322    | 1.318      | 759              | 2371        | -27          | 112           |
| 33                  | 1.334    | 1.330      | 752              | 2278        | -20          | 112           |
| 34                  | 1.345    | 1.341      | 746              | 2193        | -12          | 113           |
| 35                  | 1.357    | 1.353      | 739              | 2112        | -7           | 115           |
| 36                  | 1.369    | 1.365      | 733              | 2035        | -1           | 115           |
| 37                  | 1.381    | 1.377      | 726              | 1963        | 4            | 115           |
| 38                  | 1.392    | 1.388      | 721              | 1896        | 9            | 116           |
| 39                  | 1.404    | 1.400      | 714              | 1832        | 13           | 116           |
| 40                  | 1.416    | 1.412      | 708              | 1771        | 16           | 120           |
| 41                  | 1.428    | 1.424      | 702              | 1713        | 18           | 121           |
| 42                  | 1.439    | 1.435      | 697              | 1660        | 21           | 122           |

Anexo A 2. Propiedades del CaCl<sub>2</sub> en solución a 25°C [20]



Anexo A 3. Presión de vapor del CaCl<sub>2</sub> [20].

| Weight              |       |      |      |       |      | Ter   | nperature | , °C  |      |      |      |      |      |
|---------------------|-------|------|------|-------|------|-------|-----------|-------|------|------|------|------|------|
| % CaCl <sub>2</sub> | -20   | -10  | 0    | 10    | 20   | 30    | 40        | 50    | 60   | 70   | 80   | 90   | 100  |
| 0                   | -     | -    | 1.77 | 1.29  | 1.02 | 0.79  | 0.67      | 0.53  | 0.46 | 0.40 | 0.34 | 0.30 | 0.26 |
| 5                   | -     | -    | 1.84 | 1.35  | 1.07 | 0.82  | 0.73      | 0.57  | 0.51 | 0.45 | 0.39 | 0.35 | 0.28 |
| 10                  | -     | -    | 2.13 | 1.52  | 1.16 | 0.93  | 0.86      | 0.64  | 0.57 | 0.51 | 0.47 | 0.42 | 0.35 |
| 15                  | -     | 4.09 | 2.50 | 1.84  | 1.40 | 1.20  | 1.03      | 0.76  | 0.68 | 0.62 | 0.55 | 0.49 | 0.42 |
| 20                  | -     | 4.97 | 3.12 | 2.33  | 1.81 | 1.54  | 1.22      | 0.99  | 0.85 | 0.74 | 0.68 | 0.59 | 0.49 |
| 25                  | 9.94  | 6.32 | 4.04 | 3.07  | 2.38 | 1.97  | 1.54      | 1.27  | 1.07 | 0.90 | 0.82 | 0.70 | 0.59 |
| 30                  | 14.27 | 9.04 | 5.77 | 4.30  | 3.33 | 2.62  | 2.07      | 1.73  | 1.43 | 1.24 | 1.01 | 0.89 | 0.73 |
| 35                  | -     | -    | 8.83 | 6.62  | 4.99 | 3.87  | 3.07      | 2.54  | 2.17 | 1.82 | 1.46 | 1.22 | 1.03 |
| 40                  | -     | -    | -    | 11.75 | 8.48 | 6.39  | 4.90      | 4.00  | 3.26 | 2.72 | 2.15 | 1.74 | 1.52 |
| 45                  | -     | -    | -    | -     | -    | 11.50 | 8.90      | 6.57  | 5.24 | 4.25 | 3.39 | 2.77 | 2.33 |
| 50                  | -     | -    | -    | -     | -    | -     | -         | 11.80 | 9.24 | 7.45 | 5.97 | 4.95 | 4.28 |

Anexo A 4. Viscosidad en cP del CaCl<sub>2</sub> en solución [20].

Anexo A 5. Capacidad calorífica del cloruro de calcio en solución [20].



Anexo A 6. Capacidad calorífica del CaCl<sub>2</sub> líquido (J/kmol.K) [21]:

 $Cp_{CaCl_2} = 4184 \; (16.9 + 0.00386T)$ 

| Sustancias         | CAS no.   | РМ    | $T_b(^{o}C)$ | $T_f(^{o}C)$             | <i>Тс (К)</i> | Pc<br>(Mpa) | Vc<br>(m <sup>3</sup> /kmol) | Zc    |
|--------------------|-----------|-------|--------------|--------------------------|---------------|-------------|------------------------------|-------|
| Nitrógeno          | 7727-37-9 | 28.01 | -195.8       | -209.86                  | 126.2         | 3.4         | 0.08921                      | 0.289 |
| Oxigeno            | 7782-44-7 | 32.00 | -183         | -218.4                   | 154.58        | 5.043       | 0.0734                       | 0.288 |
| Argón              | 7440-37-1 | 39.95 | -185.7       | -189.2                   | 150.86        | 4.898       | 0.07459                      | 0.291 |
| Dióxido de Carbono | 124-38-9  | 44.01 | subl78.5     | -56.62 <sup>5.2atm</sup> | 304.21        | 7.383       | 0.094                        | 0.274 |
| Agua               | 7732-18-5 | 18.02 | 100          | 0                        | 647.096       | 22.064      | 0.0559472                    | 0.229 |

Anexo A 7. Propiedades de las sustancias a 25°C, 1atm [21].

Anexo A 8. Presión de vapor de las sustancias (*T*[*K*], *P*[*Pa*]) [21].

| Sustancias         | <i>C1</i> | <i>C</i> 2 | С3      | <i>C4</i>               | <i>C5</i> | $T_{min}(K)$ | $T_{max}(K)$ |
|--------------------|-----------|------------|---------|-------------------------|-----------|--------------|--------------|
| Nitrógeno          | 58.282    | -1084.1    | -8.3144 | $4.4127 x 10^{-2}$      | 1         | 63.15        | 126.2        |
| Oxigeno            | 51.245    | -1200.2    | -6.4361 | $2.8405 \times 10^{-2}$ | 1         | 54.36        | 154.58       |
| Argón              | 42.127    | -1093.1    | -4.1425 | 5.7254 <i>x10</i> -5    | 2         | 83.78        | 150.86       |
| Dióxido de Carbono | 140.54    | -4735      | -21.268 | $4.0909 x 10^{-2}$      | 1         | 216.58       | 304.21       |
| Agua               | 73.649    | -7258.2    | -7.3037 | $4.1653x10^{-6}$        | 2         | 273.16       | 647.096      |

$$P_{\nu} = \exp\left(C1 + \frac{C2}{T} + C3In T + C4T^{C5}\right)$$

Anexo A 9. Capacidad calorífica de las sustancias en fase gaseosa (J/kmol.K) [21].

| Sustancias         | C1                      | <i>C</i> 2              | С3                      | <i>C4</i>            | <i>C5</i> | T <sub>min</sub> (K) | $T_{max}(K)$ |
|--------------------|-------------------------|-------------------------|-------------------------|----------------------|-----------|----------------------|--------------|
| Nitrógeno          | $2.9105 x 10^4$         | $8.6149 x 10^3$         | $1.7016 x 10^3$         | $1.0347 x 10^2$      | 909.79    | 50                   | 1500         |
| Oxigeno            | $2.9103 \ x10^4$        | $1.0040 x 10^4$         | $2.5265 \times 10^3$    | $9.3560x10^3$        | 1153.8    | 50                   | 1500         |
| Argón              | 20786                   | 0                       | 0                       | 0                    | 0         | 100                  | 1500         |
| Dióxido de Carbono | $2.9370 \ x10^4$        | $3.4540 \times 10^4$    | $1.4280 x 10^3$         | $2.6400 \times 10^4$ | 588       | 50                   | 5000         |
| Agua               | $3.3363 \times 10^{-6}$ | $2.6790 \times 10^{-6}$ | $2.6105 \times 10^{-3}$ | 8.8960 <i>x10</i> -7 | 1169      | 100                  | 2273.15      |

$$Cp_G = C1 + C2 \left[ \frac{C3/T}{\sinh(C3/T)} \right]^2 + C4 \left[ \frac{C5/T}{\cosh(C5/T)} \right]^2$$

Anexo A 10. Capacidad calorífica del agua en fase líquida (J/kmol.K) [21].

| Sustancias | <i>C1</i> | <i>C2</i> | СЗ    | <i>C4</i> | С5                   | $T_{min}(K)$ | $T_{max}(K)$ |
|------------|-----------|-----------|-------|-----------|----------------------|--------------|--------------|
| Agua       | 276370    | -2090.1   | 8.125 | -0.014116 | 9.3701 <i>x10</i> -6 | 273.15       | 293.58       |

 $Cp_l = C1 + C2T + C3T^2 + C4T^3 + C5T^4$ 

Anexo A 11. Densidad del agua en fase líquida (mol/dm<sup>3</sup>) [21].

| Sustancias | <i>C1</i> | <i>C</i> 2 | СЗ       | <i>C4</i>            | $T_{min}(K)$ | $T_{max}(K)$ |
|------------|-----------|------------|----------|----------------------|--------------|--------------|
| Agua       | -13.851   | 0.64038    | -0.00191 | 1.8211 <i>x10</i> -6 | 298          | 353.15       |

$$\rho_l = C1 + C2T + C3T^2 + C4T^3$$

**Nota:** La densidad de las sustancias en fase vapor se determinan de la solución de la ecuación de estado SRK la cual fue seleccionada para la simulación.

| Sustancias         | C1                              | <i>C</i> 2 | СЗ     | T <sub>min</sub> (K) | $T_{max}(K)$ |
|--------------------|---------------------------------|------------|--------|----------------------|--------------|
| Nitrógeno          | $6.56 \times 10^{-7}$           | 0.6081     | 54.714 | 63.15                | 1970         |
| Oxigeno            | $1.10 \times 10^{-6}$           | 0.5634     | 96.3   | 54.35                | 1500         |
| Argón              | 9.212 <i>x</i> 10 <sup>-7</sup> | 0.60529    | 83.24  | 83.78                | 3273.1       |
| Dióxido de Carbono | 2.148 <i>x</i> 10 <sup>-6</sup> | 0.46       | 290    | 194.67               | 1500         |
| Agua               | $1.71 x 10^{-8}$                | 1.1146     | 0.000  | 273.16               | 1073         |

Anexo A 12. Viscosidad de las sustancias en fase vapor (Pa.s) [21].

$$\mu_{\nu} = \frac{C1T^{C2}}{1 + \frac{C3}{T}}$$

Anexo A 13. Viscosidad del agua en fase líquida (Pa.s) [21].

| Sustancias | <i>C1</i> | <i>C</i> 2 | СЗ    | <i>C4</i>               | <i>C5</i> | $T_{min}(K)$ | $T_{max}(K)$ |
|------------|-----------|------------|-------|-------------------------|-----------|--------------|--------------|
| Agua       | -52.843   | 3703.6     | 5.866 | -5.88x10 <sup>-29</sup> | 10        | 273.16       | 646.15       |

$$\mu_l = \exp\left(1 + \frac{C2}{T} + C3In T + C4T^{C5}\right)$$

Anexo A 14. Entalpia de vaporización del agua (J/kmol) [21].

| Sustancias | <i>C1</i>     | <i>C</i> 2 | СЗ     | <i>C4</i> | <b>Тс</b> (К) | $T_{min}(K)$ | $T_{max}(K)$ |
|------------|---------------|------------|--------|-----------|---------------|--------------|--------------|
| Agua       | $5.2053x10^7$ | 0.3199     | -0.212 | 0.25795   | 647.096       | 273.16       | 647.096      |

$$C1(1-T_r)^{C2+C3T_r+C4T_r^2}; T_r = \frac{T}{T_c}$$

# ANEXO B. Datos de temperatura, humedad relativa, cartas psicrométricas e irradiación.

|           |      | Temperatur | a (°C) |     | 9    | 6 Humedad | relativa |     |
|-----------|------|------------|--------|-----|------|-----------|----------|-----|
| Fecha     | Moda | Promedio   | Max    | Min | Moda | Promedio  | Max      | Min |
| Jul-20-21 | 29.4 | 24.4       | 30.7   | 17  | 30   | 53.3      | 82       | 27  |
| Jul-19-21 | 28.7 | 24.6       | 29.0   | 20  | 35   | 56.1      | 86       | 33  |
| Jul-18-21 | 23.1 | 23.2       | 28.7   | 17  | 94   | 65.6      | 96       | 33  |
| Jul-17-21 | 17.4 | 23.2       | 32.0   | 17  | 76   | 69.3      | 96       | 29  |
| Jul-16-21 | 18.1 | 22.9       | 30.5   | 17  | 95   | 70.2      | 95       | 30  |
| Jul-15-21 | 20.8 | 22.9       | 30.5   | 17  | 87   | 62.2      | 90       | 26  |
| Jul-14-21 | 29.6 | 24.0       | 30.0   | 18  | 68   | 57.8      | 83       | 26  |
| Jul-13-21 | 21.2 | 23.4       | 30.0   | 17  | 30   | 60.9      | 91       | 30  |
| Jul-12-21 | 19.0 | 23.9       | 29.2   | 19  | 49   | 64.8      | 91       | 34  |
| Jul-11-21 | 21.1 | 22.5       | 28.6   | 17  | 80   | 71.5      | 97       | 35  |
| Jul-10-21 | 21.9 | 22.1       | 26.8   | 19  | 83   | 79.3      | 96       | 50  |
| Jul-09-21 | 27.4 | 22.8       | 27.8   | 19  | 87   | 71.0      | 94       | 44  |
| Jul-08-21 | 21.1 | 24.6       | 30.3   | 20  | 79   | 61.5      | 85       | 30  |
| Jul-07-21 | 25.7 | 24.8       | 30.8   | 19  | 85   | 60.8      | 88       | 27  |
| Jul-06-21 | 27.1 | 23.9       | 30.1   | 20  | 81   | 61.9      | 88       | 27  |
| Jul-05-21 | 28.1 | 23.3       | 28.3   | 18  | 45   | 66.8      | 87       | 44  |
| Jul-04-21 | 19.5 | 23.5       | 28.9   | 18  | 75   | 54.7      | 76       | 27  |
| Jul-03-21 | 19.9 | 23.4       | 27.5   | 20  | 55   | 65.7      | 85       | 44  |
| Jul-02-21 | 27.8 | 22.8       | 28.6   | 19  | 86   | 71.9      | 92       | 44  |
| Jul-01-21 | 22.0 | 22.0       | 26.6   | 18  | 59   | 71.0      | 91       | 48  |
| Jun-30-21 | 26.2 | 22.9       | 27.8   | 19  | 74   | 68.0      | 92       | 44  |
| Jun-29-21 | 21.6 | 23.2       | 29.2   | 17  | 73   | 65.8      | 98       | 31  |
| Jun-28-21 | 17.9 | 22.6       | 29.3   | 17  | 97   | 72.1      | 98       | 31  |
| Jun-27-21 | 17.0 | 21.0       | 26.0   | 17  | 93   | 76.3      | 95       | 48  |
| Jun-26-21 | 24.0 | 21.3       | 25.7   | 18  | 89   | 77.4      | 95       | 53  |
| Jun-25-21 | 18.0 | 21.7       | 27.0   | 18  | 90   | 75.9      | 93       | 51  |
| Jun-24-21 | 20.0 | 21.1       | 26.9   | 17  | 97   | 78.2      | 97       | 50  |
| Jun-23-21 | 23.2 | 22.2       | 28.5   | 18  | 91   | 73.8      | 94       | 45  |
| Jun-22-21 | 19.6 | 22.2       | 28.5   | 18  | 86   | 79.3      | 96       | 55  |
| Jun-21-21 | 25.5 | 22.2       | 28.6   | 16  | 93   | 72.3      | 94       | 44  |
| Jun-20-21 | 18.4 | 22.4       | 29.8   | 18  | 92   | 74.4      | 94       | 32  |

Anexo B 1. Temperatura y humedad relativa para la ciudad de Medellín.

|           | Temperatura (°C) |          |      |      | % Humedad relativa |          |     |     |
|-----------|------------------|----------|------|------|--------------------|----------|-----|-----|
| Fecha     | Moda             | Promedio | Max  | Min  | Moda               | Promedio | Max | Min |
| Jul-20-21 | 23.3             | 26.9     | 31.7 | 23.0 | 100                | 87.3     | 100 | 67  |
| Jul-19-21 | 30.6             | 25.8     | 31.1 | 21.8 | 100                | 89.1     | 100 | 65  |
| Jul-18-21 | 24.4             | 26.3     | 33.0 | 22.8 | 100                | 91.8     | 100 | 64  |
| Jul-17-21 | 22.8             | 27.1     | 32.4 | 22.7 | 100                | 88.5     | 100 | 68  |
| Jul-16-21 | 23.3             | 25.7     | 31.8 | 23.1 | 100                | 94.0     | 100 | 73  |
| Jul-15-21 | 23.4             | 25.7     | 31.8 | 23.1 | 100                | 95.2     | 100 | 74  |
| Jul-14-21 | 23.9             | 26.0     | 31.3 | 22.9 | 100                | 89.6     | 100 | 62  |
| Jul-13-21 | 24.1             | 25.2     | 30.2 | 21.5 | 100                | 92.4     | 100 | 69  |
| Jul-12-21 | 23.8             | 25.1     | 30.0 | 22.8 | 100                | 96.6     | 100 | 79  |
| Jul-11-21 | 24.8             | 25.9     | 30.5 | 23.2 | 100                | 93.1     | 100 | 76  |
| Jul-10-21 | 24.1             | 26.0     | 31.3 | 23.8 | 100                | 94.5     | 100 | 77  |
| Jul-09-21 | 24.6             | 25.7     | 28.9 | 23.6 | 100                | 95.2     | 100 | 83  |
| Jul-08-21 | 31.3             | 27.1     | 32.0 | 22.6 | 100                | 88.0     | 100 | 68  |
| Jul-07-21 | 23.4             | 25.5     | 31.8 | 22.1 | 100                | 92.7     | 100 | 62  |
| Jul-06-21 | 22.8             | 24.9     | 30.2 | 22.1 | 100                | 93.0     | 100 | 62  |
| Jul-05-21 | 31.5             | 27.0     | 32.4 | 23.0 | 100                | 86.7     | 100 | 62  |
| Jul-04-21 | 23.6             | 25.8     | 30.3 | 23.5 | 100                | 91.8     | 100 | 75  |
| Jul-03-21 | 28.4             | 25.4     | 29.0 | 21.9 | 100                | 89.8     | 100 | 74  |
| Jul-02-21 | 22.6             | 24.0     | 28.0 | 21.7 | 100                | 90.9     | 100 | 77  |
| Jul-01-21 | 23.0             | 25.3     | 29.3 | 22.5 | 100                | 89.8     | 100 | 73  |
| Jun-30-21 | 23.7             | 23.8     | 26.0 | 22.6 | 100                | 99.3     | 100 | 92  |
| Jun-29-21 | 23.6             | 26.4     | 32.0 | 22.5 | 100                | 91.3     | 100 | 69  |
| Jun-28-21 | 22.6             | 26.3     | 33.0 | 22.3 | 100                | 91.2     | 100 | 68  |
| Jun-27-21 | 22.3             | 24.9     | 29.1 | 22.0 | 100                | 94.3     | 100 | 81  |
| Jun-26-21 | 23.6             | 25.5     | 32.1 | 22.4 | 100                | 93.3     | 100 | 70  |
| Jun-25-21 | 24.7             | 26.6     | 32.5 | 24.2 | 100                | 93.8     | 100 | 69  |
| Jun-24-21 | 23.8             | 27.2     | 32.9 | 23.3 | 100                | 87.6     | 100 | 64  |
| Jun-23-21 | 31.8             | 27.5     | 32.5 | 23.1 | 100                | 85.1     | 100 | 61  |
| Jun-22-21 | 23.7             | 27.5     | 32.5 | 23.0 | 100                | 91.5     | 100 | 72  |
| Jun-21-21 | 22.4             | 26.3     | 33.0 | 22.4 | 100                | 91.5     | 100 | 63  |
| Jun-20-21 | 24.4             | 24.4     | 28.0 | 22.3 | 100                | 98.4     | 100 | 91  |

Anexo B 2. Temperatura y humedad relativa para la ciudad de Arauca.

|           | Temperatura (°C) |          |      |      | % Humedad relativa |          |     |     |
|-----------|------------------|----------|------|------|--------------------|----------|-----|-----|
| Fecha     | Moda             | Promedio | Max  | Min  | Moda               | Promedio | Max | Min |
| Jul-20-21 | 31.9             | 28.0     | 33.0 | 24.5 | 100                | 91.6     | 100 | 73  |
| Jul-19-21 | 31.6             | 26.9     | 32.3 | 21.7 | 100                | 90.1     | 100 | 65  |
| Jul-18-21 | 23.5             | 26.4     | 31.4 | 23.1 | 100                | 93.3     | 100 | 74  |
| Jul-17-21 | 29.6             | 26.3     | 34.5 | 22.9 | 100                | 93.8     | 100 | 75  |
| Jul-16-21 | 23.9             | 25.4     | 30.3 | 23.2 | 100                | 98.1     | 100 | 88  |
| Jul-15-21 | 24.0             | 25.6     | 30.3 | 23.2 | 100                | 91.3     | 100 | 72  |
| Jul-14-21 | 32.4             | 27.1     | 33.7 | 22.4 | 100                | 91.3     | 100 | 66  |
| Jul-13-21 | 24.1             | 26.5     | 33.5 | 23.3 | 100                | 94.1     | 100 | 65  |
| Jul-12-21 | 25.0             | 26.9     | 32.4 | 23.4 | 100                | 92.0     | 100 | 69  |
| Jul-11-21 | 24.1             | 27.1     | 33.5 | 23.2 | 100                | 91.7     | 100 | 65  |
| Jul-10-21 | 23.3             | 27.0     | 33.8 | 23.2 | 100                | 88.2     | 100 | 59  |
| Jul-09-21 | 23.3             | 25.5     | 32.2 | 23.1 | 100                | 95.8     | 100 | 68  |
| Jul-08-21 | 24.3             | 26.5     | 32.4 | 23.4 | 100                | 94.8     | 100 | 76  |
| Jul-07-21 | 24.3             | 26.5     | 32.3 | 23.2 | 100                | 94.2     | 100 | 75  |
| Jul-06-21 | 25.6             | 27.6     | 34.5 | 22.4 | 100                | 94.3     | 100 | 75  |
| Jul-05-21 | 25.1             | 26.7     | 33.1 | 22.5 | 100                | 91.5     | 100 | 61  |
| Jul-04-21 | 22.8             | 25.7     | 31.2 | 22.6 | 100                | 94.2     | 100 | 74  |
| Jul-03-21 | 26.1             | 26.2     | 33.0 | 22.4 | 100                | 92.8     | 100 | 69  |
| Jul-02-21 | 31.6             | 26.4     | 33.8 | 21.7 | 100                | 90.1     | 100 | 66  |
| Jul-01-21 | 22.8             | 24.6     | 32.2 | 22.2 | 100                | 96.1     | 100 | 75  |
| Jun-30-21 | 23.2             | 24.7     | 27.2 | 23.2 | 100                | 98.4     | 100 | 90  |
| Jun-29-21 | 24.3             | 26.5     | 31.6 | 23.7 | 100                | 94.5     | 100 | 75  |
| Jun-28-21 | 24.8             | 27.6     | 34.6 | 23.1 | 100                | 89.3     | 100 | 60  |
| Jun-27-21 | 22.3             | 27.3     | 33.2 | 22.1 | 100                | 87.4     | 100 | 66  |
| Jun-26-21 | 22.4             | 27.2     | 34.1 | 22.2 | 100                | 87.5     | 100 | 66  |
| Jun-25-21 | 23.3             | 26.2     | 31.0 | 22.9 | 100                | 92.5     | 100 | 74  |
| Jun-24-21 | 24.2             | 26.2     | 32.2 | 22.7 | 100                | 93.8     | 100 | 70  |
| Jun-23-21 | 23.0             | 27.4     | 34.3 | 22.4 | 100                | 87.0     | 100 | 62  |
| Jun-22-21 | 23.3             | 27.4     | 34.3 | 22.4 | 100                | 90.4     | 100 | 61  |
| Jun-21-21 | 23.1             | 26.3     | 31.7 | 23.1 | 100                | 92.3     | 100 | 68  |
| Jun-20-21 | 23.3             | 25.8     | 31.2 | 23.3 | 100                | 95.0     | 100 | 80  |

Anexo B 3. Temperatura y humedad relativa para la ciudad de Buenaventura.

|           | Temperatura (°C) |          |      |      | % Humedad relativa |          |     |     |
|-----------|------------------|----------|------|------|--------------------|----------|-----|-----|
| Fecha     | Moda             | Promedio | Max  | Min  | Moda               | Promedio | Max | Min |
| Jul-20-21 | 27.9             | 30.1     | 36.6 | 25.4 | 67                 | 80.6     | 95  | 65  |
| Jul-19-21 | 32.8             | 29.3     | 33.9 | 25.5 | 90                 | 83.4     | 94  | 70  |
| Jul-18-21 | 29.5             | 29.3     | 33.8 | 25.2 | 92                 | 82.0     | 94  | 68  |
| Jul-17-21 | 27.6             | 29.1     | 34.5 | 25.6 | 93                 | 85.0     | 95  | 69  |
| Jul-16-21 | 27.3             | 29.1     | 34.3 | 25.0 | 90                 | 83.8     | 95  | 69  |
| Jul-15-21 | 26.9             | 28.4     | 32.6 | 24.6 | 77                 | 85.1     | 93  | 75  |
| Jul-14-21 | 27.1             | 29.4     | 34.5 | 25.7 | 87                 | 83.5     | 96  | 67  |
| Jul-13-21 | 32.8             | 29.4     | 34.1 | 25.4 | 88                 | 84.3     | 96  | 71  |
| Jul-12-21 | 27.9             | 29.7     | 35.6 | 25.3 | 91                 | 83.8     | 96  | 68  |
| Jul-11-21 | 26.8             | 28.4     | 32.9 | 25.6 | 94                 | 85.9     | 95  | 76  |
| Jul-10-21 | 26.8             | 27.3     | 28.6 | 25.8 | 89                 | 88.8     | 94  | 80  |
| Jul-09-21 | 27.1             | 29.6     | 34.7 | 25.4 | 87                 | 80.4     | 91  | 62  |
| Jul-08-21 | 27.4             | 29.9     | 34.6 | 26.3 | 74                 | 82.4     | 92  | 67  |
| Jul-07-21 | 27.2             | 29.6     | 33.7 | 25.0 | 89                 | 82.5     | 94  | 68  |
| Jul-06-21 | 28.1             | 29.7     | 35.6 | 25.7 | 95                 | 82.8     | 94  | 68  |
| Jul-05-21 | 27.5             | 29.1     | 33.6 | 25.1 | 97                 | 85.4     | 98  | 72  |
| Jul-04-21 | 28.7             | 28.2     | 33.6 | 25.3 | 98                 | 89.0     | 99  | 71  |
| Jul-03-21 | 25.4             | 27.5     | 34.0 | 24.8 | 98                 | 92.2     | 99  | 70  |
| Jul-02-21 | 26.8             | 28.4     | 33.7 | 25.1 | 98                 | 87.7     | 99  | 71  |
| Jul-01-21 | 27.5             | 28.4     | 34.3 | 24.8 | 84                 | 88.5     | 98  | 72  |
| Jun-30-21 | 28.4             | 29.9     | 34.5 | 25.9 | 70                 | 81.8     | 94  | 66  |
| Jun-29-21 | 29.0             | 30.2     | 36.2 | 25.8 | 96                 | 84.4     | 96  | 68  |
| Jun-28-21 | 27.0             | 28.8     | 34.4 | 25.4 | 93                 | 87.0     | 95  | 70  |
| Jun-27-21 | 28.1             | 29.2     | 34.5 | 25.0 | 91                 | 82.1     | 93  | 66  |
| Jun-26-21 | 28.0             | 28.5     | 34.4 | 23.4 | 79                 | 78.8     | 97  | 61  |
| Jun-25-21 | 25.3             | 27.8     | 33.0 | 24.2 | 98                 | 88.6     | 98  | 73  |
| Jun-24-21 | 25.8             | 27.4     | 34.2 | 23.9 | 96                 | 87.8     | 98  | 69  |
| Jun-23-21 | 27.8             | 28.9     | 33.6 | 26.0 | 77                 | 83.6     | 93  | 69  |
| Jun-22-21 | 27.8             | 29.5     | 33.0 | 27.1 | 89                 | 83.7     | 91  | 73  |
| Jun-21-21 | 31.7             | 29.4     | 33.1 | 26.9 | 87                 | 82.8     | 93  | 71  |
| Jun-20-21 | 27.5             | 30.1     | 35.3 | 26.2 | 85                 | 82.3     | 94  | 70  |

Anexo B 4. Temperatura y humedad relativa para la ciudad de Cartagena.

|           |      | Temperatura (°C) |      |      |      | % Humedad relativa |     |     |  |
|-----------|------|------------------|------|------|------|--------------------|-----|-----|--|
| Fecha     | Moda | Promedio         | Max  | Min  | Moda | Promedio           | Max | Min |  |
| Ago-14-21 | 26.7 | 24.7             | 26.7 | 22.9 | 100  | 96.2               | 100 | 81  |  |
| Ago-13-21 | 23.2 | 26.7             | 33.5 | 23.2 | 100  | 86.0               | 100 | 53  |  |
| Ago-12-21 | 32.7 | 27.5             | 32.7 | 23.4 | 100  | 87.0               | 100 | 56  |  |
| Ago-11-21 | 21.7 | 25.3             | 34.0 | 21.7 | 100  | 90.8               | 100 | 70  |  |
| Ago-10-21 | 33.9 | 29.8             | 33.9 | 23.7 | 100  | 82.4               | 100 | 49  |  |
| Ago-08-21 | 24.6 | 24.4             | 25.5 | 23.4 | 100  | 98.0               | 100 | 87  |  |
| Ago-07-21 | 24.8 | 27.8             | 32.1 | 23.5 | 100  | 86.1               | 100 | 57  |  |
| Ago-06-21 | 31.4 | 26.8             | 31.4 | 23.0 | 100  | 86.4               | 100 | 59  |  |
| Ago-05-21 | 25.8 | 24.9             | 28.8 | 23.0 | 100  | 91.0               | 100 | 69  |  |
| Ago-04-21 | 26.5 | 24.7             | 26.5 | 22.7 | 100  | 95.6               | 100 | 81  |  |
| Ago-03-21 | 23.0 | 25.2             | 28.4 | 23.0 | 100  | 94.2               | 100 | 72  |  |
| Ago-02-21 | 23.0 | 25.7             | 31.2 | 23.0 | 100  | 86.1               | 100 | 55  |  |
| Ago-01-21 | 23.2 | 24.9             | 28.5 | 23.1 | 100  | 90.0               | 100 | 68  |  |
| Jul-31-21 | 26.8 | 25.6             | 27.3 | 22.5 | 98   | 87.3               | 100 | 69  |  |
| Jul-30-21 | 28.6 | 25.6             | 29.3 | 22.5 | 100  | 87.6               | 98  | 69  |  |
| Jul-29-21 | 31.8 | 29.8             | 34.0 | 24.0 | 100  | 80.8               | 100 | 46  |  |
| Jul-28-21 | 30.6 | 25.8             | 30.6 | 22.6 | 100  | 89.6               | 100 | 67  |  |
| Jul-27-21 | 23.3 | 24.2             | 27.7 | 21.7 | 100  | 95.9               | 100 | 77  |  |
| Jul-26-21 | 31.6 | 26.3             | 31.6 | 22.3 | 100  | 87.9               | 100 | 60  |  |
| Jul-25-21 | 23.2 | 28.1             | 32.9 | 23.2 | 100  | 84.8               | 100 | 58  |  |
| Jul-24-21 | 26.7 | 25.0             | 27.0 | 23.2 | 100  | 97.1               | 100 | 84  |  |
| Jul-23-21 | 24.1 | 25.6             | 29.8 | 24.1 | 100  | 94.7               | 100 | 71  |  |
| Jul-22-21 | 23.9 | 26.7             | 31.8 | 23.9 | 100  | 90.3               | 100 | 63  |  |
| Jul-21-21 | 28.0 | 26.2             | 28.0 | 23.9 | 100  | 93.1               | 100 | 71  |  |
| Jul-20-21 | 26.2 | 27.2             | 31.2 | 23.4 | 100  | 89.7               | 100 | 67  |  |
| Jul-19-21 | 31.5 | 28.0             | 32.7 | 23.0 | 100  | 86.8               | 100 | 57  |  |
| Jul-18-21 | 30.9 | 27.0             | 31.8 | 22.7 | 100  | 90.2               | 100 | 65  |  |
| Jul-17-21 | 23.1 | 27.1             | 31.8 | 22.7 | 100  | 86.3               | 100 | 57  |  |
| Jul-16-21 | 23.6 | 24.7             | 27.4 | 23.5 | 100  | 93.1               | 100 | 69  |  |
| Jul-15-21 | 25.5 | 26.9             | 30.9 | 23.2 | 100  | 89.5               | 100 | 57  |  |
| Jul-14-21 | 24.9 | 24.9             | 29.1 | 22.3 | 100  | 94.2               | 100 | 71  |  |

Anexo B 5. Temperatura y humedad relativa para la ciudad de Inírida.

|           | Temperatura (°C) |          |      |      | % Humedad relativa |          |     |     |
|-----------|------------------|----------|------|------|--------------------|----------|-----|-----|
| Fecha     | Moda             | Promedio | Max  | Min  | Moda               | Promedio | Max | Min |
| Ago-14-21 | 28.6             | 29.5     | 31.7 | 27.2 | 85                 | 84.0     | 97  | 72  |
| Ago-13-21 | 31.5             | 29.6     | 31.5 | 26.9 | 87                 | 84.4     | 96  | 76  |
| Ago-12-21 | 28.4             | 29.7     | 31.8 | 28.1 | 88                 | 82.9     | 89  | 74  |
| Ago-11-21 | 28.4             | 29.5     | 31.7 | 28.1 | 78                 | 81.8     | 90  | 74  |
| Ago-10-21 | 30.5             | 29.4     | 31.4 | 27.8 | 91                 | 85.6     | 94  | 74  |
| Ago-08-21 | 28.3             | 29.3     | 31.1 | 27.9 | 86                 | 83.6     | 92  | 75  |
| Ago-07-21 | 28.5             | 29.2     | 30.8 | 28.1 | 81                 | 85.8     | 92  | 81  |
| Ago-06-21 | 19.0             | 23.9     | 29.2 | 19.0 | 83                 | 85.1     | 89  | 80  |
| Ago-05-21 | 28.6             | 29.4     | 31.1 | 28.2 | 88                 | 86.4     | 93  | 79  |
| Ago-04-21 | 28.6             | 29.3     | 30.9 | 28.0 | 80                 | 88.2     | 100 | 79  |
| Ago-03-21 | 28.2             | 28.3     | 30.7 | 24.6 | 89                 | 88.8     | 100 | 79  |
| Ago-02-21 | 28.6             | 29.2     | 30.6 | 27.8 | 92                 | 89.0     | 93  | 82  |
| Ago-01-21 | 28.7             | 29.7     | 31.7 | 28.2 | 81                 | 86.2     | 93  | 79  |
| Jul-31-21 | 28.4             | 29.4     | 31.3 | 28.2 | 89                 | 84.9     | 91  | 76  |
| Jul-30-21 | 31.3             | 29.3     | 31.4 | 28.0 | 91                 | 85.3     | 91  | 76  |
| Jul-29-21 | 28.3             | 29.3     | 31.2 | 27.9 | 89                 | 83.8     | 89  | 75  |
| Jul-28-21 | 28.1             | 29.4     | 31.2 | 28.1 | 88                 | 85.3     | 93  | 76  |
| Jul-27-21 | 28.1             | 27.9     | 29.9 | 25.2 | 92                 | 92.2     | 99  | 86  |
| Jul-26-21 | 27.6             | 29.0     | 31.2 | 27.6 | 91                 | 86.5     | 92  | 76  |
| Jul-25-21 | 28.3             | 29.5     | 31.3 | 27.9 | 81                 | 87.3     | 93  | 79  |
| Jul-24-21 | 28.4             | 29.2     | 31.3 | 28.0 | 94                 | 88.3     | 94  | 78  |
| Jul-23-21 | 28.2             | 29.1     | 30.7 | 27.9 | 88                 | 86.1     | 94  | 78  |
| Jul-22-21 | 28.5             | 29.4     | 31.0 | 28.3 | 85                 | 83.5     | 88  | 79  |
| Jul-21-21 | 28.9             | 29.5     | 30.7 | 28.3 | 88                 | 83.9     | 90  | 78  |
| Jul-20-21 | 28.3             | 29.6     | 31.2 | 28.2 | 90                 | 86.0     | 92  | 78  |
| Jul-19-21 | 28.7             | 28.9     | 30.9 | 27.0 | 91                 | 88.5     | 96  | 80  |
| Jul-18-21 | 30.7             | 29.5     | 31.4 | 28.1 | 84                 | 81.5     | 91  | 74  |
| Jul-17-21 | 28.8             | 29.5     | 31.4 | 28.1 | 89                 | 86.5     | 92  | 80  |
| Jul-16-21 | 31.0             | 29.4     | 31.4 | 27.6 | 84                 | 80.9     | 90  | 73  |
| Jul-15-21 | 28.2             | 29.5     | 31.5 | 28.0 | 87                 | 82.0     | 88  | 73  |
| Jul-14-21 | 28.5             | 29.5     | 31.2 | 28.4 | 86                 | 84.4     | 90  | 78  |

Anexo B 6. Temperatura y humedad relativa para la ciudad de San Andrés.



Anexo B 7. Carta psicrométrica, datos de dispersión y zona de confort para Medellín.

Anexo B 8. Carta psicrométrica, datos de dispersión y zona de confort para Arauca.





Anexo B 9. Carta psicrométrica, datos de dispersión y zona de confort para Buenaventura.

Anexo B 10. Carta psicrométrica, datos de dispersión y zona de confort para Cartagena.





Anexo B 11. Carta psicrométrica, datos de dispersión y zona de confort para Inírida.

Anexo B 12. Carta psicrométrica, datos de dispersión y zona de confort para San Andrés.



|       | Irradiación (W/m <sup>2</sup> ) |       |       |       |       |  |  |  |
|-------|---------------------------------|-------|-------|-------|-------|--|--|--|
| Hora  | Junio                           | Julio | Hora  | Junio | Julio |  |  |  |
| 0-1   | 0.2                             | 0.3   | 12-13 | 658.7 | 683.3 |  |  |  |
| 1-2   | 0.1                             | 0.2   | 13-14 | 609.2 | 633.9 |  |  |  |
| 2-3   | 0.1                             | 0.2   | 14-15 | 502.6 | 526.8 |  |  |  |
| 3-4   | 0.1                             | 0.1   | 15-16 | 350.5 | 377.6 |  |  |  |
| 4-5   | 0.0                             | 0.0   | 16-17 | 196.4 | 207.2 |  |  |  |
| 5-6   | 0.4                             | 0.3   | 17-18 | 51.2  | 60.3  |  |  |  |
| 6-7   | 43.8                            | 38.2  | 18-19 | 1.7   | 2.8   |  |  |  |
| 7-8   | 166.4                           | 159.3 | 19-20 | 0.5   | 0.8   |  |  |  |
| 8-9   | 337.7                           | 331.2 | 20-21 | 0.3   | 0.6   |  |  |  |
| 9-10  | 487.8                           | 492.6 | 21-22 | 0.3   | 0.5   |  |  |  |
| 10-11 | 567.4                           | 612.3 | 22-23 | 0.3   | 0.4   |  |  |  |
| 11-12 | 617.1                           | 647.3 | 23-0  | 0.2   | 0.4   |  |  |  |

Anexo B 13. Datos de irradiación para la ciudad de Medellín.

Anexo B 14. Datos de irradiación para la ciudad de Arauca.

|       | Irradiación (W/m <sup>2</sup> ) |       |       |       |       |  |  |  |
|-------|---------------------------------|-------|-------|-------|-------|--|--|--|
| Hora  | Junio                           | Julio | Hora  | Junio | Julio |  |  |  |
| 0-1   | 0.0                             | 0.0   | 12-13 | 668.9 | 695.4 |  |  |  |
| 1-2   | 0.0                             | 0.0   | 13-14 | 663.5 | 682.0 |  |  |  |
| 2-3   | 0.0                             | 0.0   | 14-15 | 603.8 | 620.5 |  |  |  |
| 3-4   | 0.0                             | 0.0   | 15-16 | 421.6 | 445.4 |  |  |  |
| 4-5   | 0.0                             | 0.0   | 16-17 | 209.3 | 230.4 |  |  |  |
| 5-6   | 5.0                             | 3.0   | 17-18 | 49.8  | 58.3  |  |  |  |
| 6-7   | 89.7                            | 79.9  | 18-19 | 0.2   | 0.5   |  |  |  |
| 7-8   | 271.2                           | 261.4 | 19-20 | 0.0   | 0.0   |  |  |  |
| 8-9   | 455.2                           | 438.8 | 20-21 | 0.0   | 0.0   |  |  |  |
| 9-10  | 636.0                           | 631.8 | 21-22 | 0.0   | 0.0   |  |  |  |
| 10-11 | 645.6                           | 655.9 | 22-23 | 0.0   | 0.0   |  |  |  |
| 11-12 | 697.1                           | 673.5 | 23-0  | 0.0   | 0.0   |  |  |  |

|       | Irradiación (W/m <sup>2</sup> ) |       |       |       |       |  |  |  |
|-------|---------------------------------|-------|-------|-------|-------|--|--|--|
| Hora  | Junio                           | Julio | Hora  | Junio | Julio |  |  |  |
| 0-1   | 0.3                             | 0.2   | 12-13 | 620.9 | 677.6 |  |  |  |
| 1-2   | 0.3                             | 0.3   | 13-14 | 554.3 | 607.0 |  |  |  |
| 2-3   | 0.3                             | 0.3   | 14-15 | 434.1 | 465.8 |  |  |  |
| 3-4   | 0.4                             | 0.4   | 15-16 | 314.9 | 339.9 |  |  |  |
| 4-5   | 0.4                             | 0.4   | 16-17 | 172.4 | 207.5 |  |  |  |
| 5-6   | 0.7                             | 0.5   | 17-18 | 52.8  | 70.5  |  |  |  |
| 6-7   | 35.2                            | 29.8  | 18-19 | 1.3   | 2.3   |  |  |  |
| 7-8   | 138.0                           | 141.1 | 19-20 | 0.0   | -0.1  |  |  |  |
| 8-9   | 289.4                           | 305.4 | 20-21 | 0.1   | 0.0   |  |  |  |
| 9-10  | 463.1                           | 478.3 | 21-22 | 0.1   | 0.0   |  |  |  |
| 10-11 | 590.3                           | 620.8 | 22-23 | 0.2   | 0.2   |  |  |  |
| 11-12 | 631.5                           | 682.0 | 23-0  | 0.2   | 0.2   |  |  |  |

Anexo B 15. Datos de irradiación para la ciudad de Buenaventura.

| Anexo B 16. Datos de irradiación para la | ciudad de Cartage | na |
|------------------------------------------|-------------------|----|
|------------------------------------------|-------------------|----|

|       | Irradiación (W/m <sup>2</sup> ) |       |       |       |       |  |  |  |
|-------|---------------------------------|-------|-------|-------|-------|--|--|--|
| Hora  | Junio                           | Julio | Hora  | Junio | Julio |  |  |  |
| 0-1   | 0.0                             | 0.0   | 12-13 | 787.8 | 857.5 |  |  |  |
| 1-2   | 0.0                             | 0.0   | 13-14 | 773.6 | 774.9 |  |  |  |
| 2-3   | 0.0                             | 0.0   | 14-15 | 652.4 | 663.3 |  |  |  |
| 3-4   | 0.0                             | 0.0   | 15-16 | 411.3 | 446.6 |  |  |  |
| 4-5   | 0.0                             | 0.0   | 16-17 | 219.1 | 261.2 |  |  |  |
| 5-6   | 2.9                             | 1.1   | 17-18 | 70.5  | 94.2  |  |  |  |
| 6-7   | 83.9                            | 92.2  | 18-19 | 3.6   | 5.8   |  |  |  |
| 7-8   | 258.1                           | 213.8 | 19-20 | 0.0   | 0.0   |  |  |  |
| 8-9   | 493.8                           | 443.0 | 20-21 | 0.0   | 0.0   |  |  |  |
| 9-10  | 706.8                           | 701.2 | 21-22 | 0.0   | 0.0   |  |  |  |
| 10-11 | 758.4                           | 846.5 | 22-23 | 0.0   | 0.0   |  |  |  |
| 11-12 | 746.7                           | 896.0 | 23-0  | 0.0   | 0.0   |  |  |  |

|       | Irradiación (W/m <sup>2</sup> ) |       |       |       |       |  |  |  |  |
|-------|---------------------------------|-------|-------|-------|-------|--|--|--|--|
| Hora  | Junio                           | Julio | Hora  | Junio | Julio |  |  |  |  |
| 0-1   | 0                               | 0     | 12-13 | 486.1 | 538.1 |  |  |  |  |
| 1-2   | 0                               | 0     | 13-14 | 416.7 | 522.5 |  |  |  |  |
| 2-3   | 0                               | 0     | 14-15 | 332.7 | 380.9 |  |  |  |  |
| 3-4   | 0                               | 0     | 15-16 | 213   | 255.3 |  |  |  |  |
| 4-5   | 0                               | 0     | 16-17 | 88.6  | 109.8 |  |  |  |  |
| 5-6   | 22.3                            | 12.4  | 17-18 | 4.6   | 12.3  |  |  |  |  |
| 6-7   | 90                              | 80.6  | 18-19 | 0.2   | 0.1   |  |  |  |  |
| 7-8   | 202.4                           | 196.2 | 19-20 | 0     | 0     |  |  |  |  |
| 8-9   | 310.8                           | 341   | 20-21 | 0     | 0     |  |  |  |  |
| 9-10  | 412.9                           | 450.1 | 21-22 | 0     | 0     |  |  |  |  |
| 10-11 | 473.5                           | 509   | 22-23 | 0     | 0     |  |  |  |  |
| 11-12 | 548.5                           | 558.6 | 23-0  | 0     | 0     |  |  |  |  |

Anexo B 17. Datos de irradiación para la ciudad de Inírida.

Anexo B 18. Datos de irradiación para la ciudad de San Andrés.

|       | Irradiación (W/m <sup>2</sup> ) |       |       |       |       |  |  |  |
|-------|---------------------------------|-------|-------|-------|-------|--|--|--|
| Hora  | Junio                           | Julio | Hora  | Junio | Julio |  |  |  |
| 0-1   | 0                               | 0     | 12-13 | 725.7 | 522.4 |  |  |  |
| 1-2   | 0                               | 0.1   | 13-14 | 696.8 | 520.1 |  |  |  |
| 2-3   | 0                               | 0.1   | 14-15 | 600.2 | 567.3 |  |  |  |
| 3-4   | 0                               | 0     | 15-16 | 458.4 | 394   |  |  |  |
| 4-5   | 0                               | 0.01  | 16-17 | 303.9 | 186.5 |  |  |  |
| 5-6   | 0.2                             | 0.2   | 17-18 | 141.4 | 63    |  |  |  |
| 6-7   | 26.3                            | 58.4  | 18-19 | 29.5  | 0     |  |  |  |
| 7-8   | 135.2                           | 231   | 19-20 | 0.1   | 0.2   |  |  |  |
| 8-9   | 323.3                           | 347.5 | 20-21 | 0     | 0.2   |  |  |  |
| 9-10  | 465.3                           | 357.9 | 21-22 | 0     | 0     |  |  |  |
| 10-11 | 624.7                           | 610.9 | 22-23 | 0.1   | 0.2   |  |  |  |
| 11-12 | 728.8                           | 555.5 | 23-0  | 0.1   | 0     |  |  |  |

# ANEXO C. Algoritmo y resultados método short-cut, resultados balances de energía, cargas del sistema de aire acondicionado por absorción y tradicional.

#### Anexo C 1 Algoritmo short-cut para el sistema de absorción.

El proceso iterativo para definir los flujos de salida del equipo y las condiciones de temperatura, presión y composición se basan en un método iterativo. Se comienza con la estimación del factor de absorción efectivo determinado en primer lugar el coeficiente de distribución ( $K_k$ )a una temperatura promedio entre la entrada del líquido y del gas [33].

$$A_{e,k} = \frac{L_0}{K_k V_{N+1}}$$
 Ecuación 57

Posteriormente de define el número de etapas ideales del proceso [33].

$$N = \frac{Log\left[\frac{A_{e,k} - 1}{\phi_{AK}} + 1\right]}{Log A_{e,k}} - 1$$
 Ecuación 58

Se estiman las fracciones de separación del gas a la salida ( $\phi_{AJ}$ ) y del líquido a la salida ( $\phi_{SJ}$ ) [33] calculando primero en coeficiente de distribución de los no claves ( $K_j$ ) a una temperatura promedio entre la entrada de líquido y de gas.

$$\phi_{AJ} = \frac{\left[A_{eJ} - 1\right]}{\left[A_{eJ}^{N+1} - 1\right]}$$
Ecuación 59
$$\phi_{SJ} = \frac{\left[S_{eJ} - 1\right]}{\left[S_{eJ}^{N+1} - 1\right]}$$
Ecuación 60

Donde:

$$A_{eJ} = \frac{L_0}{K_j V_{N+1}}$$
 Ecuación 61

$$S_{eJ} = \frac{1}{A_{eJ}}$$
 Ecuación 62

Se estiman los flujos de cada componente en las corrientes de salida [33] de modo que:

a. Para compuestos que salen únicamente en la corriente líquida:

$$l_{NJ} = l_{0,j}\phi_{SJ}$$
 Ecuación 63

$$v_{1J} = l_{0,j}(1 - \phi_{SJ})$$
 Ecuación 64

b. Para compuestos que salen únicamente en la corriente gaseosa:

$$l_{NJ} = v_{N+1,j}(1 - \phi_{AJ})$$
 Ecuación 65

$$v_{1J} = v_{N+1,j}\phi_{AJ}$$
 Ecuación 66

## c. Para compuestos que se distribuyen en las dos corrientes:

$$l_{NJ} = l_{0,j}\phi_{SJ} + v_{N+1,j}(1 - \phi_{AJ})$$
 Ecuación 67

$$v_{1J} = v_{N+1,j}\phi_{AJ} + l_{0,j}(1 - \phi_{SJ})$$
 Ecuación 68

Se estiman los flujos globales a la salida de los equipos [33].

$$V_{1} = \sum_{n=1}^{J} v_{1J}$$
 Ecuación 69  
$$L_{N} = \sum_{n=1}^{J} l_{NJ}$$
 Ecuación 70

Se calculan los flujos globales de las etapas extremas [33] basado en el número de etapas ideales calculadas.

$$V_2 = V_1 \left(\frac{V_{N+1}}{V_1}\right)^{1/N}$$
 Ecuación 71

$$L_1 = L_0 + V_2 - V_1$$
 Ecuación 72

$$V_N = V_{N+1} \left(\frac{V_1}{V_{N+1}}\right)^{1/N}$$
 Ecuación 73

Mediante el balance de energía de la torre adiabática se estiman las temperaturas extremas ( $T_N$ ,  $T_I$ ) a la salida como una solución simultanea de las siguientes ecuaciones:

$$\frac{T_N - T_1}{T_N - T_0} = \frac{V_{N+1} - V_2}{V_{N+1} - V_1}$$
 Ecuación 74

$$V_{N+1}H_{V_{N+1}} + L_0H_{L_0} = V_1H_{V_1} + L_NH_{L_N}$$
 Ecuación 75

Donde las entalpias de cada corriente se calculan como:

$$H_G = \sum_{j=1}^{n} y_j C p_{j,G} (T - Tref) + y_j \lambda_{j,Tref}$$
 Ecuación 76

El calor de vaporización solo se toma en cuenta para compuestos que se absorben.

$$H_L = \sum_{j=1}^{n} x_j C p_{j,L} (T - Tref) - x_j \lambda_{j,Tref}$$
 Ecuación 77

El calor de vaporización solo se toma en cuenta para compuestos que se desorben.

Con las etapas extremas calculadas se recalcula el factor de absorción para el clave como:

$$A_{ek} = \left[A_{k,N}(A_{k,1}+1) + 0.25\right]^{1/2} - 0.5$$
 Ecuación 78

$$S_{ek} = \left[S_{k,N}(S_{k,1}+1) + 0.25\right]^{1/2} - 0.5$$
 Ecuación 79

Donde:

$$A_{k,N} = \frac{L_N}{K_k V_N}$$
 Ecuación 80

$$S_{k,N} = \frac{1}{A_{k,N}}$$
 Ecuación 81

Donde  $K_k$  es calculado a la temperatura extrema del líquido ( $T_N$ ).

$$A_{k,1} = \frac{L_1}{K_k V_1}$$
 Ecuación 82

$$S_{k,1} = \frac{1}{A_{k,1}}$$
 Ecuación 83

Donde  $K_k$  es calculado a la temperatura extrema del vapor  $(T_l)$ .

Se recalcula en número de etapas ideales basado en el factor de absorción recalculado con la Ecuación 58 y se recalcula el factor de absorción para los no claves.

$$A_{ej} = \left[A_{j,N}(A_{j,1}+1) + 0.25\right]^{1/2} - 0.5$$
 Ecuación 84

$$S_{ej} = \left[S_{j,N}(S_{j,1}+1) + 0.25\right]^{1/2} - 0.5$$
 Ecuación 85

Donde:

$$A_{j,N} = \frac{L_N}{K_j V_N}$$
 Ecuación 86

$$S_{j,N} = \frac{1}{A_{j,N}}$$
 Ecuación 87

Donde  $K_j$  es calculado a la temperatura extrema del líquido ( $T_N$ ).

$$A_{j,1} = \frac{L_1}{K_j V_1}$$
Ecuación 88  
$$S_{j,1} = \frac{1}{A_{j,1}}$$
Ecuación 89

Donde  $K_i$  es calculado a la temperatura extrema del vapor ( $T_i$ ).

Se recalcula la separación de los componentes no claves con la Ecuación 59 y Ecuación 60 y se repinten los cálculos de forma iterativa partiendo del cálculo de los flujos a la salida desde la Ecuación 63 hasta que no se presenten diferencias significativas entre una iteración y otra en los flujos y las temperaturas de las etapas extremas.

#### Anexo C 2. Algoritmo short-cut para el sistema de desorción.

El proceso de balance de masa y energía es similar al proceso de absorción anteriormente descrito, pero cambiando algunos factores calculados. En primer lugar, se calcula el factor de desorción efectivo para el componente clave.

$$S_{e,k} = \frac{K_k V_{N+1}}{L_0}$$
 Ecuación 90

El número de etapas ideales se calcula como

$$N = \frac{Log\left[\frac{S_{e,k} - 1}{\phi_{SK}} + 1\right]}{Log S_{e,k}} - 1$$
 Ecuación 91

Se estiman las fracciones de separación del líquido y del gas a la salida, utilizando las mismas ecuaciones desde la Ecuación 59 hasta la Ecuación 62 calculando el coeficiente de distribución de los no claves a una temperatura promedio entre la entrada del gas y del líquido.

Luego se calculan los flujos de cada componente en las corrientes de salida utilizando las ecuaciones desde la Ecuación 63 hasta la Ecuación 68 y luego se estiman los flujos globales con la Ecuación 69 y con la Ecuación 70.

Se calculan los flujos globales de las etapas extremas basados en el número de etapas ideales calculadas.

$$L_{N-1} = L_N \left(\frac{L_0}{L_N}\right)^{1/N}$$
 Ecuación 92

$$V_N = V_{N+1} + L_{N-1} - L_N Ecuación 93$$

$$L_1 = L_0 \left(\frac{L_N}{L_0}\right)^{1/N}$$
 Ecuación 94

Se estiman las temperaturas extremas en la salida mediante la solución simultánea del balance de energía de la torre adiabática (Ecuación 75) con la Ecuación 95:

$$\frac{T_0 - T_1}{T_0 - T_N} = \frac{L_0 - L_1}{L_0 - L_N}$$
 Ecuación 95

Las entalpías se calculan con la Ecuación 76 y con la Ecuación 77. Luego, se calcula el factor de desorción con la Ecuación 78 hasta la Ecuación 83 y posteriormente se recalcula el número de etapas ideales utilizando la Ecuación 91 para luego ser recalculados los factores de absorción y desorción utilizando la Ecuación 84 hasta la Ecuación 89 y finalmente se repite el proceso de iteración descrito en la sección de absorción hasta que no se presenten diferencias significativas entre una iteración y otra en los flujos y temperaturas de las etapas extremas.

| Propiedad                                     | Medellín | Arauca   | Buenaventura       | Cartagena            | Inírida  | San Andrés |  |  |  |
|-----------------------------------------------|----------|----------|--------------------|----------------------|----------|------------|--|--|--|
| $T_{op}$ , °C                                 | 33       | 33.3     | 34.9               | 36.9                 | 34.3     | 32.1       |  |  |  |
| $P_{op}$ , atm                                | 0.8440   | 0.9879   | 1.0021             | 1.0024               | 0.9853   | 1.0024     |  |  |  |
| Corriente entrada gaseosa (V <sub>N+1</sub> ) |          |          |                    |                      |          |            |  |  |  |
| $T_{N+1}, ^{\circ}C$                          | 33       | 33.3     | 34.9               | 36.9                 | 34.3     | 32.1       |  |  |  |
| $P_{N+1}$ , atm                               | 0.8440   | 0.9879   | 1.0021             | 1.0024               | 0.9853   | 1.0024     |  |  |  |
| $V_{N+1}$ , kmol/h                            | 16.2426  | 15.9858  | 15.8650            | 15.7155              | 15.9408  | 16.2581    |  |  |  |
| $V_{N+1,H20},$ kmol/h                         | 0.8877   | 0.8058   | 0.8620             | 0.9437               | 0.8522   | 0.7549     |  |  |  |
| Corriente entrada líquido (L <sub>0</sub> )   |          |          |                    |                      |          |            |  |  |  |
| $T_{0}, ^{\circ}C$                            | 22       | 22       | 22                 | 22                   | 22       | 22         |  |  |  |
| P <sub>0</sub> , atm                          | 0.8440   | 0.9879   | 1.0021             | 1.0024               | 0.9853   | 1.0024     |  |  |  |
| L <sub>0</sub> , <i>kmol/h</i>                | 233.9674 | 216.3267 | 242.5179           | 277.4749             | 235.3616 | 195.1579   |  |  |  |
| L <sub>0,H20</sub> , kmol/h                   | 211.1147 | 195.1970 | 218.8300           | 250.3726             | 212.3728 | 176.0959   |  |  |  |
|                                               |          | Corr     | iente salida gase  | osa (V1)             |          |            |  |  |  |
| $T_l, ^{\circ}C$                              | 22.66    | 22.70    | 22.73              | 22.74                | 22.72    | 22.69      |  |  |  |
| V <sub>1</sub> , kmol/h                       | 15.4517  | 15.1743  | 14.9323            | 14.6324              | 15.0486  | 15.5327    |  |  |  |
| V1,H20, kmol/h                                | 0.4533   | 0.3816   | 0.3693             | 0.3634               | 0.3797   | 0.3846     |  |  |  |
|                                               |          | Corr     | iente salida líqui | do (L <sub>N</sub> ) |          |            |  |  |  |
| $T_{N}, ^{\circ}C$                            | 23.34    | 23.43    | 23.47              | 23.51                | 23.46    | 23.39      |  |  |  |
| L <sub>N</sub> , kmol/h                       | 234.7584 | 217.1381 | 243.4505           | 278.5580             | 236.2539 | 195.8833   |  |  |  |
| L <sub>N,H20</sub> , kmol/h                   | 211.5491 | 195.6213 | 219.3227           | 250.9530             | 212.8452 | 176.4662   |  |  |  |

Anexo C 3. Resultado método short cut para el absorbedor.

Anexo C 4. Resultados método Short-cut para el desorbedor.

| Propiedad                                     | Medellín | Arauca   | Buenaventura      | Cartagena              | Inírida  | San Andrés |  |  |  |
|-----------------------------------------------|----------|----------|-------------------|------------------------|----------|------------|--|--|--|
| $T_{op}$ , °C                                 | 52       | 52       | 52                | 54                     | 52       | 52         |  |  |  |
| $P_{op}$ , atm                                | 0.8440   | 0.9879   | 1.0021            | 1.0024                 | 0.9853   | 1.0024     |  |  |  |
| Corriente entrada gaseosa (V <sub>N+1</sub> ) |          |          |                   |                        |          |            |  |  |  |
| $T_{N+1}, ^{\circ}C$                          | 33       | 33.3     | 34.9              | 36.9                   | 34.3     | 32.1       |  |  |  |
| $P_{N+1}$ , atm                               | 0.8440   | 0.9879   | 1.0021            | 1.0024                 | 0.9853   | 1.0024     |  |  |  |
| $V_{N+1}$ , kmol/h                            | 24.3298  | 23.5737  | 36.4021           | 38.6797                | 29.7614  | 17.2372    |  |  |  |
| $V_{N+1,H20},$ kmol/h                         | 1.3297   | 1.1883   | 1.9779            | 2.3228                 | 1.5910   | 0.8004     |  |  |  |
|                                               |          | Corri    | ente entrada líqu | iido (L <sub>0</sub> ) |          |            |  |  |  |
| $T_{0}, ^{\circ}C$                            | 52       | 52       | 52                | 54                     | 52       | 52         |  |  |  |
| P <sub>0</sub> , atm                          | 0.8440   | 0.9879   | 1.0021            | 1.0024                 | 0.9853   | 1.0024     |  |  |  |
| L <sub>0</sub> , kmol/h                       | 234.7584 | 217.1381 | 243.4505          | 278.5580               | 236.2539 | 195.8833   |  |  |  |
| L <sub>0,H20</sub> , kmol/h                   | 211.5491 | 195.6213 | 219.3227          | 250.9530               | 212.8452 | 176.4662   |  |  |  |

| Corriente salida gaseosa (V1) |                                            |          |          |          |          |          |  |  |  |
|-------------------------------|--------------------------------------------|----------|----------|----------|----------|----------|--|--|--|
| $T_{l}, ^{\circ}C$            | 51.71                                      | 51.70    | 51.60    | 53.64    | 51.62    | 51.72    |  |  |  |
| V1, kmol/h                    | 25.8889                                    | 25.1785  | 37.9783  | 40.5349  | 31.1904  | 18.2790  |  |  |  |
| V <sub>1,H20</sub> , kmol/h   | 2.5825                                     | 2.4723   | 3.1770   | 3.7435   | 2.6598   | 1.5374   |  |  |  |
|                               | Corriente salida líquido (L <sub>N</sub> ) |          |          |          |          |          |  |  |  |
| $T_N, ^{\circ}C$              | 51.42                                      | 51.40    | 51.20    | 53.28    | 51.30    | 51.44    |  |  |  |
| L <sub>N</sub> , kmol/h       | 233.1993                                   | 215.5333 | 241.8743 | 276.7028 | 234.8249 | 194.8414 |  |  |  |
| L <sub>N,H20</sub> , kmol/h   | 210.2963                                   | 194.3373 | 218.1237 | 249.5322 | 211.7764 | 175.7292 |  |  |  |

Anexo C 5. Estimación de las condiciones del ventilador 1.

| Propiedades                        | Medellín | Arauca   | Buenaventura | Cartagena | Inírida  | San Andrés |
|------------------------------------|----------|----------|--------------|-----------|----------|------------|
| $T_1, R$                           | 549.27   | 551.07   | 553.95       | 557.55    | 552.87   | 548.91     |
| $T_2, R$                           | 549.71   | 551.45   | 554.32       | 557.92    | 553.25   | 549.28     |
| $P_1, psi$                         | 12.3755  | 14.4832  | 14.6921      | 14.6959   | 14.4446  | 14.6959    |
| $P_2, psi$                         | 12.4105  | 14.5182  | 14.7271      | 14.7309   | 14.4796  | 14.7309    |
| C <sub>G</sub> , gpm               | 2125.88  | 1793.65  | 1763.93      | 1758.18   | 1799.24  | 1790.77    |
| SCFM, <i>ft<sup>3</sup>std/min</i> | 226.1910 | 222.6163 | 220.9324     | 218.8520  | 221.9900 | 226.4082   |
| k = Cp/Cv                          | 1.3966   | 1.3972   | 1.3968       | 1.3963    | 1.3969   | 1.3976     |
| a                                  | 0.2840   | 0.2843   | 0.2841       | 0.2838    | 0.2841   | 0.2845     |
| THp, <i>Hp</i>                     | 0.0432   | 0.0364   | 0.0358       | 0.0357    | 0.0365   | 0.0364     |

Anexo C 6. Estimación de las condiciones del ventilador 2.

| Propiedades                        | Medellín | Arauca   | Buenaventura | Cartagena | Inírida  | San Andrés |
|------------------------------------|----------|----------|--------------|-----------|----------|------------|
| $T_1, R$                           | 549.27   | 551.07   | 553.95       | 557.55    | 552.87   | 548.91     |
| T <sub>2</sub> , <i>R</i>          | 549.71   | 551.45   | 554.32       | 557.92    | 553.25   | 549.28     |
| $P_1$ , <i>psi</i>                 | 12.3755  | 14.4832  | 14.6921      | 14.6959   | 14.4446  | 14.6959    |
| $P_2, psi$                         | 12.4105  | 14.5182  | 14.7271      | 14.7309   | 14.4796  | 14.7309    |
| C <sub>G</sub> , gpm               | 3184.38  | 2645.04  | 4047.35      | 4327.32   | 3359.16  | 1898.62    |
| SCFM, <i>ft<sup>3</sup>std/min</i> | 338.8139 | 328.2842 | 506.9315     | 538.6500  | 414.4517 | 240.0429   |
| k = Cp/Cv                          | 1.3966   | 1.3972   | 1.3968       | 1.3966    | 1.3969   | 1.3976     |
| a                                  | 0.2840   | 0.2843   | 0.2841       | 0.2840    | 0.2841   | 0.2845     |
| ТНр, <i>Нр</i>                     | 0.0647   | 0.0537   | 0.0822       | 0.0879    | 0.0682   | 0.0386     |

Anexo C 7. Estimación de las condiciones de la bomba 1.

| Propiedades                  | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |
|------------------------------|----------|---------|--------------|-----------|---------|------------|
| $T_1, °C$                    | 23.34    | 23.43   | 23.47        | 23.51     | 23.46   | 23.39      |
| T <sub>2</sub> , $^{\circ}C$ | 23.35    | 23.44   | 23.48        | 23.52     | 23.47   | 23.40      |
| $P_1, psi$                   | 12.4033  | 14.5181 | 14.7270      | 14.7312   | 14.4794 | 14.7311    |
| $P_2, psi$                   | 13.4033  | 15.5181 | 15.7270      | 15.7312   | 15.4794 | 15.7311    |
| C <sub>L</sub> , gpm         | 19.1195  | 17.7916 | 17.9497      | 22.8266   | 19.3579 | 16.0519    |

| THp, <i>Hp</i> | 0.0112 | 0.0104 | 0.0116 | 0.0133 | 0.0113 | 0.0094 |
|----------------|--------|--------|--------|--------|--------|--------|
|----------------|--------|--------|--------|--------|--------|--------|

| Propiedades                        | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |
|------------------------------------|----------|---------|--------------|-----------|---------|------------|
| $T_1, °C$                          | 51.42    | 51.40   | 51.20        | 53.28     | 51.30   | 51.44      |
| $T_2$ , °C                         | 51.46    | 51.44   | 51.24        | 53.34     | 51.34   | 51.47      |
| $P_1, psi$                         | 12.4033  | 14.5181 | 14.7270      | 14.7312   | 14.4795 | 14.7312    |
| <b>P</b> <sub>2</sub> , <i>psi</i> | 17.4033  | 19.5181 | 19.7270      | 19.7312   | 19.4795 | 19.7312    |
| C <sub>L</sub> , gpm               | 19.2044  | 17.7559 | 19.9192      | 22.8093   | 19.3391 | 16.0472    |
| THp, Hp                            | 0.0560   | 0.0518  | 0.0581       | 0.0665    | 0.0564  | 0.0468     |

Anexo C 8. Estimación de las condiciones de la bomba 2.

Anexo C 9. Estimación de cargas térmicas en el colector.

| Propiedades                  | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |
|------------------------------|----------|---------|--------------|-----------|---------|------------|
| $\dot{m}_L, kg/s$            | 1.7643   | 1.6336  | 1.8315       | 2.0955    | 1.7773  | 1.4737     |
| Cp, <i>J/kg.K</i>            | 1944.98  | 1943.66 | 1943.42      | 1943.59   | 1943.42 | 1943.06    |
| $T_1, °C$                    | 23.35    | 23.44   | 23.48        | 23.52     | 23.47   | 23.40      |
| T <sub>2</sub> , $^{\circ}C$ | 52       | 52      | 52           | 54        | 52      | 52         |
| $\dot{Q}, kW$                | 98.30    | 90.69   | 101.49       | 124.13    | 98.56   | 81.89      |

Anexo C 10. Estimación de cargas térmicas en el enfriador.

| Propiedades                  | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |
|------------------------------|----------|---------|--------------|-----------|---------|------------|
| $\dot{m}_L, kg/s$            | 1.7563   | 1.6245  | 1.8223       | 2.0848    | 1.7690  | 1.4675     |
| Cp, <i>J/kg.K</i>            | 2026.45  | 2025.49 | 2026.25      | 2034.31   | 2027.17 | 2028.60    |
| $T_1, °C$                    | 51.46    | 51.44   | 51.24        | 53.34     | 51.34   | 51.47      |
| T <sub>2</sub> , $^{\circ}C$ | 22       | 22      | 22           | 22        | 22      | 22         |
| $\dot{Q}, kW$                | -104.91  | -96.88  | -107.98      | -132.91   | -105.23 | -87.74     |

Anexo C 11. Resultados de la simulación para el ventilador 1.

| Propiedades         | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |
|---------------------|----------|---------|--------------|-----------|---------|------------|
| Vambiente, kmol/h   | 16.2425  | 15.9858 | 15.865       | 15.7155   | 15.9408 | 16.2581    |
| $P_1, psi$          | 12.3755  | 14.4832 | 14.6921      | 14.6959   | 14.4446 | 14.6959    |
| $\Delta P, psi$     | 0.035    | 0.035   | 0.035        | 0.035     | 0.035   | 0.035      |
| $P_2, psi$          | 12.4105  | 14.5182 | 14.7271      | 14.7309   | 14.4796 | 14.7309    |
| $T_1, °C$           | 32       | 33      | 34.6         | 36.6      | 34      | 31.8       |
| $T_2$ , °C          | 32.2973  | 33.2550 | 34.8525      | 36.8539   | 34.2564 | 32.0505    |
| THp, W              | 32.3306  | 27.2818 | 26.8302      | 26.7427   | 27.3667 | 27.2384    |
| η                   | 0.82     | 0.82    | 0.82         | 0.82      | 0.82    | 0.82       |
| $\dot{W}_{neta}, W$ | 39.4275  | 33.2705 | 32.7198      | 32.613    | 33.374  | 33.2175    |

| Propiedades                  | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |
|------------------------------|----------|---------|--------------|-----------|---------|------------|
| Vambiente, kmol/h            | 24.3298  | 23.5737 | 36.4021      | 38.6797   | 29.7614 | 17.2372    |
| $P_1, psi$                   | 12.3755  | 14.4832 | 14.6921      | 14.6959   | 14.4446 | 14.6959    |
| $\Delta P$ , <i>psi</i>      | 0.035    | 0.035   | 0.035        | 0.035     | 0.035   | 0.035      |
| $P_2, psi$                   | 12.4105  | 14.5182 | 14.7271      | 14.7309   | 14.4796 | 14.7309    |
| $T_1, °C$                    | 32       | 33      | 34.6         | 36.6      | 34      | 31.8       |
| T <sub>2</sub> , $^{\circ}C$ | 32.2973  | 33.255  | 34.8525      | 36.8539   | 34.2564 | 32.0505    |
| THp, W                       | 48.4283  | 40.2315 | 61.5617      | 65.8202   | 51.0934 | 28.8787    |
| η                            | 0.82     | 0.82    | 0.82         | 0.82      | 0.82    | 0.82       |
| $\dot{W}_{neta}, W$          | 59.0589  | 49.0628 | 75.0752      | 80.2685   | 62.309  | 35.2179    |

Anexo C 12. Resultados de la simulación para el ventilador 2.

Anexo C 13. Resultados de la simulación para la bomba 1.

| Propiedades                  | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |
|------------------------------|----------|---------|--------------|-----------|---------|------------|
| C <sub>L</sub> , gpm         | 19.1454  | 17.7085 | 19.8527      | 22.7136   | 19.2664 | 15.9764    |
| $P_1, psi$                   | 12.4034  | 14.5181 | 14.7268      | 14.7312   | 14.4799 | 14.7312    |
| $\Delta P, psi$              | 1        | 1       | 1            | 1         | 1       | 1          |
| $P_2, psi$                   | 13.4034  | 15.5181 | 15.7268      | 15.7312   | 15.4799 | 15.7312    |
| $T_1, \circ C$               | 24.4772  | 24.5565 | 24.5523      | 24.5513   | 24.5553 | 24.5589    |
| T <sub>2</sub> , $^{\circ}C$ | 24.4772  | 24.5565 | 24.5523      | 24.5513   | 24.5553 | 24.5589    |
| THp, W                       | 8.3281   | 7.7030  | 8.6358       | 9.8802    | 8.3807  | 6.9496     |
| η                            | 0.75     | 0.75    | 0.75         | 0.75      | 0.75    | 0.75       |
| $\dot{W}_{neta}, W$          | 11.1041  | 10.2707 | 11.5144      | 13.1736   | 11.1743 | 9.2661     |

Anexo C 14. Resultados de la simulación para la bomba 2.

| Propiedades                 | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |
|-----------------------------|----------|---------|--------------|-----------|---------|------------|
| C <sub>L</sub> , gpm        | 19.2503  | 17.8162 | 19.9706      | 22.8677   | 19.3833 | 16.0775    |
| $P_1, psi$                  | 12.4034  | 14.5181 | 14.7268      | 14.7312   | 14.4799 | 14.7312    |
| $\Delta P, psi$             | 5        | 5       | 5            | 5         | 5       | 5          |
| P <sub>2</sub> , <i>psi</i> | 17.4034  | 19.5181 | 19.7268      | 19.7312   | 19.4799 | 1907312    |
| $T_1, \circ C$              | 48.7014  | 50.4938 | 50.1344      | 51.9822   | 50.4324 | 51.1258    |
| $T_2, °C$                   | 48.7093  | 50.5018 | 50.1424      | 51.9902   | 50.4404 | 51.1337    |
| THp, W                      | 41.8685  | 38.7495 | 43.4352      | 49.7374   | 42.1579 | 34.9680    |
| η                           | 0.75     | 0.75    | 0.75         | 0.75      | 0.75    | 0.75       |
| $\dot{W}_{neta}, W$         | 55.8247  | 51.6660 | 57.9136      | 66.3165   | 56.2105 | 46.6240    |

| Propiedades                        | Medellín | Arauca  | Buenaventura | Cartagena | Inírida  | San Andrés |
|------------------------------------|----------|---------|--------------|-----------|----------|------------|
| ṁ, kg/s                            | 1.76484  | 1.63193 | 1.8295       | 2.09318   | 1.77551  | 1.47226    |
| $P_1, psi$                         | 13.4034  | 15.5181 | 15.7268      | 15.7312   | 15.4799  | 15.7312    |
| $\Delta P, psi$                    | 1        | 1       | 1            | 1         | 1        | 1          |
| <b>P</b> <sub>2</sub> , <i>psi</i> | 12.4034  | 14.5181 | 14.7268      | 14.7312   | 14.4799  | 14.7312    |
| $T_1, \circ C$                     | 24.4772  | 24.5565 | 24.5523      | 24.5513   | 24.5553  | 24.5589    |
| T <sub>2</sub> , $^{\circ}C$       | 51.63    | 53.52   | 53.39        | 55.12     | 53.55    | 54.04      |
| $\dot{Q}_{neta}, kW$               | 95.2966  | 94.1578 | 105.0835     | 127.6445  | 102.5544 | 86.5041    |

Anexo C 15. Resultados de la simulación para el colector.

Anexo C 16. Resultados de la simulación para el enfriador.

| Propiedades                        | Medellín | Arauca  | Buenaventura | Cartagena | Inírida | San Andrés |
|------------------------------------|----------|---------|--------------|-----------|---------|------------|
| ṁ, kg∕s                            | 1.76153  | 1.62877 | 1.82599      | 2.08916   | 1.77209 | 1.46939    |
| <b>P</b> <sub>1</sub> , <i>psi</i> | 17.4034  | 19.5181 | 19.7268      | 19.7312   | 19.4799 | 19.7312    |
| $\Delta P, psi$                    | 5        | 5       | 5            | 5         | 5       | 5          |
| P <sub>2</sub> , <i>psi</i>        | 12.4034  | 14.5181 | 14.7268      | 14.7312   | 14.4799 | 14.7312    |
| $T_1, °C$                          | 48.7093  | 50.5018 | 50.1424      | 51.9902   | 50.4404 | 51.1337    |
| $T_2, °C$                          | 22       | 22      | 22           | 22        | 22      | 22         |
| $\dot{Q}_{neta}, kW$               | 92.9919  | 91.8864 | 101.6819     | 124.1707  | 99.7512 | 84.7776    |

Anexo C 17 Ciclo de refrigeración del sistema de aire acondicionado tradicional.





Anexo C 18. Esquema del evaporador del sistema de aire acondicionado tradicional.

Anexo C 19. Condiciones de entrada al evaporador del sistema de aire acondicionado tradicional para Medellín.

| Propiedad                                   | Corriente 1 | Corriente 2 |  |  |  |  |
|---------------------------------------------|-------------|-------------|--|--|--|--|
| Flujo aire seco, kg/h                       | 444.8335    | 444.8335    |  |  |  |  |
| Temperatura de bulbo seco, °C               | 32          | 23          |  |  |  |  |
| Humedad relativa, %                         | 98          | 60          |  |  |  |  |
| Presión, mmHg                               | 640         | 640         |  |  |  |  |
| Temperatura de bulbo húmedo, °C             | 31.7        | 17.4        |  |  |  |  |
| Temperatura de rocío, °C                    | 31.6        | 14.9        |  |  |  |  |
| Entalpía, kJ/kg.aireseco                    | 124.21      | 55.02       |  |  |  |  |
| HA, kg.vapor/kg.aireseco                    | 0.0360      | 0.0125      |  |  |  |  |
| Volumen húmedo, m <sup>3</sup> /kg.aireseco | 1.086       | 1.016       |  |  |  |  |
| flujo aire húmedo kg/h                      | 460.8297    | 450.41171   |  |  |  |  |
| Agua condensada                             |             |             |  |  |  |  |
| Flujo de agua, kg/h                         | 10.4180     |             |  |  |  |  |
| Capacidad calorífica del agua, kJ/kg.K      | 4.1834      |             |  |  |  |  |
| Entalpía de condensado, kJ/kg               | 133.8676    |             |  |  |  |  |
| Balance de energía en el evaporador         |             |             |  |  |  |  |
| Calor, kJ/h                                 | 29383.3969  |             |  |  |  |  |
| Balance de energía evaporador del ciclo          |                  |             |           |  |  |  |
|--------------------------------------------------|------------------|-------------|-----------|--|--|--|
| Refrigerante                                     | R134a            | R12         | R22       |  |  |  |
| Tin.sat, °C (T <sub>4</sub> )                    | 5                | 5           | 5         |  |  |  |
| Tout, °C ( $T_1$ = Tsc a $P_5$ °C)               | 10               | 10          | 10        |  |  |  |
| Pin.sat, kPa (P <sub>0</sub> )                   | 350.9            | 362.6       | 583.8     |  |  |  |
| Hin kJ/kg, $(H_4=H_3)$                           | 249.1            | 69.55       | 87.7      |  |  |  |
| Hg=Hout, kJ/kg (H <sub>1</sub> )                 | 405.89           | 192.94      | 255.43    |  |  |  |
| Sout, $kJ/kg$ . K (S <sub>1</sub> )              | 1.741            | 0.70655     | 0.9332    |  |  |  |
| q, kJ/kg                                         | 156.79           | 123.39      | 167.73    |  |  |  |
| m, kg/h                                          | 187.41           | 238.13      | 175.18    |  |  |  |
| Balance de e                                     | nergía compresor | del ciclo   |           |  |  |  |
| Refrigerante                                     | R134a            | R12         | R22       |  |  |  |
| Tin.sat, $^{\circ}C(T_1)$                        | 10               | 10          | 10        |  |  |  |
| Pin.sat, kPa (P <sub>0</sub> )                   | 350.9            | 362.6       | 583.8     |  |  |  |
| Hg=Hin, kJ/kg (H <sub>1</sub> )                  | 405.89           | 192.94      | 255.43    |  |  |  |
| Sin, kJ/kg.K (S <sub>1</sub> =S <sub>2</sub> )   | 1.741            | 0.70655     | 0.9332    |  |  |  |
| T <sub>2</sub> 'sat, °C                          | 40               | 40          | 40        |  |  |  |
| Pout, kPa (Pk)                                   | 1017.0           | 960.7       | 1533.5    |  |  |  |
| H <sub>2</sub> ', kJ/kg                          | 419.82           | 203.20      | 261.15    |  |  |  |
| Tout, $^{\circ}C(T_2)$                           | 48.5             | 49.78       | 61.36     |  |  |  |
| Hout, kJ/kg (H <sub>2</sub> )                    | 429.068          | 210.76      | 280.31    |  |  |  |
| w, kJ/kg                                         | 23.18            | 17.82       | 24.88     |  |  |  |
| Ws, kJ/h                                         | 4343.698         | 4243.554    | 4358.546  |  |  |  |
| Ws, kJ/s (kW)                                    | 1.207            | 1.179       | 1.211     |  |  |  |
| Eficiencia                                       | 0.75             | 0.75 0.75   |           |  |  |  |
| Pot, kW                                          | 1.6088           | 1.5717      | 1.6143    |  |  |  |
| Balance de en                                    | ergía condensado | r del ciclo |           |  |  |  |
| Refrigerante                                     | R134a            | R12         | R22       |  |  |  |
| Tin, °C (T <sub>2</sub> )                        | 48.5             | 49.78       | 61.36     |  |  |  |
| Pin, kPa (Pk)                                    | 1017.0           | 960.7       | 1533.5    |  |  |  |
| Hin, kJ/kg                                       | 429.068          | 210.76      | 280.31    |  |  |  |
| Pout, kPa                                        | 1017.0           | 960.7       | 1533.5    |  |  |  |
| H.out, $kJ/kg$ (H <sub>3</sub> =H <sub>4</sub> ) | 249.1            | 69.55       | 87.7      |  |  |  |
| Tout, °C                                         | 35               | 35          | 35        |  |  |  |
| q, kJ/kg                                         | -179.968         | -141.21     | -192.61   |  |  |  |
| Qenfriador, kJ/h                                 | 33727.095        | 33626.951   | 33741.943 |  |  |  |
| Qenfriador, kJ/s (kW)                            | 9.3686           | 9.341       | 9.373     |  |  |  |

Anexo C 20. Resultados de las condiciones de operación del sistema de aire acondicionado tradicional, Medellín.

| Balance de energía válvula del ciclo |        |        |        |  |  |
|--------------------------------------|--------|--------|--------|--|--|
| Refrigerante                         | R134a  | R12    | R22    |  |  |
| Tin, °C                              | 35     | 35     | 35     |  |  |
| Pin, kPa                             | 1017.0 | 960.7  | 1533.5 |  |  |
| Hin=Hout, kJ/kg (H <sub>4</sub> )    | 249.1  | 69.55  | 87.7   |  |  |
| Pout, kPa                            | 350.9  | 362.6  | 583.8  |  |  |
| Tout, °C                             | 5      | 5      | 5      |  |  |
| Hf kJ/kg, (Hf <sub>4</sub> )         | 206.75 | 40.69  | 50.49  |  |  |
| Calidad, $(x_4)$                     | 0.2127 | 0.1896 | 0.1816 |  |  |

Anexo C 21. Condiciones de entrada al evaporador del sistema de aire acondicionado tradicional para Arauca.

| Propiedad                                   | Corriente 1 | <b>Corriente 2</b> |  |  |  |
|---------------------------------------------|-------------|--------------------|--|--|--|
| Flujo aire seco, kg/h                       | 439.7661    | 439.7661           |  |  |  |
| Temperatura de bulbo seco, °C               | 33          | 23                 |  |  |  |
| Humedad relativa, %                         | 100         | 60                 |  |  |  |
| Presión, mmHg                               | 749         | 749                |  |  |  |
| Temperatura de bulbo húmedo, °C             | 33          | 17.7               |  |  |  |
| Temperatura de rocío, °C                    | 33          | 14.9               |  |  |  |
| Entalpía, kJ/kg.aireseco                    | 117.76      | 50.3               |  |  |  |
| HA, kg.vapor/kg.aireseco                    | 0.03302     | 0.01068            |  |  |  |
| Volumen húmedo, m <sup>3</sup> /kg.aireseco | 0.927       | 0.866              |  |  |  |
| flujo aire húmedo kg/h                      | 454.2872    | 444.4628           |  |  |  |
| Agua co                                     | ondensada   |                    |  |  |  |
| Flujo de agua, kg/h                         | 9.82        | 44                 |  |  |  |
| Capacidad calorífica del agua, kJ/kg.K      | 4.1834      |                    |  |  |  |
| Entalpía de condensado, kJ/kg               | 138.0510    |                    |  |  |  |
| Balance de energía en el evaporador         |             |                    |  |  |  |
| Calor, kJ/h                                 | 28310.      | 3565               |  |  |  |

Anexo C 22. Resultados de las condiciones de operación del sistema de aire acondicionado tradicional, Arauca.

| Balance de energía evaporador del ciclo |        |         |        |  |  |  |
|-----------------------------------------|--------|---------|--------|--|--|--|
| Refrigerante                            | R134a  | R12     | R22    |  |  |  |
| Tin.sat, °C (T <sub>4</sub> )           | 5      | 5       | 5      |  |  |  |
| Tout, °C ( $T_1$ = Tsc a $P_5$ °C)      | 10     | 10      | 10     |  |  |  |
| Pin.sat, kPa (P <sub>0</sub> )          | 350.9  | 362.6   | 583.8  |  |  |  |
| Hin kJ/kg, $(H_4=H_3)$                  | 249.1  | 69.55   | 87.7   |  |  |  |
| Hg=Hout, kJ/kg (H <sub>1</sub> )        | 405.89 | 192.94  | 255.43 |  |  |  |
| Sout, kJ/kg.K (S <sub>1</sub> )         | 1.741  | 0.70655 | 0.9332 |  |  |  |
| q, kJ/kg                                | 156.79 | 123.39  | 167.73 |  |  |  |
| m, kg/h                                 | 180.56 | 229.44  | 168.79 |  |  |  |

| Balance de energía compresor del ciclo           |                   |           |           |  |  |  |  |
|--------------------------------------------------|-------------------|-----------|-----------|--|--|--|--|
| Refrigerante                                     | R134a             | R12       | R22       |  |  |  |  |
| Tin.sat, $^{\circ}C(T_1)$                        | 10                | 10        | 10        |  |  |  |  |
| Pin.sat, kPa (P <sub>0</sub> )                   | 350.9             | 362.6     | 583.8     |  |  |  |  |
| Hg=Hin, kJ/kg (H <sub>1</sub> )                  | 405.89            | 192.94    | 255.43    |  |  |  |  |
| Sin, kJ/kg.K ( $S_1=S_2$ )                       | 1.741             | 0.70655   | 0.9332    |  |  |  |  |
| T <sub>2</sub> 'sat, °C                          | 40                | 40        | 40        |  |  |  |  |
| Pout, kPa (Pk)                                   | 1017.0            | 960.7     | 1533.5    |  |  |  |  |
| H <sub>2</sub> ', kJ/kg                          | 419.82            | 203.20    | 261.15    |  |  |  |  |
| Tout, $^{\circ}C(T_2)$                           | 48.5              | 49.78     | 61.36     |  |  |  |  |
| Hout, kJ/kg (H <sub>2</sub> )                    | 429.068           | 210.76    | 280.31    |  |  |  |  |
| w, kJ/kg                                         | 23.18             | 17.82     | 24.88     |  |  |  |  |
| Ws, kJ/h                                         | 4185.072          | 4088.585  | 4199.378  |  |  |  |  |
| Ws, kJ/s (kW)                                    | 1.163             | 1.136     | 1.166     |  |  |  |  |
| Eficiencia                                       | 0.75              | 0.75      | 0.75      |  |  |  |  |
| Pot, kW                                          | 1.5500            | 1.5143    | 1.5553    |  |  |  |  |
| Balance de energía condensador del ciclo         |                   |           |           |  |  |  |  |
| Refrigerante                                     | R134a             | R12       | R22       |  |  |  |  |
| Tin, °C (T <sub>2</sub> )                        | 48.5              | 49.78     | 61.36     |  |  |  |  |
| Pin, kPa (Pk)                                    | 1017.0            | 960.7     | 1533.5    |  |  |  |  |
| Hin, kJ/kg                                       | 429.068           | 210.76    | 280.31    |  |  |  |  |
| Pout, kPa                                        | 1017.0            | 960.7     | 1533.5    |  |  |  |  |
| H.out, $kJ/kg$ (H <sub>3</sub> =H <sub>4</sub> ) | 249.1             | 69.55     | 87.7      |  |  |  |  |
| Tout, °C                                         | 35                | 35        | 35        |  |  |  |  |
| q, kJ/kg                                         | -179.968          | -141.21   | -192.61   |  |  |  |  |
| Qenfriador, kJ/h                                 | 32495.429         | 32398.942 | 32509.735 |  |  |  |  |
| Qenfriador, kJ/s (kW)                            | 9.0265            | 8.9997    | 9.030     |  |  |  |  |
| Balance de                                       | energía válvula d | el ciclo  |           |  |  |  |  |
| Refrigerante                                     | R134a             | R12       | R22       |  |  |  |  |
| Tin, °C                                          | 35                | 35        | 35        |  |  |  |  |
| Pin, kPa                                         | 1017.0            | 960.7     | 1533.5    |  |  |  |  |
| Hin=Hout, kJ/kg (H <sub>4</sub> )                | 249.1             | 69.55     | 87.7      |  |  |  |  |
| Pout, kPa                                        | 350.9             | 362.6     | 583.8     |  |  |  |  |
| Tout, °C                                         | 5                 | 5         | 5         |  |  |  |  |
| Hf kJ/kg, (Hf <sub>4</sub> )                     | 206.75            | 40.69     | 50.49     |  |  |  |  |
| Calidad, (x <sub>4</sub> )                       | 0.2127            | 0.1896    | 0.1816    |  |  |  |  |

| Propiedad                                   | <b>Corriente 1</b> | Corriente 2 |  |  |  |
|---------------------------------------------|--------------------|-------------|--|--|--|
| Flujo aire seco, kg/h                       | 434.6371           | 434.6371    |  |  |  |
| Temperatura de bulbo seco, °C               | 34.6               | 23          |  |  |  |
| Humedad relativa, %                         | 100                | 60          |  |  |  |
| Presión, mmHg                               | 759.8              | 759.8       |  |  |  |
| Temperatura de bulbo húmedo, °C             | 34.6               | 17.7        |  |  |  |
| Temperatura de rocío, °C                    | 34.6               | 14.9        |  |  |  |
| Entalpía, kJ/kg.aireseco                    | 126.43             | 49.91       |  |  |  |
| HA, kg.vapor/kg.aireseco                    | 0.03574            | 0.01053     |  |  |  |
| Volumen húmedo, m <sup>3</sup> /kg.aireseco | 0.922              | 0.854       |  |  |  |
| flujo aire húmedo kg/h                      | 450.1710           | 439.2138    |  |  |  |
| Agua co                                     | ndensada           |             |  |  |  |
| Flujo de agua, kg/h                         | 10.9               | 572         |  |  |  |
| Capacidad calorífica del agua, kJ/kg.K      | 4.1834             |             |  |  |  |
| Entalpía de condensado, kJ/kg               | 144.7444           |             |  |  |  |
| Balance de energía en el evaporador         |                    |             |  |  |  |
| Calor, kJ/h                                 | 31672              | .4378       |  |  |  |

Anexo C 23. Condiciones de entrada al evaporador del sistema de aire acondicionado tradicional para Buenaventura.

Anexo C 24. Resultados de las condiciones de operación del sistema de aire acondicionado tradicional, Buenaventura.

| Balance de energía evaporador del ciclo        |                  |           |        |  |  |  |
|------------------------------------------------|------------------|-----------|--------|--|--|--|
| Refrigerante                                   | R134a R12        |           | R22    |  |  |  |
| Tin.sat, °C (T <sub>4</sub> )                  | 5                | 5         | 5      |  |  |  |
| Tout, °C ( $T_1$ = Tsc a $P_5$ °C)             | 10               | 10        | 10     |  |  |  |
| Pin.sat, kPa (P <sub>0</sub> )                 | 350.9            | 362.6     | 583.8  |  |  |  |
| Hin kJ/kg, (H <sub>4</sub> =H <sub>3</sub> )   | 249.1            | 69.55     | 87.7   |  |  |  |
| Hg=Hout, kJ/kg (H <sub>1</sub> )               | 405.89           | 192.94    | 255.43 |  |  |  |
| Sout, kJ/kg.K (S1)                             | 1.741            | 0.70655   | 0.9332 |  |  |  |
| q, kJ/kg                                       | 156.79           | 123.39    | 167.73 |  |  |  |
| m, kg/h                                        | 202.01           | 256.69    | 188.83 |  |  |  |
| Balance de er                                  | nergía compresor | del ciclo |        |  |  |  |
| Refrigerante                                   | R134a            | R12       | R22    |  |  |  |
| Tin.sat, °C (T <sub>1</sub> )                  | 10               | 10        | 10     |  |  |  |
| Pin.sat, kPa (P <sub>0</sub> )                 | 350.9            | 362.6     | 583.8  |  |  |  |
| Hg=Hin, kJ/kg (H <sub>1</sub> )                | 405.89           | 192.94    | 255.43 |  |  |  |
| Sin, kJ/kg.K (S <sub>1</sub> =S <sub>2</sub> ) | 1.741            | 0.70655   | 0.9332 |  |  |  |
| T <sub>2</sub> 'sat, °C                        | 40               | 40        | 40     |  |  |  |
| Pout, kPa (Pk)                                 | 1017.0           | 960.7     | 1533.5 |  |  |  |
| H <sub>2</sub> ', kJ/kg                        | 419.82           | 203.20    | 261.15 |  |  |  |
| Tout, $^{\circ}C(T_2)$                         | 48.5             | 49.78     | 61.36  |  |  |  |

| Hout kI/kg (H2)                                  | 429.068           | 210.76      | 280 31    |
|--------------------------------------------------|-------------------|-------------|-----------|
| $k / k \sigma$                                   | 23.18             | 17.82       | 24 88     |
| Ws kI/h                                          | 4682.083          | 4574 138    | 4698 088  |
| Ws kI/s $(kW)$                                   | 1 301             | 1 271       | 1 305     |
| Eficiencia                                       | 0.75              | 0.75        | 0.75      |
| Pot kW                                           | 1.7341            | 1 6941      | 1.7400    |
| Balance de en                                    | ergía condensado  | r del ciclo | 1.1.00    |
| Refrigerante                                     | R134a             | R12         | R22       |
| Tin, °C (T <sub>2</sub> )                        | 48.5              | 49.78       | 61.36     |
| Pin, kPa (Pk)                                    | 1017.0            | 960.7       | 1533.5    |
| Hin, kJ/kg                                       | 429.068           | 210.76      | 280.31    |
| Pout, kPa                                        | 1017.0            | 960.7       | 1533.5    |
| H.out, $kJ/kg$ (H <sub>3</sub> =H <sub>4</sub> ) | 249.1             | 69.55       | 87.7      |
| Tout, °C                                         | 35                | 35          | 35        |
| q, kJ/kg                                         | -179.968          | -141.21     | -192.61   |
| Qenfriador, kJ/h                                 | 36354.521         | 36246.575   | 36370.525 |
| Qenfriador, kJ/s (kW)                            | 10.0985           | 10.068      | 10.103    |
| Balance de                                       | energía válvula d | el ciclo    |           |
| Refrigerante                                     | R134a             | R12         | R22       |
| Tin, °C                                          | 35                | 35          | 35        |
| Pin, kPa                                         | 1017.0            | 960.7       | 1533.5    |
| Hin=Hout, kJ/kg (H <sub>4</sub> )                | 249.1             | 69.55       | 87.7      |
| Pout, kPa                                        | 350.9             | 362.6       | 583.8     |
| Tout, °C                                         | 5                 | 5           | 5         |
| Hf kJ/kg, (Hf <sub>4</sub> )                     | 206.75            | 40.69       | 50.49     |
| Calidad, (x4)                                    | 0.2127            | 0.1896      | 0.1816    |

## ANEXO D. Validación del modelo termodinámico

Anexo D 1. Herramienta de Análisis de mezcla en el software Aspen Plus ®.

| MIX-1 (MIXTURE) × +  |                                 |               |                |         |                   |           |          |
|----------------------|---------------------------------|---------------|----------------|---------|-------------------|-----------|----------|
| 🥝 Mixture            | Calculation (                   | Options [     | Diagnostics    | Results | Comments          | () Status |          |
| Selecte              | d composition ar<br>on —        | nd properties | to report      |         | - Properties to R | eport     |          |
| Basis                | Mass 🔹                          | kg/hr         | -              |         | Available         |           | Selected |
|                      | Component                       | Flow          | Fractio        | n       | СР                | >         | RHOMIX   |
| > H2O                |                                 |               | 60             | 0,6     | PVAP              | >>        |          |
| > CACL               | 2                               |               | 40             | 0,4     |                   | <         |          |
| •                    |                                 |               |                |         |                   | <<        |          |
|                      | Total                           |               | 100            |         |                   | New       |          |
|                      |                                 |               |                |         |                   |           |          |
| Manipulat<br>Tempera | d manipulated ar<br>ed variable | ia parametrio |                |         | Parametric Vari   | able      | , •      |
| Equidis              | tant 🛛 🔘 Logari                 | ithmic 🔘 I    | List of values |         | Enter Values      |           |          |
| Enter Valu           | ies C                           | •             |                |         |                   | >         | 760      |
|                      |                                 | ^             |                |         |                   | •         |          |
|                      | >                               | 20            |                |         | Fixed State Vari  | able      |          |
|                      | P                               | 25            |                |         | lemperature       | Ŧ         | C -      |
|                      | ×                               | 35            |                |         |                   |           |          |
|                      | × .                             | 40            |                |         |                   |           |          |
|                      | ×                               | 41            |                |         |                   |           |          |
|                      |                                 | 42            |                |         |                   |           |          |

Anexo D 2. Ejemplo de resultados de la simulación para CaCl<sub>2</sub> 40% en peso.

| MD | MIX-1 (MIXTURE) × + |               |        |             |         |           |          |         |
|----|---------------------|---------------|--------|-------------|---------|-----------|----------|---------|
| 0  | Mixture             | Calculation O | ptions | Diagnostics | Results | Comments  | 🕜 Status |         |
|    |                     | PRES          | TEMP   |             | LIQU    | JID RHOMX | TOTA     | L TBUB  |
|    | bar                 | •             | С      | •           | lb/gal  | -         | С        | -       |
| Þ  |                     | 1,01325       |        | 0           |         | 12,2511   |          | 118,647 |
| Þ  |                     | 1,01325       |        | 10          |         | 12,2507   |          | 118,647 |
| Þ  |                     | 1,01325       |        | 15          |         | 12,2436   |          | 118,647 |
| Þ  |                     | 1,01325       |        | 20          |         | 12,2326   |          | 118,647 |
| Þ  |                     | 1,01325       |        | 25          |         | 12,2184   |          | 118,647 |
| Þ  |                     | 1,01325       |        | 30          |         | 12,2012   |          | 118,647 |
| Þ  |                     | 1,01325       |        | 35          |         | 12,1812   |          | 118,647 |
| Þ  |                     | 1,01325       |        | 40          |         | 12,1587   |          | 118,647 |
| Þ  |                     | 1,01325       |        | 41          |         | 12,154    |          | 118,647 |
|    |                     | 1,01325       |        | 42          |         | 12,1491   |          | 118,647 |

|        | Densidad en función de la temperatura y %CaCl2 (lb/gal) |       |              |       |          |                       |       |             |       |
|--------|---------------------------------------------------------|-------|--------------|-------|----------|-----------------------|-------|-------------|-------|
|        |                                                         |       |              | Tem   | peratura | ( <b>•</b> <i>F</i> ) |       |             |       |
|        | 10•                                                     |       |              |       | 20•      |                       |       | <i>40</i> • |       |
| %CaCl2 | Exp                                                     | Sim   | Error        | Exp   | Sim      | Error                 | Exp   | Sim         | Error |
| 10     | _                                                       | 9.08  | _            | _     | 9.08     | _                     | 9.16  | 9.1         | 0.8%  |
| 15     | _                                                       | 9.50  | _            | 9.63  | 9.50     | 1.4%                  | 9.57  | 9.5         | 0.7%  |
| 20     | 10.07                                                   | 9.95  | 1.2%         | 10.04 | 9.95     | 0.9%                  | 9.98  | 10.0        | 0.2%  |
| 25     | 10.49                                                   | 10.44 | 0.5%         | 10.46 | 10.45    | 0.1%                  | 10.4  | 10.45       | 0.5%  |
| 30     | 10.98                                                   | 10.98 | 0.0%         | 10.95 | 10.99    | 0.3%                  | 10.89 | 11.00       | 1.0%  |
| 35     | _                                                       | 12.38 | _            | _     | 11.58    | _                     | 11.38 | 11.59       | 1.9%  |
| 40     | _                                                       | 12.24 | _            | _     | 12.24    | _                     | _     | 12.25       | _     |
| 41     | _                                                       | 12.38 | _            | _     | 12.38    | _                     | _     | 12.39       | -     |
| 42     | _                                                       | 12.52 | _            | _     | 12.53    | _                     | _     | 12.54       | _     |
|        |                                                         | 60•   |              | 80•   |          | 100•                  |       |             |       |
| %CaCl2 | Exp                                                     | Sim   | <b>Error</b> | Exp   | Sim      | <b>Error</b>          | Exp   | Sim         | Error |
| 10     | 9.11                                                    | 9.082 | 0.3%         | 9.05  | 9.06     | 0.1%                  | 9     | 9.027       | 0.3%  |
| 15     | 9.52                                                    | 9.499 | 0.2%         | 9.46  | 9.476    | 0.2%                  | 9.41  | 9.441       | 0.3%  |
| 20     | 9.93                                                    | 9.951 | 0.2%         | 9.87  | 9.927    | 0.6%                  | 9.82  | 9.891       | 0.7%  |
| 25     | 10.35                                                   | 10.45 | 0.9%         | 10.29 | 10.42    | 1.3%                  | 10.24 | 10.38       | 1.4%  |
| 30     | 10.84                                                   | 10.99 | 1.4%         | 10.78 | 10.96    | 1.7%                  | 10.73 | 10.92       | 1.8%  |
| 35     | 11.33                                                   | 11.58 | 2.2%         | 11.27 | 11.56    | 2.5%                  | 11.22 | 11.51       | 2.6%  |
| 40     | _                                                       | 12.24 | _            | 11.76 | 12.21    | 3.9%                  | 11.71 | 12.17       | 3.9%  |
| 41     | —                                                       | 12.38 | _            | 11.86 | 12.35    | 4.2%                  | 11.81 | 12.31       | 4.2%  |
| 42     | _                                                       | 12.53 | _            | 11.95 | 12.5     | 4.6%                  | 11.9  | 12.45       | 4.6%  |

Anexo D 3. Comparación de densidad experimental [20] y simulada para la validación del modelo termodinámico.

Exp: Valor experimental; Sim: Valor experimental.

Anexo D 4. Comparación de la temperatura de ebullición experimental [20] y simulada para la validación del modelo termodinámico.

| %CaCl2 | T Ebullición Exp (•C) | T Ebullición Sim (•C) | %Error |
|--------|-----------------------|-----------------------|--------|
| 0      | 100                   | 99.9603               | 0.04%  |
| 10     | 102                   | 101.118               | 0.86%  |
| 15     | 103                   | 101.945               | 1.02%  |
| 20     | 105                   | 104.204               | 0.76%  |
| 25     | 107                   | 106.76                | 0.22%  |
| 30     | 111                   | 110.019               | 0.88%  |
| 35     | 115                   | 113.981               | 0.89%  |
| 40     | 120                   | 118.647               | 1.13%  |
| 41     | 121                   | 119.665               | 1.10%  |
| 42     | 122                   | 120.712               | 1.06%  |

|        | 40%                       | 6 CaCl2            |        |
|--------|---------------------------|--------------------|--------|
| T (°C) | P <sub>v</sub> Exp (mmHg) | $P_{v}$ Sim (mmHg) | %Error |
| 15     | 6.5                       | 6.7                | 3.76%  |
| 18     | 8.1                       | 8.2                | 0.80%  |
| 20     | 9.1                       | 9.3                | 1.67%  |
| 25     | 12.2                      | 12.5               | 2.79%  |
| 30     | 16.9                      | 16.8               | 0.55%  |
| 35     | 21.2                      | 22.3               | 5.11%  |
| 37     | 23.6                      | 24.8716            | 5.39%  |
| 40     | 28                        | 29.2427            | 4.44%  |
| 45     | 35.7                      | 38.0               | 6.46%  |

Anexo D 5. Comparación de la presión de vapor experimental [20] y simulada para la validación del modelo termodinámico.



**Nota:** Comparar con el Anexo A 3.

## ANEXO E. Especificaciones y resultados de la simulación del sistema de aire acondicionado por absorción en el software Aspen Plus ®

| Anexo E 1. Version del software Aspen Plus ®.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| About Aspen Plus X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| aspentech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aspen Plus<br>V10 (36.0.0.249)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Copyright (c) 1981 - 2017 Aspen Technology, Inc., and its applicable subsidiaries, affiliates, and suppliers. All<br>rights reserved. This software is a proprietary product of Aspen Technology, Inc., its applicable subsidiaries,<br>affiliates, and suppliers and may be used only under agreement with AspenTech.                                                                                                                                                                                                                                                                                                            |
| The flowsheet graphics and plot components of Aspen Plus® were developed by MY-Tech, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| This software includes NIST Standard Reference Database 103b: NIST Thermodata Engine Version 10.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| This Software is a proprietary product of AspenTech and may be used only under agreement with AspenTech.<br>The Software is subject to the following Restricted Rights Legend: "Use, duplication, or disclosure by the U.S.<br>Government is subject to restrictions as set forth in (i) FAR 52-227-14,Alt.III.(ii) FAR 52.227-16(c)(1) and (2), (iii)<br>DFARS 252.227-7013(c)(1)(ii), or (iv) the accompanying license agreement, as applicable. For the purpose of the<br>FAR, the Software shall be deemed to be "unpublished" and licensed with disclosure prohibitions.<br>Contractor/subcontractor Aspen Technology, Inc." |
| AspenTech, and the aspen leaf logo are registered trademarks of Aspen Technology, Inc. All rights reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Support:<br>E-mail esupport@aspentech.com<br>Phone + 1 888-996-7100 (Toll-free from U.S., Canada, Mexico) V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| www.aspentech.com OK Licensing Information Module Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

• • 1 1 c . -~

Anexo E 2. Especificación de la corriente fresca de alimento al proceso para la simulación en Medellín.

| Main Flowsheet × LO-F              | RESC (MATERIAL) $	imes$ | +                    |     |           |             |                                          |
|------------------------------------|-------------------------|----------------------|-----|-----------|-------------|------------------------------------------|
| Mixed CI Solid 1                   | NC Solid Flash Opt      | ions EO Options Cost | ing | Comments  |             |                                          |
| <ul> <li>Specifications</li> </ul> |                         |                      |     |           |             | <ul> <li>Component Attributes</li> </ul> |
| Flash Type Ten                     | nperature 🔹             | Pressure -           | Cor | nposition |             | Particle Size Distribution               |
| State variables                    |                         |                      | Mo  | e-Flow •  | kmol/hr •   |                                          |
| Temperature                        | 22                      | C •                  |     | Component | Value       |                                          |
| Pressure                           | 0,844                   | atm 🔻                | -   | N2        | 7,6e-07     |                                          |
| Vapor fraction                     |                         |                      | •   | 02        | 1,99e-06    |                                          |
| Total flow basis                   | Mole 🔻                  |                      | •   | AR        | 4e-08       |                                          |
| Total flow rate                    |                         | kmol/hr 🔹            |     | CO2       | 1.2e-07     |                                          |
| Solvent                            |                         | -                    | •   | H2O       | 2,006e-05   |                                          |
| Reference Temperatur               | e                       |                      | •   | CACL2     | 1,26e-10    |                                          |
| Volume flow reference              | e temperature           |                      | ►   | CA++      |             |                                          |
| С                                  | T                       |                      | ►   | CL-       |             |                                          |
| Component concentra                | ation reference tempe   | erature              |     | Total     | 2,29701e-05 |                                          |

| Mixed CI Solid    | NC Solid Flas         | h Options   | EO Options | Costing | T  | Comments  |           |                                          |
|-------------------|-----------------------|-------------|------------|---------|----|-----------|-----------|------------------------------------------|
| • Specifications  |                       |             |            |         |    |           |           | <ul> <li>Component Attributes</li> </ul> |
| Flash Type        | Temperature           | + Pres      | sure       | •       | om | position  |           | ♥ Particle Size Distribution             |
| - State variables |                       |             |            |         | Мо | le-Flow 🔹 | kmol/hr • | -                                        |
| Temperature       |                       | 32 C        | •          |         |    | Component | Value     |                                          |
| Pressure          |                       | 640 mm      | Hg 🔻       |         | •  | N2        | 11,9768   |                                          |
| Vapor fraction    |                       |             |            |         | Þ  | 02        | 3,2245    |                                          |
| Total flow basis  | Mole                  | -           |            |         | Þ  | AR        | 0,1428    |                                          |
| Total flow rate   |                       | kmol        | /hr 🔻      |         | Þ  | CO2       | 0,0107    |                                          |
| Solvent           |                       |             | Ŧ          |         | Þ  | H2O       | 0,8877    |                                          |
| Reference Temper  | ature                 |             |            |         | Þ  | CACL2     |           |                                          |
| Volume flow refer | ence temperature      |             |            |         | Þ  | CA++      |           |                                          |
| С                 | -                     |             |            |         | Þ  | CL-       |           |                                          |
| Component conc    | entration reference t | temperature | 2          |         | -  | 1         |           |                                          |
| C                 | -                     |             |            |         |    | Total     | 16,2425   |                                          |

Anexo E 3. Especificación de la corriente de aire a la entrada del Ventilador 1 para la ciudad de Medellín.

Anexo E 4. Especificación de la corriente de aire a la entrada del Ventilador 2 para la ciudad de Medellín.

| Main Flowsheet × All               | RE-DES (MATERIAL) $\times$ | +               |         |     |           |           |                            |
|------------------------------------|----------------------------|-----------------|---------|-----|-----------|-----------|----------------------------|
| Mixed CI Solid                     | NC Solid Flash Opt         | ions EO Options | Costing | 1   | Comments  |           |                            |
| <ul> <li>Specifications</li> </ul> |                            |                 |         |     |           |           | ✓ Component Attributes     |
| Flash Type Te                      | mperature 🔹                | Pressure        | - C     | omp | position  |           | Particle Size Distribution |
| State variables                    |                            |                 |         | Mol | e-Flow 🔹  | kmol/hr 🔹 |                            |
| Temperature                        | 32                         | <b>c</b> •      |         |     | Component | Value     |                            |
| Pressure                           | 640                        | mmHg 🔻          |         | •   | N2        | 17,9401   |                            |
| Vapor fraction                     |                            |                 |         | Þ   | 02        | 4,83003   |                            |
| Total flow basis                   | Mole 🔹                     |                 |         | •   | ΔR        | 0.2139    |                            |
| Total flow rate                    |                            | kmol/hr 🔹       |         |     | CO2       | 0,0161    |                            |
| Solvent                            |                            | -               |         | -   | 100       | 0,0101    |                            |
|                                    |                            |                 |         | P   | H2O       | 1,32968   |                            |
| Reference Temperatu                | Ire                        |                 |         | Þ   | CACL2     |           |                            |
| Volume flow referen                | ce temperature             |                 |         | Þ   | CA++      |           |                            |
| С                                  | Ŧ                          |                 |         | Þ   | CL-       |           |                            |
| Component concent                  | tration reference tempe    | erature         |         |     |           |           |                            |
| С                                  | -                          |                 |         |     | Total     | 24,3298   |                            |
|                                    |                            |                 |         |     |           |           |                            |

Anexo E 5. Especificación del Ventilador 1 para todas las ciudades.

| Main Flowsheet × VENT-              | 1 (Compr) ×    | +              |             |                        |         |          |
|-------------------------------------|----------------|----------------|-------------|------------------------|---------|----------|
| Specifications Calcula              | tion Options   | Power Loss     | Convergence | Integration Parameters | Utility | Comments |
| Model and type<br>Model  Compressor | · 🔘 Tı         | urbine         |             |                        |         |          |
| Outlet specification                |                | bar            | Ŧ           |                        |         |          |
| Pressure increase                   | 0,035          | psia           | •           |                        |         |          |
| Pressure ratio                      |                |                |             |                        |         |          |
| Power required                      |                | kW             | T           |                        |         |          |
| Ouse performance curve              | s to determine | discharge cond | litions     |                        |         |          |
| - Efficiencies                      |                |                |             |                        |         |          |
| Isentropic 0,82                     | Polytropic     | Me             | chanical    |                        |         |          |

| / | Main Flowsh                                  | eet ×    | VENT-2 (Compr) ×      | +              |             |                        |         |          |  |  |  |
|---|----------------------------------------------|----------|-----------------------|----------------|-------------|------------------------|---------|----------|--|--|--|
|   | Specifica                                    | tions    | Calculation Options   | Power Loss     | Convergence | Integration Parameters | Utility | Comments |  |  |  |
|   | Model and type<br>Model  Compressor  Turbine |          |                       |                |             |                        |         |          |  |  |  |
|   | Туре                                         | Isentr   | opic                  |                |             | -                      |         |          |  |  |  |
|   | Outlet spec                                  | ificatio | n                     |                |             |                        |         |          |  |  |  |
|   | O Discharge                                  | ge press | ure                   | bar            | T           |                        |         |          |  |  |  |
|   | Pressure                                     | increas  | ie 0,035              | psia           | -           |                        |         |          |  |  |  |
|   | Pressure                                     | e ratio  |                       |                |             |                        |         |          |  |  |  |
|   | O Power re                                   | equired  |                       | kW             | Ŧ           |                        |         |          |  |  |  |
|   | 🔘 Use perf                                   | ormano   | e curves to determine | discharge conc | litions     |                        |         |          |  |  |  |
|   | Efficiencies<br>Isentropic                   | ;(       | 0,82 Polytropic       | Med            | chanical    |                        |         |          |  |  |  |

Anexo E 6. Especificación del Ventilador 2 para todas las ciudades.

Anexo E 7. Especificación de la Bomba 1 para todas las ciudades.

| Specifications   | Calculation     | Options     | Flash Option | s Utility | Comments |  |  |  |  |
|------------------|-----------------|-------------|--------------|-----------|----------|--|--|--|--|
| - 1              |                 | - F         |              | -  ,      | 1        |  |  |  |  |
| Model            |                 |             |              |           |          |  |  |  |  |
| Pump             |                 | © T         | urbine       |           |          |  |  |  |  |
|                  |                 |             |              |           |          |  |  |  |  |
| Pump outlet spec | ification —     |             |              |           |          |  |  |  |  |
| Oischarge pres   | sure            |             | bar          |           | *        |  |  |  |  |
| Pressure increa  | ise             | 1           | psia         |           | •        |  |  |  |  |
| Pressure ratio   |                 |             |              |           |          |  |  |  |  |
| O Power required | ł               |             | kW           |           | ~        |  |  |  |  |
| 🔘 Use performar  | ice curve to de | etermine di | scharge cond | litions 🔎 |          |  |  |  |  |
|                  |                 |             | <b>-</b>     | <b>S</b>  | 2        |  |  |  |  |
| Efficiencies     |                 |             |              |           |          |  |  |  |  |
| Efficiencies     |                 |             |              |           |          |  |  |  |  |
| Pump             | 0.75            | Dr          | iver         |           |          |  |  |  |  |

Anexo E 8. Especificación de la Bomba 2 para todas las ciudades.

| Main Flowsheet ×          | BOMBA-2 (Pump) ×       | +              |            |          |          |  |  |  |  |
|---------------------------|------------------------|----------------|------------|----------|----------|--|--|--|--|
| Specifications            | Calculation Options    | Flash Option   | ns Utility | Comments |          |  |  |  |  |
| - Model                   |                        |                |            |          | <u>`</u> |  |  |  |  |
| Pump                      | 01                     | Turbine        |            |          |          |  |  |  |  |
| Pump outlet specification |                        |                |            |          |          |  |  |  |  |
| Oischarge press           | ure                    | bar            |            | ~        |          |  |  |  |  |
| Pressure increase         | ie .                   | 5 psia         | •          | •        |          |  |  |  |  |
| Pressure ratio            |                        |                |            |          |          |  |  |  |  |
| Power required            |                        | kW             |            | -        |          |  |  |  |  |
| 🔘 Use performanc          | e curve to determine d | lischarge cono | litions 💽  |          |          |  |  |  |  |
| Efficiencies              |                        |                |            |          |          |  |  |  |  |
| Pump                      | 0,75 D                 | river          |            |          |          |  |  |  |  |

| 🖉 Configuration 🛛 🥝 St   | reams 🛛 🥑 Pressu | re Condenser | Reboiler       | 3-Phase | Comments    |            |  |  |
|--------------------------|------------------|--------------|----------------|---------|-------------|------------|--|--|
| Setup options            |                  |              |                |         |             |            |  |  |
| Calculation type         |                  | Rate-Based   |                | •       |             |            |  |  |
| Number of stages         |                  |              |                | 2 🗘 🛛 S | tage Wizard |            |  |  |
| Condenser                | None             |              |                | •       |             |            |  |  |
| Reboiler                 |                  | None         |                |         | •           |            |  |  |
| Valid phases             |                  | Vapor-Liquid | Vapor-Liquid - |         |             |            |  |  |
| Convergence              |                  | Standard     |                |         | -           |            |  |  |
| Operating specifications |                  |              |                |         |             |            |  |  |
|                          | ,                | r            | Ŧ              |         |             |            |  |  |
|                          | ,                | r            | Ŧ              |         |             |            |  |  |
| E                        |                  | 0            |                |         |             | Feed Basis |  |  |

Anexo E 9. Especificación de la columna de Absorción y desorción para todas las ciudades.

Anexo E 10. Especificación de las corrientes de la columna de Absorción y desorción para todas las ciudades.

| 00 | Configuration                                               | 🥝 Streams       | 🕜 Pressu        | ure Conden | ser Reb             | oiler 3-Phas | e Commer      | ts                    |            |                                        |  |
|----|-------------------------------------------------------------|-----------------|-----------------|------------|---------------------|--------------|---------------|-----------------------|------------|----------------------------------------|--|
| ee | d streams                                                   |                 |                 |            |                     |              |               |                       |            |                                        |  |
|    | Name                                                        | Stage           |                 | Convent    | ion                 |              |               |                       |            |                                        |  |
| •  | VN+1-ABS                                                    |                 | 2 On-           | Stage      |                     |              |               |                       |            |                                        |  |
|    | LO-ABS                                                      |                 | 1 Abo           | ove-Stage  |                     |              |               |                       |            |                                        |  |
| ro | duct streams -                                              |                 |                 |            |                     |              |               |                       |            |                                        |  |
| ro | duct streams –<br>Name                                      | Stage           |                 | Phase      | Bas                 | iis F        | ow            | Units                 | Flow Ratio | Feed Specs                             |  |
| ro | duct streams –<br>Name<br>LN-ABS                            | Stage 2         | Liquid          | Phase      | Ba:<br>Mole         | iis Fl       | ow kmc        | <b>Units</b>          | Flow Ratio | Feed Specs<br>Feed basis               |  |
| ro | duct streams –<br>Name<br>LN-ABS<br>V1-ABS                  | Stage<br>2<br>1 | Liquid<br>Vapor | Phase      | Bas<br>Mole<br>Mole | sis Fl       | ow kmo        | Units<br>I/hr         | Flow Ratio | Feed Specs<br>Feed basis<br>Feed basis |  |
| ro | duct streams –<br>Name<br>LN-ABS<br>V1-ABS<br>udo streams – | Stage<br>2<br>1 | Liquid<br>Vapor | Phase      | Bas<br>Mole<br>Mole | iis Fi       | ow kmo<br>kmo | Units<br>I/hr<br>I/hr | Flow Ratio | Feed Specs<br>Feed basis<br>Feed basis |  |

Anexo E 11. Especificación de la presión de la columna de Absorción y desorción para la ciudad de Medellín.

| Main Flowsheet × ABS (RadFrac)     | )× (+     |           |          |         |          |  |  |  |  |
|------------------------------------|-----------|-----------|----------|---------|----------|--|--|--|--|
| ✓ Configuration ✓ Streams          | Pressure  | Condenser | Reboiler | 3-Phase | Comments |  |  |  |  |
| View Top / Bottom                  |           |           |          |         |          |  |  |  |  |
| Stage 1 / Condenser pressure       | 0,84      | 4 atm     | •        | ]       |          |  |  |  |  |
| Stage 2 pressure (optional)        |           |           |          |         |          |  |  |  |  |
| Stage 2 pressure                   |           | bar       | -        |         |          |  |  |  |  |
| Condenser pressure drop            |           | bar       | Ŧ        |         |          |  |  |  |  |
| Pressure drop for rest of column ( | optional) |           |          |         |          |  |  |  |  |
| Stage pressure drop                |           | bar 🔹     |          |         |          |  |  |  |  |
| Column pressure drop               |           | bar       | Ŧ        |         |          |  |  |  |  |

| Main Flows   | heet × ABS Column Int   | ernals | INT-1 S | ections CS- | -1 - G | eometry | ×        |       |        |            |            |        |
|--------------|-------------------------|--------|---------|-------------|--------|---------|----------|-------|--------|------------|------------|--------|
| ⊘ Geomet     | ry Design Parameters    | Pack   | ing Con | stants      |        |         |          |       |        |            |            |        |
| Name CS      | -1 Start stage          |        | 1       | End stage   | e      |         | 2 Status | Activ | e Mode | ) Interact | ive sizing | Rating |
| Section type | e 🔘 Trayed 💿 Pack       | ed     |         |             |        |         |          |       |        |            |            |        |
| Packing Type | e PALL -                |        |         |             |        |         |          |       |        |            |            |        |
| Packing ch   | naracteristics          |        |         |             |        |         |          |       |        |            | -          |        |
| Vendor       | RASCHIG                 | •      | Section | n diameter  |        | 0,45    | meter    | •     | Update | parameters |            |        |
| Material     | PLASTIC                 | •      | Packing | g size      |        | 0,025   | meter    | •     |        |            |            |        |
| Dimension    | 25-MM                   | •      | Packing | g factor    |        | 171     | 1/m      | -     |        |            |            |        |
| - Packed hei | ight                    |        |         |             |        |         |          |       |        |            | _          |        |
| Packed       | height per stage (HETP) |        | 0,4572  | meter       | •      |         |          |       |        |            |            |        |
| Section      | packed height           |        | 0,9144  | meter       | Ŧ      |         |          |       |        |            |            |        |
| Results      | View Hydraulic Plots    |        |         |             |        |         |          |       |        |            |            |        |

Anexo E 12. Especificación de las características del interno de la columna de Absorción para todas las ciudades.

Anexo E 13. Especificación de las características del interno de la columna de desorción para todas las ciudades.

| Main Flowsh  | Main Flowsheet × DESORB Column Internals INT-1 Sections CS-1 × + |      |                  |       |          |                              |                                       |  |  |  |  |
|--------------|------------------------------------------------------------------|------|------------------|-------|----------|------------------------------|---------------------------------------|--|--|--|--|
| Geometr      | y Design Parameters                                              | Pack | ing Constants    |       |          |                              |                                       |  |  |  |  |
| Name CS-     | 1 Start stage                                                    |      | 1 End stage      | 2     | 2 Status | Active Mode                  | Interactive sizing Interactive sizing |  |  |  |  |
| Section type | 🔘 Trayed 🔘 Packe                                                 | ed   |                  |       |          |                              |                                       |  |  |  |  |
| Packing Type | PALL -                                                           |      |                  |       |          |                              |                                       |  |  |  |  |
| Packing ch   | aracteristics                                                    |      |                  |       |          |                              |                                       |  |  |  |  |
| Vendor       | RASCHIG                                                          | •    | Section diameter | 0,45  | meter    | <ul> <li>Update p</li> </ul> | arameters                             |  |  |  |  |
| Material     | PLASTIC                                                          | •    | Packing size     | 0,035 | meter    | •                            |                                       |  |  |  |  |
| Dimension    | 35-MM                                                            | •    | Packing factor   | 140   | 1/m      | -                            |                                       |  |  |  |  |
| -Packed heid | aht                                                              |      |                  |       |          |                              |                                       |  |  |  |  |
| Packed       | ,<br>height per stage (HETP)                                     |      | 0,6264 meter     | •     |          |                              |                                       |  |  |  |  |
| Section      | packed height                                                    |      | 1,2528 meter     | Ŧ     |          |                              |                                       |  |  |  |  |
| Results      | View Hydraulic Plots                                             |      |                  |       |          |                              |                                       |  |  |  |  |

Anexo E 14. Especificación del Colector para la ciudad de Medellín

| Flash Type                          | Temperature        |         | - |
|-------------------------------------|--------------------|---------|---|
|                                     | Pressure           |         | • |
| Temperature                         | 51,63              | С       | • |
| Temperature change                  |                    | С       | Ŧ |
| Degrees of superheating             |                    | С       | - |
| Degrees of subcooling               |                    | С       | Ŧ |
| Pressure                            | 0,844              | atm     | - |
| Duty                                |                    | cal/sec | Ŧ |
| Vapor fraction                      |                    |         |   |
| Pressure drop correlation parameter |                    |         |   |
| Always calculate pressure drop or   | relation narameter |         |   |

| Flash specifications<br>Flash Type Temp<br>Press<br>femperature | erature<br>ure |         | • |
|-----------------------------------------------------------------|----------------|---------|---|
| Flash Type Temp<br>Press                                        | erature<br>ure |         | • |
| Temperature                                                     | ure            |         | - |
| Temperature                                                     | 22             |         |   |
| T 1 1                                                           | 22             | С       | • |
| lemperature change                                              |                | С       | T |
| Degrees of superheating                                         |                | С       | T |
| Degrees of subcooling                                           |                | С       | T |
| Pressure                                                        | 0,844          | atm     | • |
| Duty                                                            |                | cal/sec | T |
| Vapor fraction                                                  |                |         |   |
| Pressure drop correlation parameter                             |                |         |   |
| Always calculate pressure drop correlation                      | n parameter    |         |   |

## Anexo E 15. Especificación del Enfriador para la ciudad de Medellín

Anexo E 16. Resultados de las condiciones energéticas de cada corriente para el mezclador en la ciudad de Medellín.

| Main Fl | Main Flowsheet × MIXER (Mixer) - Stream Results (Boundary) × + |             |      |          |        |              |             |              |      |              |  |
|---------|----------------------------------------------------------------|-------------|------|----------|--------|--------------|-------------|--------------|------|--------------|--|
| Materia | Heat                                                           | Load        | Work | Vol.% Cu | irves  | Wt. % Curves | Petroleum   | Polymers     | Soli | ds           |  |
|         |                                                                |             |      |          |        | Units        | L0-FRESC -  | L0-OUT       | •    | LO-ABS -     |  |
| Þ       | Phase                                                          |             |      |          |        |              |             | Liquid Phase |      | Liquid Phase |  |
| - P     | Temperatu                                                      | re          |      |          | с      |              | 22          |              | 22   | 22           |  |
| Þ.      | Pressure                                                       |             |      |          | bar    |              | 0,855183    | 0,8551       | 83   | 0,855183     |  |
| •       | Molar Vapo                                                     | or Fraction |      |          |        |              | 0,128238    |              | 0    | 0            |  |
| •       | Molar Liqu                                                     | id Fractior | ı    |          |        |              | 0,871762    |              | 1    | 1            |  |
| - F     | Molar Solid                                                    | l Fraction  |      |          |        |              | 0           |              | 0    | 0            |  |
| •       | Mass Vapo                                                      | r Fraction  |      |          |        |              | 0,202255    |              | 0    | 0            |  |
| •       | Mass Liqui                                                     | d Fraction  |      |          |        |              | 0,797745    |              | 1    | 1            |  |
| •       | Mass Solid                                                     | Fraction    |      |          |        |              | 0           |              | 0    | 0            |  |
| •       | Molar Enth                                                     | alpy        |      |          | cal/m  | ol           | -60156,6    | -6858        | 0,5  | -68580,5     |  |
| •       | Mass Entha                                                     | alpy        |      |          | cal/gr | n            | -3048,71    | -3025,       | 23   | -3025,23     |  |
|         | Molar Entre                                                    | ору         |      |          | cal/m  | ol-K         | -33,8046    | -33,42       | 33   | -33,4233     |  |
| •       | Mass Entro                                                     | ру          |      |          | cal/gr | n-K          | -1,7132     | -1,474       | 37   | -1,47437     |  |
|         | Molar Den                                                      | sity        |      |          | mol/c  | c            | 0,000270736 | 0,06457      | 74   | 0,0645774    |  |
| •       | Mass Dens                                                      | ity         |      |          | gm/c   |              | 0,00534212  | 1,463        | 94   | 1,46394      |  |
|         | Enthalpy Fl                                                    | ow          |      |          | cal/se | c            | -0,383839   | -5,32904e+   | 06   | -5,32904e+06 |  |
| •       | Average M                                                      | W           |      |          |        |              | 19,7318     | 22,66        | 95   | 22,6695      |  |

| Main Flow | Main Flowsheet × MIXER (Mixer) - Stream Results (Boundary) × + |      |           |                 |     |             |          |       |          |      |  |  |
|-----------|----------------------------------------------------------------|------|-----------|-----------------|-----|-------------|----------|-------|----------|------|--|--|
| Material  | Heat Load                                                      | Work | Vol.% Cur | ves 🛛 Wt. % Cur | ves | Petroleum   | Polymers | Sol   | ids      |      |  |  |
|           |                                                                |      |           | Units           | L0- | FRESC -     | L0-OUT   | •     | L0-ABS   | •    |  |  |
| 🕨 — М     | lole Flows                                                     |      |           | kmol/hr         | 2   | ,29704e-05  | 279      | ,737  | 279,     | 737  |  |  |
| •         | N2                                                             |      |           | kmol/hr         |     | 7,6e-07     | 0,034    | 5075  | 0,0345   | 083  |  |  |
|           | 02                                                             |      |           | kmol/hr         |     | 1,99e-06    | 0,028    | 0506  | 0,0280   | 526  |  |  |
| •         | AR                                                             |      |           | kmol/hr         |     | 4e-08       | 0,00090  | 7855  | 0,000907 | /895 |  |  |
|           | CO2                                                            |      |           | kmol/hr         |     | 1,2e-07     | 0,0004   | 7322  | 0,00047  | 334  |  |  |
| •         | H2O                                                            |      |           | kmol/hr         |     | 2,006e-05   | 211      | ,115  | 211,     | ,115 |  |  |
|           | CACL2                                                          |      |           | kmol/hr         |     | 0           |          | 0     |          | 0    |  |  |
| •         | CA++                                                           |      |           | kmol/hr         |     | 1,26e-10    | 22       | 2,853 | 22,      | 853  |  |  |
| •         | CL-                                                            |      |           | kmol/hr         |     | 2,52e-10    | 45,      | 7059  | 45,7     | 059  |  |  |
| → – M     | lole Fractions                                                 |      |           |                 |     |             |          |       |          |      |  |  |
| •         | N2                                                             |      |           |                 |     | 0,0330861   | 0,00012  | 3357  | 0,00012  | 336  |  |  |
| •         | 02                                                             |      |           |                 |     | 0,0866333   | 0,00010  | 0275  | 0,000100 | 282  |  |  |
| •         | AR                                                             |      |           |                 |     | 0,00174137  | 3,24538  | e-06  | 3,24553e | e-06 |  |  |
| •         | CO2                                                            |      |           |                 |     | 0,00522412  | 1,69166  | e-06  | 1,692096 | e-06 |  |  |
|           | H2O                                                            |      |           |                 |     | 0,873299    | 0,75     | 4688  | 0,754    | 688  |  |  |
| •         | CACL2                                                          |      |           |                 |     | 0           |          | 0     |          | 0    |  |  |
| •         | CA++                                                           |      |           |                 | 1   | 5,48533e-06 | 0,081    | 6943  | 0,0816   | 943  |  |  |
| •         | CL-                                                            |      |           |                 |     | 1,09707e-05 | 0,16     | 3389  | 0,163    | 389  |  |  |

Anexo E 17. Resultados de los flujos y fracciones molares del mezclador para la ciudad de Medellín.

Anexo E 18. Resultados de los flujos y fracciones masicos del mezclador para la ciudad de Medellín.

| Main Flowsheet × MIXER (Mixer) - Stream Results (Boundary) × + |                        |                    |             |             |             |  |  |  |  |  |  |
|----------------------------------------------------------------|------------------------|--------------------|-------------|-------------|-------------|--|--|--|--|--|--|
| Material                                                       | Heat Load Work Vol.% C | urves Wt. % Curves | Petroleum   | Polymers So | lids        |  |  |  |  |  |  |
|                                                                |                        | Units              | LO-FRESC -  | L0-OUT -    | LO-ABS -    |  |  |  |  |  |  |
| → — м                                                          | lass Flows             | kg/hr              | 0,000453247 | 6341,51     | 6341,51     |  |  |  |  |  |  |
| •                                                              | N2                     | kg/hr              | 2,12902e-05 | 0,966676    | 0,966697    |  |  |  |  |  |  |
| - F                                                            | 02                     | kg/hr              | 6,36776e-05 | 0,897587    | 0,897651    |  |  |  |  |  |  |
| •                                                              | AR                     | kg/hr              | 1,59792e-06 | 0,036267    | 0,0362686   |  |  |  |  |  |  |
| •                                                              | CO2                    | kg/hr              | 5,28118e-06 | 0,0208263   | 0,0208316   |  |  |  |  |  |  |
| •                                                              | H2O                    | kg/hr              | 0,000361387 | 3803,29     | 3803,29     |  |  |  |  |  |  |
| •                                                              | CACL2                  | kg/hr              | 0           | 0           | 0           |  |  |  |  |  |  |
| •                                                              | CA++                   | kg/hr              | 5,04969e-09 | 915,876     | 915,876     |  |  |  |  |  |  |
| •                                                              | CL-                    | kg/hr              | 8,93422e-09 | 1620,42     | 1620,42     |  |  |  |  |  |  |
| → – M                                                          | lass Fractions         |                    |             |             |             |  |  |  |  |  |  |
| •                                                              | N2                     |                    | 0,0469727   | 0,000152436 | 0,00015244  |  |  |  |  |  |  |
| >                                                              | 02                     |                    | 0,140492    | 0,000141542 | 0,000141552 |  |  |  |  |  |  |
| •                                                              | AR                     |                    | 0,00352549  | 5,71898e-06 | 5,71924e-06 |  |  |  |  |  |  |
| •                                                              | CO2                    |                    | 0,0116519   | 3,28413e-06 | 3,28496e-06 |  |  |  |  |  |  |
| •                                                              | H2O                    |                    | 0,797327    | 0,599745    | 0,599745    |  |  |  |  |  |  |
| •                                                              | CACL2                  |                    | 0           | 0           | 0           |  |  |  |  |  |  |
| •                                                              | CA++                   |                    | 1,11411e-05 | 0,144426    | 0,144426    |  |  |  |  |  |  |
| •                                                              | CL-                    |                    | 1,97116e-05 | 0,255526    | 0,255526    |  |  |  |  |  |  |
| ► Ve                                                           | plume Flow             | l/min              | 0,00141407  | 72,1969     | 72,1969     |  |  |  |  |  |  |

| Mai | n Flowsh | neet ×⁄VE      | NT-1 (Compr) | - Resu | lts × 🕂  |                  |               |        |
|-----|----------|----------------|--------------|--------|----------|------------------|---------------|--------|
| Sur | nmary    | Balance        | Parameters   | Perfo  | rmance   | Regression       | Utility Usage | Status |
|     |          |                |              |        |          |                  |               |        |
| >   | Comp     | pressor mod    | lel          |        | lsentrop | oic Compressor   |               |        |
| >   | Phase    | calculation    | 15           |        | Vapor p  | hase calculatior | า             |        |
|     | Indica   | ted horsep     | ower         |        |          | 39,4275          | Watt          |        |
|     | Brake    | horsepowe      | r            |        |          | 39,4275          | Watt          |        |
|     | Net w    | ork require    | d            |        |          | 39,4275          | Watt          |        |
|     | Powe     | r loss         |              |        |          | 0                | kW            |        |
| Þ   | Efficie  | ency           |              |        |          |                  |               | 0,82   |
|     | Mech     | anical effici  | ency         |        |          |                  |               | 1      |
| Þ   | Outle    | t pressure     |              |        |          | 0,844487         | atm           |        |
|     | Outle    | t temperatu    | ire          |        |          | 32,2973          | с             |        |
| >   | lsentr   | opic outlet    | temperature  |        |          | 32,2439          | С             |        |
|     | Vapor    | fraction       |              |        |          |                  |               | 1      |
|     | Displa   | cement         |              |        |          |                  |               |        |
|     | Volum    | netric efficie | ency         |        |          |                  |               |        |

Anexo E 19. Resultados energéticos del Ventilador 1 para la ciudad de Medellín.

Anexo E 20. Resultados de los flujos y fracciones molares del Ventilador 1 para la ciudad de Medellín.

| Main Flowsheet × VENT-1 (Compr) - Results × VENT-1 (Compr) - Stream Results (Boundary) × + |                           |                 |             |             |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------|-----------------|-------------|-------------|--|--|--|--|--|--|--|
| Material Work                                                                              | Vol.% Curves Wt. % Curves | Petroleum Polym | ers Solids  |             |  |  |  |  |  |  |  |
|                                                                                            |                           | Units           | AIRE-ABS -  | VN+1-ABS -  |  |  |  |  |  |  |  |
| Mole Flor                                                                                  | ws                        | kmol/hr         | 16,2425     | 16,2425     |  |  |  |  |  |  |  |
| ▶ N2                                                                                       |                           | kmol/hr         | 11,9768     | 11,9768     |  |  |  |  |  |  |  |
| ▶ 02                                                                                       |                           | kmol/hr         | 3,2245      | 3,2245      |  |  |  |  |  |  |  |
| ▶ AR                                                                                       |                           | kmol/hr         | 0,1428      | 0,1428      |  |  |  |  |  |  |  |
| > CO2                                                                                      |                           | kmol/hr         | 0,0107      | 0,0107      |  |  |  |  |  |  |  |
| ► H2O                                                                                      |                           | kmol/hr         | 0,8877      | 0,8877      |  |  |  |  |  |  |  |
| CACL                                                                                       | 2                         | kmol/hr         | 0           | 0           |  |  |  |  |  |  |  |
| ► CA++                                                                                     |                           | kmol/hr         | 0           | 0           |  |  |  |  |  |  |  |
| CL-                                                                                        |                           | kmol/hr         | 0           | 0           |  |  |  |  |  |  |  |
| Mole Fra                                                                                   | ctions                    |                 |             |             |  |  |  |  |  |  |  |
| ▶ N2                                                                                       |                           |                 | 0,737374    | 0,737374    |  |  |  |  |  |  |  |
| ▶ 02                                                                                       |                           |                 | 0,198522    | 0,198522    |  |  |  |  |  |  |  |
| ▶ AR                                                                                       |                           |                 | 0,00879175  | 0,00879175  |  |  |  |  |  |  |  |
| CO2                                                                                        |                           |                 | 0,000658766 | 0,000658766 |  |  |  |  |  |  |  |
| H2O                                                                                        |                           |                 | 0,0546529   | 0,0546529   |  |  |  |  |  |  |  |
| CACL                                                                                       | 2                         |                 | 0           | 0           |  |  |  |  |  |  |  |
| CA++                                                                                       |                           |                 | 0           | 0           |  |  |  |  |  |  |  |
| CL-                                                                                        |                           |                 | 0           | 0           |  |  |  |  |  |  |  |

| Main Flows | Main Flowsheet × VENT-1 (Compr) - Results × VENT-1 (Compr) - Stream Results (Boundary) × + |             |              |           |       |            |      |          |     |  |  |
|------------|--------------------------------------------------------------------------------------------|-------------|--------------|-----------|-------|------------|------|----------|-----|--|--|
| Material   | Work V                                                                                     | ol.% Curves | Wt. % Curves | Petroleum | Polym | ers Solids |      |          |     |  |  |
|            |                                                                                            |             |              | Units     |       | AIRE-ABS   | •    | VN+1-ABS | •   |  |  |
| ▶ — N      | Aass Flows                                                                                 |             |              | kg/hr     |       | 460        | ),86 | 460,     | ,86 |  |  |
| •          | N2                                                                                         |             |              | kg/hr     |       | 335,       | 512  | 335,5    | 512 |  |  |
| •          | 02                                                                                         |             |              | kg/hr     |       | 103        | 3,18 | 103      | ,18 |  |  |
| •          | AR                                                                                         |             |              | kg/hr     |       | 5,70       | 457  | 5,704    | 457 |  |  |
| •          | CO2                                                                                        |             |              | kg/hr     |       | 0,470      | 905  | 0,4709   | 905 |  |  |
| •          | H2O                                                                                        |             |              | kg/hr     |       | 15,9       | 922  | 15,99    | 922 |  |  |
| •          | CACL2                                                                                      |             |              | kg/hr     |       |            | 0    |          | 0   |  |  |
| •          | CA++                                                                                       |             |              | kg/hr     |       |            | 0    |          | 0   |  |  |
| •          | CL-                                                                                        |             |              | kg/hr     |       |            | 0    |          | 0   |  |  |
| ▶ — N      | Aass Fractio                                                                               | ons         |              |           |       |            |      |          |     |  |  |
| •          | N2                                                                                         |             |              |           |       | 0,728      | 013  | 0,7280   | 013 |  |  |
| •          | 02                                                                                         |             |              |           |       | 0,223      | 886  | 0,2238   | 386 |  |  |
| •          | AR                                                                                         |             |              |           |       | 0,0123     | 781  | 0,01237  | 781 |  |  |
| •          | CO2                                                                                        |             |              |           |       | 0,0010     | 218  | 0,00102  | 218 |  |  |
| •          | H2O                                                                                        |             |              |           |       | 0,0347     | 007  | 0,03470  | 007 |  |  |
| •          | CACL2                                                                                      |             |              |           |       |            | 0    |          | 0   |  |  |
| •          | CA++                                                                                       |             |              |           |       |            | 0    |          | 0   |  |  |
| •          | CL-                                                                                        |             |              |           |       |            | 0    |          | 0   |  |  |

Anexo E 21. Resultados de los flujos y fracciones másicas del Ventilador 1 para la ciudad de Medellín.

Anexo E 22. Resultados energéticos del Ventilador 2 para la ciudad de Medellín.

| 1 | Mair | n Flowsh | neet ×⁄VE      | NT-2 (Compr) | - Resu | lts × 🛨  |                  |               |        |
|---|------|----------|----------------|--------------|--------|----------|------------------|---------------|--------|
|   | Sun  | nmary    | Balance        | Parameters   | Perfo  | rmance   | Regression       | Utility Usage | Status |
|   |      |          |                |              |        |          |                  |               |        |
|   | Þ    | Comp     | pressor mod    | lel          |        | lsentrop | ic Compressor    |               |        |
|   | Þ    | Phase    | calculation    | 15           |        | Vapor pl | nase calculation | ı             |        |
|   |      | Indica   | ted horsep     | ower         |        |          | 59,0589          | Watt          |        |
|   |      | Brake    | horsepowe      | r            |        |          | 59,0589          | Watt          |        |
|   | Þ    | Net w    | ork require    | d            |        |          | 59,0589          | Watt          |        |
|   | Þ    | Powe     | r loss         |              |        |          | 0                | Watt          |        |
|   | Þ    | Efficie  | ency           |              |        |          |                  |               | 0,82   |
|   | Þ    | Mech     | anical effici  | ency         |        |          |                  |               | 1      |
|   | Þ    | Outle    | t pressure     |              |        |          | 0,844487         | atm           |        |
|   |      | Outle    | t temperatu    | ire          |        |          | 32,2973          | С             |        |
|   | Þ    | lsentr   | opic outlet    | temperature  |        |          | 32,2439          | С             |        |
|   | Þ    | Vapor    | fraction       |              |        |          |                  |               | 1      |
|   | Þ    | Displa   | cement         |              |        |          |                  |               |        |
|   |      | Volun    | netric efficie | ency         |        |          |                  |               |        |

| Main Flov | vsheet $	imes$ | VENT-2 (Comp | or) - Results × | VENT-2 (Comp | or) - Stre | earn Re | sults (Bo | une | dary) × 🕂   |
|-----------|----------------|--------------|-----------------|--------------|------------|---------|-----------|-----|-------------|
| Material  | Work           | Vol.% Curves | Wt. % Curves    | Petroleum    | Polym      | ers S   | Solids    |     |             |
|           |                |              |                 | Units        |            | AIRE-   | DES       | •   | VN+1-DES 🔻  |
| -         | Mole Flow      | ws           |                 | kmol/hr      |            |         | 24,3298   | 3   | 24,3298     |
| •         | N2             |              |                 | kmol/hr      |            |         | 17,9401   | 1   | 17,9401     |
| •         | 02             |              |                 | kmol/hr      |            |         | 4,83003   | 3   | 4,83003     |
| •         | AR             |              |                 | kmol/hr      |            |         | 0,2139    | 9   | 0,2139      |
| •         | CO2            |              |                 | kmol/hr      |            |         | 0,0161    | 1   | 0,0161      |
| •         | H2O            |              |                 | kmol/hr      |            |         | 1,32968   | 3   | 1,32968     |
| •         | CACL           | 2            |                 | kmol/hr      |            |         | (         | )   | 0           |
| •         | CA++           |              |                 | kmol/hr      |            |         | (         | )   | 0           |
| •         | CL-            |              |                 | kmol/hr      |            |         | (         | )   | 0           |
| -         | Mole Fra       | ctions       |                 |              |            |         |           |     |             |
| •         | N2             |              |                 |              |            |         | 0,737371  | 1   | 0,737371    |
| •         | 02             |              |                 |              |            |         | 0,198523  | 3   | 0,198523    |
| •         | AR             |              |                 |              |            | 0,0     | 00879168  | 3   | 0,00879168  |
| •         | CO2            |              |                 |              |            | 0,0     | 00661739  | 9   | 0,000661739 |
| •         | H2O            |              |                 |              |            | C       | 0,0546523 | 3   | 0,0546523   |
|           | CACL           | 2            |                 |              |            |         | (         | )   | 0           |
| •         | CA++           |              |                 |              |            |         | (         | D   | 0           |
| •         | CL-            |              |                 |              |            |         | (         | )   | 0           |

Anexo E 23. Resultados de los flujos y fracciones molares del Ventilador 2 para la ciudad de Medellín.

Anexo E 24. Resultados de los flujos y fracciones másicas del Ventilador 2 para la ciudad de Medellín.

| Main Flow | Main Flowsheet × VENT-2 (Compr) - Results × VENT-2 (Compr) - Stream Results (Boundary) × + |              |              |           |        |            |            |  |
|-----------|--------------------------------------------------------------------------------------------|--------------|--------------|-----------|--------|------------|------------|--|
| Material  | Work                                                                                       | Vol.% Curves | Wt. % Curves | Petroleum | Polyme | rs Solids  |            |  |
|           |                                                                                            |              |              | Units     |        | AIRE-DES   | VN+1-DES - |  |
| ) – I     | Mass Flov                                                                                  | vs           |              | kg/hr     |        | 690,328    | 690,328    |  |
| •         | N2                                                                                         |              |              | kg/hr     |        | 502,565    | 502,565    |  |
| •         | 02                                                                                         |              |              | kg/hr     |        | 154,555    | 154,555    |  |
|           | AR                                                                                         |              |              | kg/hr     |        | 8,54488    | 8,54488    |  |
| •         | CO2                                                                                        |              |              | kg/hr     |        | 0,708558   | 0,708558   |  |
| •         | H2O                                                                                        |              |              | kg/hr     |        | 23,9546    | 23,9546    |  |
| •         | CACL                                                                                       | 2            |              | kg/hr     |        | 0          | 0          |  |
| •         | CA++                                                                                       |              |              | kg/hr     |        | 0          | 0          |  |
| •         | CL-                                                                                        |              |              | kg/hr     |        | 0          | 0          |  |
| ) – I     | Mass Frac                                                                                  | tions        |              |           |        |            |            |  |
| •         | N2                                                                                         |              |              |           |        | 0,728009   | 0,728009   |  |
|           | 02                                                                                         |              |              |           |        | 0,223886   | 0,223886   |  |
| •         | AR                                                                                         |              |              |           |        | 0,012378   | 0,012378   |  |
|           | CO2                                                                                        |              |              |           |        | 0,00102641 | 0,00102641 |  |
| •         | H2O                                                                                        |              |              |           |        | 0,0347002  | 0,0347002  |  |
|           | CACL                                                                                       | 2            |              |           |        | 0          | 0          |  |
| •         | CA++                                                                                       |              |              |           |        | 0          | 0          |  |
|           | CL-                                                                                        |              |              |           |        | 0          | 0          |  |

| Main Flo | Main Flowsheet × VENT-2 (Compr) - Results × ABS (RadFrac) - Stream Results (Boundary) × + |                  |                |             |              |             |  |  |
|----------|-------------------------------------------------------------------------------------------|------------------|----------------|-------------|--------------|-------------|--|--|
| Material | Heat Load Vol.% Curves Wt. %                                                              | Curves Petroleum | Polymers Solid | ds          |              |             |  |  |
| 4        |                                                                                           | Units            | LO-ABS -       | VN+1-ABS -  | LN-ABS -     | V1-ABS -    |  |  |
| <u> </u> | XED Substream                                                                             |                  |                |             |              |             |  |  |
| •        | Phase                                                                                     |                  | Liquid Phase   | Vapor Phase | Liquid Phase | Vapor Phase |  |  |
| •        | Temperature                                                                               | с                | 22             | 32,2973     | 24,4679      | 23,3585     |  |  |
|          | Pressure                                                                                  | bar              | 0,855183       | 0,855676    | 0,855183     | 0,855183    |  |  |
|          | Molar Vapor Fraction                                                                      |                  | 0              | 1           | 0            | 1           |  |  |
| •        | Molar Liquid Fraction                                                                     |                  | 1              | 0           | 1            | 0           |  |  |
| •        | Molar Solid Fraction                                                                      |                  | 0              | 0           | 0            | 0           |  |  |
| •        | Mass Vapor Fraction                                                                       |                  | 0              | 1           | 0            | 1           |  |  |
| •        | Mass Liquid Fraction                                                                      |                  | 1              | 0           | 1            | 0           |  |  |
| •        | Mass Solid Fraction                                                                       |                  | 0              | 0           | 0            | 0           |  |  |
| •        | Molar Enthalpy                                                                            | cal/mol          | -68580,5       | -3171,4     | -68544       | -1173,28    |  |  |
| •        | Mass Enthalpy                                                                             | cal/gm           | -3025,23       | -111,772    | -3024,79     | -40,7929    |  |  |
| •        | Molar Entropy                                                                             | cal/mol-K        | -33,4233       | 1,4127      | -33,3408     | 1,38833     |  |  |
| •        | Mass Entropy                                                                              | cal/gm-K         | -1,47437       | 0,049789    | -1,4713      | 0,0482696   |  |  |
| •        | Molar Density                                                                             | mol/cc           | 0,0645774      | 3,37018e-05 | 0,0644769    | 3,46934e-05 |  |  |
| •        | Mass Density                                                                              | gm/cc            | 1,46394        | 0,000956243 | 1,4611       | 0,000997852 |  |  |
| •        | Enthalpy Flow                                                                             | cal/sec          | -5,32904e+06   | -14308,7    | -5,33826e+06 | -5087,18    |  |  |
| •        | Average MW                                                                                |                  | 22,6695        | 28,3737     | 22,6608      | 28,762      |  |  |
|          |                                                                                           |                  |                |             |              |             |  |  |

Anexo E 25. Resultados energéticos en las corrientes del Absorbedor para la ciudad de Medellín.

Anexo E 26. Resultados de los flujos y fracciones molares del Absorbedor para la ciudad de Medellín.

| Material | Heat     | Load   | Vol.% Curves | Wt. % Curves | Petroleum | Polymers | Solic | ls          |             |             |
|----------|----------|--------|--------------|--------------|-----------|----------|-------|-------------|-------------|-------------|
|          |          |        |              |              | Units     | L0-ABS   | -     | VN+1-ABS -  | LN-ABS -    | V1-ABS      |
| -        | Mole Flo | ws     |              | kmol         | /hr       | 279      | ,737  | 16,2425     | 280,371     | 15,6091     |
|          | N2       |        |              | kmol,        | /hr       | 0,034    | 5083  | 11,9768     | 0,0569823   | 11,9543     |
|          | 02       |        |              | kmol,        | /hr       | 0,028    | 0526  | 3,2245      | 0,0467619   | 3,20579     |
|          | AR       |        |              | kmol,        | /hr       | 0,00090  | 7895  | 0,1428      | 0,00145368  | 0,142254    |
| •        | CO2      |        |              | kmol,        | /hr       | 0,0004   | 7334  | 0,0107      | 0,000552544 | 0,0106208   |
|          | H2O      |        |              | kmol,        | /hr       | 21       | 1,115 | 0,8877      | 211,706     | 0,296061    |
| -        | CAC      | 2      |              | kmol,        | /hr       |          | 0     | 0           | 0           | 0           |
|          | CA+-     | +      |              | kmol,        | /hr       | 22       | 2,853 | 0           | 22,853      | 0           |
|          | CL-      |        |              | kmol,        | /hr       | 45,      | 7059  | 0           | 45,7059     | 0           |
| -        | Mole Fra | ctions |              |              |           |          |       |             |             |             |
|          | N2       |        |              |              |           | 0,0001   | 2336  | 0,737374    | 0,000203239 | 0,765859    |
|          | 02       |        |              |              |           | 0,00010  | 0282  | 0,198522    | 0,000166786 | 0,20538     |
|          | AR       |        |              |              |           | 3,24553  | e-06  | 0,00879175  | 5,18483e-06 | 0,00911357  |
|          | CO2      |        |              |              |           | 1,69209  | e-06  | 0,000658766 | 1,97076e-06 | 0,000680425 |
| •        | H20      |        |              |              |           | 0,75     | 4688  | 0,0546529   | 0,755094    | 0,0189672   |
| •        | CAC      | .2     |              |              |           |          | 0     | 0           | 0           | 0           |
| 2        | CA+-     | +      |              |              |           | 0,081    | 6943  | 0           | 0,0815097   | 0           |
| •        | CL-      |        |              |              |           | 0,16     | 3389  | 0           | 0,163019    | 0           |

| Main Flowsheet × ABS (RadFrac) - Stream Results (Boundary) × + |                  |                |            |             |            |  |  |
|----------------------------------------------------------------|------------------|----------------|------------|-------------|------------|--|--|
| Material Heat Load Vol.% Curves Wt. %                          | Curves Petroleum | Polymers Solid | ls         |             |            |  |  |
|                                                                | Units            | LO-ABS -       | VN+1-ABS - | LN-ABS -    | V1-ABS -   |  |  |
| Mass Flows                                                     | kg/hr            | 6341,51        | 460,86     | 6353,42     | 448,948    |  |  |
| N2                                                             | kg/hr            | 0,966697       | 335,512    | 1,59627     | 334,882    |  |  |
| > O2                                                           | kg/hr            | 0,897651       | 103,18     | 1,49632     | 102,581    |  |  |
| AR                                                             | kg/hr            | 0,0362686      | 5,70457    | 0,0580714   | 5,68277    |  |  |
| > CO2                                                          | kg/hr            | 0,0208316      | 0,470905   | 0,0243173   | 0,467419   |  |  |
| H2O                                                            | kg/hr            | 3803,29        | 15,9922    | 3813,95     | 5,33361    |  |  |
| > CACL2                                                        | kg/hr            | 0              | 0          | 0           | 0          |  |  |
| CA++                                                           | kg/hr            | 915,876        | 0          | 915,876     | 0          |  |  |
| CL-                                                            | kg/hr            | 1620,42        | 0          | 1620,42     | 0          |  |  |
| Mass Fractions                                                 |                  |                |            |             |            |  |  |
| > N2                                                           |                  | 0,00015244     | 0,728013   | 0,000251246 | 0,745927   |  |  |
| D2                                                             |                  | 0,000141552    | 0,223886   | 0,000235515 | 0,228493   |  |  |
| AR                                                             |                  | 5,71924e-06    | 0,0123781  | 9,14018e-06 | 0,012658   |  |  |
| CO2                                                            |                  | 3,28496e-06    | 0,0010218  | 3,82744e-06 | 0,00104114 |  |  |
| H2O                                                            |                  | 0,599745       | 0,0347007  | 0,600298    | 0,0118803  |  |  |
| CACL2                                                          |                  | 0              | 0          | 0           | 0          |  |  |
| > CA++                                                         |                  | 0,144426       | 0          | 0,144155    | 0          |  |  |
| CL-                                                            |                  | 0,255526       | 0          | 0,255047    | 0          |  |  |

Anexo E 27. Resultados de los flujos y fracciones másicas del Absorbedor para la ciudad de Medellín.

Anexo E 28. Resultados energéticos en las corrientes del Desorbedor para la ciudad de Medellín.

| Main Flow | Main Flowsheet X DESORB (RadFrac) - Stream Results (Boundary) X + |          |           |           |       |             |              |             |  |
|-----------|-------------------------------------------------------------------|----------|-----------|-----------|-------|-------------|--------------|-------------|--|
| Material  | Heat Load Vol.% Curves Wt. %                                      | 6 Curves | Petroleum | Polymers  | Solid | ls          |              |             |  |
|           |                                                                   |          | Units     | L0-DESOR  | •     | VN+1-DES -  | LN-DESOR -   | V1-DES -    |  |
| ► – MD    | (ED Substream                                                     |          |           |           |       |             |              |             |  |
| •         | Phase                                                             |          |           |           |       | Vapor Phase | Liquid Phase | Vapor Phase |  |
| •         | Temperature                                                       | С        |           | 5         | 1,63  | 32,2973     | 48,7014      | 49,5307     |  |
| •         | Pressure                                                          | bar      |           | 0,855     | 183   | 0,855676    | 0,855183     | 0,855183    |  |
| •         | Molar Vapor Fraction                                              |          |           | 0,000152  | 147   | 1           | 0            | 1           |  |
| •         | Molar Liquid Fraction                                             |          |           | 0,999     | 848   | 0           | 1            | 0           |  |
| •         | Molar Solid Fraction                                              |          |           |           | 0     | 0           | 0            | 0           |  |
| •         | Mass Vapor Fraction                                               |          |           | 0,000190  | 546   | 1           | 0            | 1           |  |
| •         | Mass Liquid Fraction                                              |          |           | 0,999     | 809   | 0           | 1            | 0           |  |
| •         | Mass Solid Fraction                                               |          |           |           | 0     | 0           | 0            | 0           |  |
| •         | Molar Enthalpy                                                    | cal/mo   |           | -682      | 51,6  | -3171,64    | -68294,9     | -4338,34    |  |
| •         | Mass Enthalpy                                                     | cal/gm   |           | -301      | 1,88  | -111,781    | -3012,63     | -154,219    |  |
| •         | Molar Entropy                                                     | cal/mo   | -K        | -32,4     | 004   | 1,41275     | -32,4971     | 1,65892     |  |
| •         | Mass Entropy                                                      | cal/gm   | -K        | -1,4      | 298   | 0,0497906   | -1,43352     | 0,0589715   |  |
| •         | Molar Density                                                     | mol/cc   |           | 0,0488    | 835   | 3,37018e-05 | 0,0639808    | 3,18825e-05 |  |
|           | Mass Density                                                      | gm/cc    |           | 1,10      | 774   | 0,000956245 | 1,45041      | 0,000896886 |  |
| •         | Enthalpy Flow                                                     | cal/sec  |           | -5,31549e | +06   | -21434,8    | -5,30684e+06 | -30083      |  |
| •         | Average MW                                                        |          |           | 22,6      | 608   | 28,3737     | 22,6695      | 28,1309     |  |

| Main Flowsheet × DESORB (RadFrac) - Stream Results (Boundary) × + |                      |                |             |             |             |  |  |  |
|-------------------------------------------------------------------|----------------------|----------------|-------------|-------------|-------------|--|--|--|
| Material Heat Load Vol.% Curves Wt                                | . % Curves Petroleum | Polymers Solic | ls          | -           |             |  |  |  |
| 4                                                                 | Units                | LO-DESOR -     | VN+1-DES 🔻  | LN-DESOR -  | V1-DES -    |  |  |  |
| Mole Flows                                                        | kmol/hr              | 280,371        | 24,3298     | 279,737     | 24,9632     |  |  |  |
| N2                                                                | kmol/hr              | 0,0569823      | 17,9401     | 0,0345075   | 17,9626     |  |  |  |
| D2                                                                | kmol/hr              | 0,0467619      | 4,83003     | 0,0280506   | 4,84873     |  |  |  |
| AR                                                                | kmol/hr              | 0,00145368     | 0,2139      | 0,000907855 | 0,214446    |  |  |  |
| CO2                                                               | kmol/hr              | 0,000552544    | 0,0161      | 0,00047322  | 0,0161785   |  |  |  |
| H2O                                                               | kmol/hr              | 211,706        | 1,32968     | 211,115     | 1,92131     |  |  |  |
| CACL2                                                             | kmol/hr              | 0              | 0           | 0           | 0           |  |  |  |
| CA++                                                              | kmol/hr              | 22,853         | 0           | 22,853      | 0           |  |  |  |
| CL-                                                               | kmol/hr              | 45,7059        | 0           | 45,7059     | 0           |  |  |  |
| Mole Fractions                                                    |                      |                |             |             |             |  |  |  |
| > N2                                                              |                      | 0,000203239    | 0,737371    | 0,000123357 | 0,719561    |  |  |  |
| 02                                                                |                      | 0,000166786    | 0,198523    | 0,000100275 | 0,194235    |  |  |  |
| AR                                                                |                      | 5,18483e-06    | 0,00879168  | 3,24538e-06 | 0,00859047  |  |  |  |
| CO2                                                               |                      | 1,97076e-06    | 0,000661739 | 1,69166e-06 | 0,000648095 |  |  |  |
| H2O                                                               |                      | 0,755094       | 0,0546523   | 0,754688    | 0,0769654   |  |  |  |
| CACL2                                                             |                      | 0              | 0           | 0           | 0           |  |  |  |
| CA++                                                              |                      | 0,0815097      | 0           | 0,0816943   | 0           |  |  |  |
| CL-                                                               |                      | 0,163019       | 0           | 0,163389    | 0           |  |  |  |

Anexo E 29. Resultados de los flujos y fracciones molares del Desorbedor para la ciudad de Medellín.

Anexo E 30. Resultados de los flujos y fracciones másicas del Desorbedor para la ciudad de Medellín.

| Main Flowsheet × DESORB (RadFrac) - Stream | Main Flowsheet × DESORB (RadFrac) - Stream Results (Boundary) × + |                                |            |             |            |  |  |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------|--------------------------------|------------|-------------|------------|--|--|--|--|--|
| Material Heat Load Vol.% Curves Wt.        | % Curves Petroleum                                                | rves Petroleum Polymers Solids |            |             |            |  |  |  |  |  |
|                                            | Units                                                             | LO-DESOR -                     | VN+1-DES - | LN-DESOR -  | V1-DES -   |  |  |  |  |  |
| Mass Flows                                 | kg/hr                                                             | 6353,42                        | 690,328    | 6341,51     | 702,239    |  |  |  |  |  |
| N2                                         | kg/hr                                                             | 1,59627                        | 502,565    | 0,966676    | 503,194    |  |  |  |  |  |
| 02                                         | kg/hr                                                             | 1,49632                        | 154,555    | 0,897587    | 155,154    |  |  |  |  |  |
| AR                                         | kg/hr                                                             | 0,0580714                      | 8,54488    | 0,036267    | 8,56669    |  |  |  |  |  |
| CO2                                        | kg/hr                                                             | 0,0243173                      | 0,708558   | 0,0208263   | 0,712015   |  |  |  |  |  |
| H2O                                        | kg/hr                                                             | 3813,95                        | 23,9546    | 3803,29     | 34,6129    |  |  |  |  |  |
| CACL2                                      | kg/hr                                                             | 0                              | 0          | 0           | 0          |  |  |  |  |  |
| CA++                                       | kg/hr                                                             | 915,876                        | 0          | 915,876     | 0          |  |  |  |  |  |
| CL-                                        | kg/hr                                                             | 1620,42                        | 0          | 1620,42     | 0          |  |  |  |  |  |
| Mass Fractions                             |                                                                   |                                |            |             |            |  |  |  |  |  |
| N2                                         |                                                                   | 0,000251246                    | 0,728009   | 0,000152436 | 0,716557   |  |  |  |  |  |
| ▶ 02                                       |                                                                   | 0,000235515                    | 0,223886   | 0,000141542 | 0,220941   |  |  |  |  |  |
| AR                                         |                                                                   | 9,14018e-06                    | 0,012378   | 5,71898e-06 | 0,0121991  |  |  |  |  |  |
| CO2                                        |                                                                   | 3,82744e-06                    | 0,00102641 | 3,28413e-06 | 0,00101392 |  |  |  |  |  |
| H2O                                        |                                                                   | 0,600298                       | 0,0347002  | 0,599745    | 0,0492892  |  |  |  |  |  |
| CACL2                                      |                                                                   | 0                              | 0          | 0           | 0          |  |  |  |  |  |
| CA++                                       |                                                                   | 0,144155                       | 0          | 0,144426    | 0          |  |  |  |  |  |
| CL-                                        |                                                                   | 0,255047                       | 0          | 0,255526    | 0          |  |  |  |  |  |

| Main Flowsheet × BOM | MBA-1 (Pump) - | Results × +       |          |
|----------------------|----------------|-------------------|----------|
| Summary Balance      | Performance Cu | rve Utility Usage | 🕜 Status |
| Fluid power          | 8,32809        | Watt              | -        |
| Brake power          | 11,1041        | Watt              | •        |
| Electricity          | 11,1041        | Watt              | •        |
| Volumetric flow rate | 72,4732        | l/min             | •        |
| Pressure change      | 0,0689476      | bar               | •        |
| NPSH available       | 0,452701       | meter-head        | •        |
| NPSH required        |                |                   | -        |
| Head developed       | 0,481193       | meter-head        | •        |
| Pump efficiency used | 0,75           |                   |          |
| Net work required    | 11,1041        | Watt              | -        |
| Outlet pressure      | 0,912046       | atm               | -        |
| Outlet temperature   | 24,4693        | с                 | -        |

Anexo E 31. Resultados energéticos de la Bomba 1 para la ciudad de Medellín.

Anexo E 32. Resultados de los flujos y fracciones molares de la Bomba 1 para la ciudad de Medellín.

| Main | Main Flowsheet × BOMBA-1 (Pump) - Stream Results (Boundary) × + |              |           |          |             |             |  |  |  |
|------|-----------------------------------------------------------------|--------------|-----------|----------|-------------|-------------|--|--|--|
| Mate | erial Work Vol.% Curves                                         | Wt. % Curves | Petroleum | Polymers | Solids      |             |  |  |  |
|      |                                                                 |              | Units     | LN       | -ABS -      | LIN-COLE -  |  |  |  |
| •    | - Mole Flows                                                    | k            | cmol/hr   |          | 280,371     | 280,371     |  |  |  |
| •    | N2                                                              | k            | (mol/hr   |          | 0,0569823   | 0,0569823   |  |  |  |
| •    | 02                                                              | k            | (mol/hr   |          | 0,0467619   | 0,0467619   |  |  |  |
| •    | AR                                                              | k            | (mol/hr   |          | 0,00145368  | 0,00145368  |  |  |  |
|      | CO2                                                             | k            | (mol/hr   |          | 0,000552544 | 0,000552544 |  |  |  |
|      | H2O                                                             | k            | cmol/hr   |          | 211,706     | 211,706     |  |  |  |
| •    | CACL2                                                           | k            | (mol/hr   |          | 0           | 0           |  |  |  |
|      | CA++                                                            | k            | (mol/hr   |          | 22,853      | 22,853      |  |  |  |
|      | CL-                                                             | k            | (mol/hr   |          | 45,7059     | 45,7059     |  |  |  |
|      | - Mole Fractions                                                |              |           |          |             |             |  |  |  |
|      | N2                                                              |              |           |          | 0,000203239 | 0,000203239 |  |  |  |
|      | O2                                                              |              |           |          | 0,000166786 | 0,000166786 |  |  |  |
|      | AR                                                              |              |           |          | 5,18483e-06 | 5,18483e-06 |  |  |  |
|      | CO2                                                             |              |           |          | 1,97076e-06 | 1,97076e-06 |  |  |  |
|      | H2O                                                             |              |           |          | 0,755094    | 0,755094    |  |  |  |
| •    | CACL2                                                           |              |           |          | 0           | 0           |  |  |  |
|      | CA++                                                            |              |           |          | 0,0815097   | 0,0815097   |  |  |  |
|      | CL-                                                             |              |           |          | 0,163019    | 0,163019    |  |  |  |

| Main Flow | Main Flowsheet × BOMBA-1 (Pump) - Stream Results (Boundary) × + |                  |           |          |             |             |  |  |
|-----------|-----------------------------------------------------------------|------------------|-----------|----------|-------------|-------------|--|--|
| Material  | Work Vol.% Cur                                                  | ves Wt. % Curves | Petroleum | Polymers | Solids      |             |  |  |
|           |                                                                 |                  | Units     |          | N-ABS 🔻     | LIN-COLE -  |  |  |
| - 1       | Mass Flows                                                      |                  | kg/hr     |          | 6353,42     | 6353,42     |  |  |
| •         | N2                                                              |                  | kg/hr     |          | 1,59627     | 1,59627     |  |  |
|           | 02                                                              |                  | kg/hr     |          | 1,49632     | 1,49632     |  |  |
| •         | AR                                                              |                  | kg/hr     |          | 0,0580714   | 0,0580714   |  |  |
|           | CO2                                                             |                  | kg/hr     |          | 0,0243173   | 0,0243173   |  |  |
| •         | H2O                                                             |                  | kg/hr     |          | 3813,95     | 3813,95     |  |  |
| •         | CACL2                                                           |                  | kg/hr     |          | 0           | 0           |  |  |
| •         | CA++                                                            |                  | kg/hr     |          | 915,876     | 915,876     |  |  |
| •         | CL-                                                             |                  | kg/hr     |          | 1620,42     | 1620,42     |  |  |
|           | Mass Fractions                                                  |                  |           |          |             |             |  |  |
| •         | N2                                                              |                  |           |          | 0,000251246 | 0,000251246 |  |  |
| •         | O2                                                              |                  |           |          | 0,000235515 | 0,000235515 |  |  |
| •         | AR                                                              |                  |           |          | 9,14018e-06 | 9,14018e-06 |  |  |
| •         | CO2                                                             |                  |           |          | 3,82744e-06 | 3,82744e-06 |  |  |
| •         | H2O                                                             |                  |           |          | 0,600298    | 0,600298    |  |  |
|           | CACL2                                                           |                  |           |          | 0           | 0           |  |  |
|           | CA++                                                            |                  |           |          | 0,144155    | 0,144155    |  |  |
|           | CL-                                                             |                  |           |          | 0,255047    | 0,255047    |  |  |
|           |                                                                 |                  |           |          |             |             |  |  |

Anexo E 33. Resultados de los flujos y fracciones másicas de la Bomba 1 para la ciudad de Medellín.

Anexo E 34. Resultados energéticos de la Bomba 2 para la ciudad de Medellín.

| Main Flowsheet × BO  | MBA-2 (Pump) - | Results × +       |        |
|----------------------|----------------|-------------------|--------|
| Summary Balance      | Performance Cu | rve Utility Usage | Status |
| Fluid power          | 41,8685        | Watt              | •      |
| Brake power          | 55,8247        | Watt              | •      |
| Electricity          | 55,8247        | Watt              | •      |
| Volumetric flow rate | 72,8702        | l/min             | •      |
| Pressure change      | 0,344738       | bar               | •      |
| NPSH available       | 0,0977047      | meter-head        | •      |
| NPSH required        |                |                   | -      |
| Head developed       | 2,42369        | meter-head        | -      |
| Pump efficiency used | 0,75           |                   |        |
| Net work required    | 55,8247        | Watt              | -      |
| Outlet pressure      | 1,18423        | atm               | -      |
| Outlet temperature   | 48,7093        | С                 | •      |

| Main Flowsheet × BOMBA-2 (Pump) - Stream Results (Boundary) × + |           |              |              |           |        |             |             |
|-----------------------------------------------------------------|-----------|--------------|--------------|-----------|--------|-------------|-------------|
| Material                                                        | Work      | Vol.% Curves | Wt. % Curves | Petroleum | Polyme | rs Solids   |             |
|                                                                 |           |              |              | Units     |        | LN-DESOR 🝷  | LIN-ENFR -  |
| > — M                                                           | Nole Flov | ws           |              | kmol/hr   |        | 279,737     | 279,737     |
| •                                                               | N2        |              |              | kmol/hr   |        | 0,0345075   | 0,0345075   |
| •                                                               | 02        |              |              | kmol/hr   |        | 0,0280506   | 0,0280506   |
| •                                                               | AR        |              |              | kmol/hr   |        | 0,000907855 | 0,000907855 |
| •                                                               | CO2       |              |              | kmol/hr   |        | 0,00047322  | 0,00047322  |
| •                                                               | H2O       |              |              | kmol/hr   |        | 211,115     | 211,115     |
| •                                                               | CACL      | 2            |              | kmol/hr   |        | 0           | 0           |
| •                                                               | CA++      |              |              | kmol/hr   |        | 22,853      | 22,853      |
| •                                                               | CL-       |              |              | kmol/hr   |        | 45,7059     | 45,7059     |
| > — N                                                           | Nole Fra  | ctions       |              |           |        |             |             |
| •                                                               | N2        |              |              |           |        | 0,000123357 | 0,000123357 |
| •                                                               | 02        |              |              |           |        | 0,000100275 | 0,000100275 |
| •                                                               | AR        |              |              |           |        | 3,24538e-06 | 3,24538e-06 |
| •                                                               | CO2       |              |              |           |        | 1,69166e-06 | 1,69166e-06 |
| •                                                               | H2O       |              |              |           |        | 0,754688    | 0,754688    |
|                                                                 | CACL      | 2            |              |           |        | 0           | 0           |
| •                                                               | CA++      |              |              |           |        | 0,0816943   | 0,0816943   |
| •                                                               | CL-       |              |              |           |        | 0,163389    | 0,163389    |

Anexo E 35. Resultados de los flujos y fracciones molares de la Bomba 2 para la ciudad de Medellín.

Anexo E 36. Resultados de los flujos y fracciones másicas de la Bomba 2 para la ciudad de Medellín.

| Main Flo | wsheet × BOMBA-2 (Pu           | mp) - Stream Re | sults (Bounda | ry) × 🛨  |             |             |
|----------|--------------------------------|-----------------|---------------|----------|-------------|-------------|
| Materia  | Work Vol.% Curves              | Wt. % Curves    | Petroleum     | Polymers | Solids      |             |
|          |                                |                 | Units         | LN       | -DESOR -    | LIN-ENFR -  |
| -        | <ul> <li>Mass Flows</li> </ul> |                 | kg/hr         |          | 6341,51     | 6341,51     |
|          | N2                             |                 | kg/hr         |          | 0,966676    | 0,966676    |
|          | O2                             |                 | kg/hr         |          | 0,897587    | 0,897587    |
|          | AR                             |                 | kg/hr         |          | 0,036267    | 0,036267    |
| •        | CO2                            |                 | kg/hr         |          | 0,0208263   | 0,0208263   |
|          | H2O                            |                 | kg/hr         |          | 3803,29     | 3803,29     |
|          | CACL2                          |                 | kg/hr         |          | 0           | 0           |
|          | CA++                           |                 | kg/hr         |          | 915,876     | 915,876     |
|          | CL-                            |                 | kg/hr         |          | 1620,42     | 1620,42     |
| -        | Mass Fractions                 |                 |               |          |             |             |
| •        | N2                             |                 |               |          | 0,000152436 | 0,000152436 |
|          | 02                             |                 |               |          | 0,000141542 | 0,000141542 |
|          | AR                             |                 |               |          | 5,71898e-06 | 5,71898e-06 |
|          | CO2                            |                 |               |          | 3,28413e-06 | 3,28413e-06 |
|          | H2O                            |                 |               |          | 0,599745    | 0,599745    |
|          | CACL2                          |                 |               |          | 0           | 0           |
|          | CA++                           |                 |               |          | 0,144426    | 0,144426    |
|          | CL-                            |                 |               |          | 0,255526    | 0,255526    |

| Main Flowsheet × CO       | LECTOR (Hea  | ter) - R    | esults ×  | Ŧ     |          |   |
|---------------------------|--------------|-------------|-----------|-------|----------|---|
| Summary Balance           | Phase Equili | brium       | Utility U | Jsage | Status 🎯 |   |
| Outlet temperature        |              |             | 51,63     | С     |          | • |
| Outlet pressure           |              |             | 0,844     | atm   |          | • |
| Vapor fraction            |              | 0,000152147 |           |       |          |   |
| Heat duty                 |              |             | 95,3239   | kW    |          | • |
| Net duty                  |              |             | 95,3239   | kW    |          | • |
| 1st liquid / Total liquid |              |             | 1         |       |          |   |
| Pressure-drop correlation | on parameter |             |           |       |          |   |
| Pressure drop             |              | 0           | ,068046   | atm   |          | • |

Anexo E 37. Resultados energéticos del Colector para la ciudad de Medellín.

Anexo E 38. Resultados de los flujos y fracciones molares del Colector para la ciudad de Medellín.

| Ń | 1ain Flowsheet × COLECTOR (Heate | r) - Stream Results | (Feeds) × + |           |       |             |
|---|----------------------------------|---------------------|-------------|-----------|-------|-------------|
|   | Material Heat Load Vol.% Curv    | es Wt. % Curves     | Petroleum   | Polymers  | Solid | 5           |
|   | 4                                |                     | Units       | LIN-COLE  | •     | LO-DESOR 🔻  |
| Þ | - Mole Flows                     | kmol/ł              | ır          | 280,3     | 871   | 280,371     |
|   | N2                               | kmol/h              | r           | 0,05698   | 323   | 0,0569823   |
|   | 02                               | kmol/h              | r           | 0,04676   | 519   | 0,0467619   |
| Þ | AR                               | kmol/h              | r           | 0,001453  | 368   | 0,00145368  |
|   | CO2                              | kmol/h              | r           | 0,0005525 | 544   | 0,000552544 |
|   | H2O                              | kmol/h              | r           | 211,7     | 706   | 211,706     |
|   | CACL2                            | kmol/h              | r           |           | 0     | 0           |
|   | CA++                             | kmol/h              | r           | 22,8      | 353   | 22,853      |
| Þ | CL-                              | kmol/h              | r           | 45,70     | 059   | 45,7059     |
| Þ | - Mole Fractions                 |                     |             |           |       |             |
| Þ | N2                               |                     |             | 0,0002032 | 239   | 0,000203239 |
| • | O2                               |                     |             | 0,0001667 | 786   | 0,000166786 |
|   | AR                               |                     |             | 5,18483e- | -06   | 5,18483e-06 |
| Þ | CO2                              |                     |             | 1,97076e- | -06   | 1,97076e-06 |
|   | H2O                              |                     |             | 0,7550    | )94   | 0,755094    |
| • | CACL2                            |                     |             |           | 0     | 0           |
| • | CA++                             |                     |             | 0,08150   | 97    | 0,0815097   |
|   | CL-                              |                     |             | 0,1630    | 019   | 0,163019    |

| Main Flow | sheet × COLEC  | TOR (Heater) - S | Stream F | Results ( | Feeds) × 🕂 |          |       |             |
|-----------|----------------|------------------|----------|-----------|------------|----------|-------|-------------|
| Material  | Heat Load      | Vol.% Curves     | Wt. % (  | Curves    | Petroleum  | Polymers | Solid | s           |
|           |                |                  |          |           | Units      | LIN-COLE | -     | LO-DESOR -  |
| - I       | Mass Flows     |                  |          | kg/hr     |            | 6353     | 3,42  | 6353,42     |
| •         | N2             |                  |          | kg/hr     |            | 1,59     | 9627  | 1,59627     |
| •         | 02             |                  |          | kg/hr     |            | 1,49     | 9632  | 1,49632     |
| •         | AR             |                  |          | kg/hr     |            | 0,0580   | 0714  | 0,0580714   |
| •         | CO2            |                  |          | kg/hr     |            | 0,0243   | 3173  | 0,0243173   |
| •         | H2O            |                  |          | kg/hr     |            | 381      | 3,95  | 3813,95     |
| •         | CACL2          |                  |          | kg/hr     |            |          | 0     | 0           |
| •         | CA++           |                  |          | kg/hr     |            | 915      | ,876  | 915,876     |
| •         | CL-            |                  |          | kg/hr     |            | 162      | 0,42  | 1620,42     |
| → - I     | Mass Fractions |                  |          |           |            |          |       |             |
| •         | N2             |                  |          |           |            | 0,000251 | 246   | 0,000251246 |
| •         | 02             |                  |          |           |            | 0,000235 | 5515  | 0,000235515 |
| •         | AR             |                  |          |           |            | 9,14018  | e-06  | 9,14018e-06 |
|           | CO2            |                  |          |           |            | 3,82744  | e-06  | 3,82744e-06 |
|           | H2O            |                  |          |           |            | 0,600    | 298   | 0,600298    |
| •         | CACL2          |                  |          |           |            |          | 0     | 0           |
|           | CA++           |                  |          |           |            | 0,144    | 4155  | 0,144155    |
| •         | CL-            |                  |          |           |            | 0,255    | 5047  | 0,255047    |

Anexo E 39. Resultados de los flujos y fracciones másicas del Colector para la ciudad de Medellín.

Anexo E 40. Resultados energéticos del Enfriador para la ciudad de Medellín.

| Main Flowsh    | neet ×⁄EN    | FRIADO (Hea  | ter) - R | esults ×  | +     |        |
|----------------|--------------|--------------|----------|-----------|-------|--------|
| Summary        | Balance      | Phase Equili | brium    | Utility L | Jsage | Status |
| Outlet temp    | erature      |              |          | 22        | С     | •      |
| Outlet press   | ure          |              |          | 0,844     | atm   | •      |
| Vapor fractio  | n            |              |          | 0         |       |        |
| Heat duty      |              |              | -        | 92,9919   | kW    | •      |
| Net duty       |              |              | -        | 92,9919   | kW    | •      |
| 1st liquid / T | otal liquid  |              |          | 1         |       |        |
| Pressure-dro   | p correlatio | n parameter  |          |           |       |        |
| Pressure dro   | р            |              |          | 0,34023   | atm   | -      |
|                |              |              |          |           |       |        |

| Main Flow | sheet ×⁄ENFRI  | ADO (Heater) - : | Stream | Results ( | Boundary) $	imes$ | +        |       |            |    |
|-----------|----------------|------------------|--------|-----------|-------------------|----------|-------|------------|----|
| Material  | Heat Load      | Vol.% Curves     | Wt. %  | Curves    | Petroleum         | Polymers | Solid | ls         |    |
|           |                |                  |        |           | Units             | LIN-ENFR | •     | L0-OUT     | -  |
| > — N     | Mole Flows     |                  |        | kmol/h    | r                 | 279      | ,737  | 279,73     | 37 |
|           | N2             |                  |        | kmol/hr   |                   | 0,034    | 5075  | 0,034507   | 75 |
| •         | 02             |                  |        | kmol/h    | -                 | 0,0280   | 0506  | 0,028050   | 06 |
|           | AR             |                  |        | kmol/hr   | -                 | 0,000907 | 7855  | 0,00090785 | 55 |
|           | CO2            |                  |        | kmol/hr   | -                 | 0,0004   | 7322  | 0,0004732  | 22 |
| •         | H2O            |                  |        | kmol/hr   | -                 | 211      | ,115  | 211,1      | 15 |
| •         | CACL2          |                  |        | kmol/hr   | -                 |          | 0     |            | 0  |
| •         | CA++           |                  |        | kmol/hr   |                   | 22       | ,853  | 22,85      | 53 |
| •         | CL-            |                  |        | kmol/hr   |                   | 45,7     | 7059  | 45,705     | 59 |
| > — P     | Mole Fractions |                  |        |           |                   |          |       |            |    |
| •         | N2             |                  |        |           |                   | 0,000123 | 3357  | 0,00012335 | 57 |
| •         | 02             |                  |        |           |                   | 0,000100 | 0275  | 0,0001002  | 75 |
| •         | AR             |                  |        |           |                   | 3,24538  | e-06  | 3,24538e-0 | 06 |
|           | CO2            |                  |        |           |                   | 1,69166  | e-06  | 1,69166e-0 | 06 |
|           | H2O            |                  |        |           |                   | 0,754    | 4688  | 0,75468    | 88 |
|           | CACL2          |                  |        |           |                   |          | 0     |            | 0  |
| •         | CA++           |                  |        |           |                   | 0,081    | 5943  | 0,081694   | 43 |
| •         | CL-            |                  |        |           |                   | 0,163    | 3389  | 0,16338    | 89 |

Anexo E 41. Resultados de los flujos y fracciones molares del Enfriador para la ciudad de Medellín.

Anexo E 42. Resultados de los flujos y fracciones másicas del Enfriador para la ciudad de Medellín.

| Material | Heat Loa      | ad Vol.% Curves | Wt. % Cur | ves Petro | leum | Polymers | Solids | 5          |
|----------|---------------|-----------------|-----------|-----------|------|----------|--------|------------|
|          |               |                 |           | Units     |      | LIN-ENFR | -      | L0-OUT     |
|          | Mass Flows    |                 | kg,       | /hr       |      | 634      | 1,51   | 6341,51    |
|          | N2            |                 | kg,       | /hr       |      | 0,966    | 5676   | 0,96667    |
|          | O2            |                 | kg,       | /hr       |      | 0,897    | 7587   | 0,89758    |
|          | AR            |                 | kg/       | /hr       |      | 0,036    | 5267   | 0,03626    |
|          | CO2           |                 | kg/       | /hr       |      | 0,0208   | 3263   | 0,020826   |
| •        | H2O           |                 | kg/       | /hr       |      | 380      | 3,29   | 3803,2     |
|          | CACL2         |                 | kg/       | /hr       |      |          | 0      |            |
|          | CA++          |                 | kg/       | /hr       |      | 915      | ,876   | 915,87     |
|          | CL-           |                 | kg/       | /hr       |      | 162      | 0,42   | 1620,4     |
|          | Mass Fraction | 15              |           |           |      |          |        |            |
|          | N2            |                 |           |           |      | 0,000152 | 2436   | 0,00015243 |
|          | 02            |                 |           |           |      | 0,000141 | 1542   | 0,00014154 |
|          | AR            |                 |           |           |      | 5,71898  | e-06   | 5,71898e-0 |
|          | CO2           |                 |           |           |      | 3,28413  | e-06   | 3,28413e-0 |
|          | H2O           |                 |           |           |      | 0,599    | 9745   | 0,59974    |
|          | CACL2         |                 |           |           |      |          | 0      |            |
|          | CA++          |                 |           |           |      | 0,144    | 1426   | 0,14442    |
| 2        | CL-           |                 |           |           |      | 0,255    | 5526   | 0,25552    |
|          |               |                 |           |           |      | 1        |        |            |

| Mixed CI Soli       | d NC Solid     | Flash Opt | ions | EO Options | Costin | g   | Comments  |         |
|---------------------|----------------|-----------|------|------------|--------|-----|-----------|---------|
| Specifications      |                |           |      |            |        |     |           |         |
| Flash Type          | Temperature    | -         | Pres | sure       | •      | Com | position  |         |
| – State variables – |                |           |      |            |        | Мо  | le-Flow 🔻 | kmol/hr |
| Temperature         |                | 22        | С    | •          |        |     | Component | Value   |
| Pressure            |                | 0,9879    | atm  | •          |        | -   | N2        | 2,44e-0 |
| Vapor fraction      |                |           |      |            |        | •   | 02        | 4,43e-0 |
| Total flow basis    | Mole           | -         |      |            |        | -   | AR        | 1.2e-0  |
| Total flow rate     |                |           | kmol | /hr 🔹      |        | •   | CO2       | 1,4e-0  |
| Solvent             |                |           |      | ~          |        | •   | H2O       | 2,73e-0 |
| Reference Tempe     | erature        |           |      |            |        | •   | CACL2     | 1,85e-1 |
| Volume flow refe    | rence temperat | ure       |      |            |        | •   | CA++      |         |
| С                   | T              |           |      |            |        | •   | CL-       |         |

Anexo E 43. Especificación de la corriente fresca de alimento al proceso para la simulación en Arauca.

Anexo E 44. Especificación de la corriente de aire a la entrada del Ventilador 1 para la ciudad de Arauca.

| N | 1ain Flows  | heet × A    | IRE-ABS (MA    | TERIAL) ×  | +       |            |       |     |              |     |           |
|---|-------------|-------------|----------------|------------|---------|------------|-------|-----|--------------|-----|-----------|
|   | Ø Mixed     | Cl Solid    | NC Solid       | Flash Opt  | ions    | EO Options | Costi | ing | Comments     |     |           |
| ( | Specific    | cations     |                |            |         |            |       |     |              |     |           |
|   | Flash Type  | 1           | Temperature    | -          | Pres    | sure       | -     | Con | nposition —— |     |           |
|   | - State var | iables —    |                |            |         |            |       | Mo  | le-Flow      | •   | kmol/hr • |
|   | Tempera     | ture        |                | 33         | С       | •          |       |     | Component    |     | Value     |
|   | Pressure    |             |                | 749        | mml     | lg 🔹       |       | •   | N2           |     | 11,8404   |
|   | Vapor fra   | action      |                |            |         |            |       | -   | 02           |     | 3.1878    |
|   | Total flow  | w basis     | Mole           | •          |         |            |       | -   | AR           |     | 0.14117   |
|   | Total flov  | w rate      |                |            | kmol    | /hr 🔹      |       |     | CO2          |     | 0.01062   |
|   | Solvent     |             |                |            |         | ~          |       | -   | 102          |     | 0,01005   |
|   |             | _           |                |            |         |            |       | P   | H2O          |     | 0,80583   |
|   | Referenc    | e Tempera   | ture           |            |         |            |       |     | CACL2        |     |           |
|   | Volume f    | flow refere | nce temperat   | ure        |         |            |       | Þ   | CA++         |     |           |
|   |             | С           | Ŧ              |            |         |            |       | •   | CL-          |     |           |
|   | Compon      | ent conce   | ntration refer | ence tempe | erature | 2          |       |     |              |     |           |
|   |             | С           | -              |            |         |            |       |     | To           | tal | 15,9858   |

Anexo E 45. Especificación de la corriente de aire a la entrada del Ventilador 2 para la ciudad de Arauca.

| Main Flowsheet $	imes$             | AIRE-DES (MA    | TERIAL) × | +       |            |        |     |           |           |
|------------------------------------|-----------------|-----------|---------|------------|--------|-----|-----------|-----------|
| Mixed CI Solid                     | l NC Solid      | Flash Opt | ions    | EO Options | Costin | ng  | Comments  |           |
| <ul> <li>Specifications</li> </ul> |                 |           |         |            |        |     |           |           |
| Flash Type                         | Temperature     | -         | Press   | ure        | •      | Con | nposition |           |
| State variables —                  |                 |           |         |            |        | Mo  | le-Flow • | kmol/hr • |
| Temperature                        |                 | 33        | C       | •          |        |     | Component | Value     |
| Pressure                           |                 | 749       | mmH     | g •        |        | -   | N2        | 17,4606   |
| Vapor fraction                     |                 |           |         |            |        | -   | 02        | 4,70093   |
| Total flow basis                   | Mole            | •         |         |            |        | -   | AR        | 0.20818   |
| Total flow rate                    |                 |           | kmol/l  | hr 🔻       |        | -   | CO2       | 0.01567   |
| Solvent                            |                 |           |         | Ŧ          |        |     | H2O       | 1 18833   |
| Reference Tempe                    | rature          |           |         |            |        |     | CACL2     | 1,10055   |
| Volume flow refe                   | rence temperat  | ure       |         |            |        | E.  | CALL      |           |
| С                                  | v               |           |         |            |        | H   | CL        |           |
| Component cond                     | entration refer | ence temp | erature |            |        |     | CL-       |           |
| С                                  | -               |           |         |            |        |     | Total     | 23,5737   |



Anexo E 46. Especificación de la presión de la columna de Absorción y desorción para la ciudad de Arauca.

Anexo E 47. Especificación del Colector para la ciudad de Arauca.

| Main Flowsheet COLECTOR (Heat       | er) × +<br>Jtility Comments |         |   |
|-------------------------------------|-----------------------------|---------|---|
| Flash specifications                |                             |         |   |
| Flash Type                          | Temperature                 |         | • |
|                                     | Pressure                    |         | • |
| Temperature                         | 53,52                       | C       | - |
| Temperature change                  |                             | С       | * |
| Degrees of superheating             |                             | С       | * |
| Degrees of subcooling               |                             | С       | Ŧ |
| Pressure                            | 0,9879                      | atm     | - |
| Duty                                |                             | cal/sec | - |
| Vapor fraction                      |                             |         |   |
| Pressure drop correlation parameter |                             |         |   |
| Always calculate pressure drop co   | rrelation parameter         |         |   |
| Valid phases                        |                             |         |   |
| Vapor-Liquid                        | -                           |         |   |

Anexo E 48. Especificación del Enfriador para la ciudad de Arauca.

| Main Flowsheet × ENFRIADO (Heat     | er) × 🛨             |            |  |
|-------------------------------------|---------------------|------------|--|
| Specifications Flash Options        | Utility Comments    |            |  |
| Flash specifications                |                     |            |  |
| Flash Type                          | Temperature         | -          |  |
|                                     | Pressure            | -          |  |
| Temperature                         | 22                  | <b>c</b> • |  |
| Temperature change                  |                     | C ~        |  |
| Degrees of superheating             |                     | C ~        |  |
| Degrees of subcooling               |                     | С ~        |  |
| Pressure                            | 0,9879              | atm 🔻      |  |
| Duty                                |                     | cal/sec =  |  |
| Vapor fraction                      |                     |            |  |
| Pressure drop correlation parameter |                     |            |  |
| Always calculate pressure drop co   | rrelation parameter |            |  |
| Valid phases                        |                     |            |  |
| Vapor-Liquid                        | •                   |            |  |

| Main Flowsheet × MIXER (Mixer) - Stream Results (Boundary) × + |              |          |             |              |              |  |  |  |  |  |  |
|----------------------------------------------------------------|--------------|----------|-------------|--------------|--------------|--|--|--|--|--|--|
| Animize the Navigation Pane   Work   Vol.% Curves              | Wt. % Curves | Petroleu | m Polymer   | s Solids     |              |  |  |  |  |  |  |
|                                                                | Units        | L0-      | FRESC -     | L0-OUT -     | LO-ABS -     |  |  |  |  |  |  |
| - MIXED Substream                                              |              |          |             |              |              |  |  |  |  |  |  |
| Phase                                                          |              |          |             | Liquid Phase | Liquid Phase |  |  |  |  |  |  |
| Temperature                                                    | С            |          | 22          | 22           | 22           |  |  |  |  |  |  |
| Pressure                                                       | bar          |          | 1,00099     | 1,00099      | 1,00099      |  |  |  |  |  |  |
| Molar Vapor Fraction                                           |              |          | 0,74214     | 0            | 0            |  |  |  |  |  |  |
| Molar Liquid Fraction                                          |              |          | 0,25786     | 1            | 1            |  |  |  |  |  |  |
| Molar Solid Fraction                                           |              |          | 0           | 0            | 0            |  |  |  |  |  |  |
| Mass Vapor Fraction                                            |              |          | 0,830108    | 0            | 0            |  |  |  |  |  |  |
| Mass Liquid Fraction                                           |              |          | 0,169892    | 1            | 1            |  |  |  |  |  |  |
| Mass Solid Fraction                                            |              |          | 0           | 0            | 0            |  |  |  |  |  |  |
| Molar Enthalpy                                                 | cal/mol      |          | -20072,3    | -68578,4     | -68578,4     |  |  |  |  |  |  |
| Mass Enthalpy                                                  | cal/gm       |          | -732,346    | -3025,11     | -3025,12     |  |  |  |  |  |  |
| Molar Entropy                                                  | cal/mol-K    |          | -8,96277    | -33,4225     | -33,4225     |  |  |  |  |  |  |
| Mass Entropy                                                   | cal/gm-K     |          | -0,327011   | -1,47432     | -1,47432     |  |  |  |  |  |  |
| Molar Density                                                  | mol/cc       |          | 5,49779e-05 | 0,0645691    | 0,0645691    |  |  |  |  |  |  |
| Mass Density                                                   | gm/cc        |          | 0,00150684  | 1,46376      | 1,46376      |  |  |  |  |  |  |
| Enthalpy Flow                                                  | cal/sec      |          | -0,0549757  | -4,92722e+06 | -4,92722e+06 |  |  |  |  |  |  |
| Average MW                                                     |              |          | 27,4082     | 22,6697      | 22,6697      |  |  |  |  |  |  |

| Anexo E 49. Resultados o | de las condiciones | energéticas de cada | corriente para el | mezclador en la | ciudad de Arauca. |
|--------------------------|--------------------|---------------------|-------------------|-----------------|-------------------|
|                          |                    | 0                   | 1                 |                 |                   |

| Anexo E 50. Resultados de los flujos y | fracciones molares del mezclador | para la ciudad de Arauca |
|----------------------------------------|----------------------------------|--------------------------|
|----------------------------------------|----------------------------------|--------------------------|

| Main Flow | vsheet × MIXER (Mixer) - Stream Resul | lts (Boundary) 🛛 🕒 | <del>l</del>     |             |             |
|-----------|---------------------------------------|--------------------|------------------|-------------|-------------|
| Material  | Heat Load Work Vol.% Curves           | Wt. % Curves       | Petroleum Polyme | ers Solids  |             |
|           |                                       | Units              | LO-FRESC -       | L0-OUT -    | LO-ABS -    |
|           | Mole Flows                            | kmol/hr            | 9,86e-06         | 258,652     | 258,653     |
|           | N2                                    | kmol/hr            | 2,44e-06         | 0,0362646   | 0,0362672   |
|           | 02                                    | kmol/hr            | 4,43e-06         | 0,0293574   | 0,0293615   |
|           | AR                                    | kmol/hr            | 1,2e-07          | 0,000953966 | 0,000954025 |
|           | CO2                                   | kmol/hr            | 1,4e-07          | 0,00050857  | 0,000508744 |
|           | H2O                                   | kmol/hr            | 2,73e-06         | 195,197     | 195,197     |
|           | CACL2                                 | kmol/hr            | 1,85e-12         | 0           | 0           |
| •         | CA++                                  | kmol/hr            | 0                | 21,1296     | 21,1296     |
|           | CL-                                   | kmol/hr            | 0                | 42,2592     | 42,2592     |
| -         | Mole Fractions                        |                    |                  |             |             |
|           | N2                                    |                    | 0,247464         | 0,000140206 | 0,000140216 |
| •         | 02                                    |                    | 0,44929          | 0,000113501 | 0,000113517 |
| •         | AR                                    |                    | 0,0121704        | 3,68822e-06 | 3,68844e-06 |
|           | CO2                                   |                    | 0,0141988        | 1,96623e-06 | 1,9669e-06  |
|           | H2O                                   |                    | 0,276876         | 0,754667    | 0,754667    |
| •         | CACL2                                 |                    | 1,87627e-07      | 0           | 0           |
|           | CA++                                  |                    | 0                | 0,0816911   | 0,081691    |
| •         | CL-                                   |                    | 0                | 0,163382    | 0,163382    |

| Main Flowsheet × MIXER (Mixer) - Stream | Main Flowsheet × MIXER (Mixer) - Stream Results (Boundary) × + |               |              |             |  |  |  |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------|---------------|--------------|-------------|--|--|--|--|--|--|--|--|
| Material Heat Load Work Vol.%           | Curves Wt. % Curves                                            | Petroleum Pol | ymers Solids |             |  |  |  |  |  |  |  |  |
|                                         | Units                                                          | L0-FRESC •    | L0-OUT 🔻     | LO-ABS 🔻    |  |  |  |  |  |  |  |  |
| Mass Flows                              | kg/hr                                                          | 0,000270245   | 5863,57      | 5863,57     |  |  |  |  |  |  |  |  |
| ▶ N2                                    | kg/hr                                                          | 6,83529e-05   | 1,0159       | 1,01597     |  |  |  |  |  |  |  |  |
| > O2                                    | kg/hr                                                          | 0,000141755   | 0,9394       | 0,939532    |  |  |  |  |  |  |  |  |
| AR                                      | kg/hr                                                          | 4,79376e-06   | 0,038109     | 0,0381114   |  |  |  |  |  |  |  |  |
| > CO2                                   | kg/hr                                                          | 6,16137e-06   | 0,0223821    | 0,0223897   |  |  |  |  |  |  |  |  |
| H2O                                     | kg/hr                                                          | 4,91817e-05   | 3516,52      | 3516,52     |  |  |  |  |  |  |  |  |
| CACL2                                   | kg/hr                                                          | 2,05319e-10   | 0            | 0           |  |  |  |  |  |  |  |  |
| ► CA++                                  | kg/hr                                                          | 0             | 846,809      | 846,809     |  |  |  |  |  |  |  |  |
| > CL-                                   | kg/hr                                                          | 0             | 1498,23      | 1498,23     |  |  |  |  |  |  |  |  |
| Mass Fractions                          |                                                                |               |              |             |  |  |  |  |  |  |  |  |
| ▶ N2                                    |                                                                | 0,25293       | 0,000173256  | 0,000173268 |  |  |  |  |  |  |  |  |
| 02                                      |                                                                | 0,524542      | 0,00016021   | 0,000160232 |  |  |  |  |  |  |  |  |
| AR                                      |                                                                | 0,0177386     | 6,49929e-06  | 6,49969e-06 |  |  |  |  |  |  |  |  |
| CO2                                     |                                                                | 0,0227992     | 3,81714e-06  | 3,81844e-06 |  |  |  |  |  |  |  |  |
| H2O                                     |                                                                | 0,18199       | 0,599723     | 0,599724    |  |  |  |  |  |  |  |  |
| CACL2                                   |                                                                | 7,59753e-07   | 0            | 0           |  |  |  |  |  |  |  |  |
| > CA++                                  |                                                                | 0             | 0,144419     | 0,144419    |  |  |  |  |  |  |  |  |
| CL-                                     |                                                                | 0             | 0,255514     | 0,255514    |  |  |  |  |  |  |  |  |
| Volume Flow                             | l/min                                                          | 0,00298908    | 66,7637      | 66,7637     |  |  |  |  |  |  |  |  |

Anexo E 51. Resultados de los flujos y fracciones masicos del mezclador para la ciudad de Arauca.

Anexo E 52. Resultados energéticos del Ventilador 1 para la ciudad de Arauca.

| Sur | nmary   | Balance        | Parameters  | Perfo | rmance   | Regression       | Utility Usage | Statu: |
|-----|---------|----------------|-------------|-------|----------|------------------|---------------|--------|
|     | Comp    | pressor mod    | lel         |       | lsentrop | ic Compressor    |               |        |
|     | Phase   | calculation    | IS          |       | Vapor pł | hase calculation | n             |        |
|     | Indica  | ted horsep     | ower        |       |          | 33,2705          | Watt          |        |
|     | Brake   | horsepowe      | r           |       |          | 33,2705          | Watt          |        |
|     | Net w   | ork required   | d           |       |          | 33,2705          | Watt          |        |
|     | Powe    | r loss         |             |       |          | 0                | Watt          |        |
|     | Efficie | ency           |             |       |          |                  |               | 0,82   |
|     | Mech    | anical effici  | ency        |       |          |                  |               | 1      |
| F   | Outle   | t pressure     |             |       |          | 0,987908         | atm           |        |
| P.  | Outle   | t temperatu    | re          |       |          | 33,255           | С             |        |
|     | lsentr  | opic outlet    | temperature |       |          | 33,2093          | с             |        |
|     | Vapor   | fraction       |             |       |          |                  |               | 1      |
|     | Displa  | cement         |             |       |          |                  |               |        |
|     | Volun   | netric efficie | ency        |       |          |                  |               |        |

| Main Flowsheet × VENT-1 (Compr) - Stream Results (Boundary) × + |            |              |             |             |     |        |         |             |  |  |  |
|-----------------------------------------------------------------|------------|--------------|-------------|-------------|-----|--------|---------|-------------|--|--|--|
| Material                                                        | Work       | Vol.% Curves | Wt. % Curve | s Petroleum | Pol | ymers  | Solids  |             |  |  |  |
|                                                                 |            |              |             | Units       |     | AIRE-A | BS 🔻    | VN+1-ABS 🔻  |  |  |  |
| ► - N                                                           | Nole Flow  | 15           |             | kmol/hr     |     | 1      | 15,9858 | 15,9858     |  |  |  |
| •                                                               | N2         |              |             | kmol/hr     |     |        | 11,8404 | 11,8404     |  |  |  |
| •                                                               | 02         |              |             | kmol/hr     |     |        | 3,1878  | 3,1878      |  |  |  |
| •                                                               | AR         |              |             | kmol/hr     |     |        | 0,14117 | 0,14117     |  |  |  |
| •                                                               | CO2        |              |             | kmol/hr     |     |        | 0,01063 | 0,01063     |  |  |  |
| •                                                               | H2O        |              |             | kmol/hr     |     |        | 0,80583 | 0,80583     |  |  |  |
| •                                                               | CACL2      |              |             | kmol/hr     |     |        | 0       | 0           |  |  |  |
| •                                                               | CA++       |              |             | kmol/hr     |     |        | 0       | 0           |  |  |  |
| •                                                               | CL-        |              |             | kmol/hr     |     |        | 0       | 0           |  |  |  |
| - N                                                             | Nole Fract | tions        |             |             |     |        |         |             |  |  |  |
| •                                                               | N2         |              |             |             |     | 0      | ,740681 | 0,740681    |  |  |  |
| •                                                               | 02         |              |             |             |     | 0      | ,199414 | 0,199414    |  |  |  |
| •                                                               | AR         |              |             |             |     | 0,00   | 883096  | 0,00883096  |  |  |  |
| •                                                               | CO2        |              |             |             |     | 0,000  | 664965  | 0,000664965 |  |  |  |
| •                                                               | H2O        |              |             |             |     | 0,0    | 504091  | 0,0504091   |  |  |  |
| •                                                               | CACL2      |              |             |             |     |        | 0       | 0           |  |  |  |
| •                                                               | CA++       |              |             |             |     |        | 0       | 0           |  |  |  |
| •                                                               | CL-        |              |             |             |     |        | 0       | 0           |  |  |  |

Anexo E 53. Resultados de los flujos y fracciones molares del Ventilador 1 para la ciudad de Arauca.

Anexo E 54. Resultados de los flujos y fracciones másicas del Ventilador 1 para la ciudad de Arauca.

| Main Flow | sheet × VENT-1 (Com | pr) - Stream Resu | ilts (Boundary | /)× | +      |         |          |     |
|-----------|---------------------|-------------------|----------------|-----|--------|---------|----------|-----|
| Material  | Work Vol.% Curves   | Wt. % Curves      | Petroleum      | Pol | ymers  | Solids  |          |     |
|           |                     |                   | Units          |     | AIRE-A | BS 🔻    | VN+1-ABS | •   |
| - N       | Aass Flows          | kg                | /hr            |     |        | 454,321 | 454,3    | 321 |
| Þ         | N2                  | kg,               | /hr            |     |        | 331,69  | 331      | ,69 |
| Þ         | 02                  | kg,               | /hr            |     |        | 102,006 | 102,     | 006 |
| •         | AR                  | kg,               | /hr            |     |        | 5,63946 | 5,63     | 946 |
| •         | CO2                 | kg,               | /hr            |     | 0      | ,467824 | 0,467    | 824 |
| Þ.        | H2O                 | kg,               | /hr            |     |        | 14,5173 | 14,5     | 173 |
| Þ.        | CACL2               | kg,               | /hr            |     |        | 0       |          | 0   |
| •         | CA++                | kg,               | /hr            |     |        | 0       |          | 0   |
| Þ         | CL-                 | kg,               | /hr            |     |        | 0       |          | 0   |
| - N       | Aass Fractions      |                   |                |     |        |         |          |     |
| Þ         | N2                  |                   |                |     |        | 0,73008 | 0,73     | 800 |
| •         | 02                  |                   |                |     | 0      | ,224524 | 0,224    | 524 |
| Þ         | AR                  |                   |                |     | 0      | ,012413 | 0,012    | 413 |
| •         | CO2                 |                   |                |     | 0,00   | 0102972 | 0,00102  | 972 |
| Þ         | H2O                 |                   |                |     | 0,0    | 0319538 | 0,0319   | 538 |
| •         | CACL2               |                   |                |     |        | 0       |          | 0   |
| •         | CA++                |                   |                |     |        | 0       |          | 0   |
| Þ         | CL-                 |                   |                |     |        | 0       |          | 0   |
| > V       | olume Flow          | I/m               | nin            |     |        | 6789,72 | 6        | 779 |

| Main Flowsheet × VENT-2 (Compr) - Results × + |         |                |             |       |          |                  |               |       |  |  |  |
|-----------------------------------------------|---------|----------------|-------------|-------|----------|------------------|---------------|-------|--|--|--|
| Sun                                           | nmary   | Balance        | Parameters  | Perfo | rmance   | Regression       | Utility Usage | Statu |  |  |  |
|                                               |         |                |             |       |          |                  |               |       |  |  |  |
|                                               | Comp    | pressor mod    | lel         |       | lsentrop | ic Compressor    |               |       |  |  |  |
|                                               | Phase   | e calculation  | IS          |       | Vapor pł | nase calculation | 1             |       |  |  |  |
|                                               | Indica  | ated horsepo   | ower        |       |          | 49,0628          | Watt          |       |  |  |  |
|                                               | Brake   | horsepowe      | r           |       |          | 49,0628          | Watt          |       |  |  |  |
| þ.                                            | Net w   | ork required   | d           |       |          | 49,0628          | Watt          |       |  |  |  |
| Þ.                                            | Powe    | r loss         |             |       |          | 0                | Watt          |       |  |  |  |
| Þ                                             | Efficie | ency           |             |       |          |                  |               | 0,82  |  |  |  |
|                                               | Mech    | anical effici  | ency        |       |          |                  |               | 1     |  |  |  |
| ►                                             | Outle   | t pressure     |             |       |          | 0,987908         | atm           |       |  |  |  |
|                                               | Outle   | t temperatu    | re          |       |          | 33,255           | с             |       |  |  |  |
| Þ                                             | lsentr  | opic outlet    | temperature |       |          | 33,2093          | С             |       |  |  |  |
| Þ                                             | Vapor   | fraction       |             |       |          |                  |               | 1     |  |  |  |
| Þ                                             | Displa  | cement         |             |       |          |                  |               |       |  |  |  |
| Þ                                             | Volun   | netric efficie | ency        |       |          |                  |               |       |  |  |  |

Anexo E 55. Resultados energéticos del Ventilador 2 para la ciudad de Arauca.

## Anexo E 56. Resultados de los flujos y fracciones molares del Ventilador 2 para la ciudad de Arauca.

| Main Flowsheet × VENT-2 (Compr) - Stream Results (Boundary) × + |                   |              |           |          |         |             |  |  |  |  |  |
|-----------------------------------------------------------------|-------------------|--------------|-----------|----------|---------|-------------|--|--|--|--|--|
| Material                                                        | Work Vol.% Curves | Wt. % Curves | Petroleum | Polymers | Solids  |             |  |  |  |  |  |
|                                                                 |                   |              | Units     | AIRE-D   | ES 🔻    | VN+1-DES -  |  |  |  |  |  |
| ► - M                                                           | lole Flows        | k            | mol/hr    |          | 23,5737 | 23,5737     |  |  |  |  |  |
| Þ                                                               | N2                | kr           | mol/hr    |          | 17,4606 | 17,4606     |  |  |  |  |  |
| •                                                               | 02                | kr           | mol/hr    |          | 4,70093 | 4,70093     |  |  |  |  |  |
| •                                                               | AR                | kr           | mol/hr    |          | 0,20818 | 0,20818     |  |  |  |  |  |
| •                                                               | CO2               | kr           | mol/hr    |          | 0,01567 | 0,01567     |  |  |  |  |  |
| F                                                               | H2O               | kr           | mol/hr    |          | 1,18833 | 1,18833     |  |  |  |  |  |
| •                                                               | CACL2             | kr           | mol/hr    |          | 0       | 0           |  |  |  |  |  |
| •                                                               | CA++              | kr           | nol/hr    |          | 0       | 0           |  |  |  |  |  |
| •                                                               | CL-               | kr           | nol/hr    |          | 0       | 0           |  |  |  |  |  |
| → - M                                                           | lole Fractions    |              |           |          |         |             |  |  |  |  |  |
| •                                                               | N2                |              |           | 0        | ,740681 | 0,740681    |  |  |  |  |  |
| •                                                               | O2                |              |           | 0        | ,199414 | 0,199414    |  |  |  |  |  |
| •                                                               | AR                |              |           | 0,00     | 0883103 | 0,00883103  |  |  |  |  |  |
| •                                                               | CO2               |              |           | 0,000    | 0664724 | 0,000664724 |  |  |  |  |  |
| •                                                               | H2O               |              |           | 0,0      | 0504092 | 0,0504092   |  |  |  |  |  |
| •                                                               | CACL2             |              |           |          | 0       | 0           |  |  |  |  |  |
| - F                                                             | CA++              |              |           |          | 0       | 0           |  |  |  |  |  |
|                                                                 | CL-               |              |           |          | 0       | 0           |  |  |  |  |  |

| Main Flowsheet ×/VENT-2 (Compr) - Stream Results (Boundary) × + |                   |              |           |            |        |            |            |  |  |  |  |
|-----------------------------------------------------------------|-------------------|--------------|-----------|------------|--------|------------|------------|--|--|--|--|
| Material                                                        | Work Vol.% Curves | Wt. % Curves | Petroleum | Po         | lymers | Solids     |            |  |  |  |  |
|                                                                 |                   |              | 11-3-     |            |        |            |            |  |  |  |  |
|                                                                 |                   |              | Units     | AIRE-DES 🔻 |        | VN+1-DES 🔻 |            |  |  |  |  |
| ► - N                                                           | Aass Flows        | kg           | /hr       |            | 669,97 | 669,97     |            |  |  |  |  |
| Fille                                                           | N2                | kg           | /hr       |            |        | 489,132    | 489,132    |  |  |  |  |
| Þ                                                               | O2                | kg           | /hr       |            |        | 150,424    | 150,424    |  |  |  |  |
| •                                                               | AR                | kg           | /hr       |            |        | 8,31637    | 8,31637    |  |  |  |  |
| •                                                               | CO2               | kg           | /hr       |            | 0      | ,689634    | 0,689634   |  |  |  |  |
| •                                                               | H2O               | kg           | /hr       |            |        | 21,4081    | 21,4081    |  |  |  |  |
| •                                                               | CACL2             | kg           | /hr       |            |        | 0          | 0          |  |  |  |  |
| •                                                               | CA++              | kg           | /hr       |            |        | 0          | 0          |  |  |  |  |
| •                                                               | CL-               | kg           | /hr       |            |        | 0          | 0          |  |  |  |  |
| ▶ — N                                                           | Aass Fractions    |              |           |            |        |            |            |  |  |  |  |
| •                                                               | N2                |              |           |            |        | 0,73008    | 0,73008    |  |  |  |  |
| •                                                               | 02                |              |           |            | 0      | ,224524    | 0,224524   |  |  |  |  |
| •                                                               | AR                |              |           |            | 0,0    | )124131    | 0,0124131  |  |  |  |  |
| •                                                               | CO2               |              |           |            | 0,00   | 0102935    | 0,00102935 |  |  |  |  |
| •                                                               | H2O               |              |           |            | 0,0    | 319538     | 0,0319538  |  |  |  |  |
| •                                                               | CACL2             |              |           |            |        | 0          | 0          |  |  |  |  |
| •                                                               | CA++              |              |           |            |        | 0          | 0          |  |  |  |  |
| •                                                               | CL-               |              |           | 0          |        | 0          |            |  |  |  |  |
| ► V                                                             | olume Flow        | 1/n          | min       | •          |        | 10012,5    | 9996,75    |  |  |  |  |

Anexo E 57. Resultados de los flujos y fracciones másicas del Ventilador 2 para la ciudad de Arauca.

Anexo E 58. Resultados energéticos en las corrientes del Absorbedor para la ciudad de Arauca.

| Material | Heat       | Load       | Vol.% Curves | Wt. | % Curves  | Petroleu | m Polymers   | Solids      |              |             |  |  |
|----------|------------|------------|--------------|-----|-----------|----------|--------------|-------------|--------------|-------------|--|--|
|          |            |            |              |     | Un        | its      | L0-ABS       | VN+1-ABS -  | LN-ABS •     | V1-ABS -    |  |  |
| 🕨 — МІХ  | ED Subst   | ream       |              |     |           |          |              |             |              |             |  |  |
| Image: 1 | Phase      |            |              |     |           |          | Liquid Phase | Vapor Phase | Liquid Phase | Vapor Phase |  |  |
| •        | Temperatu  | ure        |              |     | с         |          | 22           | 33,255      | 24,5463      | 23,4611     |  |  |
| •        | Pressure   |            |              |     | bar       |          | 1,00099      | 1,001       | 1,00099      | 1,00099     |  |  |
| •        | Molar Vap  | or Fractio | on           |     |           |          | 0            | 1           | 0            | 1           |  |  |
| •        | Molar Liqu | uid Fracti | on           |     |           |          | 1            | 0           | 1            | 0           |  |  |
| Þ        | Molar Soli | id Fractio | n            |     |           |          | 0            | 0           | 0            | 0           |  |  |
| •        | Mass Vapo  | or Fractio | n            |     |           |          | 0            | 1           | 0            | 1           |  |  |
| •        | Mass Liqu  | id Fractio | on           |     |           |          | 1            | 0           | 1            | 0           |  |  |
| •        | Mass Solid | d Fractior | ı            |     |           |          | 0            | 0           | 0            | 0           |  |  |
| Þ        | Molar Ent  | halpy      |              |     | cal/mol   |          | -68578,4     | -2920,23    | -68538,8     | -1029,47    |  |  |
| •        | Mass Enth  | alpy       |              |     | cal/gm    |          | -3025,12     | -102,752    | -3024,51     | -35,7593    |  |  |
| •        | Molar Ent  | ropy       |              |     | cal/mol-K |          | -33,4225     | 1,14778     | -33,3363     | 1,08648     |  |  |
| •        | Mass Entr  | ору        |              |     | cal/gm-K  |          | -1,47432     | 0,040386    | -1,47108     | 0,0377394   |  |  |
| Þ        | Molar Der  | nsity      |              |     | mol/cc    |          | 0,0645691    | 3,93023e-05 | 0,064458     | 4,05946e-05 |  |  |
| •        | Mass Den   | sity       |              |     | gm/cc     |          | 1,46376      | 0,00111698  | 1,46069      | 0,00116867  |  |  |
| •        | Enthalpy F | low        |              |     | cal/sec   |          | -4,92722e+06 | -12967,3    | -4,93579e+06 | -4399,92    |  |  |
| •        | Average N  | /W         |              |     |           |          | 22,6697      | 28,4202     | 22,6611      | 28,7889     |  |  |

| Main Flowsheet × ABS (RadFrac) - Stream Results (Boundary) × + |                                    |                               |                 |             |             |             |  |  |  |  |  |
|----------------------------------------------------------------|------------------------------------|-------------------------------|-----------------|-------------|-------------|-------------|--|--|--|--|--|
| Mater                                                          | ial Heat Load V                    | ol.% Curves Wt. % Curves Peti | roleum Polymers | Solids      | -           | -           |  |  |  |  |  |
|                                                                |                                    | Units                         | LO-ABS 🔻        | VN+1-ABS •  | LN-ABS 🔻    | V1-ABS 🔻    |  |  |  |  |  |
| •                                                              | - Mole Flows                       | kmol/hr                       | 258,653         | 15,9858     | 259,252     | 15,3863     |  |  |  |  |  |
| - F                                                            | N2                                 | kmol/hr                       | 0,0362672       | 11,8404     | 0,0616506   | 11,815      |  |  |  |  |  |
| •                                                              | O2                                 | kmol/hr                       | 0,0293615       | 3,1878      | 0,0505549   | 3,16661     |  |  |  |  |  |
| •                                                              | AR                                 | kmol/hr                       | 0,000954025     | 0,14117     | 0,00157227  | 0,140552    |  |  |  |  |  |
| •                                                              | CO2                                | kmol/hr                       | 0,000508744     | 0,01063     | 0,000600604 | 0,0105381   |  |  |  |  |  |
| •                                                              | H2O                                | kmol/hr                       | 195,197         | 0,80583     | 195,749     | 0,25357     |  |  |  |  |  |
| •                                                              | CACL2                              | kmol/hr                       | 0               | 0           | 0           | 0           |  |  |  |  |  |
| •                                                              | CA++                               | kmol/hr                       | 21,1296         | 0           | 21,1296     | 0           |  |  |  |  |  |
| •                                                              | CL-                                | kmol/hr                       | 42,2592         | 0           | 42,2592     | 0           |  |  |  |  |  |
| - F                                                            | <ul> <li>Mole Fractions</li> </ul> |                               |                 |             |             |             |  |  |  |  |  |
| •                                                              | N2                                 |                               | 0,000140216     | 0,740681    | 0,000237802 | 0,767893    |  |  |  |  |  |
| - F                                                            | 02                                 |                               | 0,000113517     | 0,199414    | 0,000195003 | 0,205807    |  |  |  |  |  |
| •                                                              | AR                                 |                               | 3,68844e-06     | 0,00883096  | 6,06463e-06 | 0,00913489  |  |  |  |  |  |
| - F                                                            | CO2                                |                               | 1,9669e-06      | 0,000664965 | 2,31668e-06 | 0,000684906 |  |  |  |  |  |
| •                                                              | H2O                                |                               | 0,754667        | 0,0504091   | 0,755052    | 0,0164803   |  |  |  |  |  |
| - F                                                            | CACL2                              |                               | 0               | 0           | 0           | 0           |  |  |  |  |  |
| •                                                              | CA++                               |                               | 0,081691        | 0           | 0,0815021   | 0           |  |  |  |  |  |
| - F                                                            | CL-                                |                               | 0,163382        | 0           | 0,163004    | 0           |  |  |  |  |  |

Anexo E 59. Resultados de los flujos y fracciones molares del Absorbedor para la ciudad de Arauca.

. . 1 1 . ~~ -. . A 1

| Material | Heat      | Load  | Vol.% Curves | Wt. % | Curves | Petroleum | n Polymers |   | Solids  |        |             |            |
|----------|-----------|-------|--------------|-------|--------|-----------|------------|---|---------|--------|-------------|------------|
|          |           |       |              |       | Uni    | its       | L0-ABS     | • | VN+1-AB | s 🔹    | LN-ABS 🔻    | V1-ABS     |
| - 1      | Mass Flow | vs    |              | k     | g/hr   |           | 5863,5     | 7 | 45      | 4,321  | 5874,94     | 442,953    |
|          | N2        |       |              | k     | g/hr   |           | 1,0159     | 7 | 3       | 331,69 | 1,72705     | 330,979    |
|          | 02        |       |              | k     | g/hr   |           | 0,93953    | 2 | 10      | 02,006 | 1,6177      | 101,328    |
|          | AR        |       |              | k     | g/hr   |           | 0,038111   | 4 | 5,      | 63946  | 0,062809    | 5,61476    |
|          | CO2       |       |              | k     | g/hr   |           | 0,022389   | 7 | 0,4     | 67824  | 0,0264325   | 0,463781   |
|          | H2O       |       |              | k     | g/hr   |           | 3516,5     | 2 | 14      | 4,5173 | 3526,47     | 4,56813    |
|          | CACL      | 2     |              | k     | g/hr   |           |            | 0 |         | 0      | 0           | 0          |
|          | CA++      |       |              | k     | g/hr   |           | 846,80     | 9 |         | 0      | 846,809     | 0          |
|          | CL-       |       |              | k     | g/hr   |           | 1498,2     | 3 |         | 0      | 1498,23     | 0          |
| - 1      | Mass Frac | tions |              |       |        |           |            |   |         |        |             |            |
|          | N2        |       |              |       |        |           | 0,00017326 | 8 | 0,      | 73008  | 0,000293969 | 0,74721    |
|          | 02        |       |              |       |        |           | 0,00016023 | 2 | 0,2     | 24524  | 0,000275356 | 0,228755   |
|          | AR        |       |              |       |        |           | 6,49969e-0 | 6 | 0,0     | 12413  | 1,0691e-05  | 0,0126757  |
|          | CO2       |       |              |       |        |           | 3,81844e-0 | 6 | 0,001   | 02972  | 4,49919e-06 | 0,00104702 |
|          | H2O       |       |              |       |        |           | 0,59972    | 4 | 0,03    | 19538  | 0,600257    | 0,0103129  |
|          | CACL      | 2     |              |       |        |           |            | 0 |         | 0      | 0           | 0          |
|          | CA++      |       |              |       |        |           | 0,14441    | 9 |         | 0      | 0,144139    | 0          |
|          | CL-       |       |              |       |        |           | 0,25551    | 4 |         | 0      | 0,25502     | 0          |
| 1        | /olume Fl | ow    |              | V     | 'min   |           | 66,763     | 7 |         | 6779   | 67,0339     | 6317,04    |

| Main Flowsheet × DESORB (RadFrac) - Stream Results (Boundary) × + |                 |                        |           |     |                       |          |            |              |             |         |              |             |
|-------------------------------------------------------------------|-----------------|------------------------|-----------|-----|-----------------------|----------|------------|--------------|-------------|---------|--------------|-------------|
| N                                                                 | /laterial       | Heat Load Vol.% Curves |           | Wt. | Wt. % Curves Petroleu |          | m Polymers | Solids       |             |         |              |             |
|                                                                   | 1               |                        |           |     |                       | Units    |            | LO-DESOR -   | VN+1-1      | DES 🔻   | LN-DESOR •   | V1-DES 🔻    |
| Þ                                                                 | MIXED Substream |                        |           |     |                       |          |            |              |             |         |              |             |
| Þ                                                                 | P               | Phase                  |           |     |                       |          |            |              | Vapor Phase |         | Liquid Phase | Vapor Phase |
| Þ                                                                 | Т               | emperatu               | ure       |     |                       | с        |            | 53,52        | 33,255      |         | 50,4938      | 51,3085     |
| Þ                                                                 | P               | ressure                |           |     |                       | bar      |            | 1,00099      | 1,001       |         | 1,00099      | 1,00099     |
| Þ                                                                 | N               | Aolar Vap              | or Fracti | on  |                       |          |            | 0,000184964  | 1           |         | 0            | 1           |
| Þ                                                                 | Ν               | Molar Liquid Fraction  |           |     |                       |          |            | 0,999815     | 0           |         | 1            | 0           |
| Þ                                                                 | N               | Molar Solid Fraction   |           |     |                       |          |            | 0            |             | 0       | 0            | 0           |
| Þ                                                                 | Ν               | Mass Vapor Fraction    |           |     |                       |          |            | 0,000232254  |             | 1       | 0            | 1           |
| Þ                                                                 | Ν               | Mass Liquid Fraction   |           |     |                       |          |            | 0,999768     |             | 0       | 1            | 0           |
| Þ                                                                 | Ν               | Mass Solid Fraction    |           |     |                       |          |            | 0            |             | 0       | 0            | 0           |
|                                                                   | Ν               | Molar Enthalpy         |           |     |                       |          |            | -68226,4     |             | 2920,21 | -68273,1     | -4040,25    |
| Þ                                                                 | Ν               | Mass Enthalpy          |           |     |                       |          |            | -3010,73     |             | 102,751 | -3011,65     | -143,345    |
| Þ                                                                 | Ν               | Molar Entropy          |           |     |                       |          |            | -32,3346     | 1,14778     |         | -32,4355     | 1,41747     |
| Þ                                                                 | Ν               | /lass Entr             | ору       |     |                       | cal/gm-K |            | -1,42688     | 0,0         | 0403859 | -1,43079     | 0,0502908   |
| Þ                                                                 | Ν               | Molar Density          |           |     |                       |          |            | 0,0483394    | 3,93        | 023e-05 | 0,0639201    | 3,71136e-05 |
| Þ                                                                 | N               | Mass Density           |           |     |                       |          |            | 1,09542      | 0,00        | 0111698 | 1,44905      | 0,00104606  |
| Þ                                                                 | E               | Enthalpy Flow          |           |     |                       |          |            | -4,91329e+06 | -           | 19122,3 | -4,90528e+06 | -27129,7    |
| Þ                                                                 | Д               | verage N               | /W        |     |                       |          |            | 22,6611      |             | 28,4202 | 22,6697      | 28,1855     |

Anexo E 61. Resultados energéticos en las corrientes del Desorbedor para la ciudad de Arauca.

Anexo E 62. Resultados de los flujos y fracciones molares del Desorbedor para la ciudad de Arauca.

| Main Flowsheet × DESORB (RadFrac) - Stream Results (Boundary) × + |                |              |              |           |             |             |             |             |  |  |  |
|-------------------------------------------------------------------|----------------|--------------|--------------|-----------|-------------|-------------|-------------|-------------|--|--|--|
| Material                                                          | Heat Load      | Vol.% Curves | Wt. % Curves | Petroleum | Polymers    | Solids      |             |             |  |  |  |
|                                                                   |                |              | Units        | 5         | LO-DESOR 🔻  | VN+1-DES •  | LN-DESOR •  | V1-DES •    |  |  |  |
| - 1                                                               | Mole Flows     |              | kmol/hr      |           | 259,252     | 23,5737     | 258,652     | 24,1734     |  |  |  |
|                                                                   | N2             |              | kmol/hr      |           | 0,0616506   | 17,4606     | 0,0362646   | 17,486      |  |  |  |
| •                                                                 | 02             |              | kmol/hr      |           | 0,0505549   | 4,70093     | 0,0293574   | 4,72213     |  |  |  |
|                                                                   | AR             |              | kmol/hr      |           | 0,00157227  | 0,20818     | 0,000953966 | 0,208798    |  |  |  |
| •                                                                 | CO2            |              | kmol/hr      |           | 0,000600604 | 0,01567     | 0,00050857  | 0,015762    |  |  |  |
|                                                                   | H2O            |              | kmol/hr      |           | 195,749     | 1,18833     | 195,197     | 1,7408      |  |  |  |
| •                                                                 | CACL2          |              | kmol/hr      |           | 0           | 0           | 0           | 0           |  |  |  |
|                                                                   | CA++           |              | kmol/hr      |           | 21,1296     | 0           | 21,1296     | 0           |  |  |  |
| •                                                                 | CL-            |              | kmol/hr      |           | 42,2592     | 0           | 42,2592     | 0           |  |  |  |
|                                                                   | Mole Fractions |              |              |           |             |             |             |             |  |  |  |
|                                                                   | N2             |              |              |           | 0,000237802 | 0,740681    | 0,000140206 | 0,723354    |  |  |  |
|                                                                   | O2             |              |              |           | 0,000195003 | 0,199414    | 0,000113501 | 0,195344    |  |  |  |
| •                                                                 | AR             |              |              |           | 6,06463e-06 | 0,00883103  | 3,68822e-06 | 0,00863751  |  |  |  |
|                                                                   | CO2            |              |              |           | 2,31668e-06 | 0,000664724 | 1,96623e-06 | 0,000652039 |  |  |  |
|                                                                   | H2O            |              |              |           | 0,755052    | 0,0504092   | 0,754667    | 0,0720127   |  |  |  |
|                                                                   | CACL2          |              |              |           | 0           | 0           | 0           | 0           |  |  |  |
|                                                                   | CA++           |              |              |           | 0,0815021   | 0           | 0,0816911   | 0           |  |  |  |
|                                                                   | CL-            |              |              |           | 0,163004    | 0           | 0,163382    | 0           |  |  |  |
| 1 | Main Flow | sheet × DESO   | RB (RadFrac) - S | tream Results | (Boundary) | × +         |            |             |            |
|---|-----------|----------------|------------------|---------------|------------|-------------|------------|-------------|------------|
|   | Material  | Heat Load      | Vol.% Curves     | Wt. % Curve   | s Petroleu | m Polymers  | Solids     |             |            |
|   |           |                |                  | l             | Jnits      | L0-DESOR •  | VN+1-DES • | LN-DESOR 🔻  | V1-DES •   |
| • | - N       | Aass Flows     |                  | kg/hr         |            | 5874,94     | 669,97     | 5863,57     | 681,341    |
|   |           | N2             |                  | kg/hr         |            | 1,72705     | 489,132    | 1,0159      | 489,843    |
|   |           | 02             |                  | kg/hr         |            | 1,6177      | 150,424    | 0,9394      | 151,102    |
|   |           | AR             |                  | kg/hr         |            | 0,062809    | 8,31637    | 0,038109    | 8,34107    |
|   |           | CO2            |                  | kg/hr         |            | 0,0264325   | 0,689634   | 0,0223821   | 0,693684   |
|   |           | H2O            |                  | kg/hr         |            | 3526,47     | 21,4081    | 3516,52     | 31,3609    |
|   |           | CACL2          |                  | kg/hr         |            | 0           | 0          | 0           | 0          |
|   |           | CA++           |                  | kg/hr         |            | 846,809     | 0          | 846,809     | 0          |
|   |           | CL-            |                  | kg/hr         |            | 1498,23     | 0          | 1498,23     | 0          |
|   | - N       | Aass Fractions |                  |               |            |             |            |             |            |
|   |           | N2             |                  |               |            | 0,000293969 | 0,73008    | 0,000173256 | 0,718939   |
|   |           | 02             |                  |               |            | 0,000275356 | 0,224524   | 0,00016021  | 0,221772   |
|   |           | AR             |                  |               |            | 1,0691e-05  | 0,0124131  | 6,49929e-06 | 0,0122421  |
|   |           | CO2            |                  |               |            | 4,49919e-06 | 0,00102935 | 3,81714e-06 | 0,00101812 |
|   |           | H2O            |                  |               |            | 0,600257    | 0,0319538  | 0,599723    | 0,0460282  |
|   |           | CACL2          |                  |               |            | 0           | 0          | 0           | 0          |
|   |           | CA++           |                  |               |            | 0,144139    | 0          | 0,144419    | 0          |
|   |           | CL-            |                  |               |            | 0,25502     | 0          | 0,255514    | 0          |
|   | v         | olume Flow     |                  | l/min         |            | 89,386      | 9996,75    | 67,4416     | 10855,6    |
|   |           |                |                  |               |            |             |            |             |            |

Anexo E 63. Resultados de los flujos y fracciones másicas del Desorbedor para la ciudad de Arauca.

Anexo E 64. Resultados energéticos de la Bomba 1 para la ciudad de Arauca.

| Main Flowsheet × BO  | MBA-1 (Pump) - | Resu                | lts × 🕂       |          |
|----------------------|----------------|---------------------|---------------|----------|
| Summary Balance      | Performance Cu | rve                 | Utility Usage | Status 🎯 |
| Fluid power          | 7,70304        | Wat                 | t             | •        |
| Brake power          | 10,2707        | Wat                 | t             | •        |
| Electricity          | 10,2707        | Wat                 | t             | •        |
| Volumetric flow rate | 67,0339        | l/mi                | n             | •        |
| Pressure change      | 0,068046       | atm                 |               | •        |
| NPSH available       | 0,539997       | 0,539997 meter-head |               | •        |
| NPSH required        |                |                     |               | -        |
| Head developed       | 0,481327       | met                 | er-head       | •        |
| Pump efficiency used | 0,75           |                     |               |          |
| Net work required    | 10,2707        | Watt                |               | •        |
| Outlet pressure      | 1,05595        | atm                 |               | •        |
| Outlet temperature   | 24,5477        | С                   |               | •        |

| Main Flow | Main Flowsheet × BOMBA-1 (Pump) - Stream Results (Boundary) × + |              |             |             |        |       |            |             |  |  |  |
|-----------|-----------------------------------------------------------------|--------------|-------------|-------------|--------|-------|------------|-------------|--|--|--|
| Material  | Work                                                            | Vol.% Curves | Wt. % Curve | s Petroleum | Poly   | mers  | Solids     |             |  |  |  |
|           |                                                                 |              | Units       | [           | LN-ABS | •     | LIN-COLE 🔻 |             |  |  |  |
| > – N     | - Mole Flows                                                    |              |             |             |        | 2     | 59,252     | 259,252     |  |  |  |
| •         | N2                                                              |              |             | kmol/hr     |        | 0,0   | 616506     | 0,0616506   |  |  |  |
| •         | 02                                                              |              |             | kmol/hr     |        | 0,0   | 505549     | 0,0505549   |  |  |  |
| •         | AR                                                              |              |             | kmol/hr     |        | 0,00  | 157227     | 0,00157227  |  |  |  |
| •         | CO2                                                             |              |             | kmol/hr     |        | 0,000 | 600604     | 0,000600604 |  |  |  |
| •         | H2O                                                             |              |             | kmol/hr     |        |       | 195,749    | 195,749     |  |  |  |
| •         | CACL2                                                           |              |             | kmol/hr     |        |       | 0          | 0           |  |  |  |
| •         | CA++                                                            |              |             | kmol/hr     |        | 1     | 21,1296    | 21,1296     |  |  |  |
| •         | CL-                                                             |              |             | kmol/hr     |        |       | 42,2592    | 42,2592     |  |  |  |
| > - N     | Iole Fract                                                      | tions        |             |             |        |       |            |             |  |  |  |
| •         | N2                                                              |              |             |             |        | 0,000 | 237802     | 0,000237802 |  |  |  |
| •         | O2                                                              |              |             |             |        | 0,000 | 195003     | 0,000195003 |  |  |  |
| •         | AR                                                              |              |             |             |        | 6,064 | 163e-06    | 6,06463e-06 |  |  |  |
| • •       | CO2                                                             |              |             |             |        | 2,316 | 568e-06    | 2,31668e-06 |  |  |  |
| •         | H2O                                                             |              |             |             |        | 0,    | 755052     | 0,755052    |  |  |  |
| •         | CACL2                                                           |              |             |             |        |       | 0          | 0           |  |  |  |
| •         | CA++                                                            |              |             |             |        | 0,0   | 815021     | 0,0815021   |  |  |  |
| •         | CL-                                                             |              |             |             |        | 0,    | 163004     | 0,163004    |  |  |  |

Anexo E 65. Resultados de los flujos y fracciones molares de la Bomba 1 para la ciudad de Arauca.

Anexo E 66. Resultados de los flujos y fracciones másicas de la Bomba 1 para la ciudad de Arauca.

| Material | Work Vol.% Curves | Wt. % Curves | Petroleum | Polymers | Solids   |             |
|----------|-------------------|--------------|-----------|----------|----------|-------------|
|          |                   |              | Units     | LN-AB    | s 🔹      | LIN-COLE -  |
| - N      | lass Flows        | kg           | /hr       |          | 5874,94  | 5874,94     |
|          | N2                | kg,          | /hr       |          | 1,72705  | 1,72705     |
|          | O2                | kg.          | /hr       |          | 1,6177   | 1,6177      |
|          | AR                | kg.          | /hr       |          | 0,062809 | 0,062809    |
| Þ.       | CO2               | kg.          | /hr       | 0        | ,0264325 | 0,0264325   |
|          | H2O               | kg.          | /hr       |          | 3526,47  | 3526,47     |
|          | CACL2             | kg,          | /hr       |          | 0        | 0           |
| •        | CA++              | kg,          | /hr       |          | 846,809  | 846,809     |
| Þ        | CL-               | kg,          | /hr       |          | 1498,23  | 1498,23     |
| - N      | lass Fractions    |              |           |          |          |             |
|          | N2                |              |           | 0,00     | 0293969  | 0,000293969 |
|          | O2                |              |           | 0,00     | 0275356  | 0,000275356 |
|          | AR                |              |           | 1,0      | 0691e-05 | 1,0691e-05  |
|          | CO2               |              |           | 4,49     | 9919e-06 | 4,49919e-06 |
|          | H2O               |              |           |          | 0,600257 | 0,600257    |
|          | CACL2             |              |           |          | 0        | 0           |
|          | CA++              |              |           |          | 0,144139 | 0,144139    |
|          | CL-               |              |           |          | 0,25502  | 0,25502     |
| V        | olume Flow        | l/n          | nin       |          | 67,0339  | 67,0337     |

| Main Flowsheet × BOMBA-2 (Pump) - Results × + |          |   |               |                     |               |   |        |  |  |  |
|-----------------------------------------------|----------|---|---------------|---------------------|---------------|---|--------|--|--|--|
| Summary                                       | Balance  | P | erformance Cu | rve                 | Utility Usage | ( | Status |  |  |  |
| Fluid power                                   |          |   | 38,7495       | Wat                 | t             | • |        |  |  |  |
| Brake power                                   |          |   | 51,6659       | Wat                 | t             | • |        |  |  |  |
| Electricity                                   |          |   | 51,6659       | Wat                 | t             | • |        |  |  |  |
| Volumetric fl                                 | ow rate  |   | 67,4416       | l/mi                | n             | • |        |  |  |  |
| Pressure cha                                  | nge      |   | 0,34023       | atm                 |               | ٠ |        |  |  |  |
| NPSH availa                                   | ble      |   | 0,113521      | 0,113521 meter-head |               |   |        |  |  |  |
| NPSH require                                  | ed       |   |               |                     |               | Ŧ |        |  |  |  |
| Head develo                                   | ped      |   | 2,42597       | meter-head          |               | • |        |  |  |  |
| Pump efficie                                  | ncy used |   | 0,75          |                     |               |   |        |  |  |  |
| Net work required                             |          |   | 51,6659       | Watt                |               |   |        |  |  |  |
| Outlet pressure                               |          |   | 1,32813       | atm                 |               |   |        |  |  |  |
| Outlet tempe                                  | erature  |   | 50,5018       | С                   |               | • |        |  |  |  |

Anexo E 67. Resultados energéticos de la Bomba 2 para la ciudad de Arauca.

Anexo E 68. Resultados de los flujos y fracciones molares de la Bomba 2 para la ciudad de Arauca.

| Main Flowsheet × BOMBA-2 (Pump) - Stream Results (Boundary) × + |           |              |              |           |          |          |             |  |  |  |  |  |
|-----------------------------------------------------------------|-----------|--------------|--------------|-----------|----------|----------|-------------|--|--|--|--|--|
| Material                                                        | Work      | Vol.% Curves | Wt. % Curves | Petroleum | Polymers | Solids   |             |  |  |  |  |  |
|                                                                 |           |              |              | Units     | LN-DE    | SOR 🔻    | LIN-ENFR -  |  |  |  |  |  |
| > - N                                                           | Iole Flow | 15           | k            | mol/hr    |          | 258,652  | 258,652     |  |  |  |  |  |
| •                                                               | N2        |              | kr           | mol/hr    | C        | ,0362646 | 0,0362646   |  |  |  |  |  |
| •                                                               | 02        |              | kr           | mol/hr    | c        | ,0293574 | 0,0293574   |  |  |  |  |  |
| •                                                               | AR        |              | kr           | mol/hr    | 0,0      | 00953966 | 0,000953966 |  |  |  |  |  |
|                                                                 | CO2       |              | kr           | mol/hr    | 0,0      | 00050857 | 0,00050857  |  |  |  |  |  |
|                                                                 | H2O       |              | kr           | mol/hr    |          | 195,197  | 195,197     |  |  |  |  |  |
|                                                                 | CACL2     |              | kr           | mol/hr    |          | 0        | 0           |  |  |  |  |  |
| •                                                               | CA++      |              | kr           | mol/hr    |          | 21,1296  | 21,1296     |  |  |  |  |  |
|                                                                 | CL-       |              | kr           | mol/hr    |          | 42,2592  | 42,2592     |  |  |  |  |  |
| > - N                                                           | Nole Frac | tions        |              |           |          |          |             |  |  |  |  |  |
| •                                                               | N2        |              |              |           | 0,00     | 00140206 | 0,000140206 |  |  |  |  |  |
| •                                                               | 02        |              |              |           | 0,00     | 00113501 | 0,000113501 |  |  |  |  |  |
|                                                                 | AR        |              |              |           | 3,6      | 8822e-06 | 3,68822e-06 |  |  |  |  |  |
|                                                                 | CO2       |              |              |           | 1,9      | 6623e-06 | 1,96623e-06 |  |  |  |  |  |
|                                                                 | H2O       |              |              |           |          | 0,754667 | 0,754667    |  |  |  |  |  |
|                                                                 | CACL2     |              |              |           |          | 0        | 0           |  |  |  |  |  |
|                                                                 | CA++      |              |              |           | 0        | ,0816911 | 0,0816911   |  |  |  |  |  |
| •                                                               | CL-       |              |              |           |          | 0,163382 | 0,163382    |  |  |  |  |  |

| Main Flowsheet × BOMBA-2 (Pump) - Stream Results (Boundary) × + |                               |                 |               |             |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|-------------------------------|-----------------|---------------|-------------|--|--|--|--|--|--|--|--|
| Material                                                        | Work Vol.% Curves Wt. % Curve | es Petroleum Po | lymers Solids |             |  |  |  |  |  |  |  |  |
|                                                                 |                               | Units           | LN-DESOR 🔻    | LIN-ENFR •  |  |  |  |  |  |  |  |  |
| > - N                                                           | lass Flows                    | kg/hr           | 5863,57       | 5863,57     |  |  |  |  |  |  |  |  |
| F                                                               | N2                            | kg/hr           | 1,0159        | 1,0159      |  |  |  |  |  |  |  |  |
| Þ                                                               | O2                            | kg/hr           | 0,9394        | 0,9394      |  |  |  |  |  |  |  |  |
| •                                                               | AR                            | kg/hr           | 0,038109      | 0,038109    |  |  |  |  |  |  |  |  |
| •                                                               | C02                           | kg/hr           | 0,0223821     | 0,0223821   |  |  |  |  |  |  |  |  |
| F                                                               | H2O                           | kg/hr           | 3516,52       | 3516,52     |  |  |  |  |  |  |  |  |
|                                                                 | CACL2                         | kg/hr           | 0             | 0           |  |  |  |  |  |  |  |  |
| •                                                               | CA++                          | kg/hr           | 846,809       | 846,809     |  |  |  |  |  |  |  |  |
| •                                                               | CL-                           | kg/hr           | 1498,23       | 1498,23     |  |  |  |  |  |  |  |  |
| > - N                                                           | lass Fractions                |                 |               |             |  |  |  |  |  |  |  |  |
| Fille                                                           | N2                            |                 | 0,000173256   | 0,000173256 |  |  |  |  |  |  |  |  |
| •                                                               | O2                            |                 | 0,00016021    | 0,00016021  |  |  |  |  |  |  |  |  |
| •                                                               | AR                            |                 | 6,49929e-06   | 6,49929e-06 |  |  |  |  |  |  |  |  |
| F                                                               | CO2                           |                 | 3,81714e-06   | 3,81714e-06 |  |  |  |  |  |  |  |  |
| •                                                               | H2O                           |                 | 0,599723      | 0,599723    |  |  |  |  |  |  |  |  |
| •                                                               | CACL2                         |                 | 0             | 0           |  |  |  |  |  |  |  |  |
| •                                                               | CA++                          |                 | 0,144419      | 0,144419    |  |  |  |  |  |  |  |  |
| •                                                               | CL-                           |                 | 0,255514      | 0,255514    |  |  |  |  |  |  |  |  |
| ► V                                                             | olume Flow                    | l/min           | 67,4416       | 67,4409     |  |  |  |  |  |  |  |  |

Anexo E 69. Resultados de los flujos y fracciones másicas de la Bomba 2 para la ciudad de Arauca.

Anexo E 70. Resultados energéticos del Colector para la ciudad de Arauca.

| Main Flowsh    | neet × CO    | LECTOR (Hea  | iter) - R           | esults $	imes$ | +   |        |   |
|----------------|--------------|--------------|---------------------|----------------|-----|--------|---|
| Summary        | Balance      | Phase Equili | brium Utility Usage |                |     | Status |   |
| Outlet temp    | erature      |              |                     | 53,52          | С   | ,      | • |
| Outlet press   | ure          |              |                     |                | •   |        |   |
| Vapor fractio  | n            |              | 0,000               | )184964        |     |        |   |
| Heat duty      |              |              |                     | 94,1856        | kW  |        | • |
| Net duty       |              |              |                     | 94,1856        | kW  |        | • |
| 1st liquid / T | otal liquid  |              |                     | 1              |     |        |   |
| Pressure-dro   | p correlatio | n parameter  |                     |                |     |        |   |
| Pressure dro   | р            |              | 0                   | ,068046        | atm |        | • |

| Mair | n Flow: | sheet $\times$ | COLEC | TOR (Heater) - | Strea | m Results ( | Feeds) × | $\pm$ |             |   |        |         |   |
|------|---------|----------------|-------|----------------|-------|-------------|----------|-------|-------------|---|--------|---------|---|
| Mat  | terial  | Heat           | Load  | Vol.% Curves   | Wt.   | % Curves    | Petroleu | m     | Polymers    |   | Solids |         |   |
|      |         |                |       |                |       | Uni         | its      | LIN   | I-ENFR      | • | L0-OUT |         | • |
| Þ    | - N     | lole Flov      | vs    |                |       | kmol/hr     |          |       | 258,652     |   | 2      | 58,652  | 2 |
|      |         | N2             |       |                |       | kmol/hr     |          |       | 0,0362646   |   | 0,0    | 362646  | į |
|      |         | 02             |       |                |       | kmol/hr     |          |       | 0,0293574   |   | 0,0    | 293574  | - |
| Þ    |         | AR             |       |                |       | kmol/hr     |          |       | 0,000953966 |   | 0,000  | 953966  | į |
| •    |         | CO2            |       |                |       | kmol/hr     |          |       | 0,00050857  |   | 0,00   | 050857  | , |
| Þ    |         | H2O            |       |                |       | kmol/hr     |          |       | 195,197     |   |        | 195,197 | , |
| •    |         | CACL           | 2     |                |       | kmol/hr     |          |       | 0           |   |        | 0       | 1 |
| Þ    |         | CA++           |       |                |       | kmol/hr     |          |       | 21,1296     |   | 1      | 21,1296 | į |
| •    |         | CL-            |       |                |       | kmol/hr     |          |       | 42,2592     |   |        | 42,2592 | 2 |
|      | - N     | lole Frac      | tions |                |       |             |          |       |             |   |        |         |   |
|      |         | N2             |       |                |       |             |          |       | 0,000140206 |   | 0,000  | 140206  | į |
|      |         | 02             |       |                |       |             |          |       | 0,000113501 |   | 0,000  | 113501  |   |
|      |         | AR             |       |                |       |             |          |       | 3,68822e-06 |   | 3,688  | 322e-06 | į |
| Þ    |         | CO2            |       |                |       |             |          |       | 1,96623e-06 |   | 1,966  | 23e-06  | į |
|      |         | H2O            |       |                |       |             |          |       | 0,754667    |   | 0,     | 754667  | , |
| •    |         | CACL           | 2     |                |       |             |          |       | 0           |   |        | 0       | 1 |
| •    |         | CA++           |       |                |       |             |          |       | 0,0816911   |   | 0,0    | 816911  |   |
| ×.   |         | CL-            |       |                |       |             |          |       | 0,163382    |   | 0,     | 163382  |   |

Anexo E 71. Resultados de los flujos y fracciones molares del Colector para la ciudad de Arauca.

Anexo E 72. Resultados de los flujos y fracciones másicas del Colector para la ciudad de Arauca.

| Main Flowsheet × COLECTOR (Heater) - Stream Results (Feeds) × + |                            |                   |             |             |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|----------------------------|-------------------|-------------|-------------|--|--|--|--|--|--|--|--|
| Material                                                        | Heat Load Vol.% Curves Wt. | % Curves Petroleu | m Polymers  | Solids      |  |  |  |  |  |  |  |  |
|                                                                 |                            | Units             | LIN-ENFR •  | L0-OUT -    |  |  |  |  |  |  |  |  |
| • – N                                                           | Aass Flows                 | kg/hr             | 5863,57     | 5863,57     |  |  |  |  |  |  |  |  |
| Þ                                                               | N2                         | kg/hr             | 1,0159      | 1,0159      |  |  |  |  |  |  |  |  |
| Þ                                                               | 02                         | kg/hr             | 0,9394      | 0,9394      |  |  |  |  |  |  |  |  |
| Þ                                                               | AR                         | kg/hr             | 0,038109    | 0,038109    |  |  |  |  |  |  |  |  |
| - P                                                             | CO2                        | kg/hr             | 0,0223821   | 0,0223821   |  |  |  |  |  |  |  |  |
| Þ.                                                              | H2O                        | kg/hr             | 3516,52     | 3516,52     |  |  |  |  |  |  |  |  |
|                                                                 | CACL2                      | kg/hr             | 0           | 0           |  |  |  |  |  |  |  |  |
| •                                                               | CA++                       | kg/hr             | 846,809     | 846,809     |  |  |  |  |  |  |  |  |
| •                                                               | CL-                        | kg/hr             | 1498,23     | 1498,23     |  |  |  |  |  |  |  |  |
| → – N                                                           | Mass Fractions             |                   |             |             |  |  |  |  |  |  |  |  |
| •                                                               | N2                         |                   | 0,000173256 | 0,000173256 |  |  |  |  |  |  |  |  |
| •                                                               | 02                         |                   | 0,00016021  | 0,00016021  |  |  |  |  |  |  |  |  |
| •                                                               | AR                         |                   | 6,49929e-06 | 6,49929e-06 |  |  |  |  |  |  |  |  |
| •                                                               | C02                        |                   | 3,81714e-06 | 3,81714e-06 |  |  |  |  |  |  |  |  |
| - F                                                             | H2O                        |                   | 0,599723    | 0,599723    |  |  |  |  |  |  |  |  |
| •                                                               | CACL2                      |                   | 0           | 0           |  |  |  |  |  |  |  |  |
|                                                                 | CA++                       |                   | 0,144419    | 0,144419    |  |  |  |  |  |  |  |  |
|                                                                 | CL-                        |                   | 0,255514    | 0,255514    |  |  |  |  |  |  |  |  |
| ⊳ V                                                             | olume Flow                 | l/min             | 67,4409     | 66,7637     |  |  |  |  |  |  |  |  |

| Main Flowshe    | Main Flowsheet × ENFRIADO (Heater) - Results × + |              |       |           |       |          |   |  |  |  |  |  |
|-----------------|--------------------------------------------------|--------------|-------|-----------|-------|----------|---|--|--|--|--|--|
| Summary         | Balance                                          | Phase Equili | brium | Utility U | lsage | Status 🎯 |   |  |  |  |  |  |
| Outlet tempe    | rature                                           |              |       | 22        | С     |          | • |  |  |  |  |  |
| Outlet pressu   | re                                               |              |       | 0,9879    | atm   |          | • |  |  |  |  |  |
| Vapor fraction  | n                                                |              |       | 0         |       |          |   |  |  |  |  |  |
| Heat duty       |                                                  |              | -     | 91,8863   | kW    |          | • |  |  |  |  |  |
| Net duty        |                                                  |              | -     | 91,8863   | kW    |          | • |  |  |  |  |  |
| 1st liquid / To | tal liquid                                       |              |       | 1         |       |          |   |  |  |  |  |  |
| Pressure-drop   | o correlatio                                     | n parameter  |       |           |       |          |   |  |  |  |  |  |
| Pressure drop   | )                                                |              |       | 0,34023   | atm   |          | • |  |  |  |  |  |

Anexo E 73. Resultados energéticos del Enfriador para la ciudad de Arauca.

Anexo E 74. Resultados de los flujos y fracciones molares del Enfriador para la ciudad de Arauca.

| Main Flow | sheet ×    | ÝÉNFRI. | ADO (Heater) - | Strea | m Results ( | (Boundary) | )× [± | )         |   |         |        |
|-----------|------------|---------|----------------|-------|-------------|------------|-------|-----------|---|---------|--------|
| Material  | Heat       | Load    | Vol.% Curves   | Wt.   | % Curves    | Petroleu   | m P   | olymers   | S | olids   |        |
|           |            |         |                |       | Un          | its        | LIN-E | NFR       | • | L0-OUT  | •      |
| > - N     | lole Flow  | rs      |                |       | kmol/hr     |            |       | 258,652   |   | 25      | 8,652  |
| •         | N2         |         |                |       | kmol/hr     |            | 0     | 0,0362646 |   | 0,03    | 62646  |
| •         | O2         |         |                |       | kmol/hr     |            | 0     | 0,0293574 |   | 0,029   | 93574  |
| Fill      | AR         |         |                |       | kmol/hr     |            | 0,0   | 00953966  |   | 0,0009  | 53966  |
| •         | CO2        |         |                |       | kmol/hr     |            | 0,    | 00050857  | , | 0,000   | 50857  |
| Fill      | H2O        |         |                |       | kmol/hr     |            |       | 195,197   | , | 19      | 95,197 |
| •         | CACL2      |         |                |       | kmol/hr     |            |       | 0         |   |         | 0      |
| •         | CA++       |         |                |       | kmol/hr     |            |       | 21,1296   |   | 21      | ,1296  |
| •         | CL-        |         |                |       | kmol/hr     |            |       | 42,2592   |   | 42      | 2,2592 |
| ► – N     | Iole Fract | tions   |                |       |             |            |       |           |   |         |        |
| •         | N2         |         |                |       |             |            | 0,0   | 00140206  |   | 0,00014 | 40206  |
| Þ         | O2         |         |                |       |             |            | 0,0   | 00113501  |   | 0,0001  | 13501  |
| •         | AR         |         |                |       |             |            | 3,6   | 8822e-06  |   | 3,6882  | 2e-06  |
| •         | CO2        |         |                |       |             |            | 1,9   | 6623e-06  |   | 1,9662  | 3e-06  |
| Fille     | H2O        |         |                |       |             |            |       | 0,754667  |   | 0,75    | 54667  |
| •         | CACL2      |         |                |       |             |            |       | 0         |   |         | 0      |
| •         | CA++       |         |                |       |             |            | 0     | 0,0816911 |   | 0,08    | 16911  |
| -         | CL-        |         |                |       |             |            |       | 0,163382  |   | 0,1     | 63382  |

| Material         Heat         Load         Vol.% Curves         Wt. % Curves         Petroleum         Polymers         Solids           -         -         Mass Flows         kg/hr         LIN-ENFR         L0-OUT           -         Mass Flows         kg/hr         5863,57         5863,77         5863,77           N2         N2         kg/hr         1,0159         1,011           O2         kg/hr         0,9394         0,933           AR         kg/hr         0,038109         0,038109           CO2         kg/hr         0,0223821         0,022382           H2O         kg/hr         0,0223821         0,022382           H2O         kg/hr         3516,52         3516,           CA++         kg/hr         846,809         846,80           CL-         kg/hr         846,809         846,80           CL-         kg/hr         9,000173256         0,00017326           N2         -         8,9/hr         9,000173256         0,00017326           N2         Q2         -         8,9/hr         9,000173256         0,00017326           N2         Q2         -         -         9,00016021         0,0001602 <t< th=""><th colspan="12"></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                |              |     |          |          |     |             |        |          |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|--------------|-----|----------|----------|-----|-------------|--------|----------|--|--|
| Image: Horizon of the system of the | Material | Heat Load      | Vol.% Curves | Wt. | % Curves | Petroleu | m   | Polymers    | Solids |          |  |  |
| - Mass Flows         kg/hr         5863,57         5863,57           N2         kg/hr         1,0159         1,011           O2         kg/hr         0,9394         0,9394           AR         kg/hr         0,038109         0,038109           CO2         kg/hr         0,0223821         0,022381           CO2         kg/hr         0,0223821         0,022381           H2O         kg/hr         3516,52         3516,           CACL2         kg/hr         3516,52         3516,           CA++         kg/hr         846,809         846,80           CL-         kg/hr         1498,23         1498,           CL         kg/hr         0,000173256         0,0001732           N2         O2         0,00016021         0,00016021           N2         O2         0,00016021         0,00016021           AR         O2         0,00016021         0,00016021           AR         CO2         3,81714e-06         3,81714e-06           H2O         CO2         0,599723         0,59972           H2O         CACL2         0         0         0,599723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |              |     | Uni      | ts       | LIN | -ENFR 🔻     | L0-OU  | т •      |  |  |
| N2         kg/hr         1,0159         1,01           O2         kg/hr         0,9394         0,9394         0,9394           AR         kg/hr         0,038109         0,038109         0,038109           CO2         kg/hr         0,0223821         0,022382         0,022383           H2O         kg/hr         3516,52         3516,52         3516,62           CACL2         kg/hr         0         0         0           CACL2         kg/hr         846,809         846,80           CL-         kg/hr         1498,23         1498,23           N2         0.000173256         0,00017325         0,00017326           N2         O2         0.000173256         0,00017325         0,0001602           AR         O2         0.000173256         0,00017325         0,0001602           AR         O2         0.00016021         0,0001602         0,0001602           AR         O2         3,81714e-06         3,81714e-06         3,81714e-06           H2O         CACL2         0.0599723         0,59972         0,599723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - M      | lass Flows     |              |     | kg/hr    |          |     | 5863,57     |        | 5863,57  |  |  |
| Kg/hr         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,9394         0,93819         0,03819         0,03819         0,03819         0,03819         0,03819         0,03819         0,03819         0,023821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,023818         0,0223821         0,023818         0,023818         0,023818         0,023818         0,023818         0,023818         0,023818         0,023818         0,023818         0,001132         0,0001132         0,0001132         0,00011602         0,00011602         0,00011602         0,00011602         0,00011602         0,0001602 <t< th=""><th>Þ.</th><th>N2</th><th></th><th></th><th>kg/hr</th><th></th><th></th><th>1,0159</th><th></th><th>1,0159</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Þ.       | N2             |              |     | kg/hr    |          |     | 1,0159      |        | 1,0159   |  |  |
| AR         kg/hr         0,038109         0,038109           CO2         kg/hr         0,0223821         0,0223821         0,0223821           H2O         kg/hr         3516,52         3516,           CACL2         kg/hr         0         0           CA++         kg/hr         846,809         846,809           CL-         kg/hr         1498,23         1498,23           CL-         kg/hr         0,000173256         0,000173256           N2         O2         0         0,00016021         0,00016021           AR         O2         0         6,49929e-06         6,49929e-06           H2O         IAR         0,599723         0,599723         0,599723           H2O         CACL2         IAB         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        | 02             |              |     | kg/hr    |          |     | 0,9394      |        | 0,9394   |  |  |
| Kg/hr         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0223821         0,0213816         0,0213816         0,0213816         0,0213816         0,021381         0,021381         0,021381         0,021381         0,021381         0,021381         0,00173261         0,000173261         0,000173261         0,000173261         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021         0,00016021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fille    | AR             |              |     | kg/hr    |          |     | 0,038109    | (      | 0,038109 |  |  |
| H2O         kg/hr         3516,52         3516,72           CACL2         kg/hr         0         0           CA++         kg/hr         846,809         846,809           CL-         kg/hr         1498,23         1498,23           F         Mass Fractions         0,000173256         0,00017326           N2         O2         0         0,00016021         0,00016021           AR         O2         0         64,9929e-06         64,9929e-06           H2O         O2         0         0,599723         0,599723           H2O         AR         0,001         0,00173256         0,599723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        | CO2            |              |     | kg/hr    |          |     | 0,0223821   | 0,     | 0223821  |  |  |
| Kg/hr         Mode           CACL2         kg/hr         846,809         846,809           CA++         kg/hr         846,809         846,809           CL-         kg/hr         1498,23         1498,23           Mass Fractions         -         0,000173256         0,00017326           N2         02         -         0,00016021         0,00016021           AR         -         6,49929e-06         6,49929e-06         6,49929e-07           AR         -         0,599723         0,599723         0,599724           H2O         -         -         0,000         0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Þ        | H2O            |              |     | kg/hr    |          |     | 3516,52     |        | 3516,52  |  |  |
| CA++         kg/hr         846,809         846,809           CL-         kg/hr         1498,23         1498,23           -Mass Fractions         C         C         C           N2         O2         O300173256         0,00017326         0,0001602           AR         CO2         C         3,81714e-06         3,81714e-06         3,81714e-06         3,81714e-06         3,81714e-06         3,81714e-06         3,81714e-06         0,599723         0,599723         0,599723         0,599724           CACL2         CACL2         C         C         C         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •        | CACL2          |              |     | kg/hr    |          |     | 0           |        | 0        |  |  |
| CL-         kg/hr         1498,23         1498,23           -Mass Fractions              N2         0,000173256         0,00017326         0,00017326           O2          0,00016021         0,00016021         0,00016021           AR           6,49929e-06         3,81714e-06         3,81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fille    | CA++           |              |     | kg/hr    |          |     | 846,809     |        | 846,809  |  |  |
| - Mass Fractions         Image: column state           N2         0,000173256         0,00017326           O2         0,00016021         0,00016021         0,00016021           AR         6,49929e-06         6,49929e-06         6,49929e-06           CO2         3,81714e-06         3,81714e-06         3,81714e-06           H2O         0,599723         0,59972         0,59972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •        | CL-            |              |     | kg/hr    |          |     | 1498,23     |        | 1498,23  |  |  |
| N2         0,000173256         0,000173256         0,000173256           O2         0,00016021         0,00016021         0,00016021           AR         6,49929e-06         6,49929e-06         6,49929e-06           CO2         3,81714e-06         3,81714e-06         3,81714e-06           H2O         0,599723         0,599723         0,599723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - M      | lass Fractions |              |     |          |          |     |             |        |          |  |  |
| O2         0,00016021         0,00016021           AR         6,49929e-06         6,49929e-06         6,49929e-06         3,81714e-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •        | N2             |              |     |          |          | 0   | ,000173256  | 0,00   | 0173256  |  |  |
| AR         6,49929e-06         6,49929e-07           CO2         3,81714e-06         3,81714e-06         3,81714e-07           H2O         0,599723         0,599723         0,599723           CACL2         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | 02             |              |     |          |          |     | 0,00016021  | 0,0    | 0016021  |  |  |
| CO2         3,81714e-06         3,81714e-           H2O         0,599723         0,59972           CACL2         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •        | AR             |              |     |          |          | 6   | 5,49929e-06 | 6,49   | 929e-06  |  |  |
| H2O         0,599723         0,59972           CACL2         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Þ        | CO2            |              |     |          |          | 3   | 3,81714e-06 | 3,81   | 714e-06  |  |  |
| CACL2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •        | H2O            |              |     |          |          |     | 0,599723    | (      | 0,599723 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Þ        | CACL2          |              |     |          |          |     | 0           |        | 0        |  |  |
| CA++ 0,14419 0,1444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •        | CA++           |              |     |          |          |     | 0,144419    | (      | 0,144419 |  |  |
| CL- 0,255514 0,2555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Þ        | CL-            |              |     |          |          |     | 0,255514    | (      | 0,255514 |  |  |
| Volume Flow 1/min 67,4409 66,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > Ve     | olume Flow     |              |     | l/min    |          |     | 67,4409     |        | 66,7637  |  |  |

Anexo E 75. Resultados de los flujos y fracciones másicas del Enfriador para la ciudad de Arauca.

Anexo E 76. Especificación de la corriente fresca de alimento al proceso para la simulación en Buenaventura.

| Main Flowsheet × LO-FRESC (MATERIAL) × + |                |             |            |        |            |       |     |           |            |  |  |  |
|------------------------------------------|----------------|-------------|------------|--------|------------|-------|-----|-----------|------------|--|--|--|
| Mixed CI                                 | l Solid 🛛 I    | NC Solid    | Flash Opti | ions   | EO Options | Costi | ng  | Comments  |            |  |  |  |
| <ul> <li>Specificati</li> </ul>          | Specifications |             |            |        |            |       |     |           |            |  |  |  |
| Flash Type                               | Ten            | nperature   | -          | Press  | ure        | •     | Con | nposition |            |  |  |  |
| - State variabl                          | les            |             |            |        |            |       | Mo  | ole-Flow  | kmol/hr •  |  |  |  |
| Temperature                              | e              |             | 22         | C      | •          |       |     | Component | Value      |  |  |  |
| Pressure                                 |                |             | 1,0021     | atm    | •          |       | •   | N2        | 8,6e-07    |  |  |  |
| Vapor fractio                            | on             |             |            |        |            |       | •   | 02        | 2,19e-06   |  |  |  |
| Total flow ba                            | asis           | Mole        | •          |        |            |       | •   | AR        | 5e-08      |  |  |  |
| Total flow ra                            | ite            |             |            | kmol/  | hr •       |       | •   | CO2       | 1,4e-08    |  |  |  |
| Solvent                                  |                |             |            |        | Ŧ          |       | •   | H2O       | 2,1951e-06 |  |  |  |
| Reference Te                             | emperatur      | e           |            |        |            |       | •   | CACL2     | 8,99e-15   |  |  |  |
| Volume flow                              | v reference    | e temperat  | ure        |        |            |       | Þ   | CA++      |            |  |  |  |
|                                          |                |             |            |        |            |       |     |           |            |  |  |  |
| Component                                | C C            | ation refer | ence tempe | rature |            |       |     | Tota      | 5,3091e-06 |  |  |  |

| Main Flowsheet × AIRE-ABS (MATERIAL) × +      |                    |                 |         |               |             |  |  |  |  |  |  |
|-----------------------------------------------|--------------------|-----------------|---------|---------------|-------------|--|--|--|--|--|--|
| Mixed CI Solid                                | NC Solid Flash Opt | ions EO Options | Costing | Comments      |             |  |  |  |  |  |  |
| <ul> <li>Specifications</li> </ul>            | Specifications     |                 |         |               |             |  |  |  |  |  |  |
| Flash Type Te                                 | emperature 🔹 🔫     | Pressure        | - Co    | mposition ——— |             |  |  |  |  |  |  |
| State variables                               |                    |                 |         | lole-Flow     | r kmol/hr ▼ |  |  |  |  |  |  |
| Temperature                                   | 34,6               | C •             |         | Component     | Value       |  |  |  |  |  |  |
| Pressure                                      | 759,8              | mmHg 🔹          |         | N2            | 11,7023     |  |  |  |  |  |  |
| Vapor fraction                                |                    |                 |         | 02            | 3,15062     |  |  |  |  |  |  |
| Total flow basis                              | Mole 🔻             |                 |         | AR            | 0,13953     |  |  |  |  |  |  |
| Total flow rate                               |                    | kmol/hr •       |         | CO2           | 0,0105      |  |  |  |  |  |  |
| Solvent                                       |                    | Ŧ               |         | H2O           | 0,86204     |  |  |  |  |  |  |
| Reference Temperate                           | ure                |                 |         | CACL2         |             |  |  |  |  |  |  |
| Volume flow referen                           | ce temperature     |                 |         | CA++          |             |  |  |  |  |  |  |
| С                                             | <b>T</b>           |                 |         | CL-           |             |  |  |  |  |  |  |
| Component concentration reference temperature |                    |                 |         |               |             |  |  |  |  |  |  |
| С                                             | -                  |                 |         | Tota          | 15,865      |  |  |  |  |  |  |

Anexo E 77. Especificación de la corriente de aire a la entrada del Ventilador 1 para la ciudad de Buenaventura.

Anexo E 78. Especificación de la corriente de aire a la entrada del Ventilador 2 para la ciudad de Buenaventura.

| Main Flowsheet × AIRE-DES (MATERIAL) × +      |           |        |          |           |      |            |       |     |             |       |           |
|-----------------------------------------------|-----------|--------|----------|-----------|------|------------|-------|-----|-------------|-------|-----------|
| 🧭 Mixed                                       | Cl Solid  | N      | C Solid  | Flash Opt | ions | EO Options | Costi | ing | Comments    |       |           |
| Specific                                      | cations   |        |          |           |      |            |       |     | ·           |       |           |
| Flash Type                                    |           | Tem    | perature | -         | Pres | sure       | •     | Con | nposition — |       |           |
| - State variables                             |           |        |          |           |      |            |       | Mo  | le-Flow     | •     | kmol/hr • |
| Temperat                                      | ture      |        |          | 34,6      | C    | •          |       |     | Compone     | nt    | Value     |
| Pressure                                      |           |        |          | 759,8     | mmł  | lg ▼       |       | •   | N2          |       | 26,8508   |
| Vapor fra                                     | ction     |        |          |           |      |            |       | •   | 02          |       | 7,22907   |
| Total flov                                    | v basis   |        | Mole     | •         |      |            |       |     | AR          |       | 0.32014   |
| Total flov                                    | v rate    |        |          |           | kmol | /hr 🔻      |       |     | CO2         |       | 0.0241    |
| Solvent                                       |           |        |          |           |      | Ŧ          |       |     | 1002        |       | 4.07704   |
|                                               |           |        |          |           |      |            |       | P   | H2O         |       | 1,97794   |
| Referenc                                      | e Tempe   | rature |          |           |      |            |       |     | CACL2       |       |           |
| Volume f                                      | low refer | ence   | temperat | ure       |      |            |       | •   | CA++        |       |           |
|                                               | С         |        | Ŧ        |           |      |            |       | •   | CL-         |       |           |
| Component concentration reference temperature |           |        |          |           |      |            |       |     |             |       |           |
|                                               | С         |        | -        |           |      |            |       |     |             | Total | 36,4021   |

Anexo E 79. Especificación de la presión de la columna de Absorción y desorción para la ciudad de Buenaventura.

| $\bigwedge$ Main Flowsheet $\times$ | Main Flowsheet × ABS (RadFrac) × + |            |           |          |  |  |  |  |  |  |  |  |
|-------------------------------------|------------------------------------|------------|-----------|----------|--|--|--|--|--|--|--|--|
| ✓ Configuration                     | ✓ Streams                          | 📀 Pressure | Condenser | Reboiler |  |  |  |  |  |  |  |  |
| View Top / I                        | Bottom                             |            | •         |          |  |  |  |  |  |  |  |  |
| Stage 1 / Condense                  | er pressure                        | 1,002      | 1 atm     | •        |  |  |  |  |  |  |  |  |
| Stage 2 pressure (o                 | ptional) —                         |            |           |          |  |  |  |  |  |  |  |  |
| Stage 2 pressure                    | :                                  |            | bar       | -        |  |  |  |  |  |  |  |  |
| Condenser press                     | sure drop                          |            | bar       | Ŧ        |  |  |  |  |  |  |  |  |
| Pressure drop for re                | est of column (                    | (optional) |           |          |  |  |  |  |  |  |  |  |
| Stage pressure d                    | Irop                               |            | bar       | •        |  |  |  |  |  |  |  |  |
| 🔘 Column pressur                    | e drop                             |            | bar       | Ŧ        |  |  |  |  |  |  |  |  |

| Main Flowsheet × COLECTOR (Heat     | er) × +             |                |  |  |  |  |  |  |  |
|-------------------------------------|---------------------|----------------|--|--|--|--|--|--|--|
| Specifications Flash Options U      | Itility Comments    |                |  |  |  |  |  |  |  |
| - Flash specifications              |                     |                |  |  |  |  |  |  |  |
| Flash Type                          | Temperature         | -              |  |  |  |  |  |  |  |
|                                     | Pressure            | -              |  |  |  |  |  |  |  |
| Temperature                         | 53,39               | с <del>.</del> |  |  |  |  |  |  |  |
| Temperature change                  |                     | C -            |  |  |  |  |  |  |  |
| Degrees of superheating             |                     |                |  |  |  |  |  |  |  |
| Degrees of subcooling               |                     | C -            |  |  |  |  |  |  |  |
| Pressure                            | 1,0021              | atm 🔹          |  |  |  |  |  |  |  |
| Duty                                |                     | cal/sec 🔹      |  |  |  |  |  |  |  |
| Vapor fraction                      |                     |                |  |  |  |  |  |  |  |
| Pressure drop correlation parameter |                     |                |  |  |  |  |  |  |  |
| Always calculate pressure drop con  | rrelation parameter |                |  |  |  |  |  |  |  |
| Valid phases                        |                     |                |  |  |  |  |  |  |  |
| Vapor-Liquid                        | •                   |                |  |  |  |  |  |  |  |

Anexo E 80. Especificación del Colector para la ciudad de Buenaventura.



| Specifications Flash Options        | Utility Comments    |           |   |
|-------------------------------------|---------------------|-----------|---|
| Flash specifications                |                     |           |   |
| Flash Type                          | Temperature         | -         | · |
|                                     | Pressure            | -         | · |
| Temperature                         | 22                  | C .       | · |
| Temperature change                  |                     | C         | · |
| Degrees of superheating             |                     | C         | , |
| Degrees of subcooling               |                     | C         | r |
| Pressure                            | 1,0021              | atm 🔹     | · |
| Duty                                |                     | cal/sec " | · |
| Vapor fraction                      |                     |           |   |
| Pressure drop correlation parameter |                     |           |   |
| Always calculate pressure drop co   | rrelation parameter |           |   |
| - Valid phases                      |                     |           |   |
| Vapor-Liquid                        | •                   |           |   |

| Material | Heat      | Load       | Work | Vol.% Curves | Wt. % Curves | Petr | oleum  | Polymer  | s Solids     |              |
|----------|-----------|------------|------|--------------|--------------|------|--------|----------|--------------|--------------|
|          |           |            |      |              | Units        |      | LO-FRE | SC 🝷     | L0-OUT -     | L0-ABS       |
| — мр     | (ED Subs  | tream      |      |              |              |      |        |          |              |              |
| •        | Phase     |            |      |              |              |      |        |          | Liquid Phase | Liquid Phase |
| •        | Tempera   | ture       |      |              | С            |      |        | 22       | 22           | 2            |
|          | Pressure  |            |      |              | bar          |      |        | 1,01538  | 1,01538      | 1,0153       |
|          | Molar Va  | por Fract  | tion |              |              |      | (      | 0,601056 | 0            |              |
|          | Molar Lio | quid Frac  | tion |              |              |      | 0      | ),398944 | 1            |              |
|          | Molar So  | lid Fracti | ion  |              |              |      |        | 0        | 0            |              |
|          | Mass Vap  | oor Fracti | ion  |              |              |      | (      | 0,719417 | 0            |              |
|          | Mass Liq  | uid Fract  | tion |              |              |      | (      | 0,280583 | 1            |              |
|          | Mass Sol  | id Fractio | on   |              |              |      |        | 0        | 0            |              |
|          | Molar En  | thalpy     |      |              | cal/mol      |      |        | -28361,2 | -68578       | -6857        |
|          | Mass Ent  | halpy      |      |              | cal/gm       |      |        | -1104,49 | -3025,09     | -3025,0      |
|          | Molar En  | tropy      |      |              | cal/mol-K    |      |        | -14,8315 | -33,4223     | -33,422      |
|          | Mass Ent  | ropy       |      |              | cal/gm-K     |      | -(     | ),577594 | -1,47432     | -1,4743      |
|          | Molar De  | ensity     |      |              | mol/cc       |      | 6,88   | 418e-05  | 0,0645675    | 0,064567     |
|          | Mass Dei  | nsity      |      |              | gm/cc        |      | 0,0    | 0176773  | 1,46373      | 1,4637       |
| •        | Enthalpy  | Flow       |      |              | cal/sec      |      | -0,    | 0418257  | -5,52379e+06 | -5,52378e+0  |
| Þ        | Average   | MW         |      |              |              |      |        | 25,6781  | 22,6697      | 22,669       |

Anexo E 82. Resultados de las condiciones energéticas de cada corriente para el mezclador en la ciudad de Buenaventura.

Anexo E 83. Resultados de los flujos y fracciones molares del mezclador para la ciudad de Buenaventura.

| Main Flow | sheet × MIXE   | R (Mixer) | - Stream Resu | Its (Boundary) $	imes$ | +     |        |          |          |       |             |
|-----------|----------------|-----------|---------------|------------------------|-------|--------|----------|----------|-------|-------------|
| Material  | Heat Load      | Work      | Vol.% Curves  | Wt. % Curves           | Petro | leum   | Polymers | s Solids |       |             |
| 4         |                |           |               | Units                  | 1     | LO-FRE | sc 👻     | L0-OUT   | •     | LO-ABS -    |
| ► -       | Mole Flows     |           |               | kmol/hr                |       | 5,30   | 091e-06  | 289      | ,971  | 289,971     |
| •         | N2             |           |               | kmol/hr                |       |        | 8,6e-07  | 0,041    | 5928  | 0,0415937   |
| •         | 02             |           |               | kmol/hr                |       | 2      | 2,19e-06 | 0,033    | 6627  | 0,0336643   |
| •         | AR             |           |               | kmol/hr                |       |        | 5e-08    | 0,0010   | 9354  | 0,00109353  |
| •         | CO2            |           |               | kmol/hr                |       |        | 1,4e-08  | 0,00058  | 0554  | 0,000580548 |
| •         | H2O            |           |               | kmol/hr                |       | 2,1    | 951e-06  | 218      | 3,831 | 218,83      |
| •         | CACL2          |           |               | kmol/hr                |       | ł      | 8,99e-15 |          | 0     | 0           |
| •         | CA++           |           |               | kmol/hr                |       |        | 0        | 23,      | 6878  | 23,6879     |
| •         | CL-            |           |               | kmol/hr                |       |        | 0        | 47,      | 3757  | 47,3757     |
| -         | Mole Fractions |           |               |                        |       |        |          |          |       |             |
| •         | N2             |           |               |                        |       | C      | ),161986 | 0,00014  | 3438  | 0,000143441 |
| •         | 02             |           |               |                        |       | C      | ,412499  | 0,0001   | 1609  | 0,000116096 |
| •         | AR             |           |               |                        |       | 0,0    | 0941779  | 3,77122  | e-06  | 3,77119e-06 |
| •         | CO2            |           |               |                        |       | 0,0    | 0263698  | 2,00211  | e-06  | 2,00209e-06 |
| •         | H2O            |           |               |                        |       |        | 0,41346  | 0,75     | 4664  | 0,754663    |
| •         | CACL2          |           |               |                        |       | 1,69   | 332e-09  |          | 0     | 0           |
| •         | CA++           |           |               |                        |       |        | 0        | 0,081    | 6904  | 0,0816905   |
| •         | CL-            |           |               |                        |       |        | 0        | 0,16     | 3381  | 0,163381    |

| Main Flow | Main Flowsheet × MIXER (Mixer) - Stream Results (Boundary) × + |      |             |                 |           |      |       |          |             |  |  |
|-----------|----------------------------------------------------------------|------|-------------|-----------------|-----------|------|-------|----------|-------------|--|--|
| Material  | Heat Load                                                      | Work | Vol.% Curve | es Wt. % Curves | Petroleum | Poly | mers  | Solids   |             |  |  |
|           |                                                                |      |             | Units           | L0-FRESC  | •    | L0-OU | л •      | LO-ABS 🔻    |  |  |
| > - N     | Aass Flows                                                     |      |             | kg/hr           | 0,0001363 | 328  |       | 6573,57  | 6573,56     |  |  |
| - F       | N2                                                             |      |             | kg/hr           | 2,40916e  | -05  |       | 1,16516  | 1,16519     |  |  |
| •         | 02                                                             |      |             | kg/hr           | 7,00774e  | -05  |       | 1,07716  | 1,07722     |  |  |
| •         | AR                                                             |      |             | kg/hr           | 1,9974e   | -06  | 0     | ,0436849 | 0,0436845   |  |  |
| •         | CO2                                                            |      |             | kg/hr           | 6,16137e  | -07  | 0     | ,0255501 | 0,0255498   |  |  |
| - F       | H2O                                                            |      |             | kg/hr           | 3,95453e  | -05  |       | 3942,3   | 3942,29     |  |  |
| •         | CACL2                                                          |      |             | kg/hr           | 9,97741e  | -13  |       | 0        | 0           |  |  |
| •         | CA++                                                           |      |             | kg/hr           |           | 0    |       | 949,336  | 949,336     |  |  |
| •         | CL-                                                            |      |             | kg/hr           |           | 0    |       | 1679,62  | 1679,62     |  |  |
| - N       | Mass Fractions                                                 |      |             |                 |           |      |       |          |             |  |  |
| •         | N2                                                             |      |             |                 | 0,1767    | 718  | 0,00  | 00177249 | 0,000177253 |  |  |
| •         | 02                                                             |      |             |                 | 0,5140    | 036  | 0,00  | 00163863 | 0,000163871 |  |  |
| •         | AR                                                             |      |             |                 | 0,01465   | 514  | 6,6   | 4554e-06 | 6,64549e-06 |  |  |
| - F       | CO2                                                            |      |             |                 | 0,004519  | 953  | 3,8   | 8679e-06 | 3,88675e-06 |  |  |
| F         | H2O                                                            |      |             |                 | 0,2900    | 075  |       | 0,59972  | 0,599719    |  |  |
| •         | CACL2                                                          |      |             |                 | 7,31869e  | -09  |       | 0        | 0           |  |  |
| Fille     | CA++                                                           |      |             |                 |           | 0    |       | 0,144417 | 0,144417    |  |  |
| •         | CL-                                                            |      |             |                 |           | 0    |       | 0,255512 | 0,255512    |  |  |
| > V       | olume Flow                                                     |      |             | l/min           | 0,001285  | 534  |       | 74,8496  | 74,8496     |  |  |

Anexo E 84. Resultados de los flujos y fracciones masicos del mezclador para la ciudad de Buenaventura.

Anexo E 85. Resultados energéticos del Ventilador 1 para la ciudad de Buenaventura.

| Sur | nmary   | Balance        | Parameters  | Perfo | rmance   | Regression       | Utility Usage | Status 🥝 |
|-----|---------|----------------|-------------|-------|----------|------------------|---------------|----------|
|     |         |                |             |       |          |                  |               |          |
| Þ   | Comp    | ressor mod     | lel         |       | lsentrop | ic Compressor    |               |          |
| Þ   | Phase   | calculation    | IS          |       | Vapor pł | nase calculation | 1             |          |
|     | Indica  | ted horsep     | ower        |       |          | 32,7198          | Watt          |          |
|     | Brake   | horsepowe      | r           |       |          | 32,7198          | Watt          |          |
| Þ   | Net w   | ork require    | d           |       |          | 32,7198          | Watt          |          |
| Þ   | Powe    | r loss         |             |       |          | 0                | Watt          |          |
| Þ.  | Efficie | ncy            |             |       |          |                  |               | 0,82     |
|     | Mech    | anical effici  | ency        |       |          |                  |               | 1        |
| ×   | Outle   | t pressure     |             |       |          | 1,00212          | atm           |          |
|     | Outle   | t temperatu    | re          |       |          | 34,8525          | С             |          |
| Þ   | lsentr  | opic outlet    | temperature |       |          | 34,8072          | с             |          |
|     | Vapor   | fraction       |             |       |          |                  |               | 1        |
| Þ   | Displa  | cement         |             |       |          |                  |               |          |
| þ.  | Volun   | netric efficie | ency        |       |          |                  |               |          |

| Main Flow | sheet × VENT-1 (Compr) - Stream Res | ults (Boundary) × + |             |             |
|-----------|-------------------------------------|---------------------|-------------|-------------|
| Material  | Work Vol.% Curves Wt. % Curves      | Petroleum Polym     | ers Solids  |             |
|           |                                     | Units               | AIRE-ABS 🗸  | VN+1-ABS -  |
| - 1       | Mole Flows                          | kmol/hr             | 15,865      | 15,865      |
| •         | N2                                  | kmol/hr             | 11,7023     | 11,7023     |
| •         | 02                                  | kmol/hr             | 3,15062     | 3,15062     |
| •         | AR                                  | kmol/hr             | 0,13953     | 0,13953     |
| •         | CO2                                 | kmol/hr             | 0,0105      | 0,0105      |
| •         | H2O                                 | kmol/hr             | 0,86204     | 0,86204     |
| •         | CACL2                               | kmol/hr             | 0           | 0           |
| •         | CA++                                | kmol/hr             | 0           | 0           |
| •         | CL-                                 | kmol/hr             | 0           | 0           |
| - 1       | Mole Fractions                      |                     |             |             |
| •         | N2                                  |                     | 0,737618    | 0,737618    |
| •         | 02                                  |                     | 0,19859     | 0,19859     |
| •         | AR                                  |                     | 0,00879484  | 0,00879484  |
| •         | CO2                                 |                     | 0,000661835 | 0,000661835 |
| •         | H2O                                 |                     | 0,054336    | 0,054336    |
| •         | CACL2                               |                     | 0           | 0           |
| •         | CA++                                |                     | 0           | 0           |
| •         | CL-                                 |                     | 0           | 0           |

Anexo E 86. Resultados de los flujos y fracciones molares del Ventilador 1 para la ciudad de Buenaventura.

Anexo E 87. Resultados de los flujos y fracciones másicas del Ventilador 1 para la ciudad de Buenaventura.

Main Flowsheet × VENT-1 (Compr) - Stream Results (Boundary) × +

| Material | Work       | Vol.% Curves | Wt. % Curve | s Petroleum | Polymers | Solids   |            |
|----------|------------|--------------|-------------|-------------|----------|----------|------------|
| 4        |            |              |             | Units       | AIRE-A   | BS 🔻     | VN+1-ABS • |
| > - N    | Aass Flow  | 15           |             | kg/hr       |          | 450,204  | 450,204    |
|          | N2         |              |             | kg/hr       |          | 327,822  | 327,822    |
| •        | 02         |              |             | kg/hr       |          | 100,816  | 100,816    |
| Þ        | AR         |              |             | kg/hr       |          | 5,57394  | 5,57394    |
| •        | CO2        |              |             | kg/hr       | (        | 0,462103 | 0,462103   |
| Þ        | H2O        |              |             | kg/hr       |          | 15,5299  | 15,5299    |
| •        | CACL2      | 2            |             | kg/hr       |          | 0        | 0          |
| •        | CA++       |              |             | kg/hr       |          | 0        | 0          |
| •        | CL-        |              |             | kg/hr       |          | 0        | 0          |
| > — N    | Mass Fract | tions        |             |             |          |          |            |
| •        | N2         |              |             |             | 0        | 0,728163 | 0,728163   |
| •        | 02         |              |             |             | 0        | 0,223934 | 0,223934   |
| •        | AR         |              |             |             | 0,       | 0123809  | 0,0123809  |
| •        | CO2        |              |             |             | 0,0      | 0102643  | 0,00102643 |
| •        | H2O        |              |             |             | 0,       | 0344952  | 0,0344952  |
| •        | CACL2      | 2            |             |             |          | 0        | 0          |
| •        | CA++       |              |             |             |          | 0        | 0          |
|          | CL-        |              |             |             |          | 0        | 0          |
| ► V      | olume Flo  | DW           |             | l/min       |          | 6677,24  | 6666,86    |

| Mai | n Flowsł | neet × VE      | NT-2 (Compr) | - Resu | lts × 🕂  |                 |               |       |
|-----|----------|----------------|--------------|--------|----------|-----------------|---------------|-------|
| Sur | mmary    | Balance        | Parameters   | Perfo  | rmance   | Regression      | Utility Usage | Statu |
|     |          |                |              |        |          |                 |               |       |
|     | Comp     | pressor mod    | el           |        | lsentrop | ic Compressor   |               |       |
|     | Phase    | calculation    | 5            |        | Vapor pł | ase calculation |               |       |
|     | Indica   | ted horsepo    | ower         |        |          | 75,0752         | Watt          |       |
|     | Brake    | horsepowe      | r            |        |          | 75,0752         | Watt          |       |
|     | Net w    | ork required   | ł            |        |          | 75,0752         | Watt          |       |
|     | Powe     | r loss         |              |        |          | 0               | Watt          |       |
|     | Efficie  | ency           |              |        |          |                 |               | 0,82  |
|     | Mech     | anical effici  | ency         |        |          |                 |               | 1     |
| •   | Outle    | t pressure     |              |        |          | 1,00212         | atm           |       |
|     | Outle    | t temperatu    | re           |        |          | 34,8525         | С             |       |
|     | lsentr   | opic outlet I  | temperature  |        |          | 34,8072         | С             |       |
|     | Vapor    | fraction       |              |        |          |                 |               | 1     |
|     | Displa   | cement         |              |        |          |                 |               |       |
|     | Volum    | netric efficie | ncy          |        |          |                 |               |       |

Anexo E 88. Resultados energéticos del Ventilador 2 para la ciudad de Buenaventura.

Anexo E 89. Resultados de los flujos y fracciones molares del Ventilador 2 para la ciudad de Buenaventura.

| Main Flow | sheet $	imes$ | VENT-2 (Comp | or) - Stream Res | ults (Boundary | )× (± |            |     |             |
|-----------|---------------|--------------|------------------|----------------|-------|------------|-----|-------------|
| Material  | Work          | Vol.% Curves | Wt. % Curves     | Petroleum      | Polym | ers Solids |     |             |
|           |               |              |                  | Units          |       | AIRE-DES   | •   | VN+1-DES -  |
| - 1       | Mole Flo      | ws           |                  | kmol/hr        |       | 36,40      | 21  | 36,4021     |
| •         | N2            |              |                  | kmol/hr        |       | 26,85      | 608 | 26,8508     |
| •         | 02            |              |                  | kmol/hr        |       | 7,229      | 07  | 7,22907     |
| •         | AR            |              |                  | kmol/hr        |       | 0,320      | )14 | 0,32014     |
| •         | CO2           |              |                  | kmol/hr        |       | 0,02       | 241 | 0,0241      |
| •         | H2O           |              |                  | kmol/hr        |       | 1,977      | 94  | 1,97794     |
| •         | CACL          | 2            |                  | kmol/hr        |       |            | 0   | 0           |
| •         | CA++          |              |                  | kmol/hr        |       |            | 0   | 0           |
| •         | CL-           |              |                  | kmol/hr        |       |            | 0   | 0           |
| -         | Mole Fra      | ctions       |                  |                |       |            |     |             |
| •         | N2            |              |                  |                |       | 0,7376     | 518 | 0,737618    |
| •         | 02            |              |                  |                |       | 0,198      | 359 | 0,19859     |
| •         | AR            |              |                  |                |       | 0,008794   | 156 | 0,00879456  |
| •         | CO2           |              |                  |                |       | 0,0006620  | )51 | 0,000662051 |
| •         | H2O           |              |                  |                |       | 0,0543     | 36  | 0,054336    |
| •         | CACL          | 2            |                  |                |       |            | 0   | 0           |
| •         | CA++          |              |                  |                |       |            | 0   | 0           |
| •         | CL-           |              |                  |                |       |            | 0   | 0           |
|           |               |              |                  |                |       |            |     |             |

| Main Flo | wsheet ×     | VENT-2 (Comp | r) - Stream Re | sults (Boundary | /)× (+  |           |            |
|----------|--------------|--------------|----------------|-----------------|---------|-----------|------------|
| Materia  | Work         | Vol.% Curves | Wt. % Curves   | Petroleum       | Polymer | s Solids  |            |
|          |              |              |                | Units           | AIRE    | -DES 🔻    | VN+1-DES • |
| -        | Mass Flow    | 5            | I              | kg/hr           |         | 1032,99   | 1032,99    |
| •        | N2           |              | 1              | kg/hr           |         | 752,184   | 752,184    |
| •        | 02           |              | ł              | kg/hr           |         | 231,322   | 231,322    |
| •        | AR           |              | 1              | kg/hr           |         | 12,789    | 12,789     |
| •        | CO2          |              | ł              | (g/hr           |         | 1,06064   | 1,06064    |
| •        | H2O          |              | 1              | kg/hr           |         | 35,6331   | 35,6331    |
| •        | CACL2        |              | 1              | kg/hr           |         | 0         | 0          |
| •        | CA++         |              | ł              | kg/hr           |         | 0         | 0          |
| •        | CL-          |              | ł              | kg/hr           |         | 0         | 0          |
| -        | • Mass Fract | tions        |                |                 |         |           |            |
| •        | N2           |              |                |                 |         | 0,728163  | 0,728163   |
| •        | 02           |              |                |                 |         | 0,223934  | 0,223934   |
| •        | AR           |              |                |                 |         | 0,0123805 | 0,0123805  |
| - F      | CO2          |              |                |                 | 0       | ,00102676 | 0,00102676 |
| •        | H2O          |              |                |                 |         | 0,0344952 | 0,0344952  |
| •        | CACL2        | 2            |                |                 |         | 0         | 0          |
| •        | CA++         |              |                |                 |         | 0         | 0          |
| •        | CL-          |              |                |                 |         | 0         | 0          |
| •        | Volume Flo   | bw           | 1              | /min            |         | 15320,9   | 15297      |

Anexo E 90. Resultados de los flujos y fracciones másicas del Ventilador 2 para la ciudad de Buenaventura.

Anexo E 91. Resultados energéticos e las corrientes del Absorbedor para la ciudad de Buenaventura.

| Material    | Heat      | Load      | Vol.% Curves | Wt. % | Curves  | Petroleum | Polymers    | Solid | ds          |              |             |
|-------------|-----------|-----------|--------------|-------|---------|-----------|-------------|-------|-------------|--------------|-------------|
|             |           |           |              |       |         | Units     | L0-ABS      | •     | VN+1-ABS    | LN-ABS -     | V1-ABS -    |
| – міх       | ED Subs   | tream     |              |       |         |           |             |       |             |              |             |
| •           | Phase     |           |              |       |         |           | Liquid Phas | e     | Vapor Phase | Liquid Phase | Vapor Phase |
| •           | Tempera   | ture      |              |       | С       |           |             | 22    | 34,8525     | 24,5422      | 23,4638     |
| •           | Pressure  |           |              |       | bar     |           | 1,0         | 1538  | 1,0154      | 1,01538      | 1,01538     |
| •           | Molar Va  | por Fract | tion         |       |         |           |             | 0     | 1           | 0            | 1           |
| •           | Molar Lie | quid Frac | tion         |       |         |           |             | 1     | 0           | 1            | 0           |
| •           | Molar So  | lid Fract | ion          |       |         |           |             | 0     | 0           | 0            | 0           |
| •           | Mass Vap  | oor Fract | ion          |       |         |           |             | 0     | 1           | 0            | 1           |
| <b>&gt;</b> | Mass Liq  | uid Fract | tion         |       |         |           |             | 1     | 0           | 1            | 0           |
| •           | Mass Sol  | id Fracti | on           |       |         |           |             | 0     | 0           | 0            | 0           |
| •           | Molar En  | thalpy    |              |       | cal/mo  | l         | -6          | 8578  | -3135,7     | -68538,5     | -1018,66    |
| •           | Mass Ent  | halpy     |              |       | cal/gm  |           | -302        | 5,09  | -110,501    | -3024,48     | -35,3819    |
|             | Molar En  | tropy     |              |       | cal/mo  | -K        | -33,4       | 4223  | 1,13248     | -33,3363     | 1,05852     |
|             | Mass Ent  | ropy      |              |       | cal/gm  | -К        | -1,4        | 7432  | 0,039908    | -1,47107     | 0,0367661   |
| Þ           | Molar De  | ensity    |              |       | mol/cc  |           | 0,064       | 5675  | 3,96613e-05 | 0,0644567    | 4,11778e-05 |
| •           | Mass De   | nsity     |              |       | gm/cc   |           | 1,4         | 6373  | 0,00112548  | 1,46067      | 0,00118553  |
| Þ           | Enthalpy  | Flow      |              |       | cal/sec |           | -5,523786   | +06   | -13818,9    | -5,5333e+06  | -4300,37    |
|             | Average   | MW        |              |       |         |           | 22,         | 6697  | 28,3772     | 22,6612      | 28,7905     |

| Main Flow | sheet × ABS (I | RadFrac) - Strea | m Results (Bound | dary) 🗙 🛨 |          |       |             |             |             |
|-----------|----------------|------------------|------------------|-----------|----------|-------|-------------|-------------|-------------|
| Material  | Heat Load      | Vol.% Curves     | Wt. % Curves     | Petroleum | Polymers | Solid | ls          |             |             |
|           |                |                  |                  | Units     | L0-ABS   | •     | VN+1-ABS -  | LN-ABS -    | V1-ABS 👻    |
|           | Mole Flows     |                  | kmol/h           | r         | 289,     | 971   | 15,865      | 290,638     | 15,1977     |
| •         | N2             |                  | kmol/h           | r         | 0,0415   | 937   | 11,7023     | 0,069977    | 11,6739     |
| •         | 02             |                  | kmol/h           | r         | 0,0336   | 643   | 3,15062     | 0,0573659   | 3,12692     |
| •         | AR             |                  | kmol/h           | r         | 0,00109  | 353   | 0,13953     | 0,00178476  | 0,138839    |
| •         | CO2            |                  | kmol/h           | r         | 0,000580 | 548   | 0,0105      | 0,000682235 | 0,0103983   |
| •         | H2O            |                  | kmol/h           | r         | 21       | 8,83  | 0,86204     | 219,445     | 0,247637    |
| •         | CACL2          |                  | kmol/h           | r         |          | 0     | 0           | 0           | 0           |
| •         | CA++           |                  | kmol/h           | r         | 23,6     | 879   | 0           | 23,6878     | 0           |
| •         | CL-            |                  | kmol/h           | r         | 47,3     | 757   | 0           | 47,3757     | 0           |
| -         | Mole Fractions |                  |                  |           |          |       |             |             |             |
| •         | N2             |                  |                  |           | 0,000143 | 441   | 0,737618    | 0,00024077  | 0,768136    |
| •         | 02             |                  |                  |           | 0,000116 | 096   | 0,19859     | 0,000197379 | 0,205749    |
| •         | AR             |                  |                  |           | 3,77119e | -06   | 0,00879484  | 6,14083e-06 | 0,00913551  |
| •         | CO2            |                  |                  |           | 2,00209e | -06   | 0,000661835 | 2,34737e-06 | 0,000684203 |
|           | H2O            |                  |                  |           | 0,754    | 663   | 0,054336    | 0,755045    | 0,0162944   |
|           | CACL2          |                  |                  |           |          | 0     | 0           | 0           | 0           |
|           | CA++           |                  |                  |           | 0,0816   | 905   | 0           | 0,0815029   | 0           |
| Fille     | CL-            |                  |                  |           | 0,163    | 381   | 0           | 0,163006    | 0           |
|           |                |                  |                  |           |          |       |             |             |             |

Anexo E 92. Resultados de los flujos y fracciones molares del Absorbedor para la ciudad de Buenaventura.

Anexo E 93. Resultados de los flujos y fracciones másicas del Absorbedor para la ciudad de Buenaventura.

| Material | Heat Load      | Vol % Cupyer   | Wt % Cupres   | Detroleur | n Dolymers  | Solida     |             |            |
|----------|----------------|----------------|---------------|-----------|-------------|------------|-------------|------------|
| wateria  | Heat Load      | voi. // Curves | wt. /o Curves | Petroleul | n Polymers  | SUIUS      |             | 1          |
|          |                |                | Un            | its       | LO-ABS 🔻    | VN+1-ABS • | LN-ABS 🔻    | V1-ABS •   |
| - 1      | Mass Flows     |                | kg/hr         |           | 6573,56     | 450,204    | 6586,21     | 437,55     |
| Þ.       | N2             |                | kg/hr         |           | 1,16519     | 327,822    | 1,9603      | 327,027    |
| •        | 02             |                | kg/hr         |           | 1,07722     | 100,816    | 1,83564     | 100,058    |
| Þ.       | AR             |                | kg/hr         |           | 0,0436845   | 5,57394    | 0,0712976   | 5,54633    |
| Fille    | CO2            |                | kg/hr         |           | 0,0255498   | 0,462103   | 0,030025    | 0,457628   |
| Þ        | H2O            |                | kg/hr         |           | 3942,29     | 15,5299    | 3953,36     | 4,46124    |
| Þ        | CACL2          |                | kg/hr         |           | 0           | 0          | 0           | 0          |
| •        | CA++           |                | kg/hr         |           | 949,336     | 0          | 949,336     | 0          |
| Fille    | CL-            |                | kg/hr         |           | 1679,62     | 0          | 1679,62     | 0          |
| - I      | Mass Fractions |                |               |           |             |            |             |            |
| Þ        | N2             |                |               |           | 0,000177253 | 0,728163   | 0,000297637 | 0,747405   |
| Þ.       | 02             |                |               |           | 0,000163871 | 0,223934   | 0,000278709 | 0,228677   |
| Fille    | AR             |                |               |           | 6,64549e-06 | 0,0123809  | 1,08253e-05 | 0,0126759  |
| Þ        | CO2            |                |               |           | 3,88675e-06 | 0,00102643 | 4,55877e-06 | 0,00104589 |
| Fille    | H2O            |                |               |           | 0,599719    | 0,0344952  | 0,600247    | 0,010196   |
| Þ        | CACL2          |                |               |           | 0           | 0          | 0           | 0          |
| •        | CA++           |                |               |           | 0,144417    | 0          | 0,14414     | 0          |
| Þ        | CL-            |                |               |           | 0,255512    | 0          | 0,255021    | 0          |
| > \      | /olume Flow    |                | I/min         |           | 74,8496     | 6666,86    | 75,1507     | 6151,26    |

Main Flowsheet × ABS (RadFrac) - Stream Results (Boundary) × +

| Main Flow | $_{ m sheet} 	imes$ | DESO      | RB (RadFrac) | - St | tream R      | esults (B | oundary) $	imes$ | +            |        |             |              |             |
|-----------|---------------------|-----------|--------------|------|--------------|-----------|------------------|--------------|--------|-------------|--------------|-------------|
| Material  | Heat                | Load      | Vol.% Curve  | es   | Wt. %        | Curves    | Petroleum        | Polymers     | Solid  | ds          |              |             |
|           |                     |           |              |      |              |           | Units            | L0-DESOR     | -      | VN+1-DES -  | LN-DESOR -   | V1-DES      |
| – міх     | (ED Subs            | tream     |              |      |              |           |                  |              |        |             |              |             |
| •         | Phase               |           |              |      |              |           |                  |              |        | Vapor Phase | Liquid Phase | Vapor Phase |
| •         | Tempera             | ture      |              |      |              | С         |                  | 5            | 3,39   | 34,8525     | 50,1344      | 50,9999     |
| •         | Pressure            |           |              |      |              | bar       |                  | 1,01         | 1538   | 1,0154      | 1,01538      | 1,01538     |
| •         | Molar Va            | por Frac  | tion         |      |              |           |                  | 0,00018      | 5363   | 1           | 0            | 1           |
| •         | Molar Lie           | quid Fra  | ction        |      |              |           |                  | 0,999        | 9815   | 0           | 1            | 0           |
| •         | Molar So            | lid Fract | tion         |      |              |           |                  |              | 0      | 0           | 0            | 0           |
| •         | Mass Vap            | or Fract  | tion         |      |              |           |                  | 0,000232     | 2874   | 1           | 0            | 1           |
| •         | Mass Liq            | uid Frac  | tion         |      |              |           |                  | 0,999        | 9767   | 0           | 1            | 0           |
| •         | Mass Sol            | id Fracti | ion          |      |              |           |                  |              | 0      | 0           | 0            | 0           |
| •         | Molar En            | thalpy    |              |      |              | cal/mol   |                  | -682         | 27,5   | -3135,72    | -68276,7     | -3921,76    |
| •         | Mass Ent            | halpy     |              |      |              | cal/gm    |                  | -301         | 0,76   | -110,501    | -3011,8      | -139,031    |
| Þ         | Molar En            | tropy     |              |      |              | cal/mol   | -K               | -32,3        | 3388   | 1,13248     | -32,4476     | 1,39567     |
| •         | Mass Ent            | ropy      |              |      |              | cal/gm·   | ·К               | -1,42        | 2706   | 0,039908    | -1,43132     | 0,0494781   |
| •         | Molar De            | ensity    |              |      |              | mol/cc    |                  | 0,0484       | 4873   | 3,96613e-05 | 0,0639291    | 3,76826e-05 |
| •         | Mass De             | nsity     |              |      |              | gm/cc     |                  | 1,09         | 9878   | 0,00112548  | 1,44926      | 0,00106295  |
| Þ         | Enthalpy Flow       |           | cal/sec      |      | -5,50819e+06 |           | -31707,4         | -5,49952e+06 | -40382 |             |              |             |
|           | Average             | MW        |              |      |              |           |                  | 22,          | 5612   | 28,3772     | 22,6697      | 28,2079     |

Anexo E 94. Resultados energéticos e las corrientes del Desorbedor para la ciudad de Buenaventura.

Anexo E 95. Resultados de los flujos y fracciones molares del Desorbedor para la ciudad de Buenaventura. Main Flowsheet × DESORB (RadFrac) - Stream Results (Boundary) × +

| Materi | al Heat    | Load    | Vol.% Curves | Wt. % | Curves | Petroleum | Polymers | Solic | ds          |             |             |
|--------|------------|---------|--------------|-------|--------|-----------|----------|-------|-------------|-------------|-------------|
|        |            |         |              |       |        | Units     | L0-DESOR | •     | VN+1-DES -  | LN-DESOR -  | V1-DES -    |
| •      | – Mole Fle | ows     |              |       | kmol/h | ır        | 290      | ,638  | 36,4021     | 289,971     | 37,0689     |
| •      | N2         |         |              |       | kmol/h | r         | 0,06     | 9977  | 26,8508     | 0,0415928   | 26,8792     |
| •      | 02         |         |              |       | kmol/h | r         | 0,057    | 3659  | 7,22907     | 0,0336627   | 7,25277     |
| •      | AR         |         |              |       | kmol/h | r         | 0,0017   | 8476  | 0,32014     | 0,00109354  | 0,320831    |
| •      | CO2        |         |              |       | kmol/h | r         | 0,00068  | 2235  | 0,0241      | 0,000580554 | 0,0242017   |
| •      | H20        | )       |              |       | kmol/h | r         | 219      | ,445  | 1,97794     | 218,831     | 2,59195     |
| •      | CAC        | L2      |              |       | kmol/h | r         |          | 0     | 0           | 0           | 0           |
| •      | CA+        | +       |              |       | kmol/h | r         | 23,      | 5878  | 0           | 23,6878     | 0           |
| •      | CL-        |         |              |       | kmol/h | r         | 47,      | 3757  | 0           | 47,3757     | 0           |
| •      | – Mole Fr  | actions |              |       |        |           |          |       |             |             |             |
| •      | N2         |         |              |       |        |           | 0,0002   | 4077  | 0,737618    | 0,000143438 | 0,725113    |
| •      | 02         |         |              |       |        |           | 0,00019  | 7379  | 0,19859     | 0,00011609  | 0,195656    |
| •      | AR         |         |              |       |        |           | 6,14083  | e-06  | 0,00879456  | 3,77122e-06 | 0,00865499  |
| •      | CO2        |         |              |       |        |           | 2,34737  | e-06  | 0,000662051 | 2,00211e-06 | 0,000652883 |
| •      | H20        | )       |              |       |        |           | 0,75     | 5045  | 0,054336    | 0,754664    | 0,0699223   |
| •      | CAC        | L2      |              |       |        |           |          | 0     | 0           | 0           | 0           |
| •      | CA+        | +       |              |       |        |           | 0,081    | 5029  | 0           | 0,0816904   | 0           |
| •      | CL-        |         |              |       |        |           | 0,16     | 3006  | 0           | 0,163381    | 0           |

| - Main How |                        | can results (boundary) |             |            |             |            |
|------------|------------------------|------------------------|-------------|------------|-------------|------------|
| Material   | Heat Load Vol.% Curves | Wt. % Curves Petroleu  | m Polymers  | Solids     |             |            |
|            |                        | Units                  | L0-DESOR -  | VN+1-DES • | LN-DESOR •  | V1-DES •   |
| > — N      | Mass Flows             | kg/hr                  | 6586,21     | 1032,99    | 6573,57     | 1045,64    |
| •          | N2                     | kg/hr                  | 1,9603      | 752,184    | 1,16516     | 752,979    |
| •          | O2                     | kg/hr                  | 1,83564     | 231,322    | 1,07716     | 232,08     |
| •          | AR                     | kg/hr                  | 0,0712976   | 12,789     | 0,0436849   | 12,8166    |
| •          | CO2                    | kg/hr                  | 0,030025    | 1,06064    | 0,0255501   | 1,06511    |
| •          | H2O                    | kg/hr                  | 3953,36     | 35,6331    | 3942,3      | 46,6946    |
| •          | CACL2                  | kg/hr                  | 0           | 0          | 0           | 0          |
| •          | CA++                   | kg/hr                  | 949,336     | 0          | 949,336     | 0          |
| •          | CL-                    | kg/hr                  | 1679,62     | 0          | 1679,62     | 0          |
| > — N      | Mass Fractions         |                        |             |            |             |            |
| •          | N2                     |                        | 0,000297637 | 0,728163   | 0,000177249 | 0,720116   |
| •          | O2                     |                        | 0,000278709 | 0,223934   | 0,000163863 | 0,221951   |
| •          | AR                     |                        | 1,08253e-05 | 0,0123805  | 6,64554e-06 | 0,0122572  |
| •          | CO2                    |                        | 4,55877e-06 | 0,00102676 | 3,88679e-06 | 0,00101863 |
| •          | H2O                    |                        | 0,600247    | 0,0344952  | 0,59972     | 0,0446567  |
| •          | CACL2                  |                        | 0           | 0          | 0           | 0          |
| - F        | CA++                   |                        | 0,14414     | 0          | 0,144417    | 0          |
| •          | CL-                    |                        | 0,255021    | 0          | 0,255512    | 0          |
| > V        | /olume Flow            | l/min                  | 99,9017     | 15297      | 75,597      | 16395,2    |
|            |                        |                        |             |            |             |            |

| Anexo E 96. Resultados de los flujos y fracciones másicas del Desorbedor para la ciudad de Buer | naventura. |
|-------------------------------------------------------------------------------------------------|------------|
| Main Flowsheet X DESORB (RadFrac) - Stream Results (Roundary) X +                               |            |

Anexo E 97. Resultados energéticos de la Bomba 1 para la ciudad de Buenaventura.

| Main Flowsheet × BC  | OMBA-1 (Pump) - | Results × +             |
|----------------------|-----------------|-------------------------|
| Summary Balance      | Performance Cu  | ırve 🛛 Utility Usage  🤡 |
|                      |                 |                         |
| Fluid power          | 8,63576         | Watt 🔻                  |
| Brake power          | 11,5143         | Watt 🔹                  |
| Electricity          | 11,5143         | Watt 🔻                  |
| Volumetric flow rate | 75,1507         | l/min ▼                 |
| Pressure change      | 0,068046        | atm 🔻                   |
| NPSH available       | 0,562135        | meter-head 🔹            |
| NPSH required        |                 | -                       |
| Head developed       | 0,481334        | meter-head 🔹            |
| Pump efficiency used | 0,75            |                         |
| Net work required    | 0,0115143       | kW -                    |
| Outlet pressure      | 1,07015         | atm 🔹                   |
| Outlet temperature   | 24,5436         | с -                     |

| Main Flowsheet × BOMBA-1 (Pump) - Stream Results (Boundary) × + |                   |              |           |         |             |             |  |  |  |  |
|-----------------------------------------------------------------|-------------------|--------------|-----------|---------|-------------|-------------|--|--|--|--|
| Material                                                        | Work Vol.% Curves | Wt. % Curves | Petroleum | Polymer | s Solids    |             |  |  |  |  |
|                                                                 |                   |              | Units     | 0       | N-ABS -     | LIN-COLE -  |  |  |  |  |
| ► - I                                                           | Mole Flows        |              | kmol/hr   |         | 290,638     | 290,638     |  |  |  |  |
| •                                                               | N2                |              | kmol/hr   |         | 0,069977    | 0,069977    |  |  |  |  |
| •                                                               | O2                |              | kmol/hr   |         | 0,0573659   | 0,0573659   |  |  |  |  |
| •                                                               | AR                |              | kmol/hr   |         | 0,00178476  | 0,00178476  |  |  |  |  |
| •                                                               | CO2               |              | kmol/hr   |         | 0,000682235 | 0,000682235 |  |  |  |  |
| •                                                               | H2O               |              | kmol/hr   |         | 219,445     | 219,445     |  |  |  |  |
| •                                                               | CACL2             |              | kmol/hr   |         | 0           | 0           |  |  |  |  |
| •                                                               | CA++              |              | kmol/hr   |         | 23,6878     | 23,6878     |  |  |  |  |
| •                                                               | CL-               |              | kmol/hr   |         | 47,3757     | 47,3757     |  |  |  |  |
| >                                                               | Mole Fractions    |              |           |         |             |             |  |  |  |  |
| •                                                               | N2                |              |           |         | 0,00024077  | 0,00024077  |  |  |  |  |
| •                                                               | O2                |              |           |         | 0,000197379 | 0,000197379 |  |  |  |  |
| •                                                               | AR                |              |           |         | 6,14083e-06 | 6,14083e-06 |  |  |  |  |
| •                                                               | CO2               |              |           |         | 2,34737e-06 | 2,34737e-06 |  |  |  |  |
| •                                                               | H2O               |              |           |         | 0,755045    | 0,755045    |  |  |  |  |
| •                                                               | CACL2             |              |           |         | 0           | 0           |  |  |  |  |
| •                                                               | CA++              |              |           |         | 0,0815029   | 0,0815029   |  |  |  |  |
| •                                                               | CL-               |              |           |         | 0,163006    | 0,163006    |  |  |  |  |

Anexo E 98. Resultados de los flujos y fracciones molares de la Bomba 1 para la ciudad de Buenaventura.

Anexo E 99. Resultados de los flujos y fracciones másicas de la Bomba 1 para la ciudad de Buenaventura.

Main Flowsheet X BOMBA-1 (Pump) - Stream Results (Boundary) X +

|          |                   |              |           | <i>y</i> ~ _ | <u> </u> |         |             |
|----------|-------------------|--------------|-----------|--------------|----------|---------|-------------|
| Material | Work Vol.% Curves | Wt. % Curves | Petroleum | Polyn        | ners     | Solids  |             |
|          |                   |              | Units     | LI           | N-ABS    | •       | LIN-COLE    |
| - I      | Mass Flows        | kg           | ı/hr      |              | 6        | 586,21  | 6586,21     |
| •        | N2                | kg           | /hr       |              |          | 1,9603  | 1,9603      |
| Þ        | O2                | kg           | /hr       |              | 1        | ,83564  | 1,83564     |
| •        | AR                | kg           | /hr       |              | 0,0      | 712976  | 0,0712976   |
| F        | CO2               | kg           | /hr       |              | 0,       | 030025  | 0,030025    |
| •        | H2O               | kg           | /hr       |              | 3        | 953,36  | 3953,36     |
| Þ        | CACL2             | kg           | /hr       |              |          | 0       | C           |
| •        | CA++              | kg           | /hr       |              | 9        | 49,336  | 949,336     |
| F        | CL-               | kg           | /hr       |              | 1        | 679,62  | 1679,62     |
| → - I    | Mass Fractions    |              |           |              |          |         |             |
| •        | N2                |              |           |              | 0,000    | 297637  | 0,000297637 |
| •        | O2                |              |           |              | 0,000    | 278709  | 0,000278709 |
| •        | AR                |              |           |              | 1,082    | 53e-05  | 1,08253e-05 |
| •        | CO2               |              |           |              | 4,558    | 77e-06  | 4,55877e-06 |
| •        | H2O               |              |           |              | 0,       | 600247  | 0,600247    |
| •        | CACL2             |              |           |              |          | 0       | C           |
| )        | CA++              |              |           |              | C        | ),14414 | 0,14414     |
| •        | CL-               |              |           |              | 0,       | 255021  | 0,255021    |
| > \      | /olume Flow       | l/r          | nin       |              | 7        | 5,1507  | 75,1505     |

| Main Flowsheet × BOMBA-2 (Pump) - Results × + |               |                         |  |  |  |  |  |  |  |  |
|-----------------------------------------------|---------------|-------------------------|--|--|--|--|--|--|--|--|
| Summary Balance P                             | erformance Cu | rve 🛛 Utility Usage 🛛 🥑 |  |  |  |  |  |  |  |  |
| Fluid news                                    | 42,4252       | -                       |  |  |  |  |  |  |  |  |
| Fluid power                                   | 43,4303       | watt •                  |  |  |  |  |  |  |  |  |
| Brake power                                   | 57,9137       | Watt 🔹                  |  |  |  |  |  |  |  |  |
| Electricity                                   | 57,9137       | Watt 🔻                  |  |  |  |  |  |  |  |  |
| Volumetric flow rate                          | 75,597        | l/min 🔻                 |  |  |  |  |  |  |  |  |
| Pressure change                               | 0,34023       | atm 🔻                   |  |  |  |  |  |  |  |  |
| NPSH available                                | 0,120579      | meter-head 🔹            |  |  |  |  |  |  |  |  |
| NPSH required                                 |               | -                       |  |  |  |  |  |  |  |  |
| Head developed                                | 2,42562       | meter-head 🔹            |  |  |  |  |  |  |  |  |
| Pump efficiency used                          | 0,75          |                         |  |  |  |  |  |  |  |  |
| Net work required                             | 57,9137       | Watt 🝷                  |  |  |  |  |  |  |  |  |
| Outlet pressure                               | 1,34233       | atm 🝷                   |  |  |  |  |  |  |  |  |
| Outlet temperature                            | 50,1424       | с -                     |  |  |  |  |  |  |  |  |

Anexo E 100. Resultados energéticos de la Bomba 2 para la ciudad de Buenaventura.

Anexo E 101. Resultados de los flujos y fracciones molares de la Bomba 2 para la ciudad de Buenaventura.

| Main Flowsheet × BOMBA-2 (Pump) - Stream Results (Boundary) × + |          |              |              |           |  |     |           |    |           |     |
|-----------------------------------------------------------------|----------|--------------|--------------|-----------|--|-----|-----------|----|-----------|-----|
| Material                                                        | Work     | Vol.% Curves | Wt. % Curves | Petroleum |  |     |           |    |           |     |
|                                                                 |          |              |              | Units     |  |     |           | _  |           |     |
|                                                                 |          |              |              | Units     |  | LN- | DESOR     | •  | LIN-ENFR  | •   |
| ► - I                                                           | Mole Flo | ws           |              | kmol/hr   |  |     | 289,97    | 71 | 289,9     | 971 |
| •                                                               | N2       |              |              | kmol/hr   |  |     | 0,041592  | 28 | 0,04159   | 928 |
| •                                                               | 02       |              |              | kmol/hr   |  |     | 0,033662  | 27 | 0,03366   | 627 |
| •                                                               | AR       |              |              | kmol/hr   |  |     | 0,0010935 | 54 | 0,001093  | 354 |
| •                                                               | CO2      |              |              | kmol/hr   |  | 0   | ,00058055 | 54 | 0,0005805 | 554 |
| •                                                               | H2O      |              |              | kmol/hr   |  |     | 218,83    | 31 | 218,8     | 831 |
| •                                                               | CACL     | .2           |              | kmol/hr   |  |     |           | 0  |           | 0   |
| •                                                               | CA++     | •            |              | kmol/hr   |  |     | 23,687    | 78 | 23,68     | 878 |
| •                                                               | CL-      |              |              | kmol/hr   |  |     | 47,375    | 57 | 47,3      | 757 |
| → - I                                                           | Mole Fra | ctions       |              |           |  |     |           |    |           |     |
| •                                                               | N2       |              |              |           |  | 0   | ,00014343 | 38 | 0,0001434 | 438 |
| •                                                               | 02       |              |              |           |  |     | 0,0001160 | 09 | 0,000110  | 609 |
| •                                                               | AR       |              |              |           |  | 3   | ,77122e-0 | 06 | 3,77122e  | -06 |
| •                                                               | CO2      |              |              |           |  | 2   | ,00211e-0 | 06 | 2,00211e  | -06 |
| •                                                               | H2O      |              |              |           |  |     | 0,75466   | 54 | 0,7546    | 664 |
| •                                                               | CACL     | 2            |              |           |  |     |           | 0  |           | 0   |
| •                                                               | CA++     |              |              |           |  |     | 0,081690  | 04 | 0,0816    | 904 |
| •                                                               | CL-      |              |              |           |  |     | 0,16338   | 31 | 0,1633    | 381 |

| Main Flowsheet × BOMBA-2 (Pump) - Stream Results (Boundary) × + |                   |              |           |         |            |             |  |  |  |
|-----------------------------------------------------------------|-------------------|--------------|-----------|---------|------------|-------------|--|--|--|
| Material                                                        | Work Vol.% Curves | Wt. % Curves | Petroleum | Polyme  | rs Solids  |             |  |  |  |
|                                                                 |                   |              | Units     | LN-     | DESOR -    | LIN-ENFR •  |  |  |  |
| > — N                                                           | Aass Flows        | k <u>c</u>   | g/hr      | 6573,57 | 6573,57    |             |  |  |  |
| •                                                               | N2                | kg           | g/hr      |         | 1,16516    | 1,16516     |  |  |  |
| •                                                               | 02                | kg           | g/hr      |         | 1,07716    | 1,07716     |  |  |  |
| •                                                               | AR                | kg           | j/hr      |         | 0,0436849  | 0,0436849   |  |  |  |
| •                                                               | CO2               | kg           | g/hr      |         | 0,0255501  | 0,0255501   |  |  |  |
| •                                                               | H2O               | kg           | j/hr      |         | 3942,3     | 3942,3      |  |  |  |
| •                                                               | CACL2             | kg           | j/hr      |         | 0          | 0           |  |  |  |
| •                                                               | CA++              | kg           | g/hr      |         | 949,336    | 949,336     |  |  |  |
| •                                                               | CL-               | kg           | g/hr      |         | 1679,62    | 1679,62     |  |  |  |
| > — N                                                           | Mass Fractions    |              |           |         |            |             |  |  |  |
| •                                                               | N2                |              |           | 0,      | 000177249  | 0,000177249 |  |  |  |
| •                                                               | 02                |              |           | 0,      | 000163863  | 0,000163863 |  |  |  |
| •                                                               | AR                |              |           | 6       | ,64554e-06 | 6,64554e-06 |  |  |  |
| •                                                               | CO2               |              |           | 3       | ,88679e-06 | 3,88679e-06 |  |  |  |
| •                                                               | H2O               |              |           |         | 0,59972    | 0,59972     |  |  |  |
| •                                                               | CACL2             |              |           |         | 0          | 0           |  |  |  |
| •                                                               | CA++              |              |           |         | 0,144417   | 0,144417    |  |  |  |
| •                                                               | CL-               |              |           |         | 0,255512   | 0,255512    |  |  |  |
| ► V                                                             | olume Flow        | l/r          | min       |         | 75,597     | 75,5963     |  |  |  |

Anexo E 102. Resultados de los flujos y fracciones másicas de la Bomba 2 para la ciudad de Buenaventura.

Anexo E 103. Resultados energéticos del Colector para la ciudad de Buenaventura.

| Summary Balance Phase Equili        | brium Utility U | Jsage 🥝 Status |  |  |  |  |  |  |  |  |
|-------------------------------------|-----------------|----------------|--|--|--|--|--|--|--|--|
| Outlet temperature                  | 53,39           | с •            |  |  |  |  |  |  |  |  |
| Outlet pressure                     | 1,0021          | atm 🔻          |  |  |  |  |  |  |  |  |
| Vapor fraction                      | 0,000185363     |                |  |  |  |  |  |  |  |  |
| Heat duty                           | 105,115         | kW 🔻           |  |  |  |  |  |  |  |  |
| Net duty                            | 105,115         | kW 🔻           |  |  |  |  |  |  |  |  |
| 1st liquid / Total liquid           | 1               |                |  |  |  |  |  |  |  |  |
| Pressure-drop correlation parameter |                 |                |  |  |  |  |  |  |  |  |
| Pressure drop                       | 0,068046        | atm 🝷          |  |  |  |  |  |  |  |  |

Main Flowsheet V COLECTOR (Heater) - Results V +

| M | Main Flowsheet × COLECTOR (Heater) - Stream Results (Feeds) × + |          |        |              |       |        |           |          |       |          |      |
|---|-----------------------------------------------------------------|----------|--------|--------------|-------|--------|-----------|----------|-------|----------|------|
| N | /laterial                                                       | Heat     | Load   | Vol.% Curves | Wt. % | Curves | Petroleum | Polymers | Solid | s        |      |
|   |                                                                 |          |        |              |       |        | Unite     |          |       |          |      |
|   | 1                                                               |          |        |              |       |        | Units     | LIN-COLE | •     | L0-DESOR | -    |
| Þ | - 1                                                             | Aole Flo | ws     |              |       | kmol/h | ır        | 290      | ,638  | 290,     | 638  |
| Þ |                                                                 | N2       |        |              |       | kmol/h | r         | 0,069    | 9977  | 0,069    | 977  |
| Þ |                                                                 | 02       |        |              |       | kmol/h | r         | 0,0573   | 3659  | 0,0573   | 659  |
| Þ |                                                                 | AR       |        |              |       | kmol/h | r         | 0,00178  | 3476  | 0,00178  | 3476 |
| Þ |                                                                 | CO2      |        |              |       | kmol/h | r         | 0,000682 | 2235  | 0,000682 | 235  |
| Þ |                                                                 | H2O      |        |              |       | kmol/h | r         | 219      | ,445  | 219      | ,445 |
| Þ |                                                                 | CAC      | .2     |              |       | kmol/h | r         |          | 0     |          | 0    |
| Þ |                                                                 | CA++     | +      |              |       | kmol/h | r         | 23,6     | 5878  | 23,6     | 5878 |
| Þ |                                                                 | CL-      |        |              |       | kmol/h | r         | 47,3     | 3757  | 47,3     | 8757 |
| Þ | - 1                                                             | Nole Fra | ctions |              |       |        |           |          |       |          |      |
| Þ |                                                                 | N2       |        |              |       |        |           | 0,00024  | 4077  | 0,00024  | 1077 |
| Þ |                                                                 | 02       |        |              |       |        |           | 0,000197 | 7379  | 0,000197 | 379  |
| Þ |                                                                 | AR       |        |              |       |        |           | 6,14083  | e-06  | 6,140836 | e-06 |
| Þ |                                                                 | CO2      |        |              |       |        |           | 2,34737  | e-06  | 2,347376 | e-06 |
| Þ |                                                                 | H2O      |        |              |       |        |           | 0,755    | 5045  | 0,755    | 5045 |
| Þ |                                                                 | CAC      | .2     |              |       |        |           |          | 0     |          | 0    |
| Þ |                                                                 | CA++     | +      |              |       |        |           | 0,0815   | 5029  | 0,0815   | 5029 |
| Þ |                                                                 | CL-      |        |              |       |        |           | 0,163    | 3006  | 0,163    | 3006 |

Anexo E 104. Resultados de los flujos y fracciones molares del Colector para la ciudad de Buenaventura.

Anexo E 105. Resultados de los flujos y fracciones másicas del Colector para la ciudad de Buenaventura.

| Material | Heat      | Load  | Vol.% Curves | Wt. | % Curves | Petroleu | m       | Polymers    | Solids |          |
|----------|-----------|-------|--------------|-----|----------|----------|---------|-------------|--------|----------|
|          | 1         |       |              |     | Un       | its      | LIN     | -COLE -     | L0-DE  | sor 🖣    |
| > - N    | Aass Flov | vs    |              |     | kg/hr    |          | 6586,21 |             |        | 6586,21  |
| Þ.       | N2        |       |              |     | kg/hr    |          |         | 1,9603      |        | 1,9603   |
| Þ        | 02        |       |              |     | kg/hr    |          |         | 1,83564     |        | 1,83564  |
| •        | AR        |       |              |     | kg/hr    |          |         | 0,0712976   | C      | ,0712976 |
| •        | CO2       |       |              |     | kg/hr    |          |         | 0,030025    |        | 0,030025 |
| Þ.       | H2O       |       |              |     | kg/hr    |          |         | 3953,36     |        | 3953,36  |
| Þ        | CACL      | 2     |              |     | kg/hr    |          |         | 0           |        | 0        |
| Þ        | CA++      |       |              |     | kg/hr    |          |         | 949,336     |        | 949,336  |
| •        | CL-       |       |              |     | kg/hr    |          |         | 1679,62     |        | 1679,62  |
| > - N    | Aass Frac | tions |              |     |          |          |         |             |        |          |
| •        | N2        |       |              |     |          |          | 0       | 0,000297637 | 0,00   | 00297637 |
| Þ.       | 02        |       |              |     |          |          | 0       | 0,000278709 | 0,00   | 00278709 |
|          | AR        |       |              |     |          |          |         | 1,08253e-05 | 1,0    | 8253e-05 |
| •        | CO2       |       |              |     |          |          | -       | 4,55877e-06 | 4,5    | 5877e-06 |
| •        | H2O       |       |              |     |          |          |         | 0,600247    |        | 0,600247 |
| •        | CACL      | 2     |              |     |          |          |         | 0           |        | 0        |
| •        | CA++      |       |              |     |          |          |         | 0,14414     |        | 0,14414  |
| •        | CL-       |       |              |     |          |          |         | 0,255021    |        | 0,255021 |
| ► V      | olume Fl  | low   |              |     | l/min    |          |         | 75,1505     |        | 99,9017  |

Main Flowsheet × COLECTOR (Heater) - Stream Results (Feeds) × +



Anexo E 106. Resultados energéticos del Enfriador para la ciudad de Buenaventura.

Anexo E 107. Resultados de los flujos y fracciones molares del Enfriador para la ciudad de Buenaventura.

| Main Flow | sheet $\times$ | Ý ENFRI | ADO (Heater) - : | Stream | Results ( | Boundary) $	imes$ | +        |       |             |   |
|-----------|----------------|---------|------------------|--------|-----------|-------------------|----------|-------|-------------|---|
| Material  | Heat           | Load    | Vol.% Curves     | Wt. %  | Curves    | Petroleum         | Polymers | Solid | ds          |   |
|           |                |         |                  |        |           | l la ita          |          |       |             |   |
|           |                |         |                  |        |           | Units             | LIN-ENFR | •     | L0-OUT      | • |
| → - P     | Nole Flo       | ws      |                  |        | kmol/h    | ır                | 289      | ,971  | 289,971     | I |
| •         | N2             |         |                  |        | kmol/h    | r                 | 0,0415   | 5928  | 0,0415928   | 3 |
| •         | 02             |         |                  |        | kmol/h    | r                 | 0,0336   | 5627  | 0,0336627   | 7 |
| •         | AR             |         |                  |        | kmol/h    | r                 | 0,00109  | 9354  | 0,00109354  | 1 |
| •         | CO2            |         |                  |        | kmol/h    | r                 | 0,000580 | 0554  | 0,000580554 | 1 |
| •         | H2O            |         |                  |        | kmol/h    | r                 | 218      | ,831  | 218,831     | 1 |
| •         | CACL           | 2       |                  |        | kmol/h    | r                 |          | 0     | C           | ) |
| •         | CA++           | +       |                  |        | kmol/h    | r                 | 23,6     | 5878  | 23,6878     | 3 |
| •         | CL-            |         |                  |        | kmol/h    | r                 | 47,3     | 3757  | 47,3757     | 7 |
| ► - P     | Mole Fra       | ctions  |                  |        |           |                   |          |       |             |   |
| •         | N2             |         |                  |        |           |                   | 0,000143 | 3438  | 0,000143438 | 3 |
| •         | 02             |         |                  |        |           |                   | 0,0001   | 1609  | 0,00011609  | 9 |
| •         | AR             |         |                  |        |           |                   | 3,77122  | e-06  | 3,77122e-06 | 5 |
| •         | CO2            |         |                  |        |           |                   | 2,00211  | e-06  | 2,00211e-06 | 5 |
| •         | H2O            |         |                  |        |           |                   | 0,754    | 4664  | 0,754664    | 1 |
| •         | CACL           | .2      |                  |        |           |                   |          | 0     | C           | ) |
| •         | CA++           | ÷       |                  |        |           |                   | 0,0816   | 5904  | 0,0816904   | 1 |
| •         | CL-            |         |                  |        |           |                   | 0,163    | 3381  | 0,163381    | 1 |

| Main Flowsheet × ENFRIADO (Heater) - Stream Results (Boundary) × +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |       |              |     |          |           |        |         |        |          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|--------------|-----|----------|-----------|--------|---------|--------|----------|--|
| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heat      | Load  | Vol.% Curves | Wt. | % Curves | Petroleur | n Pol  | ymers   | Solids |          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |       |              |     | Uni      | its       | LIN-EN | FR 🔻    | L0-OU  | L0-OUT   |  |
| - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lass Flow | /S    |              |     | kg/hr    |           | e      | 5573,57 |        | 6573,57  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N2        |       |              |     | kg/hr    |           |        | 1,16516 |        | 1,16516  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02        |       |              |     | kg/hr    |           |        | 1,07716 |        | 1,07716  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AR        |       |              |     | kg/hr    |           | 0,0    | 436849  | 0,     | 0436849  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO2       |       |              |     | kg/hr    |           | 0,0    | 255501  | 0,     | 0255501  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H2O       |       |              |     | kg/hr    |           |        | 3942,3  |        | 3942,3   |  |
| Þ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CACL2     |       |              |     |          |           |        | 0       |        | 0        |  |
| Image: A set of the | CA++      |       |              |     | kg/hr    |           |        | 949,336 |        | 949,336  |  |
| Þ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CL-       |       |              |     | kg/hr    |           |        | 1679,62 |        | 1679,62  |  |
| > — N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aass Frac | tions |              |     |          |           |        |         |        |          |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N2        |       |              |     |          |           | 0,000  | 177249  | 0,00   | 0177249  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02        |       |              |     |          |           | 0,000  | 163863  | 0,00   | 0163863  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AR        |       |              |     |          |           | 6,645  | 554e-06 | 6,64   | 554e-06  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO2       |       |              |     |          |           | 3,886  | 579e-06 | 3,88   | 679e-06  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H2O       |       |              |     |          |           |        | 0,59972 |        | 0,59972  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CACL2     | 2     |              |     |          |           |        | 0       |        | 0        |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CA++      |       |              |     |          |           | 0      | ,144417 | (      | 0,144417 |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL-       |       |              |     |          |           | 0      | ,255512 | (      | 0,255512 |  |
| ⊳ V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olume Fl  | ow    |              |     | l/min    |           |        | 75,5963 |        | 74,8496  |  |

Anexo E 108. Resultados de los flujos y fracciones másicas del Enfriador para la ciudad de Buenaventura.

Anexo E 109. Especificación de la corriente fresca de alimento al proceso para la simulación en Cartagena.

| Main Flowsheet × LO-FRESC (MATERIAL) × + |                                               |            |            |      |            |         |    |            |    |           |  |
|------------------------------------------|-----------------------------------------------|------------|------------|------|------------|---------|----|------------|----|-----------|--|
| ⊘ Mixed CI:                              | Solid                                         | VC Solid   | Flash Opt  | ions | EO Options | Costing | T  | Comments   |    |           |  |
| Specificatio                             | ons                                           |            |            |      |            |         |    |            |    |           |  |
| Flash Type                               | Теп                                           | perature   | -          | Pres | sure       | - C     | om | position — |    |           |  |
| - State variable                         |                                               |            |            | [    | Mo         | le-Flow | •  | kmol/hr 🔻  |    |           |  |
| Temperature                              | Temperature 22 C                              |            |            |      |            |         |    | Componer   | nt | Value     |  |
| Pressure                                 | Pressure                                      |            | 1,0024 atm |      | •          |         | Þ  | N2         |    | 8,7e-07   |  |
| Vapor fractio                            | n                                             |            |            |      |            |         | Þ  | 02         |    | 2,22e-06  |  |
| Total flow ba                            | sis                                           | Mole       | •          |      |            |         | Þ  | AR         |    | 5e-08     |  |
| Total flow rat                           | e                                             |            |            | kmol | /hr 🔹      |         | Þ  | CO2        |    | 1,6e-07   |  |
| Solvent                                  |                                               |            |            |      | Ŧ          |         | Þ  | H2O        |    | 3,104e-06 |  |
| Reference Ter                            | mperatur                                      | e          |            |      |            |         | Þ  | CACL2      |    | 4,97e-15  |  |
| Volume flow                              | reference                                     | e temperat | ure        |      |            |         | Þ  | CA++       |    |           |  |
|                                          |                                               |            |            |      |            |         |    |            |    |           |  |
| Component                                | Component concentration reference temperature |            |            |      |            |         |    |            |    |           |  |
| C Total                                  |                                               |            |            |      |            |         |    |            |    | 6,404e-06 |  |

| Main Flows  | Main Flowsheet × AIRE-ABS (MATERIAL) × + |                  |           |       |            |           |           |          |         |  |  |
|-------------|------------------------------------------|------------------|-----------|-------|------------|-----------|-----------|----------|---------|--|--|
| 🕜 Mixed     | Cl Solid                                 | NC Solid         | Flash Opt | ions  | EO Options | Costir    | ng        | Comments |         |  |  |
| 🔿 Specifi   | ♦ Specifications                         |                  |           |       |            |           |           |          |         |  |  |
| Flash Type  | : [                                      | Temperature      | -         | •     | Con        | nposition |           |          |         |  |  |
| - State var | iables —                                 |                  |           |       | Mo         | ble-Flow  | kmol/hr • |          |         |  |  |
| Tempera     | ture                                     |                  | 36,6      |       |            | Component | Value     |          |         |  |  |
| Pressure    | Pressure 760                             |                  |           |       | lg 🔹       |           | -         | N2       | 11.522  |  |  |
| Vapor fra   | action                                   |                  |           |       |            |           |           | 02       | 3,10206 |  |  |
| Total flow  | w basis                                  | Mole             | -         |       |            |           |           | AR       | 0 13738 |  |  |
| Total flow  | w rate                                   |                  |           | kmol, | /hr 🔹      |           | H         | CO2      | 0,01024 |  |  |
| Solvent     |                                          |                  |           |       | ~          |           | H         | 120      | 0,01034 |  |  |
|             | <b>.</b>                                 |                  |           |       |            |           | -         | H2O      | 0,94375 |  |  |
| Referenc    | e lempera                                | ature            |           |       |            |           |           | CACL2    |         |  |  |
| Volume      | flow refere                              | ence temperat    | ure       |       |            |           |           | CA++     |         |  |  |
|             | С                                        | T                |           |       |            |           | Þ         | CL-      |         |  |  |
| Compon      | nent conce                               | entration refere |           | 1     |            |           |           |          |         |  |  |
|             | С                                        | -                |           |       |            | Tota      | I 15,7155 |          |         |  |  |

Anexo E 110. Especificación de la corriente de aire a la entrada del Ventilador 1 para la ciudad de Cartagena.

Anexo E 111. Especificación de la corriente de aire a la entrada del Ventilador 2 para la ciudad de Cartagena.

| Main Flowsheet ×/AIRE-DES (MATERIAL) × +                          |               |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|--|--|
| Mixed CI Solid NC Solid Flash Options EO Options Costing Comments | ting Comments |  |  |  |  |  |  |  |  |  |
| Specifications                                                    |               |  |  |  |  |  |  |  |  |  |
| Flash Type Temperature                                            |               |  |  |  |  |  |  |  |  |  |
| State variables                                                   | kmol/hr •     |  |  |  |  |  |  |  |  |  |
| Temperature 36,6 C  Component                                     | Value         |  |  |  |  |  |  |  |  |  |
| Pressure 760 mmHg VN2                                             | 28,3584       |  |  |  |  |  |  |  |  |  |
| Vapor fraction                                                    | 7,63495       |  |  |  |  |  |  |  |  |  |
| Total flow basis Mole                                             | 0.33812       |  |  |  |  |  |  |  |  |  |
| Total flow rate kmol/hr  CO2                                      | 0,02545       |  |  |  |  |  |  |  |  |  |
| Solvent H2O                                                       | 2,32279       |  |  |  |  |  |  |  |  |  |
| Reference Temperature CACL2                                       |               |  |  |  |  |  |  |  |  |  |
| Volume flow reference temperature CA++                            |               |  |  |  |  |  |  |  |  |  |
| C CL-                                                             |               |  |  |  |  |  |  |  |  |  |
| Component concentration reference temperature                     |               |  |  |  |  |  |  |  |  |  |
| C Total                                                           | 38,6797       |  |  |  |  |  |  |  |  |  |

Anexo E 112. Especificación de la presión de la columna de Absorción y desorción para la ciudad de Cartagena.

| Main Flowsheet × ABS (RadFrac) × +      |                                             |          |     |   |  |  |  |  |
|-----------------------------------------|---------------------------------------------|----------|-----|---|--|--|--|--|
| Configuration                           | Condenser                                   | Reboiler |     |   |  |  |  |  |
| View Top / Bottom                       |                                             |          |     |   |  |  |  |  |
| Stage 1 / Condenser pressure 1,0024 atm |                                             |          |     |   |  |  |  |  |
| Stage 2 pressure                        | (optional) —                                |          |     |   |  |  |  |  |
| Stage 2 pressu                          | ire                                         |          | bar | - |  |  |  |  |
| Condenser pr                            | essure drop                                 |          | bar | Ŧ |  |  |  |  |
| Pressure drop for                       | Pressure drop for rest of column (ontional) |          |     |   |  |  |  |  |
| Stage pressure                          | e drop                                      |          | bar | • |  |  |  |  |
| 🔘 Column press                          | Column pressure drop                        |          |     | ~ |  |  |  |  |

| Specifications Flash Options        | Jtility Comments    |         |   |  |  |
|-------------------------------------|---------------------|---------|---|--|--|
| Flash specifications                |                     |         |   |  |  |
| Flash Type                          | Temperature         |         | - |  |  |
|                                     | Pressure -          |         |   |  |  |
| Temperature                         | 55,12               | С       | • |  |  |
| Temperature change                  |                     | С       | - |  |  |
| Degrees of superheating             |                     | С       | - |  |  |
| Degrees of subcooling               |                     | С       | Ŧ |  |  |
| Pressure                            | 1,0024              | atm     | • |  |  |
| Duty                                |                     | cal/sec | - |  |  |
| /apor fraction                      |                     |         |   |  |  |
| Pressure drop correlation parameter |                     |         |   |  |  |
| Always calculate pressure drop co   | rrelation parameter |         |   |  |  |

Anexo E 113. Especificación del Colector para la ciudad de Cartagena.

Anexo E 114. Especificación del Enfriador para la ciudad de Cartagena.

| Main Flowsheet × ENFRIADO (Heater) × +               |       |             |         |   |  |  |  |  |  |  |
|------------------------------------------------------|-------|-------------|---------|---|--|--|--|--|--|--|
| Specifications Flash Options Utility Comments        |       |             |         |   |  |  |  |  |  |  |
| CElash specifications                                |       |             |         |   |  |  |  |  |  |  |
| Flash Type                                           |       | Temperature |         | - |  |  |  |  |  |  |
|                                                      |       | Pressure    |         | - |  |  |  |  |  |  |
| Temperature                                          |       | 22          | с       | • |  |  |  |  |  |  |
| Temperature change                                   | je    |             | С       | Ŧ |  |  |  |  |  |  |
| Degrees of superhe                                   | ating |             | С       | Ŧ |  |  |  |  |  |  |
| Degrees of subcoo                                    | ling  |             | С       | Ŧ |  |  |  |  |  |  |
| Pressure                                             |       | 1,0024      | atm     | - |  |  |  |  |  |  |
| Duty                                                 |       |             | cal/sec | - |  |  |  |  |  |  |
| Vapor fraction                                       |       |             |         |   |  |  |  |  |  |  |
| Pressure drop correlation parameter                  |       |             |         |   |  |  |  |  |  |  |
| Always calculate pressure drop correlation parameter |       |             |         |   |  |  |  |  |  |  |
| Valid phases                                         |       |             |         |   |  |  |  |  |  |  |
| Vapor-Liquid                                         |       | •           |         |   |  |  |  |  |  |  |

Anexo E 115. Resultados de las condiciones energéticas de cada corriente para el mezclador en la ciudad de Cartagena.

| Main Flowsheet × MIXER (Mixer) - Stream Results (Boundary) × + |                      |                |                 |              |              |  |  |  |
|----------------------------------------------------------------|----------------------|----------------|-----------------|--------------|--------------|--|--|--|
| Material Heat Loa                                              | ad Work Vol.% Curves | Wt. % Curves P | etroleum Polyme | rs Solids    |              |  |  |  |
|                                                                |                      | Units          | LO-FRESC -      | LO-OUT -     | LO-ABS -     |  |  |  |
| MIXED Substream                                                | m                    |                |                 |              |              |  |  |  |
| Phase                                                          |                      |                |                 | Liquid Phase | Liquid Phase |  |  |  |
| > Temperature                                                  |                      | С              | 22              | 22           | 22           |  |  |  |
| Pressure                                                       |                      | bar            | 1,01568         | 1,01568      | 1,01568      |  |  |  |
| Molar Vapor F                                                  | raction              |                | 0,527586        | 0            | 0            |  |  |  |
| Molar Liquid                                                   | Fraction             |                | 0,472414        | 1            | 1            |  |  |  |
| Molar Solid Fi                                                 | raction              |                | 0               | 0            | 0            |  |  |  |
| Mass Vapor Fi                                                  | raction              |                | 0,659206        | 0            | 0            |  |  |  |

|   | Mass Liquid Fraction |           | 0,340794   | 1            | 1         |
|---|----------------------|-----------|------------|--------------|-----------|
| • | Mass Solid Fraction  |           | 0          | 0            | 0         |
| • | Molar Enthalpy       | cal/mol   | -35352,2   | -68578,8     | -68578,8  |
| • | Mass Enthalpy        | cal/gm    | -1411,73   | -3025,14     | -3025,14  |
| • | Molar Entropy        | cal/mol-K | -17,6335   | -33,4227     | -33,4227  |
| • | Mass Entropy         | cal/gm-K  | -0,704162  | -1,47434     | -1,47434  |
| • | Molar Density        | mol/cc    | 7,8449e-05 | 0,0645705    | 0,0645704 |
| • | Mass Density         | gm/cc     | 0,0019645  | 1,46379      | 1,46379   |
| • | Enthalpy Flow        | cal/sec   | -0,0628877 | -6,32002e+06 | -6,32e+06 |
| • | Average MW           |           | 25,0418    | 22,6696      | 22,6696   |

## Anexo E 116. Resultados de los flujos y fracciones molares del mezclador para la ciudad de Cartagena.

| Iviain Flow |                | (wixer) | - Stream Kesul | its (boundary) × | T    |         |          |          |      |             |
|-------------|----------------|---------|----------------|------------------|------|---------|----------|----------|------|-------------|
| Material    | Heat Load      | Work    | Vol.% Curves   | Wt. % Curves     | Petr | roleum  | Polymers | s Solids |      |             |
|             |                |         |                | Units            |      | LO-FRES | 5C 🔽     | L0-OUT   | •    | LO-ABS -    |
|             | Mole Flows     |         |                | kmol/hr          |      | 6,4     | 104e-06  | 331,     | 765  | 331,765     |
| •           | N2             |         |                | kmol/hr          |      |         | 8,7e-07  | 0,0457   | 454  | 0,0457463   |
| •           | 02             |         |                | kmol/hr          |      | 2       | 2,22e-06 | 0,0367   | 996  | 0,0368012   |
| •           | AR             |         |                | kmol/hr          |      |         | 5e-08    | 0,0012   | 012  | 0,00120123  |
| •           | CO2            |         |                | kmol/hr          |      |         | 1,6e-07  | 0,000651 | 591  | 0,000651703 |
| •           | H2O            |         |                | kmol/hr          |      | З,      | 104e-06  | 250      | ,374 | 250,373     |
| •           | CACL2          |         |                | kmol/hr          |      | 4       | ,97e-15  |          | 0    | 0           |
| •           | CA++           |         |                | kmol/hr          |      |         | 0        | 27,1     | 023  | 27,1023     |
| •           | CL-            |         |                | kmol/hr          |      |         | 0        | 54,2     | 045  | 54,2045     |
| ► -         | Mole Fractions |         |                |                  |      |         |          |          |      |             |
| •           | N2             |         |                |                  |      | 0       | ,135853  | 0,000137 | 885  | 0,000137888 |
| •           | 02             |         |                |                  |      | 0       | ,346658  | 0,000110 | 921  | 0,000110926 |
| •           | AR             |         |                |                  |      | 0,00    | 0780762  | 3,62064  | e-06 | 3,62073e-06 |
| •           | CO2            |         |                |                  |      | 0,0     | )249844  | 1,96401  | e-06 | 1,96435e-06 |
| •           | H2O            |         |                |                  |      | 0       | ,484697  | 0,754    | 672  | 0,754672    |
| •           | CACL2          |         |                |                  |      | 7,76    | 077e-10  |          | 0    | 0           |
| •           | CA++           |         |                |                  |      |         | 0        | 0,0816   | 911  | 0,0816913   |
| •           | CL-            |         |                |                  |      |         | 0        | 0,163    | 382  | 0,163383    |

Main Flowsheet X MIXER (Mixer) - Stream Results (Boundary) X +

Anexo E 117. Resultados de los flujos y fracciones masicos del mezclador para la ciudad de Cartagena.

| Main Flowsheet × MIXER (Mixer) - Stream Results (Boundary) × + |                 |                |             |           |  |  |  |  |  |
|----------------------------------------------------------------|-----------------|----------------|-------------|-----------|--|--|--|--|--|
| Material Heat Load Work Vol.% Curve                            | es Wt. % Curves | Petroleum Poly | mers Solids |           |  |  |  |  |  |
|                                                                | Units           | LO-FRESC •     | L0-OUT -    | LO-ABS 🔻  |  |  |  |  |  |
| Mass Flows                                                     | kg/hr           | 0,000160367    | 7521        | 7520,98   |  |  |  |  |  |
| N2                                                             | kg/hr           | 2,43717e-05    | 1,28149     | 1,28151   |  |  |  |  |  |
| > O2                                                           | kg/hr           | 7,10373e-05    | 1,17754     | 1,17759   |  |  |  |  |  |
| AR                                                             | kg/hr           | 1,9974e-06     | 0,0479857   | 0,0479868 |  |  |  |  |  |
| CO2                                                            | kg/hr           | 7,04157e-06    | 0,0286764   | 0,0286813 |  |  |  |  |  |
| H2O                                                            | kg/hr           | 5,59194e-05    | 4510,56     | 4510,55   |  |  |  |  |  |

|          | CACL2                              | kg/hr | 5,51587e-13 | 0           | 0           |
|----------|------------------------------------|-------|-------------|-------------|-------------|
| •        | CA++                               | kg/hr | 0           | 1086,17     | 1086,17     |
| - F      | CL-                                | kg/hr | 0           | 1921,73     | 1921,73     |
| <u>ب</u> | <ul> <li>Mass Fractions</li> </ul> |       |             |             |             |
| •        | N2                                 |       | 0,151974    | 0,000170388 | 0,000170392 |
| •        | 02                                 |       | 0,442966    | 0,000156567 | 0,000156574 |
| - F      | AR                                 |       | 0,0124551   | 6,38023e-06 | 6,38039e-06 |
| - F      | CO2                                |       | 0,043909    | 3,81285e-06 | 3,81351e-06 |
| •        | H2O                                |       | 0,348696    | 0,599729    | 0,599728    |
| •        | CACL2                              |       | 3,43952e-09 | 0           | 0           |
| •        | CA++                               |       | 0           | 0,144419    | 0,144419    |
|          | CL-                                |       | 0           | 0,255515    | 0,255515    |
| •        | Volume Flow                        | l/min | 0,00136054  | 85,6339     | 85,6338     |

Anexo E 118. Resultados energéticos del Ventilador 1 para la ciudad de Cartagena.

| Sur | Immary Balance Parameters Performance Regression Utility Usage 🧭 |                |             |        |          |                  |              |      |  |
|-----|------------------------------------------------------------------|----------------|-------------|--------|----------|------------------|--------------|------|--|
|     |                                                                  |                |             |        |          | ,                | , , <u>,</u> |      |  |
|     | Comp                                                             | ressor mod     | lel         |        | lsentrop | ic Compressor    |              |      |  |
| >   | Phase                                                            | calculation    | IS          |        | Vapor pł | nase calculation | ı            |      |  |
| Þ   | Indica                                                           | ted horsep     | ower        |        |          | 32,613           | Watt         |      |  |
| ×   | Brake                                                            | horsepowe      | r           |        |          | 32,613           | Watt         |      |  |
| >   | Net work required                                                |                |             | 32,613 | Watt     |                  |              |      |  |
| >   | Power                                                            | r loss         |             |        |          | 0                | Watt         |      |  |
| >   | Efficie                                                          | ency           |             |        |          |                  |              | 0,82 |  |
| >   | Mech                                                             | anical effici  | ency        |        |          |                  |              | 1    |  |
| ►   | Outlet                                                           | t pressure     |             |        |          | 1,00238          | atm          |      |  |
| Þ   | Outlet                                                           | t temperatu    | re          |        |          | 36,8539          | С            |      |  |
| >   | lsentre                                                          | opic outlet    | temperature |        |          | 36,8083          | с            |      |  |
| •   | Vapor                                                            | fraction       |             |        |          |                  |              | 1    |  |
| •   | Displa                                                           | cement         |             |        |          |                  |              |      |  |
| >   | Volum                                                            | netric efficie | ency        |        |          |                  |              |      |  |

Main Flowsheet × VENT-1 (Compr) - Results × +

| Anexo E 119. Resultados de los flujos y fracciones molares del Ve | entilador 1 para la ciudad d | e Cartagena. |
|-------------------------------------------------------------------|------------------------------|--------------|
|-------------------------------------------------------------------|------------------------------|--------------|

| / Main Flowsheet × | VENT-1 (Compr) - Stream Results (Boundary) × | + |
|--------------------|----------------------------------------------|---|
|--------------------|----------------------------------------------|---|

| N | Aaterial | Work      | Vol.% Curves | Wt. % Curves | Petroleum | Polyme | rs Solids |      |            |  |
|---|----------|-----------|--------------|--------------|-----------|--------|-----------|------|------------|--|
|   | 1        |           |              |              | Units     |        | AIRE-ABS  | •    | VN+1-ABS - |  |
|   | - 1      | Nole Flow | ws           |              | kmol/hr   |        | 15,7      | 7155 | 15,7155    |  |
| Þ |          | N2        |              |              | kmol/hr   |        | 11        | ,522 | 11,522     |  |
|   |          | 02        |              |              | kmol/hr   |        | 3,10      | 0206 | 3,10206    |  |
|   |          | AR        |              |              | kmol/hr   |        | 0,1       | 3738 | 0,13738    |  |

|   | CO2                                | kmol/hr | 0,01034    | 0,01034    |
|---|------------------------------------|---------|------------|------------|
|   | H2O                                | kmol/hr | 0,94375    | 0,94375    |
|   | CACL2                              | kmol/hr | 0          | 0          |
|   | CA++                               | kmol/hr | 0          | 0          |
| • | CL-                                | kmol/hr | 0          | 0          |
| • | <ul> <li>Mole Fractions</li> </ul> |         |            |            |
|   | N2                                 |         | 0,733159   | 0,733159   |
| • | 02                                 |         | 0,197389   | 0,197389   |
|   | AR                                 |         | 0,00874169 | 0,00874169 |
| • | CO2                                |         | 0,00065795 | 0,00065795 |
|   | H2O                                |         | 0,0600522  | 0,0600522  |
| • | CACL2                              |         | 0          | 0          |
| • | CA++                               |         | 0          | 0          |
| • | CL-                                |         | 0          | 0          |

Anexo E 120. Resultados de los flujos y fracciones másicas del Ventilador 1 para la ciudad de Cartagena.

| Main Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sheet ×    | VENT-1 (Comp | r) - Stream Resu | ılts (Boundary | ) × [ | +       |         |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|------------------|----------------|-------|---------|---------|------------|
| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Work       | Vol.% Curves | Wt. % Curves     | Petroleum      | Poly  | ymers   | Solids  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |              |                  | Units          |       | AIRE-AE | BS 🔻    | VN+1-ABS   |
| - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lass Flow  | 5            | kg               | /hr            |       | 444,977 |         | 444,977    |
| Image: A set of the | N2         |              | kg               | /hr            |       |         | 322,77  | 322,77     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O2         |              | kg               | /hr            |       |         | 99,2622 | 99,2622    |
| AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |              |                  | /hr            |       |         | 5,48806 | 5,48806    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO2        |              | kg               | /hr            |       | 0       | ,455061 | 0,455061   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H2O        |              | kg               | /hr            |       |         | 17,0019 | 17,0019    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CACL2      |              | kg               | /hr            |       | 0       |         | 0          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CA++       |              | kg               | /hr            |       | 0       |         | 0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CL-        |              | kg               | /hr            |       |         | 0       | 0          |
| - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lass Fract | tions        |                  |                |       |         |         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N2         |              |                  |                |       | 0       | ,725363 | 0,725363   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O2         |              |                  |                |       | 0       | ,223072 | 0,223072   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AR         |              |                  |                |       | 0,0     | 123333  | 0,0123333  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO2        |              |                  |                |       | 0,00    | 102266  | 0,00102266 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H2O        |              |                  |                |       | 0,0     | 382085  | 0,0382085  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CACL2      |              |                  |                |       |         | 0       | 0          |
| CA++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |              |                  |                | 0     |         | 0       |            |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL-        |              |                  |                |       | 0       |         | 0          |
| > V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olume Flo  | w            | I/n              | nin            |       |         | 6655,45 | 6645,09    |

| / | Main Flowsheet × VENT-2 (Compr) - Results × + |         |                |             |       |                       |                  |               |        |  |  |  |  |
|---|-----------------------------------------------|---------|----------------|-------------|-------|-----------------------|------------------|---------------|--------|--|--|--|--|
|   | Sur                                           | nmary   | Balance        | Parameters  | Perfo | rmance                | Regression       | Utility Usage | Status |  |  |  |  |
|   |                                               |         |                |             |       |                       |                  |               |        |  |  |  |  |
|   |                                               | Comp    | pressor mod    | lel         |       | Isentropic Compressor |                  |               |        |  |  |  |  |
|   |                                               | Phase   | calculation    | IS          |       | Vapor pł              | nase calculation | n             |        |  |  |  |  |
|   |                                               | Indica  | ted horsep     | ower        |       |                       | 80,2685          | Watt          |        |  |  |  |  |
|   |                                               | Brake   | horsepowe      | r           |       |                       | 80,2685          | Watt          |        |  |  |  |  |
|   |                                               | Net w   | ork required   | d           |       |                       | 80,2685          | Watt          |        |  |  |  |  |
|   |                                               | Powe    | r loss         |             |       |                       | 0                | Watt          |        |  |  |  |  |
|   |                                               | Efficie | ency           |             |       |                       |                  |               | 0,82   |  |  |  |  |
|   |                                               | Mech    | anical effici  | ency        |       |                       |                  |               | 1      |  |  |  |  |
|   | ۲                                             | Outle   | t pressure     |             |       |                       | 1,00238          | atm           |        |  |  |  |  |
|   |                                               | Outle   | t temperatu    | re          |       |                       | 36,8539          | с             |        |  |  |  |  |
|   |                                               | lsentr  | opic outlet    | temperature |       |                       | 36,8083          | с             |        |  |  |  |  |
|   |                                               | Vapor   | fraction       |             |       |                       |                  |               | 1      |  |  |  |  |
|   |                                               | Displa  | cement         |             |       |                       |                  |               |        |  |  |  |  |
|   |                                               | Volum   | netric efficie | ency        |       |                       |                  |               |        |  |  |  |  |

Anexo E 121. Resultados energéticos del Ventilador 2 para la ciudad de Cartagena.

Anexo E 122. Resultados de los flujos y fracciones molares del Ventilador 2 para la ciudad de Cartagena.

| Main Flowsheet × VENT-2 (Compr) - Stream Results (Boundary) × + |                                |                 |             |             |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|--------------------------------|-----------------|-------------|-------------|--|--|--|--|--|--|--|
| Material                                                        | Work Vol.% Curves Wt. % Curves | Petroleum Polym | ers Solids  |             |  |  |  |  |  |  |  |
|                                                                 |                                | Units           | AIRE-DES -  | VN+1-DES -  |  |  |  |  |  |  |  |
| • —                                                             | Mole Flows                     | kmol/hr         | 38,6797     | 38,6797     |  |  |  |  |  |  |  |
| •                                                               | N2                             | kmol/hr         | 28,3584     | 28,3584     |  |  |  |  |  |  |  |
| •                                                               | 02                             | kmol/hr         | 7,63495     | 7,63495     |  |  |  |  |  |  |  |
| •                                                               | AR                             | kmol/hr         | 0,33812     | 0,33812     |  |  |  |  |  |  |  |
| •                                                               | CO2                            | kmol/hr         | 0,02545     | 0,02545     |  |  |  |  |  |  |  |
| •                                                               | H2O                            | kmol/hr         | 2,32279     | 2,32279     |  |  |  |  |  |  |  |
| •                                                               | CACL2                          | kmol/hr         | 0           | 0           |  |  |  |  |  |  |  |
| •                                                               | CA++                           | kmol/hr         | 0           | 0           |  |  |  |  |  |  |  |
| •                                                               | CL-                            | kmol/hr         | 0           | 0           |  |  |  |  |  |  |  |
|                                                                 | Mole Fractions                 |                 |             |             |  |  |  |  |  |  |  |
| •                                                               | N2                             |                 | 0,733159    | 0,733159    |  |  |  |  |  |  |  |
| •                                                               | 02                             |                 | 0,197389    | 0,197389    |  |  |  |  |  |  |  |
| •                                                               | AR                             |                 | 0,00874154  | 0,00874154  |  |  |  |  |  |  |  |
| •                                                               | CO2                            |                 | 0,000657968 | 0,000657968 |  |  |  |  |  |  |  |
| •                                                               | H2O                            |                 | 0,0600519   | 0,0600519   |  |  |  |  |  |  |  |
|                                                                 | CACL2                          |                 | 0           | 0           |  |  |  |  |  |  |  |
| •                                                               | CA++                           |                 | 0           | 0           |  |  |  |  |  |  |  |
|                                                                 | CL-                            |                 | 0           | 0           |  |  |  |  |  |  |  |

| Main Flowsheet × VENT-2 (Compr) - Stream Results (Boundary) × + |                                    |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Material Work Vol.% Curves Wt                                   | % Curves Petroleum Polymers Solids |  |  |  |  |  |  |  |  |  |  |
|                                                                 | Units AIRE-DES VN+1-DES V          |  |  |  |  |  |  |  |  |  |  |
| Mass Flows                                                      | kg/hr 1095,2 1095,2                |  |  |  |  |  |  |  |  |  |  |
| > N2                                                            | kg/hr 794,417 794,417              |  |  |  |  |  |  |  |  |  |  |
| D2                                                              | kg/hr 244,309 244,309              |  |  |  |  |  |  |  |  |  |  |
| AR                                                              | kg/hr 13,5072 13,5072              |  |  |  |  |  |  |  |  |  |  |
| > CO2                                                           | kg/hr 1,12005 1,12005              |  |  |  |  |  |  |  |  |  |  |
| H2O                                                             | kg/hr 41,8457 41,8457              |  |  |  |  |  |  |  |  |  |  |
| CACL2                                                           | kg/hr 0 0                          |  |  |  |  |  |  |  |  |  |  |
| > CA++                                                          | kg/hr 0 0                          |  |  |  |  |  |  |  |  |  |  |
| CL-                                                             | kg/hr 0 0                          |  |  |  |  |  |  |  |  |  |  |
| Mass Fractions                                                  |                                    |  |  |  |  |  |  |  |  |  |  |
| ▶ N2                                                            | 0,725363 0,725363                  |  |  |  |  |  |  |  |  |  |  |
| > O2                                                            | 0,223073 0,223073                  |  |  |  |  |  |  |  |  |  |  |
| AR                                                              | 0,0123331 0,0123331                |  |  |  |  |  |  |  |  |  |  |
| > CO2                                                           | 0,00102269 0,00102269              |  |  |  |  |  |  |  |  |  |  |
| H2O                                                             | 0,0382083 0,0382083                |  |  |  |  |  |  |  |  |  |  |
| > CACL2                                                         | 0 0                                |  |  |  |  |  |  |  |  |  |  |
| CA++                                                            | 0 0                                |  |  |  |  |  |  |  |  |  |  |
| CL-                                                             | 0 0                                |  |  |  |  |  |  |  |  |  |  |
| Volume Flow                                                     | l/min 16380,7 16355,2              |  |  |  |  |  |  |  |  |  |  |

Anexo E 123. Resultados de los flujos y fracciones másicas del Ventilador 2 para la ciudad de Cartagena.

Anexo E 124. Resultados energéticos e las corrientes del Absorbedor para la ciudad de Cartagena.

| Main Flowsheet X/ ABS (Kadrrac) - Stream Kesults (Boundary) × + |                      |            |              |       |         |           |             |       |             |              |             |  |
|-----------------------------------------------------------------|----------------------|------------|--------------|-------|---------|-----------|-------------|-------|-------------|--------------|-------------|--|
| Material                                                        | Heat                 | Load       | Vol.% Curves | Wt. % | Curves  | Petroleum | Polymers    | Solid | ds          |              |             |  |
| 4                                                               |                      |            |              |       |         | Units     | L0-ABS      | •     | VN+1-ABS -  | LN-ABS -     | V1-ABS -    |  |
| – міх                                                           | ED Substr            | eam        |              |       |         |           |             |       |             |              |             |  |
| ► F                                                             | hase                 |            |              |       |         |           | Liquid Phas | e     | Vapor Phase | Liquid Phase | Vapor Phase |  |
| ۲ I                                                             | Temperature          |            |              |       | С       |           |             | 22    | 36,8539     | 24,5401      | 23,464      |  |
| ► F                                                             | Pressure             |            |              |       | bar     |           | 1,01        | 1568  | 1,01566     | 1,01568      | 1,01568     |  |
| ► P                                                             | Molar Vapor Fraction |            |              |       |         |           |             | 0     | 1           | 0            | 1           |  |
| ⊳ P                                                             | Molar Liqu           | id Fractio | on           |       |         |           |             | 1     | 0           | 1            | 0           |  |
| ► P                                                             | Molar Solid Fraction |            |              |       |         |           |             | 0     | 0           | 0            | 0           |  |
| ⊳ P                                                             | Mass Vapo            | r Fractior | ı            |       |         |           |             | 0     | 1           | 0            | 1           |  |
| ► P                                                             | Mass Liqui           | d Fractio  | n            |       |         |           | 1           |       | 0           | 1            | 0           |  |
| ► P                                                             | Mass Solid           | Fraction   |              |       |         |           |             | 0     | 0           | 0            | 0           |  |
| ► N                                                             | Molar Enth           | alpy       |              |       | cal/mol |           | -685        | 78,8  | -3451,64    | -68538,8     | -1020,62    |  |
| ► N                                                             | Mass Entha           | alpy       |              |       | cal/gm  |           | -302        | 5,14  | -121,903    | -3024,49     | -35,4514    |  |
| ► N                                                             | Molar Entro          | ору        |              |       | cal/mol | -K        | -33,4       | 4227  | 1,14242     | -33,3364     | 1,05729     |  |
| ► N                                                             | Mass Entro           | ру         |              |       | cal/gm· | ·К        | -1,47       | 7434  | 0,0403474   | -1,47108     | 0,0367251   |  |
| ► P                                                             | Molar Dens           | sity       |              |       | mol/cc  |           | 0,0645      | 5704  | 3,94163e-05 | 0,0644579    | 4,11901e-05 |  |
| ► P                                                             | Mass Density         |            |              |       | gm/cc   |           | 1,46379     |       | 0,00111606  | 1,4607       | 0,00118584  |  |
| Þ                                                               | Enthalpy Flow        |            |              |       | cal/sec |           | -6,32e+06   |       | -15067,8    | -6,33083e+06 | -4239,3     |  |
| ► A                                                             | Average M            | W          |              |       |         |           | 22,6        | 5696  | 28,3146     | 22,6612      | 28,7894     |  |

| Main Flowsheet × ABS (RadFrac) - Stream Results (Boundary) × + |                  |                |            |             |             |  |  |  |  |  |  |  |
|----------------------------------------------------------------|------------------|----------------|------------|-------------|-------------|--|--|--|--|--|--|--|
| Material Heat Load Vol.% Curves Wt. %                          | Curves Petroleum | Polymers Solid | ls         |             |             |  |  |  |  |  |  |  |
|                                                                | Units            | LO-ABS -       | VN+1-ABS - | LN-ABS -    | V1-ABS -    |  |  |  |  |  |  |  |
| - Mole Flows                                                   | kmol/hr          | 331,765        | 15,7155    | 332,527     | 14,9531     |  |  |  |  |  |  |  |
| N2                                                             | kmol/hr          | 0,0457463      | 11,522     | 0,0794005   | 11,4883     |  |  |  |  |  |  |  |
| 02                                                             | kmol/hr          | 0,0368012      | 3,10206    | 0,0650345   | 3,07383     |  |  |  |  |  |  |  |
| AR                                                             | kmol/hr          | 0,00120123     | 0,13738    | 0,00202498  | 0,136556    |  |  |  |  |  |  |  |
| CO2                                                            | kmol/hr          | 0,000651703    | 0,01034    | 0,000776524 | 0,0102152   |  |  |  |  |  |  |  |
| H2O                                                            | kmol/hr          | 250,373        | 0,94375    | 251,073     | 0,244184    |  |  |  |  |  |  |  |
| CACL2                                                          | kmol/hr          | 0              | 0          | 0           | 0           |  |  |  |  |  |  |  |
| CA++                                                           | kmol/hr          | 27,1023        | 0          | 27,1023     | 0           |  |  |  |  |  |  |  |
| CL-                                                            | kmol/hr          | 54,2045        | 0          | 54,2045     | 0           |  |  |  |  |  |  |  |
| - Mole Fractions                                               |                  |                |            |             |             |  |  |  |  |  |  |  |
| > N2                                                           |                  | 0,000137888    | 0,733159   | 0,000238779 | 0,76829     |  |  |  |  |  |  |  |
| 02                                                             |                  | 0,000110926    | 0,197389   | 0,000195577 | 0,205565    |  |  |  |  |  |  |  |
| AR                                                             |                  | 3,62073e-06    | 0,00874169 | 6,08966e-06 | 0,00913231  |  |  |  |  |  |  |  |
| CO2                                                            |                  | 1,96435e-06    | 0,00065795 | 2,33522e-06 | 0,000683148 |  |  |  |  |  |  |  |
| H2O                                                            |                  | 0,754672       | 0,0600522  | 0,755045    | 0,01633     |  |  |  |  |  |  |  |
| CACL2                                                          |                  | 0              | 0          | 0           | 0           |  |  |  |  |  |  |  |
| CA++                                                           |                  | 0,0816913      | 0          | 0,081504    | 0           |  |  |  |  |  |  |  |
| CL-                                                            |                  | 0,163383       | 0          | 0,163008    | 0           |  |  |  |  |  |  |  |

| Anexo l | E 125. | Resultados | de los | flujos y | racciones | molares of | del A | Absorbedor p | oara la c | ciudad de | Cartagena. |
|---------|--------|------------|--------|----------|-----------|------------|-------|--------------|-----------|-----------|------------|
|         |        |            |        |          |           |            |       | 1            |           |           | 0          |

Anexo E 126. Resultados de los flujos y fracciones másicas del Absorbedor para la ciudad de Cartagena.

| Main Flowsheet × /ABS (RadFrac) - Stream Results (Boundary) × + |                |                 |              |           |             |            |             |            |  |  |  |
|-----------------------------------------------------------------|----------------|-----------------|--------------|-----------|-------------|------------|-------------|------------|--|--|--|
| Material                                                        | Heat Loa       | ad Vol.% Curves | Wt. % Curves | Petroleum | Polymers    | Solids     |             |            |  |  |  |
|                                                                 |                |                 | Un           | nits      | LO-ABS      | VN+1-ABS • | LN-ABS 🔻    | V1-ABS •   |  |  |  |
| - I                                                             | Mass Flows     |                 | kg/hr        |           | 7520,98     | 444,977    | 7535,47     | 430,49     |  |  |  |
| •                                                               | N2             |                 | kg/hr        |           | 1,28151     | 322,77     | 2,22429     | 321,827    |  |  |  |
| •                                                               | 02             |                 | kg/hr        |           | 1,17759     | 99,2622    | 2,08102     | 98,3588    |  |  |  |
| •                                                               | AR             |                 | kg/hr        |           | 0,0479868   | 5,48806    | 0,0808938   | 5,45515    |  |  |  |
| •                                                               | CO2            |                 | kg/hr        |           | 0,0286813   | 0,455061   | 0,0341747   | 0,449568   |  |  |  |
| •                                                               | H2O            |                 | kg/hr        |           | 4510,55     | 17,0019    | 4523,15     | 4,39905    |  |  |  |
| Þ                                                               | CACL2          |                 | kg/hr        |           | 0           | 0          | 0           | 0          |  |  |  |
| •                                                               | CA++           |                 | kg/hr        |           | 1086,17     | 0          | 1086,17     | 0          |  |  |  |
| •                                                               | CL-            |                 | kg/hr        |           | 1921,73     | 0          | 1921,73     | 0          |  |  |  |
| -                                                               | Mass Fractions |                 |              |           |             |            |             |            |  |  |  |
| •                                                               | N2             |                 |              |           | 0,000170392 | 0,725363   | 0,000295175 | 0,747584   |  |  |  |
| •                                                               | O2             |                 |              |           | 0,000156574 | 0,223072   | 0,000276164 | 0,228481   |  |  |  |
| •                                                               | AR             |                 |              |           | 6,38039e-06 | 0,0123333  | 1,07351e-05 | 0,012672   |  |  |  |
| •                                                               | CO2            |                 |              |           | 3,81351e-06 | 0,00102266 | 4,53517e-06 | 0,00104432 |  |  |  |
| •                                                               | H2O            |                 |              |           | 0,599728    | 0,0382085  | 0,600248    | 0,0102187  |  |  |  |
| •                                                               | CACL2          |                 |              |           | 0           | 0          | 0           | 0          |  |  |  |
| •                                                               | CA++           |                 |              |           | 0,144419    | 0          | 0,144142    | 0          |  |  |  |
| •                                                               | CL-            |                 |              |           | 0,255515    | 0          | 0,255024    | 0          |  |  |  |
| •                                                               | Volume Flow    |                 | l/min        |           | 85,6338     | 6645,09    | 85,9804     | 6050,44    |  |  |  |

| Mai | Main Flowsheet × DESORB (RadFrac) - Stream Results (Boundary) × + |             |           |              |       |          |           |           |         |             |              |             |
|-----|-------------------------------------------------------------------|-------------|-----------|--------------|-------|----------|-----------|-----------|---------|-------------|--------------|-------------|
| Ma  | aterial                                                           | Heat        | Load      | Vol.% Curves | Wt. 9 | 6 Curves | Petroleum | Polymers  | Solid   | ds          |              |             |
|     |                                                                   |             |           |              |       |          | Units     | L0-DESOR  | •       | VN+1-DES -  | LN-DESOR -   | V1-DES -    |
|     | – міх                                                             | ED Subs     | tream     |              |       |          |           |           |         |             |              |             |
|     |                                                                   | Phase       |           |              |       |          |           |           |         | Vapor Phase | Liquid Phase | Vapor Phase |
|     |                                                                   | Temperature |           |              | С     |          | 5         | 5,12      | 36,8539 | 51,9822     | 52,9948      |             |
|     | Pressure                                                          |             |           |              | bar   |          | 1,01      | 568       | 1,01566 | 1,01568     | 1,01568      |             |
|     |                                                                   | Molar Va    | por Frac  | tion         |       |          |           | 0,000193  | 3217    | 1           | 0            | 1           |
| •   | I                                                                 | Molar Lie   | quid Fra  | ction        |       |          |           | 0,999     | 9807    | 0           | 1            | 0           |
|     |                                                                   | Molar So    | lid Fract | ion          |       |          |           |           | 0       | 0           | 0            | 0           |
| •   | I                                                                 | Mass Vap    | oor Fract | ion          |       |          |           | 0,000242  | 2238    | 1           | 0            | 1           |
| •   |                                                                   | Mass Liq    | uid Frac  | tion         |       |          |           | 0,999     | 9758    | 0           | 1            | 0           |
|     | I                                                                 | Mass Sol    | id Fracti | on           |       |          |           |           | 0       | 0           | 0            | 0           |
|     | I                                                                 | Molar En    | thalpy    |              |       | cal/mo   | I         | -682      | 08,6    | -3451,62    | -68257,1     | -4293,49    |
| •   | I                                                                 | Mass Ent    | halpy     |              |       | cal/gm   |           | -300      | 9,92    | -121,903    | -3010,95     | -152,604    |
|     |                                                                   | Molar En    | tropy     |              |       | cal/mo   | I-K       | -32,2     | 2803    | 1,14242     | -32,3853     | 1,39432     |
|     | 1                                                                 | Mass Ent    | ropy      |              |       | cal/gm   | -К        | -1,42     | 2447    | 0,0403475   | -1,42858     | 0,0495584   |
|     | I                                                                 | Molar De    | ensity    |              |       | mol/cc   |           | 0,0479    | 9109    | 3,94163e-05 | 0,0638767    | 3,74642e-05 |
|     | 1                                                                 | Mass De     | nsity     |              |       | gm/cc    |           | 1,08      | 3572    | 0,00111606  | 1,44806      | 0,00105405  |
| •   |                                                                   | Enthalpy    | Flow      |              |       | cal/sec  |           | -6,30033e | +06     | -37085,4    | -6,29038e+06 | -47039,1    |
| •   |                                                                   | Average     | MW        |              |       |          |           | 22,6      | 5612    | 28,3146     | 22,6696      | 28,1348     |

Anexo E 127. Resultados energéticos e las corrientes del Desorbedor para la ciudad de Cartagena.

Anexo E 128. Resultados de los flujos y fracciones molares del Desorbedor para la ciudad de Cartagena.

| - Main How |                |                |              |           |            |       |             |             |             |  |  |  |
|------------|----------------|----------------|--------------|-----------|------------|-------|-------------|-------------|-------------|--|--|--|
| Material   | Heat Load      | d Vol.% Curves | Wt. % Curves | Petroleum | Polymers 5 | Solid | s           |             |             |  |  |  |
|            |                |                |              | Units     | L0-DESOR   | •     | VN+1-DES 🔻  | LN-DESOR -  | V1-DES -    |  |  |  |
| • -        | Mole Flows     |                | kmol/ł       | ır        | 332,52     | 27    | 38,6797     | 331,765     | 39,4412     |  |  |  |
| •          | N2             |                | kmol/h       | r         | 0,079400   | 05    | 28,3584     | 0,0457454   | 28,392      |  |  |  |
| •          | O2             |                | kmol/h       | r         | 0,065034   | 45    | 7,63495     | 0,0367996   | 7,66318     |  |  |  |
| •          | AR             |                | kmol/h       | r         | 0,0020249  | 98    | 0,33812     | 0,0012012   | 0,338944    |  |  |  |
| •          | CO2            |                | kmol/h       | r         | 0,00077652 | 24    | 0,02545     | 0,000651591 | 0,0255749   |  |  |  |
| •          | H2O            |                | kmol/h       | r         | 251,0      | 73    | 2,32279     | 250,374     | 3,02148     |  |  |  |
| •          | CACL2          |                | kmol/h       | r         |            | 0     | 0           | 0           | 0           |  |  |  |
| •          | CA++           |                | kmol/h       | r         | 27,102     | 23    | 0           | 27,1023     | 0           |  |  |  |
| •          | CL-            |                | kmol/h       | r         | 54,204     | 45    | 0           | 54,2045     | 0           |  |  |  |
| -          | Mole Fractions | 5              |              |           |            |       |             |             |             |  |  |  |
| •          | N2             |                |              |           | 0,0002387  | 79    | 0,733159    | 0,000137885 | 0,719857    |  |  |  |
| •          | O2             |                |              |           | 0,0001955  | 77    | 0,197389    | 0,000110921 | 0,194294    |  |  |  |
| •          | AR             |                |              |           | 6,08966e-0 | 06    | 0,00874154  | 3,62064e-06 | 0,00859365  |  |  |  |
| •          | CO2            |                |              |           | 2,33522e-0 | 06    | 0,000657968 | 1,96401e-06 | 0,000648432 |  |  |  |
| •          | H2O            |                |              |           | 0,75504    | 45    | 0,0600519   | 0,754672    | 0,0766071   |  |  |  |
| •          | CACL2          |                |              |           |            | 0     | 0           | 0           | 0           |  |  |  |
| •          | CA++           |                |              |           | 0,08150    | 04    | 0           | 0,0816911   | 0           |  |  |  |
| •          | CL-            |                |              |           | 0,16300    | 08    | 0           | 0,163382    | 0           |  |  |  |

Main Flowsheet X DESORB (RadFrac) - Stream Results (Boundary) X +

|          | 1              |              |              |          |             |            |             |            |
|----------|----------------|--------------|--------------|----------|-------------|------------|-------------|------------|
| Material | Heat Load      | Vol.% Curves | Wt. % Curves | Petroleu | m Polymers  | Solids     |             |            |
|          |                |              | Ur           | nits     | L0-DESOR -  | VN+1-DES • | LN-DESOR •  | V1-DES •   |
| → - 1    | Mass Flows     |              | kg/hr        |          | 7535,47     | 1095,2     | 7521        | 1109,67    |
| •        | N2             |              | kg/hr        |          | 2,22429     | 794,417    | 1,28149     | 795,359    |
| •        | O2             |              | kg/hr        |          | 2,08102     | 244,309    | 1,17754     | 245,213    |
| •        | AR             |              | kg/hr        |          | 0,0808938   | 13,5072    | 0,0479857   | 13,5401    |
| •        | CO2            |              | kg/hr        |          | 0,0341747   | 1,12005    | 0,0286764   | 1,12555    |
| •        | H2O            |              | kg/hr        |          | 4523,15     | 41,8457    | 4510,56     | 54,4328    |
| •        | CACL2          |              | kg/hr        |          | 0           | 0          | 0           | 0          |
| •        | CA++           |              | kg/hr        |          | 1086,17     | 0          | 1086,17     | 0          |
|          | CL-            |              | kg/hr        |          | 1921,73     | 0          | 1921,73     | 0          |
| → - I    | Mass Fractions |              |              |          |             |            |             |            |
| •        | N2             |              |              |          | 0,000295175 | 0,725363   | 0,000170388 | 0,716753   |
| •        | 02             |              |              |          | 0,000276164 | 0,223073   | 0,000156567 | 0,220978   |
| •        | AR             |              |              |          | 1,07351e-05 | 0,0123331  | 6,38023e-06 | 0,0122019  |
| •        | CO2            |              |              |          | 4,53517e-06 | 0,00102269 | 3,81285e-06 | 0,00101431 |
|          | H2O            |              |              |          | 0,600248    | 0,0382083  | 0,599729    | 0,0490531  |
| •        | CACL2          |              |              |          | 0           | 0          | 0           | 0          |
|          | CA++           |              |              |          | 0,144142    | 0          | 0,144419    | 0          |
| •        | CL-            |              |              |          | 0,255024    | 0          | 0,255515    | 0          |
| > N      | /olume Flow    |              | l/min        |          | 115,675     | 16355,2    | 86,564      | 17546,2    |

| Anexo E 129. Resultados de los flujos y fracciones másicas del Desorbedor para la ciudad de Cartage | na. |
|-----------------------------------------------------------------------------------------------------|-----|
|                                                                                                     |     |
| / Main Flowsheet X / DESORB (RadFrac) - Stream Results (Boundary) X +                               |     |

Anexo E 130. Resultados energéticos de la Bomba 1 para la ciudad de Cartagena.

| Main Flowsheet × BOMBA-1 (Pump) - Results × + |         |                |                         |  |  |  |  |  |  |
|-----------------------------------------------|---------|----------------|-------------------------|--|--|--|--|--|--|
| Summary E                                     | Balance | Performance Cu | rve 🛛 Utility Usage 🛛 🤇 |  |  |  |  |  |  |
|                                               |         |                |                         |  |  |  |  |  |  |
| Fluid power                                   |         | 9,88023        | Watt 🔹                  |  |  |  |  |  |  |
| Brake power                                   |         | 13,1736        | Watt 🔻                  |  |  |  |  |  |  |
| Electricity                                   |         | 13,1736        | Watt 🔻                  |  |  |  |  |  |  |
| Volumetric flov                               | v rate  | 85,9804        | l/min                   |  |  |  |  |  |  |
| Pressure chang                                | je      | 0,068046       | atm 🔹                   |  |  |  |  |  |  |
| NPSH available                                | 2       | 0,618845       | meter-head 🔹            |  |  |  |  |  |  |
| NPSH required                                 | I       |                | -                       |  |  |  |  |  |  |
| Head develope                                 | ed      | 0,481325       | meter-head 🔹            |  |  |  |  |  |  |
| Pump efficiend                                | cy used | 0,75           |                         |  |  |  |  |  |  |
| Net work requi                                | ired    | 13,1736        | Watt 🝷                  |  |  |  |  |  |  |
| Outlet pressure                               | 2       | 1,08463        | bar 🔹                   |  |  |  |  |  |  |
| Outlet tempera                                | ature   | 24,5414        | с -                     |  |  |  |  |  |  |

| Main Flowsheet X BOMBA-1 (Pump) - Stream Results (Boundary) × + |           |              |              |           |       |     |           |    |          |     |
|-----------------------------------------------------------------|-----------|--------------|--------------|-----------|-------|-----|-----------|----|----------|-----|
| Material                                                        | Work      | Vol.% Curves | Wt. % Curves | Petroleum | Polym | ers | Solids    |    |          |     |
|                                                                 |           |              |              | Units     |       | LN- | ABS       | •  | LIN-COLE | •   |
| - I                                                             | Mole Flov | ws           |              | kmol/hr   |       |     | 332,52    | 7  | 332,5    | 527 |
| •                                                               | N2        |              |              | kmol/hr   |       |     | 0,079400  | )5 | 0,0794   | 005 |
| •                                                               | 02        |              |              | kmol/hr   |       |     | 0,065034  | 15 | 0,0650   | 345 |
| •                                                               | AR        |              |              | kmol/hr   |       | (   | 0,0020249 | 8  | 0,00202  | 498 |
| •                                                               | CO2       |              |              | kmol/hr   |       | 0,  | ,00077652 | 4  | 0,000776 | 524 |
|                                                                 | H2O       |              |              | kmol/hr   |       |     | 251,07    | 3  | 251,     | 073 |
| •                                                               | CACL      | 2            |              | kmol/hr   |       |     |           | 0  |          | 0   |
| •                                                               | CA++      |              |              | kmol/hr   |       |     | 27,102    | 3  | 27,1     | 023 |
| •                                                               | CL-       |              |              | kmol/hr   |       |     | 54,204    | 15 | 54,2     | 045 |
| ► - I                                                           | Mole Fra  | ctions       |              |           |       |     |           |    |          |     |
| •                                                               | N2        |              |              |           |       | 0,  | ,00023877 | '9 | 0,000238 | 779 |
|                                                                 | 02        |              |              |           |       | 0,  | ,00019557 | 7  | 0,000195 | 577 |
| •                                                               | AR        |              |              |           |       | 6   | ,08966e-0 | )6 | 6,08966e | -06 |
| •                                                               | CO2       |              |              |           |       | 2   | ,33522e-0 | )6 | 2,33522e | -06 |
| •                                                               | H2O       |              |              |           |       |     | 0,75504   | 15 | 0,755    | 045 |
| •                                                               | CACL      | 2            |              |           |       |     |           | 0  |          | 0   |
| •                                                               | CA++      |              |              |           |       |     | 0,08150   | )4 | 0,081    | 504 |
|                                                                 | CL-       |              |              |           |       |     | 0,16300   | 8( | 0,163    | 800 |

Anexo E 131. Resultados de los flujos y fracciones molares de la Bomba 1 para la ciudad de Cartagena.

Anexo E 132. Resultados de los flujos y fracciones másicas de la Bomba 1 para la ciudad de Cartagena.

| Main Flowsheet X/BOMBA-1 (Pump) - Stream Results (Boundary) X + |                   |              |           |    |        |         |             |  |
|-----------------------------------------------------------------|-------------------|--------------|-----------|----|--------|---------|-------------|--|
| Material                                                        | Work Vol.% Curves | Wt. % Curves | Petroleum | Po | lymers | Solids  |             |  |
|                                                                 |                   |              | Units     |    | LN-ABS | •       | LIN-COLE 🔻  |  |
| - N                                                             | Aass Flows        | kg           | g/hr      |    | 7      | 535,47  | 7535,47     |  |
|                                                                 | N2                | kg           | j/hr      |    |        | 2,22429 | 2,22429     |  |
| •                                                               | 02                | kg           | j/hr      |    | 1      | 2,08102 | 2,08102     |  |
| •                                                               | AR                | kg           | j/hr      |    | 0,0    | 808938  | 0,0808938   |  |
| •                                                               | CO2               | kg           | j/hr      |    | 0,0    | 341747  | 0,0341747   |  |
|                                                                 | H2O               | kg           | j/hr      |    |        | 4523,15 | 4523,15     |  |
| •                                                               | CACL2             | kg           | j/hr      |    |        | 0       | 0           |  |
| •                                                               | CA++              | kg           | j/hr      |    |        | 1086,17 | 1086,17     |  |
| •                                                               | CL-               | kg           | j/hr      |    |        | 1921,73 | 1921,73     |  |
| > - N                                                           | Aass Fractions    |              |           |    |        |         |             |  |
| •                                                               | N2                |              |           |    | 0,000  | 295175  | 0,000295175 |  |
| •                                                               | 02                |              |           |    | 0,000  | 276164  | 0,000276164 |  |
| •                                                               | AR                |              |           |    | 1,073  | 851e-05 | 1,07351e-05 |  |
| •                                                               | CO2               |              |           |    | 4,535  | 517e-06 | 4,53517e-06 |  |
| •                                                               | H2O               |              |           |    | 0,     | 600248  | 0,600248    |  |
| •                                                               | CACL2             |              |           |    |        | 0       | 0           |  |
| •                                                               | CA++              |              |           |    | 0,     | 144142  | 0,144142    |  |
| •                                                               | CL-               |              |           |    | 0,     | 255024  | 0,255024    |  |
| ► V                                                             | olume Flow        | V            | min       |    | 1      | 85,9804 | 85,9802     |  |

| Main Flowsheet × BOMBA-2 (Pump) - Results × + |                      |   |               |                       |  |  |  |  |  |
|-----------------------------------------------|----------------------|---|---------------|-----------------------|--|--|--|--|--|
|                                               | Summary Balance      | Ρ | erformance Cu | rve 🛛 Utility Usage 🤇 |  |  |  |  |  |
|                                               | Fluid power          |   | 49,7365       | Watt 💌                |  |  |  |  |  |
|                                               | Brake power          |   | 66,3153       | Watt 🔹                |  |  |  |  |  |
|                                               | Electricity          |   | 66,3153       | Watt 💌                |  |  |  |  |  |
|                                               | Volumetric flow rate |   | 86,564        | l/min 🔹               |  |  |  |  |  |
|                                               | Pressure change      |   | 0,34023       | atm 🔻                 |  |  |  |  |  |
|                                               | NPSH available       |   | 0,110253      | meter-head 🔹          |  |  |  |  |  |
|                                               | NPSH required        |   |               | -                     |  |  |  |  |  |
|                                               | Head developed       |   | 2,42762       | meter-head 🔹          |  |  |  |  |  |
|                                               | Pump efficiency used |   | 0,75          |                       |  |  |  |  |  |
|                                               | Net work required    |   | 66,3153       | Watt 👻                |  |  |  |  |  |
|                                               | Outlet pressure      |   | 1,34263       | atm 🔻                 |  |  |  |  |  |
|                                               | Outlet temperature   |   | 51,9902       | с -                   |  |  |  |  |  |

Anexo E 133. Resultados energéticos de la Bomba 2 para la ciudad de Cartagena.

Anexo E 134. Resultados de los flujos y fracciones molares de la Bomba 2 para la ciudad de Cartagena.

| / Wall Howsheet A/ Bowbh 2 | (i unip) - Stream Results (Doundary) A |  |
|----------------------------|----------------------------------------|--|
|                            | •                                      |  |

| Material | Work Vol.% Curves | Wt. % Curves | Petroleum | Polyme | ers Solids  |             |  |
|----------|-------------------|--------------|-----------|--------|-------------|-------------|--|
|          |                   |              | Units     |        | LN-DESOR -  | LIN-ENFR -  |  |
| -        | - Mole Flows      |              |           |        | 331,765     | 331,765     |  |
| •        | N2                |              | kmol/hr   |        | 0,0457454   | 0,0457454   |  |
| •        | 02                |              | kmol/hr   |        | 0,0367996   | 0,0367996   |  |
| •        | AR                |              | kmol/hr   |        | 0,0012012   | 0,0012012   |  |
| •        | CO2               |              | kmol/hr   |        | 0,000651591 | 0,000651591 |  |
| •        | H2O               |              | kmol/hr   |        | 250,374     | 250,374     |  |
| •        | CACL2             |              | kmol/hr   |        | 0           | 0           |  |
| •        | CA++              |              | kmol/hr   |        | 27,1023     | 27,1023     |  |
| •        | CL-               |              | kmol/hr   |        | 54,2045     | 54,2045     |  |
| →        | Mole Fractions    |              |           |        |             |             |  |
| •        | N2                |              |           |        | 0,000137885 | 0,000137885 |  |
| •        | 02                |              |           |        | 0,000110921 | 0,000110921 |  |
| •        | AR                |              |           |        | 3,62064e-06 | 3,62064e-06 |  |
| •        | CO2               |              |           |        | 1,96401e-06 | 1,96401e-06 |  |
| •        | H2O               |              |           |        | 0,754672    | 0,754672    |  |
| •        | CACL2             |              |           |        | 0           | 0           |  |
| •        | CA++              |              |           |        | 0,0816911   | 0,0816911   |  |
| •        | CL-               |              |           |        | 0,163382    | 0,163382    |  |

| Main Flowsheet × BOMBA-2 (Pump) - Stream Results (Boundary) × + |                   |              |           |     |        |         |             |  |  |
|-----------------------------------------------------------------|-------------------|--------------|-----------|-----|--------|---------|-------------|--|--|
| Material                                                        | Work Vol.% Curves | Wt. % Curves | Petroleum | Pol | ymers  | Solids  |             |  |  |
|                                                                 |                   |              | Units     |     | LN-DES | OR 🔻    | LIN-ENFR •  |  |  |
| > - N                                                           | Mass Flows        | k            | g/hr      |     |        | 7521    | 7521        |  |  |
| •                                                               | N2                | k            | g/hr      |     |        | 1,28149 | 1,28149     |  |  |
| •                                                               | O2                | k            | g/hr      |     |        | 1,17754 | 1,17754     |  |  |
| •                                                               | AR                | k            | g/hr      |     | 0,0    | 479857  | 0,0479857   |  |  |
| •                                                               | CO2               | k            | g/hr      |     | 0,0    | 286764  | 0,0286764   |  |  |
| •                                                               | H2O               | k            | g/hr      |     |        | 4510,56 | 4510,56     |  |  |
| •                                                               | CACL2             | k            | g/hr      |     |        | 0       | 0           |  |  |
| •                                                               | CA++              | k            | g/hr      |     |        | 1086,17 | 1086,17     |  |  |
| <b>•</b>                                                        | CL-               | k            | g/hr      |     |        | 1921,73 | 1921,73     |  |  |
| > - N                                                           | Mass Fractions    |              |           |     |        |         |             |  |  |
| •                                                               | N2                |              |           |     | 0,000  | 170388  | 0,000170388 |  |  |
|                                                                 | 02                |              |           |     | 0,000  | 156567  | 0,000156567 |  |  |
| •                                                               | AR                |              |           |     | 6,380  | 023e-06 | 6,38023e-06 |  |  |
|                                                                 | CO2               |              |           |     | 3,812  | 285e-06 | 3,81285e-06 |  |  |
| •                                                               | H2O               |              |           |     | 0      | ,599729 | 0,599729    |  |  |
|                                                                 | CACL2             |              |           |     |        | 0       | 0           |  |  |
|                                                                 | CA++              |              |           |     | 0      | ,144419 | 0,144419    |  |  |
|                                                                 | CL-               |              |           |     | 0,     | ,255515 | 0,255515    |  |  |
| > V                                                             | olume Flow        | U.           | /min      |     |        | 86,564  | 86,5632     |  |  |

Anexo E 135. Resultados de los flujos y fracciones másicas de la Bomba 2 para la ciudad de Cartagena.

Anexo E 136. Resultados energéticos del Colector para la ciudad de Cartagena.

| Main Flow      | /sheet ×⁄CO     | LECTOR (Hea  | ter) - R        | esults × | +     |        |   |
|----------------|-----------------|--------------|-----------------|----------|-------|--------|---|
| Summary        | / Balance       | Phase Equili | brium Utility ( |          | Jsage | Status | ] |
| Outlet tem     | nperature       |              |                 | 55,12    | с     |        | • |
| Outlet pre     | ssure           |              |                 | 1,0024   | atm   |        | • |
| Vapor fraction |                 |              | 0,000           | )193217  |       |        |   |
| Heat duty      |                 |              | 127,685         |          | kW    |        | • |
| Net duty       |                 |              |                 | 127,685  | kW    |        | • |
| 1st liquid /   | / Total liquid  |              |                 | 1        |       |        |   |
| Pressure-c     | frop correlatio | on parameter |                 |          |       |        |   |
| Pressure d     | rop             |              | 0               | ,068046  | atm   |        | • |
| Main Flow | /sheet × COLECTOR (Heater) - Stream | Results (Feeds) $\times$ + |                |             |
|-----------|-------------------------------------|----------------------------|----------------|-------------|
| Material  | Heat Load Vol.% Curves Wt. %        | Curves Petroleum           | Polymers Solid | ls          |
|           |                                     | Units                      | LIN-COLE -     | LO-DESOR -  |
| • -       | Mole Flows                          | kmol/hr                    | 332,527        | 332,527     |
| •         | N2                                  | kmol/hr                    | 0,0794005      | 0,0794005   |
| •         | 02                                  | kmol/hr                    | 0,0650345      | 0,0650345   |
| •         | AR                                  | kmol/hr                    | 0,00202498     | 0,00202498  |
| •         | CO2                                 | kmol/hr                    | 0,000776524    | 0,000776524 |
| •         | H2O                                 | kmol/hr                    | 251,073        | 251,073     |
| •         | CACL2                               | kmol/hr                    | 0              | 0           |
| •         | CA++                                | kmol/hr                    | 27,1023        | 27,1023     |
| •         | CL-                                 | kmol/hr                    | 54,2045        | 54,2045     |
| -         | Mole Fractions                      |                            |                |             |
| •         | N2                                  |                            | 0,000238779    | 0,000238779 |
| •         | O2                                  |                            | 0,000195577    | 0,000195577 |
| •         | AR                                  |                            | 6,08966e-06    | 6,08966e-06 |
| •         | CO2                                 |                            | 2,33522e-06    | 2,33522e-06 |
| •         | H2O                                 |                            | 0,755045       | 0,755045    |
| •         | CACL2                               |                            | 0              | 0           |
| •         | CA++                                |                            | 0,081504       | 0,081504    |
| •         | CL-                                 |                            | 0,163008       | 0,163008    |

Anexo E 137. Resultados de los flujos y fracciones molares del Colector para la ciudad de Cartagena.

Anexo E 138. Resultados de los flujos y fracciones másicas del Colector para la ciudad de Cartagena.

| Main Flow | sheet × COLECTO | )R (Heater) - S | Strear | n Results ( | (Feeds) $	imes$ | +   |             |       |            |
|-----------|-----------------|-----------------|--------|-------------|-----------------|-----|-------------|-------|------------|
| Material  | Heat Load \     | /ol.% Curves    | Wt.    | % Curves    | Petroleur       | m   | Polymers    | Solid | s          |
|           |                 |                 |        | Un          | its             | LIN | -COLE 🔻     | L0-0  | DESOR 🔻    |
| ► - N     | lass Flows      |                 |        | kg/hr       |                 |     | 7535,47     |       | 7535,47    |
| Þ.        | N2              |                 |        | kg/hr       |                 |     | 2,22429     |       | 2,22429    |
| Þ         | O2              |                 |        | kg/hr       |                 |     | 2,08102     |       | 2,08102    |
| •         | AR              |                 |        | kg/hr       |                 |     | 0,0808938   |       | 0,0808938  |
| •         | CO2             |                 |        | kg/hr       |                 |     | 0,0341747   |       | 0,0341747  |
| Þ.        | H2O             |                 |        | kg/hr       |                 |     | 4523,15     |       | 4523,15    |
| •         | CACL2           |                 |        | kg/hr       |                 |     | 0           |       | 0          |
| •         | CA++            |                 |        | kg/hr       |                 |     | 1086,17     |       | 1086,17    |
| •         | CL-             |                 |        | kg/hr       |                 |     | 1921,73     |       | 1921,73    |
| ► – N     | lass Fractions  |                 |        |             |                 |     |             |       |            |
| •         | N2              |                 |        |             |                 | 0   | ,000295175  | 0     | ,000295175 |
| •         | 02              |                 |        |             |                 | 0   | ,000276164  | 0     | ,000276164 |
| •         | AR              |                 |        |             |                 |     | 1,07351e-05 | 1     | ,07351e-05 |
| Þ.        | CO2             |                 |        |             |                 | -   | 4,53517e-06 | 4     | ,53517e-06 |
| •         | H2O             |                 |        |             |                 |     | 0,600248    |       | 0,600248   |
| •         | CACL2           |                 |        |             |                 |     | 0           |       | 0          |
| •         | CA++            |                 |        |             |                 |     | 0,144142    |       | 0,144142   |
| •         | CL-             |                 |        |             |                 |     | 0,255024    |       | 0,255024   |
| ► V       | olume Flow      |                 |        | l/min       |                 |     | 85,9802     |       | 115,675    |

| Main Flowsheet × ENFRIADO (Heater) - Results × + |              |              |       |           |       |          |   |  |  |  |  |
|--------------------------------------------------|--------------|--------------|-------|-----------|-------|----------|---|--|--|--|--|
| Summary                                          | Balance      | Phase Equili | brium | Utility U | lsage | 🕝 Status |   |  |  |  |  |
| Outlet tempe                                     | erature      |              |       | 22        | C     |          | • |  |  |  |  |
| Vapor fractio                                    | n            |              |       | 1,0024    | atm   |          | • |  |  |  |  |
| Heat duty                                        |              |              | -     | 124,171   | kW    |          | • |  |  |  |  |
| Net duty                                         |              |              | -     | 124,171   | kW    |          | • |  |  |  |  |
| 1st liquid / To                                  | otal liquid  |              |       | 1         |       |          |   |  |  |  |  |
| Pressure-dro                                     | p correlatio | n parameter  |       |           |       |          |   |  |  |  |  |
| Pressure dro                                     | р            |              |       | 0,34023   | atm   |          | • |  |  |  |  |

Anexo E 139. Resultados energéticos del Enfriador para la ciudad de Cartagena.

Anexo E 140. Resultados de los flujos y fracciones molares del Enfriador para la ciudad de Cartagena.

| Main Flow | /sheet × ENFRI | ADO (Heater) - | Stream | Results ( | Boundary) $	imes$ | +        |       |             |
|-----------|----------------|----------------|--------|-----------|-------------------|----------|-------|-------------|
| Material  | Heat Load      | Vol.% Curves   | Wt. %  | Curves    | Petroleum         | Polymers | Solid | s           |
|           |                |                |        |           | Units             | LIN-ENFR | •     | L0-OUT -    |
| -         | Mole Flows     |                |        | kmol/h    | r                 | 331      | ,765  | 331,765     |
| •         | N2             |                |        | kmol/h    | г                 | 0,045    | 7454  | 0,0457454   |
| •         | 02             |                |        | kmol/h    | г                 | 0,036    | 7996  | 0,0367996   |
| •         | AR             |                |        | kmol/h    | г                 | 0,0012   | 2012  | 0,0012012   |
| •         | CO2            |                |        | kmol/h    | г                 | 0,00065  | 1591  | 0,000651591 |
| •         | H2O            |                |        | kmol/h    | г                 | 250      | ,374  | 250,374     |
| •         | CACL2          |                |        | kmol/h    | r                 |          | 0     | 0           |
| •         | CA++           |                |        | kmol/h    | г                 | 27,      | 1023  | 27,1023     |
| •         | CL-            |                |        | kmol/h    | r                 | 54,2     | 2045  | 54,2045     |
|           | Mole Fractions |                |        |           |                   |          |       |             |
| •         | N2             |                |        |           |                   | 0,00013  | 7885  | 0,000137885 |
| •         | 02             |                |        |           |                   | 0,000110 | 0921  | 0,000110921 |
| •         | AR             |                |        |           |                   | 3,62064  | e-06  | 3,62064e-06 |
|           | CO2            |                |        |           |                   | 1,96401  | e-06  | 1,96401e-06 |
| •         | H2O            |                |        |           |                   | 0,754    | 4672  | 0,754672    |
|           | CACL2          |                |        |           |                   |          | 0     | 0           |
| •         | CA++           |                |        |           |                   | 0,081    | 5911  | 0,0816911   |
| •         | CL-            |                |        |           |                   | 0,163    | 3382  | 0,163382    |

| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Heat       | Load  | Vol.% Curves | Wt. % ( | Curves | Petroleu | m F   | olymers   | Solids |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------------|---------|--------|----------|-------|-----------|--------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |       |              |         | Uni    | its      | LIN-E | NFR •     | L0-OU  | г        |
| - N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lass Flow  | 5     |              | kg      | )/hr   |          |       | 7521      |        | 7521     |
| Image: A start and a start | N2         |       |              | kg      | ı/hr   |          |       | 1,28149   |        | 1,28149  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O2         |       |              | kg      | J/hr   |          |       | 1,17754   |        | 1,17754  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AR         |       |              | kg      | ı/hr   |          |       | 0,0479857 | 0,     | 0479857  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO2        |       |              | kg      | J/hr   |          |       | 0,0286764 | 0,     | 0286764  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H2O        |       |              | kg      | ı/hr   |          |       | 4510,56   |        | 4510,56  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CACL2      | 2     |              | kg      | ı/hr   |          |       | 0         |        |          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA++       |       |              | kg      | ı/hr   |          |       | 1086,17   |        | 1086,1   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CL-        |       |              | kg      | ı/hr   |          |       | 1921,73   |        | 1921,73  |
| ► – N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aass Fract | tions |              |         |        |          |       |           |        |          |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N2         |       |              |         |        |          | 0,0   | 000170388 | 0,00   | 0170388  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02         |       |              |         |        |          | 0,0   | 00156567  | 0,00   | 015656   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AR         |       |              |         |        |          | 6,3   | 38023e-06 | 6,38   | 023e-06  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO2        |       |              |         |        |          | 3,8   | 81285e-06 | 3,81   | 285e-06  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H2O        |       |              |         |        |          |       | 0,599729  | 0      | ,599729  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CACL2      |       |              |         |        |          |       | 0         |        | 0        |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA++       |       |              |         |        |          |       | 0,144419  | 0      | ),144419 |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CL-        |       |              |         |        |          |       | 0,255515  | 0      | ),255515 |
| > V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | olume Flo  | DW    |              | l/r     | nin    |          |       | 86,5632   |        | 85,6339  |

Anexo E 141. Resultados de los flujos y fracciones másicas del Enfriador para la ciudad de Cartagena.

Anexo E 142. Especificación de la corriente fresca de alimento al proceso para la simulación en Inírida.

| Main Flowsheet   | × LO-F    | RESC (MA    | TERIAL) $	imes$ | Ŧ       |            |       |      |            |       |             |
|------------------|-----------|-------------|-----------------|---------|------------|-------|------|------------|-------|-------------|
| Mixed CI         | Solid N   | IC Solid    | Flash Opt       | ions    | EO Options | Costi | ng   | Comments   |       |             |
| Specificatio     | ons       |             |                 |         |            |       |      |            |       |             |
| Flash Type       | Tem       | perature    | •               | Press   | ure        | •     | -Com | position — |       |             |
| - State variable | 25        |             |                 |         |            |       | Мо   | le-Flow    | •     | kmol/hr 🔻   |
| Temperature      |           |             | 22              | C       | •          |       |      | Compone    | nt    | Value       |
| Pressure         |           |             | 0,9853          | atm     | -          |       | -    | N2         |       | 1,85239e-07 |
| Vapor fractio    | n         |             |                 |         |            |       | •    | 02         |       | 2,96639e-06 |
| Total flow ba    | sis       | Mole        | •               |         |            |       | •    | AR         |       | 7,11947e-08 |
| Total flow rat   | e         |             |                 | kmol/   | hr 🔹       |       | •    | CO2        |       | 1,45616e-07 |
| Solvent          |           |             |                 |         | Ŧ          |       | •    | H2O        |       | 2,46257e-06 |
| - Reference Te   | mperature |             |                 |         |            |       | •    | CACL2      |       | 6,2723e-11  |
| Volume flow      | reference | temperat    | ure             |         |            |       | •    | CA++       |       |             |
|                  | С         | Ŧ           |                 |         |            |       | •    | CL-        |       |             |
| Component        | concentra | tion refere | ence tempe      | erature |            |       |      |            |       |             |
|                  | С         | Ŧ           |                 |         |            |       |      |            | Total | 5,83107e-06 |

| Main Flowsheet ×                   | IRE-ABS (MAT     | ERIAL) ×   | +              |       |          |           |         |
|------------------------------------|------------------|------------|----------------|-------|----------|-----------|---------|
| Mixed CI Solid                     | NC Solid         | Flash Opti | ons EO Options | Costi | ng       | Comments  |         |
| <ul> <li>Specifications</li> </ul> |                  |            |                |       |          |           |         |
| Flash Type                         | Temperature      | -          | Pressure       | -     | Con      | nposition |         |
| State variables                    |                  |            |                | Mo    | ole-Flow | kmol/hr • |         |
| Temperature                        |                  | 34         | C •            |       |          | Component | Value   |
| Pressure                           |                  | 747        | mmHg 🔹         |       | -        | N2        | 11,7692 |
| Vapor fraction                     |                  |            |                |       | •        | 02        | 3,16862 |
| Total flow basis                   | Mole             | -          |                |       | -        | AR        | 0.14032 |
| Total flow rate                    |                  |            | kmol/hr 🔹      |       | -        | CO2       | 0.01056 |
| Solvent                            |                  |            | ~              |       | -        | H2O       | 0,85217 |
| Reference Tempera                  | iture            |            |                |       | -        | CACL2     |         |
| Volume flow refere                 | nce temperatu    | re         |                |       | -        | CA++      |         |
| С                                  | ~                |            |                |       | -        | CL-       |         |
| Component conce                    | ntration referer | nce tempe  | rature         |       | Ĺ        |           |         |
| С                                  | -                |            |                |       |          | Tota      | 15,9408 |

Anexo E 143. Especificación de la corriente de aire a la entrada del Ventilador 1 para la ciudad de Inírida.

Anexo E 144. Especificación de la corriente de aire a la entrada del Ventilador 2 para la ciudad de Inírida.

| × \pm   |                                                                  |                                                          |                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ptions  | EO Options                                                       | Costir                                                   | ng                                                                                           | Comments                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                  |                                                          |                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - Pres  | sure                                                             | -                                                        | Con                                                                                          | nposition                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                  |                                                          | Mo                                                                                           | le-Flow •                                                                                                                                                              | kmol/hr •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4 C     | •                                                                |                                                          |                                                                                              | Component                                                                                                                                                              | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 mm    | Hg 🔹                                                             |                                                          | Þ                                                                                            | N2                                                                                                                                                                     | 21,9729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                                                                  |                                                          | •                                                                                            | 02                                                                                                                                                                     | 5,91579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •       |                                                                  |                                                          | -                                                                                            | AR                                                                                                                                                                     | 0.26198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| kmo     | l∕hr ▼                                                           |                                                          | -                                                                                            | CO2                                                                                                                                                                    | 0.01972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | -                                                                |                                                          |                                                                                              | 420                                                                                                                                                                    | 1 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                                                                  |                                                          | <u> </u>                                                                                     | H20                                                                                                                                                                    | 1,39099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                                                                  |                                                          |                                                                                              | CACL2                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                  |                                                          | ÷.                                                                                           | CA++                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                  |                                                          | Þ                                                                                            | CL-                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| peratur | e                                                                |                                                          |                                                                                              |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                                                  |                                                          |                                                                                              | Total                                                                                                                                                                  | 29,7614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | <ul> <li>Pres</li> <li>4 C</li> <li>7 mm</li> <li>kmo</li> </ul> | <pre>     + ptions EO Options      Pressure      C</pre> | <pre>     + ptions EO Options Costir      Pressure 4 C 7 mmHg     *     kmol/hr     * </pre> | <pre>x + ptions EO Options Costing  • Pressure 4 C 7 mmHg • kmol/hr •  &gt; &gt;</pre> | + + ptions EO Options Costing Comments • Pressure • Composition • Mole-Flow • 4 C • 7 mmHg • N2 • 02 • AR • CO2 • CACL2 • CA++ • CL- • CL- • CTable • CTab |

Anexo E 145. Especificación de la presión de la columna de Absorción y desorción para la ciudad de Inírida.

| Main Flowshe    | et ×⁄                          | ABS (RadFrac  | )× 🛨       |           |          |  |  |  |  |  |  |
|-----------------|--------------------------------|---------------|------------|-----------|----------|--|--|--|--|--|--|
| Configura       | ation                          |               | Pressure   | Condenser | Reboiler |  |  |  |  |  |  |
| View            | Top /                          | Bottom        |            | •         |          |  |  |  |  |  |  |
| _ Top stage / ( | Top stage / Condenser pressure |               |            |           |          |  |  |  |  |  |  |
| Stage 1 / Co    | ndense                         | er pressure   | 0,985      | i3 atm    | •        |  |  |  |  |  |  |
| Stage 2 pres    | sure (o                        | ptional) —    |            |           |          |  |  |  |  |  |  |
| Stage 2 p       | ressure                        |               |            | bar       | -        |  |  |  |  |  |  |
| Condens         | er pres                        | sure drop     |            | bar       | ~        |  |  |  |  |  |  |
| Pressure dro    | p for re                       | est of column | (optional) |           |          |  |  |  |  |  |  |
| Stage pre       | ssure c                        | lrop          |            | bar       | •        |  |  |  |  |  |  |
| 🔘 Column        | pressur                        | e drop        |            | bar       | Ŧ        |  |  |  |  |  |  |

| Main Flowsheet × COLECTOR (Hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iter) ×   | +           |         |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|---------|---|
| Specifications Flash Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Utility   | Comments    |         |   |
| - Flash specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |         |   |
| Flash Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temp      | erature     |         | • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Press     | ure         |         | - |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 53,55       | С       | • |
| Temperature change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |             | С       | ~ |
| Degrees of superheating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |             | С       | ~ |
| Degrees of subcooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |             | С       | ~ |
| Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | 0,9853      | atm     | • |
| Duty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |             | cal/sec | - |
| Vapor fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |             |         |   |
| Pressure drop correlation parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |             |         |   |
| Always calculate pressure drop of a state of the state | orrelatio | n parameter |         |   |
| Valid phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |         |   |
| Vapor-Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •         | •           |         |   |

Anexo E 146. Especificación del Colector para la ciudad de Inírida.

Anexo E 147. Especificación del Enfriador para la ciudad de Inírida.

| lash Type                           | Temperature        |         | • |
|-------------------------------------|--------------------|---------|---|
|                                     | Pressure           |         | • |
| Temperature                         | 22                 | С       | • |
| Temperature change                  |                    | С       | ~ |
| Degrees of superheating             |                    | С       | ~ |
| Degrees of subcooling               |                    | С       | Ŧ |
| Pressure                            | 0,9853             | atm     | • |
| Duty                                |                    | cal/sec | Ŧ |
| Vapor fraction                      |                    |         |   |
| Pressure drop correlation parameter |                    |         |   |
| Always calculate pressure drop cor  | relation parameter |         |   |

| Main Flow | sheet ×   | MIXEF      | R (Mixer) | - Stream Resu | ts (Boundary) $	imes$ | +   |        |          |              |      |              |
|-----------|-----------|------------|-----------|---------------|-----------------------|-----|--------|----------|--------------|------|--------------|
| Material  | Heat      | Load       | Work      | Vol.% Curves  | Wt. % Curves          | Pet | roleum | Polymer  | s Solids     |      |              |
|           |           |            |           |               | Units                 |     | L0-FRE | SC 🝷     | L0-OUT       | •    | LO-ABS       |
| – MIX     | ED Subs   | tream      |           |               |                       |     |        |          |              |      |              |
| ▶ F       | hase      |            |           |               |                       |     |        |          | Liquid Phase | :    | Liquid Phase |
| ▶ T       | [emperat  | ture       |           |               | С                     |     |        | 22       |              | 22   | 22           |
| ▶ F       | ressure   |            |           |               | bar                   |     | 0      | ),998355 | 0,998        | 355  | 0,998355     |
| • •       | Aolar Va  | por Fract  | tion      |               |                       |     | 0      | ),591915 |              | 0    | 0            |
| 4         | Molar Lic | quid Frac  | tion      |               |                       |     | 0      | 0,408085 |              | 1    | 1            |
| Þ I       | Aolar So  | lid Fracti | ion       |               |                       |     |        | 0        |              | 0    | 0            |
| •         | Mass Vap  | or Fracti  | ion       |               |                       |     | (      | ),720238 |              | 0    | 0            |
| •         | Mass Liq  | uid Fract  | tion      |               |                       |     | 0      | ),279762 |              | 1    | 1            |
| •         | Mass Soli | id Fractio | on        |               |                       |     |        | 0        |              | 0    | 0            |
| •         | Molar En  | thalpy     |           |               | cal/mol               |     |        | -31069,1 | -6857        | 78,5 | -68578,5     |
| •         | Mass Ent  | halpy      |           |               | cal/gm                |     |        | -1178,47 | -3025        | 5,12 | -3025,12     |
| •         | Molar En  | tropy      |           |               | cal/mol-K             |     |        | -15,3899 | -33,4        | 225  | -33,4225     |
| Þ 1       | Mass Ent  | ropy       |           |               | cal/gm-K              |     | -(     | ),583749 | -1,47        | 433  | -1,47433     |
| •         | Molar De  | nsity      |           |               | mol/cc                |     | 6,87   | 488e-05  | 0,0645       | 692  | 0,0645692    |
| N         | Mass Der  | nsity      |           |               | gm/cc                 |     | 0,0    | 0181249  | 1,46         | 376  | 1,46376      |
| > E       | nthalpy   | Flow       |           |               | cal/sec               |     | -(     | 0,050325 | -5,36078e    | +06  | -5,36078e+06 |
| > A       | Average   | MW         |           |               |                       |     |        | 26,364   | 22,6         | 697  | 22,6697      |

| Anexo E 148. | Resultados de la | s condiciones | energéticas d | e cada coi | rriente para e | el mezclador e | n la ciudad de | Inírida. |
|--------------|------------------|---------------|---------------|------------|----------------|----------------|----------------|----------|
|              |                  |               |               |            |                |                |                |          |

Anexo E 149. Resultados de los flujos y fracciones molares del mezclador para la ciudad de Inírida.

| Main Flow | sheet × MIXER (Mixer) - Stream Resu | lts (Boundary) $	imes$ | +         |          |             |             |
|-----------|-------------------------------------|------------------------|-----------|----------|-------------|-------------|
| Material  | Heat Load Work Vol.% Curves         | Wt. % Curves           | Petroleum | Polymers | Solids      |             |
|           |                                     | Units                  | L0-FRES   | c •      | LO-OUT -    | LO-ABS -    |
| -         | Mole Flows                          | kmol/hr                | 5,831     | 12e-06   | 281,412     | 281,412     |
| •         | N2                                  | kmol/hr                | 1,852     | 39e-07   | 0,0393678   | 0,039368    |
| •         | 02                                  | kmol/hr                | 2,966     | 39e-06   | 0,0319142   | 0,0319171   |
| •         | AR                                  | kmol/hr                | 7,119     | 47e-08   | 0,00103657  | 0,00103665  |
| •         | C02                                 | kmol/hr                | 1,456     | 16e-07   | 0,000552102 | 0,000552247 |
| •         | H2O                                 | kmol/hr                | 2,462     | 57e-06   | 212,373     | 212,373     |
| •         | CACL2                               | kmol/hr                |           | 0        | 0           | 0           |
| •         | CA++                                | kmol/hr                | 6,27      | 23e-11   | 22,9889     | 22,9889     |
| •         | CL-                                 | kmol/hr                | 1,254     | 46e-10   | 45,9777     | 45,9777     |
| - 1       | Mole Fractions                      |                        |           |          |             |             |
| •         | N2                                  |                        | 0,03      | 317669   | 0,000139894 | 0,000139894 |
| •         | 02                                  |                        | 0         | ,50871   | 0,000113407 | 0,000113418 |
|           | AR                                  |                        | 0,01      | 122093   | 3,68347e-06 | 3,68373e-06 |
| Figure 1  | CO2                                 |                        | 0,02      | 249719   | 1,9619e-06  | 1,96241e-06 |
|           | H2O                                 |                        | 0,4       | 422309   | 0,754668    | 0,754668    |
| Fille     | CACL2                               |                        |           | 0        | 0           | 0           |
|           | CA++                                |                        | 1,075     | 65e-05   | 0,0816911   | 0,0816911   |
| •         | CL-                                 |                        | 2,151     | 29e-05   | 0,163382    | 0,163382    |

| Main           | Flows | heet ×    | MIXER | (Mixer) | - Stream Re | esult | s (Boundary) $	imes$ | +       |         |      |       |          |        |            |
|----------------|-------|-----------|-------|---------|-------------|-------|----------------------|---------|---------|------|-------|----------|--------|------------|
| Mate           | erial | Heat      | Load  | Work    | Vol.% Curv  | es    | Wt. % Curves         | Petrole | eum     | Poly | /mers | Solids   |        |            |
|                |       |           |       |         |             |       | Units                | L0-FR   | ESC     | •    | L0-OU | т•       | L0-ABS | 5 <b>•</b> |
| •              | — ма  | ass Flow  | 'S    |         |             | kg/   | /hr                  | 0,00    | 001537  | 34   |       | 6379,52  |        | 6379,52    |
| $ \mathbf{F} $ |       | N2        |       |         |             | kg/   | 'nr                  | 5,1     | 8919e-  | 06   |       | 1,10283  |        | 1,10283    |
|                |       | O2        |       |         |             | kg/   | 'hr                  | 9,4     | 19209e- | 05   |       | 1,02121  |        | 1,02131    |
|                |       | AR        |       |         |             | kg/   | 'hr                  | 2,8     | 4409e-  | 06   | 0     | ,0414091 | 0,     | 0414119    |
|                |       | CO2       |       |         |             | kg/   | 'nr                  | 6,4     | 40853e- | 06   | 0     | ,0242979 | 0,     | 0243043    |
| •              |       | H2O       |       |         |             | kg/   | 'nr                  | 4,4     | 3639e-  | 05   |       | 3825,95  |        | 3825,95    |
|                |       | CACL2     | 2     |         |             | kg/   | ′hr                  |         |         | 0    |       | 0        |        | 0          |
| •              |       | CA++      |       |         |             | kg/   | 'nr                  | 2,5     | 51374e- | 09   |       | 921,323  |        | 921,323    |
| •              |       | CL-       |       |         |             | kg/   | 'nr                  | 4,4     | 14747e- | 09   |       | 1630,06  |        | 1630,06    |
| $  \cdot  $    | — Ma  | ass Fract | tions |         |             |       |                      |         |         |      |       |          |        |            |
|                |       | N2        |       |         |             |       |                      | 0       | 0,03375 | 44   | 0,0   | 0017287  | 0,00   | 0172871    |
|                |       | O2        |       |         |             |       |                      |         | 0,6174  | 38   | 0,00  | 0160077  | 0,00   | 0160092    |
|                |       | AR        |       |         |             |       |                      | (       | 0,01850 | 01   | 6,49  | 9093e-06 | 6,49   | 138e-06    |
| •              |       | CO2       |       |         |             |       |                      |         | 0,0416  | 86   | 3,80  | 0873e-06 | 3,80   | 973e-06    |
|                |       | H2O       |       |         |             |       |                      |         | 0,2885  | 76   |       | 0,599724 | (      | 0,599724   |
| $\rightarrow$  |       | CACL2     | 2     |         |             |       |                      |         |         | 0    |       | 0        |        | 0          |
|                |       | CA++      |       |         |             |       |                      | 1,6     | 3513e-  | 05   |       | 0,144419 | (      | 0,144419   |
| ×.             |       | CL-       |       |         |             |       |                      | 2,8     | 9297e-  | 05   |       | 0,255514 | (      | 0,255514   |
| •              | Vo    | lume Flo  | DW    |         |             | l/m   | in                   | 0,      | 001413  | 65   |       | 72,6383  |        | 72,6383    |

Anexo E 150. Resultados de los flujos y fracciones masicos del mezclador para la ciudad de Inírida.

## Anexo E 151. Resultados energéticos del Ventilador 1 para la ciudad de Inírida.

| _ | Main | n Flowsł | neet ×/VE      | NT-1 (Compr) | - Resu | lts× 🕂   |                  |               |         |
|---|------|----------|----------------|--------------|--------|----------|------------------|---------------|---------|
|   | Sum  | nmary    | Balance        | Parameters   | Perfo  | rmance   | Regression       | Utility Usage | 🕜 Statu |
|   |      |          |                |              |        |          |                  |               |         |
|   | Þ    | Comp     | pressor mod    | del          |        | lsentrop | ic Compressor    |               |         |
|   | Þ    | Phase    | calculatior    | ns           |        | Vapor pł | nase calculation | 1             |         |
|   | Þ    | Indica   | ted horsep     | ower         |        |          | 33,374           | Watt          |         |
|   |      | Brake    | horsepowe      | er           |        |          | 33,374           | Watt          |         |
|   | þ.   | Net w    | ork require    | d            |        |          | 33,374           | Watt          |         |
|   | Þ    | Powe     | r loss         |              |        |          | 0                | Watt          |         |
|   | Þ    | Efficie  | ency           |              |        |          |                  |               | 0,82    |
|   | Þ    | Mech     | anical effici  | iency        |        |          |                  |               | 1       |
|   | ۲    | Outle    | t pressure     |              |        |          | 0,985276         | atm           |         |
|   |      | Outle    | t temperatu    | ıre          |        |          | 34,2564          | С             |         |
|   | Þ    | lsentr   | opic outlet    | temperature  |        |          | 34,2104          | С             |         |
|   |      | Vapor    | fraction       |              |        |          |                  |               | 1       |
|   |      | Displa   | cement         |              |        |          |                  |               |         |
|   | Þ    | Volun    | netric efficie | ency         |        |          |                  |               |         |

| Main Flows | neet × VENT-1 (Compr) - Stream Res | ults (Boundary) 🛛 🕂 |             |             |
|------------|------------------------------------|---------------------|-------------|-------------|
| Material   | Work Vol.% Curves Wt. % Curves     | Petroleum Polym     | ers Solids  |             |
|            |                                    | Units               | AIRE-ABS -  | VN+1-ABS -  |
| 🕨 — м      | ole Flows                          | kmol/hr             | 15,9408     | 15,9408     |
| •          | N2                                 | kmol/hr             | 11,7692     | 11,7692     |
| •          | 02                                 | kmol/hr             | 3,16862     | 3,16862     |
| •          | AR                                 | kmol/hr             | 0,14032     | 0,14032     |
| •          | CO2                                | kmol/hr             | 0,01056     | 0,01056     |
| •          | H2O                                | kmol/hr             | 0,85217     | 0,85217     |
|            | CACL2                              | kmol/hr             | 0           | 0           |
| •          | CA++                               | kmol/hr             | 0           | 0           |
| •          | CL-                                | kmol/hr             | 0           | 0           |
| ▶ — м      | ole Fractions                      |                     |             |             |
| •          | N2                                 |                     | 0,738303    | 0,738303    |
| •          | 02                                 |                     | 0,198774    | 0,198774    |
| •          | AR                                 |                     | 0,00880255  | 0,00880255  |
|            | CO2                                |                     | 0,000662449 | 0,000662449 |
| •          | H2O                                |                     | 0,0534583   | 0,0534583   |
| •          | CACL2                              |                     | 0           | 0           |
| •          | CA++                               |                     | 0           | 0           |
|            | CL-                                |                     | 0           | 0           |

Anexo E 152. Resultados de los flujos y fracciones molares del Ventilador 1 para la ciudad de Inírida.

Anexo E 153. Resultados de los flujos y fracciones másicas del Ventilador 1 para la ciudad de Inírida.

Main Flowsheet × VENT-1 (Compr) - Stream Results (Boundary) × +

|          |                   |              |           |    |        | r       |           |     |
|----------|-------------------|--------------|-----------|----|--------|---------|-----------|-----|
| Material | Work Vol.% Curves | Wt. % Curves | Petroleum | Po | lymers | Solids  |           |     |
|          |                   |              | Units     |    |        | PC -    | VNL 1-APS |     |
|          |                   |              |           |    | AIRE-A | • 60    | VIN+1-AD3 | •   |
| ► - P    | Mass Flows        | k            | g/hr      |    |        | 452,51  | 452,      | 51  |
|          | N2                | k            | g/hr      |    |        | 329,695 | 329,6     | 95  |
| •        | 02                | k            | g/hr      |    |        | 101,392 | 101,3     | 92  |
| •        | AR                | k            | g/hr      |    |        | 5,6055  | 5,60      | )55 |
| •        | CO2               | k            | g/hr      |    | 0      | ,464743 | 0,4647    | 43  |
|          | H2O               | k            | g/hr      |    |        | 15,3521 | 15,35     | 21  |
| •        | CACL2             | k            | g/hr      |    |        | 0       |           | 0   |
| •        | CA++              | k            | g/hr      |    |        | 0       |           | 0   |
| •        | CL-               | k            | g/hr      |    |        | 0       |           | 0   |
| - N      | Mass Fractions    |              |           |    |        |         |           |     |
| Þ        | N2                |              |           |    | 0      | ,728593 | 0,7285    | 93  |
| •        | 02                |              |           |    | 0      | ,224066 | 0,2240    | 66  |
| •        | AR                |              |           |    | 0,0    | 0123876 | 0,01238   | 76  |
|          | CO2               |              |           |    | 0,00   | 0102704 | 0,001027  | 04  |
| •        | H2O               |              |           |    | 0,0    | 0339265 | 0,03392   | 65  |
|          | CACL2             |              |           |    |        | 0       |           | 0   |
| •        | CA++              |              |           |    |        | 0       |           | 0   |
| •        | CL-               |              |           |    |        | 0       |           | 0   |
|          | /olume Flow       | IJ           | min       |    |        | 6810,86 | 6800,     | 08  |

|   |     |          | Kult           |              |        |          | Summary          |               |          |
|---|-----|----------|----------------|--------------|--------|----------|------------------|---------------|----------|
| / | Mai | n Flowsh | neet × VE      | NT-2 (Compr) | - Resu | lts × 🛨  |                  |               |          |
|   | Su  | mmary    | Balance        | Parameters   | Perfo  | rmance   | Regression       | Utility Usage | 🖉 Status |
|   |     |          |                |              |        |          |                  |               |          |
|   |     | Comp     | pressor mod    | lel          |        | lsentrop | ic Compressor    |               |          |
|   | ×   | Phase    | calculation    | 15           |        | Vapor pł | nase calculation | ı             |          |
|   |     | Indica   | ted horsep     | ower         |        |          | 62,309           | Watt          |          |
|   |     | Brake    | horsepowe      | r            |        |          | 62,309           | Watt          |          |
|   |     | Net w    | ork require    | d            |        |          | 62,309           | Watt          |          |
|   |     | Powe     | r loss         |              |        |          | 0                | Watt          |          |
|   |     | Efficie  | ency           |              |        |          |                  |               | 0,82     |
|   |     | Mech     | anical effici  | ency         |        |          |                  |               | 1        |
|   | ۲   | Outlet   | t pressure     |              |        |          | 0,985276         | atm           |          |
|   |     | Outlet   | t temperatu    | ire          |        |          | 34,2564          | С             |          |
|   |     | lsentr   | opic outlet    | temperature  |        |          | 34,2104          | с             |          |
|   |     | Vapor    | fraction       |              |        |          |                  |               | 1        |
|   |     | Displa   | cement         |              |        |          |                  |               |          |
|   |     | Volum    | netric efficie | ency         |        |          |                  |               |          |

Anexo E 154. Resultados energéticos del Ventilador 2 para la ciudad de Inírida.

Anexo E 155. Resultados de los flujos y fracciones molares del Ventilador 2 para la ciudad de Inírida.

| Main Flow | sheet × VENT-2 (Compr) - Stream Res | ults (Boundary) $	imes$ + |             |             |
|-----------|-------------------------------------|---------------------------|-------------|-------------|
| Material  | Work Vol.% Curves Wt. % Curves      | Petroleum Polym           | ers Solids  |             |
|           |                                     | Units                     | AIRE-DES -  | VN+1-DES -  |
| - I       | Mole Flows                          | kmol/hr                   | 29,7614     | 29,7614     |
|           | N2                                  | kmol/hr                   | 21,9729     | 21,9729     |
| •         | 02                                  | kmol/hr                   | 5,91579     | 5,91579     |
|           | AR                                  | kmol/hr                   | 0,26198     | 0,26198     |
|           | CO2                                 | kmol/hr                   | 0,01972     | 0,01972     |
|           | H2O                                 | kmol/hr                   | 1,59099     | 1,59099     |
|           | CACL2                               | kmol/hr                   | 0           | 0           |
|           | CA++                                | kmol/hr                   | 0           | 0           |
| •         | CL-                                 | kmol/hr                   | 0           | 0           |
| - I       | Mole Fractions                      |                           |             |             |
| •         | N2                                  |                           | 0,738303    | 0,738303    |
| •         | 02                                  |                           | 0,198774    | 0,198774    |
| •         | AR                                  |                           | 0,00880268  | 0,00880268  |
|           | CO2                                 |                           | 0,000662603 | 0,000662603 |
|           | H2O                                 |                           | 0,0534582   | 0,0534582   |
|           | CACL2                               |                           | 0           | 0           |
|           | CA++                                |                           | 0           | 0           |
|           | CL-                                 |                           | 0           | 0           |

| Main Flowsheet × VENT-2 (Compr) - Stream Results (Boundary) × + |                           |       |           |          |         |            |  |  |  |  |  |
|-----------------------------------------------------------------|---------------------------|-------|-----------|----------|---------|------------|--|--|--|--|--|
| Material                                                        | Work Vol.% Curves Wt. % C | urves | Petroleum | Polymers | Solids  |            |  |  |  |  |  |
|                                                                 |                           |       | Units     | AIRE-D   | ES 🔻    | VN+1-DES • |  |  |  |  |  |
| - I                                                             | Mass Flows                | kg    | g/hr      |          | 844,832 | 844,832    |  |  |  |  |  |
| ÷                                                               | N2                        | kg    | J/hr      |          | 615,538 | 615,538    |  |  |  |  |  |
| •                                                               | 02                        | kg    | j/hr      |          | 189,298 | 189,298    |  |  |  |  |  |
| •                                                               | AR                        | kg    | j/hr      |          | 10,4656 | 10,4656    |  |  |  |  |  |
| >                                                               | CO2                       | kg    | j/hr      | 0        | ,867873 | 0,867873   |  |  |  |  |  |
| •                                                               | H2O                       | kg    | j/hr      |          | 28,6621 | 28,6621    |  |  |  |  |  |
| •                                                               | CACL2                     | kg    | j/hr      |          | 0       | 0          |  |  |  |  |  |
| •                                                               | CA++                      | kg    | J/hr      |          | 0       | 0          |  |  |  |  |  |
| •                                                               | CL-                       | kg    | J/hr      |          | 0       | 0          |  |  |  |  |  |
| - I                                                             | Mass Fractions            |       |           |          |         |            |  |  |  |  |  |
| •                                                               | N2                        |       |           | 0        | ,728592 | 0,728592   |  |  |  |  |  |
| •                                                               | 02                        |       |           | 0        | ,224066 | 0,224066   |  |  |  |  |  |
| •                                                               | AR                        |       |           | 0,0      | 0123878 | 0,0123878  |  |  |  |  |  |
| •                                                               | CO2                       |       |           | 0,0      | 0102727 | 0,00102727 |  |  |  |  |  |
| •                                                               | H2O                       |       |           | 0,0      | 0339264 | 0,0339264  |  |  |  |  |  |
| •                                                               | CACL2                     |       |           |          | 0       | 0          |  |  |  |  |  |
| •                                                               | CA++                      |       |           |          | 0       | 0          |  |  |  |  |  |
| •                                                               | CL-                       |       |           |          | 0       | 0          |  |  |  |  |  |
|                                                                 | /olume Flow               | l/r   | min       |          | 12715,8 | 12695,7    |  |  |  |  |  |

Anexo E 156. Resultados de los flujos y fracciones másicas del Ventilador 2 para la ciudad de Inírida.

Anexo E 157. Resultados energéticos e las corrientes del Absorbedor para la ciudad de Inírida.

| Material | Heat Load \          | /ol.% Curves | Wt. % C | Curves  | Petroleum | Polymers    | Solic | ls          |   |              |             |   |
|----------|----------------------|--------------|---------|---------|-----------|-------------|-------|-------------|---|--------------|-------------|---|
|          |                      |              |         |         | Units     | L0-ABS      | •     | VN+1-ABS    | • | LN-ABS -     | V1-ABS      | • |
| - MD     | (ED Substream        |              |         |         |           |             |       |             |   |              |             |   |
| •        | Phase                |              |         |         |           | Liquid Phas | e     | Vapor Phase |   | Liquid Phase | Vapor Phase |   |
| •        | Temperature          |              |         | С       |           |             | 22    | 34,256      | 4 | 24,5451      | 23,4581     |   |
| •        | Pressure             |              |         | bar     |           | 0,998       | 3355  | 0,99833     | 1 | 0,998355     | 0,998355    |   |
| •        | Molar Vapor Fractio  | n            |         |         |           |             | 0     |             | 1 | 0            | 1           |   |
| •        | Molar Liquid Fractio | on           |         |         |           |             | 1     |             | 0 | 1            | 0           |   |
| •        | Molar Solid Fraction | ı            |         |         |           |             | 0     |             | 0 | 0            | 0           |   |
| •        | Mass Vapor Fraction  | ı            |         |         |           |             | 0     |             | 1 | 0            | 1           |   |
|          | Mass Liquid Fraction | n            |         |         |           |             | 1     |             | 0 | 1            | 0           |   |
|          | Mass Solid Fraction  |              |         |         |           |             | 0     |             | 0 | 0            | 0           |   |
|          | Molar Enthalpy       |              |         | cal/mol |           | -685        | 78,5  | -3089,1     | 9 | -68539       | -1032,87    |   |
|          | Mass Enthalpy        |              |         | cal/gm  |           | -302        | 5,12  | -108,82     | 5 | -3024,52     | -35,8786    |   |
| •        | Molar Entropy        |              |         | cal/mol | -K        | -33,4       | 4225  | 1,1578      | 9 | -33,3364     | 1,09126     |   |
| •        | Mass Entropy         |              |         | cal/gm· | K         | -1,47       | 7433  | 0,040789    | 6 | -1,47108     | 0,0379067   |   |
|          | Molar Density        |              |         | mol/cc  |           | 0,0645      | 5692  | 3,90702e-0  | 5 | 0,0644587    | 4,04882e-05 |   |
| •        | Mass Density         |              |         | gm/cc   |           | 1,46        | 5376  | 0,0011090   | 8 | 1,46071      | 0,00116557  |   |
| •        | Enthalpy Flow        |              |         | cal/sec |           | -5,36078e   | +0б   | -1367       | 9 | -5,37007e+06 | -4387,01    |   |
| •        | Average MW           |              |         |         |           | 22,6        | 5697  | 28,386      | 8 | 22,6611      | 28,788      |   |

| / | Main Flow | sheet $	imes$ | ABS (F | RadFrac) - Strea | n Result | ts (Bound | iary) × 🕂 |          |       |             |             |             |
|---|-----------|---------------|--------|------------------|----------|-----------|-----------|----------|-------|-------------|-------------|-------------|
|   | Material  | Heat          | Load   | Vol.% Curves     | Wt. %    | Curves    | Petroleum | Polymers | Solid | s           |             |             |
|   |           |               |        |                  |          |           | Units     | L0-ABS   | -     | VN+1-ABS    | LN-ABS -    | V1-ABS -    |
|   | - 1       | Mole Flo      | ws     |                  |          | kmol/h    | r         | 281      | ,412  | 15,9408     | 282,062     | 15,2906     |
|   | •         | N2            |        |                  |          | kmol/hr   |           | 0,03     | 9368  | 11,7692     | 0,0667467   | 11,7418     |
|   | •         | 02            |        |                  |          | kmol/hr   |           | 0,031    | 9171  | 3,16862     | 0,0547358   | 3,1458      |
|   | •         | AR            |        |                  |          | kmol/hr   |           | 0,0010   | 3665  | 0,14032     | 0,0017026   | 0,139654    |
|   | •         | CO2           |        |                  |          | kmol/hr   |           | 0,00055  | 2247  | 0,01056     | 0,000650788 | 0,0104615   |
|   | •         | H2O           |        |                  |          | kmol/hr   |           | 212      | 2,373 | 0,85217     | 212,972     | 0,252907    |
|   | •         | CACL          | .2     |                  |          | kmol/hr   |           |          | 0     | 0           | 0           | 0           |
|   | •         | CA++          | ÷      |                  |          | kmol/hr   |           | 22,      | 9889  | 0           | 22,9889     | 0           |
|   | •         | CL-           |        |                  |          | kmol/hr   |           | 45,      | 9777  | 0           | 45,9777     | 0           |
|   | - I       | Mole Fra      | ctions |                  |          |           |           |          |       |             |             |             |
|   | •         | N2            |        |                  |          |           |           | 0,00013  | 9894  | 0,738303    | 0,000236638 | 0,767908    |
|   | •         | 02            |        |                  |          |           |           | 0,00011  | 3418  | 0,198774    | 0,000194056 | 0,205734    |
|   | •         | AR            |        |                  |          |           |           | 3,68373  | e-06  | 0,00880255  | 6,03625e-06 | 0,00913332  |
|   | •         | CO2           |        |                  |          |           |           | 1,96241  | e-06  | 0,000662449 | 2,30725e-06 | 0,000684175 |
|   | •         | H2O           |        |                  |          |           |           | 0,75     | 4668  | 0,0534583   | 0,755053    | 0,01654     |
|   | •         | CACL          | .2     |                  |          |           |           |          | 0     | 0           | 0           | 0           |
|   |           | CA++          | ÷      |                  |          |           |           | 0,081    | 6911  | 0           | 0,0815028   | 0           |
|   | •         | CL-           |        |                  |          |           |           | 0,16     | 3382  | 0           | 0,163006    | 0           |

Anexo E 158. Resultados de los flujos y fracciones molares del Absorbedor para la ciudad de Inírida.

Anexo E 159. Resultados de los flujos y fracciones másicas del Absorbedor para la ciudad de Inírida.

| Material | Heat      | Load  | Vol.% Curves | Wt. % Curves | Petroleur | n Polymers  | Solids     |             |            |
|----------|-----------|-------|--------------|--------------|-----------|-------------|------------|-------------|------------|
|          |           |       |              | Ur           | nits      | LO-ABS      | VN+1-ABS • | LN-ABS 🔻    | V1-ABS     |
|          | Mass Flov | vs    |              | kg/hr        |           | 6379,52     | 452,51     | 6391,85     | 440,186    |
| •        | N2        |       |              | kg/hr        |           | 1,10283     | 329,695    | 1,86981     | 328,928    |
| Þ.       | 02        |       |              | kg/hr        |           | 1,02131     | 101,392    | 1,75148     | 100,662    |
| Þ        | AR        |       |              | kg/hr        |           | 0,0414119   | 5,6055     | 0,0680154   | 5,5789     |
| Þ.       | CO2       |       |              | kg/hr        |           | 0,0243043   | 0,464743   | 0,0286411   | 0,460407   |
| •        | H2O       |       |              | kg/hr        |           | 3825,95     | 15,3521    | 3836,75     | 4,55618    |
| •        | CACL      | 2     |              | kg/hr        |           | 0           | 0          | 0           | 0          |
| •        | CA++      |       |              | kg/hr        |           | 921,323     | 0          | 921,323     | 0          |
| •        | CL-       |       |              | kg/hr        |           | 1630,06     | 0          | 1630,06     | 0          |
| - N      | Mass Frac | tions |              |              |           |             |            |             |            |
| •        | N2        |       |              |              |           | 0,000172871 | 0,728593   | 0,00029253  | 0,747249   |
| •        | 02        |       |              |              |           | 0,000160092 | 0,224066   | 0,000274018 | 0,22868    |
| Þ.       | AR        |       |              |              |           | 6,49138e-06 | 0,0123876  | 1,0641e-05  | 0,012674   |
| Þ        | CO2       |       |              |              |           | 3,80973e-06 | 0,00102704 | 4,48087e-06 | 0,00104594 |
| Þ.       | H2O       |       |              |              |           | 0,599724    | 0,0339265  | 0,600256    | 0,0103506  |
| •        | CACL      | 2     |              |              |           | 0           | 0          | 0           | 0          |
| •        | CA++      |       |              |              |           | 0,144419    | 0          | 0,14414     | 0          |
|          | CL-       |       |              |              |           | 0,255514    | 0          | 0,255022    | 0          |
| > V      | /olume Fl | ow    |              | I/min        |           | 72,6383     | 6800.08    | 72.931      | 6294.27    |

| Main Flowsheet × DESORB (RadFrac) - Stream Results (Boundary) × + |                              |                  |                |             |              |             |  |  |  |
|-------------------------------------------------------------------|------------------------------|------------------|----------------|-------------|--------------|-------------|--|--|--|
| Material                                                          | Heat Load Vol.% Curves Wt. % | Curves Petroleum | Polymers Solid | ds          |              |             |  |  |  |
|                                                                   |                              | Units            | L0-DESOR -     | VN+1-DES 🔻  | LN-DESOR -   | V1-DES -    |  |  |  |
| 🕨 — МО                                                            | XED Substream                |                  |                |             |              |             |  |  |  |
| •                                                                 | Phase                        |                  |                | Vapor Phase | Liquid Phase | Vapor Phase |  |  |  |
| •                                                                 | Temperature                  | с                | 53,55          | 34,2564     | 50,4324      | 51,2496     |  |  |  |
| •                                                                 | Pressure                     | bar              | 0,998355       | 0,998331    | 0,998355     | 0,998355    |  |  |  |
| •                                                                 | Molar Vapor Fraction         |                  | 0,000183793    | 1           | 0            | 1           |  |  |  |
| •                                                                 | Molar Liquid Fraction        |                  | 0,999816       | 0           | 1            | 0           |  |  |  |
| •                                                                 | Molar Solid Fraction         |                  | 0              | 0           | 0            | 0           |  |  |  |
| •                                                                 | Mass Vapor Fraction          |                  | 0,000230749    | 1           | 0            | 1           |  |  |  |
| •                                                                 | Mass Liquid Fraction         |                  | 0,999769       | 0           | 1            | 0           |  |  |  |
| •                                                                 | Mass Solid Fraction          |                  | 0              | 0           | 0            | 0           |  |  |  |
| •                                                                 | Molar Enthalpy               | cal/mol          | -68226,2       | -3089,2     | -68273,8     | -4041,01    |  |  |  |
| •                                                                 | Mass Enthalpy                | cal/gm           | -3010,72       | -108,825    | -3011,68     | -143,374    |  |  |  |
| •                                                                 | Molar Entropy                | cal/mol-K        | -32,3336       | 1,15789     | -32,4376     | 1,4212      |  |  |  |
| •                                                                 | Mass Entropy                 | cal/gm-K         | -1,42683       | 0,0407898   | -1,43088     | 0,0504238   |  |  |  |
| •                                                                 | Molar Density                | mol/cc           | 0,0483815      | 3,90702e-05 | 0,063922     | 3,70226e-05 |  |  |  |
| •                                                                 | Mass Density                 | gm/cc            | 1,09638        | 0,00110908  | 1,44909      | 0,00104349  |  |  |  |
|                                                                   | Enthalpy Flow                | cal/sec          | -5,34557e+06   | -25538,6    | -5,33697e+06 | -34137      |  |  |  |
| •                                                                 | Average MW                   |                  | 22,6611        | 28,3868     | 22,6697      | 28,1851     |  |  |  |

Anexo E 160. Resultados energéticos e las corrientes del Desorbedor para la ciudad de Inírida.

Anexo E 161. Resultados de los flujos y fracciones molares del Desorbedor para la ciudad de Inírida.

| Material | Heat     | Load    | Vol.% Curves | Wt. % C | Curves  | Petroleum | Polymers | Solid | ls          |             |             |
|----------|----------|---------|--------------|---------|---------|-----------|----------|-------|-------------|-------------|-------------|
|          |          |         |              |         |         | Units     | L0-DESOR | •     | VN+1-DES -  | LN-DESOR -  | V1-DES -    |
| -        | Mole Flo | ws      |              |         | kmol/h  | r         | 282      | ,062  | 29,7614     | 281,412     | 30,4116     |
|          | N2       |         |              |         | kmol/hr |           | 0,066    | 7467  | 21,9729     | 0,0393678   | 22,0003     |
|          | 02       |         |              |         | kmol/hr |           | 0,054    | 7358  | 5,91579     | 0,0319142   | 5,9386      |
|          | AR       |         |              |         | kmol/hr |           | 0,001    | 7026  | 0,26198     | 0,00103657  | 0,262646    |
|          | CO2      |         |              |         | kmol/hr |           | 0,00065  | 0788  | 0,01972     | 0,000552102 | 0,0198181   |
|          | H2O      |         |              |         | kmol/hr |           | 212      | 2,972 | 1,59099     | 212,373     | 2,19022     |
|          | CAC      | L2      |              |         | kmol/hr |           |          | 0     | 0           | 0           | 0           |
|          | CA+-     | +       |              |         | kmol/hr |           | 22,      | 9889  | 0           | 22,9889     | 0           |
|          | CL-      |         |              |         | kmol/hr |           | 45,      | 9777  | 0           | 45,9777     | 0           |
| ► -      | Mole Fra | octions |              |         |         |           |          |       |             |             |             |
|          | N2       |         |              |         |         |           | 0,00023  | 6638  | 0,738303    | 0,000139894 | 0,723418    |
| •        | O2       |         |              |         |         |           | 0,00019  | 4056  | 0,198774    | 0,000113407 | 0,195274    |
|          | AR       |         |              |         |         |           | 6,03625  | e-06  | 0,00880268  | 3,68347e-06 | 0,0086364   |
|          | CO2      |         |              |         |         |           | 2,30725  | e-06  | 0,000662603 | 1,9619e-06  | 0,000651665 |
|          | H20      |         |              |         |         |           | 0,75     | 5053  | 0,0534582   | 0,754668    | 0,0720192   |
| •        | CAC      | L2      |              |         |         |           |          | 0     | 0           | 0           | 0           |
| •        | CA+      | +       |              |         |         |           | 0,081    | 5028  | 0           | 0,0816911   | 0           |
| <b>•</b> | CL-      |         |              |         |         |           | 0,16     | 3006  | 0           | 0,163382    | 0           |

Main Flowsheet × DESORB (RadFrac) - Stream Results (Boundary) × +

| Ma                     | Main Flowsheet × DESORB (RadFrac) - Stream Results (Boundary) × + |               |              |              |          |             |            |             |            |  |  |
|------------------------|-------------------------------------------------------------------|---------------|--------------|--------------|----------|-------------|------------|-------------|------------|--|--|
| М                      | laterial                                                          | Heat Load     | Vol.% Curves | Wt. % Curves | Petroleu | m Polymers  | Solids     |             |            |  |  |
|                        |                                                                   |               |              | Ur           | nits     | L0-DESOR -  | VN+1-DES - | LN-DESOR •  | V1-DES •   |  |  |
| Þ                      | - M                                                               | ass Flows     |              | kg/hr        |          | 6391,85     | 844,832    | 6379,52     | 857,154    |  |  |
| Þ                      |                                                                   | N2            |              | kg/hr        |          | 1,86981     | 615,538    | 1,10283     | 616,305    |  |  |
|                        |                                                                   | O2            |              | kg/hr        |          | 1,75148     | 189,298    | 1,02121     | 190,028    |  |  |
| Þ                      |                                                                   | AR            |              | kg/hr        |          | 0,0680154   | 10,4656    | 0,0414091   | 10,4922    |  |  |
| Þ                      |                                                                   | CO2           |              | kg/hr        |          | 0,0286411   | 0,867873   | 0,0242979   | 0,872192   |  |  |
| $\left  \cdot \right $ |                                                                   | H2O           |              | kg/hr        |          | 3836,75     | 28,6621    | 3825,95     | 39,4574    |  |  |
| ÷.                     |                                                                   | CACL2         |              | kg/hr        |          | 0           | 0          | 0           | 0          |  |  |
| ÷.                     |                                                                   | CA++          |              | kg/hr        |          | 921,323     | 0          | 921,323     | 0          |  |  |
| ÷.                     |                                                                   | CL-           |              | kg/hr        |          | 1630,06     | 0          | 1630,06     | 0          |  |  |
| ÷.                     | - M                                                               | ass Fractions |              |              |          |             |            |             |            |  |  |
|                        |                                                                   | N2            |              |              |          | 0,00029253  | 0,728592   | 0,00017287  | 0,719012   |  |  |
|                        |                                                                   | 02            |              |              |          | 0,000274018 | 0,224066   | 0,000160077 | 0,221696   |  |  |
| ÷.                     |                                                                   | AR            |              |              |          | 1,0641e-05  | 0,0123878  | 6,49093e-06 | 0,0122407  |  |  |
| ÷.                     |                                                                   | CO2           |              |              |          | 4,48087e-06 | 0,00102727 | 3,80873e-06 | 0,00101754 |  |  |
|                        |                                                                   | H2O           |              |              |          | 0,600256    | 0,0339264  | 0,599724    | 0,046033   |  |  |
|                        |                                                                   | CACL2         |              |              |          | 0           | 0          | 0           | 0          |  |  |
|                        |                                                                   | CA++          |              |              |          | 0,14414     | 0          | 0,144419    | 0          |  |  |
| $\left  \cdot \right $ |                                                                   | CL-           |              |              |          | 0,255022    | 0          | 0,255514    | 0          |  |  |
|                        | Vo                                                                | lume Flow     |              | l/min        |          | 97,1659     | 12695,7    | 73,3738     | 13690,5    |  |  |

Anexo E 162. Resultados de los flujos y fracciones másicas del Desorbedor para la ciudad de Inírida.

Anexo E 163. Resultados energéticos de la Bomba 1 para la ciudad de Inírida.

| Main Flowsheet × BOMBA-1 (Pump) - Results × + |    |              |              |               |   |  |  |  |  |
|-----------------------------------------------|----|--------------|--------------|---------------|---|--|--|--|--|
| Summary Balance                               | Pe | rformance Cu | rve          | Utility Usage | 0 |  |  |  |  |
| Fluid power                                   | [  | 8,3807       | Wat          | t             | • |  |  |  |  |
| Brake power                                   |    | 11,1743      | Wat          | t             | • |  |  |  |  |
| Electricity                                   |    | 11,1743      | Wat          | t             | • |  |  |  |  |
| Volumetric flow rate                          |    | 72,931       | l/mi         | l/min 🔹       |   |  |  |  |  |
| Pressure change                               |    | 0,068046     | atm          |               | • |  |  |  |  |
| NPSH available                                |    | 0,552779     | meter-head 🔻 |               |   |  |  |  |  |
| NPSH required                                 |    |              |              |               | Ŧ |  |  |  |  |
| Head developed                                |    | 0,481322     | met          | er-head       | • |  |  |  |  |
| Pump efficiency used                          |    | 0,75         |              |               |   |  |  |  |  |
| Net work required                             |    | 11,1743      | Wat          | t             | • |  |  |  |  |
| Outlet pressure                               |    | 1,05335      | atm          |               |   |  |  |  |  |
| Outlet temperature                            |    | 24,5465      | С            | •             |   |  |  |  |  |

| Ma | Main Flowsheet × BOMBA-1 (Pump) - Stream Results (Boundary) × + |           |              |              |           |       |             |             |  |  |
|----|-----------------------------------------------------------------|-----------|--------------|--------------|-----------|-------|-------------|-------------|--|--|
| М  | aterial                                                         | Work      | Vol.% Curves | Wt. % Curves | Petroleum | Polym | ers Solids  |             |  |  |
|    |                                                                 |           |              |              | Units     |       | LN-ABS -    | LIN-COLE -  |  |  |
|    | - 1                                                             | Mole Flov | ws           |              | kmol/hr   |       | 282,062     | 282,062     |  |  |
|    |                                                                 | N2        |              |              | kmol/hr   |       | 0,0667467   | 0,0667467   |  |  |
| Þ  |                                                                 | 02        |              |              | kmol/hr   |       | 0,0547358   | 0,0547358   |  |  |
|    |                                                                 | AR        |              |              | kmol/hr   |       | 0,0017026   | 0,0017026   |  |  |
| Þ  |                                                                 | CO2       |              |              | kmol/hr   |       | 0,000650788 | 0,000650788 |  |  |
| Þ  |                                                                 | H2O       |              |              | kmol/hr   |       | 212,972     | 212,972     |  |  |
| Þ  |                                                                 | CACL      | 2            |              | kmol/hr   |       | 0           | 0           |  |  |
| Þ  |                                                                 | CA++      |              |              | kmol/hr   |       | 22,9889     | 22,9889     |  |  |
|    |                                                                 | CL-       |              |              | kmol/hr   |       | 45,9777     | 45,9777     |  |  |
| Þ  | - 1                                                             | Mole Fra  | ctions       |              |           |       |             |             |  |  |
| Þ  |                                                                 | N2        |              |              |           |       | 0,000236638 | 0,000236638 |  |  |
|    |                                                                 | 02        |              |              |           |       | 0,000194056 | 0,000194056 |  |  |
| ÷. |                                                                 | AR        |              |              |           |       | 6,03625e-06 | 6,03625e-06 |  |  |
|    |                                                                 | CO2       |              |              |           |       | 2,30725e-06 | 2,30725e-06 |  |  |
|    |                                                                 | H2O       |              |              |           |       | 0,755053    | 0,755053    |  |  |
|    |                                                                 | CACL      | 2            |              |           |       | 0           | 0           |  |  |
|    |                                                                 | CA++      |              |              |           |       | 0,0815028   | 0,0815028   |  |  |
|    |                                                                 | CL-       |              |              |           |       | 0,163006    | 0,163006    |  |  |

Anexo E 164. Resultados de los flujos y fracciones molares de la Bomba 1 para la ciudad de Inírida.

| Anexo E 165. Resultados de los flu | jos y fracciones | másicas de la Bomba 1 | para la ciudad de Inírida. |
|------------------------------------|------------------|-----------------------|----------------------------|
|------------------------------------|------------------|-----------------------|----------------------------|

| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rial Work Vol.% Curves Wt. % Curve |     | Petroleum | Po | lymers | Solids  |             |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|-----------|----|--------|---------|-------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |     | Units     |    | LN-ABS | •       | LIN-COLE -  |  |  |
| - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mass Flows                         | kg  | /hr       |    | e      | 391,85  | 6391,85     |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N2                                 | kg  | /hr       |    |        | 1,86981 | 1,86981     |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02                                 | kg  | /hr       |    |        | 1,75148 | 1,75148     |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AR                                 | kg  | /hr       |    | 0,0    | 680154  | 0,0680154   |  |  |
| Image: A set of the | CO2                                | kg  | /hr       |    | 0,0    | 286411  | 0,0286411   |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H2O                                | kg  | /hr       |    |        | 3836,75 | 3836,75     |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CACL2                              | kg  | /hr       |    |        | 0       | 0           |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CA++                               | kg  | /hr       |    |        | 921,323 | 921,323     |  |  |
| Þ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CL-                                | kg  | /hr       |    |        | 1630,06 | 1630,06     |  |  |
| - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mass Fractions                     |     |           |    |        |         |             |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N2                                 |     |           |    | 0,00   | 029253  | 0,00029253  |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02                                 |     |           |    | 0,000  | 274018  | 0,000274018 |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AR                                 |     |           |    | 1,06   | 541e-05 | 1,0641e-05  |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO2                                |     |           |    | 4,480  | 087e-06 | 4,48087e-06 |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H2O                                |     |           |    | 0,     | 600256  | 0,600256    |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CACL2                              |     |           |    |        | 0       | 0           |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CA++                               |     |           |    |        | 0,14414 | 0,14414     |  |  |
| Þ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CL-                                |     |           |    | 0      | 255022  | 0,255022    |  |  |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume Flow                        | l/r | nin       |    |        | 72,931  | 72,9309     |  |  |

Main Flowsheet × BOMBA-1 (Pump) - Stream Results (Boundary) × +

| Main Flowsheet × BOMBA-2 (Pump) - Results × + |                |                       |  |  |  |  |  |  |  |
|-----------------------------------------------|----------------|-----------------------|--|--|--|--|--|--|--|
| Summary Balance                               | Performance Cu | rve 🛛 Utility Usage 🤇 |  |  |  |  |  |  |  |
|                                               |                |                       |  |  |  |  |  |  |  |
| Fluid power                                   | 42,1579        | Watt 🔹                |  |  |  |  |  |  |  |
| Brake power                                   | 56,2105        | Watt 🔻                |  |  |  |  |  |  |  |
| Electricity                                   | 56,2105        | Watt 🔹                |  |  |  |  |  |  |  |
| Volumetric flow rate                          | 73,3738        | l/min 🔹               |  |  |  |  |  |  |  |
| Pressure change                               | 0,34023        | atm 🔻                 |  |  |  |  |  |  |  |
| NPSH available                                | 0,11654        | meter-head 🔹          |  |  |  |  |  |  |  |
| NPSH required                                 |                | -                     |  |  |  |  |  |  |  |
| Head developed                                | 2,4259         | meter-head 🔹          |  |  |  |  |  |  |  |
| Pump efficiency used                          | 0,75           |                       |  |  |  |  |  |  |  |
| Net work required                             | 56,2105        | Watt 👻                |  |  |  |  |  |  |  |
| Outlet pressure                               | 1,32553        | atm 🝷                 |  |  |  |  |  |  |  |
| Outlet temperature                            | 50,4404        | с -                   |  |  |  |  |  |  |  |

Anexo E 166. Resultados energéticos de la Bomba 2 para la ciudad de Inírida.

Anexo E 167. Resultados de los flujos y fracciones molares de la Bomba 2 para la ciudad de Inírida.

| Main Flowsheet ×/BOMBA-2 (Pump) - Stream Results (Boundary) × + |           |              |              |           |       |     |           |    |             |
|-----------------------------------------------------------------|-----------|--------------|--------------|-----------|-------|-----|-----------|----|-------------|
| Material                                                        | Work      | Vol.% Curves | Wt. % Curves | Petroleum | Polym | ers | Solids    |    |             |
|                                                                 |           |              |              | Units     |       | LN- | DESOR     | •  | LIN-ENFR -  |
| - I                                                             | Mole Flov | ws           |              | kmol/hr   |       |     | 281,4     | 12 | 281,412     |
| •                                                               | N2        |              |              | kmol/hr   |       |     | 0,03936   | 78 | 0,0393678   |
| •                                                               | 02        |              |              | kmol/hr   |       |     | 0,03191   | 42 | 0,0319142   |
| •                                                               | AR        |              |              | kmol/hr   |       |     | 0,001036  | 57 | 0,00103657  |
| •                                                               | CO2       |              |              | kmol/hr   |       | 0   | ,0005521  | 02 | 0,000552102 |
| •                                                               | H2O       |              |              | kmol/hr   |       |     | 212,3     | 73 | 212,373     |
| •                                                               | CACL      | 2            |              | kmol/hr   |       |     |           | 0  | 0           |
| •                                                               | CA++      |              |              | kmol/hr   |       |     | 22,98     | 89 | 22,9889     |
| •                                                               | CL-       |              |              | kmol/hr   |       |     | 45,97     | 77 | 45,9777     |
| - I                                                             | Mole Fra  | ctions       |              |           |       |     |           |    |             |
| •                                                               | N2        |              |              |           |       | 0   | ,0001398  | 94 | 0,000139894 |
| •                                                               | 02        |              |              |           |       | 0   | ,0001134  | 07 | 0,000113407 |
| •                                                               | AR        |              |              |           |       | 3   | 3,68347e- | 06 | 3,68347e-06 |
| •                                                               | CO2       |              |              |           |       |     | 1,9619e-  | 06 | 1,9619e-06  |
| •                                                               | H2O       |              |              |           |       |     | 0,7546    | 68 | 0,754668    |
|                                                                 | CACL      | 2            |              |           |       |     |           | 0  | 0           |
| •                                                               | CA++      |              |              |           |       |     | 0,08169   | 11 | 0,0816911   |
| •                                                               | CL-       |              |              |           |       |     | 0,1633    | 82 | 0,163382    |

| Main Flowsheet × BOMBA-2 (Pump) - Stream Results (Boundary) × + |                               |                 |               |             |  |  |  |  |
|-----------------------------------------------------------------|-------------------------------|-----------------|---------------|-------------|--|--|--|--|
| Material                                                        | Work Vol.% Curves Wt. % Curve | es Petroleum Po | lymers Solids |             |  |  |  |  |
|                                                                 |                               | Units           | LN-DESOR -    | LIN-ENFR -  |  |  |  |  |
| > - N                                                           | Aass Flows                    | kg/hr           | 6379,52       | 6379,52     |  |  |  |  |
| >                                                               | N2                            | kg/hr           | 1,10283       | 1,10283     |  |  |  |  |
| •                                                               | 02                            | kg/hr           | 1,02121       | 1,02121     |  |  |  |  |
| •                                                               | AR                            | kg/hr           | 0,0414091     | 0,0414091   |  |  |  |  |
| •                                                               | CO2                           | kg/hr           | 0,0242979     | 0,0242979   |  |  |  |  |
| •                                                               | H2O                           | kg/hr           | 3825,95       | 3825,95     |  |  |  |  |
| •                                                               | CACL2                         | kg/hr           | 0             | 0           |  |  |  |  |
| •                                                               | CA++                          | kg/hr           | 921,323       | 921,323     |  |  |  |  |
| •                                                               | CL-                           | kg/hr           | 1630,06       | 1630,06     |  |  |  |  |
| - N                                                             | Mass Fractions                |                 |               |             |  |  |  |  |
| >                                                               | N2                            |                 | 0,00017287    | 0,00017287  |  |  |  |  |
| •                                                               | 02                            |                 | 0,000160077   | 0,000160077 |  |  |  |  |
| •                                                               | AR                            |                 | 6,49093e-06   | 6,49093e-06 |  |  |  |  |
| •                                                               | CO2                           |                 | 3,80873e-06   | 3,80873e-06 |  |  |  |  |
| •                                                               | H2O                           |                 | 0,599724      | 0,599724    |  |  |  |  |
| •                                                               | CACL2                         |                 | 0             | 0           |  |  |  |  |
| •                                                               | CA++                          |                 | 0,144419      | 0,144419    |  |  |  |  |
| - F                                                             | CL-                           |                 | 0,255514      | 0,255514    |  |  |  |  |
| ► V                                                             | olume Flow                    | l/min           | 73,3738       | 73,3731     |  |  |  |  |

Anexo E 168. Resultados de los flujos y fracciones másicas de la Bomba 2 para la ciudad de Inírida.

Anexo E 169. Resultados energéticos del Colector para la ciudad de Inírida.

| Main Flowsheet × COLECTOR (Heater) - Results × + |              |            |           |       |          |   |  |  |  |
|--------------------------------------------------|--------------|------------|-----------|-------|----------|---|--|--|--|
| Summary Balance                                  | Phase Equili | brium      | Utility U | lsage | 🥝 Status | ] |  |  |  |
| Outlet temperature                               | 53,55 C      |            | С         |       | Ŧ        |   |  |  |  |
| Outlet pressure                                  | 0,998355 bar |            |           |       | •        |   |  |  |  |
| Vapor fraction                                   | 0,000        | 183793     |           |       |          |   |  |  |  |
| Heat duty                                        |              | 102,585 kW |           |       |          | • |  |  |  |
| Net duty                                         |              | 102,585 kW |           |       |          | • |  |  |  |
| 1st liquid / Total liquid                        |              | 1          |           |       |          |   |  |  |  |
| Pressure-drop correlatio                         |              |            |           |       |          |   |  |  |  |
| Pressure drop                                    |              | 0          | ,068046   | atm   |          | • |  |  |  |

| Main Flowsheet × COLECTOR (Heater) - Stream Results (Feeds) × + |                              |                  |                |             |  |  |  |  |
|-----------------------------------------------------------------|------------------------------|------------------|----------------|-------------|--|--|--|--|
| Material                                                        | Heat Load Vol.% Curves Wt. % | Curves Petroleum | Polymers Solid | ls          |  |  |  |  |
|                                                                 |                              | Unite            |                |             |  |  |  |  |
|                                                                 |                              | Units            | LIN-COLE -     | LO-DESOR -  |  |  |  |  |
| ► - I                                                           | Mole Flows                   | kmol/hr          | 282,062        | 282,062     |  |  |  |  |
| •                                                               | N2                           | kmol/hr          | 0,0667467      | 0,0667467   |  |  |  |  |
|                                                                 | 02                           | kmol/hr          | 0,0547358      | 0,0547358   |  |  |  |  |
| •                                                               | AR                           | kmol/hr          | 0,0017026      | 0,0017026   |  |  |  |  |
| •                                                               | CO2                          | kmol/hr          | 0,000650788    | 0,000650788 |  |  |  |  |
| •                                                               | H2O                          | kmol/hr          | 212,972        | 212,972     |  |  |  |  |
| •                                                               | CACL2                        | kmol/hr          | 0              | 0           |  |  |  |  |
| •                                                               | CA++                         | kmol/hr          | 22,9889        | 22,9889     |  |  |  |  |
|                                                                 | CL-                          | kmol/hr          | 45,9777        | 45,9777     |  |  |  |  |
| ► - I                                                           | Mole Fractions               |                  |                |             |  |  |  |  |
| •                                                               | N2                           |                  | 0,000236638    | 0,000236638 |  |  |  |  |
| •                                                               | O2                           |                  | 0,000194056    | 0,000194056 |  |  |  |  |
| •                                                               | AR                           |                  | 6,03625e-06    | 6,03625e-06 |  |  |  |  |
| •                                                               | CO2                          |                  | 2,30725e-06    | 2,30725e-06 |  |  |  |  |
|                                                                 | H2O                          |                  | 0,755053       | 0,755053    |  |  |  |  |
| •                                                               | CACL2                        |                  | 0              | 0           |  |  |  |  |
| •                                                               | CA++                         |                  | 0,0815028      | 0,0815028   |  |  |  |  |
|                                                                 | CL-                          |                  | 0,163006       | 0,163006    |  |  |  |  |

Anexo E 170. Resultados de los flujos y fracciones molares del Colector para la ciudad de Inírida.

| Anexo E 171 | . Resultados | de los f | lujos y | / fracciones | másicas del | Colector para | la ciudad de Inírida. |
|-------------|--------------|----------|---------|--------------|-------------|---------------|-----------------------|
|             |              |          |         |              |             | 1             |                       |

| Main Flowsheet × COLECTOR (Heater) - Stream Results (Feeds) × + |                   |                |             |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|-------------------|----------------|-------------|--|--|--|--|--|--|--|
| Material Heat Load Vol.% Curves W                               | /t. % Curves Petr | oleum Polymers | Solids      |  |  |  |  |  |  |  |
|                                                                 | Units             | LIN-COLE 🔻     | LO-DESOR -  |  |  |  |  |  |  |  |
| Mass Flows                                                      | kg/hr             | 6391,85        | 6391,85     |  |  |  |  |  |  |  |
| > N2                                                            | kg/hr             | 1,86981        | 1,86981     |  |  |  |  |  |  |  |
| 02                                                              | kg/hr             | 1,75148        | 1,75148     |  |  |  |  |  |  |  |
| AR                                                              | kg/hr             | 0,0680154      | 0,0680154   |  |  |  |  |  |  |  |
| > CO2                                                           | kg/hr             | 0,0286411      | 0,0286411   |  |  |  |  |  |  |  |
| H2O                                                             | kg/hr             | 3836,75        | 3836,75     |  |  |  |  |  |  |  |
| CACL2                                                           | kg/hr             | 0              | 0           |  |  |  |  |  |  |  |
| > CA++                                                          | kg/hr             | 921,323        | 921,323     |  |  |  |  |  |  |  |
| CL-                                                             | kg/hr             | 1630,06        | 1630,06     |  |  |  |  |  |  |  |
| - Mass Fractions                                                |                   |                |             |  |  |  |  |  |  |  |
| N2                                                              |                   | 0,00029253     | 0,00029253  |  |  |  |  |  |  |  |
| > O2                                                            |                   | 0,000274018    | 0,000274018 |  |  |  |  |  |  |  |
| AR                                                              |                   | 1,0641e-05     | 1,0641e-05  |  |  |  |  |  |  |  |
| > CO2                                                           |                   | 4,48087e-06    | 4,48087e-06 |  |  |  |  |  |  |  |
| H2O                                                             |                   | 0,600256       | 0,600256    |  |  |  |  |  |  |  |
| > CACL2                                                         |                   | 0              | 0           |  |  |  |  |  |  |  |
| CA++                                                            |                   | 0,14414        | 0,14414     |  |  |  |  |  |  |  |
| > CL-                                                           |                   | 0,255022       | 0,255022    |  |  |  |  |  |  |  |
| Volume Flow                                                     | l/min             | 72,9309        | 97,1659     |  |  |  |  |  |  |  |

Main Eleventeet > Collector (laster) - Sterrer Densite (Escator )

| Main Flowsheet $	imes$  | Main Flowsheet × ENFRIADO (Heater) - Results × + |       |           |       |          |   |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------|-------|-----------|-------|----------|---|--|--|--|--|--|--|
| Summary Balan           | ce Phase Equili                                  | brium | Utility U | lsage | Status 🎯 | ] |  |  |  |  |  |  |
| Outlet temperature      |                                                  |       | 22        | С     |          | • |  |  |  |  |  |  |
| Outlet pressure         |                                                  |       | 0,9853    | atm   |          | • |  |  |  |  |  |  |
| Vapor fraction          |                                                  |       | 0         |       |          |   |  |  |  |  |  |  |
| Heat duty               |                                                  | -     | 99,7512   | kW    |          | • |  |  |  |  |  |  |
| Net duty                |                                                  | -     | 99,7512   | kW    |          | • |  |  |  |  |  |  |
| 1st liquid / Total liqu | uid                                              |       | 1         |       |          |   |  |  |  |  |  |  |
| Pressure-drop corre     | lation parameter                                 |       |           |       |          |   |  |  |  |  |  |  |
| Pressure drop           |                                                  |       | 0,34023   | atm   |          | • |  |  |  |  |  |  |

Anexo E 172. Resultados energéticos del Enfriador para la ciudad de Inírida.

Anexo E 173. Resultados de los flujos y fracciones molares del Enfriador para la ciudad de Inírida.

| [        |          |        |              |         |         | r         | T           | r          |             |  |
|----------|----------|--------|--------------|---------|---------|-----------|-------------|------------|-------------|--|
| Material | Heat     | Load   | Vol.% Curves | Wt. %   | Curves  | Petroleum | Polymers    | Solid      | s           |  |
|          |          |        |              |         | Unite   |           |             |            |             |  |
|          |          |        |              |         |         | Units     | LIN-ENFR    | -          | LO-OUT -    |  |
| - 1      | Mole Flo | ws     |              |         | kmol/h  | r         | 281         | ,412       | 281,412     |  |
| •        | N2       |        | kmol/hr      |         | 0,0393  | 3678      | 0,0393678   |            |             |  |
| •        | 02       |        |              |         | kmol/hr |           | 0,0319      | 9142       | 0,0319142   |  |
| •        | AR       |        |              | kmol/hr |         | 0,00103   | 3657        | 0,00103657 |             |  |
| •        | CO2      |        |              |         | kmol/hr |           | 0,000552102 |            | 0,000552102 |  |
| •        | H2O      |        |              |         | kmol/hr |           | 212,373     |            | 212,373     |  |
| •        | CACL2    |        |              | kmol/hr |         |           | 0           | 0          |             |  |
| •        | CA++     |        |              | kmol/hr |         | 22,9      | 9889        | 22,9889    |             |  |
| •        | CL-      |        |              |         | kmol/hr |           | 45,9777     |            | 45,9777     |  |
| -        | Mole Fra | ctions |              |         |         |           |             |            |             |  |
| •        | N2       |        |              |         |         |           | 0,000139    | 9894       | 0,000139894 |  |
| •        | 02       |        |              |         |         |           | 0,000113    | 3407       | 0,000113407 |  |
| •        | AR       |        |              |         |         |           | 3,68347     | e-06       | 3,68347e-06 |  |
| •        | CO2      |        |              |         |         |           | 1,9619      | e-06       | 1,9619e-06  |  |
| •        | H2O      |        |              |         |         | 0,754     | 4668        | 0,754668   |             |  |
| •        | CACL     | .2     |              |         |         |           |             | 0          | 0           |  |
| •        | CA++     | ÷      |              |         |         |           | 0,0816      | 5911       | 0,0816911   |  |
| •        | CL-      |        |              |         |         |           | 0,163       | 3382       | 0,163382    |  |

Main Flowsheet × ENFRIADO (Heater) - Stream Results (Boundary) × +

| Main Flowsheet × ENFRIADO (Heater) - Stream Results (Boundary) × + |                            |                   |             |             |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|----------------------------|-------------------|-------------|-------------|--|--|--|--|--|--|--|
| Material                                                           | Heat Load Vol.% Curves Wt. | % Curves Petroleu | m Polymers  | Solids      |  |  |  |  |  |  |  |
|                                                                    |                            | Units             | LIN-ENFR -  | L0-OUT -    |  |  |  |  |  |  |  |
| - N                                                                | lass Flows                 | kg/hr             | 6379,52     | 6379,52     |  |  |  |  |  |  |  |
| - F                                                                | N2                         | kg/hr             | 1,10283     | 1,10283     |  |  |  |  |  |  |  |
| •                                                                  | O2                         | kg/hr             | 1,02121     | 1,02121     |  |  |  |  |  |  |  |
| •                                                                  | AR                         | kg/hr             | 0,0414091   | 0,0414091   |  |  |  |  |  |  |  |
| •                                                                  | C02                        | kg/hr             | 0,0242979   | 0,0242979   |  |  |  |  |  |  |  |
| •                                                                  | H2O                        | kg/hr             | 3825,95     | 3825,95     |  |  |  |  |  |  |  |
| •                                                                  | CACL2                      | kg/hr             | 0           | 0           |  |  |  |  |  |  |  |
| •                                                                  | CA++                       | kg/hr             | 921,323     | 921,323     |  |  |  |  |  |  |  |
| •                                                                  | CL-                        | kg/hr             | 1630,06     | 1630,06     |  |  |  |  |  |  |  |
| → - N                                                              | lass Fractions             |                   |             |             |  |  |  |  |  |  |  |
| •                                                                  | N2                         |                   | 0,00017287  | 0,00017287  |  |  |  |  |  |  |  |
| •                                                                  | 02                         |                   | 0,000160077 | 0,000160077 |  |  |  |  |  |  |  |
| •                                                                  | AR                         |                   | 6,49093e-06 | 6,49093e-06 |  |  |  |  |  |  |  |
|                                                                    | CO2                        |                   | 3,80873e-06 | 3,80873e-06 |  |  |  |  |  |  |  |
| •                                                                  | H2O                        |                   | 0,599724    | 0,599724    |  |  |  |  |  |  |  |
|                                                                    | CACL2                      |                   | 0           | 0           |  |  |  |  |  |  |  |
| •                                                                  | CA++                       |                   | 0,144419    | 0,144419    |  |  |  |  |  |  |  |
| •                                                                  | CL-                        |                   | 0,255514    | 0,255514    |  |  |  |  |  |  |  |
| ► V                                                                | olume Flow                 | l/min             | 73,3731     | 72,6383     |  |  |  |  |  |  |  |

Anexo E 174. Resultados de los flujos y fracciones másicas del Enfriador para la ciudad de Inírida.

Anexo E 175. Especificación de la corriente fresca de alimento al proceso para la simulación en San Andrés.

| Main Flowsheet × LO-FRESC (MATERIAL) × + |                         |                 |         |                            |                |  |  |  |  |  |
|------------------------------------------|-------------------------|-----------------|---------|----------------------------|----------------|--|--|--|--|--|
| ⊘Mixed CI Solid                          | NC Solid Flash Opt      | ions EO Options | Costing | Comments                   |                |  |  |  |  |  |
| Specifications                           |                         |                 | -       |                            |                |  |  |  |  |  |
| Flash Type Te                            | mperature 🔹             | Pressure        | - Co    | omposition ———             |                |  |  |  |  |  |
| State variables                          |                         |                 |         | Mole-Flow <b>v</b> kmol/hr |                |  |  |  |  |  |
| Temperature                              | 22                      | <b>C</b> •      |         | Component                  | Value          |  |  |  |  |  |
| Pressure                                 | 1,0024                  | atm 🔻           |         | N2                         | 2,8839e-07     |  |  |  |  |  |
| Vapor fraction                           | Vapor fraction          |                 |         | 02                         | 1,76885e-06    |  |  |  |  |  |
| Total flow basis                         | Mole 🔹                  |                 |         | AR                         | 4,03372e-08    |  |  |  |  |  |
| Total flow rate                          |                         | kmol/hr 🔻       |         | CO2                        | 1,0875e-07     |  |  |  |  |  |
| Solvent                                  |                         | Ŧ               |         | H2O                        | 1,07181e-06    |  |  |  |  |  |
| Reference Temperatu                      | Ire                     |                 |         | CACL2                      | 3,1151e-11     |  |  |  |  |  |
| Volume flow referen                      | ce temperature          |                 |         | CA++                       |                |  |  |  |  |  |
| С                                        | *                       |                 |         | CL-                        |                |  |  |  |  |  |
| Component concent                        | tration reference tempe | erature         |         |                            |                |  |  |  |  |  |
| С                                        | -                       |                 |         | Tota                       | al 3,27816e-06 |  |  |  |  |  |

| Main Flowsł  | Main Flowsheet × AIRE-ABS (MATERIAL) × +                               |                 |            |           |            |       |                            |           |         |  |  |
|--------------|------------------------------------------------------------------------|-----------------|------------|-----------|------------|-------|----------------------------|-----------|---------|--|--|
| ØMixed       | Cl Solid                                                               | NC Solid        | Flash Opt  | ions      | EO Options | Costi | ng                         | Comments  |         |  |  |
| Specific     | cations                                                                |                 |            |           |            |       |                            |           |         |  |  |
| Flash Type   | •                                                                      | Temperature     | -          | Press     | ure        | -     | Con                        | nposition |         |  |  |
| - State vari | iables —                                                               |                 |            |           |            |       | Mole-Flow <b>v</b> kmol/hr |           |         |  |  |
| Temperat     | Temperature     31,8       Pressure     760       Vapor fraction     1 |                 | C •        |           |            |       | Component                  | Value     |         |  |  |
| Pressure     |                                                                        |                 | mmH        | g 🔹       |            | -     | N2                         | 12,0925   |         |  |  |
| Vapor fra    |                                                                        |                 |            |           |            |       | •                          | 02        | 3,25566 |  |  |
| Total flov   | v basis                                                                | Mole            | -          | kmol/hr 🔹 |            |       | ▶ AR                       |           | 0,14418 |  |  |
| Total flov   | v rate                                                                 |                 |            |           |            |       | •                          | CO2       | 0.01085 |  |  |
| Solvent      |                                                                        |                 |            |           | Ŧ          |       | •                          | H2O       | 0,75494 |  |  |
| Referenc     | e Tempera                                                              | ature           |            |           |            |       | •                          | CACL2     |         |  |  |
| Volume f     | low refere                                                             | ence temperat   | ure        |           |            |       | •                          | CA++      |         |  |  |
|              | С                                                                      | Ŧ               |            |           |            |       | •                          | CL-       |         |  |  |
| Compon       | ent conce                                                              | entration refer | ence tempe | erature   |            |       |                            | 1         |         |  |  |
|              | С                                                                      | Ŧ               |            |           |            |       |                            | Tota      | 16,2581 |  |  |

Anexo E 176. Especificación de la corriente de aire a la entrada del Ventilador 1 para la ciudad de San Andrés.

Anexo E 177. Especificación de la corriente de aire a la entrada del Ventilador 2 para la ciudad de San Andrés.

| Main Flows                  | heet ×/   | AIRE-  | DES (MA    | TERIAL) ×  | +       |            |       |             |            |       |           |
|-----------------------------|-----------|--------|------------|------------|---------|------------|-------|-------------|------------|-------|-----------|
| Ø Mixed                     | Cl Solid  | N      | C Solid    | Flash Opt  | ions    | EO Options | Costi | ng          | Comments   |       |           |
| <ul> <li>Specifi</li> </ul> | cations   |        |            | ,          |         |            |       |             |            |       |           |
| Flash Type                  |           | Tem    | perature   | -          | Pres    | sure       | •     | Com         | position — |       |           |
| ⊂ State var                 | iables —  |        |            |            |         |            |       | Mole-Flow • |            |       | kmol/hr • |
| Tempera                     | ture      |        |            | 31,8       | С       | •          |       |             | Compone    | nt    | Value     |
| Pressure                    |           |        |            | 760        | mmł     | lg ▼       |       | •           | N2         |       | 12,8207   |
| Vapor fra                   | iction    |        |            |            |         |            |       | -           | 02         |       | 3,4517    |
| Total flov                  | v basis   |        | Mole       | •          |         |            |       | -           | AR         |       | 0.1529    |
| Total flov                  | v rate    |        |            |            | kmol    | /hr 🔹      |       | -           | CO2        |       | 0.0115    |
| Solvent                     |           |        |            |            |         | Ŧ          |       |             | H2O        |       | 0.8004    |
| Reference                   | e Temper  | rature |            |            |         |            |       |             | CACL2      |       | 0,0001    |
| Volume                      | low refer | ence   | temperat   | ure        |         |            |       | -           | CAULZ      |       |           |
|                             | С         |        | *          |            |         |            |       |             | CA++       |       |           |
| Compon                      | ent conc  | entra  | tion refer | ence tempe | erature |            |       |             | CL-        |       |           |
| Compon                      | C         |        | -          | ence tempt |         | -          |       |             |            | Total | 17 2372   |
|                             |           |        |            |            |         |            |       |             |            |       | 11,2012   |

Anexo E 178. Especificación de la presión de la columna de Absorción y desorción para la ciudad de San Andrés.

| Main Flowsheet × ABS (RadFrac) × +      |         |              |              |     |         |          |  |  |  |  |
|-----------------------------------------|---------|--------------|--------------|-----|---------|----------|--|--|--|--|
| 🕜 Configurati                           | ion     | 🕜 Streams    | 🥝 Pressure   | Cor | ndenser | Reboiler |  |  |  |  |
| View 7                                  | op / E  | Bottom       |              | •   |         |          |  |  |  |  |
| Stage 1 / Condenser pressure 1,0024 atm |         |              |              |     |         |          |  |  |  |  |
| Stage 2 pressu                          | ıre (op | otional) ——  |              |     |         |          |  |  |  |  |
| Stage 2 pre                             | ssure   |              |              | bar |         |          |  |  |  |  |
| Condenser                               | press   | ure drop     |              | b   | ar      | Ŧ        |  |  |  |  |
| Pressure drop                           | for re  | st of column | (optional) — |     |         |          |  |  |  |  |
| Stage press                             | ure d   | rop          |              | bar |         |          |  |  |  |  |
| 🔘 Column pr                             | essure  | e drop       |              | b   | bar     |          |  |  |  |  |

| Main Flowsheet × COLECTOR (Heater) × + |                  |            |             |         |   |  |  |  |  |  |
|----------------------------------------|------------------|------------|-------------|---------|---|--|--|--|--|--|
| Specifications                         | Flash Options    | Utility    | Comments    |         |   |  |  |  |  |  |
| Flash specification                    | s                |            |             |         |   |  |  |  |  |  |
| Flash Type                             |                  | Temp       | erature     |         | - |  |  |  |  |  |
|                                        |                  | Press      | Pressure -  |         |   |  |  |  |  |  |
| Temperature                            |                  |            | 54,04       | С       | • |  |  |  |  |  |
| Temperature chan                       |                  |            | С           | Ŧ       |   |  |  |  |  |  |
| Degrees of superh                      |                  |            | С           | ~       |   |  |  |  |  |  |
| Degrees of subcoo                      | ling             |            |             | С       | Ŧ |  |  |  |  |  |
| Pressure                               |                  |            | 1,0024      | atm     | • |  |  |  |  |  |
| Duty                                   |                  |            |             | cal/sec | Ŧ |  |  |  |  |  |
| Vapor fraction                         |                  |            |             |         |   |  |  |  |  |  |
| Pressure drop corr                     | elation paramete | r          |             |         |   |  |  |  |  |  |
| Always calculat                        | te pressure drop | correlatio | n parameter |         |   |  |  |  |  |  |
| Valid phases                           |                  |            |             |         |   |  |  |  |  |  |
| Vapor-Liquid                           |                  | •          | •           |         |   |  |  |  |  |  |

Anexo E 179. Especificación del Colector para la ciudad de San Andrés.

Anexo E 180. Especificación del Enfriador para la ciudad de San Andrés.

| emperature                          | Pressure |            | - |  |  |  |  |  |  |  |
|-------------------------------------|----------|------------|---|--|--|--|--|--|--|--|
| Temperature                         |          | Pressure - |   |  |  |  |  |  |  |  |
|                                     | 22       | C          | • |  |  |  |  |  |  |  |
| lemperature change                  |          | С          | T |  |  |  |  |  |  |  |
| Degrees of superheating             |          | С          | T |  |  |  |  |  |  |  |
| Degrees of subcooling               |          | С          | T |  |  |  |  |  |  |  |
| Pressure                            | 1,0024   | atm        | • |  |  |  |  |  |  |  |
| Duty                                |          | cal/sec    | T |  |  |  |  |  |  |  |
| /apor fraction                      |          |            |   |  |  |  |  |  |  |  |
| Pressure drop correlation parameter |          |            |   |  |  |  |  |  |  |  |

| Main Flo | Main Flowsheet × MIXER (Mixer) - Stream Results (Boundary) × + |                   |              |      |        |          |              |    |              |  |  |  |
|----------|----------------------------------------------------------------|-------------------|--------------|------|--------|----------|--------------|----|--------------|--|--|--|
| Material | Heat Load Wo                                                   | rk 🛛 Vol.% Curves | Wt. % Curves | Petr | oleum  | Polymer  | s Solids     |    |              |  |  |  |
|          |                                                                |                   | Units        |      | LO-FRE | SC 🝷     | L0-OUT       | •  | LO-ABS -     |  |  |  |
| 🕨 — МІ   | XED Substream                                                  |                   |              |      |        |          |              |    |              |  |  |  |
|          | Phase                                                          |                   |              |      |        |          | Liquid Phase |    | Liquid Phase |  |  |  |
|          | Temperature                                                    |                   | с            |      |        | 22       | 2            | 22 | 22           |  |  |  |
|          | Pressure                                                       |                   | bar          |      |        | 1,01568  | 1,0156       | 58 | 1,01568      |  |  |  |
|          | Molar Vapor Fraction                                           |                   |              |      | 0      | 0,690009 |              | 0  | 0            |  |  |  |
| •        | Molar Liquid Fraction                                          |                   |              |      | 0      | 0,309991 |              | 1  | 1            |  |  |  |
|          | Molar Solid Fraction                                           |                   |              |      |        | 0        |              | 0  | 0            |  |  |  |
| •        | Mass Vapor Fraction                                            |                   |              |      | (      | 0,796818 |              | 0  | 0            |  |  |  |
| •        | Mass Liquid Fraction                                           |                   |              |      | (      | 0,203182 |              | 1  | 1            |  |  |  |
| •        | Mass Solid Fraction                                            |                   |              |      |        | 0        |              | 0  | 0            |  |  |  |
| •        | Molar Enthalpy                                                 |                   | cal/mol      |      |        | -25298,6 | -68578       | ,4 | -68578,4     |  |  |  |
| •        | Mass Enthalpy                                                  |                   | cal/gm       |      |        | -917,522 | -3025,       | 11 | -3025,11     |  |  |  |
| •        | Molar Entropy                                                  |                   | cal/mol-K    |      |        | -11,2632 | -33,422      | 25 | -33,4225     |  |  |  |
| •        | Mass Entropy                                                   |                   | cal/gm-K     |      | -(     | ),408492 | -1,4743      | 32 | -1,47432     |  |  |  |
|          | Molar Density                                                  |                   | mol/cc       |      | 6,00   | 081e-05  | 0,064569     | 91 | 0,0645691    |  |  |  |
| •        | Mass Density                                                   |                   | gm/cc        |      | 0,0    | 0165459  | 1,4637       | 76 | 1,46376      |  |  |  |
| •        | Enthalpy Flow                                                  |                   | cal/sec      |      | -0,    | 0230374  | -4,44505e+0  | 06 | -4,44505e+06 |  |  |  |
| •        | Average MW                                                     |                   |              |      |        | 27,5727  | 22,669       | 97 | 22,6697      |  |  |  |

| Anexo E 181. Resultados de las condiciones energéticas de cada corriente para el mezclador en la ciudad de San |
|----------------------------------------------------------------------------------------------------------------|
| Andrés.                                                                                                        |

Anexo E 182. Resultados de los flujos y fracciones molares del mezclador para la ciudad de San Andrés.

Main Flowsheet X MIXER (Mixer) - Stream Results (Boundary) X +

| Material | Heat Lo      | ad Work | Vol.% Curves | Wt. % Curves | Pet | roleum | Polymer  | s Solids |       |             |
|----------|--------------|---------|--------------|--------------|-----|--------|----------|----------|-------|-------------|
|          |              |         |              | Units        |     | L0-FRE | SC 🝷     | L0-OUT   | •     | LO-ABS -    |
| -        | Mole Flows   |         |              | kmol/hr      |     | 3,27   | 823e-06  | 233      | ,341  | 233,342     |
| •        | N2           |         |              | kmol/hr      |     | 2,8    | 839e-07  | 0,032    | 7882  | 0,0327885   |
| •        | 02           |         |              | kmol/hr      |     | 1,76   | 885e-06  | 0,026    | 4792  | 0,026481    |
| •        | AR           |         |              | kmol/hr      |     | 4,03   | 372e-08  | 0,00086  | 2085  | 0,000862127 |
| •        | CO2          |         |              | kmol/hr      |     | 1,0    | 875e-07  | 0,00046  | 2724  | 0,000462833 |
| •        | H2O          |         |              | kmol/hr      |     | 1,07   | 181e-06  | 176      | 5,095 | 176,095     |
| •        | CACL2        |         |              | kmol/hr      |     |        | 0        |          | 0     | 0           |
| Fille    | CA++         |         |              | kmol/hr      |     | 3,1    | 151e-11  | 19       | ,062  | 19,062      |
| •        | CL-          |         |              | kmol/hr      |     | 6,2    | 302e-11  | 38       | 3,124 | 38,124      |
| -        | Mole Fractio | ons     |              |              |     |        |          |          |       |             |
| •        | N2           |         |              |              |     | 0,     | 0879713  | 0,00014  | 0516  | 0,000140517 |
| Fille    | 02           |         |              |              |     | 0      | ),539575 | 0,000113 | 3478  | 0,000113486 |
| •        | AR           |         |              |              |     | 0,     | 0123046  | 3,69452  | e-06  | 3,6947e-06  |
| Fille    | CO2          |         |              |              |     | 0,     | 0331734  | 1,98303  | e-06  | 1,9835e-06  |
|          | H2O          |         |              |              |     | 0      | ),326947 | 0,75     | 4666  | 0,754666    |
| Fille    | CACL2        |         |              |              |     |        | 0        |          | 0     | 0           |
|          | CA++         |         |              |              |     | 9,50   | 239e-06  | 0,081    | 6914  | 0,0816913   |
| •        | CL-          |         |              |              |     | 1,90   | 048e-05  | 0,16     | 3383  | 0,163383    |

| Main Flowsheet × MIXER (Mixer) - Stream Results (Boundary) × + |                           |                    |               |              |             |  |  |  |  |  |  |
|----------------------------------------------------------------|---------------------------|--------------------|---------------|--------------|-------------|--|--|--|--|--|--|
| Material                                                       | Heat Load Work Vol.% Curv | ves 🛛 Wt. % Curves | Petroleum Pol | ymers Solids |             |  |  |  |  |  |  |
|                                                                |                           | Units              | L0-FRESC •    | L0-OUT -     | LO-ABS •    |  |  |  |  |  |  |
|                                                                | Mass Flows                | kg/hr              | 9,03897e-05   | 5289,78      | 5289,79     |  |  |  |  |  |  |
| •                                                              | N2                        | kg/hr              | 8,07881e-06   | 0,91851      | 0,918521    |  |  |  |  |  |  |
|                                                                | 02                        | kg/hr              | 5,66011e-05   | 0,847302     | 0,84736     |  |  |  |  |  |  |
| •                                                              | AR                        | kg/hr              | 1,61139e-06   | 0,0344386    | 0,0344403   |  |  |  |  |  |  |
| - F                                                            | C02                       | kg/hr              | 4,78607e-06   | 0,0203644    | 0,0203692   |  |  |  |  |  |  |
| •                                                              | H2O                       | kg/hr              | 1,93089e-05   | 3172,4       | 3172,4      |  |  |  |  |  |  |
| •                                                              | CACL2                     | kg/hr              | 0             | 0            | 0           |  |  |  |  |  |  |
| Fille                                                          | CA++                      | kg/hr              | 1,24844e-09   | 763,945      | 763,945     |  |  |  |  |  |  |
| - F                                                            | CL-                       | kg/hr              | 2,20881e-09   | 1351,62      | 1351,62     |  |  |  |  |  |  |
| - 1                                                            | Mass Fractions            |                    |               |              |             |  |  |  |  |  |  |
| •                                                              | N2                        |                    | 0,0893775     | 0,000173639  | 0,00017364  |  |  |  |  |  |  |
| •                                                              | 02                        |                    | 0,62619       | 0,000160177  | 0,000160188 |  |  |  |  |  |  |
| - F                                                            | AR                        |                    | 0,0178272     | 6,51039e-06  | 6,51071e-06 |  |  |  |  |  |  |
| Fille                                                          | CO2                       |                    | 0,0529492     | 3,84976e-06  | 3,85067e-06 |  |  |  |  |  |  |
| •                                                              | H2O                       |                    | 0,213618      | 0,599722     | 0,599722    |  |  |  |  |  |  |
| Fille                                                          | CACL2                     |                    | 0             | 0            | 0           |  |  |  |  |  |  |
|                                                                | CA++                      |                    | 1,38117e-05   | 0,144419     | 0,144419    |  |  |  |  |  |  |
|                                                                | CL-                       |                    | 2,44365e-05   | 0,255515     | 0,255515    |  |  |  |  |  |  |
|                                                                | Volume Flow               | I/min              | 0,000910496   | 60,2304      | 60,2305     |  |  |  |  |  |  |

| Anexo E | 183. | Resultado | s de | los flujo | s y | fracciones | masicos | del | mezclador | r para l | la c | iudad | de | San | Andrés |
|---------|------|-----------|------|-----------|-----|------------|---------|-----|-----------|----------|------|-------|----|-----|--------|
|         |      |           |      |           |     |            |         |     |           |          |      |       |    |     |        |

Anexo E 184. Resultados energéticos del Ventilador 1 para la ciudad de San Andrés.

| <b>C</b> . |         |                |             |       |          |                  | 110000 11     | 0.01      |
|------------|---------|----------------|-------------|-------|----------|------------------|---------------|-----------|
| Sur        | nmary   | Balance        | Parameters  | Perfo | rmance   | Regression       | Utility Usage | 🛛 🥑 Statu |
|            | _       |                |             |       |          |                  |               |           |
|            | Comp    | ressor mod     | lel         |       | lsentrop | ic Compressor    |               |           |
| ▶.         | Phase   | calculation    | IS          |       | Vapor ph | nase calculation | ı             |           |
| Þ          | Indica  | ted horsep     | ower        |       |          | 33,2175          | Watt          |           |
|            | Brake   | horsepowe      | r           |       |          | 33,2175          | Watt          |           |
|            | Net w   | ork require    | d           |       |          | 33,2175          | Watt          |           |
|            | Power   | r loss         |             |       |          | 0                | Watt          |           |
|            | Efficie | ncy            |             |       |          |                  |               | 0,82      |
|            | Mech    | anical effici  | ency        |       |          |                  |               | 1         |
| Þ.         | Outlet  | t pressure     |             |       |          | 1,00238          | atm           |           |
| ۲          | Outlet  | t temperatu    | re          |       |          | 32,0505          | С             |           |
|            | lsentro | opic outlet    | temperature |       |          | 32,0056          | С             |           |
|            | Vapor   | fraction       |             |       |          |                  |               | 1         |
|            | Displa  | cement         |             |       |          |                  |               |           |
|            | Volum   | netric efficie | ency        |       |          |                  |               |           |
|            |         |                |             |       |          |                  |               |           |

|   | Main Flowsheet ×/VENT-1 (Compr) - Stream Results (Boundary) × + |           |              |              |           |       |     |          |    |            |  |  |
|---|-----------------------------------------------------------------|-----------|--------------|--------------|-----------|-------|-----|----------|----|------------|--|--|
|   | Material                                                        | Work      | Vol.% Curves | Wt. % Curves | Petroleum | Polym | ers | Solids   |    |            |  |  |
|   |                                                                 |           |              |              | Units     |       | AIR | E-ABS    | •  | VN+1-ABS - |  |  |
|   | • – I                                                           | Mole Flow | ws           |              | kmol/hr   |       |     | 16,25    | 81 | 16,2581    |  |  |
| Γ | •                                                               | N2        |              |              | kmol/hr   |       |     | 12,09    | 25 | 12,0925    |  |  |
|   | •                                                               | 02        |              |              | kmol/hr   |       |     | 3,255    | 66 | 3,25566    |  |  |
| Γ | •                                                               | AR        |              |              | kmol/hr   |       |     | 0,144    | 18 | 0,14418    |  |  |
|   | •                                                               | CO2       |              |              | kmol/hr   |       |     | 0,010    | 85 | 0,01085    |  |  |
| Γ | •                                                               | H2O       |              |              | kmol/hr   |       |     | 0,754    | 94 | 0,75494    |  |  |
| Γ | •                                                               | CACL      | 2            |              | kmol/hr   |       |     |          | 0  | 0          |  |  |
| Γ | •                                                               | CA++      |              |              | kmol/hr   |       |     |          | 0  | 0          |  |  |
| Γ | •                                                               | CL-       |              |              | kmol/hr   |       |     |          | 0  | 0          |  |  |
|   | ▶ – I                                                           | Mole Fra  | ctions       |              |           |       |     |          |    |            |  |  |
| Γ | •                                                               | N2        |              |              |           |       |     | 0,7437   | 81 | 0,743781   |  |  |
|   | •                                                               | O2        |              |              |           |       |     | 0,2002   | 49 | 0,200249   |  |  |
|   | •                                                               | AR        |              |              |           |       |     | 0,00886  | 82 | 0,0088682  |  |  |
|   | •                                                               | CO2       |              |              |           |       |     | 0,000667 | 36 | 0,00066736 |  |  |
|   | •                                                               | H2O       |              |              |           |       |     | 0,04643  | 47 | 0,0464347  |  |  |
|   | •                                                               | CACL      | 2            |              |           |       |     |          | 0  | 0          |  |  |
|   | •                                                               | CA++      |              |              |           |       |     |          | 0  | 0          |  |  |
|   | •                                                               | CL-       |              |              |           |       |     |          | 0  | 0          |  |  |

Anexo E 185. Resultados de los flujos y fracciones molares del Ventilador 1 para la ciudad de San Andrés.

Anexo E 186. Resultados de los flujos y fracciones másicas del Ventilador 1 para la ciudad de San Andrés.

| Main Flowsheet × VENT-1 (Compr) - Stream Results (Boundary) × + |                   |              |           |    |         |         |            |  |  |  |  |  |
|-----------------------------------------------------------------|-------------------|--------------|-----------|----|---------|---------|------------|--|--|--|--|--|
| Material                                                        | Work Vol.% Curves | Wt. % Curves | Petroleum | Po | lymers  | Solids  |            |  |  |  |  |  |
|                                                                 |                   |              | Units     |    | AIRE-AE | s 🔹     | VN+1-ABS • |  |  |  |  |  |
| > - N                                                           | Aass Flows        | kg           | /hr       |    | 4       | 62,767  | 462,767    |  |  |  |  |  |
| •                                                               | N2                | kg           | /hr       |    |         | 338,752 | 338,752    |  |  |  |  |  |
| •                                                               | 02                | kg           | /hr       |    |         | 104,177 | 104,177    |  |  |  |  |  |
| •                                                               | AR                | kg           | /hr       |    |         | 5,7597  | 5,7597     |  |  |  |  |  |
| •                                                               | CO2               | kg           | /hr       |    | 0       | ,477506 | 0,477506   |  |  |  |  |  |
| •                                                               | H2O               | kg           | /hr       |    |         | 13,6005 | 13,6005    |  |  |  |  |  |
| •                                                               | CACL2             | kg           | /hr       |    |         | 0       | 0          |  |  |  |  |  |
| •                                                               | CA++              | kg           | /hr       |    |         | 0       | 0          |  |  |  |  |  |
| •                                                               | CL-               | kg           | /hr       |    |         | 0       | 0          |  |  |  |  |  |
| > - N                                                           | Aass Fractions    |              |           |    |         |         |            |  |  |  |  |  |
| •                                                               | N2                |              |           |    | 0       | ,732014 | 0,732014   |  |  |  |  |  |
| •                                                               | O2                |              |           |    | 0       | ,225118 | 0,225118   |  |  |  |  |  |
| •                                                               | AR                |              |           |    | 0,0     | 124462  | 0,0124462  |  |  |  |  |  |
| •                                                               | CO2               |              |           |    | 0,00    | 103185  | 0,00103185 |  |  |  |  |  |
| •                                                               | H2O               |              |           |    | 0,0     | 293894  | 0,0293894  |  |  |  |  |  |
| •                                                               | CACL2             |              |           |    |         | 0       | 0          |  |  |  |  |  |
| •                                                               | CA++              |              |           |    |         | 0       | 0          |  |  |  |  |  |
| × .                                                             | CL-               |              |           |    |         | 0       | 0          |  |  |  |  |  |
| ► V                                                             | olume Flow        | l/n          | nin       |    |         | 6778,81 | 6768,28    |  |  |  |  |  |

| / | Main Flowsheet × VENT-2 (Compr) - Results × + |         |                |             |       |          |                 |               |        |  |  |  |
|---|-----------------------------------------------|---------|----------------|-------------|-------|----------|-----------------|---------------|--------|--|--|--|
|   | Sur                                           | nmary   | Balance        | Parameters  | Perfo | rmance   | Regression      | Utility Usage | Status |  |  |  |
|   |                                               |         |                |             |       |          |                 |               |        |  |  |  |
|   |                                               | Comp    | pressor mod    | el          |       | lsentrop | c Compressor    |               |        |  |  |  |
|   |                                               | Phase   | calculation    | s           |       | Vapor pł | ase calculation | 1             |        |  |  |  |
|   |                                               | Indica  | ated horsepo   | ower        |       |          | 35,2179         | Watt          |        |  |  |  |
|   |                                               | Brake   | horsepowe      | r           |       |          | 35,2179         | Watt          |        |  |  |  |
|   |                                               | Net w   | ork required   | ł           |       |          | 35,2179         | Watt          |        |  |  |  |
|   |                                               | Powe    | r loss         |             |       |          | 0               | Watt          |        |  |  |  |
|   |                                               | Efficie | ency           |             |       |          |                 |               | 0,82   |  |  |  |
|   |                                               | Mech    | anical effici  | ency        |       |          |                 |               | 1      |  |  |  |
|   | Þ                                             | Outle   | t pressure     |             |       |          | 1,00238         | atm           |        |  |  |  |
|   |                                               | Outle   | t temperatu    | re          |       |          | 32,0505         | С             |        |  |  |  |
|   |                                               | lsentr  | opic outlet    | temperature |       |          | 32,0056         | С             |        |  |  |  |
|   |                                               | Vapor   | fraction       |             |       |          |                 |               | 1      |  |  |  |
|   |                                               | Displa  | cement         |             |       |          |                 |               |        |  |  |  |
|   |                                               | Volun   | netric efficie | ncy         |       |          |                 |               |        |  |  |  |

Anexo E 187. Resultados energéticos del Ventilador 2 para la ciudad de San Andrés.

Anexo E 188. Resultados de los flujos y fracciones molares del Ventilador 2 para la ciudad de San Andrés.

| Main Flov | Main Flowsheet × VENT-2 (Compr) - Stream Results (Boundary) × + |              |              |           |        |            |     |           |    |   |  |  |  |
|-----------|-----------------------------------------------------------------|--------------|--------------|-----------|--------|------------|-----|-----------|----|---|--|--|--|
| Material  | Work                                                            | Vol.% Curves | Wt. % Curves | Petroleum | Polyme | ers Solids |     |           |    |   |  |  |  |
|           |                                                                 |              |              | Units     |        | AIRE-DES   | •   | VN+1-DES  | •  | ( |  |  |  |
| -         | Mole Flo                                                        | ws           |              | kmol/hr   |        | 17,23      | 72  | 17,23     | 72 |   |  |  |  |
|           | N2                                                              |              |              | kmol/hr   |        | 12,82      | 207 | 12,82     | 07 |   |  |  |  |
| •         | 02                                                              |              |              | kmol/hr   |        | 3,45       | 517 | 3,45      | 17 |   |  |  |  |
|           | AR                                                              |              |              | kmol/hr   |        | 0,15       | 529 | 0,15      | 29 |   |  |  |  |
|           | CO2                                                             |              |              | kmol/hr   |        | 0,01       | 15  | 0,01      | 15 |   |  |  |  |
|           | H2O                                                             |              |              | kmol/hr   |        | 0,80       | 04  | 0,80      | 04 |   |  |  |  |
|           | CACL                                                            | 2            |              | kmol/hr   |        |            | 0   |           | 0  |   |  |  |  |
|           | CA++                                                            |              |              | kmol/hr   |        |            | 0   |           | 0  |   |  |  |  |
| •         | CL-                                                             |              |              | kmol/hr   |        |            | 0   |           | 0  |   |  |  |  |
| -         | Mole Fra                                                        | ctions       |              |           |        |            |     |           |    |   |  |  |  |
| •         | N2                                                              |              |              |           |        | 0,7437     | 781 | 0,7437    | 81 |   |  |  |  |
|           | 02                                                              |              |              |           |        | 0,2002     | 247 | 0,2002    | 47 |   |  |  |  |
| •         | AR                                                              |              |              |           |        | 0,008870   | )35 | 0,008870  | 35 |   |  |  |  |
|           | CO2                                                             |              |              |           |        | 0,0006671  | 62  | 0,0006671 | 62 |   |  |  |  |
| •         | H2O                                                             |              |              |           |        | 0,04643    | 845 | 0,04643   | 45 |   |  |  |  |
|           | CACL                                                            | 2            |              |           |        |            | 0   |           | 0  |   |  |  |  |
|           | CA++                                                            | •            |              |           |        |            | 0   |           | 0  |   |  |  |  |
|           | CL-                                                             |              |              |           |        |            | 0   |           | 0  |   |  |  |  |

| Main Flowsheet × VENT-2 (Compr) - Stream Results (Boundary) × + |                   |              |           |      |         |         |            |  |  |  |
|-----------------------------------------------------------------|-------------------|--------------|-----------|------|---------|---------|------------|--|--|--|
| Material                                                        | Work Vol.% Curves | Wt. % Curves | Petroleum | Poly | mers    | Solids  |            |  |  |  |
|                                                                 |                   |              | Units     |      | AIRE-DE | s 🔻     | VN+1-DES • |  |  |  |
| ► - M                                                           | lass Flows        | k            | g/hr      |      | 4       | 190,636 | 490,636    |  |  |  |
| •                                                               | N2                | k            | g/hr      |      |         | 359,152 | 359,152    |  |  |  |
| Fille                                                           | O2                | k            | g/hr      |      |         | 110,45  | 110,45     |  |  |  |
| •                                                               | AR                | k            | g/hr      |      |         | 6,10805 | 6,10805    |  |  |  |
| Fille                                                           | CO2               | k            | g/hr      |      | 0,      | ,506113 | 0,506113   |  |  |  |
| •                                                               | H2O               | k            | g/hr      |      |         | 14,4194 | 14,4194    |  |  |  |
| •                                                               | CACL2             | k            | g/hr      |      |         | 0       | 0          |  |  |  |
| •                                                               | CA++              | k            | g/hr      |      |         | 0       | 0          |  |  |  |
| •                                                               | CL-               | k            | g/hr      |      |         | 0       | 0          |  |  |  |
| ► - M                                                           | lass Fractions    |              |           |      |         |         |            |  |  |  |
| •                                                               | N2                |              |           |      | 0,      | 732014  | 0,732014   |  |  |  |
| •                                                               | O2                |              |           |      | 0,      | ,225116 | 0,225116   |  |  |  |
| •                                                               | AR                |              |           |      | 0,0     | 124492  | 0,0124492  |  |  |  |
| •                                                               | CO2               |              |           |      | 0,00    | 103154  | 0,00103154 |  |  |  |
| •                                                               | H2O               |              |           |      | 0,0     | 293892  | 0,0293892  |  |  |  |
| •                                                               | CACL2             |              |           |      |         | 0       | 0          |  |  |  |
| •                                                               | CA++              |              |           |      |         | 0       | 0          |  |  |  |
|                                                                 | CL-               |              |           |      |         | 0       | 0          |  |  |  |
| > Ve                                                            | olume Flow        | V            | 'min      |      |         | 7187,05 | 7175,88    |  |  |  |

Anexo E 189. Resultados de los flujos y fracciones másicas del Ventilador 2 para la ciudad de San Andrés.

Anexo E 190. Resultados energéticos e las corrientes del Absorbedor para la ciudad de San Andrés.

| Material | Heat     | Load     | Vol.% Curves | Wt. % | Curves  | Petroleum | Polymers    | Solid | ds          |              |             |
|----------|----------|----------|--------------|-------|---------|-----------|-------------|-------|-------------|--------------|-------------|
|          |          |          |              |       |         | Units     | L0-ABS      | -     | VN+1-ABS -  | LN-ABS -     | V1-ABS      |
| - мр     | XED Sub  | stream   |              |       |         |           |             |       |             |              |             |
|          | Phase    |          |              |       |         |           | Liquid Phas | ie i  | Vapor Phase | Liquid Phase | Vapor Phase |
|          | Tempera  | ture     |              |       | С       |           |             | 22    | 32,0505     | 24,5482      | 23,465      |
|          | Pressure |          |              |       | bar     |           | 1,0         | 1568  | 1,01566     | 1,01568      | 1,01568     |
|          | Molar Va | por Fra  | ction        |       |         |           |             | 0     | 1           | 0            | 1           |
|          | Molar Li | quid Fra | iction       |       |         |           |             | 1     | 0           | 1            | C           |
|          | Molar So | lid Frac | tion         |       |         |           |             | 0     | 0           | 0            | 0           |
|          | Mass Va  | por Frac | tion         |       |         |           |             | 0     | 1           | 0            | 1           |
|          | Mass Lic | uid Frac | ction        |       |         |           |             | 1     | 0           | 1            | C           |
|          | Mass So  | id Fract | ion          |       |         |           |             | 0     | 0           | 0            | C           |
|          | Molar Er | ithalpy  |              |       | cal/mol |           | -685        | 578,4 | -2699,23    | -68538,3     | -1015,11    |
|          | Mass En  | thalpy   |              |       | cal/gm  |           | -302        | 25,11 | -94,8302    | -3024,48     | -35,2569    |
| -        | Molar Er | tropy    |              |       | cal/mol | -K        | -33,        | 4225  | 1,11421     | -33,3361     | 1,05861     |
|          | Mass En  | tropy    |              |       | cal/gm· | -K        | -1,4        | 7432  | 0,0391447   | -1,47107     | 0,0367678   |
| -        | Molar D  | ensity   |              |       | mol/cc  |           | 0,064       | 5691  | 4,0035e-05  | 0,064456     | 4,11899e-05 |
|          | Mass De  | nsity    |              |       | gm/cc   |           | 1,4         | 6376  | 0,00113955  | 1,46065      | 0,00118593  |
| Þ        | Enthalpy | Flow     |              |       | cal/sec |           | -4,44505    | e+06  | -12190,1    | -4,45281e+06 | -4430,95    |
| >        | Average  | MW       |              |       |         |           | 22,         | 6697  | 28,4638     | 22,6611      | 28,7919     |

| Main Flowsheet × ABS (RadFrac) - Stream Results (Boundary) × + |                  |                |            |             |             |  |  |  |  |  |  |
|----------------------------------------------------------------|------------------|----------------|------------|-------------|-------------|--|--|--|--|--|--|
| Material Heat Load Vol.% Curves Wt. %                          | Curves Petroleum | Polymers Solid | ls         |             |             |  |  |  |  |  |  |
|                                                                | Units            | L0-ABS -       | VN+1-ABS - | LN-ABS -    | V1-ABS -    |  |  |  |  |  |  |
| Mole Flows                                                     | kmol/hr          | 233,342        | 16,2581    | 233,886     | 15,714      |  |  |  |  |  |  |
| N2                                                             | kmol/hr          | 0,0327885      | 12,0925    | 0,0565194   | 12,0687     |  |  |  |  |  |  |
| > O2                                                           | kmol/hr          | 0,026481       | 3,25566    | 0,0463438   | 3,2358      |  |  |  |  |  |  |
| AR                                                             | kmol/hr          | 0,000862127    | 0,14418    | 0,0014412   | 0,143601    |  |  |  |  |  |  |
| > CO2                                                          | kmol/hr          | 0,000462833    | 0,01085    | 0,000549657 | 0,0107632   |  |  |  |  |  |  |
| H2O                                                            | kmol/hr          | 176,095        | 0,75494    | 176,595     | 0,255067    |  |  |  |  |  |  |
| CACL2                                                          | kmol/hr          | 0              | 0          | 0           | 0           |  |  |  |  |  |  |
| CA++                                                           | kmol/hr          | 19,062         | 0          | 19,062      | 0           |  |  |  |  |  |  |
| CL-                                                            | kmol/hr          | 38,124         | 0          | 38,124      | 0           |  |  |  |  |  |  |
| Mole Fractions                                                 |                  |                |            |             |             |  |  |  |  |  |  |
| ▶ N2                                                           |                  | 0,000140517    | 0,743781   | 0,000241654 | 0,768026    |  |  |  |  |  |  |
| ▶ 02                                                           |                  | 0,000113486    | 0,200249   | 0,000198147 | 0,205919    |  |  |  |  |  |  |
| AR                                                             |                  | 3,6947e-06     | 0,0088682  | 6,16197e-06 | 0,00913843  |  |  |  |  |  |  |
| CO2                                                            |                  | 1,9835e-06     | 0,00066736 | 2,35011e-06 | 0,000684944 |  |  |  |  |  |  |
| H2O                                                            |                  | 0,754666       | 0,0464347  | 0,755048    | 0,0162319   |  |  |  |  |  |  |
| CACL2                                                          |                  | 0              | 0          | 0           | 0           |  |  |  |  |  |  |
| CA++                                                           |                  | 0,0816913      | 0          | 0,0815012   | 0           |  |  |  |  |  |  |
| CL-                                                            |                  | 0,163383       | 0          | 0,163002    | 0           |  |  |  |  |  |  |

Anexo E 191. Resultados de los flujos y fracciones molares del Absorbedor para la ciudad de San Andrés.

Anexo E 192. Resultados de los flujos y fracciones másicas del Absorbedor para la ciudad de San Andrés. Main Flowsheet × ABS (RadFrac) - Stream Results (Boundary) × +

| = |    |        |           |       |              |             |             |             |            |             |            |
|---|----|--------|-----------|-------|--------------|-------------|-------------|-------------|------------|-------------|------------|
|   | Ma | terial | Heat      | Load  | Vol.% Curves | Wt. % Curve | es Petroleu | m Polymers  | Solids     |             |            |
|   |    |        |           |       |              |             | Units       | LO-ABS -    | VN+1-ABS • | LN-ABS 🔻    | V1-ABS 🔻   |
|   | Þ  | - N    | lass Flov | vs    |              | kg/hr       |             | 5289,79     | 462,767    | 5300,12     | 452,434    |
|   | Þ  |        | N2        |       |              | kg/hr       |             | 0,918521    | 338,752    | 1,58331     | 338,087    |
|   | Þ  |        | O2        |       |              | kg/hr       |             | 0,84736     | 104,177    | 1,48295     | 103,542    |
|   | Þ  |        | AR        |       |              | kg/hr       |             | 0,0344403   | 5,7597     | 0,0575729   | 5,73657    |
|   | Þ  |        | CO2       |       |              | kg/hr       |             | 0,0203692   | 0,477506   | 0,0241903   | 0,473685   |
|   | Þ  |        | H2O       |       |              | kg/hr       |             | 3172,4      | 13,6005    | 3181,41     | 4,5951     |
|   | Þ  |        | CACL      | 2     |              | kg/hr       |             | 0           | 0          | 0           | 0          |
|   | Þ  |        | CA++      |       |              | kg/hr       |             | 763,945     | 0          | 763,945     | 0          |
|   | Þ  |        | CL-       |       |              | kg/hr       |             | 1351,62     | 0          | 1351,62     | 0          |
|   | Þ  | - N    | Aass Frac | tions |              |             |             |             |            |             |            |
|   | Þ  |        | N2        |       |              |             |             | 0,00017364  | 0,732014   | 0,00029873  | 0,747263   |
|   | Þ  |        | O2        |       |              |             |             | 0,000160188 | 0,225118   | 0,000279795 | 0,228855   |
|   | Þ  |        | AR        |       |              |             |             | 6,51071e-06 | 0,0124462  | 1,08626e-05 | 0,0126793  |
|   | Þ  |        | CO2       |       |              |             |             | 3,85067e-06 | 0,00103185 | 4,5641e-06  | 0,00104697 |
|   | Þ  |        | H2O       |       |              |             |             | 0,599722    | 0,0293894  | 0,600252    | 0,0101564  |
|   | Þ  |        | CACL      | 2     |              |             |             | 0           | 0          | 0           | 0          |
|   | Þ  |        | CA++      |       |              |             |             | 0,144419    | 0          | 0,144137    | 0          |
|   | Þ  |        | CL-       |       |              |             |             | 0,255515    | 0          | 0,255017    | 0          |
|   | Þ  | V      | olume Fl  | low   |              | l/min       |             | 60,2305     | 6768,28    | 60,4769     | 6358,34    |

| Main Flowsheet × DESORB (RadFrac) - Stream Results (Boundary) × + |                                  |                    |                |             |              |             |  |  |  |  |  |  |
|-------------------------------------------------------------------|----------------------------------|--------------------|----------------|-------------|--------------|-------------|--|--|--|--|--|--|
| Mater                                                             | ial Heat Load Vol.% Curves Wt. 9 | % Curves Petroleum | Polymers Solid | ds          |              |             |  |  |  |  |  |  |
|                                                                   |                                  | Units              | LO-DESOR -     | VN+1-DES -  | LN-DESOR -   | V1-DES -    |  |  |  |  |  |  |
| > -                                                               | MIXED Substream                  |                    |                |             |              |             |  |  |  |  |  |  |
|                                                                   | Phase                            |                    |                | Vapor Phase | Liquid Phase | Vapor Phase |  |  |  |  |  |  |
| •                                                                 | Temperature                      | С                  | 54,04          | 32,0505     | 51,1258      | 51,9256     |  |  |  |  |  |  |
| •                                                                 | Pressure                         | bar                | 1,01568        | 1,01566     | 1,01568      | 1,01568     |  |  |  |  |  |  |
| •                                                                 | Molar Vapor Fraction             |                    | 0,000191338    | 1           | 0            | 1           |  |  |  |  |  |  |
| •                                                                 | Molar Liquid Fraction            |                    | 0,999809       | 0           | 1            | 0           |  |  |  |  |  |  |
| •                                                                 | Molar Solid Fraction             |                    | 0              | 0           | 0            | 0           |  |  |  |  |  |  |
| •                                                                 | Mass Vapor Fraction              |                    | 0,000240229    | 1           | 0            | 1           |  |  |  |  |  |  |
| •                                                                 | Mass Liquid Fraction             |                    | 0,99976        | 0           | 1            | 0           |  |  |  |  |  |  |
| •                                                                 | Mass Solid Fraction              |                    | 0              | 0           | 0            | 0           |  |  |  |  |  |  |
| •                                                                 | Molar Enthalpy                   | cal/mol            | -68220,1       | -2699,19    | -68266,2     | -4100,75    |  |  |  |  |  |  |
| •                                                                 | Mass Enthalpy                    | cal/gm             | -3010,45       | -94,8289    | -3011,34     | -145,552    |  |  |  |  |  |  |
| •                                                                 | Molar Entropy                    | cal/mol-K          | -32,3168       | 1,11422     | -32,4141     | 1,39485     |  |  |  |  |  |  |
| •                                                                 | Mass Entropy                     | cal/gm-K           | -1,42609       | 0,0391451   | -1,42984     | 0,0495087   |  |  |  |  |  |  |
| •                                                                 | Molar Density                    | mol/cc             | 0,048084       | 4,0035e-05  | 0,0639012    | 3,7587e-05  |  |  |  |  |  |  |
| •                                                                 | Mass Density                     | gm/cc              | 1,08964        | 0,00113955  | 1,44862      | 0,00105897  |  |  |  |  |  |  |
| •                                                                 | Enthalpy Flow                    | cal/sec            | -4,43214e+06   | -12924      | -4,42481e+06 | -20254,9    |  |  |  |  |  |  |
| •                                                                 | Average MW                       |                    | 22,6611        | 28,4638     | 22,6697      | 28,1738     |  |  |  |  |  |  |

Anexo E 193. Resultados energéticos e las corrientes del Desorbedor para la ciudad de San Andrés.

Anexo E 194. Resultados de los flujos y fracciones molares del Desorbedor para la ciudad de San Andrés.

| Material | Heat     | Load    | Vol.% Curves | Wt. % ( | Curves | Petroleum | Polymer | s Solic | łs      |        |             |             |
|----------|----------|---------|--------------|---------|--------|-----------|---------|---------|---------|--------|-------------|-------------|
|          |          |         |              |         |        | Units     | L0-DESO | R -     | VN+1-DE | s 🔹    | LN-DESOR    | V1-DES -    |
| -        | Mole Flo | ws      |              |         | kmol/h | r         | 23      | 33,886  | 17      | ,2372  | 233,341     | 17,7815     |
| •        | N2       |         |              |         | kmol/h | r         | 0,05    | 565194  | 1.      | 2,8207 | 0,0327882   | 12,8444     |
| •        | 02       |         |              |         | kmol/h | r         | 0,04    | 463438  |         | 3,4517 | 0,0264792   | 3,47156     |
| •        | AR       |         |              |         | kmol/h | r         | 0,00    | 014412  |         | 0,1529 | 0,000862085 | 0,153479    |
| •        | CO2      |         |              |         | kmol/h | r         | 0,0005  | 549657  |         | 0,0115 | 0,000462724 | 0,0115869   |
| •        | H2O      |         |              |         | kmol/h | г         | 1       | 76,595  |         | 0,8004 | 176,095     | 1,30046     |
| •        | CAC      | L2      |              |         | kmol/h | г         |         | 0       |         | 0      | 0           | 0           |
| •        | CA+-     | +       |              |         | kmol/h | г         |         | 19,062  |         | 0      | 19,062      | 0           |
| •        | CL-      |         |              |         | kmol/h | r         |         | 38,124  |         | 0      | 38,124      | 0           |
| -        | Mole Fra | octions |              |         |        |           |         |         |         |        |             |             |
| •        | N2       |         |              |         |        |           | 0,0002  | 241654  | 0,7     | 43781  | 0,000140516 | 0,722347    |
| •        | 02       |         |              |         |        |           | 0,0001  | 198147  | 0,2     | 00247  | 0,000113478 | 0,195234    |
| •        | AR       |         |              |         |        |           | 6,1619  | 97e-06  | 0,008   | 87035  | 3,69452e-06 | 0,00863138  |
| •        | CO2      |         |              |         |        |           | 2,350   | 11e-06  | 0,0006  | 67162  | 1,98303e-06 | 0,000651628 |
| •        | H2O      |         |              |         |        |           | 0,7     | 755048  | 0,04    | 64345  | 0,754666    | 0,0731353   |
| •        | CAC      | L2      |              |         |        |           |         | 0       |         | 0      | 0           | 0           |
| •        | CA+-     | +       |              |         |        |           | 0,08    | 815012  |         | 0      | 0,0816914   | 0           |
| •        | CL-      |         |              |         |        |           | 0,1     | 163002  |         | 0      | 0,163383    | 0           |

Main Flowsheet X DESORB (RadFrac) - Stream Results (Boundary) X +

| Maii                   | n Flowshe | eet ×   | DESO  | RB (RadFrac) - S | tream | Results (B | oundary)  | < 🛨         |   |        |         |           |     |         |    |
|------------------------|-----------|---------|-------|------------------|-------|------------|-----------|-------------|---|--------|---------|-----------|-----|---------|----|
| Mat                    | terial H  | leat    | Load  | Vol.% Curves     | Wt.   | % Curves   | Petroleur | n Polymers  | S | Solids |         |           |     |         |    |
|                        |           |         |       |                  |       | Uni        | ts        | L0-DESOR    | • | VN+1-  | DES 🔻   | LN-DESOR  | •   | V1-DES  | •  |
| Þ                      | - Mass    | s Flow  | s     |                  |       | kg/hr      |           | 5300,12     | 2 |        | 490,636 | 5289,     | 78  | 500,97  | 72 |
|                        | 1         | N2      |       |                  |       | kg/hr      |           | 1,5833      | 1 |        | 359,152 | 0,918     | 51  | 359,8   | 17 |
| - P                    | (         | 02      |       |                  |       | kg/hr      |           | 1,48295     | 5 |        | 110,45  | 0,8473    | 02  | 111,08  | 86 |
| Þ                      | A         | AR      |       |                  |       | kg/hr      |           | 0,0575729   | 9 |        | 6,10805 | 0,03443   | 86  | 6,131   | 18 |
| •                      | (         | CO2     |       |                  |       | kg/hr      |           | 0,0241903   | 3 | C      | ,506113 | 0,02036   | 44  | 0,5099  | 39 |
| $\left  \cdot \right $ | ł         | H2O     |       |                  |       | kg/hr      |           | 3181,4      | 1 |        | 14,4194 | 317       | 2,4 | 23,42   | 81 |
|                        | (         | CACL2   |       |                  |       | kg/hr      |           | (           | 0 |        | 0       |           | 0   |         | 0  |
| Þ                      | (         | CA++    |       |                  |       | kg/hr      |           | 763,945     | 5 |        | 0       | 763,9     | 45  |         | 0  |
| •                      | (         | CL-     |       |                  |       | kg/hr      |           | 1351,62     | 2 |        | 0       | 1351      | 62  |         | 0  |
| ×.                     | - Mass    | s Frac  | tions |                  |       |            |           |             |   |        |         |           |     |         |    |
|                        | 1         | N2      |       |                  |       |            |           | 0,0002987   | 3 | C      | ,732014 | 0,0001736 | 39  | 0,7182  | 38 |
| ×.                     | (         | 02      |       |                  |       |            |           | 0,000279795 | 5 | C      | ,225116 | 0,0001601 | 77  | 0,22174 | 41 |
| $\rightarrow$          | A         | AR      |       |                  |       |            |           | 1,08626e-0  | 5 | 0,0    | 0124492 | 6,51039e  | -06 | 0,01223 | 86 |
| ×.                     | (         | CO2     |       |                  |       |            |           | 4,5641e-06  | 6 | 0,0    | 0103154 | 3,84976e  | -06 | 0,00101 | 79 |
|                        | ł         | H2O     |       |                  |       |            |           | 0,600252    | 2 | 0,0    | 0293892 | 0,5997    | 22  | 0,04676 | 53 |
| Þ                      | (         | CACL2   | 2     |                  |       |            |           | (           | 0 |        | 0       |           | 0   |         | 0  |
| •                      | (         | CA++    |       |                  |       |            |           | 0,14413     | 7 |        | 0       | 0,1444    | 19  |         | 0  |
| ×.                     | (         | CL-     |       |                  |       |            |           | 0,25501     | 7 |        | 0       | 0,2555    | 515 |         | 0  |
| - F                    | Volu      | ime Flo | DW    |                  |       | l/min      |           | 81,0684     | 4 |        | 7175,88 | 60,85     | 99  | 7884,6  | 61 |

Anexo E 195. Resultados de los flujos y fracciones másicas del Desorbedor para la ciudad de San Andrés.

Anexo E 196. Resultados energéticos de la Bomba 1 para la ciudad de San Andrés.

| Main Flowsheet × BOI | MBA-1 (Pump) - | Results × +       |       |
|----------------------|----------------|-------------------|-------|
| Summary Balance      | Performance Cu | rve Utility Usage | 🕝 Sta |
|                      |                |                   |       |
| Fluid power          | 6,94956        | Watt              | •     |
| Brake power          | 9,26607        | Watt              | •     |
| Electricity          | 9,26607        | Watt              | •     |
| Volumetric flow rate | 60,4769        | l/min             | •     |
| Pressure change      | 0,068046       | atm               | •     |
| NPSH available       | 0,539534       | meter-head        | •     |
| NPSH required        |                |                   | -     |
| Head developed       | 0,481341       | meter-head        | -     |
| Pump efficiency used | 0,75           |                   |       |
| Net work required    | 9,26607        | Watt              | -     |
| Outlet pressure      | 1,07045        | atm               | •     |
| Outlet temperature   | 24,5499        | с                 | -     |
|                      |                |                   |       |

| Ma | Main Flowsheet × BOMBA-1 (Pump) - Stream Results (Boundary) × + |           |              |              |           |       |     |          |    |           |     |
|----|-----------------------------------------------------------------|-----------|--------------|--------------|-----------|-------|-----|----------|----|-----------|-----|
| Ma | aterial                                                         | Work      | Vol.% Curves | Wt. % Curves | Petroleum | Polym | ers | Solids   |    |           |     |
|    |                                                                 |           |              |              | Units     |       | LN- | ABS      | •  | LIN-COLE  | •   |
|    | - 1                                                             | Mole Flov | ws           |              | kmol/hr   |       |     | 233,8    | 86 | 233,8     | 886 |
|    |                                                                 | N2        |              |              | kmol/hr   |       |     | 0,05651  | 94 | 0,0565    | 194 |
| •  |                                                                 | 02        |              |              | kmol/hr   |       |     | 0,04634  | 38 | 0,04634   | 438 |
| •  |                                                                 | AR        |              |              | kmol/hr   |       |     | 0,00144  | 12 | 0,00144   | 412 |
| •  |                                                                 | CO2       |              |              | kmol/hr   |       | 0   | ,0005496 | 57 | 0,0005496 | 657 |
|    |                                                                 | H2O       |              |              | kmol/hr   |       |     | 176,5    | 95 | 176,      | 595 |
| •  |                                                                 | CACL      | 2            |              | kmol/hr   |       |     |          | 0  |           | 0   |
| •  |                                                                 | CA++      |              |              | kmol/hr   |       |     | 19,0     | 62 | 19,0      | 062 |
| •  |                                                                 | CL-       |              |              | kmol/hr   |       |     | 38,1     | 24 | 38,       | 124 |
| •  | - 1                                                             | Mole Fra  | ctions       |              |           |       |     |          |    |           |     |
| •  |                                                                 | N2        |              |              |           |       | 0   | ,0002416 | 54 | 0,0002416 | 654 |
| •  |                                                                 | 02        |              |              |           |       | 0   | ,0001981 | 47 | 0,000198  | 147 |
| •  |                                                                 | AR        |              |              |           |       | 6   | ,16197e- | 06 | 6,16197e  | -06 |
| •  |                                                                 | CO2       |              |              |           |       | 2   | ,35011e- | 06 | 2,35011e  | -06 |
| •  |                                                                 | H2O       |              |              |           |       |     | 0,7550   | 48 | 0,7550    | 048 |
| •  |                                                                 | CACL      | 2            |              |           |       |     |          | 0  |           | 0   |
| •  |                                                                 | CA++      |              |              |           |       |     | 0,08150  | 12 | 0,08150   | 012 |
| •  |                                                                 | CL-       |              |              |           |       |     | 0,1630   | 02 | 0,163     | 002 |

Anexo E 197. Resultados de los flujos y fracciones molares de la Bomba 1 para la ciudad de San Andrés.

Anexo E 198. Resultados de los flujos y fracciones másicas de la Bomba 1 para la ciudad de San Andrés. Main Eleverheat V DOMPA 1 (Dump) Straam Pacults (Doundary) V

| Iviain Fio       | Main Howsheet Soundary Stream Results (Boundary) |                 |          |           |             |  |  |  |  |  |  |
|------------------|--------------------------------------------------|-----------------|----------|-----------|-------------|--|--|--|--|--|--|
| Materia          | Work Vol.% Curves Wt. % C                        | urves Petroleum | Polymers | Solids    |             |  |  |  |  |  |  |
|                  |                                                  | Units           | LN-AI    | BS ▼      | LIN-COLE 🔻  |  |  |  |  |  |  |
| <mark>ا ا</mark> | Mass Flows                                       | kg/hr           |          | 5300,12   | 5300,12     |  |  |  |  |  |  |
| þ.               | N2                                               | kg/hr           |          | 1,58331   | 1,58331     |  |  |  |  |  |  |
| Þ                | O2                                               | kg/hr           |          | 1,48295   | 1,48295     |  |  |  |  |  |  |
| Þ.               | AR                                               | kg/hr           | 0        | 0,0575729 | 0,0575729   |  |  |  |  |  |  |
| Þ                | CO2                                              | kg/hr           | 0        | 0,0241903 | 0,0241903   |  |  |  |  |  |  |
| Þ.               | H2O                                              | kg/hr           |          | 3181,41   | 3181,41     |  |  |  |  |  |  |
| Þ                | CACL2                                            | kg/hr           |          | 0         | 0           |  |  |  |  |  |  |
| Þ.               | CA++                                             | kg/hr           |          | 763,945   | 763,945     |  |  |  |  |  |  |
| Þ.               | CL-                                              | kg/hr           |          | 1351,62   | 1351,62     |  |  |  |  |  |  |
| -                | Mass Fractions                                   |                 |          |           |             |  |  |  |  |  |  |
| Þ.               | N2                                               |                 | 0,       | 00029873  | 0,00029873  |  |  |  |  |  |  |
| Þ.               | 02                                               |                 | 0,0      | 00279795  | 0,000279795 |  |  |  |  |  |  |
| Þ                | AR                                               |                 | 1,0      | 8626e-05  | 1,08626e-05 |  |  |  |  |  |  |
| Þ.               | CO2                                              |                 | 4,       | 5641e-06  | 4,5641e-06  |  |  |  |  |  |  |
| Þ                | H2O                                              |                 |          | 0,600252  | 0,600252    |  |  |  |  |  |  |
| Þ.               | CACL2                                            |                 |          | 0         | 0           |  |  |  |  |  |  |
| Þ.               | CA++                                             |                 |          | 0,144137  | 0,144137    |  |  |  |  |  |  |
| Þ.               | CL-                                              |                 |          | 0,255017  | 0,255017    |  |  |  |  |  |  |
| Þ.               | Volume Flow                                      | l/min           |          | 60,4769   | 60,4767     |  |  |  |  |  |  |

| Main Flowsheet × BOMBA-2 (Pump) - Results × + |                |                             |  |  |  |  |  |  |  |
|-----------------------------------------------|----------------|-----------------------------|--|--|--|--|--|--|--|
| Summary Balance                               | Performance Cu | rve 🛛 Utility Usage 🛛 🥝 Sta |  |  |  |  |  |  |  |
| Fluid power                                   | 34,9679        | Watt 🔻                      |  |  |  |  |  |  |  |
| Brake power                                   | 46,6238        | Watt 🔻                      |  |  |  |  |  |  |  |
| Electricity                                   | 46,6238        | Watt 🔹                      |  |  |  |  |  |  |  |
| Volumetric flow rate                          | 60,8599        | l/min ▼                     |  |  |  |  |  |  |  |
| Pressure change                               | 0,34023        | atm 🔻                       |  |  |  |  |  |  |  |
| NPSH available                                | 0,110643       | meter-head 🔹                |  |  |  |  |  |  |  |
| NPSH required                                 |                | -                           |  |  |  |  |  |  |  |
| Head developed                                | 2,42668        | meter-head 🔹                |  |  |  |  |  |  |  |
| Pump efficiency used                          | 0,75           |                             |  |  |  |  |  |  |  |
| Net work required                             | 46,6238        | Watt 🝷                      |  |  |  |  |  |  |  |
| Outlet pressure                               | 1,34263        | atm 🝷                       |  |  |  |  |  |  |  |
| Outlet temperature                            | 51,1337        | с -                         |  |  |  |  |  |  |  |

Anexo E 199. Resultados energéticos de la Bomba 2 para la ciudad de San Andrés.

Anexo E 200. Resultados de los flujos y fracciones molares de la Bomba 2 para la ciudad de San Andrés.

| Material | Work     | Vol.% Curves | Wt. % Curves | Petroleum | Polymers | Solids      |             |
|----------|----------|--------------|--------------|-----------|----------|-------------|-------------|
| 4        |          |              |              | Units     |          | N-DESOR -   | LIN-ENFR    |
| ) — I    | Mole Flo | ws           |              | kmol/hr   |          | 233,341     | 233,341     |
| •        | N2       |              |              | kmol/hr   |          | 0,0327882   | 0,0327882   |
| •        | 02       |              |              | kmol/hr   |          | 0,0264792   | 0,0264792   |
| •        | AR       |              |              | kmol/hr   |          | 0,000862085 | 0,000862085 |
| •        | CO2      |              |              | kmol/hr   |          | 0,000462724 | 0,000462724 |
| •        | H2O      |              |              | kmol/hr   |          | 176,095     | 176,095     |
| •        | CACL     | 2            |              | kmol/hr   |          | 0           | 0           |
| •        | CA++     |              |              | kmol/hr   |          | 19,062      | 19,062      |
| •        | CL-      |              |              | kmol/hr   |          | 38,124      | 38,124      |
| ▶ — I    | Mole Fra | ctions       |              |           |          |             |             |
| •        | N2       |              |              |           |          | 0,000140516 | 0,000140516 |
| •        | 02       |              |              |           |          | 0,000113478 | 0,000113478 |
| •        | AR       |              |              |           |          | 3,69452e-06 | 3,69452e-06 |
| •        | CO2      |              |              |           |          | 1,98303e-06 | 1,98303e-06 |
| •        | H2O      |              |              |           |          | 0,754666    | 0,754666    |
| •        | CACL     | 2            |              |           |          | 0           | 0           |
| •        | CA++     |              |              |           |          | 0,0816914   | 0,0816914   |
| •        | CL-      |              |              |           |          | 0,163383    | 0,163383    |

| Main Flowsheet × BOMBA-2 (Pump) - Stream Results (Boundary) × + |            |              |              |           |          |          |             |  |  |  |
|-----------------------------------------------------------------|------------|--------------|--------------|-----------|----------|----------|-------------|--|--|--|
| Material                                                        | Work       | Vol.% Curves | Wt. % Curves | Petroleum | Polymers | Solids   |             |  |  |  |
|                                                                 |            |              |              | Units     | LN-DE    | SOR 🔻    | LIN-ENFR -  |  |  |  |
| → - N                                                           | lass Flow  | 15           | k            | g/hr      |          | 5289,78  | 5289,78     |  |  |  |
| •                                                               | N2         |              | k            | :g/hr     |          | 0,91851  | 0,91851     |  |  |  |
| •                                                               | 02         |              | k            | :g/hr     | (        | 0,847302 | 0,847302    |  |  |  |
| •                                                               | AR         |              | k            | :g/hr     | 0,       | 0344386  | 0,0344386   |  |  |  |
| •                                                               | CO2        |              | k            | :g/hr     | 0,       | 0203644  | 0,0203644   |  |  |  |
| •                                                               | H2O        |              | k            | :g/hr     |          | 3172,4   | 3172,4      |  |  |  |
| •                                                               | CACL2      | 2            | k            | :g/hr     |          | 0        | 0           |  |  |  |
| •                                                               | CA++       |              | k            | :g/hr     |          | 763,945  | 763,945     |  |  |  |
| •                                                               | CL-        |              | k            | :g/hr     |          | 1351,62  | 1351,62     |  |  |  |
| ▶ — N                                                           | Aass Fract | tions        |              |           |          |          |             |  |  |  |
| •                                                               | N2         |              |              |           | 0,00     | 0173639  | 0,000173639 |  |  |  |
| •                                                               | 02         |              |              |           | 0,00     | 0160177  | 0,000160177 |  |  |  |
| •                                                               | AR         |              |              |           | 6,51     | 039e-06  | 6,51039e-06 |  |  |  |
| •                                                               | CO2        |              |              |           | 3,84     | 976e-06  | 3,84976e-06 |  |  |  |
| •                                                               | H2O        |              |              |           | (        | 0,599722 | 0,599722    |  |  |  |
| •                                                               | CACL2      | 2            |              |           |          | 0        | 0           |  |  |  |
| •                                                               | CA++       |              |              |           | (        | 0,144419 | 0,144419    |  |  |  |
| •                                                               | CL-        |              |              |           | (        | 0,255515 | 0,255515    |  |  |  |
| ⇒ V                                                             | olume Flo  | bw           | l,           | /min      |          | 60,8599  | 60,8594     |  |  |  |

Anexo E 201. Resultados de los flujos y fracciones másicas de la Bomba 2 para la ciudad de San Andrés.

Anexo E 202. Resultados energéticos del Colector para la ciudad de San Andrés.

| Main Flowsheet × COLECTOR (Hea      | ter) - Results × 🕂             |
|-------------------------------------|--------------------------------|
| Summary Balance Phase Equili        | brium Utility Usage 🛛 🖉 Status |
| Outlet temperature                  | 54,04 C 🗸                      |
| Outlet pressure                     | 1,01568 bar 🔹                  |
| Vapor fraction                      | 0,000191338                    |
| Heat duty                           | 86,5296 kW 🔻                   |
| Net duty                            | 86,5296 kW 🔻                   |
| 1st liquid / Total liquid           | 1                              |
| Pressure-drop correlation parameter |                                |
| Pressure drop                       | 0,068046 atm 🝷                 |

| Main Flowsheet × COLECTOR (Heater) - Stream Results (Feeds) × + |                              |                  |                |             |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|------------------------------|------------------|----------------|-------------|--|--|--|--|--|--|--|
| Material                                                        | Heat Load Vol.% Curves Wt. % | Curves Petroleum | Polymers Solid | ds          |  |  |  |  |  |  |  |
|                                                                 |                              | Units            | LIN-COLE -     | LO-DESOR -  |  |  |  |  |  |  |  |
| - I                                                             | Mole Flows                   | kmol/hr          | 233,886        | 233,886     |  |  |  |  |  |  |  |
| •                                                               | N2                           | kmol/hr          | 0,0565194      | 0,0565194   |  |  |  |  |  |  |  |
| •                                                               | 02                           | kmol/hr          | 0,0463438      | 0,0463438   |  |  |  |  |  |  |  |
| •                                                               | AR                           | kmol/hr          | 0,0014412      | 0,0014412   |  |  |  |  |  |  |  |
|                                                                 | CO2                          | kmol/hr          | 0,000549657    | 0,000549657 |  |  |  |  |  |  |  |
| •                                                               | H2O                          | kmol/hr          | 176,595        | 176,595     |  |  |  |  |  |  |  |
| •                                                               | CACL2                        | kmol/hr          | 0              | 0           |  |  |  |  |  |  |  |
| •                                                               | CA++                         | kmol/hr          | 19,062         | 19,062      |  |  |  |  |  |  |  |
|                                                                 | CL-                          | kmol/hr          | 38,124         | 38,124      |  |  |  |  |  |  |  |
| ► - I                                                           | Mole Fractions               |                  |                |             |  |  |  |  |  |  |  |
| •                                                               | N2                           |                  | 0,000241654    | 0,000241654 |  |  |  |  |  |  |  |
| •                                                               | O2                           |                  | 0,000198147    | 0,000198147 |  |  |  |  |  |  |  |
| •                                                               | AR                           |                  | 6,16197e-06    | 6,16197e-06 |  |  |  |  |  |  |  |
| •                                                               | CO2                          |                  | 2,35011e-06    | 2,35011e-06 |  |  |  |  |  |  |  |
| •                                                               | H2O                          |                  | 0,755048       | 0,755048    |  |  |  |  |  |  |  |
| •                                                               | CACL2                        |                  | 0              | 0           |  |  |  |  |  |  |  |
| •                                                               | CA++                         |                  | 0,0815012      | 0,0815012   |  |  |  |  |  |  |  |
| •                                                               | CL-                          |                  | 0,163002       | 0,163002    |  |  |  |  |  |  |  |

Anexo E 203. Resultados de los flujos y fracciones molares del Colector para la ciudad de San Andrés.

Anexo E 204. Resultados de los flujos y fracciones másicas del Colector para la ciudad de San Andrés.

| Material | Heat Load Vol.9 | % Curves Wt. % | Curves Petroleum | Polymers Solid | ls          |  |  |  |
|----------|-----------------|----------------|------------------|----------------|-------------|--|--|--|
|          |                 |                | Units            | LIN-COLE -     | L0-DESOR -  |  |  |  |
| >        | Mass Flows      | kg/hr          | 5300,12          | 5300,12        |             |  |  |  |
| •        | N2              |                | kg/hr            | 1,58331        | 1,58331     |  |  |  |
| •        | O2              |                | kg/hr            | 1,48295        | 1,48295     |  |  |  |
| •        | AR              |                | kg/hr            | 0,0575729      | 0,0575729   |  |  |  |
| •        | CO2             |                | kg/hr            | 0,0241903      | 0,0241903   |  |  |  |
| •        | H2O             |                | kg/hr            | 3181,41        | 3181,41     |  |  |  |
| •        | CACL2           |                | kg/hr            | 0              | 0           |  |  |  |
| •        | CA++            |                | kg/hr            | 763,945        | 763,945     |  |  |  |
| •        | CL-             |                | kg/hr            | 1351,62        | 1351,62     |  |  |  |
| > — P    | Mass Fractions  |                |                  |                |             |  |  |  |
| •        | N2              |                |                  | 0,00029873     | 0,00029873  |  |  |  |
| •        | 02              |                |                  | 0,000279795    | 0,000279795 |  |  |  |
| •        | AR              |                |                  | 1,08626e-05    | 1,08626e-05 |  |  |  |
| •        | CO2             |                |                  | 4,5641e-06     | 4,5641e-06  |  |  |  |
| •        | H2O             |                |                  | 0,600252       | 0,600252    |  |  |  |
| •        | CACL2           |                |                  | 0              | 0           |  |  |  |
| •        | CA++            |                |                  | 0,144137       | 0,144137    |  |  |  |
| •        | CL-             |                |                  | 0,255017       | 0,255017    |  |  |  |

Main Flowsheet × COLECTOR (Heater) - Stream Results (Feeds) × +

| Main Flowsheet × ÉNFRIADO (Heater) - Results × + |              |              |       |               |     |          |   |  |
|--------------------------------------------------|--------------|--------------|-------|---------------|-----|----------|---|--|
| Summary                                          | Balance      | Phase Equili | brium | Utility Usage |     | Status 🏈 | ] |  |
| Outlet tempe                                     | erature      |              |       | 22            | С   |          | • |  |
| Outlet pressu                                    | ıre          |              |       | 1,0024        | atm |          | • |  |
| Vapor fractio                                    | n            |              |       | 0             |     |          |   |  |
| Heat duty                                        | -            | 84,7772      | kW    |               | •   |          |   |  |
| Net duty                                         |              |              | -     | 84,7772       | kW  |          | • |  |
| 1st liquid / To                                  | otal liquid  |              |       | 1             |     |          |   |  |
| Pressure-dro                                     | p correlatio | n parameter  |       |               |     |          |   |  |
| Pressure dro                                     | р            |              |       | 0,34023       | atm |          | - |  |

Anexo E 205. Resultados energéticos del Enfriador para la ciudad de San Andrés.

Anexo E 206. Resultados de los flujos y fracciones molares del Enfriador para la ciudad de San Andrés.

| Main Howsheet & En Rindo (Heater) - Stream Results (Boundary) & T |                |              |       |        |           |          |       |             |  |
|-------------------------------------------------------------------|----------------|--------------|-------|--------|-----------|----------|-------|-------------|--|
| Material                                                          | Heat Load      | Vol.% Curves | Wt. % | Curves | Petroleum | Polymers | Solid | ls          |  |
|                                                                   |                |              |       |        | Units     | LIN-ENFR | •     | L0-OUT -    |  |
| -                                                                 | Mole Flows     |              |       | kmol/h | ır        | 233      | ,341  | 233,341     |  |
| •                                                                 | N2             |              |       | kmol/h | r         | 0,032    | 7882  | 0,0327882   |  |
| •                                                                 | O2             |              |       | kmol/h | r         | 0,026    | 4792  | 0,0264792   |  |
| •                                                                 | AR             |              |       | kmol/h | r         | 0,00086  | 2085  | 0,000862085 |  |
| •                                                                 | CO2            |              |       | kmol/h | r         | 0,00046  | 2724  | 0,000462724 |  |
| •                                                                 | H2O            |              |       | kmol/h | r         | 176      | 5,095 | 176,095     |  |
| •                                                                 | CACL2          |              |       | kmol/h | r         |          | 0     | 0           |  |
| •                                                                 | CA++           |              |       | kmol/h | r         | 19       | 9,062 | 19,062      |  |
| •                                                                 | CL-            |              |       | kmol/h | r         | 38       | 8,124 | 38,124      |  |
|                                                                   | Mole Fractions |              |       |        |           |          |       |             |  |
| •                                                                 | N2             |              |       |        |           | 0,00014  | 0516  | 0,000140516 |  |
| •                                                                 | 02             |              |       |        |           | 0,00011  | 3478  | 0,000113478 |  |
| •                                                                 | AR             |              |       |        |           | 3,69452  | e-06  | 3,69452e-06 |  |
| •                                                                 | CO2            |              |       |        |           | 1,98303  | e-06  | 1,98303e-06 |  |
| •                                                                 | H2O            |              |       |        |           | 0,75     | 4666  | 0,754666    |  |
| •                                                                 | CACL2          |              |       |        |           |          | 0     | 0           |  |
| •                                                                 | CA++           |              |       |        |           | 0,081    | 6914  | 0,0816914   |  |
| •                                                                 | CL-            |              |       |        |           | 0,16     | 3383  | 0,163383    |  |

Main Flowsheet × ENFRIADO (Heater) - Stream Results (Boundary) × +

| Main Flowsheet × ÉNFRIADO (Heater) - Stream Results (Boundary) × + |          |                        |       |          |           |             |        |         |  |
|--------------------------------------------------------------------|----------|------------------------|-------|----------|-----------|-------------|--------|---------|--|
|                                                                    | Material | Heat Load Vol.% Curves | Wt. 9 | % Curves | Petroleur | n Polymers  | Solids |         |  |
|                                                                    |          |                        |       | Unit     | 3         | LIN-ENFR    | L0-OUT | •       |  |
|                                                                    | - N      | lass Flows             |       | kg/hr    |           | 5289,78     | 5      | 5289,78 |  |
|                                                                    | •        | N2                     |       | kg/hr    |           | 0,91851     |        | 0,91851 |  |
|                                                                    | •        | O2                     |       | kg/hr    |           | 0,847302    | 0      | ,847302 |  |
|                                                                    | Þ        | AR                     |       | kg/hr    |           | 0,0344386   | 0,0    | 344386  |  |
|                                                                    | Þ        | CO2                    |       | kg/hr    |           | 0,0203644   | 0,0    | 203644  |  |
|                                                                    | Þ        | H2O                    |       | kg/hr    |           | 3172,4      |        | 3172,4  |  |
|                                                                    | Þ        | CACL2                  |       | kg/hr    |           | 0           |        | 0       |  |
|                                                                    | Þ        | CA++                   |       | kg/hr    |           | 763,945     |        | 763,945 |  |
|                                                                    | Þ        | CL-                    |       | kg/hr    |           | 1351,62     |        | 1351,62 |  |
|                                                                    | ► – M    | lass Fractions         |       |          |           |             |        |         |  |
|                                                                    | Þ        | N2                     |       |          |           | 0,000173639 | 0,000  | 173639  |  |
|                                                                    | Þ        | 02                     |       |          |           | 0,000160177 | 0,000  | 160177  |  |
|                                                                    | Þ        | AR                     |       |          |           | 6,51039e-06 | 6,510  | 039e-06 |  |
|                                                                    | Þ        | CO2                    |       |          |           | 3,84976e-06 | 3,849  | 976e-06 |  |
|                                                                    | Þ        | H2O                    |       |          |           | 0,599722    | 0      | ,599722 |  |
|                                                                    | Þ        | CACL2                  |       |          |           | 0           |        | 0       |  |
|                                                                    | Þ        | CA++                   |       |          |           | 0,144419    | 0      | ,144419 |  |
|                                                                    | •        | CL-                    |       |          |           | 0,255515    | 0      | ,255515 |  |
|                                                                    | Ve       | plume Flow             |       | l/min    |           | 60,8594     |        | 60,2304 |  |

## Anexo E 207. Resultados de los flujos y fracciones másicas del Enfriador para la ciudad de San Andrés.

## ANEXO F. Resultados del análisis de simulación del sistema de aire acondicionado por absorción.

Análisis de sensibilidad de la temperatura y humedad relativa ambiental.

Anexo F 1. Humedad absoluta de acondicionamiento en función de la temperatura y humedad relativa ambiental, en Medellín.



Anexo F 2. Temperatura de acondicionamiento en función de la temperatura y humedad relativa ambiental, en Medellín.



Anexo F 3. Potencia neta requerida de la bomba 1 en función de la temperatura y humedad relativa ambiental, en Medellín.




Anexo F 4. Potencia neta requerida de la bomba 2 en función de la temperatura y humedad relativa ambiental, en Medellín.

Anexo F 5. Potencia neta requerida del ventilador 1 en función de la temperatura y humedad relativa ambiental, en Medellín.



Anexo F 6. Potencia neta requerida del ventilador 2 en función de la temperatura y humedad relativa ambiental, en Medellín.





Anexo F 7. Carga térmica del colector en función de la temperatura y humedad relativa ambiental, en Medellín.

Anexo F 8. Carga térmica del enfriador en función de la temperatura y humedad relativa ambiental, en Medellín.



Anexo F 9. Humedad absoluta de acondicionamiento en función de la temperatura y humedad relativa ambiental, en Arauca.





Anexo F 10. Temperatura de acondicionamiento en función de la temperatura y humedad relativa ambiental, en Arauca.

Anexo F 11. Potencia neta requerida de la bomba 1 en función de la temperatura y humedad relativa ambiental, en Arauca.



Anexo F 12. Potencia neta requerida de la bomba 2 en función de la temperatura y humedad relativa ambiental, en Arauca.





Anexo F 13. Potencia neta requerida del ventilador 1 en función de la temperatura y humedad relativa ambiental, en Arauca.

Anexo F 14. Potencia neta requerida del ventilador 2 en función de la temperatura y humedad relativa ambiental, en Arauca.



Anexo F 15. Carga térmica del colector en función de la temperatura y humedad relativa ambiental, en Arauca.





Anexo F 16. Carga térmica del enfriador en función de la temperatura y humedad relativa ambiental, en Arauca.

Anexo F 17. Humedad absoluta de acondicionamiento en función de la temperatura y humedad relativa ambiental, en Buenaventura.



Anexo F 18. Temperatura de acondicionamiento en función de la temperatura y humedad relativa ambiental, en Buenaventura.





Anexo F 19. Potencia neta requerida de la bomba 1 en función de la temperatura y humedad relativa ambiental, en Buenaventura.

Anexo F 20. Potencia neta requerida de la bomba 2 en función de la temperatura y humedad relativa ambiental, en Buenaventura.



Anexo F 21. Potencia neta requerida del ventilador 1 en función de la temperatura y humedad relativa ambiental, en Buenaventura.







Anexo F 23. Carga térmica del colector en función de la temperatura y humedad relativa ambiental, en Buenaventura.



Anexo F 24. Carga térmica del enfriador en función de la temperatura y humedad relativa ambiental, en Buenaventura.





Anexo F 25. Humedad absoluta de acondicionamiento en función de la temperatura y humedad relativa ambiental, en Cartagena.

Anexo F 26. Temperatura de acondicionamiento en función de la temperatura y humedad relativa ambiental, en Cartagena.



Anexo F 27. Potencia neta requerida de la bomba 1 en función de la temperatura y humedad relativa ambiental, en Cartagena.





Anexo F 28. Potencia neta requerida de la bomba 2 en función de la temperatura y humedad relativa ambiental, en Cartagena.

Anexo F 29. Potencia neta requerida del ventilador 1 en función de la temperatura y humedad relativa ambiental, en Cartagena.



Anexo F 30. Potencia neta requerida del ventilador 2 en función de la temperatura y humedad relativa ambiental, en Cartagena.





Anexo F 31. Carga térmica del colector en función de la temperatura y humedad relativa ambiental, en Cartagena.

Anexo F 32. Carga térmica del enfriador en función de la temperatura y humedad relativa ambiental, en Cartagena.



Anexo F 33. Humedad absoluta de acondicionamiento en función de la temperatura y humedad relativa ambiental, en Inírida.





Anexo F 34. Temperatura de acondicionamiento en función de la temperatura y humedad relativa ambiental, en Inírida.

Anexo F 35. Potencia neta requerida de la bomba 1 en función de la temperatura y humedad relativa ambiental, en Inírida.



Anexo F 36. Potencia neta requerida de la bomba 2 en función de la temperatura y humedad relativa ambiental, en Inírida.





Anexo F 37. Potencia neta requerida del ventilador 1 en función de la temperatura y humedad relativa ambiental, en Inírida.

Anexo F 38. Potencia neta requerida del ventilador 2 en función de la temperatura y humedad relativa ambiental, en Inírida.



Anexo F 39. Carga térmica del colector en función de la temperatura y humedad relativa ambiental, en Inírida.





Anexo F 40. Carga térmica del enfriador en función de la temperatura y humedad relativa ambiental, en Inírida.

Anexo F 41. Humedad absoluta de acondicionamiento en función de la temperatura y humedad relativa ambiental, en San Andrés.



Anexo F 42. Temperatura de acondicionamiento en función de la temperatura y humedad relativa ambiental, en San Andrés.





Anexo F 43. Potencia neta requerida de la bomba 1 en función de la temperatura y humedad relativa ambiental, en San Andrés.

Anexo F 44. Potencia neta requerida de la bomba 2 en función de la temperatura y humedad relativa ambiental, en San Andrés.



Anexo F 45. Potencia neta requerida del ventilador 1 en función de la temperatura y humedad relativa ambiental, en San Andrés.





Anexo F 46. Potencia neta requerida del ventilador 2 en función de la temperatura y humedad relativa ambiental, en San Andrés.

Anexo F 47. Carga térmica del colector en función de la temperatura y humedad relativa ambiental, en San Andrés.







Análisis de sensibilidad de la temperatura de solvente y flujo de solvente.

Anexo F 49. Humedad absoluta de acondicionamiento en función de la temperatura y flujo de solvente, en Medellín.



Anexo F 50. Temperatura de acondicionamiento en función de la temperatura y flujo del solvente, en Medellín.



Anexo F 51. Potencia neta requerida de la bomba 1 en función de la temperatura y flujo de solvente, en Medellín.





Anexo F 52. Potencia neta requerida de la bomba 2 en función de la temperatura y flujo de solvente, en Medellín.

Anexo F 53. Carga térmica del colector en función de la temperatura y flujo de solvente, en Medellín.





Anexo F 54. Carga térmica del enfriador en función de la temperatura y flujo de solvente, en Medellín.



Anexo F 55. Humedad absoluta de acondicionamiento en función de la temperatura y flujo de solvente, en Arauca.

Anexo F 56. Temperatura de acondicionamiento en función de la temperatura y flujo del solvente, en Arauca.



Anexo F 57. Potencia neta requerida de la bomba 1 en función de la temperatura y flujo de solvente, en Arauca.





Anexo F 58. Potencia neta requerida de la bomba 2 en función de la temperatura y flujo de solvente, en Arauca.

Anexo F 59. Carga térmica del colector en función de la temperatura y flujo de solvente, en Arauca.





Anexo F 60. Carga térmica del enfriador en función de la temperatura y flujo de solvente, en Arauca.



Anexo F 61. Humedad absoluta de acondicionamiento en función de la temperatura y flujo de solvente, en Buenaventura.

Anexo F 62. Temperatura de acondicionamiento en función de la temperatura y flujo del solvente, en Buenaventura.



Anexo F 63. Potencia neta requerida de la bomba 1 en función de la temperatura y flujo de solvente, Buenaventura.





Anexo F 64. Potencia neta requerida de la bomba 2 en función de la temperatura y flujo de solvente, Buenaventura.

Anexo F 65. Carga térmica del colector en función de la temperatura y flujo de solvente, en Buenaventura.





Anexo F 66. Carga térmica del enfriador en función de la temperatura y flujo de solvente, en Buenaventura.



Anexo F 67. Humedad absoluta de acondicionamiento en función de la temperatura y flujo de solvente, Cartagena.

Anexo F 68. Temperatura de acondicionamiento en función de la temperatura y flujo del solvente, en Cartagena.



Anexo F 69. Potencia neta requerida de la bomba 1 en función de la temperatura y flujo de solvente, en Cartagena.





Anexo F 70. Potencia neta requerida de la bomba 2 en función de la temperatura y flujo de solvente, en Cartagena.

Anexo F 71. Carga térmica del colector en función de la temperatura y flujo de solvente, en Cartagena.





Anexo F 72. Carga térmica del enfriador en función de la temperatura y flujo de solvente, en Cartagena.



Anexo F 73. Humedad absoluta de acondicionamiento en función de la temperatura y flujo de solvente, en Inírida.

Anexo F 74. Temperatura de acondicionamiento en función de la temperatura y flujo del solvente, en Inírida.



Anexo F 75. Potencia neta requerida de la bomba 1 en función de la temperatura y flujo de solvente, en Inírida.





Anexo F 76. Potencia neta requerida de la bomba 2 en función de la temperatura y flujo de solvente, en Inírida.

Anexo F 77. Carga térmica del colector en función de la temperatura y flujo de solvente, en Inírida.





Anexo F 78. Carga térmica del enfriador en función de la temperatura y flujo de solvente, en Inírida.



Anexo F 79. Humedad absoluta de acondicionamiento en función de la temperatura y flujo de solvente, San Andrés.

Anexo F 80. Temperatura de acondicionamiento en función de la temperatura y flujo del solvente, en San Andrés.









Anexo F 82. Potencia neta requerida de la bomba 2 en función de la temperatura y flujo de solvente, en San Andrés.

Anexo F 83. Carga térmica del colector en función de la temperatura y flujo de solvente, en San Andrés.





Anexo F 84. Carga térmica del enfriador en función de la temperatura y flujo de solvente, en San Andrés.



Análisis de sensibilidad de la fracción másica del solvente



Anexo F 86. Temperatura de acondicionamiento en función de la de fracción másica del solvente.



Anexo F 87. Potencia neta requerida de la bomba 1 en función de la fracción másica del solvente.





Anexo F 88. Potencia neta requerida de la bomba 2 en función de la fracción másica del solvente.





Anexo F 90. Potencia neta requerida del ventilador 2 en función de la fracción másica del solvente.





Anexo F 91. Carga térmica del colector en función de la fracción másica del solvente.

Anexo F 92. Carga térmica del enfriador en función de la fracción másica del solvente.



Análisis de sensibilidad del diámetro y altura del absorbedor.

Anexo F 93. Humedad absoluta de acondicionamiento en función del diámetro y altura del absorbedor, en Medellín.





Anexo F 94. Temperatura de acondicionamiento en función del diámetro y altura del absorbedor, en Medellín.

Anexo F 95. Potencia neta requerida de la bomba 1 en función del diámetro y altura del absorbedor, en Medellín.



Anexo F 96. Potencia neta requerida de la bomba 2 en función del diámetro y altura del absorbedor, en Medellín.





Anexo F 97. Carga térmica del colector en función del diámetro y altura del absorbedor, en Medellín.

Anexo F 98. Carga térmica del enfriador en función del diámetro y altura del absorbedor, en Medellín.



Anexo F 99. Humedad absoluta de acondicionamiento en función del diámetro y altura del absorbedor, en Arauca.





Anexo F 100. Temperatura de acondicionamiento en función del diámetro y altura del absorbedor, en Arauca.

Anexo F 101. Potencia neta requerida de la bomba 1 en función del diámetro y altura del absorbedor, en Arauca.









Anexo F 103. Carga térmica del colector en función del diámetro y altura del absorbedor, en Arauca.

Anexo F 104. Carga térmica del enfriador en función del diámetro y altura del absorbedor, en Arauca.



Anexo F 105. Humedad absoluta de acondicionamiento en función del diámetro y altura del absorbedor, en Buenaventura.





Anexo F 106. Temperatura de acondicionamiento en función del diámetro y altura del absorbedor, en Buenaventura.

Anexo F 107. Potencia neta requerida de la bomba 1 en función del diámetro y altura del absorbedor, en Buenaventura.



Anexo F 108. Potencia neta requerida de la bomba 2 en función del diámetro y altura del absorbedor, en Buenaventura.





Anexo F 109. Carga térmica del colector en función del diámetro y altura del absorbedor, en Buenaventura.

Anexo F 110. Carga térmica del enfriador en función del diámetro y altura del absorbedor, en Buenaventura.



Anexo F 111. Humedad absoluta de acondicionamiento en función del diámetro y altura del absorbedor, en Cartagena.




Anexo F 112. Temperatura de acondicionamiento en función del diámetro y altura del absorbedor, en Cartagena.

Anexo F 113. Potencia neta requerida de la bomba 1 en función del diámetro y altura del absorbedor, en Cartagena.



Anexo F 114. Potencia neta requerida de la bomba 2 en función del diámetro y altura del absorbedor, en Cartagena. 66,325 -





Anexo F 115. Carga térmica del colector en función del diámetro y altura del absorbedor, en Cartagena.

Anexo F 116. Carga térmica del enfriador en función del diámetro y altura del absorbedor, en Cartagena.



Anexo F 117. Humedad absoluta de acondicionamiento en función del diámetro y altura del absorbedor, en Inírida.





Anexo F 118. Temperatura de acondicionamiento en función del diámetro y altura del absorbedor, en Inírida.

Anexo F 119. Potencia neta requerida de la bomba 1 en función del diámetro y altura del absorbedor, en Inírida.



Anexo F 120. Potencia neta requerida de la bomba 2 en función del diámetro y altura del absorbedor, en Inírida.





Anexo F 121. Carga térmica del colector en función del diámetro y altura del absorbedor, en Inírida.

Anexo F 122. Carga térmica del enfriador en función del diámetro y altura del absorbedor, en Inírida.



Anexo F 123. Humedad absoluta de acondicionamiento en función del diámetro y altura del absorbedor, en San Andrés.





Anexo F 124. Temperatura de acondicionamiento en función del diámetro y altura del absorbedor, en San Andrés.

Anexo F 125. Potencia neta requerida de la bomba 1 en función del diámetro y altura del absorbedor, en San Andrés.









Anexo F 127. Carga térmica del colector en función del diámetro y altura del absorbedor, en San Andrés.

Anexo F 128. Carga térmica del enfriador en función del diámetro y altura del absorbedor, en San Andrés.



Análisis de sensibilidad del diámetro y altura del desorbedor.







Anexo F 130. Carga térmica del enfriador en función del diámetro y altura del desorbedor, en Medellín.

Anexo F 131. Potencia neta requerida de la bomba 2 en función del diámetro y altura del desorbedor, en Arauca.



Anexo F 132. Carga térmica del enfriador en función del diámetro y altura del desorbedor, en Arauca.





Anexo F 133. Potencia neta requerida de la bomba 2 en función del diámetro y altura del desorbedor, en Buenaventura.

Anexo F 134. Carga térmica del enfriador en función del diámetro y altura del desorbedor, en Buenaventura.



Anexo F 135. Potencia neta requerida de la bomba 2 en función del diámetro y altura del desorbedor, en Cartagena.





Anexo F 136. Carga térmica del enfriador en función del diámetro y altura del desorbedor, en Cartagena.

Anexo F 137. Potencia neta requerida de la bomba 2 en función del diámetro y altura del desorbedor, en Inírida.





Anexo F 138. Carga térmica del enfriador en función del diámetro y altura del desorbedor, en Inírida.



Anexo F 139. Potencia neta requerida de la bomba 2 en función del diámetro y altura del desorbedor, en San Andrés.

Anexo F 140. Carga térmica del enfriador en función del diámetro y altura del desorbedor, en San Andrés.

