
Applied Mathematical Sciences, Vol. 8, 2014, no. 161, 8007 - 8019
HIKARI Ltd, www.m-hikari.com

http://dx.doi.org/10.12988/ams.2014.410814

Distribution of the Product of Independent

Extended Beta Variables

Daya K. Nagar, Edwin Zarrazola and Luz Estela Sánchez
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Abstract

The extended beta type 1 distribution has the probability density
function proportional to xα−1(1−x)β−1 exp[−σ/x(1−x)], 0 < x < 1. In
this article, we derive the probability density function of the product of
two independent random variables each having an extended beta type 1
distribution. We also consider several other products involving extended
beta type 1, beta type 1, beta type 2, beta type 3, Kummer-beta and
inverted gamma variables.
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1 Introduction

The random variable X is said to have an extended beta type 1 distribution,
denoted by X ∼ EB1(α, β;σ), if its probability density function (p.d.f.) is
given by (Chaudhry et al. [1]),

xα−1(1− x)β−1

B(α, β;σ)
exp

[
− σ

x(1− x)

]
, 0 < x < 1, (1)
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where σ > 0 and B(p, q;σ) is the extended beta function defined by (Chaudhry
et al. [1], Miller [7])

B(p, q;σ) =

∫ 1

0

tp−1(1− t)q−1 exp

[
− σ

t(1− t)

]
dt, (2)

where −∞ < p, q < ∞ and Re(σ) > 0. For σ = 0 we must have p > 0, q > 0
and in this case the extended beta function reduces to the Euler’s beta function.
Further, replacing t by 1−t in (2), one can see that B(a, b;σ) = B(b, a;σ). The
rationale and justification for introducing this function are given in Chaudhry
et al. [1] where several properties and a statistical application have also been
studied. Miller [7] further studied this function and has given several addi-
tional results. The extended beta function has been used by Morán-Vásquez
and Nagar [8] to express the density function of the product of two independent
Kummer-gamma variables. Recently, Nagar, Morán-Vásquez and Gupta [15]
have studied several properties of the extended beta distribution. A matrix
variate generalization of the extended beta function is available in Nagar,
Roldán-Correa and Gupta [14]. The extended matrix variate beta distribu-
tion has been studied by Nagar and Roldán-Correa [16].

In this article, we derive the density function of the product of two indepen-
dent random variables each having an extended beta type 1 distribution. We
also derive densities of several other products involving extended beta type 1,
beta type 1, beta type 2, beta type 3, Kummer-beta and inverted gamma
variables.

2 Some Definitions and Preliminary Results

In this section, we give some definitions and preliminary results which are
used in the subsequent section. The integral representations of the confluent
hypergeometric function Φ and the Gauss hypergeometric function F are given
as

Φ(a, c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1 exp(zt) dt (3)

and

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− zt)−b dt, (4)

respectively, where Re(a) > 0 and Re(c − a) > 0. Expanding exp(zt) and
(1 − zt)−b, |zt| < 1, in (3) and (4) and integrating t, series expansions for Φ
and F can be obtained as

Φ(a, c; z) =
∞∑
k=0

(a)k
(c)k

zk

k!
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and

F (a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, |z| < 1,

respectively, where a, b and c are complex numbers with suitable restrictions
and the pochhammer symbol (a)n is defined by (a)n = a(a+1) · · · (a+n−1) =
(a)n−1(a+ n− 1) for n = 1, 2, . . . , and (a)0 = 1.

The integral representations of the Appell’s first hypergeometric function
F1 and the Humbert’s confluent hypergeometric function Φ1 are given by

F1(a, b1, b2; c; z1, z2) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

va−1(1− v)c−a−1 dv

(1− vz1)b1(1− vz2)b2
,

|z1| < 1, |z2| < 1, (5)

and

Φ1[a, b1; c; z1, z2] =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

va−1(1− v)c−a−1 exp(vz2) dv

(1− vz1)b1
,

|z1| < 1, |z2| <∞, (6)

where Re(a) > 0 and Re(c − a) > 0. Note that for b1 = 0, F1 and Φ1 reduce
to F and Φ functions, respectively. For properties and further results on these
functions the reader is referred to Luke [6] and Srivastava and Karlsson [20].

The Laguerre polynomials (Gradshteyn and Ryzhik [2, Sec. 8.97]) are given
by the sum

Ln(x) =
n∑
k=0

(−1)k

k!

(
n

k

)
xk,

where
(
n
k

)
is the binomial coefficient. The first few Laguerre polynomials are

L0(x) = 1, L1(x) = −x+1, L2(x) = (x2−4x+2)/2 and L3(x) = (−x3 +9x2−
18x+ 6)/6. The generating function for Laguerre polynomials is given by

exp[−xt/(1− t)]
1− t

=
∞∑
n=0

tnLn(x), |t| < 1.

Replacing exp(−σ/t) and exp[−σ/(1− t)] by their respective series expan-
sions involving Laguerre polynomials (Miller [7, Eq. 3.4a, 3.4b]), namely,

exp
(
−σ
t

)
= exp(−σ)t

∞∑
n=0

Ln(σ)(1− t)n, |t| < 1,
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and

exp

(
− σ

1− t

)
= exp(−σ)(1− t)

∞∑
m=0

Lm(σ)tm, |t| < 1,

respectively, in (2) and integrating t by using beta integral, Miller [7, Eq. 2.3]
has given an alternative representation for B(p, q;σ) as

B(p, q;σ) = exp(−2σ)
∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)B(p+m+ 1, q + n+ 1),

where Re(p) > −1 and Re(q) > −1.
Finally, we define the inverted gamma, beta type 1, beta type 2, beta

type 3 and Kummer-beta distributions. These definitions can be found in John-
son, Kotz and Balakrishnana [5], Nagar and Joshi [10], Nagar and Ramirez-
Vanegas [11, 12], Nagar and Tabares-Herrera [13], Nagar and Zarrazola [17],
Ng and Kotz [18] and Sánchez and Nagar [19].

Definition 2.1. The random variable X is said to have an inverted gamma
distribution with parameters θ (> 0), κ (> 0), denoted by X ∼ IG(θ, κ), if its
p.d.f. is given by

{θκΓ(κ)}−1 x−(κ+1) exp

(
− 1

θx

)
, x > 0.

Definition 2.2. The random variable X is said to have a beta type 1 dis-
tribution with parameters (a, b), a > 0, b > 0, denoted as X ∼ B1(a, b), if its
p.d.f. is given by

{B(a, b)}−1xa−1(1− x)b−1, 0 < x < 1,

where B(a, b) is the beta function.

Definition 2.3. The random variable X is said to have a beta type 2 dis-
tribution with parameters (a, b), a > 0, b > 0, denoted as X ∼ B2(a, b), if its
p.d.f. is given by

{B(a, b)}−1xa−1(1 + x)−(a+b), x > 0.

Definition 2.4. The random variable X is said to have a beta type 3 dis-
tribution with parameters (a, b), a > 0, b > 0, denoted as X ∼ B3(a, b), if its
p.d.f. is given by

2a{B(a, b)}−1xa−1(1− x)b−1(1 + x)−(a+b), 0 < x < 1.
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Definition 2.5. The random variable X is said to have a Kummer-beta
distribution, denoted by X ∼ KB(α, β, λ), if its p.d.f. is given by

xα−1(1− x)β−1 exp (−λx)

B(α, β)Φ(α, α + β;−λ)
, 0 < x < 1, (7)

where α > 0, β > 0 and −∞ < λ <∞.

Note that for λ = 0 the above density simplifies to a beta type 1 density
with parameters α and β. Further, using the Kummer’s relation, the Kummer-
beta density (7) can also be written as

xα−1(1− x)β−1 exp [λ(1− x)]

B(α, β)Φ(β, α + β;λ)
, 0 < x < 1. (8)

The matrix variate generalizations of the inverted gamma, beta type 1,
beta type 2, beta type 3 and Kummer-beta distributions have been defined
and studied extensively. For example, see Gupta and Nagar [3, 4], and Nagar
and Gupta [9].

3 Products of Two Independent

Random Variables

In this section, we derive distributions of products of two independent random
variables when at least one of them has extended beta type 1 distribution.
First, we re-write the extended beta type 1 density in series involving Laguerre
polynomials.

Replacing exp(−σ/x) and exp[−σ/(1−x)] by their respective series expan-
sions involving Laguerre polynomials (Miller [7, Eq. 3.4a, 3.4b]), namely,

exp
(
−σ
x

)
= exp(−σ)x

∞∑
n=0

Ln(σ)(1− x)n, |x| < 1,

and

exp

(
− σ

1− x

)
= exp(−σ)(1− x)

∞∑
m=0

Lm(σ)xm, |x| < 1,

respectively, in (1), the extended beta type 1 density can also be written as

{B(α, β;σ) exp(2σ)}−1
∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)

× xα+m+1−1(1− x)β+n+1−1, 0 < x < 1, (9)
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where α > −1 and β > −1.
We will use the above representation of the extended beta type 1 density

in deriving a number of results.

Theorem 3.1. Let X1 and X2 be independent, X1 ∼ EB1(α1, β1;σ1), α1 >
−1, β1 > −1 and X2 ∼ EB1(α2, β2;σ2), α2 > −1, β2 > −1. Then, the p.d.f.
of Z = X1X2 is

K1z
α1(1− z)β1+β2+1

∞∑
m=0

∞∑
n=0

∞∑
r=0

∞∑
s=0

Lm(σ1)Ln(σ1)Lr(σ2)Ls(σ2)

× zm(1− z)n+sB(β1 + n+ 1, β2 + s+ 1)

× F (β2 + s+ 1, α1 + β1 +m+ n+ 1− α2 − r; β1 + β2 + n+ s+ 2; 1− z),

where 0 < z < 1 and

K1 = {B(α1, β1;σ1)B(α2, β2;σ2) exp[2(σ1 + σ2)]}−1.
Proof. Using (9), the joint p.d.f. of X1 and X2 is given by

K1

∞∑
m=0

∞∑
n=0

∞∑
r=0

∞∑
s=0

Lm(σ1)Ln(σ1)Lr(σ2)Ls(σ2)

× xα1+m+1−1
1 xα2+r+1−1

2 (1− x1)β1+n+1−1(1− x2)β2+s+1−1, (10)

where 0 < x1 < 1 and 0 < x2 < 1. Making the transformation Z = X1X2,
X2 = X2 with the Jacobian J(x1, x2 → z, x2) = 1/x2 in (10), the joint p.d.f.
of Z and X2 is obtained as

K1

∞∑
m=0

∞∑
n=0

∞∑
r=0

∞∑
s=0

Lm(σ1)Ln(σ1)Lr(σ2)Ls(σ2)

× zα1+m+1−1(1− x2)β2+s+1−1(x2 − z)β1+n+1−1

xα1+β1+m+n+1−α2−r
2

, 0 < z < x2 < 1. (11)

To find the marginal p.d.f. of Z, we integrate (11) with respect to x2 to get

K1

∞∑
m=0

∞∑
n=0

∞∑
r=0

∞∑
s=0

Lm(σ1)Ln(σ1)Lr(σ2)Ls(σ2)

× zα1+m+1−1
∫ 1

z

(1− x2)β2+s+1−1(x2 − z)β1+n+1−1

xα1+β1+m+n+1−α2−r
2

dx2. (12)

In (12) change of variable u = (1− x2)/(1− z) yields

K1

∞∑
m=0

∞∑
n=0

∞∑
r=0

∞∑
s=0

Lm(σ1)Ln(σ1)Lr(σ2)Ls(σ2)

× zα1+m+1−1(1− z)β1+β2+n+s+2−1
∫ 1

0

uβ2+s+1−1(1− u)β1+n+1−1

[1− (1− z)u]α1+β1+m+n+1−α2−r
du.

Finally, applying (4), we obtain the desired result.
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Theorem 3.2. Let X1 and X2 be independent, X1 ∼ EB1(α1, β1;σ), α1 >
−1, β1 > −1 and X2 ∼ KB(α2, β2, λ). Then, the p.d.f. of Z = X1X2 is

K2z
α1(1− z)β1+β2

∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)zm(1− z)nB(β1 + n+ 1, β2)

×Φ1[β2, α1 + β1 − α2 +m+ n+ 2; β1 + β2 + n+ 1; 1− z, λ(1− z)],

where 0 < z < 1 and

K2 = {exp(2σ)B(α1, β1;σ)B(α2, β2)Φ(β2, α2 + β2;λ)}−1.

Proof. Using (9) and (8), the joint p.d.f. of X1 and X2 is given by

K2

∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)xα1+m+1−1
1 xα2−1

2

× (1− x1)β1+n+1−1(1− x2)β2−1 exp[λ(1− x2)], (13)

where 0 < x1 < 1 and 0 < x2 < 1. By transforming Z = X1X2 and X2 = X2

with the Jacobian J(x1, x2 → z, x2) = 1/x2 in (13), the joint p.d.f. of Z and
X2 is obtained as

K2z
α1

∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)zm
(1− x2)β2−1(x2 − z)β1+n+1−1 exp[λ(1− x2)]

xα1+β1−α2+m+n+2
2

,

(14)

where 0 < z < x2 < 1. Now, integrating x2 in (14), the marginal p.d.f. of Z is
derived as

K2z
α1

∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)zm

×
∫ 1

z

(1− x2)β2−1(x2 − z)β1+n+1−1 exp[λ(1− x2)]
xα1+β1−α2+m+n+2
2

dx2. (15)

Now, substituting u = (1 − x2)/(1 − z) in (15), the marginal p.d.f. of Z is
re-written as

K2z
α1(1− z)β1+β2

∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)zm(1− z)n

×
∫ 1

0

uβ2−1(1− u)β1+n+1−1 exp[λ(1− z)u]

[1− (1− z)u]α1+β1+m+n+2−α2
du. (16)

Finally, application of (6) yields the desired result.
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Corollary 3.2.1. Let X1 and X2 be independent, X1 ∼ EB1(α1, β1;σ),
α1 > −1, β1 > −1 and X2 ∼ B1(α2, β2). Then, the p.d.f. of Z = X1X2 is

zα1(1− z)β1+β2

exp(2σ)B(α1, β1;σ)B(α2, β2)

∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)zm(1− z)nB(β1 + n+ 1, β2)

× F (β2, α1 + β1 − α2 +m+ n+ 2; β1 + β2 + n+ 1; 1− z), 0 < z < 1.

Corollary 3.2.2. Let the random variables X1 and X2 be independent,
X1 ∼ B1(α1, β1) and X2 ∼ KB(α2, β2, λ). Then, the p.d.f. of Z = X1X2

is

zα1(1− z)β1+β2

B(α1, β1)B(α2, β2)Φ(β2, α2 + β2;λ)

∞∑
m=0

∞∑
n=0

zm(1− z)nB(β1 + n+ 1, β2)

×Φ1[β2, α1 + β1 − α2 +m+ n+ 2; β1 + β2 + n+ 1; 1− z, λ(1− z)],

where 0 < z < 1.

Nagar and Zarrazola [17] have also derived the density of Z = X1X2, where
X1 and X2 are independent, X1 ∼ B1(α1, β1) and X2 ∼ KB(α2, β2, λ). The
form of the density derived by them is given by

Γ(β1 + α1)Γ(β2 + α2)

Γ(α1)Γ(α2)Γ(β1 + β2)
{Φ(β2, α2 + β2;λ)}−1zα1−1(1− z)β1+β2−1

×Φ1[β2, α1 + β1 − α2; β1 + β2; 1− z, λ(1− z)], 0 < z < 1.

This expression can be obtained by substituting σ = 0 in (16), summing infinite
series as

∞∑
m=0

[
z

1− (1− z)u

]m
=

1− (1− z)u

(1− z)(1− u)
(17)

and
∞∑
n=0

[
(1− z)(1− u)

1− (1− z)u

]m
=

1− (1− z)u

z
, (18)

and integrating the resulting expression by using (6),

Theorem 3.3. Let X1 and X2 be independent, X1 ∼ EB1(α1, β1;σ), α1 >
−1, β1 > −1 and X2 ∼ B2(α2, β2). Then, the p.d.f. of Z = X1X2 is given by

zα2−1(1 + z)−(α2+β2)

B(α1, β1;σ)B(α2, β2)

∞∑
r=0

(α2 + β2)r
(1 + z)rr!

B (β1 + r, α1 + β2;σ) , z > 0.
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Proof. Since X1 and X2 are independent, their joint p.d.f. is given by

K3
xα1−1
1 (1− x1)β1−1xα2−1

2

(1 + x2)α2+β2
exp

[
− σ

x1(1− x1)

]
, 0 < x1 < 1, x2 > 0,

where

K3 = {B(α1, β1;σ)B(α2, β2)}−1.

Now, transforming Z = X1X2 and W = 1−X1 with the Jacobian J(x1, x2 →
w, z) = 1/(1− w), we obtain the joint p.d.f. of W and Z as

K3
zα2−1

(1 + z)α2+β2

wβ1−1(1− w)α1+β2−1

[1− w/(1 + z)]α2+β2
exp

[
− σ

w(1− w)

]
, 0 < w < 1. (19)

Now, expanding [1− w/(1 + z)]−(α2+β2) in series form and integrating w using
(1) and substituting for K3 in (19), we obtain the desired result.

Corollary 3.3.1. Let X1 and X2 be independent random variables, X1 ∼
B1(α1,β1) and X2 ∼ B2(α2, β2). Then, the p.d.f. of Z = X1X2 is given by

B(β1, α1 + β2)

B(α1, β1)B(α2, β2)

zα2−1

(1 + z)α2+β2
F

(
β1, α2 + β2;α1 + β1 + β2;

1

1 + z

)
,

where z > 0.

The above corollary is also available in Nagar and Zarrazola [17].

Theorem 3.4. Let X1 and X2 be independent, X1 ∼ EB1(α1, β1;σ), α1 >
−1, β1 > −1 and X2 ∼ B3(α2, β2). Then, the p.d.f. of Z = X1X2 is

K4
zα1(1− z)β1+β2

2α2+β2

∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)zm(1− z)nB(β1 + n+ 1, β2)

× F1

(
β2, α1 + β1 − α2 +m+ n+ 2, α2 + β2; β1 + β2 + n+ 1; 1− z, 1− z

2

)
,

where 0 < z < 1 and

K4 = 2α2{exp(2σ)B(α1, β1;σ)B(α2, β2)}−1.

Proof. Using the independence, the joint p.d.f. of X1 and X2 is given by

K4

∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)
xα1+m+1−1
1 xα2−1

2 (1− x1)β1+n+1−1(1− x2)β2−1

(1 + x2)α2+β2
, (20)
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where 0 < x1 < 1 and 0 < x2 < 1. Now, transforming Z = X1X2, X2 =
X2 with the Jacobian J(x1, x2 → z, x2) = 1/x2 in (20) and integrating the
resulting expression with respect to x2, the density of Z is obtained as

K4z
α1

∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)zm
∫ 1

z

(1− x2)β2−1(x2 − z)β1+n+1−1

xα1+β1+m+n+2−α2

2 (1 + x2)α2+β2
dx2,

where 0 < z < x2 < 1. Now, substituting u = (1 − x2)/(1 − z) in the above
expression, we obtain

K4
zα1(1− z)β1+β2

2α2+β2

∞∑
m=0

∞∑
n=0

Lm(σ)Ln(σ)zm(1− z)n

×
∫ 1

0

uβ2−1(1− u)β1+n+1−1

[1− (1− z)u]α1+β1+m+n+2−α2 [1− u(1− z)/2]α2+β2
du. (21)

Finally, applying (5), we get the desired result.

Corollary 3.4.1. Let the random variables X1 and X2 be independent,
X1 ∼ B1(α1, β1) and X2 ∼ B3(α2, β2). Then, the p.d.f. of Z = X1X2 is

zα1(1− z)β1+β2

2β2B(α1, β1)B(α2, β2)

∞∑
m=0

∞∑
n=0

zm(1− z)nB(β1 + n+ 1, β2)

× F1

(
β2, α1 + β1 − α2 +m+ n+ 2, α2 + β2; β1 + β2 + n+ 1; 1− z, 1− z

2

)
,

where 0 < z < 1.

Substituting σ = 0 in (21), summing infinite series by using (17) and
(18), and integrating the resulting expression by applying (5), the density of
Z = X1X2, where X1 and X2 are independent, X1 ∼ B1(α1, β1) and X2 ∼
B3(α2, β2), can also be derived as

Γ(α1 + β1)Γ(α2 + β2)

2β2Γ(α1)Γ(β2)Γ(β1 + β2)
zα1−1(1− z)β1+β2−1

× F1

(
β2, α1 + β1 − α2, α2 + β2; β1 + β2; 1− z, 1− z

2

)
, 0 < z < 1.

The above result has also been obtained by Sánchez and Nagar [19].

Theorem 3.5. Let the random variables X1 and X2 be independent. Fur-
ther, X1 ∼ EB(α, β;σ) and X2 ∼ IG(θ, κ). Then, the p.d.f. of Z = X1X2

is

exp (−1/θz) z−κ−1

θκΓ(κ)B(α, β;σ)

∞∑
r=0

1

(θz)r r!
B (β + r, α + κ;σ) , z > 0.
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Proof. The joint p.d.f. of X1 and X2 is given by

K5x
α−1
1 (1− x1)β−1x−(κ+1)

2 exp

[
− σ

x1(1− x1)
− 1

θx2

]
, (22)

where 0 < x1 < 1, x2 > 0 and

K5 = {θκΓ(κ)B(α, β;σ)}−1.

Now, transforming Z = X1X2, X1 = X1 with the Jacobian J(x1, x2 → x1, z) =
1/x1 in (22), we obtain the joint p.d.f. of of Z and X1 as

K5z
−(κ+1)xα+κ−11 (1− x1)β−1 exp

[
− σ

x1(1− x1)
− x1
θz

]
,

where z > 0 and 0 < x1 < 1. Now, integrating x1, we get the marginal density
of Z as

K5z
−(κ+1)

∫ 1

0

vα+κ−1 (1− v)β−1 exp

[
− σ

v(1− v)
− v

θz

]
dv

= K5z
−κ−1 exp

(
− 1

θz

)∫ 1

0

wβ−1(1− w)α+κ−1 exp

[
− σ

w(1− w)
+
w

θz

]
dw

where the last line has been obtained by substituting w = 1 − v. Finally,
expanding exp (w/θz) in series form, integrating the resulting expression using
(2), substituting for K5 and simplifying, we obtain the desired result.

Corollary 3.5.1. Let the random variables X1 and X2 be independent. Fur-
ther, X1 ∼ B1(α, β) and X2 ∼ IG(θ, κ). Then, the p.d.f. of Z = X1X2 is given
by

Γ(α + β)Γ(α + κ)

θκΓ(κ)Γ(α)Γ(α + β + κ)
z−κ−1 exp

(
− 1

θz

)
Φ

(
β, α + κ+ β;

1

θz

)
,

where z > 0.

4 Conclusion

In this article, we have derived the density function of the product of two
independent random variables each having extended beta type 1 distribution.
We have also derived densities of several other products involving extended
beta type 1, beta type 1, beta type 2, beta type 3, Kummer-beta and inverted
gamma variables. We applied the traditional method of transformation of
random variables to derive these results and used several special functions to
express density functions.
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