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Abstract

The Quadratic Assignment Problem (QAP) is one of the most challenging combina-
torial optimization problems with many real-life applications. Multiple methods have
been created to solve QAP, exact and approximate methods, among others. Meta-
heuristics are a subset of approximative methods which have shown to be very efficient
in solving QAP. Their behavior can be controlled by a set of parameters. Currently,
the best solvers are based on hybrid and parallel metaheuristics. However, the design
of parallel hybrid methods requires even more the fine tuning of a larger number of
parameters.

The parameter setting problem (PSP) is the task of finding the correct values of the
metaheuristic parameters that results in the best possible performance. It is possible
to identify four main ways for solving the PSP, these are: Parameter Tuning Strate-
gies, Parameter Control Strategies, Instance-specific Parameter Tuning Strategies and
HyperHeuristics. Several methods for solving the PSP have been proposed. However,
there is a need for parameter control strategies for single-solution metaheuristics, more
notorious in parallel hybrid metaheuristics. To solve this problem, we have proposed
PACAS, a framework to configure the PArameter Control Adaptation for Single solu-
tion metaheuristics in a parallel hybrid solver for the efficient solution of combinatorial
optimization problems. We proposed a Java implementation of framework J-PACAS,
which implemented the functionality for solving the QAP.

Our implementation uses three popular metaheuristics applied to QAP: the Ro-
bust Tabu Search, the Extremal Optimization method and a simple Multi-start Local
Search. J-PACAS also supplies three different strategies to perform the adaptation of
the parameters. We present the results obtained by executing an experimental evalu-
ation on a set of very difficult instances of QAPLIB. We explore different parameter
control strategies, with different parallel configurations (independent or cooperative).
We compare the best J-PACAS configuration identified in the experimental evalu-
ation against a competitive state-of-the-art parameter control method, finding that
our implementation presents a similar performance in small instances and a better
performance in hard instances of the QAPLIB benchmark.
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Chapter 1

Introduction

The Quadratic Assignment Problem (QAP) is defined as the assignment of facilities,
or tools, to exactly one location and vice versa. The distance between the locations
and the flows between facilities is known, the problem is to find the minimum cost
associated to assign a facility in one location; the cost is the sum of all the products
between flows and the distance [Kaufman and Broeckx, 1978]. QAP is one of the best
known combinatorial optimization problems and one of the most difficult (since it is
NP-hard), it was presented by Koopmans and Beckmann in 1957 as a mathematical
model for the location of indivisible economic activities [Koopmans and Beckmann,
1957].

Real-life applications can be modeled as QAP [Wu et al., 2012], such as electronic
chipset layout and wiring, scheduling, process communications, turbine runner bal-
ancing, data center network topology, among many others [Commander, 2005, Bhati
and Rasool, 2014]. In general, one can find applications of QAP in multiple areas,
such as archeology, statistics, economics, chemistry, logistics and electricity, among
others. Even problems like the traveling salesman (TSP) can be formulated as a QAP
problem [Loiola et al., 2007a]. Other types of QAP transformable problems can be
found in [Burkard, 1984, Burkard et al., 2012].

1.1 Solution Methods for QAP

QAP can be solved using exact and approximative methods. Exact methods con-
sider the entire search space: either explicitly by exhaustive search or implicitly, by
pruning some portions of the search space that have been detected as irrelevant for
the search. However, the QAP presents a “combinatorial explosion” i.e., the size of
the search space grows exponentially with relation to the size of the instance (num-
ber of variables, location or facilities). For this reason exact methods can not solve
QAP instances with size larger than 35 in a reasonable time [Loiola et al., 2007b]. In
contrast, approximative methods efficiently explore only some portions of the search
space, obtaining a good sub-optimum solution (local optimum) in a reasonable time.
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Metaheuristics are a subset of approximative methods which have shown to be very
efficient in solving QAP. Metaheuristics are algorithms usually inspired by nature or
physical principles. These methods usually make decisions to efficiently explore the
search space of the problem and use randomness in their behavior [Boussäıd et al.,
2013]. Some examples of metaheuristics are genetic algorithms, local search, or simu-
lating annealing.

Metaheuristics consider two main working principles, intensification and diversi-
fication. Intensification refers to the method’s ability to deeply explore a promising
region of the search space, while diversification refers to explore different regions of
the search space. By design, some metaheuristics methods are better at intensifying
the search while others are so at diversifying it. Nonetheless, a set of parameters
controls the behavior of most metaheuristics. A fine tuning of these parameters is
therefore crucial to achieve an effective trade-off between intensification and diver-
sification, and hence good performance in solving a given problem. Unfortunately,
selecting the best-performing set of parameters is usually a hard task. This process
is even more difficult because the best parameters values are different for different
problems and even for different instances of the same problem, as demonstrated by
the Non-Free-Lunch theorem [Wolpert and Macready, 1997].

Each metaheuristic has its own strengths and weaknesses, which may vary accord-
ing to the problem or even to the instance being solved. The trend is thus to design
hybrid metaheuristics, which combine diverse methods in order to benefit from the
individual advantages of each one [Blum et al., 2011]. This increases the number of
parameters (parameters of individual metaheuristics and new parameters to control
the hybridization). The design and implementation of a hybrid metaheuristic is a
complex process; setting the resulting parameters to reach the best performance is
also very challenging.

Despite the good results obtained with the use of hybrid metaheuristics, it is still
necessary to reduce the processing times needed for the hardest instances [Saifullah
Hussin, 2016]. One of the most plausible options entails parallelism [Crainic and
Toulouse, 2010]. In parallel metaheuristics, one can have multiple instances of the same
(or different) metaheuristics running in parallel, either independently or cooperatively,
through concurrent process communications [Caniou et al., 2014]. Parallelism not only
helps to decrease processing time but also is a mean to easily implement hybridization.

The creation of parallel hybrid methods requires the fine tuning of a larger number
of parameters, since more metaheuristics (of different types) are involved. Moreover,
the configuration of the parallel interaction itself (communication between the meth-
ods) involves yet another set of parameters which need to be adjusted. Tuning this
increasing number of parameters makes it even more difficult to find the appropriate
setting for the algorithm to behave optimally. Automating the task of finding good
parameters is thus desirable and has attracted significant attention from researchers.
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1.2 Setting Metaheuristic Parameters

It is possible to identify three specific strategies focused on solving the task problem
of setting the metaheuristic parameters: parameter tuning, parameter control [Huang
et al., 2020] and instance-specific parameter tuning [Calvet et al., 2016]. In parameter
tuning (off-line tuning) the set of parameters are defined before applying the algorithm
to a specific problem instance(s) (static definition of parameters). Several strategies
for parameter tuning of metaheuristics have been proposed [Birattari and Kacprzyk,
2009, Hutter et al., 2009, 2011]. In contrast, parameter control strategies (online-
tuning) adapt the values of the controlled parameters during the algorithm execution
(dynamic/reactive adaptation of parameters). The idea is to find the best parameters
setting during the solving process, using some mechanism to alter the parameter val-
ues according to the observed algorithm performance. The instance-specific strategy
considers a combination of the two previous methods (parameter tuning and param-
eter control) with the aim of having for each specific instance of a problem, one set
of static parameters values, few papers can be found with this approach [Ries and
Beullens, 2015, Calvet et al., 2016, Dobslaw, 2010a].

Parameter tuning can be seen as a pre-process pass which is executed before the
solving procedure in order to determine the adequate values for parameters. This
does not affect the implementation of the solver. Unlike parameter control strategies,
which has to be implemented in the kernel of the solver, as part of it. Parameter
tuning strategies may appear easier, but when the number of parameters becomes
large, it is hard to use in practice, e.g., within a parallel hybrid method. Indeed, it
usually requires many runs to identify the best parameter settings, making this a time-
consuming process. These methods are often limited by the number of parameters and
the computational power available. In that case, parameter control strategies emerge
as a viable solution to deal with the high complexity of current solvers (hybrid and/or
parallel).

Regarding the instance-specific parameter tuning strategies, these avoid the need
to modify the metaheuristic method and try to minimize all the computational effort
that parameter control strategies require adapting parameters. Additionally, these
define parameters values for each specific instance since looking for one fixed set of
parameter values for an entire set of instances with different characteristics is likely
not performing well as parameter tuning does [Ries et al., 2012].

There is another way to setting the parameters (a fourth way), with a more general
purpose, Hyper-heuristics. These methods are part of a novel research approach in
which a high level strategy selects or generates the best metaheuristics with their
respective parameters and solutions acceptance criteria. This approach is used with
the aim of having more general methods, not designed for a single problem or for a
few instances of a problem [Burke et al., 2019].

As shown in the analysis of the state-of-the-art, despite the strategies available
to solve the problem of setting the parameters of a metaheuristic, there is a need
for parameter control strategies for single-solution metaheuristics, more evident in
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parallel hybrid methods. The main contribution of this thesis is to propose a general
framework to configure the parameter control strategy for single-solution metaheuristics
in a parallel hybrid solver, for solving combinatorial optimization problems.

1.3 Thesis Goals and Contributions

In this research, we study the methods that have been proposed for the resolution of
the parameter setting problem. By performing this study, we have noticed the gap
that exists for parameter control strategies (PCS) methods in single-solution meta-
heuristics. This gap is even more notable for parallel hybrid metaheuristic methods.

The contributions of our research are the following:

• We propose PACAS: a general framework to configure the PArameter Control
Adaptation for Single solution metaheuristics in a parallel hybrid solver, for solv-
ing combinatorial optimization problems (COP). PACAS aimed at increasing
the performance of parallel method based on several parameter control strate-
gies through the analysis of the behavior of single-solution metaheuristics. The
framework allows to customize the parameter adaptation strategy in order to
have a trade-off between intensification and diversification in the search process.
The hybrid behavior is granted by the use of different types of metaheuristics
and by cooperation mechanism through an intra-team communication.

• In order to validate our approach, we present J-PACAS: an implementation of
PACAS in the Java programming language. Our implementation provides three
different metaheuristics and three kinds of teams to perform different parameter
adaptation strategy. We provide the code to support one of the most difficult
COPs, the Quadratic Assignment Problem (QAP). J-PACAS implementation is
available in open source code through a git repository. It is implemented in Java
11 using the ForkJoinPool and AtomicType classes to handle the parallelism
in a shared memory model. J-PACAS can be executed on a multicore parallel
platform.

• We tackle one of the most difficult problems in combinatorial optimization, the
Quadratic Assignment Problem. We consider the set of very hard QAP problems,
the QAPLIB benchmark. We make a contribution exploring different parame-
ter adaptation strategies, with different parallel configurations (independent or
cooperative). Finally, we make a comparison with the most similar work in the
state-of-the-art. Partial results of this experimentation were published in the
International Conference on Optimization and Learning [Duque et al., 2021]

Finally, this document is organized as follows:
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Chapter 2 explains the concepts, definitions and main related principles of meta-
heuristics and their parameter settings to understand this thesis.

Chapter 3 is dedicated to analyze the state of the art related to the strategies to
solve the parameter setting problem for metaheuristic methods. This chapter contains
an analysis of the most relevant characteristics of the strategies, advantages and dis-
advantages. According to this analysis, we further present our taxonomy that covers
all the strategies reviewed.

Chapter 4 introduces the PACAS framework that we propose, detailing the design
aspects for each part.

Chapter 5 presents an implementation of the PACAS framework made on the Java
programming language, J-PACAS. We provide guidelines to extend the framework
functionality and to configure all its parameters.

Chapter 6 describes the experimental evaluation to validate the functionalities of
our proposed framework. We compare the performance of seven J-PACAS configu-
rations on the most difficult instances of QAPLIB. We also make an analysis of the
winner metaheuristic and its configuration. Finally, a comparison with the most sim-
ilar work in the state-of-the-art is done.

Chapter 7 concludes this thesis and presents some perspectives about future re-
search directions.
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Chapter 2

Background

This chapter includes a formal definition of the Quadratic Assignment Problem (QAP),
analysing its complexity. Then, it presents a brief description of metaheuristic methods
used to solved QAP, as well as a presentation of the research trends related to this
topic. Finally, we present a formulation of the parameter setting problem and the
approaches to solve this problem.

2.1 Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) was first proposed by Koopmans and
Beckmann in 1957 [Koopmans and Beckmann, 1957] as a model for a facilities location
problem. This problem consists in assigning a set of n facilities to a set of n locations,
while minimizing the cost associated with the flows of items among facilities and the
distance between them. Let F be the flow matrix, where fij is the flow between
facilities i and j, let D be the distance matrix, where dkl, is the distance between the
locations k and l. The goal is to find an optimum assignment of facilities to locations
at minimum total cost, which is defined as the sum of all products between flows and
distances [Kaufman and Broeckx, 1978]. Equation 2.1 presents a formulation of QAP,
where φ(i) is the location which facility i is assigned to and dφ(i)φ(j) is the distance
between locations φ(i) and φ(j).

min
n∑
i=1

n∑
j=1

fij ∗ dφ(i)φ(j) (2.1)

QAP has a computational complexity that classifies it as an NP-hard problem
[Sahni and Gonzalez, 1976]. Technology has advanced in a way that the processors
speed has increased, however QAP remains computationally difficult to accurately
solve it when the number of facilities and locations is greater than 35. It is at this
point that methods with metaheuristic approaches produce high quality solutions in
reasonable times [Dokeroglu and Cosar, 2016].
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2.2 Metaheuristics

Metaheuristic methods are a type of approximate methods used to solve difficult opti-
mization problems, most of them are inspired by nature (based on some principles of
physics, biology or ethology); theses methods use stochastic components (use random-
ness in their behavior) and have several parameters that must be adjusted depending
on the problem in question [Boussäıd et al., 2013].

Metaheuristics operate on two main working principles: intensification and diver-
sification, also call exploitation and exploration respectively. On the one hand the
former refers to the method’s ability to explore more deeply a promising region of the
search space and does not explore the whole set of solutions, providing at the end of
the search the best solution of that region, called optimum, which is not necessary
the global optimum of the whole search space; the optimum of this region is called
local optimum. On the other hand, diversification refers to the exploration of different
regions of the search space. Diversification helps to escape from local optima, guiding
the search to other promising regions of the solution space and avoiding stagnation.
The hybridization of metaheuristics helps to have a balance between intensification
and diversification, by combining the characteristics of different methods.

We can classify metaheuristics as single-solution metaheuristics and population
metaheuristics. The main difference between these two categories depends on the
number of solutions used during the execution of the algorithm. A single-solution
metaheuristic starts with an initial solution and at each step of the search the cur-
rent solution is replaced by another (often the best) solution found in its neighbor-
hood [Alba et al., 2013]. The neighborhood is a set of solutions obtained by making
small disturbances or changes to one solution [Yagiura and Ibaraki, 2002]. The single-
solution metaheuristics allow to quickly find an optimum solution locally, so these are
good at intensifying the search space. Population-based metaheuristics make use of
a population of solutions. In this case, the initial population is generated randomly
(or created with a greedy algorithm), and then improved through an iterative process.
At each generation of the process, all (or part) of the population is replaced by newly
generated individuals (often the best ones). These methods are commonly used for
exploration, since they work with many solutions, producing a larger search at the
solution space, and trying to make the search more diverse [Alba et al., 2013].

Some of the best known metaheuristics are described below:

• Local Search (LS): LS is one of the oldest and most frequently used metaheuris-
tics. LS starts from an initial solution and repeatedly replaces it with better
solutions within its neighborhood, this method finishes when there are no better
solutions in the neighborhood of the current solution, ending the search in a
local optimum [Yagiura and Ibaraki, 2002].

• Simulated Annealing (SA): In 1983, Kirkpatrick et al. introduced the concept
of Simulated Annealing. This algorithm is based on the method of cooling a
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material, a technique called annealing. In this process, if the material is cooled
down too fast, the atoms have no chance to produce a powerful structure and
settle randomly, resulting in a brittle metal; but if the temperature decreases
slowly, the atoms have more time to build strong crystals increasing the quality
of the product [Dokeroglu and Cosar, 2016]. The SA algorithm begins with
an initial solution, then this solution is transformed into another by introducing
small disturbances or changes. The algorithm replaces the current solution when
the resulting solution is better than the current one, ending the search when there
are no improvements (local optimum). SA uses a probability function to accept
worse solutions, this function simulates the way the temperature decreases in
the cooling of the material. This function will allow, with a high probability,
worse solutions and, as the execution of the algorithm advances, this probability
decreases allowing only improving solutions [Dowsland and Diaz, 2003].

• Tabu Search (TS): The Tabu Search method refers to the use of adaptive mem-
ories and special problem-solving strategies, called intelligent strategies, which
differentiate TS from a LS. The idea is to memorize within a structure the ele-
ments that for the LS will be forbidden to use and thus avoid staying in local
optima. TS searches within the neighborhood for the best solution but does not
visit the solutions of previous neighbors if they have been visited before or have
been marked as prohibited solutions or “tabu” solutions [Dokeroglu and Cosar,
2016].

• Genetic Algorithm (GA): GA is a population algorithm, it has a direct analogy
with nature, in this case biological evolution. GA works on a population of
individuals, where each one represents a solution. Each individual is assigned
a fitness, according to how good is the solution for the problem, i.e, the fitness
is the value for the objective function [Beasley et al., 1993]. This population
evolves by applying crossing and mutation operators to some individuals. The
best set of new individuals replaces the initial population (elitist policy). The
algorithm finishes when a given number of iterations have been performed or
when the population converges.

• Ant Colony Optimization (ACO): ACO is inspired by the behavior of ants to
find the shortest path from their nest to a food source. Ants mark their way
to the food source by placing pheromones, at the end, the path with the most
pheromones persists. The idea of the ACO as an algorithm is to start from
an initial population of solutions (representing ants) and, through an iterative
process, the ants that find good solutions guide the following ants by using a
memory, this memory will be the pheromone information saved by the ants when
they find good solutions [Merkle and Middendorf, 2001].

In addition to the metaheuristics that are presented, there are others like, Pi-
lot Method [Voss et al., 2005], Variable Neighbourhood Search [Hansen et al., 2003],
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Table 2.1: Metaheuristic parameter and its influence (note that MH stands for Meta-
heuristic type).

MH Parameter name
Parameter

Influence
type

TS
Tabu duration factor integer

Small value promotes intensification.
Large value promotes diversification.

Aspiration factor integer It is used as a solution cost exception to take good solutions.

SA Temperature function function
It controls the acceptance criteria for new solutions.
It avoids the stagnation of the search, making it more diverse.

GA

Population size integer
A small value promotes intensification.
A large value promotes diversification.

Crossover operator operator
It helps to diversify the search, guiding the exploration toward
different neighborhoods.

Mutation probability decimal
Small value promotes intensification.
Large value promotes diversification.

Greedy Randomized Adaptive Search Procedures (GRASP) [Resende and Gonzáles
Velarde, 2003], Scatter Search [Mart́ı and Laguna, 2003], Particle Swarm Optimiza-
tion (PSO) [Merkle and Middendorf, 2001], among others.

Each metaheuristic type has some intrinsic parameters that guide the search to be-
have in one way or another. While there are methods that are better for intensification
or diversification, adjusting those parameters offer a trade-off between exploitation or
exploration search. Table 2.1 shows some metaheuristic methods with their parame-
ters and its influence over the search. In addition to these intrinsic parameters, there
are parameters common to most methods. For example, the stopping criterion and the
type of neighborhood to explore. It is important to note that even for some parameters
it is necessary to define other “internal” parameters.

There is no theory to determine the most adequate metaheuristics for a problem or
the optima values for its parameters, so usually different strategies have been proposed,
such as consulting an expert opinion, extracting values from state-of-the-art works,
developing a design of experiments or even invoking to the developer’s intuition. This
is an import topic to take into account, given that the quality of the solutions will
depend on the choice of the metaheuristics and on the values of its parameters [Turky
et al., 2018].

The configuration of the metaheuristic parameters is a fundamental part of the
algorithm design. This configuration can also include changing the order in which
the components of a metaheuristic are executed, where a component is a specific and
unique part that defines the algorithm and each one may have one or more parameters
that determine its functionality. Examples of components are a local search operator
in a Variable Neighbourhood Search, a tabu list in a TS, a crossover operator or a
mutation operator in an GA. The configuration of these components is called the
control flow [Sevaux et al., 2015].

18



Determining the control flow of the algorithm is a task for the algorithm de-
signer. There is no a guide for the best order or to choose the best components
for a method [Sevaux et al., 2015]. In general, methods usually have a default or-
der and available components. The practitioners work with this default mode, since
configure it, is long and fastidious task, usually done with trials and errors methods.
One question arose, is there an optimum configuration for achieving the best perfor-
mance?. While this question is of interest to the target community, it is broader than
our research question and is beyond our scope.

2.3 Hybrid Metaheuristics

Having a equilibrium between intensification and diversification is a hard task [Beasley
et al., 1993], with this aim hybridization have been used. The propose is adding up
metaheuristic strengths and balancing their weaknesses. In recent years, the research
on hybrid metaheuristics has notably increased [Bhati and Rasool, 2014], positioning
hybrid methods as one of the best performing solvers for tackling many hard problems.
Particularly for QAP, hybrid methods provide outstanding performances for difficult
QAP instances.

The basic idea about hybridization of metaheuristics is the design and implemen-
tation of algorithms that, through the combination of different metaheuristics retains
the best features that each one has to offer. Although the way as metaheuristics are
hybridized varies according to the type of problem or the type of method, several
research works have been proposed to define criteria that allows the development of a
hybrid metaheuristic, for example [Blum et al., 2008].

2.4 Parallel Metaheuristics

The parallelization of metaheuristics is another strategy that has been used simultane-
ously with hybridization. At the early days, the parallelization has been done with the
traditional idea of accelerating the execution time of the operations of the algorithm,
focusing on operations that are more expensive in processing time. Later, it has been
used to distribute tasks or sets of tasks on the available processors, tasks that result
from the decomposition of the total computational load of the algorithm.

Four major strategies can be identified in the parallelization of metaheuristics. The
first strategy is the decomposition of the low level computer tasks without modifying
the original algorithm but accelerating its execution, for example by parallelizing the
execution of the neighborhood assessment in a single-solution metaheuristics or the
population assessment in a population-based metaheuristics. The second strategy is
the decomposition of the search space into smaller portions and the assignment of
one or more processors for exploration using one or more metaheuristics. To make
the search space decomposition, special techniques are used for its partitioning and
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special techniques to assemble solutions from the solutions found in the exploration of
each partition. The third strategy is the independent multiple search which consists of
executing several self-contained searches, each with a different initial solution and with
no exchange of information between them. The searches have a starting point that is
usually random and to the final solution no partitioning and composition technique
is applied. Finally, the cooperative multiple search is similar to the independent one
with the difference that the metaheuristics that are executed simultaneously resort to
the exchange of information during their execution [Codognet et al., 2018]. Coopera-
tive parallelization not only improves the processing times but also open a bunch of
possibilities to create new hybrid algorithms.

Parallel hybrid metaheuristics often have many parameters which modify the algo-
rithm behaviour. Setting these parameters has a heavy influence on the performance
of the method, however, finding the optima values for these parameters is usually a
hard task [Hutter et al., 2009]. Using hybridization and parallelism makes this task
even more difficult for mainly two reasons: First, hybrid metaheuristics inherit the
parameters of each “low level” metaheuristic, so one needs to find the setting of more
parameters, since a parameter configuration for one algorithm usually is not suitable
for another. Second, cooperative parallel strategies also require parameters to define
their behaviour, e.g., for determining how frequently metaheuristics should interact or
how each metaheuristic has to use the received information.

2.5 Setting Metaheuristic Parameters

The metaheuristic parameters can be of different kinds, as show in table 2.1. There
are integers, decimals, functions, operators, and others. These can be classify in two
groups, numerical and categorical (or non-numerical) parameters [Huang et al., 2020]:

• Numerical: Corresponds to all those parameters that are real or integer numbers,
and they are typically in a range of values.

• Categorical: Refers to the remaining parameters that control the behavior of
a metaheuristic, these are functions, mathematical expressions, operators, or
mechanisms. One example is the crossover operator in the GA algorithm.

The Parameter Setting Problem (PSP) is the task of finding the parameter values
for a metaheuristic that results in the best possible performance across the given
problem instance(s). This problem can be briefly described as: given an algorithm
method (to be parametrized), one instance or a set of problem instances, and a free
set of parameters to choose, the purpose of parameter configuration is to resolve the
problem of finding such values that optimizes the objective function of the algorithm
over the given problem instance(s).
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Let M the metaheuristic algorithm to parameterize, P the parameter space values,
a set of problem instances I and a performance metrics mp that measures the perfor-
mance of M across I for a given configuration p (p ∈ P ). The problem is therefore to
find a configuration p∗ ∈ P that optimizes the performance of M on I according to the
metrics established mp [Huang et al., 2020]. The PSP is hence itself a combinatorial
optimization problem (COP) and, in general, NP-hard [Kern, 2006] and it is often
called meta-optimization [Pedersen, 2010].

Three dedicated strategies to solve the PSP can be found, these form a range
of strategies categorized into Parameter Tuning Strategies (PTS), Parameter Control
Strategies (PCS) [Huang et al., 2020] and Instance-specific Parameter Tuning Strate-
gies (IPTS) [Calvet et al., 2016]. There are others strategies not dedicated to solving
the PSP, however, as part of its purpose solves it, these are HyperHeuristics methods
(HH) [Burke et al., 2019]. In the next subsections we define each category.

2.5.1 Parameter Tuning Strategies (PTS)

Eiben et al. define Parameter Tuning Strategies as “The commonly practiced approach
that amounts to finding good values for the parameters before the run of the algorithm
and then running the algorithm using these values, which remain fixed during the
run” [Eiben et al., 1999]. The aim is to find a priori the best set of values for the
parameters. With a preliminary analysis, standard values for the parameters can be
recommended for future executions. However, such recommendations should not be
generalised to all classes of problems.

2.5.2 Parameter Control Strategies (PCS)

Parameter Control Strategies (also known as online setting) is an approach that elimi-
nates the parameter values analysis step carry out in PTS, therefore the setting occurs
during the optimization process (algorithm running) [Parpinelli et al., 2019]. In this
methodology is required adequate control strategies for the controlled parameters,
these strategies change or adapt relevant parameter values during the run [Huang
et al., 2020]. The control strategies usually make use of information gathered during
the execution of the algorithm as a feedback, based on this feedback, the parameter
are adapted dynamically [Calvet et al., 2016].

2.5.3 Instance-specific Parameter Tuning Strategies (IPTS)

Instance-specific Parameter Tuning Strategies (IPTS) the parameters remain fixed
during the run, similar to PTS. Therefore, there is a design phase that precedes the
algorithm execution to find the parameter values. In the design phase, a representative
set of instances is first investigated. This instance set is used to design an efficient
tuning method (or model) that can return instance-specific parameter values for each
specific problem instance, rather than aiming to obtain one set of parameter values for
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all instances. The tuning method is done based on measurable instance characteristics.
Further, in the execution phase, an instance is examined by the tuning method in order
to return a set of instance-specific parameter values [Ries et al., 2012].

The IPTS approach is a new research area, hence the published works are few and
sometimes the differences with PTS are diffused. The differences are not yet clear
because in both strategies the parameters remain fixed. One can find in the literature
papers categorized as PTS, but those match perfectly under the definition of IPTS,
for example [Pavón et al., 2009].

2.5.4 HyperHeuristics (HH)

HyperHeuristics (HH) present another way to face the problem of metaheuristic param-
eter setting and they have some similarity to PCS. This is a novel research approach,
it appears in 2001, with the purpose of selecting or generating the best metaheuristics
with their respective parameter settings and acceptance criteria to face a problem. HH
are methods to manage the control flow of an algorithm by applying some strategies
to select or generate the best component order, with the aim of having the best pa-
rameter settings and configuration for a the method. This approach is used with the
idea of having more general methods, not only designed for a single type of problem or
for a few instances of a problem. HH usually makes use of learning strategies outside
or inside the execution of the algorithm [Burke et al., 2019].

A hyperheuristic is also known as a heuristic to select/generate metaheuristics,
heuristic known as a high-level heuristic. The set of available metaheuristics or meta-
heuristic components are known as a low-level heuristics. A high-level heuristic works
on the set of metaheuristics or metaheuristic components rather than on the search
space of solutions of the given problem, it is independent of the type of problem. A
HH aims to automate the design and adaptation of metaheuristic methods to address
computational search problems, in our case COPs. The motivation is raising the level
of generality in which search methodologies can work [Burke et al., 2019].

These methods are learning algorithms, which use feedback during the search pro-
cess. According to the way of feedback during this learning, one can distinguish
between online and offline learning. In online learning hyperheuristics, learning takes
place while the algorithm is solving an instance of a problem (similar to PCS). While
in offline learning hyperheuristics, the idea is to gather knowledge in the form of rules
or programs, from a set of training problems, which will help to solve instances of
unknown problems [Burke et al., 2013].
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Chapter 3

State of the Art

The problem of setting the best set of parameters is called the Parameter Setting
Problem (PSP). The PSP is gaining a lot of interest among researchers and prac-
titioners, since setting parameters by hand or by experience is not the best option.
Classical methods like using design of experiments to identify a good set of parameters
is computational expensive and time consuming for the designer. This is one reason
why parameter setting studies have not been extensively developed [Dobslaw, 2010b],
but since the mid-1990s it is an issue that is taking great importance [Calvet et al.,
2016] and the scientific community started to treat it formally, as shown by Ferro’s
work [Ferro et al., 1996b].

From the literature, it is possible to identify four main ways for solving the PSP,
these are: Parameter Tuning Strategies (PTS), Parameter Control Strategies (PCS),
Instance-specific Parameter Tuning Strategies (IPTS) and HyperHeuristic (HH). These
methodologies form a group of strategies, which perform different functionality, from
the “limited” ability to change only the parameters, to the “complete” ability to change
the whole algorithm.

The literature about parameter settings for metaheuristics is diverse, there is no re-
view that covers completely the four ways to solve the PSP. The most studied strategy
is PTS, and several taxonomies can be found for this approach [Huang et al., 2020,
Dobslaw, 2010b]. For PCS, one can also find classifications made only for population
algorithms, most of them for evolutionary algorithms [Parpinelli et al., 2019, Zhang
et al., 2012, Eiben et al., 2007]. In addition, some publications consider the PSP in
a summarized but not detailed or exhaustive way [Sevaux et al., 2015, Stützle and
López-Ibáñez, 2019]. For the HH strategy the situation is different. Burke et al. [2019]
present a recent classification and taxonomy. It is important to remember that these
kinds of works consider the total manipulation of the method (either generation or
selection) not only the setting of the parameters.

The intention of our review is to bring out the most relevant methodologies that
exist for setting the parameters of metaheuristics when solving hard optimization prob-
lems and show how researchers have classified them. We present a detailed description
of each strategy, pointing out main characteristics, advantages and disadvantages and
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some of the most relevant papers that have been published. Finally, a complete tax-
onomy is presented and discussed. In order to achieve the proposed taxonomy, we
consider the aforementioned reviews and many others who make interesting contribu-
tions to this field.

3.1 Parameter Tuning Strategies (PTS)

As mentioned above, PTS can be defined as the procedure to find good values for the
parameters before the execution of the metaheuristic algorithm. PTS methods allow
the user to find a good set of parameters for running the algorithm with these values,
which will remain fixed throughout the execution. This strategy can be seen as a pre-
process phase or as an off-line parameter setting. Dobslaw called this step algorithm
configuration [Dobslaw, 2010b], because is the configuration before trying to solve the
problem. Meanwhile, A. Fialho, in his Ph.D. thesis, called these strategies as External
Parameter Tuning since it is a process done outside the algorithm core [Fialho, 2010].

From the beginnings of metaheuristics, parameter setting was done by hand. When
more metaheuristics methods were created showing better results, one common strat-
egy was to use parameters’ values reported in the literature as a starting point for
finding a good set of parameters in new algorithms. This is indeed one of the most
common strategies that has been used by most researchers [Sevaux et al., 2015].

However, there is a problem. On the one hand, the idea of taking parameters from
similar works is not suitable in all cases. This is a blind process which not considers
the particularities of new algorithms or instances. On the other hand, the task of
testing many parameters values via trials and errors methods for finding the best
ones can be very time-consuming and tedious. That is why more elaborate tools were
created. These tools aimed at finding the best initial parameters of a solver, in order
to yield (near-)optimum algorithm performance. One of the pioneering strategies was
the use of the classic Design of Experiments (DoE), then followed by a large number of
PTS methods, such as EGO, F-Race, REVAC, ParamILS, SPO, SMAC, SKO, among
others. We describe below the most known methods.

As we found in the analysis of the state-of-the-art for PTS methods, parameter
tuning methods are a large part of the works that has been proposed to solve the PSP.
Some methods have its origin in the Design of Experiments (DoE). DoE methods have
been refined and extended for proposing new ones since the 90s, e.g, EGO, SPO, SKO,
among others. Metaheuristic methods are also used to find the right parameters, an
example is GGA, Calibra and HORA. Also, racing techniques are a common strategy,
which aim to discard the irrelevant parameters during the procedure and keep the ones
who are the better, for instance, F-Race, Iterative F-Race, HORA and SMAC.

In the following, we present a definition of each identified technique for solving the
PSP in PTS methods:

• Brute-Force: The most intuitive and easiest method for solving the tuning prob-
lem is the brute-force. This method consists in allocating an equal share of
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computational power to each candidate configuration and to perform the same
number of experiments on each part. The configuration with the best estimated
performance is considered the optimum parameter setting. To reach good pa-
rameter values, high amount of executions are necessary and a large number
of parameters must be tested, being this the main weakness of the brute-force
method.

• DoE: Design of Experiments is a technique for conducting experiments with the
objective of identifying the causes of the behavior of a problem and get conclu-
sions. These conclusions are drawn on the basis of statistical methods [Fisher,
1936]. Usually, the full factorial design is the most applied for PTS. In this
approach, the researcher takes a small number of the problems from the entire
problem set (representative instances). Then an experiment is carried out with
several values of the parameters, parameters act as factors with various levels,
taking into account lower and upper bounds and values in the middle. This
process allows the user to select good parameter settings for each problem. An
example of DoE using a full factorial design for setting parameters is presented
in [Coy et al., 2001]. Other kinds of DoE techniques had been applied, like block
design, and response surface optimization.

• Revac: Relevance Estimation and Value Calibration of Parameters (REVAC)
method was proposed in 2006. This method is used to calibrate the values of
parameters of any evolutionary algorithm. The method works on distributions
over parameter values and uses the Shannon entropy to estimate the relevance
of a parameter [Nannen and Eiben, 2006]. REVAC is an iterative algorithm that
consists of estimating the distributions of promising parameter values for each
parameter within the configuration space, and then generating parameter con-
figurations by drawing values from these distributions [Huang et al., 2020]. One
important weakness of REVAC is that this method cannot handle categorical
parameters.

• ParamILS: This method is one of the best-known methods for algorithm con-
figuration. ParamILS is an automatic tuning method proposed by Hutter et
al. [Hutter et al., 2009] in 2009. The authors present two versions: BasicILS and
FocussedILS. Both versions use iterated local search (ILS) techniques in order to
guide the search towards promising areas in the search space of the parameters.
BasicILS is the simplest approach that evaluates every parameter configuration
by running it on the same training problem instances using the same random
number of seeds. FocussedILS is a variant of BasicILS that adaptively makes a
variation in the number of training samples considered from one parameter con-
figuration to another. ParamILS can use the so-called adaptive capping mecha-
nism and is able to tune both numerical and categorical parameter. The software
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of ParamILS is implemented in the Ruby programming language 1.

• EGO: Efficient Global Optimization (EGO) is an algorithm for the creation
of a response surface model for black box functions. It combines the predictive
model (Kriging or Gaussian process model), i.e., design and analysis of computer
experiments (DACE) [Sacks et al., 1989], for diversification and a branch and
bound-based phase for intensification. The EGO algorithm fits a DACE model
with a set of initial points specified for the experimental design. The hard-
ware requirements for this method are low. EGO is restricted to non-stochastic
algorithms [Jones et al., 1998]. The SPO and SKO methods extended EGO.

• SPO: The Sequential Parameter Optimization (SPO) method is an extension of
EGO. This method was presented by Thomas BartzBeielstein, Christian Lasar-
czyk, and Mike Preuss in 2005 [Bartz-Beielstein et al., 2005]. The main purpose
is to determine improved parameter settings for optimization algorithms to an-
alyze and understand their performance. This makes use of Kriging models to
perform the optimization, creating a response surface model. With this model,
new set of design points (parameter settings) are generated and tested. The most
promising points, which have the highest expected improvement, are chosen as
new candidate configurations through an iterative process. The corresponding
software package will be referred to as SPOT, an acronym which stands for se-
quential parameter optimization toolbox. SPOT package for R can be downloaded
and used for free. Unfortunately, SPO only supports numerical parameters and
only optimizes an algorithm for a single instance 2.

• SKO: Another extension of EGO, Sequential Kriging Optimization (SKO) was
proposed by Huang et al. [Huang et al., 2006]. The method is based on a kriging
metamodel that provides a global prediction of the objective values and a mea-
sure of prediction uncertainty at every point. SKO is formulated to extend the
EGO scheme to stochastic systems. SKO restricts the user to optimize continu-
ous parameters. It is a sequential approach; the model is becoming updated at
each iteration until a certain quality or time-bound is reached [Dobslaw, 2010b].

• F-Race: It is a racing algorithm that uses the Friedman test (two-way analysis
of variance by ranks), a non-parametric statistical test [Birattari et al., 2002].
In this method, all the configurations take part in a race, some are discarded
based on the statistical study and those who pass the test continue the race.
In each evaluation round of the candidate configurations, the non-parametric
Friedman test is used as a family-wise test to check whether there is evidence
that at least one of the candidate configurations is significantly different from
others in terms of performance measures. The original version has the drawback

1ParamILS software available at http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

index.html
2SPOT package available at https://cran.r-project.org/web/packages/SPOT/index.html
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that only works for a handfull of parameters. The reason is that experimental
design is expensive. There is a free available extension in R language called race.

• Iterated F-Race: To alleviate the problem of F-Race for the tuning problem
when there are a large number of parameters and/or each parameter has a wide
range of possible values, Prasanna Balaprakash, Mauro Birattari and Thomas
Stützle [Balaprakash et al., 2007] proposed the iterative application of F-Race.
Iterated F-Race is an iterative procedure in which each iteration consists in the
definition of a probability measure over the parameter space that is available
at the moment, using promising configurations obtained from the previous it-
erations. Then, the method generates configurations according to the newly
defined probability measure and finally applies a standard F-Race on the gener-
ated configurations. For the probability measure, it is used a d-variate normal
distribution parameterized by mean vector (using surviving configuration from
the previous iteration) and covariance matrix. This measure plays a crucial role
in biasing the search towards regions containing high-quality configurations. It-
erated F-Race has become one of the most competitive PTS [Huang et al., 2020].
It can deal with both numerical and categorical parameters. An R package is
available called irace 3.

• Calibra: This method employs statistical analysis techniques (for exploration)
and a local search (for exploitation). Calibra is a procedure to create a systematic
way to find good parameter settings within a specified range of values [Adenso-
Diaz and Laguna, 2006]. The idea of the statistical analysis is to provide a way
to focus the local search on promising regions of the search space, helping to
initialize the search at a non-arbitrary point. Calibra can only handle up to five
parameters. The authors recommend to use the Taguchi’s L16 (215) array to
determine the five most significant parameters and fix the others to appropriate
values, in the case that the algorithm being fine-tuned has more than five pa-
rameters. Using the Taguchi’s array, Calibra can handle up to 15 parameters.
Calibra works with integer arithmetic; however, parameters with continuous val-
ues must be discretized by specifying a level of accuracy (three decimal places).

• GGA: Gender based Genetic Algorithm (GGA) is a parallel genetic algorithm
(GA) that uses genders for its individuals. The individuals are candidate con-
figuration parameter [Ansótegui et al., 2009]. The authors say: mate choice
is more likely to have a high impact on result quality than, for instance, nat-
ural selection. The GGA uses the concept of competitive and non-competitive
genders, dividing all the individuals into two sub-populations with different gen-
ders (competitive and non-competitive). Different selection pressure on the two
genders are applied. The algorithm allows the user to define the “design of the

3Iterated F-Race package available at https://cran.r-project.org/web/packages/irace/

index.html
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genome”, i.e. relationship between parameters, through a tree. GGA can man-
age numerical and categorical parameters. The implementation makes use of
parallel computations by taking advantage that a GA is easily parallelizable.

• HORA: It is a process proposed by Barbosa and Senne [2017], it is called Heuris-
tic Oriented Racing Algorithm (HORA). The name comes from the use of a
heuristic method and racing techniques. The idea of the authors is to consider
the parameter configurations as a search space and to explore it for finding pa-
rameter values near to the promising (or the best) candidate configurations. The
process starts with a number of instances selected arbitrarily from the given set
of problem instances. The selected instances are treated as a training set. Exper-
imental studies are carried out with the Response Surface Methodology (RSM)
to define the best (promising) parameters settings for each instance. HORA ex-
ecutes a loop procedure, where dynamically creates new candidates parameters
in the neighborhood of the promising candidate parameters and evaluates these
with a racing method to discard poor ones (following statistical evidences us-
ing the Friedman statistic test). Through this procedure, HORA reaches better
parameter settings iteration by iteration.

• SMAC: In [Hutter et al., 2011], the authors proposed two methods, Random
Online Aggressive Racing (ROAR) and Sequential Model-Based Algorithm Con-
figuration (SMAC). SMAC can be understood as an extension of ROAR. SMAC
selects configurations based on a model rather than uniformly at random. SMAC
also is an implementation of Sequential Model-Based Optimization (SMBO). The
aim of SMAC is to remove some limitations that several SMBO methods (e.g.,
SPO) have. Limitations like only managing numerical parameters and tackling
only one instance of a problem. To remove these limitations, the authors pro-
posed: (1) a new intensification mechanism that employs blocked comparisons
between configurations; (2) random forests as alternative class of response sur-
face models, to handle categorical parameters and multiple instances; and (3) a
new optimization procedure to select the most promising parameter configura-
tion in a large mixed categorical/numerical space 4.

There is a variety of methods (or procedures or tools) to solve the PTP offline, all
these with its specific features. Classifying them is a task that has already been done
by other researchers. Dobslaw [2010b] distinguishes between two types of automated
parameter tuning methods: model-free and model-based. The main difference between
both two is that model-based approaches build a model. This model is created from
the observations done by running the target algorithm with several parameter settings
and interpreting the relation between the algorithm and its parameters. Model-free
approaches do not create any model, it obtains implicit conclusions based on heuristic

4SMAC software available at http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
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rules; thus, the selection of interesting parameters is usually guided by randomness or
by a simple experimental design [Dobslaw, 2010b].

Meanwhile, Huang et al. [2020] classify the methods into three categories: simple
generate-evaluate methods, iterative generate-evaluate methods, and high-level generate-
evaluate methods. The first are simple approaches, which consist of a generation phase
and an evaluation phase. These are non-iterative methods that directly adopt this prin-
ciple by firstly creating a number of parameter settings (candidate configurations), and
then evaluating each of them for finding the best configuration. The iterative generate-
evaluate methods involve a repeated process of generation and evaluation steps. These
methods begin with a small set of initial configurations and create new configurations
iteratively during execution. In this iterative execution, methods collect important
information to make a smarter process and to choose better configurations. The
last category, high-level generate-evaluate methods, has the main feature of quickly
generate a set of elite or high-quality parameter configurations with a small need of
computational resources; these methods carefully select the best configuration from
this set instead of evaluating each candidate configuration thoroughly from the very
beginning. In this category, the problem is to keep the diversity of elite candidates.

Table 3.1 summarizes the methods reviewed, proposed as PTS. The table shows the
category if a method is model-based and its classification according to the generate-
evaluate approach. Other important features are included in order to provide more
information. For example, the table shows if the method uses some statistical test or
some heuristic to guide the search. We also show if the method is implemented in
parallel. The publication year and the programming language of the package (if there
is one) are included too. The number of papers using each method is a difficult task
to perform, so it is included the number of citations that have been made in google
scholar until October 30, 2021.

Table 3.1: Summary of methods’ features for PTS

Method
Model Kind

Statistical
Uses Uses Parameter

Year Language
Google scholar

based generate-evaluate heuristics parallelism Types citations

DoE iterative all 19XX R, python 9338
Revac iterative numerical 2006 121
ParamILS iterative all 2009 Ruby 1005
EGO iterative all 1998 6424
SPO iterative numerical 2005 R 367
SKO iterative numerical 2006 692
F-Race simple all 2002 R 704
Iterated F-Race iterative all 2007 R 285
Calibra iterative numerical 2006 497
Brute-force simple all 19XX N/A
GGA iterative all 2009 348
HORA iterative all 2017 6
SMAC iterative all 2010 java, python 2029

The table 3.1 shows the characteristics of the Parameter Tuning Strategies. Most of
these have been published in the last two decades, which shows the increasing impor-
tance of parameters setting in metaheuristics. Many of the methods are able to work
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with all kinds of parameters (numerical and non-numerical). The main disadvantage
of the method in general is that the amount of parameters are limited to a certain
number. It is also possible to see that most of them have as a basis of their operation
one or several characteristics, such as heuristics, some statistical analysis, iterative
approaches or the creation of a model. Generally speaking, these methods are a time-
consuming step for the designer. To speed this up, it is good practice to use parallel
computing. From the state-of-the-art of PTS, only GGA uses this functionality.

3.2 Parameter Control Strategies (PCS)

According to the literature, online parameter setting or Parameter Control Strategies
(PCS) is when the configuration of the parameters is accomplished as part of the
algorithm execution while trying to solve the problem in question. Other less com-
mon terms found in the literature to refer to this approach are Internal Parameter
Control [Fialho, 2010] or Adaptive Metaheuristics [Sevaux et al., 2015]. The latter
definition also considers the modification of the whole behavior of the metaheuristic,
changing the order in which the components are executed and/or the parameter values
(i.e., the control flow of the algorithm).

For this kind of strategies, it is common to find that the adaptation mechanism
is based on a behavior analysis of the metaheuristic during the search. The analysis
implies getting some indicators (e.g., solution quality, similarity between solutions,
local optima, among others). These indicators help to understand the behavior of
the search. The knowledge gathered is used to adapt the parameters for obtaining
better results during the process. The main drawback is the high amount of compu-
tational resource needed for solving the problem of the parameter and for solving the
optimization problem. In addition, it is necessary to understand how the parameters
influence the behavior of the method and how to identify which parameters are good
for focussing the strategy so that prevail the best parameters [Calvet et al., 2016].

Modifying parameters during an algorithm execution in the context of Evolutionary
Algorithms (EA) is not a new thing. The history of EA shows studies with this aim
since the 60’s and 70’s [Fogel et al., 1966, De Jong, 1975, Schwefel, 1977], but at
this time these strategies were known as evolution strategies. In EA, PCS has had
the importance than other methods have hardly taken in the last two decades. Hence,
various classifications can be found, and the latest and most complete taxonomy is the
one proposed by Parpinelli et al. [2019]; this taxonomy combines the ones performed
by Eiben et al. [1999, 2007] and Zhang et al. [2012]. The Parpinelli’s taxonomy is not
limited to EA but also focuses on another group of population algorithms, the swarm
intelligence methods (SI). SI methods are characterised by algorithms inspired by the
collective behaviour of insects such as ants, bees, termites and also animals such as
fish and birds [Parpinelli et al., 2019], one example is the Ant Colony Optimization
algorithm.

Parpinelli’s paper reviewed 158 scientific articles, considering several aspects, such
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as the control technique used, the domain of application, and the bio-inspired algo-
rithm. They provide a broad overview about this topic, with the bonus that they
consider both, EA and SI, areas that other reviews had not addressed. In this review,
it is possible to note that there are algorithms with 2 parameters to 11. However, this
applies not only for population methods. For single-solution methods, the number of
parameters may also vary from few to many.

Figure 3.1: Taxonomy for parameter control in EA and SI algorithms, adapted
from [Parpinelli et al., 2019]

Figure 3.1 shows the completed taxonomy for PCS in EA and SI algorithms adapted
from Parpinelli’s taxonomy. It is possible to identify three groups, Deterministic,
Adaptive and Aggregated methods. The first group uses simple deterministic rules
that modify the parameter values using no feedback during the execution. An usual
action for a deterministic method is to initialize the parameter value with a big value
and gradually decreases it during the optimization process. This action is done by
trying to balance between diversification and intensification in the search. To per-
form the control, it is common to use the number of generations (iterations) or the
number of fitness evaluations [Parpinelli et al., 2019]. Due to the simplicity and low
computational effort, a lot of applications use this type of control.

A well-known strategy for Deterministic parameter control in EA is the 1/5th
rule [Rechenberg, 1973]. This rule establishes that the proportion of success muta-
tions for all mutations should be 1/5. Therefore, if the proportion is superior to 1/5,
the mutation step size should be increased. If the proportion is inferior to 1/5, the
mutation step size should be decreased [Parpinelli et al., 2019].

The second group presented in the taxonomy is Adaptive. This group is divided into
five different subcategories: Simple Rules, Fuzzy Control, Learning Automata, Entropy
and Other. Zhang et al. [2012] included Aggregated category within Adaptive category.
The Adaptive control strategies consider a certain form of feedback from the algorithm.
The feedback contains information of the optimization process which will be used to
modify the parameters values. For EA and SI, the most commonly information used
is the generation number, fitness evaluations number, and some population diversity
measurement [Zhang et al., 2012]. The five subcategories are described next.
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In Simple Rules methods, the control is carried out only using simple rules, based on
the observations of the algorithm behaviour or runtime characteristics of the EA [Zhang
et al., 2012]. Examples of these controls are the implementation of rules based on log-
arithmic, exponential, or linear functions [Fogarty, 1989].

In the Fuzzy Control methods, a controller converts an input (information from
the feedback) to an output (actions for changing parameters) based on a set of fuzzy
rules. These rules take inspiration on fuzzy logic. In [Herrera and Lozano, 2001] is
summarized the fuzzy controller models applied to EA until 2001.

A Learning Automata method is used to select the parameter values by means
of a learning process. The learning process is carried out according to the feedback
obtained while performing the optimization. The aim is to update progressively its
adaptation mechanism and the performance algorithm through the learning process.
These methods learn from the previous experiences, being in permanent change, trying
to refine its process and thus the results [Parpinelli et al., 2019]. It is possible to call
a learning automata method as a machine learning technique.

The last classification subcategory named is Entropy-based methods. In the con-
text of information theory, entropy is used to measure uncertainty of expected infor-
mation, with a random variable. In the population-based algorithms, the generation
of new population usually involves random and probabilistic operators. Thus, in this
context, entropy can be used to analyze that population, getting characteristics and
adjust the parameters accordingly. Shannon entropy is the most common control for
entropy-based methods [Zhang et al., 2012]. Finally, the methods that not fall into
any subcategory below are included in the Other methods, for instance, clustering,
covariance matrix and pheromone matrix methods [Parpinelli et al., 2019].

The last category is Aggregated methods, also called self-adaptive methods [Eiben
et al., 2007]. The main two features of aggregated methods are: (1) these contain the
parameters directly coded with the solution vector, as an extra dimensions and (2)
their parameters are adapted into the evolution process, using the same methods as
the original algorithm (used for solving the optimization problem) or through specific
routines [Zhang et al., 2012]. Zhang et al. consider self-adaptive control methods as a
subset of Adaptive, because these methods are included in the adaptive definition.

A notable feature of the PCS methods for EA and SI is that they can be at
the individual or population level. The individual level is when each individual (or
solution) has its own set of parameters and the parameters are adapted specifically
for this individual. On the population level, parameters are adapted for the whole
population. This adaptation is done through fitness measurements of each individual
or population-based indicators. An example of a population-based indicator is the
relationship between the average and maximum fitness values of the population used
in [Dai et al., 2006]. Population-based indicators are not restricted to population-based
algorithms. For instance, it is possible to use them in parallel methods with single-
solution metaheuristics (one or many) that have in their design a solution population.

In summary, we can conclude that, in the last decade, there have been proposed
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several parameter setting methods for solving the PTP and PCS in EA and SI algo-
rithms. For PCS methods in single-solution metaheuristics, the situation is quite dif-
ferent. If a researcher (or practitioner) is thinking of solving an optimization problem
using metaheuristics with parameterization within the algorithm, there is no guide for
classifying parameterization methods. Of course, there have been publications about
this approach, however these have been done in isolation, specialized for a particular
metaheuristic or a specific problem, not easily reproducible [Calvet et al., 2016].

The aforementioned problem has been partially solved by the Reactive Search Op-
timization (RSO) [Battiti and Brunato, 2010]. Battiti and Brunato define reactive
word as follows: “The word reactive hints at a ready response to events during the
search through an internal online feedback loop for the self-tuning of critical parame-
ters”. This definition fits into the definition of Adaptive control strategies done for EA
and SI algorithms, “The Adaptive control strategies consider certain form of feedback
of the algorithm, information of the optimisation process to modify the parameter val-
ues” [Zhang et al., 2012]. However, the reaction possibilities of RSO consider not only
to change the parameter values; these possibilities consider also changing the neighbors
definition, the objective function, and the use of some constrains. Therefore, these all
possibilities differ from modifying just the parameters as PCS. It is for reason that the
RSO approach does not seem to fit completely with Adaptive control strategies.

Examples of PCS adjusted to the RSO approach are the Reactive Tabu Search
(Reactive-TS) [Battiti and Tecchiolli, 1994] and the Adaptive Simulated Annealing
(ASA) [Ingber, 1989]. For Reactive-TS, the tabu tenure, and for ASA, the temper-
ature cooling schedule, are adjusted through feedback mechanisms during the search
depending of the algorithm progress.

In the literature about PCS, it is possible to find other different approaches for
parameter control in single-solution methods. These methods contain techniques like
support vector machines [Zennaki and Ech-Cherif, 2010], probability matching tech-
niques [Prais and Ribeiro, 2000, Neto and Martins, 2018], simple parameters explo-
ration through parallelism [Blesa and Xhafa, 2004] and adaptation based on empirical
analysis of the algorithm behavior [Ferro et al., 1996a]. However, some of the showed
methodologies are not easily reproducible or are highly metaheuristic and problem
dependent. These are some of the reasons why, in spite of the amount of parameter
control works, many practitioners go on setting by hand or trying to design algo-
rithms without parameters (or with a very low number of them), even with the proof
that parameterizing an algorithm results in better algorithms leads to better perfor-
mance [Calvet et al., 2016].

We can conclude that there is not method or methodology commonly accepted by
the scientific community to setting the parameter of a metaheuristic. There is also
a lack of methods (or research) for PCS and more for PCS in single-solution meta-
heuristics. The PCS for PSP is far from being solved, despite the methods mentioned
above. However, it is worth mentioning and being aware that designing a PCS is much
more complex than designing a PTS one [Dobslaw, 2010b]. This gap of PCS methods
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makes this research work relevant in its theoretical and practical study. Additionaly,
the importance of PCS as a vital part of the implementation and application of better
metaheuristics methods, for the solution of optimization problems.

3.3 Instance-specific Parameter Tuning Strategies

(IPTS)

The idea of Instance-specific Parameter Tuning Strategies (IPTS) is to find, for each
specific instance of a problem, one static parameter values. PTS differs of IPTS, since
PTS has the aiming to obtain one specific “robust” set of parameter values but for
all instances of a problem. In IPTS each instance set is used to design an efficient
tuning method that can return instance-specific parameter values based on measurable
instance characteristics [Ries and Beullens, 2015].

In IPTS methods, the relation between the parameter values and the performance
of the metaheuristic has to be strongly analyzed. This analysis is done taking into
account instance specific features. IPTS avoids the need to modify the metaheuristic
algorithm, reducing the possible computational effort required to adapt parameter
values during algorithm execution as the PCS approach does. Another reason to
implement IPTS is that looking for one fixed set of parameter values for an entire set of
instances with different characteristics is not likely to perform well in all instances [Ries
et al., 2012].

In simple words, IPTS works like this: a representative set of instances of the prob-
lem is selected, this set is investigated and used to design the tuning method. Once
designed, the tuning method calculates the characteristics of any given instance, and
then applies a method (or model, function) to return a custom parameter values for a
specific instance. These values are used to initialize the metaheuristic for solving the
specific instance, and these parameter values remain fixed during the execution [Ries
and Beullens, 2015]. Ries and Beullens noted that an IPTS design has several chal-
lenges, like the selection of relevant characteristics, as well as the identification of the
relation between: (1) the instance-specific information, (2) the parameter values of the
algorithm, and (3) their impact on running times and quality of solutions obtained.

Is possible to think IPTS as a subcategory of PTS, firstly, because the IPTS name
suggests it and second by the fact that the parameters for solving the problem instance
remain fixed during the execution, even if they are different for all instances. Never-
theless, there is in the literature another definition that can make a difference between
IPTS and PTS. Some authors define and have used the IPTS as the combination of the
advantages of PTS and PCS [Ries and Beullens, 2015, Calvet et al., 2016, Dobslaw,
2010a].

Only few approaches can be currently found in the literature that used IPTS or
that may fall within the definition of this approach. As we have said, the differences
in their definitions are still a problem to be solved for this area of research. For
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that reason, some papers have been published as PTS approach, for example [Pavón
et al., 2009, Dobslaw, 2010a]. The Dobslaw’s work is interesting, it combines the
advantages of Design of Experiments (PTS) and Artificial Neural Networks (PCS) for
the recognition of good initial parameter settings for new problem instances. They
tested their methodology adjusting the parameters of the Particle Swarm Optimization
algorithm.

Ries et al. [2012] introduced the concept of IPTS in 2012, even they mention
instance-specific parameter control strategies (IPCS), in order to adapt the dynamic
parameter control procedures to the specific characteristics of each case. In view of
the state-of-the-art of PSP, IPCS is an unused approach.

As the IPTS studies has shown, an important part is to carry out a statistical
analysis to identify the impact of parameters on the metaheuristic performance and to
know the interaction between them. However, the statistical analysis requires someone
to interpret the results. The most of IPTS methods have been designed by using this
statistical analysis and all the knowledge of the problem gathered [Ries et al., 2012,
Ries and Beullens, 2015, Dobslaw, 2010a]. In [Ries et al., 2012], they proposed a fuzzy
logic method based on the knowledge obtained from the statistical analysis. The fuzzy
logic method is a rule-based approach, where the control objectives and relationships
between inputs and actions (or outputs) are captured in the fuzzy logic system, usually
through a set of IF–THEN rules.

Ries and Beullens [2015] proposed a semi-automated approach for designing fuzzy
logic, whereby the classification rules are derived from automatically generated deci-
sion trees. With this automation, they has the intention of removing the requirement
of having an expert to interpret of the statistical results. According to the authors,
the mentioned approach is generally applicable for developing an IPTS for any meta-
heuristic and type of problem. They tested it to parameterize a Guided Local Search
for solving the Travelling Salesman Problem.

In previous work, Pavón et al. [2009] propose the idea of having methods without
the utilization of statistical analysis. They designed a hybrid system, using Case-Based
Reasoning (CBR) and Bayesian Networks (BN). BNs are used to model qualitative
and quantitative relationships between the different algorithm parameters, while the
CBR methodology is used to update the models associated with each case and to learn
new cases within the domain. The system was done to tune a Genetic Algorithm for
solving the root identification problem. This system is an extension of the model done
in 2008 [Pavón et al., 2008]. This last also uses a BN to capture the dependencies
between the parameters and the performance of the algorithm.

It is gaining attention to consider the instance-specific information. Knowing this
information, and learning how to interpret it, can be crucial to achieve better methods
and better results in less computational time. For the time being, the number of IPTS
works are low, since it is relatively new approach. So, proposing a taxonomy does not
make sense now, however, this chapter shows the highlights of IPTS.
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3.4 HyperHeuristics (HH)

The term hyperheuristic was first used in a conference paper [Cowling et al., 2001]. A
single pre-2001 occurrence can also be found in a technical report where it was used in a
different context, to describe an approach that combines a range of artificial intelligence
algorithms for automated theorem testing [Denzinger et al., 1996]. However, the basic
idea of automating the design and/or selection of metaheuristics with its parameters
is much older. It dates back to the early 1960s [Burke et al., 2013], as mentioned also
for the Evolutionary Algorithms [Fogel et al., 1966, De Jong, 1975, Schwefel, 1977].

Related to this emerged new concept, several publications have attempted to clas-
sify the work that has been done [Burke et al., 2003, Ross, 2005, Chakhlevitch and
Cowling, 2008, Burke et al., 2009, 2013, 2019]. Burke et al. [2009] discusses method-
ologies for generating new metaheuristics from a set of potential metaheuristic compo-
nents, in which genetic programming (GP) plays a prominent role as machine learning
technique and as high-level heuristic. Later, Burke et al. [2013, 2019] propose a uni-
fied classification and definition that captures all the work being done in the field of
hyperheuristics, showing that it is a promising research area.

Thus, since the introduction of the hyperheuristic concept, there have been impor-
tant advances in solving combinatorial optimization problems. The design of an Evo-
lutionary HyperHeuristic with the implementation of evolutionary algorithms [Oltean
and Grosan, 2004, Guogis and Misevičius, 2014], such as genetic programming (GP),
gene expression programming (GEP), and grammatical evolution (GE), acting as a
high-level heuristic has been successfully applied [Su et al., 2011, Dokeroglu and Cosar,
2016, Garrido and Riff, 2010, Marshall et al., 2014, Sabar et al., 2013, 2014, 2015].
Non-evolutionary approaches such as Roulette wheel, Monte Carlo algorithm, and
others have also been used as high-level heuristics with satisfactory results [Marshall
et al., 2014, Sabar and Kendall, 2014, Sim and Hart, 2014, Turky et al., 2018].

Due to the growing interest in hyperheuristics, in 2011, during the first Cross-
Domain Heuristic Search Challenge Competition (CHeSC), HyFlex, a flexible frame-
work for the creation of hyperheuristics, was presented [Ochoa et al., 2012]. HyFlex
provides six difficult combinatorial optimization problems, is public and is imple-
mented in Java. Multiple applications have been done using HyFlex [Marshall et al.,
2014, Sabar et al., 2014, Sabar and Kendall, 2014, Sabar et al., 2015, Su et al., 2011].

It can find in the literature that just one hyperheuristic work solves the QAP and
uses parallelism in its design. In this study, the authors proposed a high-performance
Multistart Hyper-heuristic Algorithm (MSH-QAP). MSH-QAP makes use of some
of the metaheuristics that have been reported to be among the best performance
algorithms for solving difficult QAP instances, Simulated Annealing, Robust Tabu
Search, Fast Ant System, and Breakout Local Search. The high-level heuristic is
performed by a genetic algorithm (GA) and is called master agent hiperheuristic.
MSH-QAP has two execution phases [Dokeroglu and Cosar, 2016]. This method is a
Evolutionary HyperHeuristic, because it has GA as high-level heuristic.
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In the first phase of MSH-QAP, in the GA each individual in the population rep-
resents as a whole a solution, a metaheuristic method and its parameters. In each
generation of the execution by parallel computing, each available execution unit pro-
cesses a metaheuristic with its parameters and returns its result to the master agent
hiperheuristic. The master agent generation by generation performs the adapta-
tion of parameters through crossing and mutation operators (similar behavior to
Aggregated category in PCS methods). At the end the parameters with their best ad-
justment for each method remain. If in this first phase the best known solution is not
reached, phase two is activated. In phase two, the best metaheuristic is selected with
its parameter settings, it is given to all execution units and executed with multiple
starts.

It can be seen that the lines that differentiate some Evolutionary HyperHeuristic
with the Aggregated methods in PCS are diffuse. That is, there are works that can be
classified by its design as Evolutionary HyperHeuristic as Aggregated, for instance the
MSH-QAP method.

3.5 Taxonomy PSP Methods

Figure 3.2 depicts our complete taxonomy about PSP, it summarizes all the infor-
mation reviewed here. As we mentioned earlier, the literature about PSP is highly
different and varied. In the last two decades, this problem has been of great interest
to researchers and practitioners who study optimization problems and metaheuristic
methods.

Figure 3.2: Taxonomy of strategies to solve the parameter setting problem (PSP)
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The task of classifying all methods to solve the PSP had not been done until now.
Here, we propose a taxonomy that generalize the taxonomies made individually for
each category of PSP (PTS, PCS, IPTS and HH). In this taxonomy, it is possible
to identify that there are an overlapping of subcategories, which means there are
subcategories that are part of two categories. This suggests two things, the first is the
definition of a subcategory is sufficiently broad or ambiguous to fit into two categories
or that more studies are needed to show more clearly their differences. We consider
the latter to be the main reason, due to the newness of the PSP methods and the
research gaps that still exist in many of them (e.g. PCS methods for single solution
metaheuristic).

To make this taxonomy, we classified PTS methods in the next subcategories:
Simple, Iterative, Heuristic, Statistical and Model-based. This classification is done
based on the characteristics we analyzed in the summary table 3.1 of the section 3.1.
Thus, those methods that use simple strategies to select the parameters are Simple,
those who use an iterative process to perform the selection are Iterative, those that use
some heuristic to guide the search to select good parameters are Heuristic, those who
use some statistical test are Statistical and those who build a model are Model-based.

From the figure 3.2, it is possible appreciate that the methods classified as Heuris-
tic, Statistical, Fuzzy Control, Learning Automata, Self-Adaptative and Others also
belong within two big superior categories, for example Heuristic belongs to PTS and
IPTS.

In the case of those methods that belong to IPTS category, all belong either to PTS
or PCS, a situation that was expected, since as mentioned IPTS methods contemplate
the combination of PTS and PCS. Finally, Self-Adaptative methods (or Aggregated in
PCS for some authors) belong to both PCS and parameter setting in Evolutionary
Hyperheuristics. This is because Self-Adaptative methods manage the parameters
together with the solution of the problem within the evolutionary process [Zhang
et al., 2012].

We can conclude that knowing which method is best for solving the PSP is a
difficult task to assess, in general each one offer different advantages and have many
disadvantages. The dynamic adaptation of the parameter values that characterizes
PCS usually provides better results. However, the computational effort tends to be
higher. On the other hand, the PTS approach is the easiest and fastest to use. Once
a set of parameter values is selected, the algorithm code does not have to change to
find the set of parameter. Nevertheless, finding an adequate set may be also time-
consuming. Finally, the IPTS group of strategies represents a compromise strategy:
it takes less computational time than the PCS approach, but requires implementing
a learning mechanism to interpret the relation between the relevant metaheuristic
characteristics selected [Calvet et al., 2016].

Therefore, there is no approach that stands out from the others. Probably, the most
adequate depends on the specific problem to tackle, the instances to solve, the available
time and the skills of the researcher. Despite this fact, some general guidelines can

38



be formulated. PTS can be considered as the best option when working with robust
algorithms [Calvet et al., 2016] and when the instances to be solved are somehow
similar in their characteristics due to the specific area of application in which they
occur [Ries et al., 2012]. Regarding IPTS, they are more complex than PTS, but
provide better results when the algorithm is not robust and at the same time, when
the instances differ in their characteristics.

In case of prioritizing the algorithm performance, PCS usually constitute the most
recommendable approach [Calvet et al., 2016], these strategies work arguably best
when the instances that need solving are not a priori well known but are expected to
differ significantly in their characteristics [Ries et al., 2012]. Finally, in order to create
a general method for solving various optimization problems, HH is the best choice.
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Chapter 4

Framework

4.1 Introduction

As we pointed out in the state of the art, there is a gap in parameter control strate-
gies for single-solution metaheuristics. The research problem is even more notorious
in parallel hybrid metaheuristics, since these methods need to fine tune a large num-
ber of parameters (more metaheuristic of different types are involved and there are
parameters to define their parallel hybrid behaviour).

In this chapter, we propose PACAS: a general framework to configure the PArameter
Control Adaptation for Single solution metaheuristics in a parallel hybrid solver. The
PACAS framework aimed at increasing the performance of parallel method based on
several parameter control strategies through the analysis of the behavior of single
solution metaheuristics. This framework allows the programmer to define the adap-
tation of the parameter using some mechanisms to customize the trade-off between
intensification and diversification in the search process.

In the remaining of this chapter we describe the general concepts of our PACAS
framework (Section 4.2), the subsections within this section contain details of the
team structure and the description of the functionality of each team component. In
addition, the mechanisms for setting the parameter control strategies are exposed in
Section 4.3. Then, we present a summary of the framework parameters (Section 4.4).
Finally, we introduce a dedicated section to discuss the sources of hybrid behavior
within the framework.

4.2 General description

In this section, we describe the design details of our framework, PACAS. Searcher
nodes are the basic components of the framework: each searcher node corresponds to
a single solution metaheuristic solver instance of any type. The idea is to set each
searcher node ideally bound to its own dedicated core, using all available processing
hardware. One of the basic uses of the framework is for running several instances of
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different metaheuristic, in an independent parallel search with static parameters, all
of them starting from a different search point, i.e. different initial solution.

The framework allows cooperation through a solution population and allows change
dynamically the setting parameters of each single metaheuristic every certain time. In
PACAS is possible to control when accept or how select a solution from the solution
population by means of a request and entrance policy. The adjustment of the request
and entrance policy and the mechanisms defined for the adaptation of the parameters
contribute to the strategies to balance diversification and intensification. Even the
configuration of these policies, and the moments related with the application of them,
i.e. the time associated to set how often this task is done, establish the hybrid behavior
and the amount of cooperation among the searchers. A master node manages these
policies, adaptation mechanisms and times. The master node additionally carries out
a performance evaluation of each searcher node using some collected information in
order to apply the parameter adaptation mechanisms.

Figure 4.1: Representation of the search process using PACAS

Searcher nodes can be grouped into teams of fixed size, teams with the same number
of metaheuristics of each type. For example, teams configured to have 10 Local Search,
10 Tabu Search and 10 Simulated Annealing. Thus, if we have 2 teams, it means 60
metaheuristic in total, 20 for each type. Each team inside has its own request and
entrance policy. For instance, one team could have an elite entrance policy, to control
that only the best solutions can enter in the solution population, and a second team
implemented a random entrance policy, where a solution comes out randomly to give
space for a new solution. Within a team, it would also be possible to design different
versions of the mechanisms used to make the adaptation of the parameter (feature
will be explained in detail later, Section 4.3). There is no communication between the
teams, so it is important to be careful with the policies and mechanisms defined, the
definition of these both features work together for having a good trade-off between
intensification and diversification. On the head of each team there is a master node.
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Figure 4.1 depicts the search process using PACAS. Among the master node and the
searcher nodes, there is communication (Intra-team communication). The Intra-team
communication is performed synchronously by each searcher node every certain time.
The communication process is necessary for the master node to obtain the behavior
of the metaheuristics, make the performance evaluation and later apply the establish
parameter control strategies (PCS). The PCS involve two stages, (1) evaluating the
searcher node behavior and (2) adapting the parameters. For each stage some rules
and mechanisms must be defined.

4.2.1 Team structure

In our framework, a team is integrated by one master node, several searcher nodes and
one solution population (SP). All these components work together in an environment
controlled by the master (see Figure 4.2). Our framework proposes an intra-team
communication as a cooperative mechanism, to ensure inside this environment the
balance of intensification and diversification. Each team is a parallel cooperative
search.

Figure 4.2: Structure of a Team

Each searcher node reports periodically its current candidate solution and some
contextual information (e.g., solution cost, performance metrics, parameters, etc. See
Figure 4.3) to the master node, which stores (or not) intermediate solutions into the SP
based on the input policy specified for the team. This mechanism promotes diversity
(much or few) for the candidate solutions in the pool, according to its definition. This
process constitutes also a flexible interaction feature which eases the hybridization of
metaheuristics, promoting cross-fertilization among different types. The size of SP is
equal to the number of searcher nodes per team (team size, TZ), since the population
just has a solution for each searcher node. Therefore, one of the first things of the
framework to be defined is the team size (TZ) and the number of teams (TN). The main
parameters associated with these features are:

• Team Size, TZ: is the number of searcher nodes per team. All teams have the
same TZ. TZ is also the size of the SP.
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• Number of Teams, TN.

TZ and TN are linked to the maximum number of available cores for the execution,
the multiplication of TZ and TN results in the total number of cores to be used. These
two parameters are directly related to the trade-off between intensification and diver-
sification. Depending on the number of cores available for execution, a large number
for TN may mean a small number of searchers, TZ (i.e. small SP size) which would be
expected to give a high level of intensification. On the other hand, a small number of
teams (1 or 2 are a good choices) means a large number of searcher nodes for the team
(i.e. a large SP size) and the framework would have a very high level of diversification.
However, the main configuration for intensification and diversification is given by the
PCS inside each team.

The master node is on the top of the team, who implements a parameter control
strategy (dynamic adaptation) which is tasked to automatically adjust the parameters
of the searcher nodes during their execution. Master node receives and processes all
the information from the searcher nodes, by means of a searcher report. Master has
a global vision of what is happening in the team and make decisions based on the
comparative performances of the searcher nodes.

4.2.2 Master node

The master node is the team leader. It is in charge of guiding each metaheuristic
method to reach its best parameter settings trying to strike a balance between inten-
sification and diversification in the search. The master operates within an iterative
process. At each iteration, each metaheuristic runs for a given time, iteration time.
When the iteration time is running out, searcher nodes report to the master node
the initial solution, and the current solution (best found) in the interval with theirs
associated costs and parameters, with other identification searcher data, all these in-
formation is encapsulated in a report (figure 4.3).

When master receives this report, it develops a performance evaluation for each
searcher and executes the parameters’ adaptation procedure. The master then sends
a new evolved set of parameters and a new configuration back to the searcher nodes.
Searcher nodes resume the search with the settings they received: parameters and
restarting from a new initial solution for the next iteration. PACAS repeats this
process for each team until an established number of iterations are accomplished or
when the solution target is reached. The number of iterations indicates the number
of times the master node carries out the performance evaluation for each searcher and
executes the procedure for adapting its parameters, i.e. the total number of parameter
adaptations. Thus, related to the execution times, the number of iterations or total
adaptations (A) and the iteration time (I) must be defined by each team.

• Total adaptations, A: it defines the total number of times the searchers commu-
nicate with the master and the number of times the master executes the PCS.
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• Iteration time, I: it determines how often a searcher communicates with the
master node and the time that a searcher runs an instance of the metaheuristic
searching for the solution of the optimization problem.

Thus, the total execution time of the algorithm is given by the product between the
total adaptations and iteration time parameters (A*I). For instance, if 15 adaptations
(A=15) are performed and each searcher node runs for 20 seconds (I=20), the total
execution time would be 5 minutes (15*20 = 300 seconds). This product must the
same for each A and I value of each team. But the values of A and I of one team do
not have to be equal to those of another.

For the cooperation within the team, the master manages a SP, this population
contains the solutions reported by the searchers that were able to enter based on the
input policy. The SP has the next configuration parameters that must be defined at
design time:

• Entry Policy, EP: it defines the rules to accept or reject incoming solutions.

• Request Policy, RP: it defines how to select the solution which is actually delivered
to a searcher node when it makes a request, then searcher use that for running
during the I time.

For example, a possible entry policy: when a report from the searcher node is
received by the master node, the master simply ignores the incoming solution (instead
of storing it in the SP), in the following situations:

1. If the solution cost is worse than the worst cost in the SP (i.e. elite policy).

2. If the solution is already stored in the SP (in this case, it can be mutated by
performing two random swaps)

There are several choices for the request policy in the master node when sending a
solution to a searcher. A simple and effective strategy is to return a random solution
from the SP. But other alternatives exist, for instance return the best solution in the
SP or the same solution that the searcher node reported (producing a non-cooperative
behavior in the team).

4.2.3 Searcher nodes

Searcher nodes run a metaheuristic single-solution instance, in parallel, carrying out
the search process. They periodically send a report to the master node every I time
(iteration time). This report contains the data showed in figure 4.3. The master
processes the report, executes the EP policy to SP for the current solution (which cor-
respond to the best found in the interval) and applies the parameter control strategies
for the current parameters. The searchers waits while the master node processes the
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report, when master finished, it sends to the searches a new, adapted, set of parame-
ters and a new solution depending the request policy (RP). Then, the searcher nodes
resume the search during the I time and sends a new report with the updated behavior
data to the master. This process is repeated until complete an established number of
total adaptations (A) or when the solution target is reached for any searcher node in
the whole algorithm.

Figure 4.3: Searcher report

4.3 Parameter Control Strategies

The parameter control strategies (PCS) provide mechanisms to intensify and diversify
the search. The master executes these strategies. In order to know how to properly
modify the parameters, an analysis of the execution behavior of each metaheuristic
during its I time is done. This analysis is based on the search history sent to the
master through the report.

Evaluating the performance of the metaheuristics is a critical process, and selecting
the right set of metrics affects the overall performance of the parameters’ adaptation
process. In PACAS, this performance evaluation is based on two indicators, percent-
age gain in the cost of the objective function and distance between solutions
(pair-wise difference). The gain acts as a direct indicator of the metaheuristic’s per-
formance, meanwhile the distance is assessing how diverse the search is. To adapt
the parameters, these indicators will be compared against the diversification limits
(DL) and the solution similarity percentage (SSP) respectively. So, for applying these
strategies to each team, it is necessary to define:

• Diversification Limits, DL: it defines the limit values of cost percentage of the
objective function, values to be compared with the percentage gain and used to
define the directive sent to PCS to intensify or diversify.

• Solution Similarity Percentage, SSP: it defines similarity percentage value when
two solution are very similar. Value to be compared with the pair-wise difference
and used to define the directive sent to PCS to intensify or diversify.
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When the indicators are lower than the corresponding values for DL and SSP, the
framework executes a PCS strategy to promote diversification in the search. When
the percentage gain is higher than the corresponding DL or the pair-wise difference is
higher than the SSP, the framework adapts the parameters to promote intensification
in the search.

Based on the evaluation of the searcher’s performance, the framework produces a
directive which can be, intensify or diversify. This directive is used as input for the
parameters adaptation process, PCS. For each directive case, it is necessary define a
behavior depending on the metaheuristic type implemented.

Considering that a metaheuristic may have different type of parameters, numerical
and categorical (or non-numerical), we define different strategies for adapting these
parameters. If the parameter is numerical, it is adjusted by adding deltas to their
current values. If the parameter is categorical, it is changed depending on a number
of iterations without improvement in the cost of the objective function. Therefore, for
each parameter of each type of metaheuristic, it is necessary to define:

• Delta to diversify, DF: it specifies the value to be added to the numerical param-
eter to promote diversification.

• Delta to intensify, DI: it specifies the value to be added to the numerical param-
eter to promote intensification.

• Iterations without improvement, IWI: it determines the number of iterations
when a categorical parameter has to be change to another option different to the
current one.

To establish DF, DI and IWI, it is necessary to understand how the parameters
influence the behavior of the method, to know which parameters are good for in-
tensification or diversification and thus focus the strategy actions so that the best
parameters prevail or adapt. PACAS also allows to adapt the parameters randomly
or to keep them constant during the whole execution.

4.4 Framework Parameters Summary

Table 4.1 summarizes of the complete set of parameters for the PACAS framework.
The first and second columns contain respectively the short names and full names of
the parameters. The last column briefly describes them.

4.5 Hybridization in the PACAS framework

In this section, we explain in more detail those features of PACAS to provide a hybrid
algorithm behavior. Our proposed PACAS framework provides different sources of
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Table 4.1: Summary PACAS framework parameters.
Short

Parameter name Description
name

TZ Team size Number of searcher nodes per team

TN Number of Teams Total number of teams of the whole framework

A Total adaptations Total parameter adaptations to be done by a master node

I Iteration time Time for a searcher runs a metaheuristic instance

EP Entry Policy Rules to accept or reject incoming solutions into SP

RP Request Policy Rules to select a solution from SP to be delivered to a searcher

DL Diversification Limits Cost limit values where the parameters are adapted to diversify

SSP Solution Similarity Percentage Similarity where the parameters are adapted to diversify

DF Delta to diversify Value to be added to the numerical parameter to diversify

DI Delta to intensify Value to be added to the numerical parameter to intensify

IWI Iterations without improvement Iterations number when a categorical parameter has to be change

hybridization, by design of the framework. Although PACAS does not define dedicated
modules to implement hybridization in the framework, it provides many attributes that
can be classified as parallel hybrid metaheuristics. The sources of hybridization are
affected according to the user configuration.

The first source of hybridization is associated with the intra-team communica-
tion mechanism. In this case, searchers may implement different types of metaheuris-
tics methods which interact through the exchanged solutions in the master node’s so-
lutions population (SP). This is clearly an example of high-level hybridization [Talbi,
2002], because the methods are self-contained in the searcher without a significant
modification of their functionality. Thus, the hybridization behavior in a team de-
pends on how the PACAS framework is parametrized, specifically the EP, RP and I

parameters. These parameters define how to process solutions in the SP, and how
often this task is done. For instance, if the update interval time (I parameter) is set
to a low value, the metaheuristics frequently changes its solution to another solution,
thus the framework promotes a frequent interaction for cooperation i.e., more oppor-
tunities for hybridization. Otherwise, if the update interval is large, the metaheuristics
are executed with a given solution for a long period, that means low frequency of co-
operation and hybridization, and the metaheuristics have enough time to do a large
run. In this case, an undesired behavior can happen, such as getting stagnation in a
local optimum, if the methods do not have strategies to escape from them.

The second source of hybridization is granted by the use of different types of
metaheuristics. Combining in a parallel execution diverse methods provides benefits
from the individual advantages of each one. In PACAS, each searcher is encapsulated
without a significant modification of their functionality. Hence, each method, being
characterized by different strengths and weaknesses, will explore different regions of
the search space. All this search enrichment materialized by the solutions reported to
the SP, will be distributed by the master node to the searchers depending on the RP.
The entire system behaves as a hybrid solver, benefiting from cross-fertilization which
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derives from the inherent diversity of the search methods strategies. These two sources
of hybridization work together to yield a high or low amount of hybridization, which
will depend on the configuration of the EP, RP and I parameters and the number of
different metaheuristics implemented.
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Chapter 5

A Java Implementation of PACAS
framework

This chapter presents the detailed description of our Java implementation of the
PACAS framework, J-PACAS. This implementation is an essential part of the design
cycle of the framework, allowing us to validate all features of it.

5.1 Introduction

In the previous chapter, we specified all the features of the PACAS framework. The
implementation of the framework is an important component of the design process,
which allows to evaluate its behavior. The selection of a suitable programming lan-
guage is an important decision that is necessary to make first. This decision directly
affects the functional requirements and non functional requirements. We decided to
use Java based on: working community, performance, development complexity, stan-
dards for parallel programming and programming models supported. Although C
supports all these features, the complexity of the language makes the development
process error-prone and slow. We took into account this and the fact that general
and optimization working community is increasingly using Java for their projects, for
example: SMAC [Hutter et al., 2011], HyFlex [Ochoa et al., 2012]. We considered
other languages such as C++, Scala, Python, Rust, Erlang and X10.

Java is a general-purpose, concurrent, strongly typed, class-based object-oriented
language. Thanks to the Java Garbage Collector, thorough type checking and the
absence of pointers make Java development significantly fewer error prone than more
traditional languages such as C, C++ and Fortran. One of our concerns was the per-
formance and portability. However, Java compilers have made rapid advances in this
field and its portability makes it possible to run a project on almost any architecture.
Another important criterium is the support for parallel programming. Here, Java
has support for distributed and shared memory models. All these features become
Java a suitable language to develop a framework for solving optimization problems.
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Our J-PACAS framework is implemented in Java 11 using the ForkJoinPool and
AtomicType classes to handle the parallelism in a shared memory model.

The rest of this chapter presents the implementation details of the J-PACAS, pro-
viding guidelines to extend the solver functionality and to configure all its parameters.
Section 5.3 concludes this chapter.

5.2 Implementation details

J-PACAS is our implementation in the Java programming language of the framework
PArameter Control Adaptation for Single solution metaheuristics (PACAS), which
is available in open source code through a git repository 1. Figure 5.2 shows the
main classes of J-PACAS and shows how they are related (Figure 5.1 shows relation
notation). Some of them correspond to specific classes (like ParameterControl, Team-
Configuration, SolutionPopulation, among others) and others are generic classes (like
GenericTeam, MetaheuricticSearch, etc). Generic classes are used as a base to ex-
tend the functionalities of the framework through the inheritance and polymorphism
mechanisms of object-oriented programming.

There is a generic metaheuristic class (MetaheuristicSearch), a generic team class
(GenericTeam) and a generic problem class (GenericProblem). The functionality of
the PACAS, like the team, the searcher node, and the master node, are contained in
the GenericTeam class. Solution Population (SP) and methods for interacting with
it are implemented in SolutionPopulation class. The GenericTeam has one Solution-
Population, it manages the entry and request policies. The PCS are established in
the ParameterControl class and the complete configuration for an execution of the
J-PACAS framework is defined in the class called AlgorithmConfiguration. In the fol-
lowing subsections, we detail the implementation and the role of the main classes in
J-PACAS.

Figure 5.1: J-PACAS Class Diagram Notation

1source code and instances are at https://github.com/JonathanDuque/QAPMetaheuristic/

tree/framework
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Figure 5.2: J-PACAS Class Diagram

5.2.1 MetaheuristicSearch Class

The MetaheuristicSearch class defines a base search method, which implements the
necessary functions and variables to interact with the components of the PACAS
framework to perform a search. Every searcher in the J-PACAS implementation is
a subclass of the MetaheuristicSearch class. To implement a new searcher node, the
programmer must create a new search class that inherits its functionality from the
MetaheuristicSearch parent class. In this a new searcher, the programmer must over-
write just one method that defines the searcher specific functionality, the compute
method. Table 5.1 presents a summary of the main methods of MetaheuristicSearch
class, along with a brief description of their functionalities.

Table 5.1: Main methods in the MetaheuristicSearch Class

Method name Description

Getters methods
These are the methods to get: initSolution, bestSolution, parameters,
metaheuristicReport, threadLocalRandom, among other useful data.

Setters methods These are the methods to set: bestCost, and bestSolution data.

void setEnvironment(int[] , int[] , int)
Function to set the environment initial data for a searcher node.
Method should be called once before the main loop of the algorithm.

void compute()
Implements the functionality of a single iteration of the search
process in an iteration time (I).

Inside the compute method of the MetaheuristicSearch class the searcher performs
the search to get the solution of the problem during the iteration time. To overwrite
this method, user has to do the following steps: (1) create a loop that will be executed
for an iteration time or until find the target cost (normally the BKS), (2) set the
bestSolution and the bestCost. For more details, see as an example the implementation
of the MLS metaheuristic, MultiStartLocalSearch class.
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J-PACAS provides three different metaheuristic, that can be utilized as a searcher
node: Robust Tabu Search (RoTS) [Taillard, 1991], Extremal Optimization (EO) [Munera
et al., 2016], and Multistart Local Search (MLS). Each netaheuristic implemented
includes its deltas of each parameter for adaptation. These metaheuristics are com-
monly used in combinatorial optimization problems, particularly for the QAP. We now
present a brief description of each of these methods and their parameter ranges.

Robust Tabu Search: The name Tabu Search (TS) refers to the use of an
adaptive memory and special problem-solving strategies, called intelligent strategies,
in order to get a better local search method [Glover, 1990]. The idea is to memorize
within a structure the elements that for the LS will be forbidden to use (tabu) and
thus avoid getting trapped in local optima. TS looks for the best solution within
the neighborhood but does not visit the solutions of previous neighbors if they have
been visited before or have been marked as prohibited locations [Dokeroglu and Cosar,
2016]. Robust Tabu Search is an adaptation of TS to the QAP and has been one of
the best performing methods for this problem [Taillard, 1991].

Extremal Optimization: Extremal Optimization (EO) is a metaheuristic in-
spired by self-organizing processes as frequently found in nature: for EO this is self-
organized criticality (SOC). The version proposed by [Boettcher and Percus, 2000] has
only one adjustable parameter: τ , and uses of a Probability Distribution Function
(PDF). EO proceeds like this: it inspects the all candidate configurations (all assign-
ments in the neighborhood). Each one is assigned a fitness value by means of the goal
function. The configurations are then ranked from worst to best. After that, the PDF
introduces uncertainty in the search process. EO resorts to the PDF to choose a solu-
tion from organized configurations. The role of the τ parameter is to provide different
search strategies from pure random walk (τ = 0) to deterministic (greedy) search
(τ ⇒∞). In a recent work, the basic EO metaheuristic was extended to support not
only a power-law PDF but also an exponential and a gamma-law PDFs [Munera et al.,
2016].

Multistart Local Search: A simple Local Search (LS) is one of the oldest and
most frequently used metaheuristics. LS starts from an initial solution and repeatedly
improves it within a defined neighborhood. Neighbor solutions can be generated by
applying minor changes to the initial solution. LS ends when no improved solutions are
found in the neighborhood of the current solution, achieving a local optimum [Yagiura
and Ibaraki, 2002]. Multistart Local Search (MLS) is a modification of LS that itera-
tively performs multiple different searches, executing each local search from a different
starting point. When MLS reaches a local optimum, it tries to escape by restarting
the search from scratch or performing some random moves in the current solution.
This metaheuristic is also known as Iterated Local Search [Lourenço et al., 2003].

Parameter ranges of the implemented metaheuristics: Table 5.2 presents
the parameters considered for each metaheuristic implemented, together with the range
of variation for each parameter. These ranges are picked from the best performances,
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as reported in the literature. For RoTS we use the parameters reported in [Taillard,
1991], for EO we select the parameters reported in [Munera et al., 2016] and for MLS,
the only parameter used is the restart process, then no range is needed.

Table 5.2: Parameter ranges of the implemented metaheuristics. (note that n stands
for problem instance’s size).

Metaheuristic Parameter name Range

RoTS
Tabu duration factor [4n - 20n]

Aspiration factor [n2 - 10n2]

EO
PDF Power - Exponential - Gamma

τ [0,1]

MLS Start type
Restart from scratch

Random swaps

5.2.2 GenericTeam Class

As its name suggests, the GenericTeam class is the implementation of a generic team.
This class encapsulates the main functionality of the PACAS framework. GenericTeam
contains one SolutionPopulation class, one ParameterControl class, one TeamConfig-
uration class, and one or many instances of MultiStartLocalSearch, RobustTabuSearch,
ExtremalOptimization solvers.

We implemented the master node functionality within the GeneticTeam (master
description in section 4.2.2). Therefore, the GeneticTeam has the functions to es-
tablish the number of searcher nodes to run in parallel (TZ PACAS parameter), and
manage the entry and request policies to the SolutionPopulation (EP and RP PACAS
parameters). Finally, GeneticTeam carries out one of the most important functions
of our framework, the adaptation of the parameters. GeneticTeam performances all
actions related to the metaheuristic parameters through the ParameterControl class.
These actions include creating and adapting parameters, evaluating the performance
based on the MetaheristicReport and so on.

J-PACAS supplies three different team types. Their difference lies in the parameter
adaptation strategies defined for each one. The FixedParamsTeam keeps the param-
eter constant, i.e. without adaptation during the whole execution of the algorithm.
In contrast, the AdaptedParamsTeam dynamically changes the parameters every iter-
ation time. These changes are made depending on the performance of each searcher,
by comparing the behaviour indicators with the defined diversification limits and so-
lution similarity percentage. To configure the diversification limits, the user must
overwrite the method getDiversifyPercentageLimit inside the AdaptedParamsTeam.
This method receives the total number of adaptations and returns an array with the
percentages that will be compared in each iteration of the adaptation process. The size
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of this array must be equal to the number of adaptations, given that in each adaptation
iteration is perform a comparison with the limits. Finally, the RandomParamsTeam
is a team that performs the adaptation of the parameters randomly. As we will show
in the experimental evaluation, a random adaptation of parameters every certain time
can be better than keeping them fixed during the whole run.

Figure 5.3: J-PACAS Diversification gain percentages limits.

The user’s configuration of the team (AdaptedParamsTeam) is of vital importance
in carrying out a search with a balance between diversification and intensification.
After the master node (role fulfilled by the GeneticTeam) evaluates the performance
of each searcher, it compares this performance against the diversification limits (DL
PACAS parameter) and the solution similarity percentage (SSP PACAS parameter).

The current definition of getDiversifyPercentageLimit method samples the expo-
nential function shown in figure 5.3 and which it is defined by the formula 5.1. This
sample takes the values needed to satisfy the array size requirement and returns an ar-
ray of percentages (double values). Through experimentation, we verify that the gain
is usually bigger at initial stages of the search than at the final stage. For this reason,
we have defined the diversification gain limit during the search process, inspired by
how the temperature decreases in simulated annealing [Kirkpatrick et al., 1983]. Using
this dynamic limit, J-PACAS diversifies the search more easily at the beginning than
at the end of the search process.

94.67597e−0.31811∗iteration + 0.15699 (5.1)

The setting of the SSP parameter for the AdaptedParamsTeam is located in the
class AlgorithmConfiguration. In this configuration class there is also the setting for
the parameters: iteration time (I) and total number of adaptations (A) for each team
type.
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5.2.3 SolutionPopulation Class

An important component of our framework is the Solution Population (SP) and its
policies to accept and select solutions. This functionality is completely covered by
the class SolutionPopulation. The class contains a list of solutions, where there is a
solution for each searcher. Its current implementation has 3 types of request policies
and 3 types of entry policies. Table 5.3 presents a summary of the request and entry
methods and the options available for each one.

Table 5.3: Request and Entry policies in SolutionPopulation Class

Method name Options

int[] requestSolution(int)
RANDOM: selects a random solution.
SAME: selects the same solution the searcher has reported.
BEST: selects the best team solution in the SP.

ELITIST: Entry If the solution cost is better than the worst cost in the SP.
void entrySolution(Solution, SAME: Entry solution in the same position that it was selected.
int, QAPData) IF DIFERENT: Entry if the solution is different to all in SP. If it is not

different, it is mutated.

Each team type has its own SolutionPopulation class and the configuration of the
policies for each team are located in AlgorithmConfiguration class.

5.2.4 ParameterControl Class

This class implements methods to manage the metaheuristic parameters. We highlight
the main methods. There is one for initializing the parameters of all searcher nodes
(generateInitialParamsPopulation), another one for evaluating the performance of each
metaheuristic by analyzing its report (getPerformanceEvaluation) and the last one
for adapting the parameters, considering the diversification limits and the solution
similarity percentage (adaptParameter). Table 5.4 summarizes these methods. These
methods are used by GeneticTeam to guide each searcher to reach its best parameter
settings.

Table 5.4: Main methods in the ParameterControl Class

Method name Description

double[] getPerformanceEvaluation(MetaheuristicReport)
Implements the function to evaluate the performance
of each searcher node.

int[] adaptParameter(int[] , double[], int, int, int , double[]) Function to adapt the parameters to intensify or diversify.

void generateInitialParamsPopulation(int)
Function to create the initial parameters for each kind of
metaheuristic.

The method getPerformanceEvaluation receives the MetaheristicReport and re-
turns the performance encapsulated in an array. This array contains the indicators
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to measure the searcher behavior during the iteration time. These indicators are:
the distance between the initial and final solution (pair-wise difference) and the
percentage gain for that iteration.

The method adaptParameter receives the performance evaluation, the set of param-
eters to adapt and other necessary data. This function returns an array of parameters
adapted. The adaptation is done according to the indicators, analyzing whether diver-
sification or intensification is needed. For that, the pair-wise difference is computed
as similarity comparison criterion. If this distance (as percentage) is lower than SSP

parameter, J-PACAS considers both solutions as “very similar”. Considering it and
the percentage gain criteria, within the function adaptParameter defines the following
rules to determine which action must be taken for adapting the parameters:

• If the gain obtained by the searcher and its pair-wise difference is lower than the
corresponding limits, the adaptParameter adapts the metaheuristic parameters
to diversify the search.

• If the gain is higher than the corresponding diversification gain limit or the pair-
wise difference is higher than the distance solution limit, the adaptParameter
adapts the parameters to intensify the search.

For each possible case, intensify or diversify, we define actions depending on the
metaheuristic type. To perform these actions, adaptParameter uses the deltas specified
in each metaheuristic and adapts the parameters as follows:

Extremal Optimization: In EO the parameter τ is in the range 0 to 1 and,
depending on its value and the PDF, this may lead the metaheuristic to intensify or
diversify the search, by adding or subtracting a delta value belonging to the range (see
Figure 5.4). The parameters are then adjusted by adding to their values using deltas.

Figure 5.4: Parameters adaptation in EO.

Robust Tabu Search: J-PACAS implemented the parameter adaptation process
for RoTS as follows, if the performance analysis indicates diversify, a delta of n/2 2 is
added to the tabu duration and a delta of n2/2 is added to the aspiration parameters.
If the performance analysis indicates intensify, the tabu duration is subtracted by n/2
and the aspiration is decreased by n/2. For intensification, the delta for the adaptation
of the aspiration parameter is different from diversification. This is done intending to
slow down the intensification process, avoiding to stagnates on a local optimum.

2n stands for problem instance’s size
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Multi-start Local Search: For the case of MLS, if there is any gain in cost, the
type of restart is retained. If there is no gain, the adaptParameter method changes to
the other option.

5.2.5 QAPData Class

The PACAS framework is a conceptual framework used to solve any kind of combi-
natorial optimization problem. J-PACAS, the PACAS implementation made in Java,
provides a class with one of the most difficult optimization problem, the Quadratic
Assignment Problem (QAP). This class called QAPData inherits from the class Gener-
icProblem. The GenericProblem class supplies two important methods, the method
to make a swap of position for a solution and the method to evaluate a solution. The
last one has to be overwritten in the problem specific class, in our case is QAPData.
QAPData also provides other useful methods used in the framework.

Inside the AlgorithmConfiguration the user configures the instance of the QAP
problem to be solved. The problems set available are the ones in the QAPLIB bench-
mark, a well-known collection of 134 QAP problems of various sizes and difficulties
[Burkard et al., 1991].

5.2.6 AlgorithmConfiguration Class

In this final class, we support the user’s configuration for performing a search on a QAP
instance. AlgorithmConfiguration holds all the variables needed to make this set-up.
We divide its structure into two sets of variables. The first set is related to all those
general variables of the framework and the second set has to do with those variables
related to the configuration of each type of team. The set of general variables includes
the problem name, the team size (TZ), the timeout in seconds, and other essential
data to be configured. The other set is used to define the total number of teams of
each type (FixedParamsTeam, RandomParamsTeam, and AdaptedParamsTeam) and
their setup. In this setup, there are the specification of the iteration time (I), the
total number of adaptations (A), the request policy (RP), the entry policy (EP) and the
solution similarity percentage (SSP).

Table 5.5 depicts the parameters that allow the user configure our implementation
of the framework. This table is intrinsically related to table 4.1. Since some parameters
in table 4.1 correspond directly to some in our implementation in table 5.5. Table 5.5
classifies variables into General parameters and Team parameters. There are
four types of parameters: integer, string, boolean and integer array. Parameters of
type integer array are associated with each type of team. The table shows the integer
array names in a short form, these must be completed with the name of the team

3Parameters with are incomplete. To complete name write instead of the name of
the team to indicate to which type of team the parameter corresponds. The options for the teams
are: FixedParamsTeam, RandomParamsTeam or AdaptedParamsTeam.
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Table 5.5: Parameters in J-PACAS framework.

Parameter name Type Function

General parameters

problemName String Specifies the problem name to solve.

totalTimeOut Integer Sets the total time in seconds for the whole execution of the algorithm.

teamSize Integer Establishes the number of searcher nodes per team.

printResultInConsole Boolean Indicates if the result is showed in console.

printResultInCSVFile Boolean Indicates if the result is printed in a csv file called ‘problemName.csv’.

Team parameters

totalAdaptedParamsTeams Integer Sets the total number of teams AdaptedParamsTeam.

totalRandomParamsTeams Integer Sets the total number of teams RandomParamsTeam.

totalFixedParamsTeams Integer Sets the total number of teams FixedParamsTeam.

iterationTime 3 Integer array Sets the iteration time for the team indicated in the array position.

totalAdaptations
Integer Defines the total parameter adaptations for the team indicated
array in the array position.

requestPolicy Integer array Defines the request policy for the team indicated in the array position.

entryPolicy Integer array Defines the entry policy for the team indicated in the array position.

solutionSimilarityPercertage
Integer Defines the solution similarity percentage for the team indicated
array in the array position.

the parameter belongs and user wants to configure. After completing the name, each
position of the array indicates the team of the same type to which the parameter
refers.

Figure 5.5 displays an example of a configuration of two teams of type Adapted-
ParamsTeam. Thus, the parameter totalAdaptedParamsTeams has to be equal to 2.
There are then many integer arrays related to this team and must have two values,
because each position in the array specifies what team of the two corresponds the value
of the parameter. Additionally, in this figure is possible to see how is completed the
name of the variables related with the AdaptedParamsTeam team. To see more details
and examples of the algorithm configuration, please refer to the README file 4.

Figure 5.5: Example parameters configuration of two AdaptedParamsTeam teams

5.2.7 Other important classes

We support other important classes in the implementation of our framework. These
are the ManageFile, Tools, MetaheuristicReport, Constructive and MainActivity. The

4J-PACAS README file available here: https://github.com/JonathanDuque/

QAPMetaheuristic/blob/framework/README.md
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ManageFile has the methods to read the problem file name data and to write the re-
sults obtained in a csv file. The Tools class has methods to print relevant information
during the algorithm execution. The Constructive class has a method to create ran-
dom solutions. Finally, the MainActivity class is the orchestrator of the framework.
This class contains all the logic to read and validate the data written in Algorithm-
Configuration class. However, its main function is to guide the execution of all the
teams, gather their results and finds the best result, i.e. the best solution obtained.

5.3 Conclusion

In this chapter we presented our implementation of the PACAS framework: J-PACAS.
This implementation was developed using the Java language, which is a suitable lan-
guage to develop a framework. It complies our requirements, which are: working com-
munity, performance, development complexity, standards for parallel programming
and programming models supported.

The implementation details of the J-PACAS provide an important guide for the
programmers, in order to help them to exploit all features of the implementation or to
extend solver methods and functionalities. The users have to configure the parameters
showed in table 5.5 to make a complete setup of the framework. In addition, if users
decide to modify the diversification limits, they must overwrite the method getDi-
versifyPercentageLimit inside the AdaptedParamsTeam class. We plan to extend the
ability to create new metaheuritics and teams from the inheritance of generic classes
and be able to insert them into the code in a simple way.

In the next chapter, we tackle a real-life combinatorial optimization problem, the
QAP. For this, we design several new parallel solvers which are all implemented thanks
to J- PACAS.
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Chapter 6

Experimental Evaluation

In this section, we present an experimental evaluation of our implementation of the
proposed framework. We compare the performance of seven J-PACAS configurations
on QAPLIB, a well-known collection of 134 QAP problems of various sizes and diffi-
culties [Burkard et al., 1991]. The instances are named as nameXX where name cor-
responds to the first letters of the author and XX is the size of the problem. For each
instance, QAPLIB also includes the Best Known Solution (BKS), which is sometimes
the optimum. Many QAPLIB instances are easy for a parallel solver, we therefore
selected the 26 hardest ones for the basic configuration and removed all systematically
solved instances in less that 20 seconds, the basic configuration corresponds to an
independent parallel method with fixed parameters, called IFIXED.

Each instance is executed 30 times, stopping as soon as the Best Known Solution
(BKS) is found or when a time limit of 5 minutes is hit, in case the BKS is not reached.
All experiments have been carried out on a quad-AMD Opteron 6380 system, totaling
64 cores running at 2.5GHz and 128 GB of RAM. We ran all J-PACAS configurations
under the same conditions and system.

At present, J-PACAS configurations are systematically built with 63 searches
nodes: 21 running RoTS, 21 running EO and 21 running MLS and one team. Each
searcher node randomly initializes each parameter of its metaheuristic. To do so, a
value is randomly picked from the admissible values according to Table 5.2. In all
cases, we made sure that each searcher node is actually mapped by the JVM onto a
different physical core at runtime.

This section reports an experimentation that was conducted in three phases: the
first phase using an independent parallel search strategy, the second a cooperative
parallel search and the third using a mixing of strategies for parameter adaptation.
There are configurations where the parameters are periodically adapted, parameter
control is triggered every 20 seconds. Each metaheuristic can thus adapt its parameters
15 times during the 5 minutes execution cap. Also, there are configurations where the
parameters remain fixed during the execution. Our goal is to compare the pre-process
parameterization (parameters fixed) with several parameterizations, all together with
different request or entry policies to the Solution Population (SP).
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We divide six J-PACAS configurations into two groups, the independent and the
cooperative. The difference is the policies used by the groups to manage the SP. For
each group, there is a results table. We compare the results of the two groups of
J-PACAS configurations, and we create one implementation more, that collects all
the best features of the best evaluated configurations. Finally, we compare our best
configuration against a PCS state-of-the-art method.

6.1 Independent group evaluation

In the independent group of configurations, the searchers work with the same solution
they have ended in each adaptation iteration. This configuration means the searchers
perform a parallel independent search without exchanging solutions. To configure
this behavior, both request policy and entry policy must have the tag SAME for the
parameters requestPolicy and entryPolicy corresponding to each team
type.

Table 6.1: J-PACAS configurations Independent Group

Parameter name IFIXED IRANDOM IADAPTED

totalTimeOut (seconds) 300 300 300

teamSize 63 63 63

totalFixedParamsTeams 1 0 0
iterationTimeFixedParamsTeam (milliseconds) {20000} null null
totalAdaptationsFixedParamsTeam {15} null null
requestPolicyFixedParamsTeam {REQUEST SAME} null null
entryPolicyFixedParamsTeam {ENTRY SAME} null null

totalRandomParamsTeams 0 1 0
iterationTimeRandomParamsTeam (milliseconds) null {20000} null
totalAdaptationsRandomParamsTeam null {15} null
requestPolicyRandomParamsTeam null {REQUEST SAME} null
entryPolicyRandomParamsTeam null {ENTRY SAME} null

totalAdaptedParamsTeams 0 0 1
iterationTimeAdaptedParamsTeam (milliseconds) null null {20000}
totalAdaptationsAdaptedParamsTeam null null {15}
requestPolicyAdaptedParamsTeam null null {REQUEST SAME}
entryPolicyAdaptedParamsTeam null null {ENTRY SAME}
solutionSimilarityPercertageAdaptedParamsTeam does not apply does not apply {33}

This group contains three J-PACAS configurations, called IFIXED, IRANDOM
and IADAPTED. Each configuration is respectively the utilization of each team avail-
able (FixedParamsTeam, RandomParamsTeam, and AdaptedParamsTeam). IFIXED
configuration keeps the parameter fixed, without adaptation during the whole execu-
tion of the algorithm. IRANDOM configuration dynamically changes the parameters
randomly every iteration time. IADAPTED configuration changes the parameters dy-
namically. These changes are made depending on the performance of each searcher.
Table 6.1 shows the group configurations and their parameters. The value of each
parameter inside the AlgorithmConfiguration class is presented. Some values are null,
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this is because one configuration corresponds to a specific utilization of a team, so the
values for the other teams must be null.

Table 6.2 presents the results. For each J-PACAS configuration of this group, the
table lists the number of times the BKS is reached across the 30 executions (#BKS),
the Average Percentage Deviation (APD), which is the average of the 30 relative
deviation percentages computed as follows: 100× Avg−BKS

BKS
, where Avg is the average

of the 30 found costs, and finally the average execution time (Time). Execution times
are given in seconds (as a decimal number). This time is the elapsed (wall clock) time,
and includes the time to install all solver metaheuristic instances, solve the problem,
communications and the time to detect and propagate the termination.

To compare the performance of all independent configurations, we first compare
the number of BKS found, then (in case of tie), the APDs and finally the execution
times. For each problem instance, the best-performing configuration row is highlighted
and the discriminant field is enhanced in bold font.

Table 6.2: Independent Group Evaluation on 26 hardest instances of QAPLIB.
IFIXED IRANDOM IADAPTED Wilcoxon Test 1

BKS #BKS APD Time #BKS APD Time #BKS APD Time p-value

sko49 23386 30 0.000 22.7 30 0.000 12.9 30 0.000 11.5 -
sko56 34458 30 0.000 34.1 30 0.000 15.0 30 0.000 16.4 -
sko64 48498 30 0.000 44.5 30 0.000 21.8 30 0.000 25.3 -
sko72 66256 8 0.014 59.6 27 0.010 144.2 25 0.010 168.8 0.459
sko81 90998 4 0.016 274.1 13 0.010 248.9 10 0.011 257.3 0.358
sko90 115534 1 0.027 299.4 8 0.022 277.7 3 0.025 289.6 0.151
sko100a 152002 0 0.037 300.0 6 0.031 269.4 8 0.026 256.0 0.146
sko100b 153890 6 0.025 282.5 15 0.014 240.6 12 0.012 250.5 0.545
sko100c 147862 6 0.013 300.0 19 0.010 282.3 17 0.010 289.1 0.607
sko100d 149576 2 0.026 293.0 4 0.018 294.7 5 0.028 284.4 0.099
sko100e 149150 1 0.022 300.0 7 0.013 296.6 5 0.015 296.7 0.286
sko100f 149036 1 0.038 299.4 2 0.022 293.2 3 0.023 282.0 0.861
tai40a 3139370 1 0.073 293.8 7 0.079 277.2 5 0.070 277.3 0.709
tai50a 4938796 2 0.370 286.2 2 0.352 289.6 0 0.331 300.0 0.773
tai60a 7205962 0 0.500 300.0 0 0.440 300.0 0 0.455 300.0 0.358
tai80a 13499184 0 0.806 300.0 0 0.691 300.0 0 0.690 300.0 0.722
tai100a 21044752 0 0.727 300.0 0 0.610 300.0 0 0.610 300.0 0.953
tai50b 458821517 30 0.000 29.2 30 0.000 22.3 30 0.000 18.4 -
tai60b 608215054 30 0.000 54.2 30 0.000 33.9 30 0.000 33.8 -
tai80b 818415043 11 0.013 299.5 13 0.045 263.6 5 0.034 290.0 0.292
tai100b 1185996137 0 0.069 300.0 0 0.157 300.0 0 0.148 300.0 0.711
tai150b 498896643 0 0.540 300.0 0 0.607 300.0 0 0.569 300.0 0.264
lipa90a 360630 30 0.000 27.3 30 0.000 17.2 30 0.000 18.1 -
tai256c 44759294 0 0.169 300.0 0 0.166 300.0 0 0.165 300.0 0.885
tho150 8133398 0 0.110 300.0 0 0.111 300.0 0 0.120 300.0 0.509
wil100 273038 6 0.013 300.0 9 0.019 300.0 10 0.021 288.3 0.764

Summary 229 0.139 234.6 312 0.132 219.3 288 0.129 221.2

1Results of the Wilcoxon Signed Rank Test done for comparing the percentage deviation values
for the execution of IRANDOM solving a given instance versus the results obtained for IADAPTED.
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IRANDOM outperforms IFIXED and IADAPTED on 13 out of 26 of the hard-
est QAPLIB instances. IADAPTED is the best configuration for 12 instances and
IFIXED only for 1 instance. 7 instances remain unsolved (no configuration could ob-
tain any BKS). Clearly, a time limit of 5 minutes is too short for those hard instances.
The summary row shows that IRANDOM obtains a better #BKS than the others.
Respect to IFIXED, IRANDOM increases 36% of BKS (312 vs. 229), and respect to
IADAPTED, it increases 8% of BKS (312 vs. 288). However, the average APD got for
IRANDOM is not the best of all. The IADAPTED obtains the best APD with 0.129.
The other obtains, 0.132 in IRANDOM and 0.139 in IFIXED. It is worth noticing that
solutions of better quality are obtained for large instances using IADAPTED and for
small instances using IRANDOM.

According to the results obtained, it is more efficient to change the parameters in
any way every 20 seconds than to keep them fixed for this benchmark. The benefits
of parallelism and adaptation (random or intelligent) guarantee to explored many set
of parameter. We use in the experiment 63 searchers, that means 63 parameter sets.
Some of these parameters may not be good at a given time, but as the parameters
are changing, it is likely that a good set of values is found at some point of the search
process, resulting in a better performance.

In summary, IRANDOM obtains more BKS and better results in 13 instances,
IADAPTED obtains better APD and better results in 12 instances. Therefore, we
consider the performance of these two configurations is similar. To support this con-
clusion we perform a Wilcoxon Signed Rank Test comparing the percentage deviation
values for the execution of IRANDOM solving a given instance versus the results ob-
tained for IADAPTED in the same instance. The null hypothesis or the question we
want to address: Is there a difference between the median of cost percentage devi-
ation value of the IADAPTED configuration with respect to IRANDOM in a single
instance? Test results are shown in column p-value in Table 6.2.

The p-value presented in Table 6.2 are all greater than 0.05 (α > 5%), thus there
is no evidence for rejecting the null hypothesis. We conclude there is no difference
between medians of cost percentage deviation values. Hence, the IRANDOM and
IADAPTED configurations have a similar performance in the case of the cost per-
centage deviation of the solutions obtained. Finally, both configurations implement a
parallel hybridization strategy and its parameters are adapted. Despite IRANDOM
changes its parameters randomly, it selects them from a range taken from state-of-the-
art solvers, which report competitive results.

6.2 Cooperative group evaluation

The configurations in the cooperative group manage entry and request policies to
the SP focused on cooperation and diversification. To establish cooperation, the
requestPolicy parameter of each configuration must have the corresponding
tag RANDOM. It indicates that each searcher requests a random solution different from
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the one reported. To configure diversification through the SP, the entryPolicy

parameter of each configuration must have the tag IF DIFERENT. What means that a
solution can be entered into the SP if it differs from all others; if it is not different,
the solution is mutated to give it a second chance to enter. This behavior allows that
inside the SP there always will be different and (possible) good solutions (elite con-
figuration). We compare the performance in the same way as we do for independent
configurations.

Cooperative group contains three J-PACAS configurations, CFIXED, CRANDOM
and CADAPTED. Again, each configuration is respectively the utilization of each
available team (FixedParamsTeam, RandomParamsTeam, and AdaptedParamsTeam).
Table 6.3 showed each group’s configurations and their parameters. The value of each
parameter inside the AlgorithmConfiguration class is presented. Some values are null,
this is because one configuration corresponds to a specific utilization of a team, so the
values for the other teams must be null.

Table 6.3: J-PACAS configurations Cooperative Group

Parameter name CFIXED CRANDOM CADAPTED

totalTimeOut (seconds) 300 300 300

teamSize 63 63 63

totalFixedParamsTeams 1 0 0
iterationTimeFixedParamsTeam (milliseconds) {20000} null null
totalAdaptationsFixedParamsTeam {15} null null
requestPolicyFixedParamsTeam {REQUEST RANDOM} null null
entryPolicyFixedParamsTeam {ENTRY IF DIFERENT} null null

totalRandomParamsTeams 0 1 0
iterationTimeRandomParamsTeam (milliseconds) null {20000} null
totalAdaptationsRandomParamsTeam null {15} null
requestPolicyRandomParamsTeam null {REQUEST RANDOM} null
entryPolicyRandomParamsTeam null {ENTRY IF DIFERENT} null

totalAdaptedParamsTeams 0 0 1
iterationTimeAdaptedParamsTeam (milliseconds) null null {20000}
totalAdaptationsAdaptedParamsTeam null null {15}
requestPolicyAdaptedParamsTeam null null {REQUEST RANDOM}
entryPolicyAdaptedParamsTeam null null {ENTRY IF DIFERENT}
solutionSimilarityPercertageAdaptedParamsTeam does not apply does not apply {33}

Table 6.4 presents the results for the cooperative group. CADAPTED outperforms
CRANDOM and CFIXED on 12 out of 26 of the hardest QAPLIB instances. CRAN-
DOM is the best configuration for 9 instances and CFIXED only for 5 instances.
Regarding the 6 unsolved instances, a time limit of 5 minutes is clearly too short.
The summary row shows that CADAPTED obtains a better #BKS, 436 vs. 425 in
CRANDOM, 436 vs. 432 in CFIXED. CADAPTED also obtains better APD than the
others, 0.119 vs. 0.122 in CRANDOM, 0.119 vs. 0.123 in CFIXED. Times are similar.

The overall results are better for the cooperative configurations than the indepen-
dent ones (Table 6.5). Additionally, the CADAPTED configuration is clearly better
when using cooperation. This effect suggests that the adaption of parameters works
better when used in conjunction with cooperation. Maybe the parameter adaptation
done, depending on the knowledge of the performance of each searcher in one run, is
better used in the next run by the new solution exchanged.
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According to Table 6.4, the results are mixed. Keeping the parameters fixed or
adapting them randomly is better for some instances. CADAPTED and CRANDOM
have similar performance. To test if there is any difference between the median of the
cost percentage deviation of the CADAPTED configuration with respect to CRAN-
DOM in a single instance, we also perform the Wilcoxon test as done for the inde-
pendent group. The column p-value in Table 6.4 shows the results of the test. All
p-values (greater than 0.05) indicate that the null hypothesis cannot be rejected and
there is not difference between medians of cost percentage deviation values. Therefore,
CADAPTED and CRANDOM have a similar performance in the cost of the solutions
reached.

From the analysis of Table 6.4 results, it can be seen that using different parameter
adaptation strategies may perform better. Based on this, we support in PACAS
framework a mechanism for mixing different parameter adaptation strategies. We
evaluate that through CMIXING configuration, described below (section 6.3).

Table 6.4: Cooperative Group Evaluation on 26 hardest instances of QAPLIB.
CFIXED CRANDOM CADAPTED Wilcoxon Test 2

BKS #BKS APD Time #BKS APD Time #BKS APD Time p-value

sko49 23386 30 0.000 9.9 30 0.000 11.0 30 0.000 8.6 -
sko56 34458 30 0.000 18.7 30 0.000 16.8 30 0.000 17.7 -
sko64 48498 30 0.000 21.6 30 0.000 18.6 30 0.000 19.4 -
sko72 66256 30 0.000 101.9 30 0.000 92.2 30 0.000 97.7 -
sko81 90998 25 0.010 154.3 23 0.010 184.7 25 0.010 188.5 0.529
sko90 115534 14 0.011 229.9 13 0.012 268.6 16 0.013 215.1 0.454
sko100a 152002 20 0.017 204.3 11 0.022 248.2 11 0.021 254.6 0.945
sko100b 153890 25 0.010 193.2 28 0.010 197.9 23 0.010 201.6 0.075
sko100c 147862 27 0.010 277.8 29 0.010 268.8 27 0.010 279.3 0.313
sko100d 149576 18 0.014 253.5 15 0.012 279.9 19 0.011 251.1 0.282
sko100e 149150 26 0.010 205.5 26 0.010 213.3 28 0.010 238.6 0.401
sko100f 149036 8 0.016 265.1 11 0.015 256.3 11 0.013 240.6 0.730
tai40a 3139370 7 0.074 266.0 6 0.076 262.5 7 0.070 267.5 0.348
tai50a 4938796 0 0.377 300.0 1 0.329 298.7 1 0.356 293.3 0.976
tai60a 7205962 0 0.445 300.0 0 0.449 300.0 0 0.458 300.0 0.756
tai80a 13499184 0 0.696 300.0 0 0.715 300.0 0 0.696 300.0 0.314
tai100a 21044752 0 0.618 300.0 0 0.624 300.0 0 0.621 300.0 0.745
tai50b 458821517 30 0.000 19.7 30 0.000 19.2 30 0.000 22.4 -
tai60b 608215054 30 0.000 29.8 30 0.000 28.6 30 0.000 27.1 -
tai80b 818415043 17 0.025 270.7 17 0.023 243.7 19 0.025 255.5 0.731
tai100b 1185996137 11 0.044 275.3 12 0.048 271.9 16 0.045 253.4 0.345
tai150b 498896643 0 0.546 300.0 0 0.561 300.0 0 0.491 300.0 0.076
lipa90a 360630 30 0.000 27.0 30 0.000 20.5 30 0.000 20.4 -
tai256c 44759294 0 0.172 300.0 0 0.166 300.0 0 0.170 300.0 0.503
tho150 8133398 0 0.081 300.0 0 0.070 300.0 0 0.076 300.0 0.474
wil100 273038 24 0.010 278.4 23 0.010 289.0 23 0.010 288.6 1.000

Summary 432 0.123 200.1 425 0.122 203.5 436 0.119 201.6

2Results of the Wilcoxon Signed Rank Test done for comparing the percentage deviation values for
the execution of CADAPTED solving a given instance versus the results obtained for CRANDOM.
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Notice that cooperative group configurations are better than independent con-
figurations. If we compare each cooperative with its independent equivalent (e.g.
CRANDOM vs. IRANDOM), we can see that cooperative configuration achieves bet-
ter results, at least a 36% increase in the number of optima, at least a 7.58% less
APD and at least a 7.2% less time (see Table 6.5). The effect of cooperation behav-
ior has direct impact on the performance of each configuration, with or without any
parameterization.

Table 6.5: Comparison performance: Independent vs Cooperative
Configuration #BKS APD Time

IFIXED 229 0.139 234.6
CFIXED 432 0.123 200.1
Improvement 88% 11.51% 14.7%

IRANDOM 312 0.132 219.3
CRANDOM 425 0.122 203.5
Improvement 36% 7.58% 7.2%

IADAPTED 288 0.129 221.2
CADAPTED 436 0.119 201.6
Improvement 51% 7.75% 8.9%

Summary Independent 829 0.400 675.1
Summary Cooperative 1293 0.364 606.2
Improvement 56% 9% 10.2%

6.3 Evaluation of mixing parameter adaptation strate-

gies

We also evaluated the mixing of different parameter adaptation strategies. According
to the performance of the cooperative group (CFIXED, CRANDOM and CADAPTED)
we proposed inside our PACAS framework the implementation of this combination of
strategies. This configuration, CMIXING maintains the same request and entry policy
values as the cooperative group to manage the SP. CMIXING configuration is charac-
terized for having one third of the searchers using parameters fixed, other third using
adapted parameters and the remaining third with random parameters. To select which
adaptation strategy the searcher will use, after the first iteration time, J-PACAS orga-
nizes the parameters from best to worst, depending on the gain in cost of the objective
function reached for a specific parameter. Then, the best third keeps fixed, the second
best third are adapted, and the worst third are randomly changed.

Table 6.6 presents the results for CMIXING. We compared the results with CFIXED,
since we used it as our control configuration. To evaluate whether there are differences
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between the percentage deviation of the cost of the configurations, we perform again
the Wilcoxon Test. Column p-value in Table 6.6 shows the test result.

According to the p-values, there are differences performances in the percentage
deviation obtained in 4 instances (p-value less than 0.05). For three instances CMIX-
ING presents a better performance than CFIXED with statistical significance, only in
one instance is the contrary. In the other 24 instances there is no difference between
medians of cost percentage deviation values, however we can analyse the complemen-
tary results presented in the table (BKS, APD and times). CMIXING outperforms
CFIXED in most instances, CMIXING reaches more BKS (437 vs. 432) and, when the
optimum is not reached, solutions provided by CMIXING are of much better quality
than CFIXED as shown by the APDs (0.116 vs. 0.123), and it does so in a shorter
period of time. Clearly, the use of different adaptation strategies can result in better
performance.

Observe that CFIXED is indeed an efficient solver for this benchmark, it imple-
ments a parallel cooperative hybridization strategy and its parameters, despite being
fixed, are picked within a range taken from state-of-the-art solvers which report com-
petitive results.

6.4 Distribution analysis of winning metaheuristics

It is interesting to analyze the effect of the characteristics on the embedded metaheuris-
tics forming each hybrid solver configuration. The intended behaviour is that, in the
cooperative group, all metaheuristics contribute to solve the problem. Different from
the independent group, where the stronger metaheuristic for the QAPLIB instances
is more likely to find the best solution, even if all should have their chance. Also, it
is important to verify that our PACAS parameter adaptation does not privilege one
metaheuristic over the others.

Table 6.7 presents the distribution of “winning” metaheuristics (as percentages)
for all configurations cooperative and independent on the QAPLIB benchmark. We
differentiate the cooperative and independent configurations as FIXED, RANDOM
and ADAPTED. The winner metaheuristic is RoTS which finds the best solution in
all cases of any configuration, 80.13% in independent and 44.57% with cooperation;
followed by EO and by MLS. This can be explained by the effectiveness of RoTS which
performs very well on QAP (it is particularly efficient in the intensification phases).
The difference between RoTS and the other metaheuristics is bigger in the independent
than in the cooperative group. However, in the cooperative group, the winner is more
distributed, EO and MLS are also interesting candidates thanks to the cooperation
and their intrinsic ability to escape local minima and thus to diversify the search.

Table 6.8 introduces the distribution of “winning” metaheuristics and “winning”
parameter configuration (all as percentages) for CMIXING configuration. Regarding
to parameter configuration, when the best is achieved in less than 20 seconds we call
the parameter configuration Initial (no adaption is performed), when it is reached with
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Table 6.6: Mixing parameter adaptation strategies, Evaluation on 26 hardest instances
of QAPLIB.

CFIXED CMIXING Wilcoxon Test

BKS #BKS APD Time #BKS APD Time p-value

sko49 23386 30 0.000 9.9 30 0.000 9.1 -
sko56 34458 30 0.000 18.7 30 0.000 13.8 -
sko64 48498 30 0.000 21.6 30 0.000 20.6 -
sko72 66256 30 0.000 101.9 30 0.000 86.7 -
sko81 90998 25 0.010 154.3 24 0.010 158.2 0.749
sko90 115534 14 0.011 229.9 15 0.012 221.9 0.821
sko100a 152002 20 0.017 204.3 8 0.024 268.5 0.000
sko100b 153890 25 0.010 193.2 28 0.010 187.2 0.237
sko100c 147862 27 0.010 277.8 27 0.010 257.5 1.000
sko100d 149576 18 0.014 253.5 16 0.014 273.7 0.665
sko100e 149150 26 0.010 205.5 26 0.010 205.0 1.000
sko100f 149036 8 0.016 265.1 16 0.015 230.3 0.043
tai40a 3139370 7 0.074 266.0 3 0.072 278.7 0.365
tai50a 4938796 0 0.377 300.0 1 0.332 294.4 0.043
tai60a 7205962 0 0.445 300.0 0 0.434 300.0 0.767
tai80a 13499184 0 0.696 300.0 0 0.641 300.0 0.031
tai100a 21044752 0 0.618 300.0 0 0.607 300.0 0.441
tai50b 458821517 30 0.000 19.7 30 0.000 21.4 -
tai60b 608215054 30 0.000 29.8 30 0.000 26.4 -
tai80b 818415043 17 0.025 270.7 20 0.023 234.2 0.392
tai100b 1185996137 11 0.044 275.3 17 0.050 264.6 0.288
tai150b 498896643 0 0.546 300.0 0 0.512 300.0 0.287
lipa90a 360630 30 0.000 27.0 30 0.000 18.2 -
tai256c 44759294 0 0.172 300.0 0 0.169 300.0 0.824
tho150 8133398 0 0.081 300.0 0 0.067 300.0 0.073
wil100 273038 24 0.010 278.4 26 0.010 273.1 0.499

Summary 432 0.123 200.1 437 0.116 197.8
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Table 6.7: Distribution of winning metaheuristics in cooperative and independent
group (analysis).

Independent Cooperative

RoTS EO MLS RoTS EO MLS

FIXED 84.62% 10.77% 4.62% 44.23% 37.82% 17.95%

RANDOM 77.82% 10.38% 11.79% 43.85% 36.41% 19.74%

ADAPTED 77.95% 10.64% 11.41% 45.64% 36.03% 18.33%

Summary 80.13% 10.60% 9.27% 44.57% 36.75% 18.67%

fixed parameters we call it Best, and when it is achieved with adapted parameters,
we call it Adapted or Random. In CMIXING, the winner metaheuristic behaves
like the cooperative group in Table 6.7.

Table 6.8: Distribution of winning on CMIXING configuration

Winner Metaheuristic Winner parameter strategy

RoTS EO MLS Initial Best Adapted Random

45.26% 37.18% 17.56% 12.44% 36.15% 28.85% 22.56%

Respect to the winner parameter strategy, the winner is “Best”, it obtains 36.15%
of the success cases, followed by “Adapted” with 28.85% and “Random” with 22.56%.
The worst is “Initial” with 12.44%, as expected, since it is hard to find the best so-
lution in less than 20 seconds. It is s a good strategy identifying good parameters
and keeping these fixed, meanwhile the others are adapted. For instance, F-Race, a
Parameter Tuning Strategy that uses a race algorithm, behaves similarity to CMIX-
ING. In F-Race, some parameters are discarded based on a statistical study and those
who pass the test continue the race. In our CMIXING implementation, those pa-
rameters identified as “good” continue during the algorithm execution, the others are
intelligently adapted or randomly modified.

In summary, in independent or cooperative group configuration, the winner keeps
its winning percentage belongs to the group. In cooperative, RoTS around 44%, EO
around 36% and MLS around 18%, CMIXING is included here. In independent group,
RoTS around 80%, EO around 10% and MLS around 9%. We conclude, the J-PACAS
parameter adaptation process does not affect the well behavior of each metaheuristics,
in any of the seven configurations. RoTS who performs very well on QAP proves its
efficiency being in most cases the winner and when there is cooperation, EO and MLS
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contribute to find better results.

6.5 Comparison with a state-of-the-art method

We compare our best result configuration CMIXING with one similar state-of-the-art
PCS method that performs online parameterization in a parallel hybrid method; it is
the Multistart Hyper-heuristic Algorithm for the QAP (MSH-QAP) [Dokeroglu and
Cosar, 2016]. We compare the performance of CMIXING and MSH-QAP in the 26
QAP instances we selected, we develop the comparison following the same process as
above.

MSH-QAP uses, as low-level heuristics, some of the metaheuristics that have been
reported to be among the best performance for large problem instances of the QAP,
Simulated Annealing, Robust Tabu Search, Fast Ant System, and Breakout Local
Search. MSH-QAP has two execution phases. In the first phase, a genetic algorithm
(GA) performs the role of high-level heuristic. In this phase, the GA selects the best
metaheuristics and tunes their parameters. The metaheuristic methods are executed in
parallel. The parameters used for the metaheuristic algorithms are adjusted adaptively
by using crossover and mutation operators. They also use operators for selecting the
metaheuristics. If they do not find an optimum solution in the first phase, the second
phase is activated. Then, in that phase, the best metaheuristic (with its parameter
setting) is run on several processors with multiple starts.

The MSH-QAP’s experiments are performed on a High Performance Cluster com-
puter which has 46 nodes, each with 2 CPUs giving 92 CPUs. Each CPU has 4 cores,
giving a total of 368 cores. Each node has 16 GB of RAM giving 736 GB of total
memory. MSH-QAP was developed using C++ and the MPI libraries. These experi-
ments were done using 64 cores in total and executing each problem instance 10 times.
The authors reported the same data we reported, but times in minutes (as a decimal
number). The timeout is not clear; it seems to depend on the problem size, given that
for large instance the timeout is 75 minutes, but for others is less. It also is not clear
at what moment the phase two is activated. Additionally, the results for tai150b,
tai256c, tho150 and wil100 are not reported in the paper.

Making a fair comparison is difficult, because the execution conditions are different,
this is a big issue in the metaheuristic community. However, some conclusions can be
drawn. First, we make a comparison of those problems that were solved in a timeout
of 5 minutes by MSH-QAP, then we compare the remaining ones.

Table 6.9 presents the results of CMIXING vs. MSH-QAP for 11 problem instances
solved in a timeout of 5 minutes. CMIXING outperforms MSH-QAP on 7 out of the
11 instances. MSH-QAP also solved these 7 instances, but it took more time than
CMIXING. MSH-QAP is the best method in 4 instances. In these 4, CMIXING is
indeed a good solver, since it reached at least 15 BKS in a less time.

In summary, CMIXING had 86.7% of success with respect to the total BKS that
can be obtained and MSH-QAP 100% of success. CMIXING despite having a lower
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Table 6.9: Comparison results CMIXING vs. MSH-QAP (Timeout 5 mins).

CMIXING MSH-QAP

BKS #BKS APD Time #BKS APD Time

sko49 23386 30 0.000 0.15 10 0.000 2.8
sko56 34458 30 0.000 0.23 10 0.000 2.8
sko64 48498 30 0.000 0.34 10 0.000 3.2
sko72 66256 30 0.000 1.44 10 0.000 3.6
sko81 90998 24 0.010 2.64 10 0.000 4.1
sko90 115534 15 0.012 3.7 10 0.000 4.5
tai50b 458821517 30 0.000 0.36 10 0.000 3
tai60b 608215054 30 0.000 0.44 10 0.000 3.2
tai80b 818415043 20 0.023 3.9 10 0.000 4
tai100b 1185996137 17 0.050 4.41 10 0.000 5
lipa90a 360630 30 0.000 0.3 10 0.000 4.5

Summary 286 (86.7%) 0.009 1.63 110 ( 100%) 0.000 3.7

percentage of BKS is faster than MSH-QAP (97.7 vs. 222) and it has a small APD
value (0.009).

It is worth noting that, for CMIXING we do not present 108 QAP instances that
were solved in less than 20 seconds with a 100% of success. MSH-QAP solves these
instances with 100% of success too, but taking at least 36 seconds (0.6 minutes).

Table 6.10 shows the results of CMIXING vs. MSH-QAP for the other 11 problem
instances. MSH-QAP solved these 11 instances with a time limit much greater than
5 minutes. We kept its times in minutes, to show more clearly the big differences in
execution times with CMIXING. CMIXING outperforms MSH-QAP on 6 out of the
11 instances, using a time limit of only 5 minutes. MSH-QAP is the best method for
the remaining 5 instances, but using a greater time limit of 45-75 minutes.

Our experiments for the tai50a and tai100a instances are compared against an
updated (smaller) BKS cost. In these cases, CMIXING was better for tai50a and
MSH-QAP was better for tai100a, but the latter performed an execution on a very
high time (75 min). Meanwhile, CMIXING only used 5 minutes. Regarding to the
3 unsolved instances, MSH-QAP was better, however CMIXING got as a maximum
APD of 0.641 in the total execution time.

In summary, CMIXING had 37.9% of success in finding the BKS and MSH-QAP
18.2% of success. The BKS obtained by CMIXING are in much less time (263.2 sec
or 4.4 min vs. 63.4 min), which indicates that CMIXING is an adequate J-PACAS
configuration to obtain good results in short times for this benchmark. It is very
competitive method, and it is comparable with one of the best state-of-the art method,
as MSH-QAP.
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Table 6.10: Comparison results CMIXING vs. MSH-QAP (Timeout greater than 5
min).

CMIXING MSH-QAP

BKS #BKS APD Min #BKS APD Min

sko100a 152002 8 0.024 4.48 0 0.003 75
sko100b 153890 28 0.010 3.12 0 0.004 75
sko100c 147862 27 0.010 4.29 0 0.003 75
sko100d 149576 16 0.014 4.56 0 0.004 75
sko100e 149150 26 0.010 3.42 10 0.000 75
sko100f 149036 16 0.015 3.84 10 0.000 75
tai40a 3139370 3 0.072 4.65 0 0.261 30
tai50a 4941410 (4938796) 1 0.332 4.91 0 0.165 37.5
tai60a 7205962 0 0.434 5 0 0.270 45
tai80a 13499184 0 0.641 5 0 0.530 60
tai100a 21059006 (21044752) 0 0.607 5 0 0.338 75

Summary 125 ( 37.9%) 0.197 4.39 20 (18.2%) 0.143 63.4

6.6 Conclusion

We have reported the results of seven J-PACAS configurations evaluated on the 26
hardest instances of QAPLIB. In view of the results, CMIXING is the recommended
configuration for getting good results for this benchmark using as a maximum execu-
tion time 5 minutes.

We have compared the CMIXING results (our best) against MSH-QAP. MSH-
QAP is a parallel hybrid solver that uses four different metaheuristic methods. The
adaptation of the parameters in MSH-QAP is carried out by a GA, the GA dynamically
changes the parameters through crossover and mutation operators. The comparison
results showed that CMIXING outperforms MSH-QAP in most of the cases taking a
shorter time than MSH-QAP. The adaptation of the parameter in CMIXING is most
suitable that the adaptation done in MSH-QAP, for solving the QAPLIB instances.
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Chapter 7

Conclusion

To configure the parameters of metaheuristic methods we can resort to parameter tun-
ing (PTS), parameter control (PCS) and instance-specific parameter tuning strategies
(IPTS). The creation of parallel hybrid metaheuristic methods requires also the fine
setting of a larger number of parameters, since more metaheuristics (of different types)
are involved and parallel behavior involves yet another set of parameters. Tuning this
methods increase number of parameters makes it even more difficult to find the ap-
propriate setting for the algorithm to behave optimally. To automate this task, we
have proposed PACAS, a framework to configure the PArameter Control Adaptation
for Single solution metaheuristics in a parallel hybrid solver for the efficient solution
of combinatorial optimization problems (COP).

The PACAS framework aimed at increasing the performance of parallel method
based on several parameter control strategies through the analysis of the behavior of
single solution metaheuristic. Meanwhile hybrid behavior is granted by the use of
different types of metaheuristics and by the cooperation through the intra-team com-
munication. This last feature is called hybridization through cooperative parallelism.

We proposed an implementation of the PACAS framework using the Java lan-
guage: J-PACAS. J-PACAS provides three different metaheuristic: Robust Tabu
Search (RoTS), Extremal Optimization (EO), and Multistart Local Search (MLS).
To hybridize the cooperative parallel behavior different request and entry policies to
manage the solution population are supported. J-PACAS supplies three different kind
of teams, their difference lies in the parameter adaptation strategies defined for each
one. These strategies are: keep the parameter fixed, adapt the parameters intelli-
gently or adapt them in a random way. We used this implementation to validate our
framework, tackling one of the most difficult COPs, the QAP.

Our implementation allows to adapt the metaheuristic parameters, numerical or
categorical through deltas. This adaptation is carry out according to a performance
evaluation, where an analysis of the behavior of the single solution metaheuristic is
done.
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7.1 Research perspectives

In the PACAS framework, only one communication scheme has been implemented
within each team; as future work, an extension to the framework can be made to enable
communication between teams to take greater advantage of cooperative parallelism.

Up to now, J-PACAS has incorporated a RoTS, an EO and a MLS. In addition, only
the class for the QAP has been developed. Another line of potential improvements in
the medium-term work is the extension of J-PACAS by embedding new metaheuristics,
maybe a population-based metaheuristics, such as genetic algorithm. We plan to
implement other models of COPs.

J-PACAS allows various configurations through a set of parameters. Future work
in the medium-term is to analyze the effect on J-PACAS performance of varying
the parameters related to the parameter control strategy, possibilities abound. For
instance, to change the total adaptations and the iteration time (parameters A and I),
testing many deltas to intensify or diversify the search (DF and DI), to analysis several
iterations without improvement (IWI) and to experiment with different diversification
limits and solution similarity percentage (DL and SSP). We also suggest, as a future
work to study the effect done by a PCS configuration on a specific metaheuristic.

The experimental evaluation carried out in this research indicate that together, the
parameter adaptation and the cooperative parallelism provided by J-PACAS performs
well in the most difficult instances of QAPLIB. Future work in the short term is to test
J-PACAS in other difficult QAP instances, such as those proposed by Drezner [2005]
and Palubeckis [2000], which were designed to be especially difficult to solve using
metaheuristics. Finally, given that there are difficult instances of QAPLIB where a
time limit of 5 minutes is too short. We will experiment on machines with more cores,
with other architectures and with time limits greater than 5 minutes.
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Algorithm Configuration Framework. Journal of Artificial Intelligence Research,
36:267–306, 2009. ISSN 10769757. doi: 10.1613/jair.2808.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
6683 LNCS:507–523, 2011. ISSN 03029743. doi: 10.1007/978-3-642-25566-3 40.

80

https://www.scopus.com/inward/record.uri?eid=2-s2.0-78049529307{&}doi=10.1007{%}2Fs10732-010-9126-2{&}partnerID=40{&}md5=f933804350bfa3aa4c3984979b11576e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78049529307{&}doi=10.1007{%}2Fs10732-010-9126-2{&}partnerID=40{&}md5=f933804350bfa3aa4c3984979b11576e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-78049529307{&}doi=10.1007{%}2Fs10732-010-9126-2{&}partnerID=40{&}md5=f933804350bfa3aa4c3984979b11576e


L. Ingber. Very fast simulated re-annealing. Mathematical and computer modelling,
12(8):967–973, 1989.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

L. Kaufman and F. Broeckx. An Algorithm for the Quadratic Assignment Problem
Using Benders’ Decomposition. European Journal of Operational Research, 2:207–
211, feb 1978. doi: 10.1016/0377-2217(78)90095-4.

M. Kern. Parameter adaptationn in heuristic search: a population based approach.
PhD thesis, University of Essex, 2006.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220 4598:671–80, 1983.

T. C. Koopmans and M. Beckmann. Assignment Problems and the Location of
Economic Activities. Econometrica, 25(1):53–76, 1957. ISSN 00129682. doi:
10.2307/1907742. URL http://dx.doi.org/10.2307/1907742.

E. M. Loiola, N. M. M. de Abreu, P. O. Boaventura-Netto, P. M. Hahn, and T. Querido.
A survey for the quadratic assignment problem. European Journal of Operational
Research, 176(2):657–690, 2007a. ISSN 03772217. doi: 10.1016/j.ejor.2005.09.032.

E. M. Loiola, N. M. M. de Abreu, P. O. B. Netto, P. Hahn, and T. M. Querido.
A survey for the quadratic assignment problem. European Journal of Operational
Research, 176(2):657–690, 2007b. doi: 10.1016/j.ejor.2005.09.032. URL http://dx.

doi.org/10.1016/j.ejor.2005.09.032.
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