

Symposium: A04: Battery Student Slam 6

#A04-0556

(1-x) Li_{1-y}Na_yM_{1-z}Ti_zO₂ x LiM_{2-z}Ti_zO₄ Layered-Spinel Nanoparticles As Promising Dual Positive Electrode For Lithium-Ion Batteries And Sodium-Ion Batteries

UNIVERSIDAD DE ANTIOQUIA

Nerly Mosquera, Jorge Calderón, Liliana López

Centro de Investigación, Innovación y Desarrollo de Materiales – CIDEMAT, Universidad de Antioquia, Cr. 53 No 61 – 30, Torre 2, Lab. 330, Medellín, Colombia; **E-mail: nerly.mosquera@udea.edu.co**

Conclusions

Why the Li-ion and Na-ion batteries are still under develompent?

Wang, Sihui et al, Journal of Power Sources, 245 (2014) 570-578. Ngoc Hung Vua (2017)

UNIVERSIDAD

DE ANTIOQUIA

Na:Spinel – Layered Heterostructure

UNIVERSIDAD DE ANTIOQUIA

Specific theoretical capacity: 272 (137) (mAhg⁻¹) Fast capacity fade at high current rates Modification Ma⁺ Na⁺ 2D

$Li_{1-x} Na_{x} Mn_{0.4} Ni_{0.5} Ti_{0.1} O_{2}$

1-D Li⁺transport during discharge and charge

Li d

- Reduce Jahn-Teller effect Mn³⁺: Inducing a volume change
- \blacktriangleright Decrease dissolution of Mn^{2+} towards the electrolyte
- Improving the stability of the material

Li, Y. Wu, M. Ouyang, C. (2015).

Schmidt, et al. J. of Power Sources. 196 (2011) 5342. Yinhua, Z. Xingyu, Z. Xu, Y. Le, Zhang, X. Chen, H. Yang, J.P.S. 321 (2016) 120–125. J. Zheng et al. Advanced Energy Materials, 1601284 (2017) 1-25.

Methodology

What is the Composition of Na⁺in the Layered-UNIVERSIDAD DE ANTIOQUIA

 $0.5 \text{ Li}_{1-y}\text{Na}_{y}\text{Mn}_{0.4}\text{Ni}_{0.5}\text{Ti}_{0.1}\text{O}_{2} 0.5 \text{ Li}\text{Mn}_{1.8}\text{Ti}_{0.2}\text{O}_{4}$

RESULTS

Structural and morphological characterization

XRD 0,5 $\text{Li}_{1-y}\text{Na}_{y}\text{Mn}_{0.4}\text{Ni}_{0.5}\text{Ti}_{0.1}\text{O}_{2}$ 0,5 $\text{LiMn}_{1.8}\text{Ti}_{.2}\text{O}_{4}$ [y=0, 0.1, 0.2 and 0.5]

Figure. 1: XRD patterns of Layered-spineltype [y = 0, 0.1, 0.2, 0.5, 1] powders.

 Table 1: Rietveld Analysis

	Sample				
	S	Na _o	Na_{01}	Na_{02}	Na _{0.5}
Space group Fd-3m Li ₁ Mn _{1.5} Ni _{0.5} O ₄	% Phase	29	34	25	19.2
	Lattice parameter	a=8,168 (2)	a=8,172 (2)	a=8,171 (2)	a=8,15 (2)
		b=8,168 (2)	b=8,172 (2)	b=8,171 (2)	b=8,15 (2)
		c=8,168 (2)	c=8,172 (2)	c=8,171 (2)	c=8,15 (2)
		Volume (Å) =	Volume (Å) =	Volume (Å) =	Volume (Å) =
		544.9 (2)	545.7 (2)	545.65 (2)	541.3 (2)
	% Phase	26	10	16	15,2
Space droup	Lattice parameter	a=2,91 (2)	a=2,91 (2)	a=2,912 (2)	a=2,91 (2)
R-3m		b=2,91 (2)	b=2,91 (2)	b=2,912 (2)	b=2,91 (2)
		c=14,21 (3)	c=14,29 (3)	c=14,1 (2)	c=14,28 (3)
$LI_{0.524}INI_{1.476}O_2$		Volume (Å) =	Volume (Å) =	Volume (Å) =	Volume (Å) =
		103,93 (3)	10 <mark>5,29 (</mark> 3)	10 <u>3.93</u> (2)	105,28 (3)
	% Phase	45	49	51	33
Space group		a=4,95 (1)	a=4,97 (1)	a=4,929 (1)	a=4,93 (2)
C 12-m1		b=8,56 (1)	b=8,49 (1)	b=8,532 (2)	b=8,53 (2)
Li.Mn.O.		c=4,99 (2)	c=5,14 (2)	c=5,025 (2)	c=5,03 (2)
	Lattice	Volume (Å) =	Volume (Å) =	Volume (Å) =	Volume (Å) =
	parameter	199,06 (3)	203 <u>017 (</u> 2)	19 <mark>9_4 (</mark> 2)	199,4 (3)
Space group P 63-mmc Na _{0.58} Mn _{0.667} Ni _{0.33} O _{1.95}	% Phase	0	└╶┱┙	8	28,3
			a=2,88 (2)	a=2,862 (3)	a=2,862 (3)
			b=2,888 (2)	b=2,862 (3)	b=2,862 (3)
			c=11,15 (2)	c=11,21 (2)	c=11,21 (2)
	Lattice		Volume (Å) =	Volume (Å) =	Volume (Å) =
	parameter		80,41 (2)	79,55 (3)	79,53 (3)
	% phase	0	2		4.2
Impurates Mn-NiO					

IVERSID

DE ANTIOQUIA

XRD 0,5 Li_{1-y}Na_yMn_{0.4}Ni_{0.5}Ti_{0.1}O₂ 0,5 LiMn_{1.8}Ti_{.2}O₄ [y=0.5, 0.75 and 1.0]

	Table 2: Rietveld Analysis				
	Sample				
	S	Na _{0.5}	Na _{0.75}	Na _{1.0}	
Space group Fd-3m	% Phase	19.2	14.1	15.5	
	Lattice parameter	a=8,15 (2)	a=8,174 (2)	a=8,175 (2)	
		b=8,15 (2)	b=8,174 (2)	b=8,175 (2)	
		c=8,15 (2)	c=8,174 (2)	c=8,175 (2)	
LI ₁ IVIII _{1.5} IVI _{0.5} O ₄		Volume (Å) =	Volume (Å) =	Volume (Å) =	
		541.3 (2)	543.7 (2)	546.75 (2)	
	% Phase	15.2	2.2	1.1	
Space droup	Lattice parameter	a=2,91 (2)	a=2,93 (2)	a=2,94 (2)	
R-3m		b=2,91 (2)	b=2,93 (2)	b=2,94 (2)	
		c=14,28 (3)	c=14,31 (3)	c=14,33 (2)	
$L_{0.524} N_{1.476} O_2$		Volume (Å) =	Volume (Å) =	Volume (Å) =	
		105,28 (3)	105,29 (3)	103,93 (2)	
	% Phase	33	5.0	1 2	
		00	5.0	1.3	
Space group		a=4,95 (1)	a=4,96 (1)	a=4,929 (1)	
Space group C 12-m1		a=4,95 (1) b=8,56 (1)	a=4,96 (1) b=8,50 (1)	a=4,929 (1) b=8,534 (3)	
Space group C 12-m1 Li ₂ Mn ₁ O ₃		a=4,95 (1) b=8,56 (1) c=4,99 (2)	a=4,96 (1) b=8,50 (1) c=5,16 (2)	a=4,929 (1) b=8,534 (3) c=5,25 (3)	
Space group C 12-m1 Li ₂ Mn ₁ O ₃	Lattice	a=4,95 (1) b=8,56 (1) c=4,99 (2) Volume (Å) =	a=4,96 (1) b=8,50 (1) c=5,16 (2) Volume (Å) =	a=4,929 (1) b=8,534 (3) c=5,25 (3) Volume (Å) =	
Space group C 12-m1 Li ₂ Mn ₁ O ₃	Lattice parameter	a=4,95 (1) b=8,56 (1) c=4,99 (2) Volume (Å) = 199,06 (3)	a=4,96 (1) b=8,50 (1) c=5,16 (2) Volume (Å) = 199,2 (2)	a=4,929 (1) b=8,534 (3) c=5,25 (3) Volume (Å) = 199,47(2)	
Space group C 12-m1 Li ₂ Mn ₁ O ₃	Lattice parameter % Phase	a=4,95 (1) b=8,56 (1) c=4,99 (2) Volume (Å) = 199,06 (3) 28.3	a=4,96 (1) b=8,50 (1) c=5,16 (2) Volume (Å) = 199,2 (2) 74.1	a=4,929 (1) b=8,534 (3) c=5,25 (3) Volume (Å) = 199,47(2) 81	
Space group C 12-m1 Li ₂ Mn ₁ O ₃	Lattice parameter % Phase	a=4,95 (1) b=8,56 (1) c=4,99 (2) Volume (Å) = 199,06 (3) 28.3 a=2,862 (3)	a=4,96 (1) b=8,50 (1) c=5,16 (2) Volume (Å) = 199,2 (2) 74.1 a=2,87 (2)	a=4,929 (1) b=8,534 (3) c=5,25 (3) Volume (Å) = 199,47(2) 81 a=2,88 (3)	
Space group C 12-m1 $Li_2Mn_1O_3$ Space group P 63-mmc	Lattice parameter % Phase	a=4,95 (1) b=8,56 (1) c=4,99 (2) Volume (Å) = 199,06 (3) 28.3 a=2,862 (3) b=2,862 (3)	a=4,96 (1) b=8,50 (1) c=5,16 (2) Volume (Å) = 199,2 (2) 74.1 a=2,87 (2) b=2,87 (2)	a=4,929 (1) b=8,534 (3) c=5,25 (3) Volume (Å) = 199,47(2) 81 a=2,88 (3) b=2,88 (3)	
Space group C 12-m1 $Li_2Mn_1O_3$ Space group P 63-mmc Nao coMno cor-Ni	Lattice parameter % Phase	a=4,95 (1) $b=8,56 (1)$ $c=4,99 (2)$ Volume (Å) = 199,06 (3) 28.3 $a=2,862 (3)$ $b=2,862 (3)$ $c=11,21 (2)$	a=4,96 (1) b=8,50 (1) c=5,16 (2) Volume (Å) = 199,2 (2) 74.1 a=2,87 (2) b=2,87 (2) c=11,15 (2)	a=4,929 (1) $b=8,534 (3)$ $c=5,25 (3)$ Volume (Å) = 199,47(2) 81 a=2,88 (3) b=2,88 (3) c=11,91 (2)	
Space group C 12-m1 $Li_2Mn_1O_3$ Space group P 63-mmc Na _{0.58} Mn _{0.667} Ni	Lattice parameter % Phase	a=4,95 (1) b=8,56 (1) c=4,99 (2) Volume (Å) = 199,06 (3) 28.3 a=2,862 (3) b=2,862 (3) c=11,21 (2) Volume (Å) =	a=4,96 (1) b=8,50 (1) c=5,16 (2) Volume (Å) = 199,2 (2) 74.1 a=2,87 (2) b=2,87 (2) c=11,15 (2) Volume (Å) =	a=4,929 (1) $b=8,534 (3)$ $c=5,25 (3)$ Volume (Å) = 199,47(2) 81 a=2,88 (3) b=2,88 (3) c=11,91 (2) Volume (Å) =	
Space group C 12-m1 $Li_2Mn_1O_3$ Space group P 63-mmc Na _{0.58} Mn _{0.667} Ni _{0.33} O _{1.95}	Lattice parameter % Phase	a=4,95 (1) b=8,56 (1) c=4,99 (2) Volume (Å) = 199,06 (3) 28.3 a=2,862 (3) b=2,862 (3) c=11,21 (2) Volume (Å) = 79,53 (3)	a=4,96 (1) b=8,50 (1) c=5,16 (2) Volume (Å) = 199,2 (2) 74.1 a=2,87 (2) b=2,87 (2) c=11,15 (2) Volume (Å) = 80,41 (2)	a=4,929 (1) b=8,534 (3) c=5,25 (3) Volume (Å) = <u>199,47(2)</u> 81 a=2,88 (3) b=2,88 (3) c=11,91 (2) Volume (Å) = 82,3 (3)	
Space group C 12-m1 $Li_2Mn_1O_3$ Space group P 63-mmc $Na_{0.58}Mn_{0.667}Ni_{0.33}O_{1.95}$	Lattice parameter % Phase Lattice parameter	a=4,95 (1) $b=8,56 (1)$ $c=4,99 (2)$ Volume (Å) = 199,06 (3) 28.3 a=2,862 (3) b=2,862 (3) c=11,21 (2) Volume (Å) = 79,53 (3)	a=4,96 (1) b=8,50 (1) c=5,16 (2) Volume (Å) = 199,2 (2) 74.1 a=2,87 (2) b=2,87 (2) c=11,15 (2) Volume (Å) = 80,41 (2)	a=4,929 (1) $b=8,534 (3)$ $c=5,25 (3)$ Volume (Å) = 199,47(2) 81 a=2,88 (3) b=2,88 (3) c=11,91 (2) Volume (Å) = 82,3 (3)	
Space group C 12-m1 Li ₂ Mn ₁ O ₃ Space group P 63-mmc Na _{0.58} Mn _{0.667} Ni _{0.33} O _{1.95}	Lattice parameter % Phase Lattice parameter % phase	a=4,95 (1) b=8,56 (1) c=4,99 (2) Volume (Å) = 199,06 (3) 28.3 a=2,862 (3) b=2,862 (3) c=11,21 (2) Volume (Å) = 79,53 (3) 4.2	a=4,96 (1) b=8,50 (1) c=5,16 (2) Volume (Å) = 199,2 (2) 74.1 a=2,87 (2) b=2,87 (2) c=11,15 (2) Volume (Å) = 80,41 (2) 4.6	a=4,929 (1) b=8,534 (3) c=5,25 (3) Volume (Å) = 199,47(2) 81 a=2,88 (3) b=2,88 (3) c=11,91 (2) Volume (Å) = 82,3 (3) 1.1	

UNIVERSIDAD

DE ANTIOQUIA

Mn-Ni--O

20kV X20,000

1µm

UdeA

UNIVERSIDAD DE ANTIOQUIA

 $0,5 Li_{1-y}Na_yMn_{0.4}Ni_{0.5}Ti_{0.1}O_2 0,5 LiMn_{1.8}Ti_{.2}O_4$ [y=0, 0.1, 0.2, 0.5, 0.75 and 0.5]

20kV X20,000 1µm UdeA

Figure.2.SEMimagesofcathodematerials(a) Na_0 (b)Na_{0.1};(c)Na_{0.2};(c)Na_{0.5};(d)Na_{0.75};(e)Na_{1.0}(c)Na_{0.75};

Li-lon batteries

UNIVERSIDAD DE ANTIOQUIA

Discharge capacities at different C rates of the active materials: $0,5 \text{ Li}_{1-y}\text{Na}_{y}\text{Mn}_{0.4}\text{Ni}_{0.5}\text{Ti}_{0.1}\text{O}_{2} 0,5 \text{ LiMn}_{1.8}\text{Ti}_{.2}\text{O}_{4} [y=0, 0.1, 0.2 \text{ and } 0.5]$

Figure. 3: Discharge capacities of the active materials: Na₀; Na_{0.1}; Na_{0.2}; Na_{0.5} at different C rates between 4.9 and 2.0 V vs. Li|Li⁺.

Li-lon batteries

UNIVERSIDAD DE ANTIOQUIA

Discharge specific capacity of 0,5 $Li_{1-y}Na_yMn_{0.4}Ni_{0.5}Ti_{0.1}O_2$ 0,5 $LiMn_{1.8}Ti_{.2}O_4$ [y=0, 0.1, 0.2 and 0.5]

Figure 4. Discharge specific capacity of active material $0.5Li_{1-y}Na_yMn_{0.4}Ni_{0.5}Ti_{0.1}O_20.5LiMn_{1.8}Ti_{0.2}O_4$ [y = 0; 0,1; 0.2, 0.5] a) at a constant current of 23.9 mA g⁻¹ (0.1C) b) at a constant current of 23.9 mA g⁻¹ (1C) between 4.9 and 2.0 V vs. Li|Li⁺.

	0.1C				
Ма	Materials	Specific ca	%Retention		
		Cycle 1	Cycle Max	Cycle 50	
	Na ₀	140	154/Cycle 8	93	
	Na _{0.1}	142	180/Cycle 15	95	
	Na _{0.2}	204	204/Cycle 1	86	
	Na _{0.5}	177	177/Cycle 1	81	

Table 3: Specific capacity of the cathode Materials at

Table 4: Specific capacity of the cathode Materials at 1C

Materials	Specific ca		
	Cycle 1	Cycle Max	%Retention/cy cle 50
Na _o	92	109/Cycle 24	92
Na _{0.1}	119	127/Cycle 15	95
Na _{0.2}	130	130/Cycle 1	85

Li-Ion batteries

UNIVERSIDAD DE ANTIOQUIA

Charge/discharge curves of cathode materials: 0,5 Li_{1-y}Na_yMn_{0.4}Ni_{0.5}Ti_{0.1}O₂ 0,5 LiMn_{1.8}Ti_{.2}O₄ [y=0, 0.1, 0.2 and 0.5]

Figure 5. Charge/discharge curves of cathode materials corresponding to cycle numbers (a) 1^{st} ; (b) 2^{th} and (c) 50^{th} . The tests were performed at 29.3 mA g⁻¹ (0.1 C-rate) in a voltage range of 2.0 - 4.9 V vs. Li|Li⁺ in a 1.2 mol L⁻¹ LiPF₆ EC: DMC electrolyte.

Na-Ion batteries

UNIVERSIDAD DE ANTIOQUIA

Charge/discharge curves of cathode materials: 0,5 Li_{1-v}Na_vMn_{0.4}Ni_{0.5}Ti_{0.1}O₂ 0,5 LiMn_{1.8}Ti_{.2}O₄ [y=0.5, 0.75 and 1.0]

Figure 6. Charge/discharge curves corresponding to cycle numbers 1st; 2th and 10th of cathode materials a) $Na_{0.5}$; b) $Na_{0.75}$ c) $Na_{1.0}$ The tests were performed at 10.0 mA g⁻¹ (0.1 C-rate) in a voltage range of 2.0 - 4.4 V vs. Na|Na⁺ in a 1.0 mol L⁻¹ NaPF₆ EC: DMC electrolyte.

Na-Ion batteries

UNIVERSIDAD DE ANTIOQUIA

Discharge specific capacity of 0,5 $\text{Li}_{1-y}\text{Na}_{y}\text{Mn}_{0.4}\text{Ni}_{0.5}\text{Ti}_{0.1}\text{O}_{2}$ 0,5 $\text{LiMn}_{1.8}\text{Ti}_{.2}\text{O}_{4}$ [y=0.5, 0.75 and 1.0]

Figure 7. Discharge specific capacity of active material $0.5Li_{1-y}Na_yMn_{0.4}Ni_{0.5}Ti_{0.1}O_20.5LiMn_{1.8}Ti_{0.2}O_4[y = 0.5; 0.75; 1.0]$ at a constant current of 15.0 mA g⁻¹ (0.1C-rate) between 4.4 and 2.0 V vs. Na|Na⁺ in a 1.0 mol L⁻¹ NaPF₆ EC: DMC electrolyte.

Conclusions

For LIB cycling the stoichiometry $0.5Li_{0.9}Na_{0.1}Mn_{0.4}Ni_{0.5}Ti_{0.1}O_20.5LiMn_{1.8}Ti_{0.2}O_4$ showed at a constant current of 23.9 mA g⁻¹ (0.1C-rate) a maximum specific capacity, ca 180.4 mA h g⁻¹ a mild decrease of the specific capacity during cycling was evident, it where maintains 95% of its charge capacity after 50 cycles compared with undoped $0.5Li_1Mn_{0.4}Ni_{0.5}Ti_{0.1}0.5LiMn_{1.8}Ti_{0.2}O_4$ which was ca. 154 mA h g⁻¹ and maintains 93% of its charge capacity after 50 cycle.

> For SIB cycling the stoichiometry $0.5Li_0Na_{1.0}Mn_{0.4}Ni_{0.5}Ti_{0.1}O_20.5LiMn_{1.8}Ti_{0.2}O_4$ showed an initial specific capacity, ca 135.0 mA h g⁻¹, at a constant current of 150.0 mAg⁻¹, equivalent to 0.1 C-rate could be a potential cathode for the development of rechargeable Na-ion batteries.

➢ By possessing interesting properties electrochemical we believe that these materials could be a potential electrode for the development of high-power rechargeable Li-ion batteries and Na-ion batteries.

UNIVERSIDAD DE ANTIOQUIA

References

- Wang, Sihui et al, Journal of Power Sources, 245 (2014) 570-578.
- Ngoc Hung Vua (2017)
- Li, Y. Wu, M. Ouyang, C. (2015).
- Schmidt, et al. J. of Power Sources. 196 (2011) 5342.
- Yinhua, Z. Xingyu, Z. Xu, Y. Le, Zhang, X. Chen, H. Yang, J.P.S. 321 (2016) 120–125.
- J. Zheng et al. Advanced Energy Materials, 1601284 (2017) 1-25.

Thank, for your attention

У @UdeA 🛛 🖸 @UdeA

f @universidaddeantioquia

El conocimiento Minciencias es de todos

1803