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Abstract

This thesis concerns the study of the influence of temperature and environmental effects in
silver clusters at different temperatures. In particular, we reconstruct the free energy surface
of Ag2, Ag5 and Ag6.
For Ag5 and Ag6, we apply ab-initioWell-TemperedMetadynamics simulations at different

temperatures. This is based on the Born-Oppenheimer Approximation and Density Func-
tional Theory (DFT) to describe inter-atomic forces of the electronic distribution. Then, we
evolve the system by adding an artificial bias potential to explore different regions of the con-
figuration landscape and to estimate the free energy surface at 10, 100, and 300 K with the
radius of gyration and coordination number as collective variables, finding errors, at most, in
the order of tens of meV. Relative free-energy differences between the planar and non-planar
isomers of both clusters decrease with temperature, in agreement with the previously pro-
posed stabilization of non-planar isomers. Interestingly, we find that Ag6 is the smallest silver
cluster where entropic effects at room temperature boost the non planar isomer probability
to a significant value, making probable a mixture of isomers. This way, we obtain thermal
effects over the probability of each state of the system.
For Ag2, we reconstruct the free energy surface of the dissociation process of a silver dimer,

considering a water solvent environment. Here, we use the ASE-PLUMED interface to apply
Quantum Mechanics/Molecular Mechanics (QM/MM) with Well-Tempered Metadynamics,
where the silver dimer is describedwith quantummechanics and thewatermolecules are clas-
sical. We use the distance between the silver atoms as the collective variable. We show that
the addition of water molecules in the simulation promotes the dissociation process, decreas-
ing the free-energy barrier between the bounded and unbounded states. Unlike the vacuum
model, in the solvent embedded case, we find that forming a dimer bond requires a barrier-
crossing.
To perform these simulations, we develop an interface between the atomic simulation envi-

ronment (ASE) and the PLUMED plug-in. This interface enables performing enhanced sam-
pling techniques and molecular dynamics analysis using quantum and classical codes imple-
mented in ASE. We show the details of this development and present the tests to prove the
correct performance of the interface. This new ASE-PLUMED interface enables simulating
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nanosystem electronic properties at more realistic conditions. These methods can help better
describe larger nanoclusters and can be improved considering interactions with other envi-
ronments.

6



Contents

Acknowledgments 3

Dedication 4

Abstract 5

1 Introduction 13
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Theory 17
2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Electronic andNuclearDynamic Separationwith theBorn-Oppenheimer
Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Electronic Problem Using Density Functional Theory . . . . . . . . . . 20
2.2.3 Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.5 Forces From Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 QuantumMechanics/Molecular Mechanics (QM/MM) . . . . . . . . . . . . . 23
2.4 Statistical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Simulations and Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Collective Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Metadynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Development of the ASE-PLUMED interface 31
3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 ASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7



3.3 GPAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 PLUMED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Result: Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Validation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Free-energy landscapes of ultrasmall silver clusters 40
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 DFT parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Selection of collective variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Metadynamics-parameter determination . . . . . . . . . . . . . . . . . 45
4.4 Ag5 FES from low to room temperature . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Ag6 FES from low to room temperature . . . . . . . . . . . . . . . . . . . . . . 50
4.6 Ag2 FES including environmental effects at room temperature . . . . . . . . . 53

5 Conclusions 56

6 Perspectives 57

Appendix A Appendix: Products of this thesis 58

Appendix B Appendix: Plumed calculator 62

Appendix C Appendix: Tests added to ASE source 70

Appendix D Appendix: Silver configurations 75
D.1 Degenerated configurations in CV space . . . . . . . . . . . . . . . . . . . . . . 81

References 83

8



List of figures

3.1 CO example of PAWmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 General workflow of a patch between an MD code and PLUMED . . . . . . . . 35
3.3 Stable isomers of the LJ-planar system . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Comparison of Free-Energy Surface and errors in Lennard-Jonnes cluster with

ASE-Plumed and PLUMED. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Isomers of Ag5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Isomers of Ag6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Evolution of Collective variable based on RMSD . . . . . . . . . . . . . . . . . 44
4.4 Unbiased MD in the space of radius of gyration and coordination number . . . 46
4.5 Evolution of the collective variables CV1 and CV2 in biased and unbiased sim-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Free-Energy Surface of Ag5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Minimum activation barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.8 Boostraping with the difference between the minima in the Free-Energy Surface 51
4.9 Free-Energy surface of Ag6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.10 Illustration of the system simulated with QM/MM . . . . . . . . . . . . . . . . 53
4.11 ENES approximation for Ag2-H2O . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.12 Free-Energy Profile of Ag2 in vacuum and water environment . . . . . . . . . 55

D.1 Ag5 Metadynamics without walls . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D.2 DFT optimized isomers of Ag5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
D.3 Ag6 Metadynamics without walls . . . . . . . . . . . . . . . . . . . . . . . . . . 77
D.4 DFT optimized isomers of Ag6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
D.5 Ag5 transition points and configurations . . . . . . . . . . . . . . . . . . . . . . 79
D.6 Ag6 transition points and configurations . . . . . . . . . . . . . . . . . . . . . 80
D.7 Potential energy is the isomers inside the minima of Ag6 . . . . . . . . . . . . 81
D.8 First 4000, 8000 and 20000 steps of WT-MTD trajectory of Ag5 in CV1-CV2

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9



D.9 First 4000, 8000 and 20000 steps of WT-MTD trajectory of Ag6 in CV1-CV2
space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10



List of Tables

3.1 Units in ASE and PLUMED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Potential energy of isomers obtained with several methods . . . . . . . . . . . 43
4.2 Parameters of NVT-MD, DFT, and WT-MTD for simulations of Ag5 and Ag6 . 48

11



List of Abbreviations

BOA Born Oppenheimer Approximation

DFT Density Functional Theory

CV Collective variable

MTD Metadynamics

PAW Projected Augmented Wave

QM/MM QuantumMechanics/Molecular Mechanics

WT-MTD Well-Tempered Metadynamics

12



All things aremade of atoms - little particles that
move around in perpetual motion, attracting
each other when they are a little distance apart,
but repelling upon being squeezed into one an-
other. In that one sentence, you will see, there is
an enormous amount of information about the
world, if just a little imagination and thinking
are applied.

Richard P. Feynman 1
Introduction

Noble metal nanoclusters have attracted much attention due to their molecular-like proper-
ties and high luminescence with potential applications in catalysis, biosensing, and bioimag-
ing1. Silver nanoclusters, both bare and ligand-stabilized, have a particular ability to form
diverse structural motifs and a rich variety of isomers2. The experimental and simulated ab-
sorption spectrum of ultrasmall bare silver clusters indicates the coexistence of several iso-
mers even at low temperatures starting at N=6 – with N the number of atoms in the cluster –,
and a transition from a planar structure to a three-dimensional structure for its lower energy
isomer at N=73,4,5. This transition to non-planar structures is therefore much faster than its
gold equivalent, which is placed at N=11 up to temperature T=100K6,7.
We can study these clusters computationally using Metadynamics (MTD) that is a free-

energy estimation method that allows to explore the conformational space of a system at a
given temperature. It relies on the theoretical relation between the free energy of the system
and a bias potential that drives the system to cross barriers and explore new conformations8,9.
In principle, such algorithms can be coupled to any energy-force level description of the sys-
tem. However, most applications prefer classical to quantum methods. Metadynamics with
quantum methods has been used to simulate chemical and biochemical reactions in the gas
phase, solid phase, and in solution using Car Parrinello10, Born-Oppenheimer molecular dy-
namics11, and QM/MM metadynamics12. Some applications, for example, are allyl cyanide
to pirrole isomerization13, formation of silver-chloro complexes14, and water splitting and
H2 evolution by Ru(II)-Pincer complexes15. To overcome the limitation of short trajectories
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which are typical of quantum methods, minimum activation barriers have been reported to
stop the metadynamics trajectory once the first transition is achieved. They have also been
reported to average over a few resulting barriers15,16 or to continue a single trajectory, stop-
ping the dynamics after one recrossing has been achieved 17,18. The lack of a good estimation
of the resulting errors out of such short trajectories is hindering a more extended use of this
important free-energy estimation method.
How could the isomerization of silver clusters depend on temperature? Could the 2D-3D

transition dependon temperature and other experimental conditions? Suchquestions require
an estimation of the free-energy landscape of small silver clusters. A few studies on gold clus-
ters have started to address these questions with the combination of quantum methods and
enhanced sampling methods. Metadynamics applied to Au12 clusters19 shows that, at room
temperature, there is an equiprobable mixture of isomers. Recent work7 on gold clusters
predicts that, at T=300K with N=8 atoms, there are non-planar isomers with non-negligible
probabilities competing with planar isomers.
Our goal is to accurately determine the temperature-dependent free-energy landscape of

small neutral clusters with the use of ab-initiometadynamics in a general purpose interface.
We also propose to include the effect of the environment in the free-energy landscape of Ag2
dissociation, using Quantum Mechanics/Molecular Mechanics (QM/MM). These results are
useful to address questions of isomerization and the influence of solvents or organic matter
stabilizing certain isomers. Accurate free-energy landscapes can also be used as a benchmark
for classical force field developments20.
In the following section, we present the problem statement, hypothesis and objectives of

this work. In Chapter 2, we present the theory that supports our work, including Density
Functional Theory, principles of statistical mechanics, and details on enhanced sampling
methods. Chapter 3 introduces the computational methods implemented in the codes we
used: the atomic simulation environment (ASE), the grid projected augmented wave (GPAW)
and the plug-in PLUMED. It also contains a detailed explanation of the developed interface
between ASE and PLUMED and its validation tests. Chapter 4 presents the implementation
of the interface and a detailed discussion, including parameter selection and error determina-
tion. Finally, we close this work with our conclusions and perspectives. Furthermore, three
appendixes contain additional information: the academic products of this thesis, the calcula-
tor we created, the tests included in the official version of ASE, and specific examples of silver
configurations.
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1.1 Problem Statement

Since the proposal of the electronic shell model21, theoretical and computational modeling
have played a pivotal role in the exploration of bare and protected noble metal clusters. One
of the open questions in the literature that computation can help answer is: what are the
conformations of silver clusters in realistic environments? The typical way to deal with this
problem is to study the structure that minimizes the ground-state potential energy. How-
ever, this zero-temperature approximation neglects the possible influence of thermal aspects,
which could play an important role in the description of the system of interest. Thus, it is
necessary to consider entropic effects to obtain a complete exploration of accessible confor-
mations and their corresponding probability.
However, it is not easy to achieve a complete exploration of the conformational landscape of

molecular systems or to extract the probability distribution and the lifetimes of states. Molec-
ular Dynamics (MD) propose to tackle this problem by simulating the time evolution of the
system, assuming a complete exploration of the relevant states driven by thermal fluctuations.
However, high free-energy barriers –with respect to the thermal energy (kBT)– are an obsta-
cle for MD simulations, as obtaining transitions between states is not guaranteed, even after
long simulated times. This problem is even greater for simulations that consider quantum
approximations, due to the computational effort needed for this kind of calculations.
As an alternative, enhanced sampling methods, such as Metadynamics, accelerate the ex-

ploration of the configuration landscape by adding a biasing potential to push the system
towards different configurations and estimate the free-energy surface from said added bias.
Even so, there is no standard criterion of convergence to accurately estimate the free-energy
surface. This is a possible reason as to why enhanced sampling methods are widely imple-
mented in biophysics but scarcely applied to nanomaterials. Indeed, codes that combined
enhanced sampling with QM accuracy calculations were rare and not widely available.
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1.2 Hypothesis

Environmental and thermal aspects affect the stability of the states of ultra-small silver clus-
ters. These effects can be described in ASE using ab-initio Well-Tempered Metadynamics
simulations with a set of collective variables that guarantee a convergence to the free-energy
surface.

1.3 Objectives

General Objective

To estimate the free energy of different silver clusters with an interface between ASE and
PLUMED using ab-initioWell-Tempered Metadynamics.

Specific Objectives

• Develop and test a code in the official version of ASE interfaced with PLUMED.

• Explore different collective variables and parameters of the simulations of silver clusters
to optimize the estimation of the free-energy surface.

• Extract the free-energy surface of Ag5 and Ag6 in gas phase at 10, 100, and 300 K using
ab-initioWell TemperedMetadynamics in ASE,whilemaintaining the error in the order
of tens of meV.

• Study the dissociation process of a silver dimer at 300K, including liquid water solvent
effects, with QM/MM.
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2
Theory

2.1 Summary

For our study, we assume theBorn-OppenheimerApproximation for separating the electronic
and nuclear dynamics. The electronic component is solved using Zero-temperature Density
Functional Theory (DFT)22, which finds the density associated with the ground-state elec-
tronic solution. The electronic density enables the computation of the interatomic forces. We
can add classical atoms to this formalism to, for example, include solvent effects. With the
computed forces, we can simulate a time evolution of the system to sample different confor-
mations. Moreover, using Metadynamics and a set of collective variables, we can accelerate
the exploration of specific degrees of freedom in order to push the systems towards different
configurations. These simulations generate a reconstruction of the free-energy surface, which
is directly related to the probability of the configurations and, therefore, with the statistical
properties of each state.
In this chapter, we detail the theory behind the methods used in this thesis.

2.2 Density Functional Theory

In this section, we present how to obtain interatomic forces by applying quantum approxima-
tions in the solution of the electronic distribution. We use these forces for solving the classical
equations of motion of the atoms.
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2.2.1 Electronic and Nuclear Dynamic Separation with the Born-Oppenheimer Approxima-
tion

The Hamiltonian that represents the complete system of nucleus and electrons can be written
as22

Ĥtot = T̂n + T̂e + V̂ne + V̂ee + V̂nn , (2.1)

where T̂n and T̂e are the operators associated with the kinetic energy of the nucleus and the
electrons, respectively; and V̂ne, V̂ee and V̂nn are the potential energy operators that contain
the nucleus-electron, electron-electron, and nucleus-nucleus interactions, in that order. We
can re-write this Hamiltonian in terms of the electronic Hamiltonian (He),

Ĥtot = T̂n + Ĥe , (2.2)

Ĥe = T̂e + V̂ne + V̂ee + V̂nn . (2.3)

Note thatHe depends on the positions of the nucleus. Because of the expected different elec-
tron and nucleus time scales, one can assume and search for solutions toHe where the nucleus
contribution is parametric. As the electronic Hamiltonian is Hermitic, there must exist a set
of orthonormal eigenfunctions Φ of this operator, in terms of the Ne electronic coordinates
r = (r1, ..., rNe) and parametrized by the coordinates of the N nucleus, R = (R1, ...,RN), so
that

Ĥe(R)Φi(r;R) = εi(R)Φi(r;R) , (2.4)∫
Φ∗

i (r;R)Φj(r;R)dr = δij . (2.5)

This basis set can be used to expand the total wave function of the system, considering the
coefficients as functions χ of the nucleus coordinates R ,

Ψk(R, r) =
∞∑
i=1

χik(R)Φi(r;R) . (2.6)

So, the time-independent Schrödinger equation in this basis can be written as

18



ĤtotΨk = EkΨk (2.7)

⇒
(
T̂n + Ĥe

)( ∞∑
i=1

χikΦi

)
= Ek

(
∞∑
i=1

χikΦi

)
(2.8)

⇒
∞∑
i=1

(
T̂nχikΦi + χikĤeΦi

)
= Ek

(
∞∑
i=1

χikΦi

)
, (2.9)

where, for the sake of simplicity, we use Ψk = Ψk(R, r), χik = χik(R) and Φi = Φi(r;R). We
define ∇2

R = T̂n = −
∑

a
1

2Ma
∇2

a where a is the index of the nucleus (also named ion). Taking
advantage of the linearity of the operator ∇2

a, which only affects the nuclei coordinates, R, it
yields

∞∑
i=1

(
∇2

R(χikΦi) + χikĤeΦi

)
= Ek

(
∞∑
i=1

χikΦi

)
(2.10)

⇒
∞∑
i=1

(
Φi∇R

2χik + 2∇Rχik · ∇RΦi+
χik∇R

2Φi + εiχikΦi

)
= Ek

(
∞∑
i=1

χikΦi

)
. (2.11)

Projecting the last equation on the electronic eigenfunction Φj,

∇R
2χjk + εjχjk +

∞∑
i=1

(
2∇Rχik ·

∫
Φ∗

j∇RΦidr+ χik

∫
Φ∗

j∇2
RΦidr

)
= Ekχjk . (2.12)

The terms inside the summation correspond to the first and second coupling terms23. In
the adiabatic approximation, the total wave function is restrained to one electronic potential
energy surface and is justifiedwhen the systemdoes not present radiation interactions and the
energy levels are separated. This means that the diagonal terms in the integrals (i=j) are the
only non-null terms (all others are equal to 0). Furthermore, the Born-Oppenheimer Approx-
imation asserts that the resulting integrals can be neglected, considering that the movement
of the ions is very slow with respect to the movement of the electrons. Then, replacing T̂n in
the equation 2.12,

(T̂n + εj(R))χjk(R) = Ekχjk(R) . (2.13)

This resulting equation and the eigenfunction equation (equation 2.4) allow computing the
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dynamics of the ions and the electrons separately. In other words, the original problem is
approximated in two simpler coupled problems: 1) to obtain the electronic solution with the
nucleus positions as parameters and 2) to study the nucleus configuration properties using
the electronic distribution as external potential. How to solve the coupled solution will be
discussed in Section 2.2.5.

2.2.2 Electronic Problem Using Density Functional Theory

As mentioned before, the Born-Oppenheimer Approximation leads to the problem of solving
an electronic Hamiltonian, defined in equation 2.4. This will be solved using the electronic
density,

ρ(r) = Ne

∫
· · ·
∫

|Φ(r, s1,x2, ...,xNe)|2ds1dx2 · · ·dxNe , (2.14)

where x is formed by the electronic spin and coordinates. This function represents the spatial
density of electrons in any state. Thus, the spatial integral of this functionmust yield the total
number of electrons, ∫

ρ(r)dr = Ne . (2.15)

This is the main condition of the electronic density, and it will be a constraint for finding
the solution for the electronic component.

2.2.3 Hohenberg-Kohn Theorems

In order to proceed to the electronic solution using the electronic density function, it is nec-
essary to introduce two theorems known as the Hohenberg-Kohn Theorems24:

Theorem 1: The external potential is determined by the electron density. Namely, each
electron density corresponds to a unique potential.

Theorem 2: For any trial density ρ̃(r), such that ρ̃(r) ≥ 0 and
∫
ρ̃(r)dr = Ne,

E0 < E[ρ̃] . (2.16)

Theproofs for these two theorems are very simple and canbe found in several textbooks22,23.
These theorems are important in this work, as they are the justification for using the density
instead of the wave function of the system and they constitute the foundation of Density Func-
tional Theory (DFT). The first theorem implies that ρ contains the information and capacity
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to describe all the properties of the system. From the second theorem follows that the density
can be found through theminimization of the functional of energy according to the variational
principle. Namely,

δ
(
E[ρ]− μ{

∫
ρ(r)dr−Ne}

)
= 0 , (2.17)

where μ is a Lagrange multiplier that guarantees the constraint of equation 2.15. Solving
this variation using the Euler-Lagrange equations yields

μ =
δE[ρ]
δρ

= v(r) +
δF[ρ]
δρ(r)

, (2.18)

with

F[ρ] = T[ρ] + vee[ρ] . (2.19)

2.2.4 Kohn-Sham Equations

With the aim of obtaining a solution to the minimization problem, Walter Kohn and Lu Jeu
Sham proposed a solution using an alternative artificial non-interacting system25. They con-
sidered the orbital states ψi, which are eigenfunctions of the density operator. Therefore, the
electronic density for this system can be written in the spatial coordinates,

ρ(r) =
∑
i

ni
∑
s

|ψi(r, s)|2 , (2.20)

with ni as the occupation number. Likewise, the kinetic energy of the artificial system in this
basis set is

T[ρ] =
∑
i

ni⟨ψi| −
1
2
∇2|ψi⟩ . (2.21)

In general, for interacting systems, this expansion has an infinite number of terms. Kohn-
Sham (KS) propose to consider a non-interacting system with a density equal to the density
of the true system and under the influence of an effective potential. Since the KS system is
defined to be at the ground state, then the minimization implies ni = 1 for all i ≤ Ne, and
ni = 0 otherwise. Then, equations 2.21 and 2.20 become

Ts[ρ] =
Ne∑
i=1

⟨ψi| −
1
2
∇2|ψi⟩ , (2.22)
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ρ =

Ne∑
i=1

∑
s

|ψi(s, r)|2 . (2.23)

Note that thisTswould be the kinetic energy of the system if electrons did not interact. Thus,
it is important to keep in mind that this term does not correspond to the interacting system.
Instead, it is a completely arbitrary and auxiliary system for which the Hamiltonian can be
constructed by adding a potential, vs, without electron-electron repulsion and for which the
ground-state electron density ρ is exactly that of the real system,

Ĥs = −
Ne∑
i=1

1
2
∇2

i +

Ne∑
i=1

vs(ri) . (2.24)

For connecting this new systemwith the original one, the differences can be grouped in one
term called the exchange-correlation functional,

Exc[ρ] = T[ρ]− Ts[ρ] + vee[ρ]− J[ρ] , (2.25)

where J is the Hartree functional. In this way, equation 2.19 is rewritten as

F[ρ] = Ts[ρ] + J[ρ] + Exc[ρ] . (2.26)

Replacing this result in the minimization equation yields

μ = veff(r) +
δTs
δρ

, (2.27)

veff = v(r) +
δJ[ρ]
δρ

+
δExc

δρ
= v(r) +

∫
ρ(r′)
|r− r′|

dr+ vxc(r) . (2.28)

Notice that equations 2.18 and 2.27 are equivalent. This equivalence means that Kohn and
Sham reduced the original problem to a simpler one formed by non-interacting electrons af-
fected by an effective potential veff. In other words, the electronic density of the system of
interest can be obtained solving N one-electron equations

ĤKSψi =
[
− 1
2
∇2 + veff

]
ψi = εiψi , (2.29)

with

ρ(r) =
Ne∑
i

∑
s

|ψi| . (2.30)
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Note that the potential veff depends on the density ρ, the density ρ on the KS orbitals ψ,
and the orbitals ψ on the potential veff. Hence, equations 2.28, 2.29, and 2.30 must be solved
self-consistently.
So far, the Kohn-Sham method consists in the introduction of a new non-interacting sys-

tem with the same density without any approximation. However, it is necessary to consider
that the exchange-correlation functional is unknown. As a consequence, a great part of the
effort in DFT research has been devoted to propose exchange correlation functionals that are
as precise and general as possible. Some examples of functionals are the local density approx-
imation (LDA)22, the Perdew-Burke-Ernzerhof (PBE)26, among others27. Indeed, exchange-
correlation functionals combine several exact constraints and corrections28, and the election
of the functional approximation is deeply dependent on the system, the planned type of com-
putation, and the computational resources available.

2.2.5 Forces From Density

Finally, it is important to note that, with the ground-state electronic density of the system,
it is possible to use the Hellmann-Feynmann theorem that relates the derivative of the total
energywith respect to a parameter λ to the expected value of the derivative of theHamiltonian
with respect to the same parameter. This relation is22

dE
dλ

= ⟨Φλ|
∂Ĥe

∂λ
|Φλ⟩ . (2.31)

Thus, considering λ as the x Cartesian component of the position of the i-th atom, the
Hellmann-Feynman theorem yields the x Cartesian component of the interatomic force (FI)
acting on the i-th atom. Applying this to the energy functional leads to22

FIxi =
∑
j ̸=i

ZiZj
|Rj −Ri|3

(xj − xi)− Zi

∫
dr′ρ(r′)

x′ − xi
|r′ −Ri|3

, (2.32)

where Z is the atomic number and ρ is the electronic density obtained from DFT. Note that
this force can be applied to simulate the classical evolution of the atoms of the system. This
result will be used later in this work for simulating the evolution of the silver clusters and
sampling different conformations, as explained in detail in the next section.

2.3 QuantumMechanics/Molecular Mechanics (QM/MM)

In all real applications, there is an environment that could influence the physical properties
of the system of interest. For some cases, the simulation of the isolated system, or in vacuum,
could neglect important factors that affect the quality of the results. Computing forces that
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consider the medium and the system of interest completely at the quantum level is too com-
putationally expensive. To deal with this problem, Warshel and Levit proposed a method for
mixing the advantages of quantum mechanics (QM) and molecular mechanics (MM)29. This
method separates a smaller part of the complete system (CS), called the primary system (PS),
and describes its electronic properties with quantum methods. The rest of the system, called
the secondary system (SS), is simulated with classical approximations. Today, there are sev-
eral QM/MM schemes that vary in how they describe PS-SS interactions. Currently, the most
popular schemes are the subtractive and additive schemes.
In the subtractive scheme, CS interactions are computed classically, then, the classical en-

ergy of the PS is subtracted and replaced by a quantum energy. This implies that, in this
scheme, the classical component does not affect the electronic distribution and the quantum
component interacts classically with the rest of the system. In this scheme, the potential en-
ergy can be written as

ECS = EPS+SS
MM − EPS

MM + EPS
QM, (2.33)

where the subscript and superscript indicate the approach and the region, respectively.
On the other hand, the additive scheme uses quantum approaches in the PS and classical

approaches in the SS as independent systems, and adds an interaction potential between both.
This is

ECS = ESS
MM + EPS

QM + EPS|SS
QM/MM, (2.34)

where the last term is the interaction energy. This energy considers a hybrid electrostatic
behavior defined by

EPS|SS
QM/MM = −

NSS∑
i

∫
ρ(r)qi
|r−Ri|

dr+
NSS∑
i

NPS∑
j

qiZj
|Ri −Rj|

+ ENES, (2.35)

with ρ(r) as the electronic density of the PS, Ri and qi as the position and point charges of
the SS atoms, Zj as the atomic number of the PS atoms, and where ENES contains the non-
electrostatic electronic interactions.
Currently, there is not a predefined general procedure to compute ENES, and it is usually de-

fined ad-hoc as an LJ potential30. A way to describeENES is to replace equation 2.3 in equation
2.34, and approximate the energy of the complete system, ECS, with a quantum approxima-
tion,
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ENES ≈ ECS
QM − ESS

MM − EPS
QM +

NSS∑
i

∫
ρ(r)qi
|r−Ri|

dr−
NSS∑
i

NPS∑
j

qiZj
|Ri −Rj|

. (2.36)

Then, this expression can be used to define the LJ parameters, fitting each interaction by
pair type.
To apply QM/MM, wemust define crucial aspects such as the border between the quantum

and classical component31,32 or the interaction potentials between the PS and SS, which could
require ad-hoc corrections33,34. These definitions depend on, for example, the existence of
covalent bonds between atoms of both regions or the basis set’s accuracy in describing the
electronic distribution of the PS. A correct definition of these aspects could avoid typical er-
rors, such as the “electron spill out” problem35. A complete explanation of these problems and
their solutions is beyond the scope of this introduction, but it is discussed elsewhere36,37,30.

2.4 Statistical Aspects

It is well known in statistical mechanics that the probability of finding a configuration of a
canonical ensemble is described via the Boltzmann factor38,

p(R) = Z−1 e−
V(R)
kBT , (2.37)

where R is a multidimensional vector that contains the coordinates of the Na particles of the
system, (namelyR = (R1, ...,RN)), V(R) is the potential energy of the configuration, kB is the
Boltzmann constant, T is the temperature of the system, and Z is a normalization factor.
This expression for probability is the central object of statistical mechanics, as the mean

value of an observable, g, can be obtained by

⟨g⟩ =
∫ ∞

−∞
dR g(R)p(R) . (2.38)

In this work, we are specifically interested in studying configurations with common prop-
erties. Therefore, we define a state as the set of configurations that belong to the same basin
in the potential energy landscape. In this sense, each state has an associated hypervolume.
Thus, the probability of finding the system in one state is the same as the probability of finding
the system in one of the configurations of that hypervolume, that is,

PA = Z−1
∫
VA

dR e−
V(R)
kBT , (2.39)
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where A refers to the particular state.
From a statistical point of view, the free energy of one state A is defined as the quantity that

replaces the energy in the Boltzmann factor to describe the probability of finding the system
in said state,

e−
FA
kBT = PA . (2.40)

Likewise, the free-energy surface (FES), or the potential of mean force (PMF), is defined as
the function of a set of variables s = S(R) that replaces the potential energy in the Boltzmann
factor to describe the projection of the probability in that set of variables,

e−
F(s)
kBT = P(s) =

Z−1 ∫ dRδ(s− S(R))e−V(R)/kBT

ηuni(s)
, (2.41)

where ηuni(s) is a scale function, necessary for conserving the norm, the units, and the prop-
erties of the Dirac delta function. In order to obtain relevant information on the states of the
system, the variables s, also called Collective Variables (CVs), are chosen in such a way that
the hypervolumes that define states in coordinate space can be separated into hypervolumes
Ṽ in the space of s variables. If the s variables fulfill this property, the probability of one state
can be obtained from the free-energy surface as

PA =

∫
ṼA

e−
F(s)
kBTds = Z−1

∫
VA

dR e−
V(R)
kBT . (2.42)

Analytic integration of this equation is not possible in most cases because (for most cases)
there is not an analytic expression for the potential energy. Therefore, it is necessary to con-
sider other alternatives to extract this information.

2.5 Simulations and Sampling

An approximation of the probability distribution of an ensemble can be achieved if the system
is ergodic. This means, if the average of an observable over an ensemble coincides with the
average over time39. We consider that the probability of finding a configuration of the system
in a set of copies is the same as the probability of finding said configuration in a simulated
time evolution of a single copy40.
With this in mind, we will reconstruct the probability distribution of equation 2.37 simu-

lating the evolution of the system over a large time lapse conserving the number of particles,
volume, and temperature (NVT ensemble). The basis to simulate the evolution of an atomic
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system is using Newton’s equation,

mi
d2Ri

dt2
= Fi , (2.43)

where Fi andmi are the net force and the mass of the i-th atom, respectively. In a completely
classic simulation, the forces are the negative of the gradient of the potential energy approx-
imated with analytic functions. If the electronic distribution is considered, the force used in
this equation corresponds to the result of the Hellmann-Feynmann theorem (equation 2.32).
Since Newton’s equation conserves the energy and not the temperature of the system, we

have to couple the system with a heat bath in order to obtain the expected distribution. The
condition for defining this coupling is given by the equipartition theorem that relates the tem-
perature with the kinetic energy of the system41

EK =
ndof
2

kBT , (2.44)

where ndof is the number of degrees of freedom of the system. We add terms to the equations
of motions to regulate the temperature. Langevin dynamics, for example, add a friction term
and a fluctuating force42,

mi
d2Ri

dt2
= Fi − ηmi

dRi

dt
+
√
2miηkBT ξ(t)ds , (2.45)

where η is the damping constant and ξ(t) is a white Gaussian noise.
Another way to introduce a coupling with a heat bath is to use the Berendsen thermostat43.

This thermostat rescales the velocities multiplying by the factor

χ =

(
1+

dt
τt

(
Td
Tr

− 1
))1/2

, (2.46)

where Td is the target temperature for the simulation, Tr is the temperature of the system
(computed using equation 2.44), and τt is a parameter defined by the user that controls the
strength of the coupling. Note that if the computed temperature is greater than the target
value, this factor would be lower than one, which would lead the temperature of the system
to decrease. In the opposite case, the effect of the thermostat is to increase the magnitude of
the velocities when the temperature is lower than the target value. Note that this thermostat
does not strictly describe a canonical distribution of the velocities in equilibrium. However,
in practice, it is widely used because it has the advantage of quickly equilibrating the system,
and it gives an approximate description for systems with a large number of particles and also
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provides a proper election of the coupling strength with the bath44.
In this way, we can simulate the evolution of the system during a time lapse that should

be enough to obtain a reconstruction of the probability from a normalized histogram of the
explored configuration landscape. However, a complete exploration is sometimes computa-
tionally impossible to achieve when the energetic barriers between states is high in relation to
the thermal energy. For these cases, the transition from one state to another is called a rare
event45. In other words, the probability of observing a transition is low for these systems, and
a complete exploration of the configuration landscape would take muchmore time than what
is possible to simulate computationally with the currently available resources, even with the
most advanced supercomputers.
For that reason, severalmethods have been proposed to overcome this limitation. In the lit-

erature, thesemethods are referred to as enhanced samplingmethods and include techniques
like Umbrella sampling46, Replica exchange47, and Metadynamics8. A complete explanation
of each one of thosemethods is beyond the interest of this work, but there are detailed reviews
with further explanations48,49. In this work, we focus our attention on Metadynamics.

2.5.1 Collective Variables

For large systems, it is difficult to extract clear information by monitoring the coordinates of
all the atoms. Instead, it is possible to simplify the monitoring by defining functions of coor-
dinates that describe the chemical properties that we are interested in. Those functions are
called Collective Variables (CVs). These can also be used for biasing specific degrees of free-
dom or analyzing how the system evolves. In other words, CVs project the multi-dimensional
system onto a small set of relevant and interpretative degrees of freedom.
A careful election of collective variables is crucial for achieving a proper analysis or an ade-

quate acceleration of the degrees of freedom in enhanced sampling methods. Although there
is no direct recipe for constructing CVs, some important characteristics have been defined50:

• They should differentiate the relevant states of the system, including the stable states
and the intermediate states.

• They should include the slow modes of the system.

• They should be as limited in number as possible.

The first condition is essential because it guarantees the physical meaning of the CVs and
enables a description of the evolution of the system along continuous reaction paths. For
enhanced sampling methods that bias these degrees of freedom, this property is necessary to
push the system along that path.
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The second condition implicitly contains an idea behind the election of the CVs: that there
are fast degrees of freedom, which can be rapidly averaged along slow variables. This is anal-
ogous to the adiabatic approximation. Basically, this is another way to say that CVs should
contain the relevant degrees of freedom of the system.
Last but not least, the number of CVs should be small to allow for interpretability. Consid-

eringmany collective variables implies a larger space to be explored. This is a practical limita-
tion in the sense that a larger space needs more computational time. Additionally, analyzing
a high dimensional set of CVs is far from simple, which contradicts one of the motivations for
using CVs. In most of the literature related with the implementation of CVs, the number is
lower than 4 50,18,51,7.

2.5.2 Metadynamics

Metadynamics (MTD)? is a method that adds a history-dependent bias potential over a small
set of CVs, s. Typically, the bias is accumulated as a sum of Gaussians centered along the
CV trajectory, namely in the values of the CVs of previous steps. This pushes the system to
explore different configurations and enhances the sampling. In particular, inWell-Tempered
Metadynamics (WT-MTD)52 the bias potential at time t is

VB(s, t) =
t′<t∑

t′=τ,2τ,...

We−
β VB(s, t′)

γ e
−

∑
i
[si − si(t

′)]2

2σi , (2.47)

whereW is the initial height of the bias, τ is the time-lapse to add a new term to the summa-
tion in the bias potential, β is the inverse of kBT, γ is a bias factor, and σi is the width of the
Gaussians. Note that the first exponential decreases the height of the deposited Gaussians
where previous bias energy has been added. This reduction of height of the new Gaussians
reduces the error and avoids exploration towards high free-energy states that are thermody-
namically irrelevant. The bias factor γ regulates the rate in which the magnitude of the new
added bias decreases: the lower the bias factor, the faster the decrease. The last exponential
is a multiplication of Gaussians in the direction of CV i with width σi centered at the CV value
at time t′. In this way, the system is forced to explore different conformations.
With this additional biasing potential, the net atomic force Fi (equation 2.45) becomes

Fi = FI
i −

∂VB(s, t)
∂s

∣∣∣∣
s=s(t)

∂s(R)

∂Ri

∣∣∣∣
R=R(t)

, (2.48)

where FI represents the interatomic forces presented in equation 2.32.
The main advantage of this method is that it allows obtaining an estimation for the FES. In
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particular, for WT-MTD, it is proved that9

lim
t→∞

VB(s, t) = −(γ− 1)
γ

F(s) . (2.49)

In short, the energy added in MTD pushes the system to explore different conformations,
and that additional energy converges to the free-energy surface of the system.
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3
Development of the ASE-PLUMED interface

3.1 Summary

In this chapter, we present details about the codes used and developed in this work. We start
with the Atomic Simulation Environment (ASE), which allows integrating several of the most
popular atomistic simulation codes to performMD simulations. One of those codes is GPAW,
that implements DFT, efficiently removing strong oscillations from the wave functions close
to the nucleus and expanding the smoothed wave functions in a different basis set. We also
present the PLUMEDplug-in, a code specialized in the computation of collective variables and
the application of enhanced sampling algorithms. Prior to this thesis, it was not possible to
use PLUMEDwith ASE, but in this work, we created the ASE-PLUMED interface, which is an
ASE object-denoted calculator. In our notation, Plumed is the ASE calculator and PLUMED is
the plug-in. At each time step, PLUMED receives the information of the system configuration
and sums the biased and unbiased energies, calculating the forces for the next integration.
We present the details of this interface and the tests to prove that it works properly. Due
to the object-oriented structure of ASE, this calculator can work as an interface to all codes
integrated in ASE. This enables carrying out ab-initio enhanced sampling algorithms.
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3.2 ASE

Atomic Simulation Environment53 (ASE) is an open-source code written in
Python, with an object-oriented structure that allows setting, manipulating,
and running atomistic simulations. A central Atoms object contains the in-
formation of the system, including the chemical symbols of the atoms, a sim-
ulation cell, the positions of the atoms, their velocities, among others.
The Atoms object has a calculator attached, which contains methods to

compute specific properties of the system. Typically, the calculator computes
the potential energy and forces according to the description level. Special cal-
culators can compute specific properties, such as electronic distribution or dipole moments.
An advantage of the object-oriented structure is that the user can select this calculator without
changing the structure of the code. The selected calculator can be standalone or an interface
to one of the many widely used quantum and classical atomistic simulation codes. Some ex-
amples of the implemented calculators that work along with ASE are Gaussian54, CP2K55,
gromacs56, lammps57 and GPAW58. The last one is a DFT calculator that will be used in our
simulations.
In addition to visualization tools, ASE has manymethods for studying changes to the phys-

ical properties of the atomic systems based on the calculation of forces and energies. Some
of them are optimization, nudged elastic band and molecular dynamics algorithms. Berend-
sen and Langevin dynamics are among the molecular dynamics algorithms included in ASE.
These algorithms numerically solve the equations described in Section 2.5 via time discretiza-
tion using the Verlet integrator. Thus, it is possible to simulate the evolution of the system
and its properties.

3.3 GPAW

GPAW58 is a DFT Python code, especially designed for working as a calculator
in ASE. This code is based on the projector-augmentedwave (PAW)method59

that dealswith the problemof strong oscillations of the all-electronwave func-
tion near the nucleus. This is a serious problem because it is difficult to obtain
convergence in those regions, unless we define a grid spacing tiny enough to
differentiate those changes or a large basis expansion, depending on the basis set. Of course,
these options are time and memory consuming. Thus, the solution proposed in the PAW
method is to seek a linear operator, T , which generates the original orbitals of the Kohn-Sham
equation by acting over a smoother function, that is

|ψn⟩ = T |ψ̃n⟩ , (3.1)
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where |ψn⟩ is the original wave function and |ψ̃n⟩ is the auxiliary smoother function, known
as pseudo wave function. As the condition of smoothness applies for conditions close to each
nucleus, we define T as

T = 1+
∑
i

T i , (3.2)

where T i is different from the null operator only in the region inside a radius ri around the
atom i. Using equation 3.1 in the Khon-Sham equation (equation 2.29),

T †HKST |ψ̃i⟩ = εiT †T |ψ̃i⟩ (3.3)

GPAW has implemented three bases for expanding the pseudo wave functions60:

• Grid or finite differences (fd): the pseudo wave function is

ψ̃i(r) = ψ̃i(ih, jh, kh) ,

with h being the grid spacing, and (i, j, k) the indices of the grid points.

• PlaneWaves (PW): the pseudo wave function is defined as an expansion of plane waves
until a cutoff energy, Ec,

ψ̃i(r) =
∑

G2/2<Ec

cGeiG·r .

• Localized atomic orbitals (LCAO)61: the pseudo wave functions are expanded onto a set
of atomic-like orbitals

ψ̃i(r) =
∑
anml

cinmlRnl(r
a)Yml(r̂

a) ,

where Rnl and Yml are atomic radial functions and spherical harmonics, while ra is the
distance from r to the nucleus a, ra = Ra − r.

These three options allow finding numerical solutions to the electronic density, avoiding
the problem of strong oscillations close to the nucleus of the system under the PAW scheme.
The LCAO basis set is the fastest and has the lowest memory consumption, in exchange for
loss of precision61,58. The grid basis consumes more memory than the others58. PW is faster
than the grid basis in small systems, but, in large systems, the grid basis parallelizes better
than PW58. The grid basis and PW can achieve the same level of precision, varying the cutoff
energy and the grid spacing, respectively58.
In order to visualize the performance of this method, we present the case of a CO molecule

taken from GPAW documentation. For this example, we fix the C atom at -0.6 Å and the O
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Figure 3.1: Comparison of the pseudo wave function (ψ̂, orange solid line) and the real wave function (ψ, purple solid
line) inside a cutoff radius along the x‐axis for the CO case study. Dots show the resulting wave function in the entire
space space using LCAO. Blue circumferences represent the cutoff radius around each atom.

atom at 0.6 Å of the x-axis. Figure 3.1 shows a comparison of the real and the pseudo wave
functions along the x-axis. It is clear that there is a considerable difference between using a
complete description (abrupt changes) versus the implemented PAWmethod (smooth). Note
that the self consistence convergence is harder to obtain for the real wave function inside the
cutoff radius, and that outside the cutoff radius, both wave functions are equal.

3.4 PLUMED

PLUMED62 is an open-source code, written in C and C++ with a wrap for Python in the latest
releases (since version 2.5). This library includes different tools for implementing enhanced
sampling algorithms, free-energy methods and it is useful in post-processing simulated tra-
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jectories.
Among the advantages of PLUMED is the large set of collective variables

that are widely used by the community of molecular simulations. Moreover,
PLUMED developers are constantly adding new collective variables and new
enhanced sampling methods for better description of the systems.
PLUMED is mainly used as a plug-in, which works along with MD codes.

SomeMD codes that are already patched with PLUMED are ACEMD, Amber,
Gromacs56, CP2K55, among others. Figure 3.2 shows the general interaction
of this plug-in with an MD engine. Note that the MD code actually controls
the execution of all PLUMED actions. The first step is to initialize the MD functions, atom
positions, and velocities; then, the PLUMED object is initialized with the specific details of
the systems, like the number of atoms and the size of the time step. In the initialization step,
PLUMED reads the actions that must be executed during the simulation: computing CVs,
adding bias potential, etc. The MD code solves the equation of movement (equation 2.45) for
each time step and sends the changes to PLUMED. For MD, PLUMED executes its actions
and returns the forces, and the MD code reintegrates the following time step changes.

Figure 3.2: Diagram of the general workflow of the PLUMED plug‐in with a molecular dynamics code. Reprinted figure
with permission from62.
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3.5 Result: Interface

One of the achieved objectives of this work was to create an interface between PLUMED
(>= version 2.5) and ASE (version > 3.22.1). This was developed to have the possibility of
using the methods implemented in PLUMED within ASE, and vice versa. In this way, both
communities (ASE and PLUMED users) gain a benefit from this development. Appendix B
contains the created patch that works as an ASE calculator (that we called Plumed). In this
section, we explain how it works and provide important details and tests that prove that our
development works properly.
Our patch has slight differences compared to PLUMED interfaces with other MD codes,

as ours uses PLUMED’s wrap for Python. One difference is that Plumed reads the actions
–such as computing CVs or adding bias– directly from the MD code, while in other patches,
PLUMED actions are defined in an external file. Moreover, Plumed actions are not paralleliz-
able but are initialized only in themaster process (usually rank=0) that executes and sends the
bias forces to the slave processes during the simulation. This is important because PLUMED
always creates output files, and an initialization from all processes would imply as much out-
put files as the number of processes, all of them with the same information. In this way,
parallelization is completely invested in the computation of MD forces which, in the ab-initio
case, represents the most resource-consuming part.
The key points for the correct behavior of the interface are the horizontal arrows that con-

nect both codes in Figure 3.2. To start, Plumed receives the Atoms object as its arguments,
a list of strings with orders for the PLUMED set-up, a calculator for computing the unbiased
forces, and themagnitude of the time step in the simulation. Considering that PLUMEDunits
are different than ASE units (Table 3.1), we added the transformation rules to the Plumed
calculator. In the initialization, Plumed uses the information contained in the Atoms object,
such as the number of atoms and the simulation cell (when theAtoms object has a defined cell,
Plumed assumes periodic boundary conditions unless specified otherwise in the setup list).
At each time step, ASE calls Plumed methods to compute forces and energies, and Plumed
provides PLUMED the Atoms data –positions, unbiased potential energy, and charges– and
receives the bias forces and energies. Finally, Plumed adds the energy and bias forces to the
unbiased energy and forces.
This interface was added to the development version of ASE after discussions with the de-

velopers regarding the specific code structure of this package. We included a tutorial that is
now in the ASE documentation and which guides the user in the execution of the test shown
in the following section (https://databases.fysik.dtu.dk/ase/ase/calculators/plumed.html).
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3.5.1 Validation tests

As an accuracy test for our new Plumed calculator and as a user guide, we used a tutorial from
thePLUMEDdocumentation62 as a benchmark system. This consists of aWT-MTD/Langevin
simulation for a simple system formed by seven artificial atoms (mass=1 in Lennard Jones
units) with Lennard-Jones (LJ) interactions in a planar space starting from the configuration
of minimum energy (first configuration at left in Fig. 3.3). The LJ cluster has several stable
isomers (Figure 3.3), which canbedistinguished in a space of theCVs’ second and third central
moments of distribution of coordination numbers (labeled as SCM and TCM, respectively
second central moment and third central moment). The nth central moment μn of the Na

atoms cluster is defined as

μn =
1
Na

Na∑
i=1

(Xi − ⟨X⟩)n , (3.4)

where Xi is the coordination number of the i-th atom,

Xi =
∑
i ̸=j

1− (Rij/d)8

1− (Rij/d)16
. (3.5)

We used LJ dimensionless reduced units. The parameters of the simulation are d = 1.5,
kBT = 0.1, friction coefficient fixed equal to 1, initial bias height of 0.05, Gaussians width of
0.1 (for both CVs), and a bias factor of 5.
For this system, we compared the free energy obtained by PLUMED as a standalone code

and the free energy estimated when using our new Plumed calculator that adds a bias force
to an LJ-force calculator in ASE. For both cases, we ran 121 trajectories starting from the
same configuration. In Figure 3.4 (a) and (b), we show the average free-energy surface as
a function of the two CVs for the new Plumed calculator and PLUMED alone, respectively.

Table 3.1: Comparison between PLUMED and ASE units.

PLUMED ASE

Energy kJ/mol eV
Length nm Å
Time ps Å

√
amu/eV

Charge e e
Mass amu amu
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Figure 3.3: Stable isomers of the LJ‐planar system

The free-energy error is the standard error of the 121 replicas (i.e., the standard deviation
over the square root of the number of simulations). These are shown in 3.4 (c) and (d). The
results show that the Plumed calculator performs well, since its average free-energy land-
scape converges to the same values (within error) as the results from standalone PLUMED.
The differences between PLUMED and ASE-Plumed –for example, different random number
generators– can be seen as a different pattern of errors in the figure. However, the error range
is equal between both codes, as expected.
Apart from this proof, we added two tests (Appendix C) to the ASE source code (https://gitl

ab.com/ase/ase/-/blob/master/ase/test/calculator/plumed/test_plumed.py) to ensure an alert
error will be raised in case any change to ASE or PLUMED generates incompatibilities with
the actual interface. Short runs of at most 60 steps support these tests, which consider:

• Units: Table 3.1 shows the current relation between ASE and PLUMED units. If some-
thing in that table changes, one of the tests will fail.

• CV computation: we included computation of very simple CVs (distance-related) in or-
der to verify that ASE sends data to PLUMED correctly.

• Bias forces: a shortMTDwithNVEsimulation tests that the forces received fromPLUMED
are correct.

• Restart: one of the tests splits a simple MTD simulation of 60 steps into two 30-step
parts to check for proper behavior on restart.
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Figure 3.4: Comparison of the free‐energy landscape of seven atoms with Lennard‐Jones interactions for standalone
PLUMED and the new ASE‐Plumed calculator using WT‐MTD in the space of second central moment (SCM) and third
central moment (TCM). (a) and (b) are the averaged free‐energy landscapes in energy LJ units, over 121 trajectories, as
function of the CVs’ second and third central moments of distribution of coordination numbers. The standard error of
the free‐energy landscapes is shown in (c) and (d) for the ASE‐Plumed interface and PLUMED, respectively.
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4
Free-energy landscapes of ultrasmall silver

clusters

4.1 Summary

In this chapter, we study small silver clusters using the Plumed interface described in the pre-
vious chapter. In particular, we extract the free-energy surface of Ag5 and Ag6 in gas phase (in
vacuum) and Ag2 embedded in water solution. We first discuss a few experimental and com-
putational results in order to choose the DFT set up. After that, we detail the selection of the
collective variables and WT-MTD parameters based on molecular dynamics simulations. Fi-
nally, we present the estimated free-energy surfaces for these systems found by implementing
WT-MTD at different temperatures.

4.2 DFT parameters

Small neutral silver clusters have planar low-energy isomers, and as the number of atoms
increases, the 3D isomers get closer in energy to the lowest energy isomer until Ag7, where
the trend changes and the lowest energy configuration is a 3D structure4,5.
In the case of the Ag5 cluster, experimental studies with Raman and optical photoabsorp-

tion spectroscopy agree that the lowest energy isomer of this system has a planar trapezoidal
shape63. Ag5 isomers have been studied through computational methods such as Hartree-
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Figure 4.1: Isomers of the Ag5 cluster. 1) trapezoid, 2) edge‐capped, 3) bipyramidal, and 4) bow‐tie.

Fock, coupled-cluster CCSD(T) andDensity Functional Theory (DFT)64,4,5. All computational
methods predict a 3D bipyramidal isomer about 0.4-0.5 eV higher in energy than the low-
est energy state. Various methods predict other planar isomers with energies that are more
stronglymethod-dependent. PBE,N12, and TPSS exchange-corrrelation functionals predict a
planar isomer (edge-capped square) between the trapezoid isomer and the three-dimensional
bipyramidal isomer. However, this is not found with the CCSD(T) method. Moreover, with
the CCSD(T) method, a planar isomer denoted bow-tie is found5 at the same energy of the
three-dimensional isomer, but other DFT functionals, like PBE and N12, place bow-tie iso-
mer energy 0.2-0.3 eV below the three-dimensional bipyramidal isomer energy4. In Fig. 4.1,
the lowest isomer in energy –trapezoidal isomer– is isomer 1 and the 3D bipyramidal is rep-
resented as isomer 3. The edge-capped square isomer is isomer 2 in Fig. 4.1. The bow-tie
isomer is isomer 4 in Fig. 4.1.
So far, there is not a general agreement regarding the driving force that keeps planar config-

urations stable. However, some authors have suggested theoretical explanations related with
electronic interactions. Ferrighi et al., for example, studied the 2D-3D transition for cationic
and anionic gold clusters with different functionals and obtained different number of atoms
in clusters for 2D-3D transition65. They mention that correlation energy favors the stability
of 3D structures and kinetic energy make the 2D structures more stable. In agreement with
this explanation, they obtained a transition to 3D structures with lower number of atoms in
clusters for exchange-correlation functional with smaller kinetic energy corrections. On the
other hand, other authors have observed a stabilization of 3D golden clusters due to van der
Walls corrections in the exchange correlation and thermal effects7. In this sense, we obtain
similar results for Ag6 clusters, for which, we predict a stabilization of the 3D configurations
when we consider thermal effects at 300K.
Likewise, the Ag6 cluster has been studied experimentally and computationally using the

DFT4 and CCSD(T)methods5. All computationalmethods suggest a triangular-planar isomer
as the configuration of minimum energy, followed by a 3D pyramidal isomer, with a differ-
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Figure 4.2: Isomers of the Ag6 cluster. 1) triangular, 2) pyramidal and 3) incomplete hexagon.

ence of energy of 0.1-0.2 eV. A third isomer (planar incomplete hexagon) is predicted with
an energy of 0.3 eV with respect to the minimum energy configuration. Absorption spectrum
experiments suggest a possible mixture of triangular and pyramidal isomers, although the
difference in energies makes the presence of the pyramidal isomer not truly favorable accord-
ing to the zero energy analysis66,3. Figure 4.2 shows the Ag6 isomers: the lowest in energy,
the triangular isomer, labeled as isomer 1; the next stable configuration, the 3D pyramidal,
labeled as isomer 2; and as isomer 3, the incomplete hexagon.
Table 4.1 summarizes the potential energies of all isomers discussed in this section. Chen

et. al.5 computed the CCSD(T) energies after optimizing at the B3LYP/aD level (column
CCSD(T)). Duanmu and Truhlar4 optimized the isomers with N12/jun-cc-pVTZ-PP, and then
computed the energies with the same functional and basis (column N12). We optimized each
structure using PBE and TPSS functionals with the grid basis and PBE with the LCAO ba-
sis, and then calculated the energies at the same level (PBE, TPSS, and PBE-LCAO-PVAL
columns).
By comparing the Ag5 PBE and CCSD(T) columns, we can observe that PBE provides an

overestimation of the 2D-3D energy difference by about 0.1 eV (row 3), which is reduced
through the use of the p-valence basis. On the contrary, for Ag6, DFT-PBE gives a good esti-
mation of the 2D-3D energy difference (row 6), which is then underestimated once the LCAO
p-valence replaces the finite-difference method. This result would point to the PBE delocal-
ization of electronic density, which is then slightly corrected by the use of the localized atomic
LCAO p-valence basis, but such cancellation is only beneficial in the case of Ag5.
In the TPSS columnof Table 4.1, we report optimization of isomerswith the TPSS exchange-

correlation functional and finite difference basis. As reported earlier for gold clusters65, this
functional yields a good accuracy and reproduces the order and energies of CCSD(T) calcula-
tions. We suggest its use in future simulations, although it was out of reach for the compu-
tational resources used in this work. Here, we used the PBE exchange-correlation functional
with the LCAO basis, which efficiently provides the correct 2D-3D ordering.
We proceed to apply WT-MTD to our systems of interest in order to take into account vari-

ations due to entropic effects.
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Table 4.1: Silver cluster isomer energies in eV relative to the lowest isomer using differentmethods. We include energies
obtained with the coupled cluster method and with DFT functionals like N12, PBE, and TPSS. With the functional PBE,
we also include the predicted energies with the faster LCAO p‐valence basis used in this work.

PBE
System Isomer Symmetry Dimension CCSD(T)5 N124 PBE LCAO TPSS

PVAL
Ag5 1 C2v 2 0 0 0 0 0

2 C2v 2 - 0.27 0.22 0.26 0.27
3 C2v 3 0.43 0.53 0.55 0.40 0.46
4 D2h 2 0.46 0.36 0.39 0.53 0.43

Ag6 1 D3h 2 0 0 0 0 0
2 C5v 3 0.20 0.25 0.23 0.09 0.21
3 C2v 2 0.30 0.29 0.28 0.27 0.28

4.3 Selection of collective variables

As mentioned previously in the theory section, selecting CVs is not trivial in the implementa-
tion of enhanced sampling methods such as as MTD and its variations. Unfortunately, there
is not an automatic mechanism to select the set of CVs, although some researchers have re-
ported some advances in this regard67,68,69. Our first task was to find a set of CVs with the
proper behavior to describe the states of the system, for which we explored several sets.
One of the CVs we considered measured the distance to the stable isomers for Ag5. To this

end, we used the root-mean-square deviation (RMSD) of the inter-atomic distances,

RMSD(R;Rref) =

√
1

Na(Na − 1)

∑
i ̸=j

[d(Ri,Rj)− 0.1d(Rref
i ,Rref

j )]2 , (4.1)

whereRref corresponds to the coordinates of the atoms of the reference configuration. In our
case, we used isomers 1 and 3 in Figure 4.1 as reference configurations. In thisway, we had two
CVs corresponding to the RMSD for the trapezoidal and the bipyramidal isomer. From the
first tests, we noticed that these CVswere inversely proportional: when one of them increased,
the other decreased at the same rate. Hence, we selected the CVRMSD, a linear combination of
both RMSD distances,

CVRMSD =
1
2

[
RMSD(R;Risomer1) + RMSD(R;Risomer3)

]
. (4.2)

We implementedMTDusing CVRMSD and fixed the height of the Gaussians to 0.1 eV and the
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width to 0.2 Å. Figure 4.3 shows CVRMSD as a function of time. Analyzing these trajectories,
we realized that this CV pushes the system towards high-energy states (thermodynamically ir-
relevant) as shown in the top of the image. Moreover, these transitions (via very high-energy
transition states) frequently interchanged atoms, generating different values of the CV al-
though the configuration was already the same. This is due to the symmetry of interchange
defined in the RMSD. For this reason, we discarded the use of these CVs.

Figure 4.3: Evolution of theCVRMSD defined in equation 4.2 inMTD simulation. Green and red shadow zone represents
the values of the CV that corresponds to the isomer 1 and 2, presented in Fig. 4.1. The isomer is an example of a high
energy configuration.

We also considered the CV coordination number C and radius of gyration R, which were
previously used for studying the conformations of the Au12 cluster19. The coordination num-
ber is

C =
Na∑
i=1

Xi, (4.3)

where Xi is defined in equation 3.5 and the reference distance d was set to 2.8Å to include all
first neighbor distances in the silver isomers. This CV measures the number of bonds in the
system. The radius of gyration is

R =

(∑Na
i |Ri −RCM|2

Na

)1/2

, (4.4)

44



where RCM is the center of mass of the cluster and Na is the number of atoms of the cluster.
This CV gives information about how disperse the system is with regard to the center of mass.
Initial tests showed that all Ag5 and Ag6 isomers appeared discriminated in the space of the
radius of gyration and coordination number variables. In this way, C and R enable extract-
ing information on the shape of the cluster and allow differentiating the free-energy minima
found by DFT optimization, which are expected to be the centroids of each state in the free-
energy landscape.
To evaluate the suitability of this set of CVs with greater precision, we performed several

unbiased MD in ASE with different initial conditions, for 10000 steps with a 5 fs time-step
using the Born-Oppenheimer Approximation. The electronic distribution was obtained with
the LCAO-pvalence basis in a cubic cell of 16 Åwith periodic boundary conditions (PBC) in all
directions, using the GPAW calculator58. The temperature was controlled with a Berendsen
thermostat at 10 K with a τt of 50 fs (the same setup that will be used in WT-MTD for a wider
range of temperatures). Starting from the trapezoid state and bipyramidal state, we observe
that the form of the basins in the space of these CVs were tilted ellipsoids in the unbiased
MD (Fig. 4.4). Moreover, by performing short WT-MTD along these CVs, we noticed that
there were isomers with broken bonds or that formed linear clusters, which are not of interest
in the isomerization process and would require prohibitively larger computational cells (D).
Therefore, there are regions of the space that are thermodynamically irrelevant. To avoid
enhancing exploration toward these regions, we created a new set of CVs (CV1 and CV2) that
are a rotation of C and R, over which we could easily apply a restrictive potential (equation
4.7) that we call a wall. After proving many options and ensuring that the walls do not affect
the reconstructed free energy, we defined the rotated CVs as

CV1 = 0.99715 C− 0.07534Å
−1

R , (4.5)

CV2 = 0.07534 C+ 0.99715Å
−1

R . (4.6)

As will be described below, we find it advantageous that the CV2 variable is an adequate CV
that allows to represent the FES of Ag6 in 1D.

4.3.1 Metadynamics-parameter determination

We used the unbiasedMD trajectories to determine the optimal parameters for theWT-MTD
simulation. By monitoring the CVs as a function of time, we can estimate the MTD Gaussian
width, which should approximate the amplitude of the CV at eachminimum (bars in Fig. 4.5).
In other words, the Gaussian widths are on the same order as the variation of the CVs in the
unbiased simulation. Therefore, we choose the values of σCV1 and σCV2 fixed to 0.3 and 0.03,

45



Figure 4.4: Example of the unbiased MD trajectory at 10 K starting from the trapezoidal state (dots) in the space of the
collective variables coordination number and radius of gyration. The direction of the collective variable CV1 is shown
as a solid orange line and CV2 is orthogonal to it.

respectively.
To choose the other WT-MTD parameters, we performed several simulations using classic

MTD to have an idea of the barrier height between different states, and extracted an optimal
setup. From this exploration step, we decided to fix the initial height to 0.3 eV for Ag5 and 0.2
eV for Ag6. The bias factor was fixed at 500, 100, and 50 for the temperatures 10, 100, and
300 K, respectively. This enabled the system to jump from the deepest minimum, but with
the Gaussians decreasing fast enough to achieve convergence in the simulated steps.
Another detail of the WT-MTD setup is that the bias could make the atoms dissolve in vac-

uum or explore irrelevant zones of the CV space. To avoid this, we added a restraining poten-
tial (called lower or upper wall), which restrains the simulations to be lower or greater than a
certain value of the CV space (a)70,71,72. In the case of the lower wall, it is

V(CV) =
{

κ(CV− a)2 if CV < a
0 otherwise

(4.7)

where κ is a parameter representing the strength of the restraint. For the upper wall, the
CV < a condition is inverted.
In Table 4.2, we show a summary of the parameters used in the simulations. It is divided

in the DFT, WT-MTD, and NVT-MD simulations for Ag5 and Ag6.
Here, we include a note on the validity of our simulations at low temperatures. We expect

only a small variation between the computed zero-temperature energy obtained via DFT op-
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Figure 4.5: Example of the evolution of CV1 and CV2 in MD without bias and with biased WT‐MTD at T = 10K. Red
and green lines are unbiased MD simulations starting from Ag5 states 1 and 3 from Fig. 4.1. The maximum variation
range was used to set the Gaussian width σCV1 and σCV2 (shown as a bars). Blue lines represent the evolution of the
collective variables in the WT‐MTD.

timization and the 10K free energy obtained with ab-initio MTD. This is expected because
of the underlying assumptions of fixed Boltzmann statistics in MTD and Born-Oppenheimer
electron-nucleus decoupling in DFT. Therefore, we use the 10K FES values as a convergence
check inside our trend study. Quantum effects that are not valid under these assumptions
will not be captured in our simulations. To include quantum effects, a quantum distribution
would be necessary instead of a Bolztmann’s distribution38.

4.4 Ag5 FES from low to room temperature

Using the parameters and CVs described above, we performed WT-MTD on Ag5 clusters for
11 independent replicas and 50000 steps, resulting in a total of 250 ps. We obtained a clear
difference in the exploration of the configurations compared to the unbiased simulation. For
WT-MTD, the CVs filled the metastable state smoothly and many transitions between states
were observed. As a consequence, the system explored a large range of values in comparison
to the maximum range covered by the simulations without bias (Fig. 4.5). This demonstrates
that the free-energy landscape is being filled by the bias potential and that the system is re-
crossing the relevant metastable states. Importantly, we remark that it is not enough to find
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Table 4.2: Chosen parameters of NVT‐MD, DFT and WT‐MTD for simulations of Ag5 and Ag6 at 10, 100, and 300 K.

NVT-MD Δt = 5 fs
τt = 50

T = 10 K, 100 K, 300 K
DFT Exc = PBE

basis = LCAO-pvalence
spin = True

WT-MTD W = 0.3 (Ag5) / 0.2 (Ag6)
CVs = CV1, CV2

σCV1 = 0.3
σCV2 = 0.03

γ = 500 (10K) / 100 (100K) / 50(300K)
τ = 100 steps

CV1-Lwall at 3.(Ag5) / 8.0 (Ag6) κ = 10
CV2-Uwall at 5.(Ag5) / 3.3 (Ag6) κ = 50

one single transition, as the free-energy reconstruction will be poor. Therefore, the simu-
lations ran until the error (calculated using N trajectories) was in the order of tens of meV,
which usually implies more than 4 transitions between minima.
We estimated the free-energy surface in the space of CV1 and CV2 as the average of the free

energy for the 11 trajectories (see one example of a trajectory in Fig. D.8) for three different
temperatures: 10K, 100K, and 300K (Fig. 4.6 (top)). For all temperatures, the free-energy
landscape contains only two minima, although four minima are obtained from optimization.
At these temperatures, states 2 and 4 (shown in Fig. 4.2), corresponding to the edge-capped
square andbow-tie isomers, are just saddle points that belong to state 1 (the trapezoid isomer).
Therefore, only states 1 and 3 (shown in Fig. 4.2) are representative configurations of stable
isomers. By increasing the temperature in Fig. 4.6, the general form of the free energy is
conserved, but both minima are more populated when the temperature is higher. This is
expected as the systemhasmore thermal energy, enabling it to escape from the localminimum
and occupy other states. In Fig. 4.6 (bottom), we present the standard error calculated as the
standard deviation in each grid point over the root square of the number of replicas, N. It
is, at most, in the order of tens of meV, but remains lower around the lowest free-energy
regions, namely, in the regions close to the minima. This suggests a good reliability of the FE
reconstructions.
For low temperatures, we expect only a small variationbetween the computed zero-temperature

energy obtained via DFT optimization and the 10K free energy obtained with ab-initioMTD.
This is due to underlying assumptions of fixedBoltzmann statistics inMTDandBorn-Oppenheimer

48



Figure 4.6: Free‐energy surface of Ag5 and error obtained in the space of the CVs CV1 and CV2 at temperatures of
10K, 100K, and 300 K. Dashed lines in 10 K are the limit of the lower (vertical) and upper (horizontal) walls that avoid
an exploration towards high energy regions. Level curves are placed every 0.05 eV for the FES and every 0.005 eV for
the error. The positions of isomers (Fig. 4.1) are shown as dots.

electron-nucleus decoupling in DFT. We therefore use the 10K FES values as a convergence
check inside our trend study, which converge to the expected values. We note that quantum
effects that are not valid under these assumptions will not be captured in our simulations. The
effect of increasing the temperature is given by a decrease in the minimum activation barrier
and the free-energy difference between the planar and non-planar isomers. These results are
shown in Fig. 4.7, finding that, from 10K to 300K, the transition barrier decreases by approx-
imately 0.03 eV and the free energy difference decreases by 0.09 eV, with an error of 0.02 eV
at most.
A more dramatic change is captured when calculating the relative population of the basins

using the Boltzmann factor. We define a basin as the region where the free-energy surface is
less than the value of the minimum activation barrier (Fig. 4.7). Then, we obtained the prob-
ability of each state by integrating the Boltzmann factor over the corresponding basin, i.e. the

49



Figure 4.7: Minimum activation barrier and free‐energy of the state 3 (shown at right) relative to the free‐energy of
state 1 (shown at left) at temperatures 10, 100 and 300 K for Ag5 cluster. Shadow colored rectangles correspond to
the error.

probability of state 1 is P1 =
∫
1 exp(−βF(s))ds where β = 1/(kBT) and F(s) is the free-energy

at s. Interestingly, the probability associated to all the non-planar isomers is negligible for all
temperature ranges (even 300K), namely, the probability of finding a planar configuration is
100% for Ag5.
Using statistical bootstrappingwith 50 resamples, we exploredhowmany independent sim-

ulations are required to extract an error by varying the number of samples in each resampling.
This gives a notion of how the predicted result changes as a function of the number of simu-
lated replicas. In Fig. 4.8, we show the mean value (dots) and the standard deviation (bars)
of the difference in free-energy between isomers 1 and 3 of Ag5. This result demonstrates
the importance of running at least 4 replicas for obtaining a reliable free-energy difference
estimate. We note that when using only one MTD simulation, the results can change signif-
icantly, even up to 0.15 eV, which is a large variation when compared with the value of this
observable. This demonstrates the importance of considering several replicas for relatively
short simulations in comparison with convergence criteria for one replica metadynamics that
require larger simulations73,8. We note that the exact convergence rate will also depend on
the complexity of the particular system, the simulation length, and the WT-MTD setup.

4.5 Ag6 FES from low to room temperature

We also studied the free-energy landscape of the Ag6 cluster, running 4 independent trajec-
tories with 136000 steps, resulting in a total of 680 ps (see one example of a trajectory in
Fig. D.9). The cluster has three stable isomers according to the optimization analysis (Ta-
ble 4.1 and Fig. 4.2). In Fig. 4.9 (top), we show the FES along both CVs at the simulated
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Figure 4.8: Bootstrap analysis of the difference between the Ag5 free‐energy minima, state 1 and state 3, in terms of
the number of bootstrap samples. The mean (dots) and standard error (bars) are shown. As the number of samples
increases, the error decreases.

temperatures. We note that only isomers 1 and 2 are stable states of the free-energy land-
scape. The incomplete hexagon isomer, the third Ag6 isomer, appears as part of the basin of
isomer 1. From this, it is clear that states 1 and 2 are properly separated along CV2. There-
fore, integrating CV1 enables a clear representation of a free-energy profile along CV2 (i.e.
exp(−βF(CV2)) =

∫
exp(−βF(CV1,CV2))dCV1.). The averaged profile over the 4 trajectories

and a shaded region representing the standard error are shown in Fig. 4.9 (bottom). For all
three cases, the standard error remains lower than 0.04 eV.
From 10 K to room temperature, the free-energy difference decreases approximately by

0.2 eV, but the barrier with respect to the global minima decreases by only 0.02 eV. In terms
of probability, however, the change is drastic. At room temperature, the probability of non-
planar isomer reaches 10%, which shows that the system reaches a new equilibrium where
planar and non-planar isomers are competing. This is a marked difference between Ag5 and
Ag6, and it is in accordance to an observed change in optical spectrum experiments performed
by Lecoultre et al.66 that show the absorption spectrum of Agn silver clusters, with n = 1-9 us-
ing sputtering technique74. There, experiments of the authors predict a complete domain of
the isomer 1 for Ag5 (also predicted by Haslett et al. with Raman resonance spectrum63).
Moreover, they observed an absorption expectrum that could correspond to the presence iso-
mer 1 and 3. However, they explained the absorption peaks with a weak interaction with
the deposited Argon matrix and discarded the possibility of mixture of isomers based on the
zero-temperature approximation.
To gain insight into the isomerization path as a function of temperature, we have plotted
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Figure 4.9: (Top) Reconstructed Free‐energy surface of Ag6 in the space of CV1 and CV2 at temperatures 10K, 100K,
and 300 K. The level curves are placed each 0.05 eV. (Bottom) Free‐Energy profile of Ag6 at 10, 100, and 300 K along
the collective variable CV2 with CV1 integrated out. The shaded region shows the standard error. The positions of the
isomers, from Fig. 4.2, are highlighted with arrows.

the free-energy surface of Ag5 and Ag6 at 10, 100, and 300K, pointing out the position of the
transition state4 at T=0K (magenta stars in Appendix D, Fig. D.5 and D.5). We also extracted
a few configurations close to the transition region of the reconstructed free-energy surface
(blue star in Fig. D.5 and blue and orange stars in Fig. D.6). These results show that the
transition path followed for the isomerization of the cluster is well represented by the T=0K
simulation.
Finally, it can be noted that, at 10K, the free-energy difference is higher than expected from

the ground-state DFT calculation. This can be explained by the fact that the projection of the
3N real space onto the CV space implies degenerated points: the free-energy surface corre-
sponds to the free-energy of a set of configurations with different potential energies. This is
illustrated in Appendix D, Fig. D.7. We note that degeneracies can happenwhen using a small
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Figure 4.10: Illustration of the system simulated with QM/MM. (Left) Equilibrated periodic box, where the silver dimer
is embedded. (Right) Zoomed‐in dimer with an isosurface of its electronic density. Color code: dark gray = Ag, red =
Oxygen, white = Hydrogen.

number of CVs to represent the entire configurational space.

4.6 Ag2 FES including environmental effects at room temperature

We performed WT-MTD of Ag2 embedded in an aqueous medium using QM/MM (Fig 4.10).
The water-molecule interactions were modeled with a TIP3P force field75. In this simulation,
the density of the water was 997 kg/m2 that corresponds to the liquid phase, and the hydro-
gen bonds lengths were fixed with RATTLE constraint76. The first step was to equilibrate a
periodic cubic box with 27 watermolecules at 300 K, starting from a crystal configuration and
using a Langevin thermostat during 4000 steps, with a friction parameter equal to 0.01 and
with a time step of 1 fs. Then, we replicated this box three times in each Cartesian direction
to re-equilibrate this bigger box using a Berendsen thermostat, with a time step of 2 fs and a
τt equal to 10 fs. This way, we simulated an equilibrated water environment represented by
729 water molecules in a periodic box. We used this system as SS in the QM/MM application
(equation 2.34).
Then, we placed the silver dimer in the center of the water box –removing overlapped water

53



molecules– and defined it as the PS for the QM/MM method (equation 2.34), with a quan-
tum cell of 20 Å and the same DFT setup used for Ag5 and Ag6. We approximated the non-
electrostatic interaction between the PS and SSwith an LJ potential. The parameters of the LJ
potential were fitted to equation 2.36, considering the interaction between onewatermolecule
and the silver dimer, varying the distance between them (Fig 4.11). Thereby, we obtained that
the LJ parameters that better approximate the non-electrostatic interactions,ENES, are ε equal
to 0.09385 eV and σ equal to 2.77 Å.

Figure 4.11: ENES approximation for the silver dimer and a water molecule. The dots represent the expected interaction
energies defined in equation 2.36, and the solid line is the LJ potential used in the QM/MM implementation.

We reconstructed the free-energy surface of the dimer dissociation in vacuum and embed-
ded it in water solvent using WT-MTD. We used the distance between silver atoms as the CV
(denoted by d), an initial height of 1 eV, a Gaussian width (σd) of 0.3 Å, a deposition rate of
50 steps, a bias factor of 50, and a simulation length of 10000 steps. We ran 4 independent
replicas, as done for the LJ system, Ag5 and Ag6.
Figure 4.12 shows the reconstructed free-energy profiles. It is clear that the aqueousmedium

changes the free-energy landscape. With the water environment, the dissociated state be-
comes a stable state, or rather, metastable, as it is not the global minimum and there is a
barrier between the bound and dissociated states, which does not exist in the vacuum case.
This barrier implies that the creation of the dimer bond consumes energy. Moreover, the tran-
sition from the bonded dimer to the dissociated state has a lower free-energy barrier, which
means the water destabilizes the Ag-Ag bond.
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Figure 4.12: Free‐energy profile of Ag2 as function of the Ag‐Ag distance at 300 K embedded in water using QM/MM
(left) and in vacuum (right). Shadow region represents the standard error obtained from 4 independent replicas.
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5
Conclusions

We developed a new calculator for ASE called Plumed by patching the open-source code ASE
and the PLUMED plug-in, which can be used for running simulations of enhanced sampling
methods. This calculator was tested with a simple system of seven LJ atoms as benchmark.
This ASE-PLUMED interface was used for studying Ag5 and Ag6 clusters at different temper-
atures. We found crucial thermal effects on the Ag6 system, which changes from a planar-
dominated population at low temperatures to a state with a mixture of planar and non-planar
isomers at room temperature. Because no changes in population are found in Ag5 at the same
temperature range, it follows then that Ag6 is the smallest silver cluster with a 2D-3D isomer
equilibrium at room temperature. In addition, we used QM/MM to prove that a water envi-
ronment significantly changes the free-energy surface in the process of dimer bond rupture.
Specifically, the basin of the bondeddimer becomes shallower in the presence ofwater solvent,
which leads to conclude that a water environment promotes the dissociation of silver bonds.
We did not study the dissociation mechanism, but it is clearly a consequence of the interac-
tion with solvent molecules because this behavior is not observed in simulation of gas-phase
(Figure 4.12 at left). Then, the dissociation mechanism could be related with the hydration of
silver dimer, where the water molecules interferes in the space between silver-silver atoms.
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6
Perspectives

The results of this project are an attempt to include more realistic conditions to the compu-
tational modeling of cluster conformations. In this sense, these results could be a starting
point for considering more sophisticated models applied to systems of particular interest. A
possible direction to follow is to include biomolecules as an environment in order to study
the stability of silver clusters and its bactericide mechanisms77,78. These approaches include
QM/MM approximations.
The study of Ag5 and Ag6 clusters is interesting because it has led to a discussion on the

minimum cluster size for stabilizing 2D - 3D stable isomers. However, larger clusters are
easier to synthesize experimentally and are used in different applications. The interface that
we introduced has the potential of sampling more metastable conformations (via enhanced
sampling) for larger clusters that were previously not accessible using QMmethods alone.
From a computational point of view, this work opens the possibility of applying enhanced

samplingmethods with ab-initio precision in ASE for systems of interest. However, improve-
ments to the computational performance could be further included, for example, using GPU
parallelization. Moreover, these results can be used as a benchmark in the construction of
classical force fields20.

57



A
Appendix: Products of this thesis

In this appendix, we present the academic products of this research. The first page of the
papers and the poster are attached as follows:

• (Article) Daniel Sucerquia, Cristian Parra, Pilar Cossio, & Olga Lopez-Acevedo. Ab
initiometadynamics determination of temperature-dependent free-energy landscape in
ultrasmall silver clusters. The Journal of chemical physics, 156(15), 2022.

• (Article) Olga Lopez-Acevedo, & Daniel Sucerquia. QM/MM Methods in Studies of
NobleMetals: Copper, Silver, andGold interactingwithBiological andOrganicMolecules.
Advances in Physics: X, submitted, 2022.

• (Poster)Daniel Sucerquia, Pilar Cossio, & Olga Lopez-Acevedo. Using GPAW asMD
calculator in metadynamics simulations. Event: GPAW 2021: Users and Developers
Meeting.
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Ab initio metadynamics determination of temperature-dependent free-energy

landscape in ultrasmall silver clusters
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Ab initio metadynamics enables extracting free-energy landscapes having the accuracy

of first principles electronic structure methods. We introduce an interface between the

PLUMED code that computes free-energy landscapes and enhanced-sampling algorithms

and the ASE module, which includes several ab initio electronic structure codes. The

interface is validated with a Lennard-Jones cluster free-energy landscape calculation by

averaging multiple short metadynamics trajectories. We use this interface and analysis to

estimate the free-energy landscape of Ag5 and Ag6 clusters at 10, 100 and 300 K with the

radius of gyration and coordination number as collective variables, finding at most tens

of meV in error. Relative free-energy differences between the planar and non-planar iso-

mers of both clusters decrease with temperature, in agreement with previously proposed

stabilization of non-planar isomers. Interestingly, we find that Ag6 is the smallest silver

cluster where entropic effects at room temperature boost the non planar isomer probability

to a competing state. The new ASE-PLUMED interface enables simulating nanosystem

electronic properties at more realistic temperature-dependent conditions.

a)Electronic mail: pcossio@flatironinstitute.org
b)Electronic mail: olga.lopeza@udea.edu.co
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ABSTRACT
A QM/MM method is an atomistic simulation algorithm that allows researchers to
describe different regions of a system with different physical laws. Here, we review
this hybrid method’s applications to the study of copper, silver, and gold atoms
and clusters interacting with biological and organic molecules. In particular, we
highlight efforts to characterize the relaxation process in a copper(I) phenanthroline
complex; details of Cu’s secretory path; the atomic structure of Ag-homopolymers of
cytosine and guanine; DNA-stabilized silver clusters; effects related to temperature
and solvent on thiolate-protected gold clusters’ optical properties; and the effect
of a medium-like noble gas on a cluster’s optical spectrum. The results of these
efforts demonstrate how QM/MM methods are applied succesfully to a wide range
of processes that include the study of excited state evolution, charge transport,
light absorption and emission, and determining an atomic structure in absence of
crystal-determined structure. We expect QM/MM methods will continue supporting
the exploration of novel hybrid organo-metallic materials and their safe use in the
environment, while also providing guidance on mechanisms to deal with diseases
associated with a failure in cells’ proper behavior.

KEYWORDS
QM/MM; metal-organics; Copper-mediated; DNA-stabilized clusters;
thiolate-protected gold clusters

1. Introduction

Metals exist in many fundamental biological processes and form hybrid complexes
with organic matter. Copper, for example, is essential to copper-mediated enzymes
that regulate oxygen transport and communication between neurons [1], and iron is
present in hemoglobin and oxygen transport processes [2]. To date, nanoscience has
offered some exploration of hybrid metalo-organic materials, such as DNA-stabilized
silver clusters [3–5] and thiolate-protected gold clusters [6, 7] with potential applica-
tions as biosensors, in bioimaging and medicine[8, 9]. Yet within these systems, many
properties and possibilities remain unexplored. Other knowledge we might gain about
these metals in hybrid form include questions on their stability in solution, which are
important questions in potentiating their use in technological applications.

To better understand and push beyond the body of research amassed thus far,
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Using GPAW as MD Calculator in Metadynamics
Simulations

Daniel Sucerquia1 , Pilar Cossio2,3 and Olga Lopez-Acevedo1,2
1 Grupo de Física Atómica y Molecular, Universidad de Antioquia UdeA, Medellin, Colombia.

2 Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, Medellín, Colombia.
3 Center for Computational Mathematics, Flatiron Institute, NY, USA.

Abstract

Considering that entropic effects cannot be ad-
dressed with groundstate DFT calculations and
that requires an estimation of the free energy
landscape of the systems, we developed an inter-
face to PLUMED [1] as a new calculator in ASE
for carrying out enhanced sampling methods like
Metadynamics [2] simulations which works to-
gether with GPAW as ab-initio calculator of the
unbiased part. This calculator contains PLU-
MED as a plug-in for the computation of co-
llective variables, bias forces, bias energy, and
other practical tools. Here is presented an exam-
ple using metadynamics with GPAW in which
we obtained the free energy landscape of Ag5
cluster in terms of the collective variables radius
of gyration and coordination number.

Plumed

PLUMED is an open-source, community-
developed library that provides a wide range of
different methods, which include:

Enhanced-sampling algorithms

Free-energy methods

Tools to analyze data produced by mole-
cular dynamics (MD) simulations

Metadynamics

Metadynamics [3] is an enhanced sampling al-
gorithm in which the normal evolution of the
system is biased by a history-dependent poten-
tial constructed as a sum of Gaussians centered
along the trajectory followed by a suitably cho-
sen set of collective variables, s:

VG(s, t) = ω
i<t∑

i=τG,2τG...

e−
(s−s(i))2

2δs2

Image from [4]

And it is demonstrated that [2]:

ĺım
t→∞

VG(s, t) = −F (s) + C

Plumed Calculator

The new calculator is initialized
from ASE and each time step it
can compute:

A large set of collective va-
riables

Bias potential energy

Bias Forces

Ag5 Isomers

We used this new calculator for studying the free energy
landscape of Ag5 at 10K of temperature using metady-
namics in the collective variables radius of gyration and
coodination number:

R =

∑n

i mi|ri − rCOM |2

n
i mi

C =
∑

i 6=j

1− (rij/r0)
n

1− (rij/r0)m

We solve the unbiased forces with GPAW using LCAO
and PBE.

Conclusions

We have created an interface to PLUMED that can work together with GPAW for carrying out
enhanced sampling methods like Metadynamics, which we used for showing a possible aplication
where we study the conformational space of Ag5 clusters. Now all users of GPAW can implement
the methods that plumed contains.
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B
Appendix: Plumed calculator

from ase.calculators.calculator import Calculator, all_changes
from ase.io.trajectory import Trajectory
from ase.parallel import broadcast
from ase.parallel import world
import numpy as np
from os.path import exists
from ase.units import fs, mol, kJ, nm

def restart_from_trajectory(prev_traj, *args, prev_steps=None, atoms=None,
**kwargs):

”””This function helps the user to restart a plumed simulation
from a trajectory file.

Parameters
----------
prev_traj : Trajectory object

previous simulated trajectory

prev_steps : int. Default steps in prev_traj.

62



number of previous steps

others :
Same parameters of :mod:‘~ase.calculators.plumed‘ calculator

Returns
-------
Plumed calculator

.. note:: prev_steps is crucial when trajectory does not contain
all the previous steps.

”””
atoms.calc = Plumed(*args, atoms=atoms, restart=True, **kwargs)

with Trajectory(prev_traj) as traj:
if prev_steps is None:

atoms.calc.istep = len(traj) - 1
else:

atoms.calc.istep = prev_steps
atoms.set_positions(traj[-1].get_positions())
atoms.set_momenta(traj[-1].get_momenta())

return atoms.calc

class Plumed(Calculator):
implemented_properties = [’energy’, ’forces’]

def __init__(self, calc, input, timestep, atoms=None, kT=1., log=’’,
restart=False, use_charge=False, update_charge=False):

”””
Plumed calculator is used for simulations of enhanced sampling methods
with the open-source code PLUMED (plumed.org).

[1] The PLUMED consortium, Nat. Methods 16, 670 (2019)
[2] Tribello, Bonomi, Branduardi, Camilloni, and Bussi,
Comput. Phys. Commun. 185, 604 (2014)
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Parameters
----------
calc: Calculator object

It computes the unbiased forces

input: List of strings
It contains the setup of plumed actions

timestep: float
Time step of the simulated dynamics

atoms: Atoms
Atoms object to be attached

kT: float. Default 1.
Value of the thermal energy in eV units. It is important for
some methods of plumed like Well-Tempered Metadynamics.

log: string
Log file of the plumed calculations

restart: boolean. Default False
True if the simulation is restarted.

use_charge: boolean. Default False
True if you use some collective variable which needs charges. If
use_charges is True and update_charge is False, you have to define
initial charges and then this charge will be used during all
simulation.

update_charge: boolean. Default False
True if you want the charges to be updated each time step. This
will fail in case that calc does not have ’charges’ in its
properties.

.. note:: For this case, the calculator is defined strictly with the
object atoms inside. This is necessary for initializing the
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Plumed object. For conserving ASE convention, it can be initialized
as atoms.calc = (..., atoms=atoms, ...)

.. note:: In order to guarantee a proper restart, the user has to fix
momenta, positions and Plumed.istep, where the positions and
momenta corresponds to the last configuration in the previous
simulation, while Plumed.istep is the number of timesteps
performed previously. This can be done using
ase.calculators.plumed.restart_from_trajectory.

”””

from plumed import Plumed as pl

if atoms is None:
raise TypeError(’plumed calculator has to be defined with the \

object atoms inside.’)

self.istep = 0
Calculator.__init__(self, atoms=atoms)

self.input = input
self.calc = calc
self.use_charge = use_charge
self.update_charge = update_charge

if world.rank == 0:
natoms = len(atoms.get_positions())
self.plumed = pl()

’’’ Units setup
warning: inputs and outputs of plumed will still be in
plumed units.

The change of Plumed units to ASE units is:
kjoule/mol to eV
nm to Angstrom
ps to ASE time units
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ASE and plumed - charge unit is in e units
ASE and plumed - mass unit is in a.m.u units ’’’

ps = 1000 * fs
self.plumed.cmd(”setMDEnergyUnits”, mol/kJ)
self.plumed.cmd(”setMDLengthUnits”, 1/nm)
self.plumed.cmd(”setMDTimeUnits”, 1/ps)
self.plumed.cmd(”setMDChargeUnits”, 1.)
self.plumed.cmd(”setMDMassUnits”, 1.)

self.plumed.cmd(”setNatoms”, natoms)
self.plumed.cmd(”setMDEngine”, ”ASE”)
self.plumed.cmd(”setLogFile”, log)
self.plumed.cmd(”setTimestep”, float(timestep))
self.plumed.cmd(”setRestart”, restart)
self.plumed.cmd(”setKbT”, float(kT))
self.plumed.cmd(”init”)
for line in input:

self.plumed.cmd(”readInputLine”, line)
self.atoms = atoms

def _get_name(self):
return f’{self.calc.name}+Plumed’

def calculate(self, atoms=None, properties=[’energy’, ’forces’],
system_changes=all_changes):

Calculator.calculate(self, atoms, properties, system_changes)

comp = self.compute_energy_and_forces(self.atoms.get_positions(),
self.istep)

energy, forces = comp
self.istep += 1
self.results[’energy’], self. results[’forces’] = energy, forces

def compute_energy_and_forces(self, pos, istep):
unbiased_energy = self.calc.get_potential_energy(self.atoms)
unbiased_forces = self.calc.get_forces(self.atoms)
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if world.rank == 0:
ener_forc = self.compute_bias(pos, istep, unbiased_energy)

else:
ener_forc = None

energy_bias, forces_bias = broadcast(ener_forc)
energy = unbiased_energy + energy_bias
forces = unbiased_forces + forces_bias
return energy, forces

def compute_bias(self, pos, istep, unbiased_energy):
self.plumed.cmd(”setStep”, istep)

if self.use_charge:
if ’charges’ in self.calc.implemented_properties and \

self.update_charge:
charges = self.calc.get_charges(atoms=self.atoms.copy())

elif self.atoms.has(’initial_charges’) and not self.update_charge:
charges = self.atoms.get_initial_charges()

else:
assert not self.update_charge, ”Charges cannot be updated”
assert self.update_charge, ”Not initial charges in Atoms”

self.plumed.cmd(”setCharges”, charges)

# Box for functions with PBC in plumed
if self.atoms.cell:

cell = np.asarray(self.atoms.get_cell())
self.plumed.cmd(”setBox”, cell)

self.plumed.cmd(”setPositions”, pos)
self.plumed.cmd(”setEnergy”, unbiased_energy)
self.plumed.cmd(”setMasses”, self.atoms.get_masses())
forces_bias = np.zeros((self.atoms.get_positions()).shape)
self.plumed.cmd(”setForces”, forces_bias)
virial = np.zeros((3, 3))
self.plumed.cmd(”setVirial”, virial)
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self.plumed.cmd(”prepareCalc”)
self.plumed.cmd(”performCalc”)
energy_bias = np.zeros((1,))
self.plumed.cmd(”getBias”, energy_bias)
return [energy_bias, forces_bias]

def write_plumed_files(self, images):
””” This function computes what is required in
plumed input for some trajectory.

The outputs are saved in the typical files of
plumed such as COLVAR, HILLS ”””
for i, image in enumerate(images):

pos = image.get_positions()
self.compute_energy_and_forces(pos, i)

return self.read_plumed_files()

def read_plumed_files(self, file_name=None):
read_files = {}
if file_name is not None:

read_files[file_name] = np.loadtxt(file_name, unpack=True)
else:

for line in self.input:
if line.find(’FILE’) != -1:

ini = line.find(’FILE’)
end = line.find(’ ’, ini)
if end == -1:

file_name = line[ini+5:]
else:

file_name = line[ini+5:end]
read_files[file_name] = np.loadtxt(file_name, unpack=True)

if len(read_files) == 0:
if exists(’COLVAR’):

read_files[’COLVAR’] = np.loadtxt(’COLVAR’, unpack=True)
if exists(’HILLS’):

read_files[’HILLS’] = np.loadtxt(’HILLS’, unpack=True)
assert not len(read_files) == 0, ”There are not files for reading”
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return read_files

def __enter__(self):
return self

def __exit__(self, *args):
self.plumed.finalize()
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C
Appendix: Tests added to ASE source

from ase import Atoms
from ase.calculators.emt import EMT
from ase.calculators.idealgas import IdealGas
from ase.md.verlet import VelocityVerlet
from ase.calculators.lj import LennardJones
import numpy as np
from ase.io.trajectory import Trajectory
from pytest import approx
import pytest
from ase.calculators.plumed import restart_from_trajectory

@pytest.mark.calculator_lite
@pytest.mark.calculator(’plumed’)
def test_CVs(factory):

””” This test calls plumed-ASE calculator for computing some CVs.
Moreover, it computes those CVs directly from atoms.positions and
compares them”””
# plumed setting
set_plumed = [”c1: COM ATOMS=1,2”,
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”c2: CENTER ATOMS=1,2”,
”l: DISTANCE ATOMS=c1,c2”,
”d: DISTANCE ATOMS=1,2”,
”c: COORDINATION GROUPA=1 GROUPB=2 R_0=100 MM=0 NN=10”,
”FLUSH STRIDE=1”,
”PRINT ARG=d,c,l STRIDE=10 FILE=COLVAR_test1”]

# execution
atoms = Atoms(’CO’, positions=[[0, 0, 0], [0, 0, 5]]) # CO molecule
_, colvar = run(factory, [set_plumed, atoms, 5], calc=EMT(), steps=101)

# this compares the time calculated by ASE and plumed
timeASE = np.arange(0., 501., 50)
timePlumed = colvar[’COLVAR_test1’][0]
assert timeASE == approx(timePlumed), ”Error in time registered by plumed”

# This compares the distance of atoms calculated by ASE and plumed
distASE = np.array([5., 51.338332, 141.252854, 231.167376, 321.081899,

410.996421, 500.910943, 590.825465, 680.739987,
770.654509, 860.569031])

distPlumed = colvar[’COLVAR_test1’][1]
assert distPlumed == approx(distASE), ”Error in distance ”

# this compares the coordination number calculated by ASE and plumed
CASE = np.array([1.0000e+00, 9.9873e-01, 3.0655e-02, 2.2900e-04, 9.0000e-06,

1.0000e-06, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
0.0000e+00])

CPlumed = colvar[’COLVAR_test1’][2]
assert CASE == approx(CPlumed, abs=1E-5), ”Error in coordination number”

# this compares the distance between center of mass and geometrical center
# calculated by ASE and plumed
centersASE = np.array([0.355944, 3.654717, 10.05563, 16.456542, 22.857455,

29.258367, 35.65928, 42.060192, 48.461104, 54.862017,
61.262929])

centersPlumed = colvar[’COLVAR_test1’][3]
assert centersASE == approx(centersPlumed)
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@pytest.mark.calculator_lite
@pytest.mark.calculator(’plumed’)
def test_metadyn(factory):

”””This test computes a Metadynamics calculation,
This result is compared with the same calulation made externally”””
params = setups()
atoms, _ = run(factory, params, steps=58)

position1 = -0.0491871
position2 = 6.73693
forceWithBias = 0.28807

assert (atoms.get_positions()[0][0] == approx(position1, abs=0.01) and
atoms.get_positions()[1][0] == approx(position2, abs=0.01)),
”Error in the metadynamics simulation”

assert atoms.get_forces()[0][0] == approx(forceWithBias, abs=0.01),
”Error in the computation of Bias-forces”

@pytest.mark.calculator_lite
@pytest.mark.calculator(’plumed’)
def test_restart(factory):

ins = setups()
# first steps
_, res = run(factory, ins, name=’restart’)

# rest of steps with restart
input, atoms1, timestep = setups()
with restart_from_trajectory(’test-restart.traj’,

calc=LennardJones(epsilon=10, sigma=6),
input=input,
timestep=timestep,
atoms=atoms1) as atoms1.calc:

with VelocityVerlet(atoms1, timestep) as dyn:
dyn.run(30)
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# Values computed externally
position1 = -0.0491871
position2 = 6.73693
forceWithBias = 0.28807

assert atoms1.get_forces()[0][0] == approx(forceWithBias, abs=0.01),
”Error in restart for the computation of Bias-forces”

assert (atoms1.get_positions()[0][0] == approx(position1, abs=0.01) and
atoms1.get_positions()[1][0] == approx(position2, abs=0.01)),

”Error in the restart of metadynamics simulation”

@pytest.mark.calculator_lite
@pytest.mark.calculator(’plumed’)
def test_postpro(factory):

# Metadynamics simulation
params = setups(’direct’)
_, direct = run(factory, params, name=’direct’, steps=58)

params = setups(’postpro’)
# Postpro resconstruction
with factory.calc(calc=IdealGas(),

input=params[0],
atoms=params[1],
timestep=params[2]) as calc:

with Trajectory(’test-direct.traj’) as traj:
postpr = calc.write_plumed_files(traj)[’HILLS_postpro’]

assert postpr == approx(direct[’HILLS_direct’])

def run(factory, inputs, name=’’,
calc=LennardJones(epsilon=10, sigma=6),
traj=None, steps=29):

input, atoms, timestep = inputs
with factory.calc(calc=calc,

input=input,

73



timestep=timestep,
atoms=atoms) as atoms.calc:

with VelocityVerlet(atoms, timestep,
trajectory=’test-{}.traj’.format(name)) as dyn:

dyn.run(steps)
res = atoms.calc.read_plumed_files()

return atoms, res

def setups(name=’’):
set_plumed = [”d: DISTANCE ATOMS=1,2”,

”FLUSH STRIDE=1”,
”METAD ARG=d SIGMA=0.5 HEIGHT=2 PACE=20 ” +
”FILE=HILLS_{}”.format(name)]

atoms = Atoms(’CO’, positions=[[0, 0, 0], [6.7, 0, 0]])
timestep = 0.05
return set_plumed, atoms, timestep
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D
Appendix: Silver configurations

(a) (b)

Figure D.1: (a) Trajectory of metadynamics simulation without walls (gray points) for Ag5 in the space of the collective
variables CV1 and CV2 defined in equations 8 and 9 of the main text. Colored markers show the location of the isomers
presented in Figure D.2. Black Xs correspond to example configurations presented on the panel (b), which are excluded
by the walls (dashed lines). Lines between atoms in configurations represent distances lower than 3 Å.
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Figure D.2: Ag5 isomers optimized with N12/jun‐cc‐pVTZ‐PP. The order of the isomers corresponds to the order of
the potential energies. Green lines are saddle points, red lines represent local minima. Reprinted with permission from
Duanmu and Truhlar4. Copyright 2015 American Chemical Society.
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(a) (b)

Figure D.3: (a) Trajectory of metadynamics simulation without walls (gray points) for Ag6 in the space of the collective
variables CV1 and CV2 defined in equation 8 and 9 of the main text. Colored markers show the location of the isomers
presented in Figure D.4. Black Xs correspond to example configurations presented on the panel (b), which are excluded
by the walls (dashed lines). Lines between atoms in configurations represent distances lower than 3 Å.
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Figure D.4: Ag6 isomers optimized with N12/jun‐cc‐pVTZ‐PP. The order of the isomers corresponds to the order of the
energies. Green lines are saddle points, red lines represent local minima. Reprinted with permission from Duanmu and
Truhlar4. Copyright 2015 American Chemical Society.
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Figure D.5: Ag5 approximate transition points over the obtained free‐energy surface in the space of collective vari‐
ables CV1 and CV2. The magenta star corresponds to the transition configuration obtained by Duanmu and Truhlar4
with N12/jun‐cc‐pVTZ‐PP (Figure D.2). The blue star is an example of a configuration obtained from the WT‐MTD
simulations that approximates to the transition point.
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Figure D.6: Ag6 approximate transition points over the obtained free‐energy surface in the space of collective variables
CV1 and CV2. The magenta star corresponds to the transition configuration obtained by Duanmu and Truhlar4 with
N12/jun‐cc‐pVTZ‐PP (Figure D.4). The blue and orange stars are example configurations obtained from the WT‐MTD
simulations that approximate to the transition point.
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D.1 Degenerated configurations in CV space

(a)

(b)

Figure D.7: Potential energy of a set of configurations close to the minima in the Ag6 free‐energy surface at 10K. (a)
Regions in CV space selected to extract the random configurations close to the minima corresponding to isomer 1 and
isomer 2 shown in Figure 2 of the Main Text. b) Potential energy of the set of configurations (orange and blue are
configurations near to minimum 1 and 2, respectively). Examples of selected configurations are shown as inset. Lines
between atoms in configurations represent distances lower than 3 Å.
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Figure D.8: First 4000, 8000 and 20000 steps of one Ag5WT‐MTD trajectory (brown line) in CV1‐CV2 space over the
free energy surface at 10 K presented in Fig. 4.6. The points in the trajectory were taken each 100 steps. The Orange
dot represents the position of the last step.

Figure D.9: First 4000, 8000 and 20000 steps of one Ag6WT‐MTD trajectory (brown line) in CV1‐CV2 space over the
free energy surface at 10 K presented in Fig. 4.6. The points in the trajectory were taken each 100 steps. The Orange
dot represents the position of the last step.
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