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ABSTRACT
The Farlie-Gumbel-Morgensten (FGM) family of bivariate distributions
with given marginals, is frequently used in theory and applications
and has been generalized in many ways. With the help of two auxil-
iary distributions, we propose another generalization and study its
properties. After defining the rank of a distribution as the cardinal of
the set of canonical correlations, we prove that some well-known
distributions have practically rank two. Consequently we introduce
several extended FGM families of rank two and study how to
approximate any bivariate distribution to a simpler one belonging to
this family.
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1. Introduction

The construction and study of dependence models have interest in statistics, probability,
econometrics, informatics, insurance, finance, physics, hydrology, etc. A copula function
is a bivariate cdf with uniform (0, 1) marginals that captures the dependence properties
of two r.v.’s defined on the same probability space. Many copulas and bivariate families
of distributions have been studied in Hutchinson and Lai (1991), Joe (1997), Drouet-
Mari and Kotz (2001), Kotz, Balakrishnan, and Johnson (2000), Nelsen (2006), Cuadras
(2006) and Balakrishnan and Lai (2009). Among others, the so-called Farlie-Gumbel-
Morgenstern (FGM) bivariate family is frequently used in theory and applications. This
motivated Huang and Kotz (1999), Lai and Xie (2000), Amblard and Girard (2002,

2009), Rodr�ıguez-Lallena and �Ubeda-Flores (2004), Cuadras and Cuadras (2008) and
Cuadras and Diaz (2012), to propose and study proper extensions.
Let I¼ ½0;1�: Recall that a bivariate copula is a function C : I2 ! I such that Cðu;0Þ¼

Cð0;vÞ¼ 0; Cðu;1Þ ¼ u; Cð1;vÞ ¼ v; and for 0� u1 � u2 � 1 and 0� v1 � v2 � 1 satisfies:

C u2;v2ð Þ�C u2;v1ð Þ�C u1;v2ð ÞþC u1;v1ð Þ � 0

Copulas are important because Sklar’s theorem (Sklar 1959). Let H be a bivariate cdf
with univariate marginals F;G: Then H can be expressed as Hðx; yÞ ¼ CðFðxÞ;GðyÞÞ;
where C is a copula related to H: Thus modeling copulas is an interesting task.
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This paper extends Cuadras, Fortiana, and Greenacre (2000), Cuadras (2015) and Cuadras
and Diaz (2012). For the sake of clarity, we repeat some concepts, definitions and results.
Section 2 studies a new generalized family of distributions, which is related to the

diagonal extension of a distribution, following Cuadras, Fortiana, and Greenacre (2000).
This family has a conjugate one, with similar dependence properties. Several aspects of
Section 3 appeared in Cuadras and Diaz (2012) and Cuadras (2015). Here we propose a
new terminology, clarify some geometrical concepts and obtain new results. For
instance, Theorem 2 is more general than the similar proposition in Cuadras (2015).
Once the concept of rank reduction of a cdf has been established, Section 4 proposes a
new extension of rank two. Section 5 contains another extension of rank two, already
studied in Cuadras and Diaz (2012), but some new results are added. Section 6 is also
new and studies the copulas associated to the families defined in Sections 4 and 5.
Section 7 proposes a new distance between bivariate distributions, which is related to
the diagonal expansion. Section 8 deals with the approximation of a cdf for another of
lower rank. It is based on Cuadras and Diaz (2012), but contains new results concerning
the quality of the approximation. Section 9 is devoted to illustrate the theoretical results
with examples, following the same structure as Cuadras and Diaz (2012), but adding the
bivariate normal distribution and the curved line characterizing a bivariate family in
terms of canonical correlations.

2. Generalized FGM family of distributions

Let H(x, y) be the bivariate cdf of the random vector ðX;YÞ; with univariate marginal
cdf’s FðxÞ;GðyÞ and supports ½a; b�; ½c; d�; respectively. Throughout this paper, x and y
in Hðx; yÞ; FðxÞ; GðyÞ; as well as u and v, in Cðu; vÞ; where 0 � u; v � 1; will be sup-
pressed, unless it is strictly necessary. We write H 2 FðF;GÞ; where FðF;GÞ is the so-
called Fr�echet-Hoeffding class of bivariate cdf’s with fixed univariate marginals F, G, see
Nelsen (2006, Chapter 6).
As FðF;GÞ is too general, we must work with a sub-class. The FGM family is a para-

metric sub-class of FðF;GÞ defined by

Hh ¼ FG 1þ h 1�Fð Þ 1�Gð Þ� �
; �1 � h � 1

and the corresponding family of copulas is

Ch ¼ uv 1þ h 1�uð Þ 1�vð Þ½ �; �1 � h � 1

2.1. Definition and properties

We propose the following generalization.

Definition 1. Let U;W be two univariate cdf’s having the same supports ½a; b�; ½c; d� as
those of F, G. We define the bivariate family

H ¼ FGþ k F�Uð Þ G�Wð Þ (1)

This family reduces to the bivariate FGM cdf when U ¼ F2 and W ¼ G2; both uni-
variate cdf’s.
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Consider the Fr�echet-Hoeffding class FðF;GÞ of bivariate cdf’s with univariate mar-
ginals F and G. It is readily proved that H has marginals F and G and reaches the sto-
chastic independence cdf F�G when k¼ 0 and/or F ¼ U: By continuity, in general H,

see (1), is also a cdf for k near to 0. Thus H 2 FðF;GÞ for some values of _k: The range
of k is obtained in the following theorem, where U � F means that F is absolutely con-
tinuous with respect to (w.r.t.) W: Then the Radon-Nikodym derivative dU=dF exists.

Theorem 1. Suppose U � F; W � G and that dUðxÞ=dFðxÞ 6¼ 1; dWðxÞ= dGðyÞ 6¼ 1 for
some x; y: Then H is a bivariate cdf for any k such that k� � k � kþ; where

k� ¼ �1

sup 1� dU=dF½ � 1� dW=dG½ �� �
kþ ¼ �1

inf 1� dU=dF½ � 1� dW=dG½ �� �
Proof. Write dH ¼ dFdGþ kðdF�dUÞðdG�dWÞ as

dH ¼ dFdG 1þ k 1�dU=dFð Þ 1�dW=dGð Þ½ � (2)

We should find k such that 1þ kð1�dU=dFÞð1�dW=dGÞ � 0: This occurs when
kð1�dU=dFÞð1�dW=dGÞ � �1: Thus k � �1=½ð1�dU=dFÞð1�dW=dGÞ�: Hence k �
k�: Similarly, if the denominator is positive, k � 1=½ð1�dU=dFÞð1�dW=dGÞ�: Hence
k � kþ: w

Let us suppose absolute continuity of the univariate marginal distributions, i.e., there
exist the probability density functions (pdf’s), w.r.t. to the Lebesgue measure, f ¼
F0; g ¼ G0;u ¼ U0;w ¼ W0: Then the bivariate pdf is

h ¼ fg þ k f�uð Þ g�wð Þ
¼ fg 1þ k 1� uf�1

� �
1� wg�1
� �� �

where f�1 ¼ 1=f and g�1 ¼ 1=g: Then, if we replace dU=dF by u=f we get the follow-
ing result:

Corollary 1. H is a bivariate cdf for any k such that k� � k � kþ; where

k� ¼ �1

sup 1� u xð Þf�1 xð Þ� �
1� w yð Þg�1 yð Þ
� �n o

kþ ¼ �1

inf 1� u xð Þf�1 xð Þ� �
1� w yð Þg�1 yð Þ
� �n o

The generalized family (1) is more flexible than FGM and has some advantages. For
example, the maximum range of the correlation coefficient for the traditional FGM fam-
ily is ½�1=3; 1=3�: This range can be improved.

Example 1. Consider the univariate cdf’s U ¼ F� sin aðpFÞ=p; W ¼ G� sin aðpGÞ=p;
where 1 � a � 2: From (1) we obtain H ¼ FGþ ðk=p2Þ sin aðpFÞ sin aðpGÞ: With
a¼ 5/4 we have �1:1963 � k � 1:1963 (Corollary 1), and the range of the correlation
coefficient with H (uniform marginals) is ½�0:5108; 0:5108�: For a¼ 1 this family gives
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a copula appearing in Amblard and Girard (2002) and the range is ½�48=p4; 48=p4� ¼
½�0:4928; 0:4928�: Both ranges are wider than ½�1=3; 1=3�:

Lemma 1. Suppose U � F and W � G. Let a and b be defined by

a ¼
ðb
a

dU
dF

� 	2

dF; b ¼
ðd
c

dW
dG

� 	2

dG

Then a � 1 and b � 1:

Proof. The derivative dU=dF exists and
Ð b
a ðdU=dF�1Þ2dF ¼ a�2

Ð b
a dUþ 1 ¼ a�1 � 0

and similarly b: Note that a and b are divergence measures in the sense of Csisz�ar
(1975). w

Define the functions a1 ¼ 1�dU=dF; b1 ¼ 1�dW=dG: Then from (2)

dH ¼ dFdGþ ka1b1dFdG (3)

If the pdf’s h, f, g exist, we have h ¼ fg þ kfa1gb1:

Lemma 2. E½a1ðXÞ� ¼ E½b1ðYÞ� ¼ 0 and E½a21ðXÞ� ¼ a�1; E½b21ðYÞ� ¼ b�1:

Proof. E½a1ðXÞ� ¼
Ð b
a ð1� dU=dFÞdF ¼ 1�1 ¼ 0: From Lemma 1 E½a21ðXÞ� ¼ a�1: w

2.2. Relation with the diagonal expansion

Suppose that H � FG; so the derivative dH=ðdFdGÞ exists. A global measure of
dependence is the Pearson contingency coefficient /t

2; defined by

/t
2 ¼

ðb
a

ðd
c

dH
dFdG

� 1

� 	2

dFdG (4)

We have /t
2 � 0 and /t

2 ¼ 0 iff there is stochastic independence between X and Y.
Note that /t

2 is a divergence measure in the sense of Csisz�ar (1975).
If /t

2 is finite, then the kernel K ¼ dH=ðdFdGÞ�1 is Hilbert-Schmidt. This means

that there exists a sequence KN ¼PN
n¼1 qnanbn converging to K as N ! 1: Thus, if

/t
2 is finite, there exists the expansion (Lancaster 1958)

dH ¼ dFdGþ
X
n�1

qnanbndFdG (5)

where an; bn are unitary functions in L2ð½a; b�Þ and L2ð½c; d�Þ on F and G, respectively,
in the sense that E½anðXÞ� ¼ E½bnðYÞ� ¼ 0 and E½a2nðXÞ� ¼ E½b2nðYÞ� ¼ 1: Then anðXÞ
and bnðYÞ are the canonical variables. The sequence of canonical correlations is q1 �
q2 � � � � � 0: The canonical variables are functions with maximal correlations. Thus
qn ¼corðanðXÞ; bnðYÞÞ; where cor means correlation coefficient, is maximal in the sense
of canonical correlation analysis, a well-known method of multivariate analysis, see
Mardia, Kent, and Bibby (1979). Hence a1ðXÞ and b1ðYÞ have maximum correlation,
a2ðXÞ and b2ðYÞ have maximal correlation constrained to zero correlation with a1ðXÞ
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and b1ðYÞ; respectively, and so on. When H can be expanded as (5), it is said that H
admits a diagonal expansion (Hutchinson and Lai 1991).
It can be proved that the Pearson contingency coefficient, see (4), can be expressed in

terms of the sequence of canonical correlations:

/2
t ¼

X
n�1

q2n

The first canonical correlation q1 is the maximum correlation between a function of
X and a function of Y :

q1 ¼ sup
�2Vx; n2Vy

cor � Xð Þ; n Yð Þ� �
where Vx; Vy are the sets of functions with finite variance. The correlation q1 is a meas-
ure of dependence, since q1 ¼ 0 iff the r.v.’s X, Y are stochastically independent and
q1 ¼ 1 iff there is a functional relation between the variables, which is useful in identi-
fying nonlinear relationships in regression. See Buja (1990).
If the pdf’s exist, expansion (5) can be expressed as

h ¼ fg þ
X
n�1

qnfangbn (6)

It is worth noting that the sequence of canonical correlations can be an interval
rather than a countable set. This may occur when the distribution has a singular part.
For instance, consider the Cuadras-Aug�e family

H ¼ min F;Gf gh FGð Þ1�h
; 0 � h � 1

The line fFðxÞ ¼ GðyÞg has measure 0 w.r.t. dFdG, but positive measure w.r.t. dH.
Hence dH is not absolutely continuous w.r.t. dFdG and the derivative dH=ðdFdGÞ does
not exist. We cannot express dH ¼ dFdGþPqnanbndFdG; i.e., the standard Lancaster
theory does not apply for this family. Instead of a sequence q1 � � � � � qn � � � � � 0;
for the Cuadras-Aug�e family the set of canonical correlations is obtained in a different
way and described by the continuous function hq1�h; 0 � q � 1: The range of the corre-
lations is the interval ½0; h�: Hence h is the maximum correlation. See Cuadras (2002,
2015, 2016), Ruiz-Rivas and Cuadras (1988).
The constants a; b in the proposition below, has been defined in Lemma 1.

Proposition 1. The first canonical correlation for the family (1) is given by

q1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�1ð Þ b�1ð Þ

q
and the Pearson contingency coefficient is /t

2 ¼ q21:

Proof. Suppose a> 1; b> 1: Write (3) as

dH ¼ dFdGþ k a1=
ffiffiffiffiffiffiffiffiffi
a�1

p� �
b1=

ffiffiffiffiffiffiffiffiffi
b�1

p� �
dFdG

and compare with (5). Then A1 ¼ a1=
ffiffiffiffiffiffiffiffiffi
a�1

p
and B1 ¼ b1=

ffiffiffiffiffiffiffiffiffi
b�1

p
are the first canonical

functions. The contingency coefficient is /2
t ¼

Ð b
a

Ð d
c k2a21dFb

2
1dG ¼ k2ða�1Þðb�1Þ: w
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2.3. Conjugate family

The family (1) with marginals F, G, generated by U;W; suggests the following conjugate
family

H	 ¼ UWþ k F�Uð Þ G�Wð Þ
with marginals U;W; here generated by F, G. Clearly H	 2 FðU;WÞ for suitable values
of k; and H�FG ¼ H	�UW; so H and its conjugate H	 should have the same depend-
ence structure. Even though “conjugate” is used in Bayesian statistics, here this adjective
means relationship between two distributions.

2.4. Dependence measures

In this section we find the covariance and two non-parametric measures of association.
If �ðxÞ; nðyÞ are two real functions of bounded variation on ½a; b�; ½c; d�; Cuadras

(2002) proved that

cov � Xð Þ; n Yð Þ� �
¼
ðb
a

ðd
c

H x; yð Þ�F xð ÞG yð Þ
� �

d� xð Þdn yð Þ (7)

where cov means covariance. This formula has been generalized by Diaz and
Cuadras (2017).

Lemma 3. Suppose that limx!b x½FðxÞ�UðxÞ� ¼ 0: Thenðb
a
F � Uð Þdx ¼ lU�lF

where lF; lU are the expectation values.

Proof. Integrating Ð b
a F � Uð Þdx ¼ xF xð Þ�xU xð Þ½ �ba�

Ð b
a xdF þ Ð ba xdU¼ lU�lF

If we consider the extended real line, this difference can also be proved from

lU�lF ¼
ð1
0

1� Uð Þdx�
ð0
�1

Udx�
ð1
0

1� Fð Þdx þ
ð0
�1

Fdx w

If ðX;YÞ
H and ðX	;Y	Þ
H	; where H and H	 are conjugate, both cdf’s have the same
covariance:

cov X;Yð Þ ¼ k
ðb
a
F � Uð Þdx

ðd
c

G�Wð Þdy
¼ lU�lFð Þ lW�lGð Þ
¼ cov X	;Y	ð Þ

Spearman’s rho coefficient is given by qS ¼corðFðXÞ;GðYÞÞ ¼ 12 covðFðXÞ; GðYÞÞ:
To find this coefficient, write FUðbÞ ¼

Ð b
a UdF; UFðbÞ ¼

Ð b
a FdU ¼ 1�FUðbÞ and similarly

GWðdÞ;WGðdÞ: We have
Ð b
a ðF � UÞdF ¼ 1=2� Ð ba UdF ¼ Ð ba ðU� FÞdU:
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Proposition 2. Spearman’s rho is given by

qS ¼ 12k
1
2
�FU bð Þ


 �
1
2
�GW dð Þ


 �
¼ 12k UF bð Þ� 1

2


 �
WG dð Þ� 1

2


 �
Hence H and its conjugate H	 have the same rho.

Proof. As var½FðXÞ� ¼var½GðYÞ� ¼ 1=12; Spearman’s rho is given by

12k
ðb
a
F � Uð ÞdF

ðd
c

G�Wð ÞdG ¼ 12k
ðb
a
U� Fð ÞdU

ðd
c

W� Gð ÞdW w

Kendall’s tau is a measure of association given by s ¼ 4
Ð b
a

Ð d
c HdH�1: To find this coef-

ficient, from (1) we have dH ¼ dFdGþ kðdFdGþ dUdW�dUdG�dFdWÞ:
Proposition 3. Kendall’s tau is given by

s ¼ 8k
1
2
� FU bð Þ


 �
1
2
� GW dð Þ


 �
¼ 8k UF bð Þ � 1

2


 �
WG dð Þ � 1

2


 �
Hence H and its conjugate H	 have the same tau.

Proof. After a tedious algebra, we findðb
a

ðd
c
HdH ¼

ðb
a

ðd
c

FGþ k F�Uð Þ G�Wð Þ� �
dH

¼ 1=4þ 2k FU bð Þ � 1
2


 �
GW dð Þ � 1

2


 �
þ k2 � 0

Thus

s ¼ 8k
1
2
� FU bð Þ


 �
1
2
� GW dð Þ


 �
For the conjugate distribution H	 we similarly find

s	 ¼ 8k UF bð Þ � 1
2


 �
WG dð Þ � 1

2


 �
As FUðbÞ ¼ 1�UFðbÞ;GWðdÞ ¼ 1�WGðdÞ; clearly s ¼ s	: w

Since 2qs ¼ 3s; both coefficients satisfy the well-known inequality �1 � 3s�2qs � 1:

3. Rank of a bivariate distribution

In this section we apply the concept of dimensionality reduction, which is quite useful
in multivariate data analysis. This methodology consists in representing in low dimen-
sion (e.g., two or three), objects or individuals described by coordinates in high dimen-
sional spaces. Principal component analysis is a well-known method.
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3.1. Definition and geometrical meaning

The sequence q1 � q2 � � � � of canonical correlations, see (5), captures the full depend-
ence between X and Y and the Pearson coefficient /2

t is an overall measure of depend-

ence, sometimes presented as the ratio /2
t =ð1þ /2

t Þ:
Definition 2. The rank of H 2 FðF;GÞ such that the diagonal expansion dH ¼
dFdGþPn�1 qnAndFBndG exists, is the cardinal of the set fqng:
The rank of a distribution can be understood as a “geometric dimension” in regard with

the so-called chi-square distance. Borrowing geometric concepts commonly used in multivari-
ate analysis, this means that the observations can be embedded in a Euclidean (or Hilbert)
space. Then, as usual in multivariate analysis, we are interested in the first principal dimen-
sions. In other words, we seek the first canonical correlations, see below. Some examples are:

1. The independence distribution F�G has rank 0.
2. The FGM distribution has rank 1.
3. The distribution

H ¼ FGþ k1F 1�Fð ÞG 1�Gð Þ þ k2 2F�1ð ÞF 1�Fð Þ 2G�1ð ÞG 1�Gð Þ (8)

has rank 2.
4. The Ali-Mikhail-Haq (AMH) distribution defined by

H ¼ FG= 1� h 1� Fð Þ 1� Gð Þ� �
; �1 � h � 1

has infinite countable rank (see Ali, Mikhail, and Haq 1978).
5. The Cuadras-Aug�e distribution has uncountable rank. This property has been

discussed above. See Cuadras (2015), Cuadras and Aug�e (1981) and Section 2.2.

Definition 3. The chi-square distance between two observations x; x0 of X is

d2 x; x0ð Þ ¼
ðd
c

dH x; yð Þ
dF xð ÞdG yð Þ �

dH x0; y
� �

dF x0ð ÞdG yð Þ

" #2
dG yð Þ

Proposition 4. Suppose that the diagonal expansion dH ¼ dFdGþPn�1 qn AnBndFdG
exists. Then

d2 x; x0ð Þ ¼
X
n�1

q2n An xð Þ�An x0ð Þ� �2
where ðq1A1ðxÞ; q2A2ðxÞ; :::Þ are the principal coordinates of x w.r.t. the chi-square dis-
tance. Therefore, the embedding x ! ðq1A1ðxÞ;q2A2ðxÞ; :::Þ 2 L; shows that the rank is
the dimension of L; where L is a Euclidean (or separable Hilbert) space.

Proof. We can write the chi-square distance as

d2 x; x0ð Þ ¼ EY
X
n�1

qnAn xð ÞBn Yð Þ�qnAn x0ð ÞBn Yð Þ� �2� �
and take step-wise expectation such that EYBiðYÞBjðYÞ ¼ dij (Kronecker’s delta). w
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This result proves that the rank of a bivariate distribution makes geometric sense.
As a generalization of the variance, the geometric variability (also called inertia and

diversity coefficient) of X w.r.t. the chi-square distance, is the average:

Vg ¼ 1
2

ðb
a

ðb
a
d2 x; x0ð ÞdF xð ÞdF x0ð Þ

Proposition 5. If the Pearson contingency coefficient /2
t is finite then

Vg ¼ /2
t ¼

X
n�1

q2n

Proof. Suppose X, X0 i.i.d. with cdf F. Then EXX0 fq2n½AnðXÞ�AnðX0Þ�2g ¼ 2q2n and Vg ¼P
n�1 q

2
n holds. On the other hand, from (4) and assuming X1 
F; independent of

Y1
G; then /2
t ¼ EX1Y1f

P
n�1 qnAnðX1ÞBnðY1Þg2 ¼ Vg : w

3.2. Rank reduction

From the above diagonal expansion we can consider the following family

dHk ¼ dFdGþ
X
n�1

knAndFBndG; jknj � qn (9)

By integration we can express

Hk x; yð Þ ¼ F xð ÞG yð Þ þ
X
n�1

knUn xð ÞWn yð Þ (10)

where UnðxÞ ¼
Ð x
a AnðtÞdFðtÞ and similarly WnðyÞ: In general

P
n�1 knUnWn is not an

eigenexpansion of H – FG (see Cuadras and Cuadras 2008). This family, as well as the
function obtained after reducing the rank, is in general a signed measure (it may take
negative values in a region of the support). As it is justified below, this reduction can
provide a proper cdf.
Note that FGþ knUnWn 2 FðF;GÞ for any kn such that

an ¼ inf
x;y

f xð Þg yð Þ
U0

n xð ÞW0
n yð Þ

( )
� kn � sup

x;y

f xð Þg yð Þ
U0

n xð ÞW0
n yð Þ

( )
¼ bn

We have assumed that the pdf’s exist. The following condition is necessary in order
to restrict the parameters of a cdf.

Theorem 2. Let us consider the expansions (9) and (10). Write 0 ¼ ð0; 0; :::Þ; k ¼
ðk1; k2; :::Þ; k0 ¼ ðk01; k02; :::Þ; suppose all jk0nj � jknj and define ln ¼ an if kn< 0; ln ¼ bn
if kn > 0: Also define PðtÞ ¼ infx;y½f ðxÞgðyÞ þ

P
n�1 tnU

0
nðxÞW0

nðyÞ� and
Hk0 ¼ FGþ

X
n�1

k0nUnWn

Then Hk0 2 FðF;GÞ if a) a ¼Pn�1ðk0n=lnÞ satisfies 0 � a � 1, or b) k0 is a point of a

curve inside F ¼ ftj PðtÞ � 0g joining 0 and k: In particular, Hk0 2 FðF;GÞ if k0n ¼ ckn
for some constant 0 � c � 1:
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Proof. Clearly FGþ lnUnWn 2 FðF;GÞ and 0< k0n=ln< 1 for all n. Then we have that

Hk0 ¼ 1�að ÞFGþ
X
n�1

k0n=ln
� �

FGþ lnUnWnð Þ

with jk0nj � jlnj is a mixture of the cdf’s FG, FGþ l1U1W1; FGþ l2U2W2; etc. Hence
Hk0 is also a cdf belonging to FðF;GÞ:
On the other hand, if t 2 F then FGþPn�1 tnUnWn belongs to FðF;GÞ: Of course

0 2 F and k 2 F: As FðF;GÞ is closed under mixtures, F is a convex set. Then any
regular curve joining 0 and k inside F provides cdf’s of FðF;GÞ: In particular a straight
line. w

Example 2. For the copula

C ¼ uvþ k1u 1�uð Þv 1�vð Þ þ k2 2u3�3u2 þ uð Þ 2v3�3v2 þ vð Þ
we have a1 ¼ �1; b1 ¼ 1; a2 ¼ �1; b2 ¼ 2: Then, if k1; k2 are positive, we get a copula
for k01; k

0
2 positive such that k01 þ k02=2 � 1; provided that k1; k2 give a proper copula C

and k01 � k1; k
0
2 � k2:

As a consequence of Theorem 2, the cdf H with finite rank N, or infinite countable
rank, can be approximated by HD with smaller rank D (i.e., D<N or D<1), defined
by

dHD ¼ dFdGþ
XD
n¼1

qnAnBndFdG

In general, HD is a signed measure. HD is a proper cdf if each dHðnÞ ¼ dFdGþ
qnAnBndFdG is the differential of a cdf HðnÞ: A simple example is the FGM approxima-
tion of rank D¼ 1 to the cdf (8) whose rank is N ¼ 2:

If the densities h, f, g exist, we have h ¼ fg þPn�1 qnfAngBn; which can be approxi-

mated by hD ¼ fg þPD
n¼1 qnfAngBn

The proportion of geometric variability of H accounted for by HD is:

PD ¼
PD

n¼1 q
2
n

/2
t

(11)

This proportion is employed in some methods of multivariate data analysis. For
instance, it is used in correspondence analysis to measure the quality of the graphical
representation of a contingency table w.r.t. the chi-square distance, see Greenacre

Table 1. Percentage of variability of the distribution in terms of the first and second canonical cor-
relation for four families of copulas. This percentage is 100 times the quotient between the sum of
the first squared canonical correlations and the Pearson contingency coefficient.

h ¼ 1 h ¼ 0:5

Pk ¼ ðPk
1 q

2
i Þ=/2

t 100P1 100P2 100P1 100P2
Ali�Mikhail�Haq 61.2 89.6 98.9 99.9
Gumbel�Barnett 86.8 98.3 92.0 99.3
Celebioglu�Cuadras 99.3 99.9 99.8 99.9
New family 99.8 99.9 99.9 100
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(1984), Cuadras and Cuadras (2006). As it has been shown above, see Section 3.1, this
distance can be extended to r.v.’s.
In general, the rank of a cdf is greater than 2. We are interested in distributions of

rank 2 as possible approximations to a distribution.
For example, for the following families of copulas (see Ali, Mikhail, and Haq 1978;

Celebioglu 1997; Cuadras 2009, 2017; Nelsen 2006):

Ali�Mikhail�Haq : uv= 1�h 1�uð Þ 1�vð Þ½ �; �1 � h � 1
Gumbel�Barnett : uv exp �h ln u ln vð Þ; 0 � h � 1
Celebioglu�Cuadras : uv exp h 1�uð Þ 1�vð Þ½ �; �1 � h � 1
New family : uv exp sin h 1�uð Þ 1�vð Þ½ �� �

; �1 � h � 1

it turns out that the FGM family is the first order approximation in a Taylor’s expan-
sion. For example,

uv exp �h ln u ln vð Þ ’ uv 1�h ln u ln vð Þ þ � � � expanding e�xð Þ
’ uv 1�h 1�uð Þ 1�vð Þ½ � þ � � � expanding ln xð Þ

and Gumbel-Barnett (parameter h) can be approximated by FGM (parameter �h).
However, the full rank of these four copulas is countable (i.e., K0), whereas the

approximation of rank 2 gives an average proportion P2 greater than 0:94; see Table 1.
This approximation could be a signed measure rather than a proper cdf. However, also
in correspondence analysis, the two-dimensional representation of a contingency table
N; could exhibit a table N0 containing negative frequencies.
The two extensions of the FGM family next proposed, have rank 2, i.e., are two-

dimensional in the above geometrical sense.
For a better understanding of some aspects of canonical correlation analysis, Hilbert

space, Hilbert-Schmidt kernel, singular value decomposition, Mercer’s theorem, signed
measure and other concepts and results on functional analysis, used here and in the
next section, see Hannan (1961), Ash (1965, 1972), Eagleson (1979), Buja (1990) and
Letac (2008).

4. First extension

A singular value decomposition (SVD) of a kernel Kðx; yÞ; with x 2 ½a; b�; y 2 ½c; d� is
K x; yð Þ ¼

X
i�1

kini xð Þ�ni yð Þ

where k1 � k2 � � � � is the decreasing sequence of singular values and fnig; f�nig are the
corresponding unitary and orthogonal functions. In particular, if K is symmetric, then

fnig ¼ f�nig and the above SVD is an eigendecomposition (Mercer’s theorem).
The FGM family Hh ¼ FG½1þ hð1�FÞð1�GÞ� can be interpreted as the singular value

decomposition K ¼ Hh�FG ¼ hFð1�FÞGð1�GÞ: Clearly, if F¼G and H is symmetric,
we have an eigendecomposition, where Fð1�FÞ ¼ Gð1�GÞ is the only eigenfunction.
A generalization of the FGM family, obtained as a SVD, is H1 ¼ FGþ k1n1�n1: This

distribution appeared in Farlie (1960) and has been rediscovered by Rodr�ıguez-Lallena
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and �Ubeda-Flores (2004). The family (1) is a particular case: H�FG ¼ kðF�UÞðG�WÞ:
In general H1 gives rise to the following extension of rank 2.

Theorem 3. Let K1 ¼ k1n1�n1 a SVD of K1 ¼ H1�FG; where H1 2 FðF;GÞ: Then
n1ðaÞ ¼ n1ðbÞ ¼ �n1ðcÞ ¼ �n1ðdÞ ¼ 0; and

H2 ¼ FGþ k1n1�n1 þ k2n2�n2

is also a cdf of FðF;GÞ for suitable values of k1; k2; where n2 ¼ n1n
0
1;
�n2 ¼ �n1�n

0
1. If more-

over n1; �n1 are increasing and n1 < F; �n1<G; then H1 belongs to the family (1), and H2

is an extension of this family.

Proof. �n1ðyÞ 6¼ 0 for some y 2 ðc; dÞ: Then K1ða; yÞ ¼ 0 ¼ k1n1ðaÞ�n1ðyÞ; hence n1ðaÞ ¼
0; and similarly n1ðbÞ ¼ �n1ðcÞ ¼ �n1ðdÞ ¼ 0: Integration by parts givesðb

a
n21 xð Þn01 xð Þdx ¼n31 xð Þjba�2

ðb
a
n21 xð Þn01 xð Þdx

¼ 0�2
ðb
a
n21 xð Þn01 xð Þdx

Thus
Ð b
a n

2
1ðxÞn01ðxÞdx ¼ 0 and H2�FG ¼ k1n1�n1 þ k2n2�n2 is a SVD of K2 ¼ H2�FG:

As also n2ðaÞ ¼ n2ðbÞ ¼ �n2ðcÞ ¼ �n2ðdÞ ¼ 0; we have H2ða; yÞ ¼ H2ðx; dÞ ¼ 0; and
H2ðb; dÞ ¼ 1: Thus H2 may satisfy the necessary conditions for a cdf. Also, if n1; �n1 are
increasing and n1 < F; �n1 <G; then F�n1; G��n1 are cdf’s and H1 ¼ FGþ
k1½F�ðF�n1Þ�½G�ðG��n1Þ� is a member of the family (1). w

This construction applied to the family (1) gives

H2 ¼ FGþ k1 F�Uð Þ G�Wð Þ þ k2 F�Uð Þ f�uð Þ G�Wð Þ g�wð Þ (12)

However, in general, this family is not diagonal, in the sense that ðF�UÞ and
ðF�UÞðf�uÞ are not canonical functions, as the correlation coefficient between both
functions could not be zero.

Figure 1. Region of the correlations (parameters) for which the density is positive, for the trigonomet-
ric cdf (left), see (21), and the polynomial cdf of degree two (right), see (17). The line indicates the
possible correlations under the Gumbel-Barnett copula.

5650 C. M. CUADRAS ET AL.



Example 3. Consider n1ðuÞ ¼ sin ðpuÞ; �n1ðvÞ ¼ sin ðpvÞ: Then n2ðuÞ ¼ n1ðuÞn01ðuÞ ¼
p sin ðpuÞ cos ðpuÞ: The cdf is the copula

C ¼ uvþ k1 sin puð Þ sin pvð Þ þ k2 sin 2puð Þ sin 2pvð Þ
The density after reparametrizing, is

c ¼ 1þ k cos puð Þ cos pvð Þ þ l cos 2puð Þ cos 2pvð Þ
The range of the parameters ðk; lÞ could not be expressed in closed form, see Figure

1 (left). If we fix the second parameter to l0; then the first parameter k; depending on
l0; should satisfy

k cos puð Þ cos pvð Þ � �1�l0 cos 2puð Þ cos 2pvð Þ
For instance, if l0 ¼ 1=2 then � ffiffiffi

2
p � k � ffiffiffi

2
p

:

5. Second extension

Let us introduce some notations concerning the cdf’s F, G, U and W: We define

FU xð Þ ¼
ðx
a
U tð ÞdF tð Þ; FU2 xð Þ ¼

ðx
a
U2 tð ÞdF tð Þ; UF2 xð Þ ¼

ðx
a
F2 tð ÞdU tð Þ

and similarly FFU; FF2U; GW; GW2 ;WG2 : Integration by parts shows that

F xð ÞU xð Þ ¼ FU xð Þ þ UF xð Þ;
ðb
a
F tð ÞU tð ÞdF tð Þ ¼ 1

2
� 1
2
UF2 bð Þ

In particular FUðbÞ þ UFðbÞ ¼ 1:

We also write c ¼ Ð ba ðF � UÞdF ¼ 1=2�FUðbÞ; d ¼ Ð dc ðG�WÞdG ¼ 1=2�GWðdÞ and

recall that a ¼ Ð ba ðdU=dFÞ2dF; b ¼ Ð dc ðdW=dGÞ2dG:

5.1. Definition and properties

Another extension of (1) is the bivariate family

H ¼ FGþ k1 F�Uð Þ G�Wð Þ

þ k2
1
2
F2 þ FU bð Þ� 1

2

� 	
F�FU


 �
1
2
G2 þ GW dð Þ� 1

2

� 	
G�GW


 �
(13)

where F, G, FU; GW stand for FðxÞ;GðyÞ; FUðxÞ; GWðyÞ ¼
Ð y
c WðtÞdGðtÞ: Then FUðbÞ and

GWðbÞ are constant values.
The density (w.r.t. the Lebesgue measure) is

h ¼ fg þ k1f 1� uf�1
� �

g 1�wg�1
� �þ k2f F�U�cð Þg G�W�dð Þ (14)

This family reduces to the previous FGM generalizations (1) and (12) for k2 ¼ 0:

Theorem 4. The family (14) is diagonal of rank 2. The canonical correlations are

q1 ¼ k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�1ð Þ b�1ð Þ

q
; q2 ¼ k2

ffiffiffiffi
st

p
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where a; b are defined in Proposition 1, s ¼ FU2ðbÞ þ UF2ðbÞ þ FUðbÞ�FUðbÞ2� 11
12 ; and

similarly t.

Proof. Write (13) as

dH ¼ dFdGþ k1a1dFb1dGþ k2a2dFb2dG

where a1 ¼ 1�dU=dF; b1 ¼ 1�dW=dG; a2 ¼ ðF�U�cÞ and b2 ¼ ðG�W�dÞ: It is read-
ily proved that Eða1Þ ¼ Eða2Þ ¼ 0 and Eðb1Þ ¼ Eðb2Þ ¼ 0: Moreoverðb

a
1� dU=dFð Þ F � U� cð ÞdF ¼ 0

hence Eða1a2Þ ¼
Ð b
a a1a2dF ¼ 0 and similarly Eðb1b2Þ ¼ 0: Alsoðb

a
F�U�cð Þ2dF ¼ 1=3þ FU2 bð Þ þ c2� 1�UF2 bð Þ� �

�cþ 2cFU bð Þðd
c

G�W�dð Þ2dG ¼ 1=3þ GW2 bð Þ þ d2� 1�FU2 bð Þ� ��dþ 2dGW bð Þ

The other covariances are:

cov a1; b1ð Þ ¼
ðb
a

ðd
c
a1b1 dH�dFdGð Þ

¼ k1

ðb
a
a21dF

ðd
c
b21dGþ k2

ðb
a
a1a2dF

ðd
c
b1b2dG

¼ k1 a�1ð Þ b�1ð Þ;

cov a1; b2ð Þ ¼ k1

ðb
a
a21dF

ðd
c
b1b2dGþ k2

ðb
a
a1a2dF

ðd
c
b22dG

¼ 0

Similarly covða2; b1Þ ¼ 0: Moreover

cov a2; b2ð Þ ¼ 0þ k2

ðb
a
a22dF

ðd
c
b22dG

¼ k2st

The variances are Eða21Þ ¼ a�1;Eða22Þ ¼ FU2ðbÞ þ UF2ðbÞ þ FUðbÞ�FUðbÞ2�11=12;
etc. w

5.2. Conjugate family and measures of association

Let us express the cdf (13) as

dH ¼ dFdGþ k1 1�dU=dFð ÞdF 1�dW=dGð ÞdG

þ k2 F�Uþ FU bð Þ� 1
2


 �
dF G�Wþ GW dð Þ� 1

2


 �
dG

5652 C. M. CUADRAS ET AL.



The conjugate family is

dH	 ¼ dUdWþ k1 1�dF=dUð ÞdU 1�dW=dGð ÞdW

þ k2 U�F þ UF bð Þ� 1
2


 �
dU W�GþWG dð Þ� 1

2


 �
dW

From FUðbÞ� 1
2 ¼ �UFðbÞ þ 1

2 ; we have

dH�dFdG ¼ dH	�dUdW

Hence the dependence structure of H and H	 is quite similar. The covariance is the
same and Spearman’s rho for H is

qS Hð Þ ¼ 12k1
1
2
�FU bð � 1

2
�GW dð Þ


 �
þ k2 � 1

12
þ FU bð Þ�I


 �
� 1
12

þ UF bð Þ�J


 �

where I ¼ Ð ba FUdF and J ¼ Ð ba UFdU: We similarly obtain qSðH	Þ:
From FUðbÞ þ UFðbÞ ¼ 1 and

I ¼ FU bð Þ�
ðb
a
FUdF; J ¼ UF bð Þ�

ðb
a
FUdU

qSðHÞ and qSðH	Þ have similar expressions, which may coincide in some particu-
lar cases.
Kendall’s tau is given by

s Hð Þ ¼ 8k1
1
2
� FU bð Þ


 �
1
2
� GW dð Þ


 �
þ k2 � 13

24
þ 1
3
FU bð Þ þ 1

2
FF2U bð Þ


 �
� 13
24

þ 1
3
GW dð Þ þ 1

2
GG2W dð Þ


 �
þ k2

1
4
� 1
2
FU bð Þ þ FFU bð Þ


 �
1
4
� 1
2
GW dð Þ þ GGW dð Þ


 �
þ k1k2 � 5

6
� 1
2
FU bð Þ � FFU bð Þ


 �
� 5
6
� 1
2
GW dð Þ � GGW dð Þ


 �
þ k1k2

1
12

þ FU2 bð Þ � 2FFU bð Þ � FU bð Þ2 þ FU bð Þ

 �

� 1
12

þ UF2 dð Þ � 2UUF dð Þ � UF dð Þ2 þ UF dð Þ

 �

6. Associated copulas

Here we find the copulas corresponding to the above families.

Lemma 4. If F and U are two cdf’s with support in ½a; b�; then Q ¼ UðF�1Þ is a cdf with
support in ½0; 1�:
Proof. Q is not decreasing and Qð0Þ ¼ U½F�1ð0Þ� ¼ UðaÞ ¼ 0; Qð1Þ ¼ U½F�1ð1Þ� ¼
UðbÞ ¼ 1: w
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The copula corresponding to (12) is

C ¼ uvþ k1 u�Qð Þ v�Rð Þ þ k2 u�Qð Þ 1�qð Þ v�Rð Þ 1�rð Þ (15)

where Q ¼ UðF�1Þ; q ¼ Q0;R ¼ WðG�1Þ; r ¼ R0: Both Q, R are cdf’s with support
in ½0; 1�:
Since FU ¼ Ð ba UdF ¼ Ð 10 QðtÞdt ¼ 1�lQ; where lQ is the mean of the r.v. with cdf Q,

and similarly lR; the copula corresponding to (13) is

C ¼ uvþ k1 u�Qð Þ v�Rð Þ

þ k2
1
2
u2 þ 1

2
�lQ

� 	
u�
ðu
0
Q tð Þdt

 #
1
2
v2 þ 1

2
�lR

� 	
v�
ðv
0
R tð Þdt

 #""
(16)

Proposition 6. For U ¼ F2;W ¼ G2; the families (12) and (13) have the same copula

C ¼ uvþ k1u 1�uð Þv 1�vð Þ þ �k2 2u3�3u2 þ uð Þ 2v3�3v2 þ vð Þ (17)

where �k2 ¼ k2=36:

Proof. Q ¼ u2; 1�q ¼ 1�2u; lQ ¼ 1=3 and
Ð u
0 QðtÞdt ¼ u3=3: Then (15) and (16)

reduce to (17). w

Another interesting particular case is U ¼ Fk; W ¼ Gk: The copula corresponding to (13) is

C ¼ uvþ k1 u�ukð Þ v�vkð Þ

þ k2
1
2
u2 þ k� 1ð Þ= 2 kþ 1ð Þð Þu� ukþ1= kþ 1ð Þ


 �
� similar term in vð Þ (18)

and Spearman’s correlation is

qS ¼ 3k1
k�1
kþ 1

� 	2

þ k2
12

6k� kþ 1ð Þ kþ 2ð Þ
kþ 1ð Þ kþ 2ð Þ

" #2
It is difficult to find analytically the region of the parameters for which (18) is a cop-

ula, see Figure 1 (right). But if we fix the first parameter, a closed form is possible.

Example 4. Consider the family (17) and fix k1 ¼ k0: Then �k2 should satisfy

�k2 6u2�6uþ 1ð Þ 6v2�6vþ 1ð Þ � �1�k0 2u�1ð Þ 2v�1ð Þ
Thus, if k1 ¼ 1=2 then �1=2 � �k2 � 2:

7. Relating two cdf’s

Let Ha;Hb 2 FðF;GÞ two cdf’s with the same marginals. In this section we present
some ways of measuring the proximity between Ha and Hb:

Definition 4. The chi-square distance between Ha and Hb is

d2 Ha;Hbð Þ ¼
ðb
a

ðd
c

dHa�dHb

dFdG

� 	2

dFdG

5654 C. M. CUADRAS ET AL.



Definition 5. Pearson’s affinity between Ha and Hb is

/ Ha;Hbð Þ ¼
ðb
a

ðd
c

dHa

dFdG
� dHb

dFdG

� 	
dFdG

It is clear that d2ðH; FGÞ is the Pearson contingency coefficient /2
t ; see (4), It can be

proved that, among all distributions H with fixed Spearman’s correlation dq0e< 1=3;
the closest cdf H to the independence FG, in the sense that d2ðH; FGÞ is minimized, is
the FGM cdf (Nelsen 1994).

The relation between distance and affinity is

d2 Ha;Hbð Þ ¼ / Ha;Hað Þ þ / Hb;Hbð Þ�2/ Ha;Hbð Þ
Since /ðHa;HbÞ is an inner product, Cauchy-Schwarz inequality /ðHa;HbÞ2 �

/ðHa;HaÞ/ðHb;HbÞ holds, which suggests the association coefficient

A Ha;Hbð Þ ¼ / Ha;Hbð Þ2
/ Ha;Hað Þ/ Hb;Hbð Þ

We have 0 � AðHa;HbÞ � 1; and AðHa;HbÞ ¼ 1 if Ha ¼ Hb:

Suppose that the following SVD exists:

dHa

dFdG
� dHb

dFdG
¼
X
n�1

knanbn

Then dHa�dHb ¼
P

n�1 knanbndFdG: It is next proved that
Ð b
a aiajdF ¼ Ð dc bibjdG ¼

dij (Kronecker’s delta).

Theorem 5. If (X, Y) 
Ha and ðX	;Y	Þ
Hb then E½anðXÞ� ¼ E½bnðYÞ� ¼ 0 and

cov am Xð Þ; bn Yð Þ� �
�cov am X	ð Þ; bn Y	ð Þ� �

¼ kn if m ¼ n
0 if m 6¼ n

�
Proof. E½anðXÞ��E½anðX	Þ� ¼ Ð ba Ð dc andHa�

Ð b
a

Ð d
c andHb ¼

Ð b
a andF�

Ð b
a andF¼ 0: Thereforeðb

a

ðd
c
an dHa�dHbð Þ¼

X
k�1

kk

ðb
a
akandF

ðd
c
bndG

¼ kn

ðd
c
bndG

hence
Ð d
c bndG¼ E½bnðYÞ� ¼ 0: Similarly E½anðXÞ� ¼ 0: The difference of covariances isðb

a

ðd
c
ambn dHa�dHbð Þ¼

X
k�1

kk

ðb
a
amakdF

ðd
c
bnbkdG

where fakg;fbkg are orthogonal on F, G, respectively. w

8. Reducing a bivariate cdf to a simpler one

Let Ha 2 FðF;GÞ and suppose that the diagonal expansion dHa ¼ dFdGþP
n�1 qnandFbndG exists, where an, bn are unitary canonical functions. Let Ht 2 FðF;GÞ
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the “true” cdf of two observable r.v.’s ðX;YÞ: Given a positive integer k, we are inter-
ested in approximating Ht by means of a finite linear combination of canonical func-
tions obtained from Ha:

dHt ’ dFdGþ
Xk
i¼1

kiaidFbidG

In a more precise way, we seek the approximation

dHt

dFdG
’ 1þ

Xk
i¼1

kiaibi

where k1; :::; kk are real coefficients such thatðb
a

ðd
c

dHt�dFdG
dFdG

�
Xk
i¼1

kiaibi

 !2

dFdG (19)

is minimized. If the densities ht; f ; g exist, then ht is approximated by bht ¼
fgð1þPk

i¼1 kiaibiÞ:
Theorem 6. Suppose (X, Y) 
Ht: The coefficients minimizing (19) are ki ¼ ri; where

ri ¼ cor ai Xð Þ; bi Yð Þ� �
; i ¼ 1; :::; k

Then
Pk

i¼1 r
2
i � /2

t ; where /2
t is the Pearson contingency coefficient of Ht, and the

minimum is

/2
t�
Xk
i¼1

r2i (20)

Proof. Write z ¼ ðdHt�dFdGÞ=ðdFdGÞ: Since
Ð b
a

Ð d
c aibiðdHt�dFdGÞ ¼ ri is the correl-

ation between ai; bi; we haveðb
a

ðd
c

z�
Xk
i¼1

kiaibi

 !2

dFdG ¼ /2
t þ

ðb
a

ðd
c

Xk
i¼1

k2i a
2
i b

2
i dFdG

�2
ðb
a

ðd
c

Xk
i¼1

kiaibiÞ dHt�dFdGð Þ

þ
Xk
i6¼j¼1

kikj

ðb
a
aidF

ðd
c
bjdG

¼ /2
t þ

Xk
i¼1

k2i�2
Xk
i¼1

kiri

Taking the partial derivative w.r.t. ki; on the right hand side of this equation, and
equaling to zero, we obtain ki ¼ ri; i ¼ 1; :::; k and (20) is the minimum. The maximal

property of the canonical correlations shows that
Pk

i¼1 r
2
i �

P
i�1 q

2
n: w
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Note that, using the diagonal expansion and canonical correlations of Ht, we always
can find the above approximation. This result is useful if we know Ha. Also note that ri
is the correlation between the canonical variables ai, bi of Ha; but this correlation is
computed w.r.t. the “true” cdf Ht:

We can choose k such that
Pk

i¼1 r
2
i is close to /2

t : In the examples below, k¼ 2 is a
good choice.
This approximation of a cdf for a simpler one is as follows:

1. Ht 2 FðF;GÞ is the true or real cdf but unknown.
2. Take suitable unitary functions ai; bi; on F, G, and parameters qi; i ¼ 1; :::; k;

such that dHa ¼ dFdGþP qiaibidFdG gives Ha 2 FðF;GÞ:
3. Compute the correlation coefficients ri ¼ corðai; biÞ w.r.t. Ht:

4. Construct the cdf bHt such that dbHt ¼ dFdGþPk
i¼1 riaibidFdG:

The canonical correlations of Ht are not necessary and the ri should be obtained by
statistical estimation. In order to choose canonical functions, we may consider the uni-
variate expansions of the marginal variables and take the first principal dimensions. See
Cuadras and Fortiana (1995), Cuadras and Lahlou (2000), Cuadras (2014).

9. Examples

9.1. Gumbel-Barnett

Suppose that the true cdf of (U, V) is the Gumbel-Barnett family of copulas (see
Hutchinson and Lai 1991; Nelsen 2006):

Ct ¼ uv exp �h ln u ln vð Þ; 0 � h � 1

The marginals are (0, 1) uniform.
A system of orthogonal principal components of U is f1� cos ðnpUÞÞg (Cuadras and

Fortiana 1995). Centering and normalizing the first two components, we get a1 ¼

Table 3. Estimated correlations with the polynomial model, see (17), and fit for the AMH copula. g
measures the maximum difference between the true and the fitted copula.
h r1 r2 g

1 0.4784 0.2337 0.0261
0.5 0.1924 0.0223 0.0032
–0.5 –0.1489 0.0080 0.0017
–1 –0.2711 0.0216 0.0055

Table 2. Estimated correlations and fit for the Gumbel-Barnett copula using trigonometic and poly-
nomial functions, see (21) and (17). g measures the maximum difference between the true and the
fitted copula.

Trigonometric Polynomial

h r1 r2 g r1 r2 g

0:25 –0.1589 0.0025 0.0082 –0.1676 0.0057 0.0068
0.5 –0.2934 0.0387 0.0109 –0.3050 0.0520 0.0087
0.75 –0.4091 0.0882 0.0107 –0.4222 0.1106 0.0081
1 –0.5100 0.1411 0.0095 –0.5238 0.1698 0.0060
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ffiffiffi
2

p
cos ðpUÞ; a2 ¼

ffiffiffi
2

p
cos ð2pUÞ; which play the role of canonical functions. This sug-

gests the copula with density:

c ¼ 1þ q12 cos puð Þ cos pvð Þ þ q22 cos 2puð Þ cos 2pvð Þ
The canonical correlations, interpreted as parameters (possibly negative), should

belong to the region R ¼ fðq1; q2Þjc � 0g; see Figure 1. The copula (already introduced
in Example 3), is

Ca ¼ uvþ q1 2=p2
� �

sin puð Þ sin pvð Þ þ q2 1= 2p2ð Þ� �
sin 2puð Þ sin 2pvð Þ (21)

Next, using (7), we compute the covariance (or correlation) between the normalized

variables
ffiffiffi
2

p
cos ðpUÞ and ffiffiffi

2
p

cos ðpVÞ; i.e.

r1 ¼
ð1
0

ð1
0
Ct � uvð Þd

ffiffiffi
2

p
cos puð Þ

h i
d

ffiffiffi
2

p
cos pvð Þ

h i
¼ 2p2

ð1
0

ð1
0

uv exp �h ln u ln vð Þ�uv
� �

sin puð Þ sin pvð Þdudv

We similarly compute r2: Then Ct can be approximated by a particular version of
Ca : bCt ¼ uvþ r1 2=p2

� �
sin puð Þ sin pvð Þ þ r2 1= 2p2ð Þ� �

sin 2puð Þ sin 2pvð Þ
Of course, we may use other functions. Let us take the approximation of Gumbel-

Barnett to the generalized FGM copula (17). The density for this copula is

c ¼ 1þ k1
3

ffiffiffi
3

p
1�2uð Þ ffiffiffi

3
p

1�2vð Þ þ k2
5

ffiffiffi
5

p
6u2�6uþ 1ð Þ ffiffiffi

5
p

6v2�6vþ 1ð Þ

The canonical functions are a1 ¼
ffiffiffi
3

p ð1�2uÞ; a2 ¼
ffiffiffi
5

p ð6u2�6uþ 1Þ and similarly b1;
b2: To be sure that c is a density, the canonical correlations must belong to the region
R ¼ fðq1; q2Þjc � 0g; see Figure 1.

Figure 2. Region of the correlations (parameters) for which the density is positive, for the polynomial
cdf of degree two (left), see (17), and the polynomial cdf of degree three (right), see (18) with k¼ 3.
See also (22). The lines indicate the possible correlations under the AMH copula (left) and Clayton-
Oakes copula (right). For the AMH copula the line is inside the admissible region. For the Clayton-
Oakes copula the left and right parts of the line are outside the admissible region.

5658 C. M. CUADRAS ET AL.



We compute

r1 ¼
ð1
0

ð1
0
Ct � uvð Þd ffiffiffi

3
p

1�2uð Þ
� �

d
ffiffiffi
3

p
1�2vð Þ

� �
¼ 12

ð1
0

ð1
0

uv exp �h ln u ln vð Þ�uv
� �

dudv

and similarly r2: Then we consider the approximationbCt ¼ uvþ r13u 1�uð Þv 1�vð Þ þ r25 2u3�3u2 þ uð Þ 2v3�3v2 þ vð Þ
The results are reported in the Table 2, where the measure of fit is g ¼

maxjCtðu; vÞ�bCtðu; vÞj:
Figure 1 shows the set of points ðr1; r2Þ for which the density is positive for the two

approximations considered here. The percentage of the areas of the regions in ½�1; 1�2
are 21% (trigonometric) and 12% (polynomial). Thus, fitting the true cdf to a trigono-
metric one may be easier.
Nevertheless, with the trigonometric model and under Gumbel-Barnett cdf, we have

ðr1; r2Þ 2 A; where A is a curve inside the region of the admissible correlations for the

Table 4. Sample sizes of six simulations A, B, C, D, E, F, estimation of the correlations and fit for the
Gaussian copula with parameter rho. The last line S reports the fit to a stock data set. g measures the
maximum difference between the true and the fitted copula. However g can not be computed for the
simulations E, F, because the true copulas are out of the admissible region, see Figure 3 (right).

n q r1 r2 g

A 100 0.2 0.2710 0.0133 0.0229
B 80 0.3 0.3425 0.1936 0.0209
C 120 –0.2 –0.1337 0.0425 0.0092
D 200 –0.5 –0.5546 0.1518 0.0090
E 120 0.8 0.7756 0.5695 –
F 180 –0.9 –0.8950 0.7161 –
S 100 0.3684 0.3124 0.1047 0.0090

Figure 3. Scatterplot of the stocks data (left), region for the trigonometric copula (right), see (21),
and line giving the range of the correlations ðr1; r2Þ for the Gaussian copula and the correlations
obtained with six simulations (right). The points A, B, C, D indicate correct approximation. The points
E, F indicate that the correlations are out of the admissible region. The point S, clearly on the line,
corresponds to the stocks data set.
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two functions defining Ca: Thus, this approximation always works with the Gumbel-
Barnett cdf. Similarly, with the polynomial model, the fit also works for any value of
the parameter. See Figure 1.
The Pearson contingency coefficient for h¼ 1 is /2

t ¼ 0:3221: Then, combining (11)

and (20), we can see that the polynomial cdf bCt accounts for by the 94% of the true
cdf Ct ¼ uv exp ð� ln u ln vÞ:

9.2. Ali-Mikhail-Haq

Here we study the approximation to the AMH copula also using the generalized FGM
copula, but considering the exact computation of the estimated correlations. We should
calculate the correlations r1 ¼cor(U, V) and r2 ¼corðU2�U; V2�VÞ: From (7) we have:

r1 ¼ 12
ð1
0

ð1
0
C u; vð Þdudv�3

r2 ¼ 180
ð1
0

ð1
0
C u; vð Þ 4uv�2u�2vþ 1ð Þdudv�5

Taylor’s expansion of the AMH copula (the “true” copula Ct) and using the beta
function, we can obtain exact expressions for r1; r2; see Cuadras and Diaz (2012).
However, as finding r2 is quite difficult, we propose a numerical alternative computing

r2 ¼
ð1
0

ð1
0
Ct � uvð Þd ffiffiffi

5
p

6u2�6uþ 1ð Þ� �
d

ffiffiffi
5

p
6v2�6vþ 1ð Þ� �

¼ 180
ð1
0

ð1
0

uv= 1� h 1� uð Þ 1� vð Þ½ � � uv
� �

2u� 1ð Þ 2v� 1ð Þdudv

Thus, the copula AMH can be approximated by

C2 ¼ uvþ r13u 1�uð Þv 1�vð Þ þ r25 2u3�3u2 þ uð Þ 2v3�3v2 þ vð Þ

Again, a measure of fit is g ¼ maxjCtðu; vÞ�C2ðu; vÞj; where 0< u; v< 1: Table 3
reports a numerical illustration, showing that the fit is quite good.
For h ¼ 0:5; the Pearson contingency coefficient is /2

t ¼ 0:0386: Again, combining

(11) and (20), we can see that bCt accounts for by the 97% of the “true”
cdf Ct ¼ uv=½1�0:5ð1�uÞð1�vÞ�:
Figure 2 (left) shows the set of points ðr1; r2Þ for which the density is positive for the

polynomial approximation considered here. The percentage of the area of the region in

½�1; 1�2 is only 12%. However, if the underlying cdf is AMH, then ðr1; r2Þ 2 B; where B

Table 5. Estimated correlations and fit for a new copula (left), see (23), and an Archimedean copula
(right), see (24). g measures the maximum difference between the true and the fitted copula.
h r1 r2 g h �r1 �r2 g

0 0 0 0 1 0:3822 0:2738 0:0351
0:25 0:0792 0:0004 0:0043 1:5 0:7006 0:5673 0:0303
0:5 0:1616 0:0012 0:0096 2 0:8258 0:7200 0:0318
1 0:3369 0:0034 0:0226 4 0:9552 0:9168 0:0370
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is a curve inside this set of admissible correlations. Thus, this approximation will work
for any value of the parameter h; if the cdf is truly AMH.

9.3. Bivariate normal

The bivariate normal distribution is a probability model frequently used in the applica-
tions. If (X, Y) follows this distribution with correlation coefficient q; the uniform
transformation U ¼ FðXÞ; V ¼ GðYÞ provides (U, V) with cdf the Gaussian copula. We
simulate this copula for several values of q and the sample size n. Then we study the fit
to the trigonometric copula (21). Table 4 reports the correlations
r1 ¼corð cospU; cos pVÞ; r2 ¼corð cos 2pU; cos 2pVÞ; and the fit g measuring the max-
imum difference between the cdf’s of the Gaussian copula and the trigonometric copula
(21). Figure 3 shows that the simulations A, B, C, D can be approximated by the trig-
onometric copula. However, E and F, out of the region, reveals that the fit is not pos-
sible for both data sets.

Figure 4. Region of the correlations (parameters) for which the density is positive, for the polynomial
cdf of degree three, see (22). The lines indicate the possible correlations under the new copula (left),
see (23), and a specific Archimedean copula (right), see (24). For this copula most of the line is out-
side the admissible region.

Figure 5. Scatterplot for Gumbel-Barnett copula, h¼ 1 (left), and the polynomial approximation of
degree two, see (17), with r1 ¼ �0:5238; r2 ¼ 0:1698 (right).
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Next, we fit the stocks data provided by the Matlab package, available with the sen-
tence load stockreturns. During the course of n¼ 100weeks, the change in stock prices
of 10 companies has been recorded. The first four companies are classified as primarily
technology. We choose the first and third companies as the variables X and Y, The fit
to the bivariate normal is good, see Figure 3 (left). Then the uniform transformation of
the data may follow the Gaussian copula. The trigonometric approximation, see Table
4, last line, is quite good. This stocks data set is summarized in the point S, see Figure
3 (right). S is just on the curved line. This line contains the possible values ðr1; r2Þ for
the bivariate normal distribution.

9.4. Clayton-Oakes

The Clayton-Oakes family of copulas (Nelsen 2006) is defined by

C ¼ max u�h þ v�h � 1; 0
� �� ��1=h

;�1 � h<1
The computations of the correlation r1 and r2 have been obtained numerically. The

fit works for h between –0.5 and 1. However, for other h the results can provide poly-
nomial approximations which are not copulas, i.e., the density is negative for some val-
ues of 0 � u; v � 1: See Figure 2 (right). Then we should take ðr	1 ; r	2Þ 2 R with smaller
Euclidean distance to ðr1; r2Þ: The fit is acceptably good, especially for intermediate val-
ues of the parameter, see Cuadras and Diaz (2012). See the life example below.

9.5. Other distributions

Here we consider the second FGM extension with U ¼ F3; W ¼ G3: The associated
copula is

Ca ¼ uvþ k1 u�u3ð Þ v�v3ð Þ þ k2 u4�2u2 þ uð Þ v4�2v2 þ vð Þ (22)

The canonical functions are a1 ¼
ffiffiffiffiffiffiffiffi
5=4

p ð3u2�1Þ; a2 ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105=23

p ð4u3�4uþ 1Þ; and
similarly b1; b2: We wish to approximate the (possibly new) copula (Cuadras 2017)

uv exp sin h 1�uð Þ 1�vð Þ½ �� �
; �1 � h � 1 (23)

Figure 6. Scatterplots of the initial cancer data (left), and the same data transformed to have uniform
marginals (right).
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to Ca: We also approximate the Archimedean copula, Equation (4.2.12) in Nelsen (2006),

1þ u�1�1ð Þh þ v�1�1ð Þh
h i1=h� ��1

; h � 1 (24)

to Ca:

We compute r1 ¼corða1; b1Þ; r2 ¼corða2; b2Þ w.r.t. these “true” copulas. For instance,

r2 ¼
ð1
0

ð1
0
Ct � uvð Þd 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105=23

p
4u3�4uþ 1ð Þ

h i
d 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105=23

p
4v3�4vþ 1ð Þ

h i
Some results are reported in Table 5.
The fit for the first copula is quite good. However, for this copula and the values of h

close to �1; and specially for the Archimedean copula, the approximation bCt using a
polynomial of degree 3 may provide distributions with negative mass in a region of the
support, see Figure 4. Indeed, the fit using polynomials works efficiently when the sup-
port of the true distribution is the full square ½a; b� � ½c; d�: The support of this

Archimedean copula is a subset of ½0; 1�2; see Figure 4.6 in Nelsen (2006). As in the
Clayton-Oakes cdf (see the previous section), this problem can be overcome by taking a

proper copula near to bCt: See Cuadras and Diaz (2012).
Finally, we perform some simulations. Figure 5 shows a sample of points (u, v) simu-

lated from a Gumbel-Barnett copula with h¼ 1 and the corresponding polynomial
approximation. The scatterplots are quite similar.

9.6. Example with life data

We illustrate the fit to the trigonometric copula (21) with the data set involving patients
of the cancer of the prostate studied in Hosner and Lemeshow (2000). This data set is
available on line: ftp://ftp.wiley.com/public/sci_tech_med/logistic/
We consider the variables Prostatic Specific Antigen (PSA in mg/ml),and Tumor

Volume (TV in cm3Þ; labeled X and Y, respectively. There are 380 patients, but we discard
the subjects with zero TV and fit the copula to the data of the remaining 213 cases. Then
the copula related to (X, Y) fits quite well to a Clayton-Oakes copula. However, we suppose
the “true” copula unknown and fit the data to the trigonometric copula (21).
We use the Matlab function ksdensity for transforming X, Y into U, V with (0, 1) uni-

form distribution. Next, we compute the sample correlations r1 ¼corð cos pU; cos pVÞ;
r2 ¼corð cos 2pU; cos 2pVÞ and the fit measure g ¼ maxjCe�bCtj; where Ce is the empir-

ical copula (see Nelsen, 2006) and bCt is given in (21). Note that
ffiffiffi
2

p
cos ðpUÞ;ffiffiffi

2
p

cos ð2pUÞ; play the role of canonical functions for this copula.
For the cancer data we find

r1 ¼ 0:1249; r2 ¼ �0:0203; g ¼ 0:0392

The average of jCe�bCtj is 0.0076. The fit is acceptably good. Clearly ðr1; r2Þ belongs

to the admissible region for the trigonometric model, see Figure 1 (left). Therefore, bCt

is a proper copula.
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Figure 6 (left) shows the scatterplo of this life data. Figure 6 (right) shows the scatter-
plot of this bivariate data transformed to have uniform marginals.
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