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ABSTRACT

Dynamics of a nuclear reactor is described on the basis of the mean values of the neutron-
nucleus interactions. The Point Kinetics equations model uses these values to describe the
time evolution of the neutron population in homogeneous reactors. Significant random fluc-
tuations of the neutron population are observed at the reactor startup and shutdown, caused
by the statistical nature of the system and due to unexpected events, such as sub-cooled boil-
ing, pressure fluctuations, and mechanical vibrations of control and fuel rods, among others.
The Point kinetics equations cannot describe these fluctuations due to their deterministic na-
ture. An adequate description of the reactor dynamics is achieved through stochastic models,
such as the stochastic Point Kinetics equations, which provides accurate information on the
mean values and standard deviations of the neutron populations. However, this model con-
siders mono-energetic neutrons, which is far from reality. In addition, the realizations of the
stochastic process do not adequately describe the reactor dynamics.

The aim of this study is adding physical rigor to the stochastic model of the Point Kinetics
equations by discriminating in energy the neutron population, which determines the prob-
ability of interaction with atomic nuclei; and to propose a solution to the problem of the
stochastic realizations of the related process. The outcome is a stochastic model with real-
izations in agreement with reality, and predictions of both the mean values and the standard
deviations, which turns out to be in good agreement with experimental and simulated data
reported previously. These comparisons show that our stochastic model accurately describes
the random behavior of the neutron population in a homogeneous nuclear reactor.

Finally, it is worth mentioning that, as result of the research work of this Master program,
the next two publications are being prepared (see Appendix A for details):

1. Theta Method Applied to Two-Energy Groups Point Kinetics Equations.
2. Stochastic Point Reactor Kinetics Equations with Two-Energy Groups.

Keywords: nuclear reactor, stochastic Point Kinetics equations, neutron population, reactiv-
ity perturbation, temperature feedback
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1. INTRODUCTION

Energy production is a significant factor in the economic growth of countries [1, 2] and, if
accompanied by adequate policies, it can improve the citizens life quality, especially in de-
veloping countries [3, 4]. Within the worldwide policies adopted to mitigate the emission
of greenhouse gases, nuclear energy has been considered an ally of renewable energies [5, 6].
Thus, it is a task of the scientific community to know in-depth this physical system by means
of, for instance, mathematical models and computer simulations, which allows to understand
the behavior of the nuclear reactor under different scenarios, and reduce possible risks and
increase safety.

The central problem in nuclear reactor theory is determining the neutron population into the
reactor at each time. Usually, the focus is on two fundamental aspects involved in predicting
the neutron population within the nuclear reactor, namely: a) determining the probabilities of
the neutron-nucleus reactions; and, once these probabilities are known, b) deriving and solving
an equation that uses these probabilities to determine the neutron population mechanisms in
which neutrons can be gained or lost within an arbitrary volume. The result of this method-
ology is the neutron transport equation, which describes the evolution of the neutron current
flux into the volume and its time evolution [7, 8]. As general aspects, the neutron popula-
tion presents 7 degrees of freedom: 3 of them associated to space position, 2 for the angular
dependence, 1 for energy, and 1 for time. However, it is usual to consider space isotropy,
which allows to avoid treatment of the angular components to simplify the mathematical is-
sue. Meanwhile, energy, as a continuous variable, is discretized into energy-groups due to the
non-existence of an analytical expression for the neutron-nucleus interaction probabilities, as
pointed out in several reports [9, 10, 11]. Moreover, the neutron transport equation exhibits
non-linearity and stiffness1. For this reasons, analytical solutions are unknown, and, therefore,
the numerical analysis represents an important tool in nuclear reactor theory.

This study is focused on homogeneous nuclear reactors, whose homogeneous connotation lays
in the existent mixture of the fuel material with the moderator, and, in some cases, with the
coolant material. The latter corresponding to liquid core reactors. A particular case of liquid
core reactors is the Molten Salt Reactor (MSR), which is under extensive study due to its
multiple advantages [12, 13, 14, 15]. On the other side, a simplified model that describes the
dynamics of a homogeneous reactor is the Point Kinetics equations, proposed in the seminal
work of Henry [16], which is valid for stationary fuel conditions, that is, when the isotopic

1The stiffness of a system of differential equations indicates that the solution can dramatically vary for
small changes of the input parameters, causing instability in the numerical methods, i.e., no convergence of the
numerical approximation to the solution. Stiffness may also occur when the variables evolve at very different
times.
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composition of the fuel is approximately constant while consumed due to the fission processes.
Conversely, in general terms, the fuel isotopic composition gets modified when consumed. This
effect is known as burn up [17].

The Point Kinetics equations model determines the time evolution of the neutron popula-
tion in a homogeneous reactor with finite dimensions, as detailed in the works [7, 8], where
the neutron shape population is time-independent and the neutron shape population is simi-
lar to that at the critical state. This condition is fulfilled for reactivity insertion rates up to
100% per second [16, 7]. This model is deterministic and can only estimate the mean values
of the neutron population. Contrarily, the neutron-nucleus events are probabilistic in nature,
what generates random fluctuations that cannot be described by the Point Kinetics equations
model. An example of the random behavior of the reactor occurs at low population levels,
as in the startup or shutdown of the reactor. In these scenarios the random variations are
evident and must be taken into account [18, 19, 20, 21, 22]. Therefore, a stochastic model of
the nuclear reactor is more accurate in modeling the random behavior than a deterministic
one [23, 17].

The first stochastic Point Kinetics equations model was presented in 2005 by Hayes and Allen
[24], and it consists of a system of nonlinear stochastic differential equations strongly coupled
with stiffness in matrix form, which describes the time evolution of random variables as the
neutron density and the concentration of delayed neutron precursors in a homogeneous nuclear
reactor. The results of this model are in good agreement with the experimental available data.
However, in this model, mono-energetic neutrons are considered, which implies assuming that
neutron-nucleus interactions do not dependent on the neutron energy, which is far from reality,
since it is observed that neutrons with low energy do have higher probability of interaction
than those with higher energies. The purpose of this research is to provide physical rigor to
the Hayes and Allen stochastic model by extending it to multi-energy groups, with the biggest
emphasis on the two-group approximation, which has been shown to be accurate [25, 26, 27].

The stochastic Point Kinetics equations model with multi-energy groups and multi-groups
of delayed neutrons2 is derived in detail in Chap. 2, the numerical method proposed to solve
it is described in Chap. 3. While Chap. 4 presents the results and discussions related to the
proposed methodology when applied to two thermal homogeneous reactors. Finally, Chap. 5
summarizes our concluding remarks.

2Neutrons receive different names according to the time they appear inside the reactor. Thus, the appari-
tion time of the neutrons born by fission (so-called prompt neutrons) is around 10−14 seconds, while delayed
neutrons appear within 0.01 and 55 seconds. These neutrons are created as fission fragments, or from ra-
dioactive decay of atomic nuclei. Besides, since the range of time apparition is wide, the delayed neutrons are
grouped according to the delay time, or, equivalently, to the decay constant of the precursor nucleus.

.
.
.
.
.
.
.


2. MODEL FORMULATION

In the following, we will derive the stochastic Point Kinetics equations model with two-energy
groups and multi-groups of delayed neutrons. Initially, we will define the neutron density
inside the reactor, to later derive the neutron diffusion equation from the neutron-nucleus
interactions. Then, we will focus on the study of the time evolution of the neutron population.
Further information, from basic concepts to more complex subjects beyond what is reported
in this document can be accessed from the following sources [28, 7, 8].
Let us consider the number of neutrons within an arbitrary volume V with energies in the
range E ± dE, defined as [∫

V

N (r⃗, E, t) d3r

]
dE, (2.1)

where N (r⃗, E, t) is the neutron density. The change in the number of neutrons in this volume
is determined by various mechanisms such as those shown in Fig. 2.11,2.
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Figure 2.1: Energy dependence of the microscopic cross-section of 235U.

Here, we observe the probability of occurrence of the different types of interactions between
a neutron and a 235U nucleus as a function on energy. This allows evidencing what was
mentioned in the previous chapter, this is, neutrons with lower energies are more likely to
interact than those with higher energies, except for the case of inelastic collisions.

1Data for this figure have been taken from the ENDF database [29].
2The Cross-Section stands for the probability that a specific neutron-nucleus reaction takes place. Let us

consider a neutron beam impacting a target whose width is sufficiently thin (around one atomic layer thick) not
to obtain shielding effect. One can expect the reaction rate to be proportional to both the beam intensity and
the target area. Then, the proportionality constant is the reaction probability, which is called cross-section,
and is expressed in area units. Thus, since the nuclear radius is roughly 10−12 cm, the cross-sectional area of
a nucleus is roughly 10−24 cm2, commonly called barns.
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The equation: [∫
V

∂

∂t
N (r⃗, E, t) d3r

]
dE = gain in V − loss from V (2.2)

describes the change in the neutron population.
The mechanisms that can lead to neutron appearances or disappearances in the V volume are
as follows:

GAIN MECHANISM
I. Any neutron source within V .
II. Neutrons streaming into V through the surface S.
III. Neutrons suffering scattering collisions within V , which changes their energy from E

′

to E.

LOSS MECHANISM
IV. Neutrons leaking out through the surface S.
V. Neutrons suffering collisions within V causing absorption/removal of neutrons out of

V , and scatterings moving the neutron energy from E to E
′
.

According to this, Eqn.(2.2) can be rewritten as:[∫
V

∂

∂t
N (r⃗, E, t) d3r

]
dE = I + II + III − IV − V. (2.3)

The mathematical expressions for each mechanism are defined below, starting from the sim-
plest to the most difficult.

I. Source term: The rate of neutrons appearing in a volume d3r centered at r⃗, within an
energy range dE centered at E, is defined as S (r⃗, E, t) d3rdE. Then, the number of neutrons
appearing into V due to a source is:

I =

[∫
V

S (r⃗, E, t) d3r

]
dE. (2.4)

V. Loss due to collisions: The rate at which neutrons suffer collisions at a point r⃗ is v⃗ (E)
Σt (r⃗, E, t)N (r⃗, E, t), where v⃗ (E) stands for the neutron velocity and Σt (r⃗, E, t) is the to-
tal remove cross-section. This cross-section includes all the neutron-nucleus events that re-
move neutrons such as inelastic scatterings, absorptions such as fission or radioactive capture
(neutron-alpha, beta, gamma ray) events. Thus, the number of neutrons disappearing from
V due to collisions is given by:

V =

[∫
V

v⃗ (E) Σt (r⃗, E, t)N (r⃗, E, t) d3r

]
dE. (2.5)

III. Gains due to scatterings: The rate at which neutrons are scattered into the energy range

dE centered at E coming from other energies E
′
is:∫ ∞

0

v⃗
(
E

′
)
Σs

(
r⃗, E

′ → E, t
)
N

(
r⃗, E

′
, t
)
dE

′
, (2.6)

where Σs

(
r⃗, E

′ → E, t
)
is the scattering cross-section. The number of neutrons appearing in

V within the energy range dE centered at E is then:

III =

[∫
V

∫ ∞

0

v⃗
(
E

′
)
Σs

(
r⃗, E

′ → E, t
)
N

(
r⃗, E

′
, t
)
dE

′
d3r

]
dE. (2.7)

.
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This expression is known as the in-scattering term, since it characterizes the neutrons scat-
tered from other energies into dE.

II and IV. Leakage into or from the volume: Combining these terms defines the net leakage
through the surface S (see Fig. 2.2). Then, the rate at which neutrons leakage the volume

through a piece of surface is J⃗ (r⃗, E, t) · dS⃗, where J⃗ (r⃗, E, t) is the neutron current density,
defined as n̂v⃗ (E)N (r⃗, E, t). Therefore, the number of neutrons that leakage into or from the
volume through the whole surface is given by:

II − IV =

∮
S

J⃗ (r⃗, E, t) · dS⃗dE =

∫
V

∇⃗ · J⃗ (r⃗, E, t) d3rdE. (2.8)

XXXXXXXXX

XXXXXXXXX

XX
XX

���

�
��

���

����
dS⃗

HHH
HHHHY

J⃗ (r⃗, E, t)

-

J⃗+ (r⃗, E, t)

-

J⃗− (r⃗, E, t)

Figure 2.2: Schematic view of the net (J⃗) and partial contributions (J⃗− and J⃗+) to the
neutron current density.

The Divergence theorem is used in Eqn.(2.8) to have all the expressions in terms of volume
integrals. Now that all the mechanisms that modify the number of neutrons within the volume
have been described, Eqn.(2.3) reads as:∫

V

[
∂

∂t
N (r⃗, E, t) + ∇⃗ · J⃗ (r⃗, E, t) + v⃗ (E) Σt (r⃗, E, t)N (r⃗, E, t)

−
∫ ∞

0

v⃗
(
E

′
)
Σs

(
r⃗, E

′ → E, t
)
N

(
r⃗, E

′
, t
)
dE

′ − S (r⃗, E, t)

]
d3r dE = 0. (2.9)

Since the expression inside the square brackets cannot take negative values, this equation can
be written as:

∂

∂t
N (r⃗, E, t) + ∇⃗ · J⃗ (r⃗, E, t) + v⃗ (E) Σt (r⃗, E, t)N (r⃗, E, t) =∫ ∞

0

v⃗
(
E

′
)
Σs

(
r⃗, E

′ → E, t
)
N

(
r⃗, E

′
, t
)
dE

′
+ S (r⃗, E, t) . (2.10)

In Eqn.(2.10) we find two unknown terms, the neutron density given by N (r⃗, E, t), and the

neutron current density represented by J⃗ (r⃗, E, t). Unfortunately, there is no an exact rela-
tionship for describing one in terms of the other one. However, due to the null electric charge
of the neutrons, their interactions with the medium are small, and they travel relatively long
distances (about 1 to 100 cm depending on the medium), therefore, they slowly move from

.
.
.
.
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high to low concentration regions. The magnitude of the neutron current density turns out
to be proportional to the concentration gradient. Thus, the neutron current density can be
written as:

J⃗ (r⃗, E, t) ≃ −D (r⃗, E, t) v⃗ (E) ∇⃗N (r⃗, E, t) . (2.11)

The precedent equation is known as the Fick’s law [30]. Here, D (r⃗, E, t) is the so-called
diffusion coefficient, which gives a macroscopic description of the system, and its definition
in nuclear theory is given by D (r⃗, E, t) = [3Σt (r⃗, E, t)]−1 [7]3. Therefore, Eqn.(2.10) is now
written as:

∂

∂t
N (r⃗, E, t)− ∇⃗ ·D (r⃗, E, t) v⃗ (E) ∇⃗N (r⃗, E, t) + v⃗ (E) Σt (r⃗, E, t)N (r⃗, E, t) =∫ ∞

0

v⃗
(
E

′
)
Σs

(
r⃗, E

′ → E, t
)
N

(
r⃗, E

′
, t
)
dE

′
+ S (r⃗, E, t) . (2.12)

Equation (2.12) is know as the neutron diffusion equation, which usually has the neutron
flux as unknown variable, that is, v⃗ (E)N (r⃗, E, t). This equation has the initial condition
N (r⃗, E, 0) = N0 (r⃗, E), and the boundary condition N (r⃗s, E, t) = 0. This indicates that neu-
trons do not cross the boundaries of the reactor volume. The neutron diffusion equation is
a linear integro-differential equation for neutron density with 5 degrees of freedom: 3 space
coordinates, energy and time.

So far, a multiplicative medium has not been considered, as it is the case of a nuclear reactor,
where neutrons cause fission events in the fuel material, which generates new neutrons. Fig-
ure 2.3 shows the process of a 235U nucleus being fissioned by the impact of a neutron. As
a result of this interaction, two light atomic nuclei and three neutrons are generated. These
are called prompt neutrons, since its time of appearance is 10−14 sec. On the other side, the
light nucleus 86Br decays to 87Kr in an excited state, which finally decays to 86Kr by emitting
a neutron (see Figure 2.3). This type of neutrons is called delayed neutrons since they take
between 10−2 and 102 seconds to appear. Delayed neutrons represent less than 1% of the
neutron population within the reactor. Due to their appearance time, they allow to control
the nuclear reactor, since, with them, the system evolution time is of the order of 10−3 sec-
onds, while the evolution time would be about 10−6 seconds in their absence. For this reason,
the delayed neutrons, despite representing a small part of the neutrons in the reactor, play
a key role in the reactor safety. Moreover, let us note that prompt neutrons can generate
new fissions, which, in turn, generate progressively more fission reactions. This mechanism
is called a fission chain reaction. Figure 2.3 also shows a radioactive capture event, a 235U
nucleus absorbs a neutron and emits gamma-rays.

Then, to include neutrons generated by fission events, the rate at which neutrons with any
energy E

′
induce fission is defined as Σf

(
r⃗, E

′
, t
)
v⃗
(
E

′)
N

(
r⃗, E

′
, t
)
, where Σf

(
r⃗, E

′
, t
)
is the

fission cross-section. Therefore, the total rate at which prompt neutrons per fission event are
born is given by:

3J. J. Duderstadt and L. J. Hamilton. (1976), p. 136 (Eqn. 4-147).

.
.
.
.
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Figure 2.3: Schematic view of several neutron-nucleus interactions.

∫ ∞

0

χp
(
E

′
)
(1− β) ν

(
E

′
)
Σf

(
r⃗, E

′
, t
)
v
(
E

′
)
N

(
r⃗, E

′
, t
)
dE

′
, (2.13)

where, β is the fraction of delayed neutrons, ν
(
E

′)
is the average number of neutrons released

per fission event, and χp
(
E

′)
is the fission spectrum, accounting for the energy distribution

which the prompt neutrons are born with.
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Figure 2.4: Mean number of neutrons released per fission event with thermal neutrons for
235U (up), and neutron fission spectrum (χp (E)) of the same isotope (bottom).

An empirical expression for this distribution is χp (E) = 0.453 sinh
(√

2.29E
)
e1.036E, which

exhibits a bell-like behavior with a maximum located at around 0.7 MeV, and an average
energy about 2 MeV [7]4. Figure 2.45 shows the fission spectrum and the mean number of

4J. J. Duderstadt and L. J. Hamilton. (1976), p. 62 (Eqn. 2-112).
5Data for the mean number of neutrons released per fission event have been taken from the ENDF database

[29] and the Duderstadt and Hamilton work [7] for the fission spectrum.
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neutrons generated per fission event, which can be considered approximately constant, since,
as mentioned above, neutrons with energies of the order of MeV have a low probability of
generating fission.

Moreover, a wide variety of light atomic nuclei (which produce delayed neutrons) are generated
by fission. These nuclei are usually classified accordingly to their half-life time (in the range
0.01 - 55 seconds). Figure 2.5(a)6 shows the fission product yield as a function of the atomic
mass. Usually, six groups of light nuclei are considered, as can be seen in Table 2.17, which
reports the delayed neutron data for thermal fission of 235U. However, in recent years a growing
number of groups are being considered in the seek of accuracy [31]. Figure 2.5(b)8 shows the
energy spectra for delayed neutrons. It is observed that about 85% of the delayed neutrons
born with energies between 0.1 and 1.4 MeV [33]. To include neutrons generated by radioactive
decays, the rate at which delayed neutrons are born is then given by:

χd (E)
m∑
i=1

λiCi (r⃗, t) , (2.14)

where χd (E) is the delayed neutron spectrum, λi is the decay constant of the i -group, and
Ci (r⃗, t) is the concentration of delayed neutrons of the i -group.
Thus, the term for sources reads as:

S (r⃗, E, t) =

∫ ∞

0

χp
(
E

′
)
(1− β) νΣf

(
r⃗, E

′
, t
)
v⃗
(
E

′
)
N

(
r⃗, E

′
, t
)
dE

′

+ χd (E)
m∑
i=1

λiCi (r⃗, t) + q (r⃗, E, t) , (2.15)

where q (r⃗, E, t) is an external source of neutrons. As example, some reactors use sticks of
252Cf, which has a 3.1% probability of spontaneous fission, releasing 3.7 neutrons per fission
event.

Table 2.1: Data for neutrons resulting from the thermal fission of 235U . The groups (1 to 6) of
delayed neutrons are explicitly reported according to their features such as half-life time, decay
constant, energy, number of neutrons generated per fission event, and the relative fraction of
neutrons inside the reactor.

Group
Half-Life Decay constant Energy Neutrons per Fraction
[sec] [sec−1] [MeV] fission event (βi)

1 55.72 0.0124 0.250 0.00052 0.000215
2 22.72 0.0305 0.560 0.00346 0.001424
3 06.22 0.1110 0.405 0.00310 0.001274
4 02.30 0.3010 0.450 0.00624 0.002568
5 00.61 1.1400 - 0.00182 0.000748
6 00.23 3.0100 - 0.00066 0.000273

Total neutrons per fission event: 0.01580
Total delayed fraction (β): 0.006502

6Data for this figure have been taken from the ENDF database [29].
7Data for this table have been taken from the Lamarsh and Baratta´s work [8]
8Data for the spectrum of delayed neutrons have been taken from the work [32].
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Figure 2.5: Delayed neutron data: (a) Proportion of atomic nuclei generated by thermal
neutron fission (shaded area represents the standard deviation); and (b) spectra of delayed
neutrons selected by group and compound. Individual groups units are reported on the left
axis (color curves); while the right axis is used for the composite signal (black curve).

After considering a multiplicative medium, such as the nuclear reactor, Eqn.(2.12) takes the
form:

∂

∂t
N (r⃗, E, t)− ∇⃗ ·D (r⃗, E, t) v⃗ (E) ∇⃗N (r⃗, E, t) + v⃗ (E) Σt (r⃗, E, t)N (r⃗, E, t) =∫ ∞

0

[
Σs

(
r⃗, E

′ → E, t
)
+ χp

(
E

′
)
(1− β) νΣf

(
r⃗, E

′
, t
)]

v⃗
(
E

′
)
N

(
r⃗, E

′
, t
)
dE

′

+ χd (E)
m∑
i=1

λiCi (r⃗, t) + q (r⃗, E, t) . (2.16)

In the mathematical process, this equation is accompanied by the balance equation for delayed
neutrons, which reads as:

∂

∂t
Ci (r⃗, t) =

∫ ∞

0

βiνΣf

(
r⃗, E

′
, t
)
v⃗
(
E

′
)
N

(
r⃗, E

′
, t
)
dE

′ − λiCi (r⃗, t) , (2.17)

where βi is the fraction of delayed neutrons of the i -group, with i=1,2,...,m. And the initial
condition is given by:

Ci (r⃗, 0) =
βi

λi

∫ ∞

0

νΣf

(
r⃗, E

′
, t
)
v⃗
(
E

′
)
N

(
r⃗, E

′
, t
)
dE

′
. (2.18)

Equations (2.16) and (2.17) describe the dynamics of a nuclear reactor. However, due to the
lack of an analytical expression for the cross-sections, the energy spectrum of the neutrons is
discretized into g-groups. Thus, the neutron density is redefined as:

N (r⃗, E, t) =
G∑

g=1

Ng (r⃗, t) , (2.19)

In addition, we consider time-independent cross-sections, which is valid for certain time in-
tervals, and it is known as the stationary fuel condition. However, in broader scenarios, the

.
.
.
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isotopic composition changes due to fission events, a process known as burn up, which modifies
the neutron population distribution, and the stationary fuel condition is no longer valid [34].
Therefore, Eqns.(2.16) and (2.17) are written as:

∂

∂t
Ng (r⃗, t)− ∇⃗ ·Dg (r⃗) v⃗g∇⃗Ng (r⃗, t) + v⃗gΣg,t (r⃗)Ng (r⃗, t) =

G∑
g′=1

[
Σg

′→g
s (r⃗) + χp

g′
(1− β) νΣg′ ,f (r⃗)

]
v⃗g′Ng′ (r⃗, t)

+ χd
g

m∑
i=1

λiCi (r⃗, t) + qg (r⃗, t) , (2.20)

∂

∂t
Ci (r⃗, t) =

G∑
g
′
=1

βiνΣg′ ,f (r⃗) v⃗g′Ng′ (r⃗, t)− λiCi (r⃗, t) . (2.21)

Remembering the strong relation of the neutron-nucleus interactions with neutron energy, the
need to use a large number of energy groups could be assumed. Surprisingly, with few energy
groups the description of the reactor is sufficiently accurate.

In this study, we focus on considering two-energy groups, which will be called fast and ther-
mal. The fast group corresponds to neutrons with energies beyond 0.1 eV, and it is charac-
terized by having less probability of generating fissions than the thermal group, which have
energies around 0.025 eV.
Thus, once energies of the groups are determined, we have χp

1 = χd
1 = 1 and χp

2 = χd
2 = 0

since, on average, prompt neutrons are born with 2 MeV, and delayed neutrons are born with
energies up to 0.1 MeV. Also, events of type Σ1→2

s are allowed, while the opposite are not.

And, by definition, Σg,t (r⃗) = Σg,a (r⃗) + Σg→g
′

s , where Σg,a is the absorption cross-section of

g-group and Σg→g
′

s is the scatter cross-section that removes neutrons off g towards g
′
-group.

Then, Σ1,t (r⃗) = Σ1,a (r⃗)+Σ1→2
s and Σ2,t (r⃗) = Σ2,a. Therefore, Eqns.(2.20) and (2.21) become:

∂

∂t
N1 (r⃗, t)− ∇⃗ ·D1 (r⃗) v⃗1∇N1 (r⃗, t) + v⃗1Σ1,t (r⃗)N1 (r⃗, t) =

(1− β) ν [Σ1,f (r⃗) v⃗1N1 (r⃗, t) + Σ2,f (r⃗) v⃗2N2 (r⃗, t)]

+
m∑
i=1

λiCi (r⃗, t) + q1 (r⃗, t) , (2.22a)

∂

∂t
N2 (r⃗, t)− ∇⃗ ·D2 (r⃗) v⃗2∇⃗N2 (r⃗, t) + v⃗2Σ2,a (r⃗)N2 (r⃗, t) =

Σ1→2
s (r⃗) v⃗1N1 (r⃗, t) + q2 (r⃗, t) , (2.22b)

∂

∂t
Ci (r⃗, t) = βiν [Σ1,f (r⃗) v⃗1N1 (r⃗, t) + Σ2,f (r⃗) v⃗2N2 (r⃗, t)]− λiCi (r⃗, t) , (2.23)

Equations (2.22a), (2.22b), and (2.23) are known as the multi-groups neutron diffusion equa-
tions with two-energy groups and multi-groups of delayed neutrons [9]. These Eqns. describe
the distribution of fast and thermal neutrons in the reactor and their time evolution.

.
.
.
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Since stationary fuel has been assumed, the neutron population shape is time-independent,
and similar to that at the critical state. This shape depends on the geometry of the reactor.
Some of these shapes can be seen in Fig 2.6.
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Figure 2.6: Some sample geometries for nuclear reactors and the corresponding neutron
shapes in red. Here, the term “neutron shape” represents the space distribution of the neutron
population inside the reactor. For example, for cylindrical geometry, along the z-axis, shape is
given by the Cosine function, while along the radial direction, it is given by Bessel functions.
Curvature of these functions depends on the height and radius at the critical state of the
reactor, respectively. Otherwise, curvature of the shape depends on the reactor elements.

Therefore, the main interest is the time evolution of the neutron population; and, given the
statistical independence among the spatial and time variables, we can write:

Ng (r⃗, t) = Ng (t)Ψ (r⃗) , Ci (r⃗, t) = Ci (t)Ψ (r⃗) , and qg (r⃗, t) = qg (t)Ψ (r⃗) , (2.24)

where Ψ (r⃗) is known as the Fundamental function and it determines the shape of the neutron
population, for a given geometry.
This function is a solution to the equation ∇2Ψ(r⃗) + B2

g,mΨ(r⃗) = 0, where B2
g,m is the

material buckling of the g-group, this parameter stands for the curvature of the shape (space
distribution) adopted by the neutron population distribution inside the reactor. In general,
the curvature of the space distribution of the neutron density depends on the reactor materials.

.
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However, when the reactor is in a critical state, the curvature only depends on the reactor
geometry, and it is known as geometrical buckling [7, 8]. Equations (2.22a), (2.22b), and
(2.23) are then written as:

d

dt
N1 (t) +D1v1Bm2

1N1 (t) + v1Σ1,tN1 (t) = (1− β) ν [Σ1,fv1N1 (t) + Σ2,fv2N2 (t)] (2.25a)

+
m∑
i=1

λiCi (t) + q1 (t) ,

d

dt
N2 (t) +D2v2Bm2

2N2 (t) + v2Σ2,aN2 (t) = Σ1→2
s v1N1 (t) + q2 (t) , (2.25b)

d

dt
Ci (t) = βiν [Σ1,fv1N1 (t) + Σ2,fv2N2 (t)]− λiCi (t) . (2.26)

However, we must determine the material buckling. To do it, let us consider Eqns. (2.25a) and
(2.25b) at the critical state; this is, when the number of neutrons produced by fission events
and scatterings equals the number of lost neutrons by absorption mechanisms and scattering.
This is:

D1v1Bm2
1N1 (t) + v1Σ1,tN1 (t) = νk−1

eff [Σ1,fv1N1 (t) + Σ2,fv2N2 (t)] , (2.27a)

D2v2Bm2
2N2 (t) + v2Σ2,aN2 (t) = Σ1→2

s v1N1 (t) . (2.27b)

From these expressions we obtain:

Bm2
1 =

νk−1
eff [Σ1,fv1N1 (t) + Σ2,fv2N2 (t)]

D1v1N1 (t)
− Σ1,t

D1

; (2.28a)

Bm2
2 =

Σ1→2
s v1N1 (t)

D2v2N2 (t)
− Σ2,a

D2

, (2.28b)

where, k−1
eff is a parameter introduced to fit the behavior of the neutron population due to

the use of cross-sections that can be inaccurate in some extent. Therefore, if k−1
eff = 1 fails to

predict the critical state, the k−1
eff value can be fitted to obtain a stationary solution indicating

the critical state of the reactor. The so-adjusted value of k−1
eff is then used to predict the time

evolution of the reactor out of a critical state [16]. It is also used to determine a critical size
and composition of the nuclear reactor [7]. Then, hereafter the fission cross-section will be
accompanied by the k−1

eff parameter.
Let us define the following parameters, (ρg) reactivity, which measures the deviation from the
critical state of the reactor. It can be understood as the difference between 1 and the ratio
between the number of neutrons lost due to absorption and scattering events and the number
of neutrons generated by fission events:

ρg = 1−
(
Σg,a +DgBm2

g

) (
k−1
eff νΣg,f

)−1
. (2.29)

Note that whenever a reactor is supercritical (this is, the number of neutrons that are born
by fission events exceeds the deaths due to absorption and scattering) the condition (Σg,a+

DgBm2
g)
(
k−1
eff νΣg,f

)−1
< 1 is fulfilled, and, in consequence, ρg is positive.

Conversely, in a subcritical reactor, the condition
(
Σg,a +DgBm2

g

) (
k−1
eff νΣg,f

)−1
> 1 holds,

and ρg is negative.

.
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Finally, ρg = 0 is the special case of a critical reactor, where the number of neutron births
equals deaths. Thus, ρg values are restricted to the range −∞ < ρg < 1 [8].

Let Λg be the Mean neutron generation time, which measures the time a neutron takes from
its birth up to it is absorbed:

Λg =
(
vgk

−1
eff νΣg,f

)−1
(2.30)

These quantities are introduced due to the high difficulty of measuring the cross-sections when
the reactor is in operation. Adopting these definitions, Eqns. (2.25a), (2.25b), and (2.26) are
written as:

d

dt
N1 (t) =− 1− ρ1 − α

Λ1

N1 (t)− κN1 (t) −→ Deaths (2.31a)

+
1− β − α

Λ1

N1 (t) +
1− β

Λ2

N2 (t) −→ Births

+
m∑
i=1

λiCi (t) −→ Transformations

+ q1 (t) −→ External Source,

d

dt
N2 (t) =− 1− ρ2 − α

Λ2

N2 (t) −→ Deaths (2.31b)

− α

Λ2

N2 (t) + κN1 (t) −→ Births

+ q2 (t) −→ External Source,

d

dt
Ci (t) =µi,1N1 (t) + µi,2N2 (t) −→ Births (2.32)

− λiCi (t) −→ Deaths,

where α = ν−1, µi,g = βiΛ
−1
g , and κ = v1Σ

1→2
s .

Equations (2.31a), (2.31b), and (2.32) are the deterministic Point Kinetics model with two-
energy groups and multi-groups of delayed neutrons, which was presented in 2012 by A. A.
Nahla in his seminal work [35] using the one-group of delayed neutron approximation. Addi-
tionally, in each equation, we have labeled the terms corresponding to the events of deaths,
births, external sources, and radioactive decays, which will be useful for the derivation of the
stochastic model.

To derive the stochastic Point Kinetics equations model with two-energy groups and multi-
groups of delayed neutrons, let us define a new group of terms, namely: the neutron deaths
rate due to capture and leakage for the g-group represented by dg = (1− ρg − α) Λ−1

g ; the
neutron births rate due to fission for the g-group given by bg = αΛ−1

g ; the neutron births rate
due to external sources for the g-group named qg; the rate of births in the fast group due
to radioactive decays of precursors i -group called λici; and finally, the rate of neutrons that
lose energy by collisions, going from fast to thermal groups represented by κ. Thus, the total
number of events that change the populations (neutrons and precursors) are 3G+(G− 1)+m.
Now, let us consider the change vector in the populations defined as

∆X⃗ =
[
∆n1 ∆n2 ∆c1 ∆c2 ... ∆cm

]T
m+2,1

, (2.33)

.
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where the random variables nk and ck are the number of neutrons and delayed neutron precur-
sors, respectively. Conversely to Hayes and Allen, who use density as variable, we have chosen
the random variables as the population number since, as we will see below, the quantities in-
volved in describing the population changes come from individual neutron-nucleus interactions
and not from density changes in a unit volume. However, the chosen random variables remain
continuous because the cross-sections are average values of the neutron-nucleus interactions.
Let us consider a small time interval ∆t, where the occurrence probability of more than one
event is zero, thus, the mathematical expressions for the 3G + (G − 1) +m events changing
the neutron population are defined as:

Deaths:

∆X⃗1 =
[
−1 0 0 0 ... 0

]T
m+2,1

−→ A fast neutron dies due to capture or leakage
with probability P1 = d1n1∆t,

∆X⃗2 =
[
0 −1 0 0 ... 0

]T
m+2,1

−→ A thermal neutron dies due to capture or leakage
with probability P2 = d2n2∆t,

External Sources:

∆X⃗3 =
[
1 0 0 0 ... 0

]T
m+2,1

−→ A fast neutron is born due to external source
with probability P3 = q1∆t,

∆X⃗4 =
[
0 1 0 0 ... 0

]T
m+2,1

−→ A thermal neutron is born due to external source
with probability P4 = q2∆t,

Radioactive Decays:

∆X⃗5 =
[
1 0 −1 0 ... 0

]T
m+2,1

−→ A precursor of the first group decays by emitting
a fast neutron with probability P5 = λ1c1∆t,

...

∆X⃗m+4 =
[
1 0 0 0 ... −1

]T
m+2,1

−→ A precursor of the m group decays by emitting a
fast neutron with probability Pm+4 = λmcm∆t,

Scattering:

∆X⃗m+5 =
[
−1 1 0 0 ... 0

]T
m+2,1

−→ A fast neutron suffers collisions losing energy
and reaches the thermal group with probability
Pm+5 = κn1∆t,

Fissions:

∆X⃗m+6 =
[
ζ1 0 β1ν β2ν ... βmν

]T
m+2,1

−→ A fast neutron generates fission, then
a neutron dies, and (1 − β)ν neutrons
are generated, also precursor groups
are generated with probability Pm+6 =
b1n1∆t,

∆X⃗m+7 =
[
ζ2 −1 β1ν β2ν ... βmν

]T
m+2,1

−→ A thermal neutron generates fission,
then a neutron dies, and (1 − β)ν fast
neutrons are generated, also precursor
groups are generated with probability
Pm+7 = b2n2∆t,

where ζ1 = −1 + (1− β)ν and ζ2 = ζ1 + 1.
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Finally, the event corresponding to no changes in the population is included below, this event
is important since it is used to obtain a normalized probability.

∆X⃗m+8 =
[
0 0 0 0 ... 0

]T
m+2,1

−→ No changes in neutron populations with probabil-
ity Pm+8 = 1−

∑3G+(G−1)+m
k=1 Pk.

These events are independent and represent counts of the population, which varies at a con-
stant time rate. Hereby, it is the sum of these variables what represents the evolution of
the populations within the reactor. We use the Central Limit Theorem (CLT) in its Linde-
berg–Lévy form, which establishes that the sequence of independent and identically distributed
random variables approximates a Normal distribution with zero as mean and one as variance
[36]. Thus, the Lindeberg–Lévy CLT form reads as:√

Var
[
∆X⃗

]
ℵ⃗ (0, 1) ≃

√
ne

(
∆X⃗ − E

[
∆X⃗

])
, (2.34)

where ℵ⃗ (0, 1) is a vector whose components are normal distributions with mean 0 and variance

1; ∆X⃗ is the sample mean; E
[
∆⃗X

]
and Var

[
∆⃗X

]
are the vector of mean values and the matrix

of standard deviations of ∆⃗X, respectively; and ne is the number of events considered. This
indicates that the random variable and its sequence (or sample path) of ∆X⃗ are independent
and identically distributed, thus being inhomogeneous Poisson processes [37, 38].
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Figure 2.7: Schematic view of the Poisson and Normal distributions with different parameters.

This implies that the sample mean of a population is normally distributed regardless of the
original distribution of the random variables. This can be clearly seen in Fig. 2.7, since
the sum of Poisson distributions is a Poisson distribution whose parameter λ is the sum
of the parameters of the distributions that make it up. The resulting distribution closely
approximates a Normal one. Equation (2.34) is then written as:

∆X⃗ = E
[
∆X⃗

]
+

√
Var

[
∆X⃗

]
ℵ⃗ (0, 1)

√
ne

. (2.35)
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The mean value is computed as:

E
[
∆X⃗

]
=

3G+(G−1)+m∑
k=1

∆X⃗kPk

= ∆t



ρ1−β
Λ1

n1 (t)− κn1 (t) +
1−β
Λ2

n2 (t) +
∑m

i=1 λici (t) + q1 (t)

ρ2−1
Λ2

n2 (t) + κn1 (t) + q2 (t)

µ1,1n1 (t) + µ1,2n2 (t)− λ1c1 (t)
...

µm,1n1 (t) + µm,2n2 (t)− λmcm (t)


m+2,1

=
(
AX⃗ + Q⃗

)
∆t, (2.36)

where X⃗ =
[
n1 (t) n2 (t) c1 (t) c2 (t) . . . cm (t)

]T
m+2,1

is the vector of random variables;

Q⃗ =
[
q1 (t) q2 (t) 0 . . . 0

]T
m+2,1

is the vector of external sources; and A is a square matrix

of dimension (m+ 2) defined as:

A =



a1,1 a1,2 λ1 λ2 . . . λm

a2,1 a2,2 0 0 . . . 0
µ1,1 µ1,2 −λ1 0 . . . 0
µ2,1 µ2,2 0 −λ2 . . . 0
...

...
...

...
. . .

...
µm,1 µm,2 0 0 . . . −λm


m+2,m+2

, (2.37)

where a1,1 = (ρ1 − β − Λ1κ) Λ
−1
1 ; a1,2 = (1− β) Λ−1

2 ; a2,1 = κ; and a2,2 = (ρ2 − 1)Λ−1
2 .

The co-variance matrix is computed as:

Var
[
∆X⃗

]
=

3G+(G−1)+m∑
k=1

∆X⃗k∆X⃗T
k Pk. (2.38)

Nevertheless, this co-variance matrix can be replaced by the so-called Diffusion tensor due
to the equivalence existing in the stochastic differential equation model [39]. This Diffusion
tensor has been recently tested in the stochastic Point Kinetics equations model [40, 41] as
well as in stochastic models of chemical reactions [42], with good agreement. Therefore, we
now write: √

Var
[
∆X⃗

]
= G

√
∆t, (2.39)

where G (Diffusion tensor) is a rectangular (m+ 2, 3G+ (G− 1) +m) matrix defined as:

G =
[
∆X⃗1

√
P1∆t−1 . . . ∆X⃗3G+(G−1)+m

√
P3G+(G−1)+m∆t−1

]
m+2,3G+(G−1)+m

. (2.40)

The columns of the Diffusion tensor are composed by the ∆X⃗k vectors and their probabilities
Pk. The main advantage of using the Diffusion tensor is that the computation of the square
root of the co-variance matrix is not required, a process that is analytically non-trivial and
computationally time-consuming.
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The equivalence between the co-variance matrix and the Diffusion tensor can be proved by
considering a N -dimensional stochastic processes X⃗t, whose time evolution is given by:

dX⃗t = µ⃗
(
t, X⃗t

)
dt+

√
V
(
t, X⃗t

)
dW⃗t, (2.41)

where, V
(
t, X⃗t

)
is a square matrix of dimension N×N . The time evolution of the probability

density function P
(
t, X⃗t

)
is described by the Fokker-Planck relationship, also known as the

forward Kolmogorov equation [43, 44, 45], which reads as:

∂

∂t
P
(
t, X⃗t

)
= −

N∑
i=1

∂

∂xi

[
µiP

(
t, X⃗t

)]
+

N∑
i=1

N∑
j=1

∂2

∂xi∂xj

[
Vi,jP

(
t, X⃗t

)]
. (2.42)

Now, let us consider the matrices B
(
t, X⃗t

)
and G

(
t, X⃗t

)
, with dimensions N × N and

N ×M , respectively. The relation between the V
(
t, X⃗t

)
matrix and the matrices B

(
t, X⃗t

)
and G

(
t, X⃗t

)
is given by:

B
(
t, X⃗t

)
=

√
V
(
t, X⃗t

)
(2.43)

V
(
t, X⃗t

)
= G

(
t, X⃗t

)
G
(
t, X⃗t

)T

. (2.44)

Note that the entries of the V
(
t, X⃗t

)
matrix can be written as: Vi,j =

∑N
l=1 Bi,lBl,j or

Vi,j =
∑M

l=1Gi,lGl,j. Therefore, the stochastic process X⃗t can be described by:

dX⃗t = µ⃗
(
t, X⃗t

)
dt+B

(
t, X⃗t

)
dW⃗t (2.45)

dX⃗t = µ⃗
(
t, X⃗t

)
dt+G

(
t, X⃗t

)
dW⃗ ∗

t , (2.46)

where W⃗t is a N -dimensional Wiener process and W⃗ ∗
t is a M -dimensional Wiener process

independent of the previous one. These equations lead to the same Fokker-Planck equation.
Then, the evolution of the stochastic process X⃗t can be represented in two different forms.
Consequently, does exist a Wiener process W⃗ that generates a sample path for X⃗ (process

realization), and an independent Wiener process W⃗ ∗ that generates the same sample path.
The equivalence of the stochastic differential equations is discussed in more detail in references
[39, 46].

Taking into account Eqns. (2.36) and (2.39), Eqn. (2.35) is rewritten as:

∆X⃗ =
(
AX⃗ + Q⃗

)
∆t+

1
√
ne

G
√
∆tℵ⃗ (0, 1) . (2.47)

Now, considering ∆t −→ 0, the system of Itô stochastic differential equations in matrix form
is obtained:

dX⃗t =
(
AtX⃗t + Q⃗t

)
dt+

1
√
ne

GtdW⃗t, (2.48)

where dW⃗t is a vector of dimension (3G + (G − 1) + m, 1) defined as
√
dtℵ⃗ (0, 1), whose

componentsWk are independent Wiener processes (or Brownian movements) with independent

.
.
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stationary increases. Its properties are: Wk (t = 0) = 0 with probability 1; and Wk (t) −
Wk (s) = ℵ (0, t− s) for 0 ≤ s < t ≤ T .
ℵ (0, t− s) denotes the Normal distribution of expected value 0 and standard deviation

√
t− s;

and the increments Wk (t)−Wk (s) and Wk (v)−Wk (u) are independent from each other for
0 ≤ s < t < u < v ≤ T [47].

Equation (2.48) is the stochastic Point Kinetics model with two-energy groups and multi-
groups of delayed neutrons. Regretfully, it does not have analytical solution. Therefore,
numerical techniques must be applied to get approximate solutions. Let us note that if G = 0,
Eqn. (2.48) reduces to the deterministic model of Point Kinetics equations with two-energy
groups [35]. Therefore, the stochastic model can be considered as a generalization of the de-
terministic model.

One additional key aspect must be addressed; in a nuclear reactor, the reactivity can change
over time due to external mechanisms such as the insertion of control elements inside the
reactor to regulate the neutron population, and to physical variations such as temperature
changes caused by the energy released as result of fission events. Therefore, the reactivity (ρ)
is written as a sum of an initial reactivity (ρ0) plus a feedback reactivity:

ρ (t) = ρ0 (t) + ρf (t) . (2.49)

As it is well known, temperature variations modify the atomic density of the fuel, which
changes in turn the values of the cross-sections. Therefore, changes in the reactivity due to
this effect can be written in terms of the temperature reactivity coefficient αT . Then, assuming
an isothermal model where the reactor temperature is represented by an effective temperature
Tr, the change in the feedback reactivity is:

∂

∂Tr

ρf (t) = αT . (2.50)

On the other hand, the heat produced in the reactor by the energy released in the fission
events is extracted through a hydraulic circuit, which cools the reactor. A model for this heat
exchange is given by the Newton’s law of cooling:

d

dt
Tr (t) = Kn (t)− γ (Tr (t)− Tc) , (2.51)

where Tc is the coolant temperature, K is the reciprocal of the thermal capacity of the reactor,
and γ−1 is the mean time for heat transfer to coolant. Therefore, with this in mind, Eqn. (2.49)
now takes the form:

ρ (t) = ρ (t0) + ρ0 (t) + αTK

∫ t

0

n
(
t
′
)
e−γt

′

dt
′
. (2.52)

Equations (2.51) and (2.52) include the effects of temperature within the reactor.
Thus, the stochastic Point Kinetics equations model with two-energy groups and multi-groups
of delayed neutrons is complete.

The next chapter discusses the numerical scheme proposed to provide numerical solutions to
the derived model.

.
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3. NUMERICAL APPROXIMATION

In the previous chapter, the stochastic Point Kinetics equations model with two-energy groups
and multi-groups of delayed neutrons was deduced. As discussed, this model describes the
time evolution of the neutron and precursors populations in a homogeneous nuclear reactor,
and is represented by the Itô stochastic differential equation:

dX⃗t =
(
AtX⃗t + Q⃗t

)
dt+

1√
n
GtdW⃗t, (3.1)

whose solution is:

X⃗t − X⃗t0 =

∫ t

t0

a
(
t, X⃗t

)
dt+

1√
n

∫ t

t0

G
(
t, X⃗t

)
dW⃗t, (3.2)

where a
(
t, X⃗t

)
= AtX⃗t + Q⃗t.

It is well known that there is a trouble with the computation of the integral involving the
Wiener process (Wt) since, strictly, it is not differentiable because it is composed of a white
noise ℵ (0, 1) exhibiting unbounded variation [48]. Nevertheless, to solve our problem we will
use the Itô’s lemma, which is the stochastic counterpart of the Chain Rule in traditional
calculus. Using this lemma the differential of a stochastic process can be obtained. For
instance, let us consider the stochastic process represented by Xt = f (xt) that satisfies the
stochastic differential equation dXt = µ (t, xt) dt+σ (t, xt) dWt. According to the Itô’s lemma,
if f (xt) is a twice-differentiable scalar function one has [48]1:

df (xt) =

[
µ (t, xt)

∂

∂x
f (xt) +

σ (t, xt)

2

∂2

∂x2
f (xt)

]
dt+ σ (t, xt)

∂

∂x
f (xt) dWt. (3.3)

By integrating from t0 to t, we obtain:

f (xt)− f (xt0) =

∫ t

t0

[
µ (t, xt)

∂

∂x
f (xt) +

σ (t, xt)

2

∂2

∂x2
f (xt)

]
dt

+

∫ t

t0

σ (t, xt)
∂

∂x
f (xt) dWt, (3.4)

with the operators L0 and L1 given by L0 = µ (t, xt)
∂
∂x

+ σ(t,xt)
2

∂2

∂x2 and L1 = σ (t, xt)
∂
∂x
. Thus,

Eqn. (3.4) becomes:

f (xt)− f (xt0) =

∫ t

t0

L0f (xt) dt+

∫ t

t0

L1f (xt) dWt. (3.5)

1P. E. Kloeden and E. Platen. (1992), p. 163 (Eqn. 1.12)
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Now, let us consider f (xt) = a (t, xt) and f (xt) = G (t, xt) according to Eqn. (3.5), this is:

a (t, xt)− a (t0, xt0) =

∫ t

t0

L0a (t, xt) dt+

∫ t

t0

L1a (t, xt) dWt, (3.6)

G (t, xt)−G (t0, xt0) =

∫ t

t0

L0G (t, xt) dt+

∫ t

t0

L1G (t, xt) dWt. (3.7)

Thus, by using these expressions in Eqn. (3.2) we obtain:

X⃗t − X⃗t0 = a
(
t0, X⃗t0

)∫ t

t0

dt+G
(
t0, X⃗t0

)∫ t

t0

dW⃗t +R, (3.8)

where the remaining term R is given by:

R =

∫ t

t0

∫ τ

t0

L0a
(
τ, X⃗τ

)
dtdτ +

∫ t

t0

∫ τ

t0

L1a
(
τ, X⃗τ

)
dtdWτ+∫ t

t0

∫ τ

t0

L0G
(
τ, X⃗τ

)
dWtdτ +

∫ t

t0

∫ τ

t0

L1G
(
τ, X⃗τ

)
dWtdWτ . (3.9)

This previous procedure gives rise to the so-called Itô-Taylor Expansion [48]. Now, by trun-
cating this expansion in the second term on the right side on Eqn. (3.8), and solving the
trivial integrals, the following expression is obtained:

X⃗t − X⃗t0 = a
(
t0, X⃗t0

)
∆t+

1√
n
G
(
t0, X⃗t0

)
∆Wt, (3.10)

where ∆t = t − t0 and ∆W = Wt − Wt0 . Also, by writing Eqn. (3.10) as a sequence of k
equidistant discrete steps we obtain:

X⃗tk+1
= X⃗tk + a

(
tk, X⃗tk

)
∆t+

1√
n
G
(
tk, X⃗tk

)
∆Wk, (3.11)

with ∆t = tk+1 − tk and ∆W = Wtk+1
−Wtk .

Equation (3.11) represents the iterative Euler-Maruyama scheme, which can be considered as
a generalization of the traditional Euler scheme, that can be recovered with G = 0.
Since the system of equations making up our model exhibits stiffness2, along with non-linearity
and a strong coupling of the random variables, it is convenient to use implicit schemes in the

seeking of bigger stability [49]. Therefore, let us consider the transformation a
(
tk, X⃗tk

)
−→

a
(
tk+1, X⃗tk+1

)
, thus, Eqn. (3.11) becomes:

X⃗tk+1
= X⃗tk +

(
Atk+1

X⃗tk+1
+ Q⃗tk+1

)
∆t+

1√
n
G
(
X⃗tk

)
∆Wk. (3.12)

This is the implicit version of the Euler-Maruyama scheme, which works well in approximating
solutions of the Hayes and Allen model [50]. Since the solution Xk+1 is on both sides of Eqn.
(3.12), this is an implicit equation. This fact can be considered a disadvantage since it requires

2Stiffness indicates that the solution can vary drastically for small changes on the input parameters, which
causes instability in the numerical methods, i.e., the numerical approximation does not converge to the solution.
This may also occur when the variables evolve at very different times. It is worth noting that our model presents
both of these aspects.
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algebraic resources to get the solution, which, in some cases, is not trivial form the analytical
viewpoint, and it is computationally time-consuming. Despite these difficulties, in our case,
it is solved through the following steps:(

I − Atk+1
∆t

)
X⃗tk+1

= X⃗tk + Q⃗tk+1
∆t+

1√
n
G
(
X⃗tk

)
∆Wk, (3.13)

X⃗tk+1
=

(
I − Atk+1

∆t
)−1

[
X⃗tk + Q⃗tk+1

∆t+
1√
n
G
(
X⃗tk

)
∆Wk

]
, (3.14)

X⃗tk+1
= M−1

tk+1

[
X⃗tk + Q⃗tk+1

∆t+
1√
n
G
(
X⃗tk

)
∆Wk

]
, (3.15)

where I is the identity matrix and M = I − Atk+1
∆t.

Equation (3.15) is the numerical approximation to the solution to the stochastic Point Ki-
netics equations model with two-energy groups and multi-groups of delayed neutrons. Here,
the M−1 matrix is computed analytically by using the relation MM−1 = I, avoiding a waste
of computational time. To describe the elements of the M−1 matrix, the following parame-
ters are introduced: ei = hµi,2θ (1 + hλi)

−1, and Ei = h (µi,1 + hµi,2a2,1θ) (1 + hλi)
−1, with

θ = (1− ha2,2)
−1.

Thus, the Mi,j elements of the M−1 matrix are given by:

M1,1 = (1− ha1,1 − h2a1,2a2,1θ − h
∑m

i=1 λiEi)
−1
,

M1,2 = (ha1,2θ + h
∑m

i=1 λiei)M1,1, M2,1 = ha2,1θM1,1,

M2,2 = θ (1 + ha2,1M1,2), M1,i+2 = hλi (1 + hλi)
−1,

M2,i+2 = ha2,1θM1,i+2, Mi+2,1 = EiM1,1,

Mi+2,2 = ei + EiM1,2, Mi+2,j+2 = EiM1,j+2 + (1 + hλi)
−1 δi,j,

where δi,j is the Kronecker’s delta (i.e. δi,j=1 for i = j, and δi,j=0 for i ̸= j).
Additionally, Eqn. (2.51) is discretized by using the Euler method to obtain:

Tr,k+1 = Tr,k + [Knk − γ (Tk − Tc)]∆t, (3.16)

while, the Trapezoidal Rule [51, 52] is employed in Eqn. (2.52), giving:

ρk+1 = ρk + ρ0n +
αTK

2
e−

γ
2
(tk+1+tk)

(
ntk+1

+ ntk

)
∆t. (3.17)

Equations (3.15), (3.16) and (3.17) give the numerical solution to the stochastic Point Kinetics
model with two-energy groups and multi-groups of delayed neutrons. The results are presented
and discussed in depth in the next chapter.
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4. RESULTS

After defining the complete set of equations describing the method in the previous chapter, in
this chapter we discuss several practical results. In particular, we address the simulations of
two thermal nuclear reactors studied under the stochastic Point Kinetics equations model with
two-energy groups (SPKE-2E) and multi-group of delayed neutrons. Approximate numerical
solutions were obtained using the Implicit Euler-Maruyama Method (IEM). To generate the
Wiener processes, the MATLAB1 function rng(seed,’twister’) was implemented, with seed
equals to 27942. The results were compared, regarding mean and standard deviation values,
with literature reports.

4.1 BENCHMARK

The first thermal reactor is a benchmark presented in 1973 by Ferguson and Hansen [54], which
is a homogeneous bare cube of side length 200 cm, whose parameters are reported inTable 4.1.

Ferguson and Hansen originally studied the time evolution of neutron populations for a neg-
ative step perturbation in the thermal group absorption cross-section (∆Σ2,a) with a reac-
tivity worth about 0.5 Dollars3 (or 50 cents), considering one group of delayed neutrons
(this single precursor group represents the m precursor groups, with an average decay con-
stant). Later, other authors considered six groups of delayed neutrons, with both, positive and
negative time-independent and time-dependent perturbations, keeping constant the quantity
∆Σ2,a = 0.369× 10−4 cm−1.

In this study, we address the cases of step, ramp and sinusoidal insertions with positive and
negative perturbations. In all cases, the interval for time evolution of the neutron population is
[0, 0.4] seconds, with no external sources and initial conditions given by: n1 (0) = 2.228930v−1

1 ,
n2 (0) = 0.816356v−1

2 , and ci (0) = [µi,1n1 (0) + µi,2n2 (0)]λ
−1
i .

To obtain the mean and standard deviation values, 5000 realizations of the stochastic process

1Version R2020a [53].
2This number allows the same sequence of pseudo-random numbers to be generated, enabling other re-

searchers to replicate the results presented.
3Reactivity is a dimensionless quantity to which some units have been defined. One of them is the Dollar

($), this unit indicates the amount of reactivity necessary to obtain instantaneous criticality; that is, the
instantaneous neutrons generate a fission chain reaction such that the neutron population in the reactor
remains constant over time. By definition a Dollar is the ratio between the reactor reactivity (ρ) and the
effective fraction of delayed neutrons (βeff), the latter being the quantity that accounts for those delayed
neutrons that achieve thermal energies.
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were executed. The selected reference values were chosen according to the time step and the
significant digits reported for the neutron population, that is, time step of 10−3 and 6 digits.

Table 4.1: Parameters of a bare, homogeneous reactor.

Parameter
Fast Thermal Delayed

λi [s
−1] βi (×10−3)

neutrons neutrons group i

D [cm−1] 1.3500000 1.0800000 1 0.0127 0.2432
Σa[cm

−1] 0.0013820 0.0054869 2 0.0317 1.7920
Σf [cm

−1] 0.0002420 0.0040800 3 0.1150 1.3824
Σs[cm

−1] 0.0023000 - 4 0.3110 2.0992
v [cm/s] 3.00×107 2.20×105 5 1.4000 0.6592
ν 2.41 6 3.8700 0.2240
keff 0.8952858 average 0.0800

4.1.1 Step Reactivity

Now, we study a time-independent reactivity insertion through a constant perturbation in the
thermal group absorption cross-section given by ∆Σ2,a = ±0.369× 10−4 cm−1.

Tables 4.2 and 4.3 report on those results obtained for positive (i.e., ∆Σ2,a < 0) and negative
(i.e., ∆Σ2,a > 0) step reactivity perturbations4, respectively. Reference values for positive step
reactivity with one and six groups of delayed neutrons and negative step reactivity with six
groups of delayed neutrons have been taken from the work of Aboanber et. al [55], where
the numerical solutions are obtained by the Analytical Technique (AT) for a point reactor
whose neutron population time evolution is described by a set of fractional differential equa-
tions. Also, the reference values for a negative step reactivity with one group of delayed
neutrons case have been taken from the work by Aboanber and Nahla [56], where the multi-
group neutron diffusion model is studied and the numerical solutions are obtained through
the Adaptative Matrix Formation scheme (AMF). In these scenarios, IEM (this work) yields
accurate results with percentage errors below 1.5%. Errors close to this value are obtained for
negative insertions, while for positive insertions the percentage errors are about 1.0%. This
small difference illustrates an important behavior; this is, for decreasing populations, the ran-
dom fluctuations are more noticeable due to the probabilistic nature of the physical system
and its description by means of average values of the cross-sections. This can be seen in Fig.
4.1, where the mean values fluctuate randomly most noticeably for negative insertions around
the reference curves, which were generated for G = 0, i.e., the deterministic Point Kinetics
equations model with two-energy groups.

4A perturbation Σa +∆Σa, with ∆Σa < 0, decreases the probability for neutrons to die into the reactor,
which implies an increase in the neutron population. Therefore, ∆Σa < 0 represents a positive step reactivity
insertion. The opposite, (∆Σa > 0) represents a negative step reactivity insertion. This kind of perturbation
can be caused by the action of control elements, which are made of highly neutron-absorbing materials such
as boron or graphite.
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Table 4.2: Data for the fast and thermal neutron fluxes using one and six precursors groups
for positive step reactivity.

Time [s]
Method 0.00 0.05 0.10 0.15 0.20 0.30 0.40

O
n
e
P
re
cu

rs
o
r

AT∗ Fast 2.228930 3.071553 3.831159 4.517422 5.139029 6.218113 7.119829
Thermal 0.816356 1.127324 1.407597 1.660800 1.890138 2.288234 2.620862

This work
Fast

2.228930 3.099886 3.879171 4.561264 5.204636 6.301385 7.121845
(NA) (1.233172) (1.748910) (2.177223) (2.575173) (3.140105) (3.607919)

Thermal
0.816356 1.136695 1.426276 1.677383 1.916339 2.318258 2.620738
(NA) (0.443425) (0.636724) (0.794905) (0.941016) (1.149493) (1.320985)

S
ix

P
re
cu

rs
o
rs AT∗ Fast 2.228930 3.072767 3.839954 4.544745 5.198982 6.393180 7.482373

Thermal 0.816356 1.127753 1.410772 1.670733 1.912010 2.352329 2.753829

This Work
Fast

2.228930 3.078874 3.831837 4.558713 5.199003 6.392617 7.512016
(NA) (0.944672) (1.374357) (1.720823) (2.056507) (2.580410) (3.092402)

Thermal
0.816356 1.129493 1.406940 1.675496 1.911623 2.352754 2.765349
(NA) (0.339258) (0.499949) (0.629887) (0.751137) (0.945384) (1.135050)
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Figure 4.1: Neutron fluxes for step reactivity insertions with one and six groups of delayed
neutrons. Light blue and light purple dashed lines stand for the sample path for 1 and 6
precursors, respectively. Also, blue and red dashed lines represent the mean values for 1 and
6 precursors, respectively; while the gray and black solid lines give the reference values for 1
and 6 precursors, respectively. Inset at right shows a zoom of the yellow shaded region at left.
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Table 4.3: Data for the fast and thermal neutron fluxes using one and six precursors groups
for negative step reactivity.

Time [s]
Method 0.00 0.05 0.10 0.15 0.20 0.30 0.40

O
n
e
P
re
cu

rs
o
r

AMF
Fast 2.228929 1.645481 1.409437 1.313217 1.273214 1.247508 1.239679

Thermal 0.816356 0.601048 0.513969 0.478479 0.463731 0.454268 0.451400

This work
Fast

2.228929 1.664219 1.432717 1.323924 1.284070 1.254850 1.223374
(NA) (0.740093) (0.716911) (0.683589) (0.682731) (0.647724) (0.638791)

Thermal
0.816356 0.607165 0.522997 0.482617 0.468556 0.456693 0.445028
(NA) (0.262793) (0.255943) (0.244702) (0.242443) (0.230407) (0.226891)

S
ix

P
re
cu

rs
o
rs AT∗ Fast 2.228929 1.644662 1.405236 1.303591 1.257209 1.218425 1.198645

Thermal 0.816356 0.600760 0.512464 0.475006 0.457938 0.443711 0.436489

This work
Fast

2.228929 1.652668 1.404029 1.312502 1.257231 1.219096 1.203751
(NA) (0.568092) (0.561540) (0.540936) (0.536882) (0.517206) (0.516555)

Thermal
0.816356 0.603314 0.511551 0.478060 0.457749 0.444288 0.438643
(NA) (0.201299) (0.200864) (0.194116) (0.191520) (0.184962) (0.184731)

∗α = 1

4.1.2 Ramp Reactivity

As a second case study we consider a time-dependent reactivity insertion5, through a perturba-
tion in the thermal group absorption cross-section given by ∆Σ2,a = ±0.369×10−4T−1t cm−1.
Tables 4.4 and 4.5 report on the results of fast and thermal neutron fluxes. Reference values
for positive and negative ramp reactivities with six groups of delayed neutrons were taken
from the work of Aboanber et. al [57], where the numerical solutions are obtained through
the Magnus Expansion Method (MEM). For positive and negative ramp reactivities with one
group of delayed neutrons we compare with references [35] and [58], which report results from
a Generalization of the Analytical Exponential Model (GAEM) and the Fundamental Matrix
Method (FMM), respectively. The model under study in the last three related works coincides
with the deterministic one considered in this study (described in Chap. 2).
Again, IEM (this work) yields accurate results, with percentage errors below 1.3%. Figure
4.2, shows that, for negative insertion, the mean values present bigger fluctuations than for
positive insertion case.

Table 4.4: Data for the fast and thermal neutron fluxes using one and six precursors groups
for positive ramp reactivity.

Time [s]
Method 0.00 0.05 0.10 0.15 0.20 0.30 0.40

O
n
e
P
re
cu

rs
o
r

FMM
Fast 2.228930 2.276754 2.399141 2.580130 2.816688 3.484223 4.529887

Thermal 0.816356 0.834008 0.879171 0.945956 1.033243 1.279550 1.665373

This work
Fast

2.228930 2.299019 2.432781 2.604321 2.850085 3.524813 4.510834
(NA) (0.966116) (1.157748) (1.299797) (1.464997) (1.782104) (2.303448)

Thermal
0.816356 0.841289 0.892268 0.955165 1.046904 1.294013 1.657626
(NA) (0.345543) (0.418621) (0.471711) (0.531014) (0.648673) (0.839914)

S
ix

P
re
cu

rs
o
rs MEM∗ Fast 2.228930 2.276699 2.399435 2.581859 2.821866 3.507541 4.601092

Thermal 0.816356 0.833988 0.879276 0.946579 1.035121 1.288051 1.691415

This work
Fast

2.228930 2.283240 2.395160 2.594450 2.823642 3.511691 4.627514
(NA) (0.740631) (0.909801) (1.027921) (1.166121) (1.456732) (1.939770)

Thermal
0.816356 0.835944 0.877060 0.950923 1.035483 1.290072 1.701669
(NA) (0.264466) (0.328995) (0.373987) (0.423206) (0.531257) (0.710016)

∗3th approximation

5These types of perturbation are typically generated by the movement of control rods in the reactor.
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Figure 4.2: Neutron fluxes for ramp reactivity insertions with one and six groups of delayed
neutrons. Light blue and light purple dashed lines stand for the sample path for 1 and 6
precursors, respectively. Also, blue and red dashed lines represent the mean values for 1 and
6 precursors, respectively; while the gray and black solid lines give the reference values for 1
and 6 precursors, respectively. Inset at right shows a zoom of the yellow shaded region at left.

Table 4.5: Data for the fast and thermal neutron fluxes using one and six precursors groups
for negative ramp reactivity.

Time [s]
Method 0.00 0.05 0.10 0.15 0.20 0.30 0.40

O
n
e
P
re
cu

rs
o
r

GAEM
Fast 2.228929 2.182170 2.072892 1.936528 1.795460 1.541033 1.340396

Thermal 0.816356 0.799097 0.758773 0.708456 0.656407 0.562539 0.488524

This work
Fast

2.228929 2.202359 2.101324 1.952671 1.813443 1.552836 1.324255
(NA) (0.930556) (1.010642) (0.986931) (0.948472) (0.795450) (0.688733)

Thermal
0.816356 0.805631 0.769875 0.714649 0.664067 0.566571 0.482192
(NA) (0.332483) (0.364297) (0.356394) (0.340473) (0.284795) (0.245198)

S
ix

P
re
cu

rs
o
rs MEM∗ Fast 2.228930 2.182266 2.072701 1.935227 1.791970 1.530218 1.320096

Thermal 0.816356 0.799131 0.758705 0.707989 0.655146 0.558618 0.481157

This work
Fast

2.228930 2.187289 2.067262 1.944171 1.791222 1.530826 1.325908
(NA) (0.713496) (0.793953) (0.780900) (0.752101) (0.642766) (0.563829)

Thermal
0.816356 0.800539 0.756113 0.711024 0.654638 0.559200 0.483586
(NA) (0.254500) (0.286322) (0.282726) (0.270692) (0.231166) (0.202135)

∗3th approximation

4.1.3 Sinusoidal Reactivity

As a last case study we consider a positive sinusoidal insertion6. This time we take into
account a perturbation in the thermal group absorption cross-section given by

6This type of perturbation can occur due to control rod oscillations or certain mechanisms involving tem-
perature, such as the appearance of bubbles that avoids proper heat transfer. Perturbations of this type have
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∆Σ2,a = −0.369 × 10−4sin (2πτ−1t) cm−1, with τ = 0.8 and τ = 0.4 seconds for one and six
groups of delayed neutrons.
Table 4.6 reports on the results of fast and thermal neutron fluxes. Reference values for
one group of delayed neutrons were compared to the MEM method; while, for six groups of
delayed neutrons the results were compared with the AT method. On this respect, Fig. 4.3
shows the mean values for the neutron flux using one and six groups of delayed neutrons.
It is observed that bigger random fluctuations are obtained when the population changes its
trend, as occurs in the peak and valley sectors. This behavior is due to the sudden change in
reactivity, which explains why the constant insertion presents both a greater error percentage
and fluctuations in the mean values than the time-dependent case.

Table 4.6: Data for the fast and thermal neutron fluxes using one and six precursors groups
for sinusoidal reactivity.

Time [s]
Method 0.00 0.05 0.10 0.15 0.20 0.30 0.40

O
n
e
P
re
cu

rs
o
r

τ
=

0
.8

se
c MEM∗ Fast 2.228930 2.380577 2.780147 3.372849 4.070518 4.969714 3.996805

Thermal 0.816356 0.872330 1.019779 1.238484 1.495907 1.827613 1.468507

This work
Fast

2.228930 2.405608 2.821164 3.409460 4.125541 5.030763 3.979153
(NA) (1.005121) (1.328297) (1.680312) (2.090015) (2.534381) (2.037490)

Thermal
0.816356 0.880611 1.035679 1.252328 1.517893 1.849521 1.461325
(NA) (0.359871) (0.481604) (0.611966) (0.761754) (0.926165) (0.741932)

S
ix

P
re
cu

rs
o
rs

τ
=

0
.4

se
c AT† Fast 2.228930 2.530834 3.247809 3.855372 3.645454 1.925300 1.700186

Thermal 0.816356 0.927785 1.192325 1.416411 1.338814 0.704067 0.621142

This work
Fast

2.228930 2.541330 3.246943 3.870004 3.639474 1.926468 1.711538
(NA) (0.812859) (1.202982) (1.494957) (1.472138) (0.796306) (0.713571)

Thermal
0.816356 0.931181 1.191251 1.421452 1.336272 0.704889 0.625654
(NA) (0.291000) (0.436984) (0.546504) (0.535798) (0.287595) (0.257383)

∗2nd approximation. †α = 1
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Figure 4.3: Neutron fluxes for positive sinusoidal reactivity insertions with one and six
groups of delayed neutrons. Light blue and light purple dashed lines stand for the sample
path for 1 and 6 precursors, respectively. Also, blue and red dashed lines represent the mean
values for 1 and 6 precursors, respectively; while the gray and black solid lines give the reference
values for 1 and 6 precursors, respectively. Inset at right shows a zoom of the yellow shaded
region at bottom.

been observed recently in the German KWU reactors [59, 26, 27]

.
.
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As observed from subsections 4.1.1 to 4.1.3, in this first reactor, the calculations of the neutron
populations through the proposed stochastic model are in very good agreement with the ref-
erence values, regardless the different numerical schemes and various modeling methodologies
employed. Indeed, the errors found are small; although they could slightly vary depending on
the pseudo-random numbers used to generate the Wiener processes.

From other side, the sample paths reported in Figs. 4.1, 4.2, and 4.3 reveal a clue result. In
recent works, stability of the stochastic Point Kinetics equations models has been discussed.
In particular, discussions about the realizations of the stochastic process [60, 61] have been
presented, correctly arguing that they do not represent the reactor behavior since, due to the
random behavior, they would imply random reactor meltdowns and shutdowns, something
that is not observed; see, for example, references [24, 61] and elsewhere. Here, we can solve
this drawback since all the random variables described in Chap. 2 are identically distributed,
hence the Central Limit Theorem takes on the form seen in Eqn. (2.34), which differs from
other models by the n−1/2 factor that accompanies the covariance matrix, whose presence
reduces the extreme random fluctuations of the stochastic realizations. Conversely to previ-
ous models, with ours, no meltdowns or shutdowns are obtained in the reactor description.
Although in the related figures the random fluctuations appear as large at some extent, they
can be attenuated when effects such as thermal feedback, or heat transport mechanisms are
considered within the model, as shown by Stein and Dubi [60].

In the next section, an actual nuclear reactor scenario is considered, and the stochastic model
is tested against experimental results.

4.2 REAL NUCLEAR REACTOR (AGN-201)

The second thermal nuclear reactor we consider in this study for comparison purposes is the
AGN-201. It is a real nuclear reactor consisting of a cylinder 25.6 cm in diameter and 24.0 cm
height, whose core material is a homogeneous mixture of polyethylene and uranium dioxide
[62]. Table 4.7 shows the reactor parameters, which have been taken from the Cooke’s work
and the Zohuri’s book [63, 11].

Table 4.7: Parameters of a cylindrical AGN-201 reactor.

Parameter
Fast Thermal Delayed

λi [s
−1] βi (×10−2)

neutrons neutrons group i

D [cm−1] 0.623000 0.125000 1 0.0124 0.0210
Σa[cm

−1] 0.001542 0.076558 2 0.0205 0.1400
νΣf [cm

−1] 0.002562 0.151790 3 0.1110 0.1250
Σs[cm

−1] 0.055110 - 4 0.3010 0.2530
v [cm s−1] 3.00×107 2.68×105 5 1.1400 0.0740
keff 1.00 6 3.0100 0.0270
Tc [

◦C] 3.00 average 0.07675
αT [◦C−1] -2.75×10−4

γ [s−1] 1.00×10−4

K [cm3 ◦C neut−1 s−1] 2.31×10−7

.
.
.
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4.2.1 Drop Test

In 1961, Cooke reported results from the rod drop test experiment, which consists of ap-
proximating negative step reactivity by inserting a control element into the reactor as fast as
possible [64, 65]. In this case, a polyethylene rod is quickly inserted into the reactor through
a 2.54 cm in diameter hole known as the glory hole7, while the reactor is at steady power.
This experiment allows to know the maximum quantity of available reactivity of the control
elements through the following expression:

ρβ−1
eff =

N1 (t) +N2 (t)

N1 (t+∆t) +N2 (t+∆t)
βk−1

eff , (4.1)

where, ρβ−1
eff is the quantity of reactivity known as One Dollar (represented by $), which

can also be expressed in “per cent mille” represented by pcm (with pcm= 105 $); Ng (t) and
Ng (t+∆t) are the neutron densities at steady power and once the control element is fully
inserted, respectively. From this experiment, the effective delayed neutron fraction (βeff) can
also be determined. This is a key parameter in reactor safety, which measures the capacity of
the reactor to thermalize neutrons [66].

Here, we simulated the steady state of the reactor during 0.5 seconds. After this, a step
negative reactivity of 2% of the initial thermal reactivity was introduced. In addition, once
the perturbation was introduced, an external source of neutrons Q⃗t = [q1 q2]

T , with q1 =
375 neutrons cm−3s−1 and q2 = 0.2 q1, was considered. This simulates neutrons coming
from the reactor’s reflective barriers. After the perturbation, the reactor is allowed to evolve
for 7.5 s longer. For calculations, a time step of 3 ms and 250 stochastic realizations were
used with six groups of delayed neutrons, and initial conditions given by: N1 (0) = 5.1652,
N2 (0) = 2.8348, and ci (0) = [µi,1N1 (0) + µi,2N2 (0)]λ

−1
i .

The mean value of the maximum quantity of available reactivity of the polyethylene rod was
ρβ−1

eff = 226 pcm with 22 pcm as standard deviation. These values are in excellent agreement
with the experimental Cooke’s findings, namely 230 ± 20 pcm, as well as with the reference
value of the course rod experiment also performed by Cooke with a different methodology
which goes to 221 pcm, allowing to compute this same quantity. In this simulation, the effect
of thermal feedback was considered, with 20 ◦C as initial temperature, the same temperature
for the coolant, and a thermal reactivity temperature coefficient of 2500αT . However, due
to the small change observed in the neutron population, this effect can be neglected with no
modifications in the calculations. Appendix A shows the MATLAB code used for this simu-
lation.

Figure 4.4 shows comparisons between our results (solid dark blue line) for the rod drop test
and the experimental curve (solid red line), which was obtained by a digitalization process
from the original reference. The inset reports the values of ρβ−1

eff obtained by Cooke (light
green) and this work (cyan dot). It is worth noticing that, in the experiment, a finite time
is needed to introduce the polyethylene rod into the reactor, which causes the differences
observed between our framework and the experimental curve. Thus, once the polyethylene
rod is fully introduced, an extrapolation of the experimental curve, through the dashed red
line, is done to compute the ρβ−1

eff value. Finally, the blue dots are the result of one of the

7See Fig. 3 in ref. [62] for a view of the AGN-201 core tank and its contents.

.
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realizations of the stochastic process (sample path), whose fluctuations completely agree with
those observed in the real measurements [64].

 Sample path
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Figure 4.4: Total neutron density for the drop test. Inset shows the experimental value of
ρβ−1

eff with their standard deviation (light green) [63], as well as our result (cyan dot with
purple bar), and the distribution of the stochastic realizations for the ρβ−1

eff quantity.

4.2.2 Temperature Feedback

Conversely to the previous case, in this section, we show a scenario where the thermal feedback
effect is non-negligible. For this purpose, we considered a ramp positive reactivity of 4% of
the reactor thermal reactivity, of the form ρ0,2 (t) = −0.04ρ2,0τ

−1t, with τ = 92 s. The initial
conditions were N1 (0) = 9.68475, N2 (0) = 5.31525, and ci (0) = [µi,1N1 (0) + µi,2N2 (0)]λ

−1
i ,

with 0.034 ◦C and 3 ◦C as initial temperature of the reactor and coolant temperature, respec-
tively. This simulation was performed in a time window of 170 seconds with a time step of 25
milliseconds and 50 realizations of the stochastic process.

Figure 4.5 shows the results of our simulation, where the dashed lines are the reference curves
for total neutron density and the reactor temperature (×100) taken from the simulations car-
ried out by Cooke through digitalization, while the solid lines represent results of this study.
As observed, our result are in qualitative good agreement with the trends reported by Cooke
(indeed, there are coincidences in the time interval which the neutron populations grows in,
the maximum value of the population, and the decreasing population process due to thermal
feedback), and the lack of complete coincidence among the curves can be ascribed to our igno-
rance of the exact parameters used by Cooke. A growth of the neutron population is observed
during the initial 55 s due to the induced perturbation. At this time, reactor temperature
increases considerably, thus activating the thermal feedback effect that prevents exponential
growth and decreases the population for a few seconds. Then, after the peak of the neutron
population at 55 seconds (with a value of 3.2476 × 106 neutrons cm−3), a slightly increasing
behavior is obtained. We also found close agreement between our total neutron density curve
and that presented by Bogado et. al [52] and references therein. The inset shows the very
initial time of the simulation, where the neutron population is low, and random fluctuations
are noticeable. Again, as in the drop test case, the sample path fluctuates narrowly around the
mean value, in close agreement with real experiments, differently from the other studied mod-
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els which yield enormous fluctuations, well far from the real observations. This fact indicates
the stability in the realizations of our stochastic model and its good quality for describing the
real processes. These great advantages make our proposed methodology very appropriate for
the study of these kind of systems.
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Figure 4.5: Total neutron density (blue solid curve and left-side axis) and temperature curve
(red solid curve and right-side axis in units of ×100 ◦C) for the case of positive ramp reactivity
with temperature feedback effect. The dashed lines show the reference values taken for each
case from the related Cooke’s work [63]. Inset shows a zoom in of the curve at very small
time.

Summing up, we have studied a real nuclear reactor through stochastic differential equations,
which the energy variables was included in. Conversely, in the stochastic models reported so
far only mono-energetic neutrons have been considered, which is far from reality, as discussed
in Chap. 2. It is worth noting that the random variables describing the events that change
the neutron population are independent and identically distributed, what allows the use of
the Central Limit Theorem in the Lindeberg-Lévy form, and results in the appearance of the
factor n

−1/2
e in the co-variance matrix. Since n

−1/2
e < 1, the random fluctuations (noise) in

the stochastic process are reduced. The fact that the random variables are identically dis-
tributed causes that our model does not present the instability shown in previous models
[60, 61]. Indeed, these authors report that the stochastic models exhibit excessive noise, and
their realizations predict random shutdowns and meltdowns events, which does not occur in
real operation of the reactors.

Aiming to illustrate this situation, Fig.4.6(a) shows the AGN-201 reactor at steady-state as
well as the comparison of two realizations of the stochastic process (sample paths). One of
those realizations comes from our model (identically distributed variables and Lindeberg-Lévy
form of the CLT), while the other one is coming from previous models where the Lyapunov
form of the CLT is used. As observed, fluctuations in the results of our model are four times
smaller than those in the other one for the same Wiener process. This meaningful decrease in
noise allows using a smaller number of realizations of the stochastic process to obtain accurate
results. This fact is clearly illustrated in Fig. 4.6(b), which shows the maximum excess
reactivity of the polyethylene rod in the AGN-201 reactor computed by our model, correctly

.
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matching experimental data (represented by the orange shaded area). Contrarily, previous
models present excessive standard deviations.

N
eu

tro
n 

de
ns

ity
 [n

eu
tr

on
s c

m
-3

]

Time [s]

 Sample path    Sample path*

5%

10%

20%

(a) AGN-201 nuclear reactor at steady state and
two sample paths of the stochastic process using
Lindeberg-Lévy (green solid line) and Lyapunov∗

central limit theorem (blue doted line) are shown.
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(b) Maximum excess reactivity available in the
polyethylene rod as a function of the number
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Figure 4.6: AGN-201 nuclear reactor simulations for: (a) A steady state scenario at a
neutron density of 8 neutrons cm−3 (orange solid line), two sample paths of the stochastic
process using Lindeberg-Lévy (green solid line) and Lyapunov (blue doted line) forms of the
central limit theorem. Color shaded areas represent different error percentages. (b) Maximum
excess reactivity ρβ−1

eff using Lindeberg-Lévy (green bars) and Lyapunov (blue bars) central
limit theorem. Black dots stand for mean values, bars represent one standard deviation, and
black whiskers range from 10 to 90 of the simulated data. The orange shaded area represent
experimental values, with the solid line showing the mean value, and the dashed lines indicating
1 standard deviation.



5. CONCLUSIONS

In this research, the stochastic model of the Point Kinetics equations with two-energy groups
and multi-groups of delayed neutrons has been derived in detail, taking into account the
thermal feedback effect. The Euler-Maruyama scheme in implicit form was proposed to ap-
proximate numerical solutions since the model studied lacks analytical solutions.

Our model results were compared with two thermal nuclear reactors. The first one represents
a hypothetical reactor in which different types of perturbations were considered. Mean values
of the stochastic model were found in excellent agreement with those reported in the litera-
ture, which employ diverse numerical techniques and several methodologies for nuclear reactor
modeling.

The second case selected was a real reactor of type AGN-201. In this case, the rod drop test
was simulated. Mean value and standard deviation results show an overall good agreement
with experimental data. A valuable advantage of our model is that, conversely to other de-
terministic and widely used models, it provides approximations to the standard deviations,
thus showing that stochastic models are more general than deterministic ones. Furthermore,
our model solves the instability of the stochastic realizations presented by previous frameworks.

These comparisons allow us to conclude that the proposed stochastic model can be considered
as an appropriate and very useful tool to describe the behavior of nuclear reactors by using
the appropriate initial conditions and reactor configurations.

As perspectives for future works, it is open the possibility of presenting a generalization of
this model by including space as a variable in the reactor description, so as to distinguish its
different zones, such as reflective barriers, irradiation channels, control zones, among others.

In addition, more physical rigor could also be included in the model, by, for example, adding
more energy-groups, considering thermo-hydraulic effects involved in cooling, studying poison-
ing effects. Given the limited availability of experimental data in the literature, the Colombian
TRIGA nuclear reactor would be a good option for obtaining data for comparison purposes
given its well-known design. Clearly, this could imply a great deal of research and technological
development for our country.
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APPENDIX A. PUBLICATIONS

As result of the research work developed during this Master program, we have submitted for
publication to the journal Progress in Nuclear Energy, the manuscript entitled:

1. THETA METHOD APPLIED TO TWO-ENERGY GROUPS POINT KINETICS EQUA-
TIONS, by Daniel E. Cedeño-Girón, Abdallah A. Nahla and J. Mazo-Zuluaga.

Currently, we are also writing the final part of the manuscript entitled:

2. STOCHASTIC POINT REACTOR KINETICS EQUATIONS WITH TWO-ENERGY
GROUPS, by Daniel E. Cedeño-Girón, Rodrigo Henao-Henao and J. Mazo-Zuluaga, which
will also be promptly submitted to Progress in Nuclear Energy.

43



APPENDIX B. MATLAB CODE

MATLAB code for the rod drop test.

1 c l ea r , c l c
2 t s t a r t = cputime ;
3
4 %% Study In t e r v a l
5 T = 8 ; %Length o f Time I n t e r v a l
6 i t e r a t i o n s = 330*T ; %Number o f I t e r a t i o n s
7 h = T/ i t e r a t i o n s ; %Time Step
8 t = 0 : h :T ; %Time
9

10 %% Experiment Parameters
11 g = 2 ; %# of Energy groups
12 m = 6 ; %# of Precur so r s
13 n = m + 3*g + (g−1) ; %# random va r i a b l e s
14 high=24 ; diameter =25.6 ; Vol=pi *high *( diameter /2) ˆ2 ; %Volume o f r e a c t o r core
15 i f (m==1) , L = 0 .07675 ; B = 0 . 0064 ; BettaT = B ;
16 e l s e i f (m==6) , L = [ 0 .0124 0 .0205 0 .1110 0 .3010 1 .1400 3 .0100 ] ; %i−th Decays Constants
17 B = [ 0 .21 1 .40 1 .25 2 .53 0 .74 0 .27 ]*10ˆ−3 ; %i−th f r a c t i o n o f p r e cu r so r

group
18 BettaT = 0 ;
19 f o r i =1:m, BettaT = BettaT + B(1 , i ) ; end , end %Total Fract ion o f p r e cu r so r

group
20 nu = 2.41 ; %Average # of Neutron Generate per F i s s i on Event
21 D = [ 0 . 6 2 3 0 . 1 2 5 ] ; %D i f f u s i on Co e f f i c i e n t s
22 v = [30 0 .268 ]*10ˆ6 ; %Speed o f Neutrons
23 Kef f = 1 .0 ;
24 SgF = [0 . 002562 0 . 151790 ] / ( nu*Keff ) ; %nuFis s ion Cross−Sec t i on
25 SgS = 0.05511 ; %Sca t t e r i ng Cross−Sect i on
26 SgA = [0 . 002004 0 . 099500 ] ; %Absort ion Cross−Sec t i on
27 q = − [ 375 75 ] ; %In t e n s i t y Neutron Source
28
29 %% New Experiment Parameter
30 LM = [1/ ( nu*SgF (1) *v (1) ) 1/(nu*SgF (2) *v (2) ) ] ; %Generation Time o f Neutrons
31 mu = ze ro s (6 , 2 ) ; f o r i =1:m, f o r j =1:2 , mu( i , j ) = B( i ) /LM( j ) ; end , end
32
33 %% I n i t i a l Condit ions
34 N = [5 . 1 652 2 . 8348 ]*Vol ; %# of Fast and Thermal Neutrons
35 C=ze ro s (1 ,m) ; f o r i =1:m, C( i ) = ( mu( i , 1 ) *N(1) + mu( i , 2 ) *N(2) ) /L( i ) ; end %# of i−th

Precursor
36 X=ze ro s (m+2, i t e r a t i o n s +1) ;
37 i f (m==1) , X( : , 1 ) = [N(1) ; N(2) ; C(1 ) ] ;
38 e l s e i f (m==6) , X( : , 1 ) = [N(1) ; N(2) ; C(1) ; C(2) ; C(3 ) ; C(4 ) ; C(5 ) ; C(6 ) ] ; end %Vector o f

random Var iab l e s
39
40 %% Buckl ing o f mate r i a l Squared
41 Bm1 = − (SgA(1)+SgS ) /D(1) + ( nu*SgF (1) *v (1) *N(1) + nu*SgF (2) *v (2) *N(2) ) /( D(1) *v (1 ) *N(1) )

; %Fast
42 Bm2 = − SgA(2) /D(2) + ( SgS*v (1) *N(1) ) /( D(2) *v (2 ) *N(2) ) ; %Thermal
43
44 %% Reac t i v i t y
45 rho1 = 1 − (SgA(1) + D(1) *Bm1) /(nu*SgF (1) ) ; %Fast
46 rho2 = ze ro s (1 , i t e r a t i o n s +1) ; rho2 (1 , 1 ) = 1 − (SgA(2) + D(2) *Bm2) /(nu*SgF (2) ) ; %Thermal
47
48 %% Feedback Temperature E f f e c t s on Reac t i v i t y
49 Temp=ze ro s (1 , i t e r a t i o n s +1) ; Temp(1 , 1 ) = 20 ; %I n i t a l Temperature
50 Tc = 20 ; %Coolant Temperature
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51 alphaT = − 2 .75*1E−4 ; %Temperature c o e f f i c i e n t o f r e a c t i v i t y
52 K = 2.31*1E−7 ; %Rec ip roca l o f the thermal capac i ty o f the

r e a c t o r
53 gammaT = 1E−4 ; %Mean time f o r heat t r a n s f e r to coo lantˆ−1
54
55 %% Elements o f Matrix A
56 k = v (1) *SgS ;
57 alpha = ( BettaT − rho1 ) /LM(1) + k ;
58 zeta = ( 1 − BettaT ) /LM(2) ;
59
60 %% Wiener ' s Proce s s e s
61 MB = 250 ; %# of Wiener Proce s s e s
62 seed = 2794 ; %Seed ( generate the same random numbers )
63 rng ( seed , ' tw i s t e r ' ) ; %random number genera tor
64 WTN = ze ro s (MB, i t e r a t i o n s +1) ; E=ze ro s (1 ,m) ; EE=ze ro s (1 ,m) ; M = ze ro s (m+2,m+2) ;
65 f o r j =1:MB
66 %% D i f f e r e n t i a l Wiener Proce s s e s with mean 0 and var 1
67 DW = sqr t (h) * randn (n , i t e r a t i o n s +1) ;
68 f o r i =1: i t e r a t i o n s
69 %% Perturbat ion
70 i f ( i <166) , Q = ze ro s (m+2 ,1) ;
71 rho2 (1 , i ) = 1 − (SgA(2) + D(2) *Bm2) /(nu*SgF (2) ) ;
72 e l s e i f ( i ==166) && (m==1)
73 rho2 (1 , i +1) = 1.002* rho2 ;
74 Q = [ q (1 ) ; q (2 ) ; 0 ] *Vol ; %Neutron Source
75 e l s e i f ( i ==166) && (m==6)
76 rho2 (1 , i +1) = 1.002* rho2 ;
77 Q = [ q (1 ) ; q (2 ) ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ] *Vol ; %Neutron Source
78 end
79
80 eta = (1 − rho2 (1 , i +1) ) /LM(2) ;
81 %% Ana ly t i c a l Matrix M=(I−A*h)ˆ−1
82 theta = 1/( 1 + h* eta ) ;
83 f o r r=1:m, EE( r ) = h*mu( r , 2 ) * theta /( 1 + h*L( r ) ) ; end
84 f o r r=1:m, E( r ) = ( h*mu( r , 1 ) + h*h*mu( r , 2 ) *k* theta ) /( 1 + h*L( r ) ) ; end
85 suma1=0; f o r r=1:m, suma1 = suma1 + L( r ) *E( r ) ; end
86 suma2=0; f o r r=1:m, suma2 = suma2 + L( r ) *EE( r ) ; end
87 M(1 ,1 ) = 1/( 1 + h* alpha − h*h* zeta *k* theta − h*suma1 ) ;
88 M(1 ,2 ) = ( h* zeta * theta + h*suma2 ) *M(1 ,1 ) ;
89 f o r r =1:2 , M(2 , r ) = h*k* theta *M(1 , r ) ; i f ( r==2) , M(2 , r ) = M(2 ,2 ) + theta ; end , end
90 f o r r=1:m
91 M(1 , r+2) = h*L( r ) *M(1 ,1 ) /( 1 + h*L( r ) ) ;
92 M(2 , r+2) = h*k* theta *M(1 , r+2) ;
93 M( r+2 ,1) = E( r ) *M(1 ,1 ) ;
94 M( r+2 ,2) = EE( r ) + E( r ) *M(1 ,2 ) ;
95 f o r s=1:m, M( r+2, s+2) = E( r ) *M(1 , s+2) ; M( s+2, r+2) = E( s ) *M(1 , r+2) ;
96 i f ( r==s ) , M( r+2, s+2) = E( r ) *M(1 , s+2) + 1/( 1 + h*L( r ) ) ; end , end
97 end
98
99 %% Di f f u s i on Tensor

100 G=ze ro s (m+2,n) ;
101 Sf = SgS/(nu*SgF (1) ) ;
102 %% Death Due to Radioact ive Capture
103 G(1 , 1 ) = − r e a l ( s q r t ( X(1 , i ) *( 1 −rho1 − 1/nu ) /LM(1) ) ) ; %Death Fast Group
104 G(2 , 2 ) = − r e a l ( s q r t ( X(2 , i ) *( 1 −rho2 (1 , i ) − 1/nu ) /LM(2) ) ) ; %Death Thermal Group
105 %% Born due to Source
106 G(1 , 3 ) = q (1) ; %Born in Fast Group
107 G(2 , 4 ) = q (2) ; %Born in Thermal Group
108 %% Born Due to Decays
109 f o r r=1:m, G(1 , r+4) = sq r t ( L( r ) *X( r+2, i ) ) ; end %Born in Fast Group
110 f o r r=1:m, G( r+2, r+4) = − G(1 , r+4) ; end %Death o f i−th Precursor
111
112 i f (m==1)
113 %% Born in Thermal Group Due to Sca t t e r i ng
114 G(1 , 6 ) = − s q r t ( X(1 , i ) * Sf /LM(1) ) ; %Death in Fast Group
115 G(2 , 6 ) = − G(1 ,6 ) ; %Born in Thermal Group
116 %% F i s s i o n s
117 G(1 , 7 ) = ( − 1 + (1−BettaT ) *nu ) * s q r t ( X(1 , i ) /( nu*LM(1) ) ) ;
118 f o r r=1:m, G( r +2 ,7) = B( r ) *nu* s q r t ( X(1 , i ) /( nu*LM(1) ) ) ; end
119 G(1 , 8 ) = (1−BettaT ) *nu* s q r t ( X(2 , i ) /( nu*LM(2) ) ) ;
120 G(2 , 8 ) = − s q r t ( X(2 , i ) /( nu*LM(2) ) ) ;
121 f o r r=1:m, G( r +2 ,8) = B( r ) *nu* s q r t ( X(2 , i ) /( nu*LM(2) ) ) ; end
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122
123 e l s e i f (m==6)
124 %% Born in Thermal Group Due to Sca t t e r i ng
125 G(1 ,11 ) = − s q r t ( X(1 , i ) * Sf /LM(1) ) ; %Death in Fast Group
126 G(2 ,11 ) = − G(1 ,11 ) ; %Born in Thermal Group
127 %% F i s s i o n s
128 G(1 ,12 ) = ( − 1 + (1−BettaT ) *nu ) * s q r t ( X(1 , i ) /( nu*LM(1) ) ) ;
129 f o r r=1:m, G( r +2 ,12) = B( r ) *nu* s q r t ( X(1 , i ) /( nu*LM(1) ) ) ; end
130 G(1 ,13 ) = (1−BettaT ) *nu* s q r t ( X(2 , i ) /( nu*LM(2) ) ) ;
131 G(2 ,13 ) = − s q r t ( X(2 , i ) /( nu*LM(2) ) ) ;
132 f o r r=1:m, G( r +2 ,13) = B( r ) *nu* s q r t ( X(2 , i ) /( nu*LM(2) ) ) ; end , end
133
134 %% Imp l i c i t Euler−Maruyama Method
135 X( : , 1 6 6 ) = X( : , 1 ) ;
136 X( : , i +1) = M*( X( : , i ) + h*Q*exp ( (0.5− t ( i +1) ) /10 ) + G*DW( : , i ) / sq r t (n) ) ;
137
138 %% Feedback Temperature
139 rho2 (1 , i +1) = rho2 (1 , i ) ...
140 + h *2 .5E3*alphaT*K*exp ( − gammaT*( t ( i )+t ( i +1) ) /2 ) *( X(2 , i )+X(2 , i +1) )

/(2*Vol ) ;
141 %% Temperature
142 Temp(1 , i +1) = Temp(1 , i ) + h*( K*( X(2 , i ) /Vol + X(1 , i ) /Vol ) − gammaT*( Temp(1 , i ) − Tc ) )

;
143
144 end
145 %% Process Rea l i z a t i on
146 WTN( j , : ) =(X( 1 , : )+X( 2 , : ) ) /Vol ; %Total Neutron Density
147 end
148
149 %% Reac t i v i t y /Delayed Neutron E f f e c t i v e n e s s
150 WC = ze ro s (MB, 1 ) ; f o r i =1:MB, WC( i , 1 )=( 8/WTN( i , 2 02 ) − 1 ) *BettaT/Kef f ; end
151 Count = mean(WC) ; StdCount = std (WC) ; %Mean and Standard Deviat ion
152
153 %% Neutron Density
154 EN= mean(WTN) ; StdN= std (WTN) ; %Mean and Standard Deviat ion
155
156 %% Table
157 Table = [ Count StdCount ; EN(1 ,202) StdN (1 ,202) ] ;
158
159 tend = cputime − t s t a r t ;
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[44] M. Planck. Über einen satz der statistischen dynamik und seine erweiterung in der quantentheorie. Sitzungsberichte der
Königlich Preussischen Akademie der Wissenschaften, 24:324–341, 1917.
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