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The lorentz group, a galilean approach

D.E. Jaramillo and N. Vanegas
Instituto de Fsica, Universidad de Antioquia
A.A. 1226, Medelh, Colombia

Recibido el 28 de abril de 2003; aceptado el 17 de septiembre de 2003

We present a pedagogical approach to the Lorentz group. We start by introducing a compact notation to express the elements
damental representation of the rotations group. Lorentz coordinate transformations are derived in a novel and compact form.

how to make a Lorentz transformation on the electromagnetic fields as well. A covariant time-derivative is introduced in order to d
non-inertial systems. Examples of the usefulness of these results such as the rotating system and the Thomas precession, are alst

Keywords: Special relativity; Lorentz transformations.

En este trabajo se presenta una aproxigragiedaggica al grupo de Lorentz. Se comienza introduciendo una r@otaimpacta para
expresar los elementos de la represedtadindamental del grupo de rotaciones. Las transformaciones de Lorentz de las coorden:
derivan de una manera compacta. Se muestra éammo realizar las transformaciones de Lorentz sobre los campos electrtinagn
Se introduce una derivada temporal covariante para tratar con sistemas no inerciales, para mostrar la utilidacctieleste presentar
tambien ejemplos tales como el sistema rotante y la préoetg Thomas.

Descriptores: Relatividad especial; transformaciones de Lorentz.
PACS: 03.30
1. Introduction

Special relativity was first introduced nearly a century ago in @ — ' = Ri, @)

order to explain the massive experimental evidence againgo that

ether as the medium for propagating electromagnetic waves.

As a consequence of special relativity an unexpected space- z-r=1 7. (2)

time structure was discovered. The pure Lorentz transforma- . .

tions called boosts relate the changes of the space distanc@s? three dimensional spadg corresponds to &x 3 orthog-

and time intervals when they are measured from two differenn@ matrix and the arrayis written as a column. In order tc

inertial frames. Rotations and boost transformations form th&ind explicitly the R matrix we analyze infinitesimal rotation:

general Lorentz group (The properties of the Lorentz grougind: @s usual, then construct a finite transformation, mad

can be found in other references such as [1-4]). an infinite n_um_ber of infinitesimal ones. If an infinitesim:
We show how one can understand boost transformationéfanSformatlon Is represented by

which follow from the postulates of special relativity, as cor- T =707, (3)

responding to deformations of the classical Galilean transfor-

mations. Also we introduce a covariant temporal derivativethen, from (2)47 in first approximation satisfies

to deal with non-inertial systems. This article is arranged 5 —0 @)

as follows. In Sec. 2 we show a simple way to generate and -

write the matrices associated with the rotation of three dimenfor all 7. The solution of this equation is given by

sional vectors and present some applications of our notation. .

In Sec. 3 we find the matrices of the boost transformations 0% =60 x 7, (5)

starting from Galileo’s only by imposing the constance Oftheth infinitesimal to5@ physicall ies the total inf
velocity of light. Finally, in Sec. 4 we show how the electro- € Infinitesimal vectopu physically carries the total infor-

magnetic fields transform under general Lorentz transforma'ation about of the rotatiorjd¢| gives the magnitude of the

tions in the same fashion we introduced before. An appendi&matlon angle and = 59/|5.9| are Fhe coordlngtes of.th.e un
deal with non-inertial system. vector, parallel to the rotation axis. From this the (infinites

mally) transformated coordinates are written as

7= (1-00x%)z. (6)

8

8]
8

2. Rotations
The expression in brackets corresponds to the infinitesi

2.1. Rotations of the co ordinate frame rotation matrixR(ch). The quantity567>< is a (matrix) opera-
tor which can be defined as follows:
Under rotations the Cartesian coordinates of a specific vector S

transform linearly according to (60x)Z = 60 x &, )
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or more explicitly, wheree;;;; is the totally antisymmetric Levi-Civita tensor.
(The sum over the repeated indexes is understood.) Writing
. 0 —d65 46
d0x = 003 0 -6, |. (8) T = ié; %, (14)

—0602 06, 0
we find that the generators can be re-written as

Writting
60 = Jim 0/N Ox =—i0-T; (15)
) . R ] that is,j corresponds to a hermitian base for the generator
the matrix for a finite anglé rotation corresponds to space. According to (12) and (13) this then satisfy
- N
L LN % [Ti, Tj) = i€ijndh (16)
= = R iyJg ijkJk-
0= o [r00]" =y (1-5)
B The relation (16) corresponds to the algebra of rotations.
—0x
=e "% 9

2.3. Rotating systems
The expansion of the exponential in (9) gives usEhmatrix
explicitly, All of the subsection 2.2. is standard, however in connection
. . ) . with subsection 2.1. we can obtain interesting results. As an
e 9 =00 —sinh O x —cosH(hx)?, (10)  example of the usefulness of the notation introduced in (9)

) . ) . ) for the rotation matrix, let’s find the velocity and acceleration
which applied to the coordinates gives the conventional exgs o particle observed from a rotating system. Let a vegtor

pression of coordinate rotations [4]. For arriving to (10) We g the coordinates of a particle in an inertial system @nd
have used the properties of the triple vector product to obtail, o -qordinates of the same particle observed from a rotat-
(5x)(¢7x) — G5 —0- ¢ 1) ing system, with angular velocity; the origins of tl_wese two
systems are located at the same geometrical point so that the
the last term is understood to be the coefficient of an identitgoordinates satisfy the relation
matrix. In this notation the period after a vector implies its

= —0x

transpositiond- = 67 . 7 =e0"z (17)
2.2. Rotations algebra whered is a time-dependent function. In the inertial system

the velocity and acceleration of one particle are the first and
As is well known a group is a set of operators with a mul-second time-derivative of the coordinates, respectively. As-
tiplication law which satisfies four basic properties: closure,suming that the components of a force, acting over the parti-
associativity, existence of the identity and the existence of a&le, transform according to (17) we conclude that, in the ro-
unique inverse for each element. The set of rotation matriceating system, the second Newton I&w= ma does not have
R represents a group: the rotation group. The elements ahis form, unless we change the time-derivative to a covariant
the rotation group are labeled by the set of continuos paramtme-derivative given by
etersf;. The antisymmetric matrigdx generates the rotation

matrix R(0), this is why it is called “gener.ator". Gene.ra- D, = e 0% ﬂee“x _ 4 4+ 3% +1(@ x ) x

tors form a vector space as well. The rotations algebra is the de dt 2

commutation relations among the elements of the generators +l ((q y ~) y 5) "+ (18)
vector space basis. ETA ’

The closure PTOpe”V itis nothlng more than the s_tateme_n\tNhere we have used (12) in the known relation
that the composition of two rotations is again a rotation. This
is implemented in group theory language by saying thatthe _, = , 1
commutator between two generators is a generator. For the © Be” =B +[B, Al + 5HB’AL A4
generators of the rotation group we obtain 1

S o +57

(6%, 6x] = (0 x §)x, (12) 3
Thus we can define a covariant velocity of the particle,
Seen in the rotating system, as the covariant derivative of the
coordinates; in the simple case in whighs paralell tod we
have

[[B, A], A]], A] + - - -

where we have used the Jacobi identity for the triple vecto
product.

If the é; form the standard basis of the coordinate spac
they satisfy the algebra

=

=/

_ = =
éi . éj = 6ij, é7 X éj = €ijkék, (13) v = dt +wxa. (19)
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In the same way the covariant acceleration is then given by us proceed like this; for the/c — 0 approximation take the
deformed Galilean transformations to be
N AN
a — tU—W‘f— UJXH‘FLUX(WX.T) t/:t75t

taxi,. (20 =7t (23)

where @ is the angular acceleration of the system. In theintroducing a factost. In order to satisfy (22) in first approx
second term of the RHS we recognize the Coriolis accelerdmation we obtain
tion [4—7], and the centrifugal acceleration in the third term. iU- T

In this way the primed vectors are related with the un-primed ot = 2 (24)

quantities by a relation similar to (17). Notice that (22) together with (23) satisfy the first equatit
in (21) even ifct? — #2 not vanishes. That is, evenifandt

3. Lorentz transformations represent the coordinates of any arbitrary event. These sc
formed Galilean transformations correspond to infinitesin

Lorentz transformations are the rules that relate space-tim@oost transformations.

coordinates of any event in two different inertial systems. Itis convenient to define a infinitesimal parameter as
Basically, Lorentz transformations can be classified in two

types, rotations and boosts. A general Lorentz transformation )
is a mixing between them. Boosts are the Lorentz transforma-

tions when the systems have parallel spatial axis with spatialVe can write the infinitesimal Lorentz transformation (23
origin in relative movement. As we will see, Lorentz trans- using (24) and (25), as the following matrix equation:
formations are the generalization of the classical rotations to

ol

(25)

u/c—0

!/ —
4-dimensional space-time. ( 2‘5’ ) = {1 — < 5()# 567' )} ( Cf ) (26)
. 7 T
3.1. Boost transformations Assuming
In order to deduced how to transform the coordinates of any o= lim i7j/N,

event after a boost let us tak¥ to be an inertial system in . .
one can reconstruct the finite Lorentz transformations, us

relative movement with respect to another inertial system d imilar to th introduced in (9): formi
The respective axes in both systems are parallel. Take aigpProcedure simiiar to the one introduced in (. ); performi
an infinite number of infinitesimal transformations the res

their spatial origin as coincident at time zero for both sys-.
tems. We get that the space-time origin of the two systems i

the same. According to the Galilean transformations, in that ct! ) 1 0 i N
case, the coordinatésand#’ of a event,as observed froffi, ( ) = lim {1 N ( i 0 )} ( z >
are related with the andx coordinates of5 given by

. 0 -7 ct
— —exp<7ﬁ. 0 ><£> 27)

(21) Expanding the exponential we obtain

# =7t
. . . 0 —i
wheret is the velocity ofS’ relative toS. As a result of these xpl _z o
. - . . n
relations the velocity of one particle observedsthis the ve-
locity observed byS minus the relative velocityi. Clearly _ coshn —1 - sinhn (28)
this is in contradiction with the postulate of special relativ- —dsinhn  4d - coshn — (x)?

ity that the speed of the light is constant independently of th(?:rom (27) and (28) we can work out the relative velocity b

choice of coordinates, because that relation of velocities r iween the two coordinate systems

mains true even when a light pulse is considered instead of a

particle. " Z R
. . - . . U=— — = ttanhn, (29)
According to the special relativity principles if we sup- [
pose that a light pulse is emitted from the origin the space:
. i . therefore
time coordinates, the pulse must satisfy /
u/c
sinhn = .
222 = 2% 2 = 0. (22) vyl
. . 1
One can, however, try to modify the Galilean transforma- coshnp = ——— =~. (30)
tions to make it compatible with the relativity principles, let V1—wu?/c
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44 D.E. JARAMILLO AND N. VANEGAS

Thus (29) gives the relation between the parametend the  thatis(1/2)A; and—(1/2)N;* satisfy independently satisfy
relative velocityu. It is evident that ifu/c — 0 we get the rotation algebra (16), additionally,
n — u/c; for this reason is called the relative “rapidity”.

In general, a Lorentz vector is a 4-vector which trans- [M,J\/';‘] =0. (38)
forms according to (27) [with (28) and (30)]. Just by intro-
ducing a deformation to the Galilean transformations one cal
introduce the results of special relativity and motivate the ne-
cessity of a constant speed of light (for any observer).

¥Ve see that the Lorentz algebra can be splitted into two “ro-
ation” invariant subalgebras.

3.3. Thomas precession

3.2. Lorentz algebra Relation (33) correspond to the application of two consecu-

As in subsection 2.2. once we know the wav a vector tralnst_ive boosts; it shows that a vector is rotated when these two
S y boosts are applied. This phenomena is known as the Thomas
forms we can find out about the group algebra that thes

transformations imply. From the expression (27) one ca recession. Physically the Thomas precession appears when

- e try to describe the time evolution of quantities asociated
guess the generators of a boost transformation. The set ?o accelerated particles

.bOOSt transformations does not fo_rm agroup, this can be see- In order to analyze the problem of an accelerated particle
ing by the fact that the commutation relation between bOOS{he usual thinking is of a non-inertial system as composed of

generators is not a boost generator itself, infinite inertial system where the particle is always instanta-
0 0 = neously at rest in one of them [1, 8,9]. However, as we will
(G 5)(5 %)
rapidity 77(¢).

see, this problem is equivalent (at least locally) to consider-
(% -
For the non-accelerated particle the time derivative used

. ing only one non-inertial rest frame where the “boost” from
0- 31) the laboratory system is characterized by a time depending
XR)X )’

Nevertheless this generators form a vector space which cgp the laboratory system changes as

be expanded in the basis &f defined by

vl Nen}

d d 1d
5 _— = = =
K; = ( 3 66' ) . (32) dt dtr  ydt
' when the observer uses the system where the particle is at
The commutation relations (31) for tié&s are rest.
Following the procedure of subsection 2.3., for an accel-
G, Kj) = iesjn T, (33)  erated particle, we must define a covariant time derivative for

o . . an observer in the frame in which the particle is at rest, as
where, in this case, thg’s are the rotation generators given \uith the the rotating system (18)

in (13) extended to four dimensions,
d ,ﬂ.ﬁi 7K

0 0 = = Dy =e TN TR (39)
Ji= ( 0 iéx ) (34) o o
g In the non-relativistic approximation, and considering (39)

The generator& do not form a closed algebri, & J's do, ~ acting only on 3-vectors (see appendix) we have

the algebra closes with Lo
d <u X u>

Dt:f—'-

40
(Ji, K] = i€ijx Kk (35) dt % (40)

2c?

Relations (16), (34) and (35) form the Lorentz algebra. Thiswhere is the velocity the particle seen from the laboratory
algebra is a manifestation of the fact that rotations, togethegystem. Comparing with (18) we find that this system has a
with boosts, form a group, the Lorentz group. This and ~ precession frecuency given by

J's are a basis for the generator space of this group. We

can change the basis, in particglar a good chqice is the basis g= u X;I = —Gr; (41)
compounded by thé/’s and their complex conjugatd™’s 2c
defined by @r is called Thomas frecuency. For instance, the time
evolution of the spin vector of a accelerated particle
Ni=TJi+ K, (36)  of massm, chargee and gyro-magnetic ratigy is not
. . g — 2 I Bl
which satisfy the algebra dsi/dt=g(e/2m) 5 x B’ but
ds R e , =
Vi, ;] = 2iesjuli, (37) q T OrxF=gg i B (42)

Rev. Mex. is. E 50 (1) (2004) 41-46



THE LORENTZ GROUP, A GALILEAN APPROACH 45

where B’ is the magnetic field observed in the rest frame ofwhich correspond to the usual electromagnetic boost trz
the particle. Once again, following the method introduced informations.

classical mechanics and deforming the Galilean set of trans- We now have that the square of transformation (47) gi
formations one is able to obtain, without too much effort, a . L

fundamental result of relativistic mechanics. (E'+iB')? = (E +1iB)? (49)

ie. E2 — B2 andB - E are invariant quantities. So, i
B-E + 0, the electric an magnetic fields will exist simultan
ously in all inertial frames, while the angle between the fiel
p Stays acute or obtuse depending on its value in the orig
coordinate frame.
In the case in which the fields are ortogonél ~(E =0),

( 0 —FE- ) ( 50 ) _ ( p ) (43) it is possible to find an inertial frame where

4. Transformations of the electromagnetic
field

In the same spirit of this paper, Maxwell equations wit
sources can be written in a matricial form as

—E Bx v J . .

Vv E'=0 if B*>E%* o B =0 if E?!>B2
where— over the derivatives means that they act to the right.
We are assuming = ¢, = 1 for simplicity. (Homoge- Let us clarify this with an example. Consider a particle mc
neous Maxwell equations are obtained by dualify —5,  inginan electromagnetic field whete 5 = 0 andB” > E?
B - E, p — 0.) We can then write the electromagnetic (the case wher&? < E? can be obtained from this by dual

field array as a combination of the generators of the Lorent#y). As we saw, there is an inertial system where the parti

group; in our notation is afected only by a magnetic field’. Using the condition
. E’ = 0 in the first expresion of (48) and taking both the pz
( 9 :E. > _ —(E R+iB. j), (44) allel and perpendicular components with respedt tee find
—FE BX .
) ) o u-FE =0,
Under Lorentz transformations the spacetime derivative and . -
the sources in (43) transforms like the coordinates in (27), so sinhn @ x B = coshn(ix)*E;
the matrix of the electromagnetic fields transform according
to from which we obtain
E'R+iB  J=c ™E K +iB- 7)™,  (45) —ix B=E, (50)
taking infinitesimal transformations for the fields we find  \here we have usef = —(ix)2E andtanhy = w. This

equation does not univocally determiiigso there are many

N - S B
E-K+iB-J=E-k+iB-J system where the electric field vanishes.

+ [(E K +iB- j), 817 - /a. In particular we can choose the velocity to be ortogot
to the magnetic field, obtaining the following expresion f
For theK’'s and 7’s coefficients we have the velocity

L.
B =LE+oix B, ﬁ:%a. (51)
B' =B - §ifx E;

Because the Eq. (47) corresponds to a rotation, we see
these coupled equations can be written in one, using a comihe parallel component @ of the electromagnetic field is ar

plexified electromagnetic vector field: invariant, so for our casB and B’ must be parallel. Further-
S o S o more, by the invariance df? — B2 we obtain
(B +iB) = (1 — i67x)(E +iB), (46) i
. P . . . . B2 _ L2
corresponding to an infinitesimal imaginary rotation of the B = TB' (52)

quantity E + iB. The finite transformation is therefore
In this example we saw the utility of the relation (4¢

e T

(B +iB) = e™"(E +1B), (47) which is easilly derived from (47) and is not evident fro

which can be expanded as in (10). Taking the real and imaghe usual transformations (48). (Usually is derived using t
inary parts we finally obtain sorial notation).

Another interesting example of Lorentz transformatio

E' = aa- E +sinhn @ x B — coshn(ax)?E, of the electromanetic field is when we consider the evolut

L o _ - of the spin of a charged particle, moving in a region with .

~ : ~ ~ 2 —
B’ =t B —sinhn i x E—coshn(@x)"B,  (48)  glectric fieldE. In the system in which the particle is at re:

Rev. Mex. . E 50(1) (2004) 41-46



46 D.E. JARAMILLO AND N. VANEGAS

a magnetic field appears. Its value is given by the second eX36), as
presion in (48) which, in the non relativistic aproximation, is 4 B
written as Dy =e 2N — 3N 4 cc.

o 7 (54)
B'=—ixE. where we have used the fact thaf and \V; commute
(Eg. (38)). TheNs satisfy the simple relation
The evolution of the spin is given by (42) and (41), where
ii = eE /m, therefore NiN; = 6i5 + i€ No,
95 1)L x (i x B), (53) SOWe have
dt 2m Lz N N s Fainn
o ) ) ez™V = cosh = + 7).N sinh —,
which is the Thomas equation [10] with = 0 andy — 1 2 2
As it is well known, this equation gives the correct spin-orbit 54 therefore
correction in the non relativistic aproximation [11].
s dggan_d 1 (ﬁdn
. de/ de 2\ 'd
5. Conclusions
We have introduced a way of writing the coordinates of a +smhf,,di7/ —i(coshn — 1)7) x dn/) -N. (55)
rotated vector and deduced the Coriolis acceleration in a dt dt
straightforward way. The generators of the rotation group_. . , , .
are given a compact form. In the same spirit we have Otﬁ:mally, returning to theJ’s andk’s we write
tained Lorentz transformations for 4-vectors and show how 1d 1 /dyg. . dq S,
the Thomas precession appears in a non-inertial system after Dt = T + 5 <E77 + sinh 715) K
the introduction the covariant time derivative. . .
Using a matrix construction we write the non- —i(coshn —1)7 x i J. (56)
homogeneous Maxwell equations in a compact form and, v di
starting from this, we deduce the Lorentz transformations of, 5 non-relativistic approximation, — 1, we have
the electromagnetic fields using the notation introduced be-
fore. We show that the Lorentz transformation of the electro- d @ = Uxi =
magnetic fields can be seen as a rotations of the complexified Dy = at + e M ia J. (57)

electromagnetic vectdt + iB. L . o i
Considering the covariant derivative acting only on 3-vectors

and using the definitions of th&’s given in (16) we obtain
Appendix: Non-inertial system

d Txd
In this appendix we will explitly find the time covariant Dy = dt + (202> x (58)
derivative given in (40) for non-inertial system. We can ex-
press this derivative written in terms of thé's, defined in  which is the result (42).
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