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1 GES and GICM Groups, Instituto de F́ısica-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medelĺın, Colombia
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Abstract. In this paper we propose a Heisenberg variational approach to study pseudo-critical phenomena
on ferromagnetic nanostructures. We combine a two-spin cluster 3-dimensional Heisenberg Hamiltonian
with Orstein-Zernike correlations and consider several geometries and crystalline lattices to explore the
relationship among these factors and the effective number of nearest neighbors defined in several kind of
nanometric structures. With this method we examine the size at which the pseudo-critical temperature
of a magnetic nanoparticle reaches its bulk value. Our results shed light on the nanoscopic-microscopic
limit, evidencing in particular that when one dimension is very small, independently of how big the other
dimensions become, it is not possible for the structure to reach the bulk-like behavior. The results of our
model are in good agreement with experimental data and other available analytical models.

1 Introduction

During the last decades strong attention has been focused
on nanostructures, mainly due to the great progress in ex-
perimental techniques that allow access to the nanometer
length scales. Besides the basic scientific interest in par-
ticles at the nanoscale, there is evidence that they might
be used in the production of interesting devices that can
be useful in areas as diverse as health [1], electronic [2],
food [3], and environment [4], among others. As the di-
mensions of a particle gradually decrease, the influence of
dimensionality becomes a very important issue, and new
properties appear which differ in many respects from what
is observed in bulk structures. In particular, and regard-
ing magnetic materials, the spontaneous magnetization,
the magnetic order, the Curie and Néel temperatures and
other properties exhibit important size effects which in
some cases depend not only on the system’s size but also
on its shape.

An interesting work regarding size and shape ef-
fects was published by Skomski [5]. In that paper the
author reviewed magnetic nanostructures such as dots,
nanowires, multilayers and nanojunctions concluding that
these structures exhibit important deviations from bulk
magnets. One of the first geometries studied under this
frame were thin films. For example, Lee et al. reported
the critical temperature and the saturation magnetiza-
tion of ultra thin iron films [6]. Later on Huang et al. [7]
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and Ambrose and Chien [8] reported finite size scaling in
thin ferromagnetic and antiferromagnetic layers, respec-
tively. More recently the magnetic properties of amor-
phous Co40Fe40B20 thin films have been reported showing
the impact of the size on the saturation magnetization and
remanence [9].

Concerning nanoparticles, evidence of size-dependent
behavior has been found in the study of antiferromagnetic
Cr2O3 nanoparticles [10], where the Néel temperature and
the spin-flip field increase with the particle size. These ef-
fects are the result of a surface disorder and spin cant-
ing that increase for smaller particles. Moshopoulou et al.
investigated the size dependent behavior of the magne-
tization in ZnFe2O4 and conclude that nanoparticles of
sizes larger than 100 nm exhibit a bulk like behavior [11].
Batlle et al. observed Fe3−xO4 nanoparticles whose bulk-
like behavior is strongly linked to the crystal quality of the
samples [12]. Also, evidence of size-dependent behavior
has been found in the study of CoxFe2−xO3 (x = 0, 0.06)
nanoparticles with diameters between 20 and 100 nm [13].
In these particles the saturation magnetization was mea-
sured and an empirical linear dependence on the specific
surface area of the crystallites was found.

Besides thin films and nanoparticles, there are several
studies regarding size effects in nanowires. In particular
Sun et al. studied nickel nanowire arrays with diameters
in the range 30–500 nm and observe a strong reduction of
the Curie temperature for the thinner wires that obeys a
scaling relation [14,15]. Similar arrays were produced and
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characterized by Meir et al. showing a strong dependence
of the coercivity on the diameter of the wires and on the
temperature [16].

From another side, interesting work has focused on the
search for a universal definition of the characteristics that
systems may have in order to exhibit properties associ-
ated with a nanometric behavior. In particular, we can
mention a paper by Krishna et al. [17], where the authors
showed that the chemical potential of bosons trapped in a
harmonic potential shows a discontinuity as a function of
the number of particles in the system. The same authors
claimed that the transition from bulk-to-nanophase of a
material is a first order phase transition [18]. Thus, find-
ing the precise size at which particles evidence properties
on the nanoscale becomes an interesting challenge.

The idea of relating magnetization and temperature
for small particles has been previously explored by other
authors under the frame of the Ising model. In particu-
lar, Bertoldi et al. used an Ising model for finite systems
under the mean field approximation and found that the
critical temperature follows a finite scaling that indicates
that it decreases proportionally to the inverse of the ra-
dius of the particle [19]. Also Velásquez et al. [20] used the
same model with a free-energy variational principle based
on the Bogoliubov inequality [21–23] and obtained a size
dependence for the ordering temperature that compared
with experiments. However they obtained only qualitative
agreement between their calculations and the experimen-
tal results.

A reliable way to address the relationship among size,
shape and ordering temperature is an ab initio + DMFT
approach. However, such calculations are extremely time
consuming for nanostructures with more than a hundred
atoms.

In this study we focus on finding how the effective
nearest neighbors number (zeff) of a nanostructure and
its ordering temperature (Tc) reach the bulk limit for
different sample geometries, i.e. we explore the bound-
ary between the nanoscopic and the microscopic behav-
ior. For this purpose we go beyond the Ising Model and
develop a quantum Heisenberg-Variational approach com-
bining a free energy variational method, based on the
Bogoliubov inequality, with a three dimensional (3D)
Heisenberg model involving quantum spin pair correla-
tions (Orstein-Zernike correlations). The former, as energy
minimization tool, has already been successfully employed
for describing the properties of magnetic systems where
theoretical phase diagrams are in good agreement with
experimental ones [24–26]. Besides this method is simple
and fast, it reveals the essential contributions of size and
shape to the ordering temperature in nanostructures.

Hereafter we present the theoretical basis and the nu-
merical framework of the method, present and discuss the
relevant results and contrast them with available exper-
imental and analytical reports to test its reliability, and
finalize with a summary of the conclusions.

2 Theoretical and numerical approach

In the following we describe the theoretical details of our
method that gives place to a relationship between the
pseudo-critical temperature; which, hereafter we will re-
fer to as ordering temperature, and the effective coordi-
nation number on the nanostructures, and, consequently,
with the geometry and the crystalline lattice. The gen-
eral system we consider consists of magnetic nanoparticles
composed of N atoms described by a quantum Heisenberg
Hamiltonian H = −∑

〈i,j〉 JijSi ·Sj. In this expression the
sum runs over nearest neighbor atoms 〈i, j〉, Si represents
the spin operator for the ith atom, and Jij denotes the
exchange coupling between nearest neighbor spins. In this
study, such values are kept fixed in most of the results as
Jij = J = 6.62 meV and S = 2. These values reproduce
the bulk Tc(∞) value for bcc Fe, and have been selected
for comparison purposes. However the method is valid for
any material represented by particular values of S and J ,
as can be seen in the final section of this paper, where
we present a comparison with experimental results of Ni
nanowires and other models.

As it is known, it is possible to obtain approximate
thermodynamic properties of statistical systems based on
a variational principle for the free energy [21–23].

In the procedure, which involves the choice of a suit-
able parametrized trial Hamiltonian accounting for some
elementary interactions, a cluster-spin approach is used.
As a first approximation we consider here the Oguchi clus-
ter method consisting in considering pairs of spins to de-
scribe the sample. Then, in this spin pairs approximation
the system can be considered as formed by n1 single spins
(S) and n2 linked pairs (P) of spins with a total number
of spins N = n1 + 2n2. Thus, a trial Hamiltonian can be
written as

H0 = −γs

n1∑

i

Siz−
∑

j,k∈pairs

JjkSj ·Sk−γp

∑

j∈pairs

Sjz, (1)

where γs and γp are variational parameters that can be in-
terpreted as molecular fields to be determined from energy
minimization conditions. Here, the first summation runs
over single spins and the second and third ones run over
spins belonging to pairs. Both Hamiltonians, the original
one used to model our system and the trial Hamiltonian
recently described, can be related through a variational
approach based on the Bogoliubov inequality

F ≤ F0 + 〈H −H0〉0 ≡ Φ, (2)

where F is the Helmholtz Free Energy defined by H, F0

is the free energy defined by H0, and 〈...〉0 refers to the
thermal average on the ensemble defined by H0.

Now we need to minimize Φ. Taking into account the
mean value for an observable and considering statistical
independence of the spins, i.e. 〈Si ·Sj〉0 = 〈Si〉0〈Sj〉0, and
defining the magnetization as m = 〈Siz〉 (since, due to
spin precession 〈Six〉 = 〈Siy〉 = 0), we get

〈H −H0〉0 = −Jn′m2 + (N − 2n2)mγs

+n2Jm2 + 2n2mγp, (3)
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where n′ is the number of nearest neighbors. According
to the way the system has been figured out we have F0 =
−kBT ln(ZSZP ), where

ZS =
∑

{S}
e−β(−γs

∑
i Siz),

ZP =
∑

{P}
e−β(−J

∑
jk Sj·Sk−γp

∑
j Sjz)

are the trial partition functions for single and paired spins
in the system, respectively.

Although the Oguchi cluster method [27] does not ac-
count for long-range fluctuations, here we go a step for-
ward looking for accuracy and consider Ornstein-Zernike
correlations [28–30], i.e. correlations between spin pairs.
Superior order calculations could go beyond the spin pairs
approximation and consider sets of 3, 4, 6 or more spins
correlated, which will imply bigger analytical efforts. Re-
sults and comparisons discussed below, however, show
that spin pair correlation is a good enough approximation
keeping calculation requirements under reasonable limits.
Since Sj and Sk represent spin quantum operators, the
eigenvalues of the Hamiltonian have to be computed in the
vector space of the two spins. Therefore, computation of
partition functions requires vector space analysis in order
to obtain the eigenvalues for each Hamiltonian accordingly
to the spin values involved. Following this procedure, the
calculation of F0 and 〈H −H0〉0 leads to the minimization
of the energy (i.e. ∂Φ/∂m = 0), giving

− 2n′Jm + (N − 2n2)γs + 2n2Jm + 2n2γp = 0.

In this expression n′, the number of nearest neighbors, de-
pends on the crystalline structure, on the shape and on
the size of the system. Since due to the variational prin-
ciple Φ diminishes as n2 increases, we take n2 as large
as physically possible, i.e. n′ = n2. Thus, the number of
linked pairs is maximized to n′. Hence we obtain the fol-
lowing relationship between the variational parameters or
molecular fields γs and γp,

γs =
(2γpn

′/N)
(2n′/N) − 1

=
γpzeff

zeff − 1
, (4)

where zeff = 2n′/N can be interpreted as an effective co-
ordination number, and exhibits a strong dependence on
crystallinity, shape and size.

Additionally, the method takes advantage of the fact
that the magnetization of the system can, indistinctly, be
obtained either from single spins (mS) or from spins be-
longing to a pair (mP ), that is

m =
1
β

∂lnZs

∂γs
=

1
2β

∂lnZp

∂γp
. (5)

After calculating the derivatives and taking into account
the computation of the twenty five eigenvalues resulting
from the tensor product Si ⊗ Sj between the spins, we
obtain the following transcendental equation for the mag-
netization for the case considered here (S = 2)

m =
2 sinh 2βγs + sinhβγs

1 + 2 cosh 2βγs + 2 coshβγs
=

B

4Zp
, (6)

where

B = 6 sinh 3βγp + 4 sinh 2βγp + 2 sinh βγp

+ 2e−5βJ sinh βγp + e−3βJ (4 sinh 2βγp + 2 sinhβγp)

+ e4βJ(8 sinh 4βγp + 6 sinh 3βγp

+ 4 sinh 2βγp + 2 sinh βγp),

and

Zp = 1 + 2 cosh3βγp + 2 cosh2βγp + 2 coshβγp

+ 2e−5βJ cosh 2βγp + 2e−3βJ cosh 2βγp

+ 2e−3βJ coshβγp + 2e4βJ cosh 2βγp

+ 2e4βJ cosh 4βγp + 2e4βJ cosh 3βγp

+ 2e4βJ coshβγp + e−6βJ + e−5βJ + e−3βJ + e4βJ .

Here, β = (kBT )−1. From equations (4) and (6) we can
obtain numerically the magnetization as a function of the
temperature for different system sizes, and then obtain
the size dependence of the ordering temperature Tc when
we impose m = 0.

It is also possible to derive an analytical expression
for the ordering temperature (Tc) from equation (6), by
taking the limits γp → 0 and γs → 0. This yields the
following expression

zeff

zeff − 1
=

14 + e−5βCJ + 5e−3βCJ + 30e4βC J

14 + 6e−5βC J + 10e−3βC J + 18e4βC J + 2e−6βC J
,

(7)

where βC = (kBTc)−1. By defining z′ = (zeff−1)/zeff and
X = eJβC , equation (7) transforms into

6(5z′−3)X10+14(z′−1)X6+5(z′−2)X3+(z′−6)X−2 = 0,
(8)

whose positive real solution we will denote by Φ0. This
expression connects the ordering temperature with the ef-
fective coordination number (zeff) and leads us to compute
Tc for different geometries as function of size. With this in
mind we obtain an expression for the implicit dependence
of Tc on zeff,

Tc = 11.6279J/(lnΦ0). (9)

It is worthwhile noting that Φ0 depends on the effective
coordination and, consequently, on the geometry and the
crystalline lattice of the sample under study.

Finally, it is worth mentioning that low-temperature
quantum fluctuations have non-negligible effects in low-
dimensional systems e.g. they can avoid or destroy mag-
netic order in one-dimensional systems. However, once the
dimensionality of the system increases their effects are off-
set by the exchange couplings and bigger coordination,
and order can be obtained (as in 2-D and 3-D samples
at low-temperature regime). Here we consider nanometric
systems and study the size, crystalline structure and shape
effects through the use of an effective coordination number
zeff, for which the spin-spin correlations are computed in a
short-range (pair) approximation. From a phase diagram
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in terms of zeff (not shown), magnetic transition are ob-
served just above the value zeff =2.5. This result indicates
that, at very small sizes (corresponding in fact to low-
dimensionality) no magnetic order is observed. However,
for bigger values of the effective coordination number mag-
netic order is obtained, and the model can be employed.

3 Results and discussion

We focus our analysis on the size dependence of the or-
dering temperature and the effective coordination number.
As a first step we consider spherical particles crystallizing
in simple cubic (sc), body centered cubic (bcc) and face
centered cubic (fcc) lattices. We start our calculations ob-
taining the values for zeff as a function of the diameter Da
of the sphere for each crystalline lattice, where a is the lat-
tice parameter and D is a dimensionless quantity. Since,
due to the discrete character of the sample, the number of
atoms inside a sphere (and therefore the number of bonds
among those atoms) is not given by an exact equation, we
made numerical calculations for spheres of several sizes
and adjust them to simple expressions that can be easily
calculated. The resultant functional forms are similar to
the one obtained when the analytical calculation is imple-
mented for cubes; for spheres this leads to

zeff =
8

(
6 + 3

D−0.7

)

(
1 + 1.08

D−0.7

)3

+ 3 + 3
D−0.7

fcc, (10)

zeff =
16

(
1 + 0.87

D

)3 + 1
bcc, (11)

zeff =
6

(
1 + 1.5

D−1.36

) sc. (12)

These expressions, with D → ∞, tend to the bulk behav-
ior. In this case and using J = 6.62 meV, the ordering
temperatures for bulk, Tc(∞) become 1665.04 K for fcc,
1043.03 K for bcc and 728.20 K for sc structures. For com-
parison purposes we normalize Tc by the corresponding
Tc(∞).

By using the expressions for zeff as functions on the
dimensions for the different lattice types, we can obtain
the size dependence of zeff and Tc. Such dependences for
fcc, bcc and sc spheres are shown in Figure 1. As observed,
a similar behavior is obtained in all the particles that reach
the bulk limit for D close to 103.

Despite this, the differences among the three lattices in
Tc and zeff are small at smaller sizes, and increase contin-
uously until the particles reach the bulk limit. Differences
among the three lattices are notable, being larger the one
obtained between the fcc and bcc structures; these dif-
ferences reveal that the tendency of the different lattices
toward the bulk behavior takes place at different rates.

Comparing both quantities, zeff and Tc, two different
effects have to be highlighted; (i) the faster tendency of
the zeff toward the bulk behavior as the size increases in
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Fig. 1. Size dependence of the reduced coordination number
(top) and the reduced ordering temperatures (bottom) as a
function of the diameter D for fcc, bcc and sc spheres. In-
sets show the corresponding not normalized zeff(D) and Tc(D)
curves to illustrate the different behavior for the different crys-
talline lattices.

comparison with the behavior of Tc(D); and (ii) the ma-
jor separation among the Tc(D) curves as compared with
those for zeff(D). This effect is the result of the logarith-
mic relationship between Tc and zeff evidenced in equa-
tion (9). These features indicate the clear effect of the
crystalline lattice on the magnetic behavior of systems at
these nanometric scales whenever they approximate the
bulk condition.

Since the behavior of zeff and Tc are very similar, and
considering that Tc is the measurable quantity, in what
follows we will show results only for this last magnitude.

Once clarified the role of the lattice and the coordina-
tion number, for simplicity we continue our calculations
considering only bcc structures and focusing on the effect
of the geometry on the ordering temperature. We consider
now cylinders of heigh La and diameter Da (i.e. L and
D are given in lattice constants), and as in the previous
case of spheres, we fit the numerical calculations for zeff
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Fig. 2. Size dependence of Tc for bcc cylinders of different
selected values of the aspect ratio η. η >1 corresponds to
nanowire-like structures while η < 1 represents dots.

for several sizes to a simple expression similar to the one
obtained when the analytical calculation is implemented
for parallelepipeds. For bcc cylinders, this leads to

zeff =
16

(
1 + 0.92

D

)2 (
1 + 0.98

L

)
+ 1

. (13)

Figure 2 illustrates our results for cylinders of different as-
pect ratio η = L/D. Here η < 1 represents dots and η > 1
denotes wire-like structures. In spite for dots the effect of
the geometry is evident, as can be seen by looking at the
separation between the curves for η = 0.01 and η = 1, the
effect is less important when considering wires. Results
for larger values of η (η >100) almost coincide with the
curve for η = 100. For dots the size effects just appear
until reaching D ≈ 104, while for large aspect ratios the
size effects appear until reaching D ≈ 102.

More information about the behavior of cylindrical
particles can be obtained from Figure 3, that represents a
three dimensional graph for Tc as a function of both D and
L simultaneously. This figure reveals the existence of crit-
ical diameters and lengths at which the system does not
reach the Tc bulk, regardless the size of the other dimen-
sion. This means that, if one dimension is small enough,
it determines the behavior of the system.

To understand this behavior we study the thermal de-
pendence of the correlation length of the system, given
by [31]:

ξ =
a′

√
zeff

(

1 − T

Tc M=0

)ν

(14)

where a′ = 2.47 for Fe bcc, zeff responds for the effective
coordination of the nanoparticles of different size, Tc M=0

is the corresponding ordering temperature, and ν = 0.71 is
the critical exponent for a three dimensional Heisenberg
spin model [31]. In Figure 4 we present graphically the
behavior of the correlation length as a function of tem-
perature for spherical nanoparticles of selected sizes. As
observed, the correlation length reveals a monotonous in-
creasing behavior, diverging asymptotically for the value

Fig. 3. Size dependence of Tc for bcc cylinders as a function
of both the diameter D and length L. The figure illustrates the
different behaviors for diameter and length, and the expected
plateau in Tc for big values of the dimensions. Lateral hillsides
indicate that whenever one of the dimensions of the nanostruc-
ture is small, independently of how big the other dimensions
become, temperature saturates at smaller values than the one
corresponding to the observed plateau i.e. the system does not
exhibit bulk-like behavior.

10
-2

10
-1

10
0

10
1

10
2

10
3

T (K)

10
0

10
1

10
2

10
3

ξ

D = 2
D = 20
D = 200

Fig. 4. Thermal dependence of the correlation length (in nm)
for spherical nanoparticles of different selected sizes (D in unit
cells). Black open circles indicate the ordering temperatures
computed from the correlation length criterion (see text) which
are slightly different to those indicated by the divergence of
correlation length (Tc ξ→∞).

of the ordering temperature Tc M=0. As it is well know,
whenever a bulk system is reaching its critical tempera-
ture, correlation length diverges (ξ → ∞), and magnetic
order disappears.

Therefore, two different definitions could be considered
for the ordering temperature in the thermodynamic limit.
(i) From a M vs. T graph: ordering temperature is that
temperature for which the first zero is obtained in mag-
netization M while increasing temperature in the graph
M vs. T . (ii) From the correlation length Tc ξ: ordering
temperature is that temperature for which the value of
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Fig. 5. Ordering temperature as a function of size com-
puted from the two definitions (see text) coming from M = 0
(squares) and from the correlation length criterion ξ = D
(circles).

the correlation length diverges. Both of these definitions
lead to the same value for the ordering temperature in the
bulk case (Tc bulk = Tc M=0 = Tc ξ→∞).

On the other hand, for confined systems, if correlation
length reaches values equal or greater than the size of the
sample, the spins are correlated at all, which is equivalent
to the bulk case (ξ = ∞). Then, from case (ii) of the last
paragraph applied to a nanostructure, ordering tempera-
ture will take place whenever correlation length equates
the size of the nanostructure (ξ = D). In other words,
since the system size is finite, whenever the correlation
length gets bigger values than its size, the whole system
will be governed by fluctuations, i.e. this finite value for
ξ, in a practical way, will not be different from ξ → ∞
for the element. This gives place to different values for the
ordering temperature of the nano-system as defined in (i)
and (ii); as indicated by open black circles in Figure 4.

The differences between the ordering temperatures
computing from the two definitions are evident for very
small sizes and progressively decrease as the system size
increases. Figure 5 shows the comparison between the two
definitions of the ordering temperature as function of the
size for nanospheres.

This can lead to think in a non-abrupt magnetic
phase transition occurring in a certain region defined as
(Tc M=0 − Tc ξ=D). Moreover, taking advantage of these
differences between the ordering temperature definitions,
an adequate definition for the nanoscopic-macroscopic
boundary as size is increasing could be that size for
which both ordering temperatures coincide (i.e. Tc M=0 =
Tc ξ=D) within the experimental uncertainty ∼1 K.

Now, from this analysis it is possible to understand
the result reported in Figure 7 for cylinders with a fix di-
mension. Lateral hillsides observed in that figure indicate
that whenever one of the dimensions of the nanostructure
is small, independently of how big the other dimensions
become, temperature saturates at smaller values than the
one corresponding to the observed plateau i.e. the system

10
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10
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10
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10
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10
3

T (K)

10
0

10
1

10
2

10
3

10
4

10
5

ξ

D = 2      L = 10
4

D = 200  L=10
4

Fig. 6. Thermal dependence of ξ for cylinders of two different
aspect ratios (D and L in unit cells). As observed, ξ ∼ 100 for
the cylinder with diameter D = 2a (discontinuous line), indi-
cating that a portion of the spins of the system are correlated,
and no order is obtained in the sample.

100 101 102 103 104
0.6

0.7

0.8

0.9

1.0

T
c(D

)/
T

c( ∞
)

Γ

 thin films
 wires
 spheres

Fig. 7. Size dependence of Tc for thin films (quasi-2D), wires
(quasi-1D) and dots (quasi-0D) in the bcc lattice.

does not exhibit bulk-like behavior. As observed in Fig-
ure 6, for a system with a very small fix diameter (let us
say D = 2a) the correlation length at any temperature
gets a value greater than the diameter (D ∼ 100 in this
case). The spins in the systems, at least in a certain re-
gion, are correlated and, consequently, the system will not
be completely ordered at any temperature.

Furthermore, it can be seen the asymmetry in the rate
of approaching the bulk behavior. As the diameter is var-
ied at a fix length, the tendency towards the bulk is slower
than when varying the length at a fix diameter. This be-
havior is due to the relation between zeff and D and L,
expressed in equation (13).

Now we explore the effect of dimensionality by com-
paring the behavior of (i) cylinders with a length going
to infinity and varying the base diameter (pseudo-one di-
mensional particles); and (ii) thin films with a circular
base of diameter going to infinity (pseudo-two dimensional
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  Power law (1)

T
c(D
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T

c(∞
)

D/a

  Fe TF
  Experimental Fe TF
  Ni NWs
  Experimental Ni NWs

Fig. 8. Comparison among experimental data and results of
our model for the size dependence of Tc for Fe thin films (brown
line) and Ni nanowires (blue dashed line). Remarkable agree-
ment is obtained with experimental results available for Fe thin
films (violet diamonds) of reference [32] and Ni nanowires (cyan
dots) of reference [14]. This figure also shows the correspond-
ing fit functions to the experimental data by using a power law
function resembling a Finite Size Scaling behavior. Power law
(1) corresponds to the function used to fit Fe thin film data
(purple diamonds), and the values for the best fitting param-
eters are ν = 1.06 ± 0.42 and d0 = 0.42 ± 0.34. Power law
(2) corresponds to the best fit to Ni nanowires (cyan circles)
with values given by ν = 1.21 ± 0.11 and d0 = 3.7 ± 1.1.

particles) varying its thickness. We also include spheres,
that can be considered as pseudo-zero dimensional struc-
tures. The finite dimensions will be denoted by Γ . Our
results are depicted in Figure 7 showing that, in spite of
having one or two dimensions of infinite size, the effect of
the other finite dimensions is evident as mentioned previ-
ously. To illustrate the differences between the three be-
haviors we calculate the values of Γ that are needed to
have Tc = 0.9Tc(∞) and found Γ = 5.5 for the thin films,
Γ = 11.5 for the cylinders and Γ = 16 for the spheres.
Such differences in Γ account for the distinct geometries.
The existence of two dimensions going to infinity is re-
sponsible of a faster increase of Tc as compared with the
cylinder case.

In order to validate our model we compare our results
for Fe films and Ni nanoparticles with experimental results
from Qiu et al. [32] and Sun et al. [14], respectively. For
the latter case we consider the corresponding data for Ni,
i.e. Ji,j = J = 22.067 meV, Tc(∞) = 631 K, S = 1/2 and
a fcc lattice with parameter a = 0.352 nm. In this case,
the functional Tc(zeff) relationship reads as [21]

Tc = Jk−1
B

(

ln
zeff

zeff − 4

)−1

. (15)

Very good agreement with experimental results is ob-
served (see Fig. 8). This indicates that our model, that
has no adjustable parameters, describes adequately these
nanostructures.

Finally, as a second way of validation, we have taken
into account other models describing the size dependence
of the ordering temperature in nanostructures from an an-
alytical perspective [33,34]. First, in 2003, Nikolaev and
Shipilin considered the ordering temperature as propor-
tional to the mean number of exchange bonds per unit
volume and proposed a one-parameter model for the size
dependence of Tc [33]

Tc(D)/Tc(∞) = 1 − (3Δts)/(2D), (16)

where Δts is the thickness of the surface layer, which
contains the dangling bonds, and characterizes the effect
of the presence of surface on the ordering temperature
of the system. Later, in 2006, Lang et al. added a new
parameter and presented a model to describe the mech-
anisms lying on the effect of the breaking of exchange
bonds upon the Tc(D) function for nanostructures [34].
Such two-parameter model gives the following expression,

Tc(D)/Tc(∞) = exp [−(α − 1)/(D/D0 − 1)], (17)

where α is a measure of the root-mean-square thermal
average amplitude of the surface atom vibration rela-
tive to the core and D0 denotes a critical size at which
all atoms of the nanostructure are located on its sur-
face. As reported in that reference, whenever nanoparticles
and wires are considered, the mentioned models adopted
the following parameters values. Nicolaev’s model uses
Δts = 0.6078 and Δts = 0.4052 for spheres and wires,
respectively. While the Lang’s model uses α = 1.612 and
D0 = 1.4898 for spherical nanostructures, and α = 1.612
and D0 = 0.9932 for the wire-like case [33,34].

Moreover, since it is often to find comparisons among
these size dependent behaviors and functions inspired in
Finite Size Scaling Theory, we have performed a simple
analysis. To do this we considered the following expression
resembling a finite size behavior [35,36]:

Tc(D)/Tc(∞) = 1 − (D/d0)−1/ν ; (18)

where d0 and ν are the fitting parameters (ν resembling a
critical exponent). With this in mind, the resultant values
for the best fit to the experimental data are: d0 = 0.42 ±
0.34 and ν = 1.1±0.4 for the Fe thin films; and d0 = 3.7±
1.1 and ν = 1.2 ± 0.2 for the Ni nanowires. As expected,
the values for ν are in accordance with a Heisenberg-like
model.

The comparison among our model for spherical
nanoparticles and nanowires and the mentioned analyt-
ical models is presented in Figure 9. As observed, the
three models discussed exhibit a very good qualitative
agreement. Differently to the two mentioned models, ours
gives smaller values for the Tc in the range studied, and
presents a slower tendency to the bulk conditions as the
size increases. Furthermore, as observed in Figure 8, our
approach results in an excellent description of the experi-
mental results.

The good agreement obtained among our results and
those reported in literature both experimental and analyt-
ically [14,32–34] indicates that the Heisenberg-Variational

http://www.epj.org
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Fig. 9. Comparison with theoretical models presented in
references [33,34] for spherical and wire-like nanostructures.
Nicolaev’s model (dashed lines) uses Δts = 0.6078 and Δts =
0.4052 for spheres and wires, respectively. While the Lang’s
model uses α = 1.612 and D0 = 1.4898 for spherical nanos-
tructures (dot-dashed lines), and α = 1.612 and D0 = 0.9932
for the wire-like case (dot-dot-dashed lines) [33,34]. Solid lines
represent results of our model.

Energy approach proposed here can be considered as a re-
liable and useful scheme for obtaining magnetic properties
of systems at the nanometric range of sizes.

4 Conclusions

The last years have brought a great interest in the order-
ing temperature of nanostructures, offering the possibility
of exploring them from different perspectives. A general
methodology that can be applied to study materials with
different spin values, and the size and shape dependences
of the ordering temperatures for nanostructures has been
presented in this study. Despite its simplicity, from the
comparison with experimental results, we can be confident
that it reveals the essential contributions of size and shape
to the ordering temperature. To sum up, we have pro-
posed a quantum Heisenberg-Variational Energy scheme
to investigate the behavior of nanoparticles with different
geometries and crystalline lattices as a function of their
size. According to our results, the particles reach the bulk
limit at different sizes depending on their geometry. These
results also suggest that the nano-bulk limit is located at
about 102a–103a, in most of the cases. The confidence of

our model has been tested by comparisons with other ex-
perimental [14,32] and analytical [33,34] reports. Finally,
it is worthwhile mentioning that results presented here
might bring the attention of experimental researchers in-
terested in issues related to the size, shape and crystalline
lattice dependence of the ordering temperature in nano-
metric systems.
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