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Abstract: The effect of the tensile test rate upon the mechanical properties of 
semicrystalline high-density polyethylene (HDPE) is studied by the Monte Carlo 
method. A two-dimensional lattice model is used, which considers first and second 
neighbour’s interactions between CH2-CH2 groups. Metropolis dynamics is 
implemented as energy minimization tool. Results reveal the existence of two 
distinguishable regions in the stress-strain curves. One of them is characterized by 
an elastic and linear behaviour below 0.27% of deformation where the elastic 
modulus is practically insensitive to the number of Monte Carlo steps, whereas at 
higher deformation the system exhibits a non-linear behaviour ascribed to the 
viscoelastic character of the material endorsed by a clear dependence of the 
relaxation modulus as a function of the strain rate. The relaxation behaviour of 
HDPE obtained in our simulation shows an exponential decrease of the stress as 
time increases, which agrees with experimental data. 

 

1. Introduction 
The physical and chemical properties of polymers have been of long standing interest 
for both scientists and engineers since the beginning of polymers research. Most of 
the earliest works on polymers dealt with macroscopic aspects from which it became 
clear that a deeper understanding could only be obtained on the basis of a molecular 
analysis [1]. 
The mechanical behaviour of polymers is still not well understood, and it is strongly 
dependent on many variables like the chemical nature, microstructure, morphology 
and external conditions. On the other hand, traction measurements are widely 
employed to evaluate the mechanical properties and to select a material for a specific 
application. Hence, properties like stress (σ) and modulus (E) at different stages of 
deformation are obtained. Moreover, polymeric materials show a time dependent 
viscoelastic behaviour, which is related to the stress relaxation at constant 
deformation (ε) and can be represented [2] by 
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where ε0 is a constant corresponding to the initially applied strain, E Young´s 
modulus of the Hookean behaviour and t* the relaxation time. The time-dependent 
Young´s modulus is usually called the tensile relaxation modulus, defined [2] as 
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When the mechanical force is applied, relaxational processes take place in a poly-
meric material: energy transmission across the chain and to the neighbouring chains 
by segmental motions and conformational rearrangements; bond stretching and 
angle changes leading to elastic energy storage; and phase transformations [3]. 
Increasing computer power has made simulation of mechanical properties popular. 
Most of these studies use molecular dynamics (MD) and Monte Carlo (MC) simu-
lations [4-8]. In particular, Monte Carlo studies of polymers usually employ the bond-
fluctuation model developed by Carmesin and Kremer [1] as a lattice algorithm for 
two-dimensional polymer chains. Lattice-based models where polymer chains are 
represented by bonds on a grid have also been used by many workers to simulate 
the static and dynamic properties of polymer systems [9-12].  
In this work we study the first steps of deformation of a high-density polyethylene 
exposed to an external applied force. The study is carried out with the framework of a 
2D lattice model and the atomic Monte Carlo method as energy minimization tool, 
σ(ε) and E(t) curves are also computed and discussed. 
 
2. Simulation and theory 
The polymer chains of HDPE have been simulated through self-avoiding and growing 
random walks on a two-dimensional lattice with the origin at zero and the lattice 
coordinates from -L … +L so that the total lattice has (2L + 1)2 lattice sites with 
periodic boundary conditions as it has been described elsewhere [13]. The following 
Hamiltonian has been used to describe the interactions between the CH2 groups 
[14,15]: 
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The first term in Eq. (3) gives the molecular interaction of each CH2 group with the 
first and second topological nearest neighbours. We assume the same mean values 
of the cohesion energy J  of 50 meV of the CH2-CH2 interactions [16,17]. The second 
term accounts for the interaction of each molecule with the external traction force ℑ 
applied along the x-axis. The position operator δ considers the position of each CH2 
(Si) with respect to the nearest and next nearest neighbours (Sj), and n indicates the 
total number of these neighbours. Concerning the dynamics of the system we have 
implemented such different types of movements that the CH2-CH2 bond length 
remains constant according to the expected behaviour during the first deformation 
steps. In the employed Metropolis dynamics [18,11], the probability W for a confor-
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mational change from the state µ to the state ν depends on the energy difference ∆E 
according to: 
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In this dynamics a Monte Carlo step (mcs) is defined as the elapsed time to visit all 
the CH2 groups in each chain and to attempt a movement to reach a new position in 
such a way that the excluded volume condition is obeyed. A Monte Carlo step can be 
considered proportional to the inverse of the test rate. The following quantities are 
computed: a) elastic modulus (E0), b) stress relaxation modulus E(t) at different 
deformation percentages, and c) the average value 〈∆x〉 of the projection of the 
chains along the direction of the external applied force and consequently the 
percentage of deformation according to: 

%100
0

0 ×
∆

∆−∆
=

x
xx

ε  (6) 

where 〈∆x〉0 is the average projection corresponding to the initial configuration of the 
system. Additionally, in order to simulate a semicrystalline polymer characterized by 
a high degree of extension (see Fig. 1), the chains in our polymer were preferentially 
oriented, with an average angle of 45° of the direction with respect to the x-axis 
(direction of deformation) computed from the Hermans function [19], as the initial 
configuration state. Results presented in this work correspond to a system of 1200 
chains inscribed on a lattice with L = 150. The total number of CH2 groups is adjusted 
in such a way that the fraction of occupied sites (filling concentration) is 55%. This 
value is a compromise between two requirements: it must be high enough in order to 
represent the typical properties of a dense polymer and on the other hand, it must be 
low enough in order to allow the movement of CH2 units during the deformation 
dynamics in a reasonable computing time [20]. Afterwards, the corresponding curves 
of stress (external applied force) as a function of deformation and for a different 
number of Monte Carlo steps are thus obtained. 

 
3. Results and discussion 
As an example, Fig. 1 shows a chain before and after applying the uniaxial external 
force ℑ. This figure shows the way a typical HDPE chain is placed on the lattice and 
the effect of the external applied force for which a rotation and a small displacement 
of the chain is evidenced.  
In order to evaluate the reproducibility of our model, several initial chain configu-
rations have been considered changing the seed of the random number generator, 
which allows calculation of configurational average and error bars. Fig. 2 shows the 
simulation results for the HDPE at room temperature for different number of samples 
during the first deformation steps (ε < 1%). As it can be observed the reproducibility is 
quite good for a number of samples greater than 100 and the obtained error bars are 
very small (of the order of the symbol size). In the following always more than 500 
samples were considered. 
According to the standard test method for tensile properties of plastics, ASTM D638-
99 [21], a zero adjust for the deformation must be carried out by extrapolation of the 
straight line CD (Fig. 3(a)) to the deformation axis (point B). In our simulation, this 
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point corresponds approximately to 0.28% and we assigned the zero value to this 
point (Fig. 3(b)). It must be pointed out that the obtained stress-strain dependence is 
in agreement to what is expected in real experiment.  
 

 
Fig. 1. Chain movement during deformation of the system 
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Fig. 2. Evaluation of the reproducibility of the simulation 
 

Up to ε ≅ 0.27%, region I Fig. 4, all deformation curves practically coincide independ-
ently of the number of Monte Carlo steps or deformation rate. This behaviour is 
ascribed to the elastic response of the material, only valid for a very small defor-
mation range. For the following stages after this elastic limit (ε > 0.27%, region II), 
E(t) varies with the deformation rate as can be deduced from the changes of slope 
with time. This fact is attributed to the viscoelastic behaviour of the material and is 
distinguished by an increase of the stress with the deformation rate at a given 
deformation, depending on the rigidity of the material. Thus, at high deformation rates 
(one or two Monte Carlo steps), the system behaves in a more rigid way and the 
chains tend to stay on their original positions, creating a smaller percentage of 
deformation and a higher stress in such a way that the elastic behaviour is preserved 
over a wider range. Beyond two Monte Carlo steps, the polymer has enough time to 
respond to the actions of stress and deformation. The linear elastic region diminishes 
 4



with the increment of time favouring the relaxation and energy dissipation, which is 
reflected in a smaller elastic modulus.  
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Fig. 3. Stress vs. deformation graphs: (a) Plastic material (Hookean Region) [21];   
(b) MC simulation of PE 
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Fig. 4. MC simulation results for PE with Hookean region 
 
The relaxation modulus as a function of time at room temperature (27°C) at several 
deformations is shown in Fig. 5(a,b) from which a decrease of the relaxation modulus 
is remarkable at low percentage of deformation (ε ≈ 0.5%), obeying a non-linear 
viscoelastic behaviour [22]. The relaxation modulus acquires a constant value at high 
rates (which is equivalent to a large number of mcs) and deformations higher than 
3%. The estimation of average relaxation time at 4% is obtained from the inverse of 
the slope of Fig. 6(b) and correlated with an experimental result [23] giving a relax-
ation time of mcs ≈ 70 s. 
Fig. 6 shows experimental and MC-simulated reduced stress relaxation vs. time, 
obtained from the stress-strain simulated curves at different deformation rates. The 
relaxation behaviour of HDPE obtained in our simulation shows an exponential 
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decrease of the stress as time increases according to Eq. (1), which agrees with 
experimental data at short relation times [23] and there is a deviation of the experi-
mental data for times greater than 415 s, which could be due to the fact that the 
simulation does not consider ramification, nor any entanglement of the chains, and 
PE has low molecular weight compared with real HDPE, also the simulation is carried 
out on a 2D lattice and not on the real 3D structure. It is also noticed that at long 
times a nonzero stress level is gradually attained (incomplete relaxation). This stress 
level approached after sufficiently long measuring times is often referred to as the 
internal stress level [3], which has been already reported in refs. [2,23].  
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Fig. 5. MC simulation result for PE: nonlinear viscoelastic relaxation modulus of PE: 
(a) linear scale, (b) semi-logarithmic scale 
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Fig. 6. MC simulation and experimental [23] stress relaxation for high-density poly-
ethylene  
 
The obtained results allow the suggestion that the method of MC together with the 
model and the employed dynamics give a satisfactory description of the mechanical 
properties and relaxation phenomena of polyethylene. The dynamics applied to the 
whole assembly of chains result in a deformation of the system without changing the 
initial bond length as it is expected to occur during the first deformation steps. A 
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quantitative correlation of the theoretical and experimental graphs is possible since 
the deformation rates of the simulation are not very high (strain times in the order of 
mcs ≈ 70 s).  
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