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Abstract. By using the compact-density matrix approach, the effect of a nonresonant intense laser field
on the linear and nonlinear optical absorptions based on intersubband transitions and the refractive in-
dex changes in an asymmetric semiconductor quantum well have been presented. Our results show that
the peak position of the absorption coefficient is sensitive to intense laser field, the absorption maximum
shifts towards lower energies for increasing intense laser field value. Also we observe as the intense laser
field strength increases, the total refractive index change has been increased in magnitude and also shifted
towards lower energies. The results indicate that linear and nonlinear optical properties of the low dimen-
sional semiconductor heterostructures can be adjusted in a desired energy range by using intense laser
field.

1 Introduction

There is currently a considerable interest in the study of
the physical properties of the low-dimensional heterostruc-
tures such as quantum wells, wires and dots. In these sys-
tems the restriction on the motion of the charge carriers
allows us to control the physical properties of the struc-
tures. The studies on these systems offer a wide range of
potential applications in the development of semiconduc-
tor optoelectronics devices [1–5].

Recently, the linear and nonlinear optical absorp-
tions based on intersubband transitions and the refrac-
tive index changes in semiconductor quantum wells have
been presented [6–11]. The nonlinear effects in these
low-dimensional quantum systems can be enhanced more
dramatically over those in bulk materials due to the exis-
tence of a strong quantum-confinement effect. These non-
linear properties have the potential for device applications
in far-infrared amplifiers [12], photo detectors [13], and
high-speed electro-optical modulators [14]. The nonlinear
optical properties of the low-dimensional systems gener-
ally depend on the asymmetry of the confinement poten-
tial [15]. The second-order optical effects disappear in a
symmetric quantum well structure, so finite second-order
susceptibilities can only be observed by breaking the sym-
metry of the heterostructure and/or confinement poten-
tial. The tunable asymmetry of the potential, therefore, is
expected to yield promising nonlinear optical properties.
There are several applications in semiconductor hetero-
junction devices and in optical systems [16,17]. Tong and
Kiriushcheva have showed that the tunable asymmetry
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can be used in reduction of noise in resonance tunneling
devices and other devices [17]. It is obvious that the semi
parabolic quantum well (SPQW) is an asymmetric system;
therefore the nonlinear optical properties of the system are
significantly enhanced [18–21]. As is well known the effect
of a high-frequency intense laser field (ILF) also leads to
major modifications in the shape of the confining potential
of the quantum well structure [22–32]. Therefore in low-
dimensional semiconductor heterostructures, the problem
of estimating the effects of the ILF on the confining po-
tential and corresponding bound states plays an important
role in the optoelectronic device modeling. In this context,
a considerable amount of work has been devoted to study
the nonlinear optical properties of semiconductor nanos-
tructures with different confinement potentials under the
ILF [33–36].

This work is concerned with the theoretical study
of the effects of ILF on the linear, third-order nonlin-
ear optical absorption and refraction index change in a
SPQW which is given in Figures 1a and 1b for αo = 0
and αo = 80 Å, respectively. The paper is organized as fol-
lows. In Section 2 the theoretical framework is described.
Section 3 is dedicated to the results and discussion, and
finally, our conclusions are given in Section 4.

2 Theory

The method used in the present study is based on the non-
pertubative theory used to describe the atomic behavior
under intense, high-frequency laser field conditions [37,38].
It starts the space-translated version of the semi-classical
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Fig. 1. The variation of the confinement potential profile and
squared wave functions corresponding to the first and second
energy levels as a function of the normalized position (z̃ =
L/aB , where aB = εo�

2/m∗e2 is the effective Bohr radius) for
two different laser dressing parameters: (a) αo = 0 and (b)
αo = 80 Å.

Schrödinger equation for a particle moving under the com-
bined forces of potential and the laser field derived by
Kramers in the general context of quantum electrodynam-
ics [39]. Within this approach the electron motion in the
presence of an electromagnetic field can be described in
an accelerated frame that oscillates in the phase to the
field [37,40]. For simplicity, we assume a monochromatic
electromagnetic field with angular frequency Ω. For lin-
ear polarization and for wavelengths large enough in order
the non-relativistic dipole approximation to be valid, the
vector potential of the radiation field in laboratory frame
reads A(t) = Ao cos(Ωt)ê, where ê is the unit vector. By
applying the time-dependent translation r → r + α(t)
the semi-classical Schrödinger equation in the momentum
gauge, describing the interaction dynamics in the labora-
tory frame of reference, was transformed by Kramers as
follows [39],

− �
2

2m∗∇2ϕ (r, t) + V (r + α(t))ϕ (r, t) = i�
∂ϕ (r, t)
∂t

(1)

where V (r) is atomic binding potential, V (r+α(t)) is the
‘dressed’ potential energy and

�α(t) = αo sin(Ωt)ê, αo =
eAo

m∗cΩ
(2)

represents the quiver motion of a classical electron in the
laser field. In this approximation, the influence of the high-
frequency laser field is entirely determined by the “dressed

potential” V (r + α(t)) [39],

αo = (I1/2
o /Ω2)(e/m∗)(8π/c)1/2 (3)

where e and m∗ are the absolute value of the electric
charge and effective mass of an electron, c is the velocity
of the light and Ao is the amplitude of the vector potential
and Io is the intensity of ILF.

Following the Floquet approach [38,39], the space-
translated version of the Schrödinger equation, equa-
tion (1), can be cast in the equivalent form of a system
of coupled time independent differential equations for the
Floquet components of the wave function ϕ, containing
the (in general complex) quasi-energy E. An iteration
scheme was developed to solve this, for the zeroth Flo-
quet component ϕo the system reduces to the following
time-independent Schrödinger equation [38–41].(

− �
2

2m∗∇2 + V (r;αo)
)
ϕo = Eϕo (4)

where V (r;αo) is the ‘dressed’ confinement potential
which depends on w and Io only trough αo [37].

In the absence of the laser field, we introduce the func-
tional form of a semi-parabolic confining potential V (z)
as,

V (z) = Vo [θ(z − L) + θ(−z)] +
Vo

L2
z2Θ ((L− z)(z)) (5)

where Vo is the conduction band offset at the interface,
L is the well width, Θ is the Heaviside unit step function
which is satisfies Θ(z) = 1 − θ(−z) and θ is the unit step
function. We choose the z-axis along the growth direction.
By applying the above described dressed potential theory
to our particular SPQW system, we write down the time-
independent Schrödinger equation in one dimensional case
for an electron inside a SPQW in the presence of an intense
high-frequency laser field (the laser-field polarization is
along the z direction), is given by

− �
2

2m∗
∂2ψ(z)
∂z2

+ V (αo, z)ψ(z) = Eψ(z) (6)

where ψ(z) is the wave function, m∗ is the effective mass
and V (αo, z) is the ‘dressed’ confinement potential which
is given by the following expression;

V (αo, z) = Vo [θ (−z − αo) + θ (z − αo − L)]

+
Vo

L2

(
α2

o

2
+ z2

)
Θ ((z + αo) (L+ αo − z))

− V0

πL2
Θ (z + αo) θ (αo − z)

[(
α2

o

2
+ z2 − L2

)

× arccos
(
z

αo

)
− 3z

2

√
α2

o − z2

]

− Vo

πL2
Θ (−z + αo + L) θ (z + αo − L)

×
[(

α2
o

2
+ z2 − L2

)
arccos

(
L− z

αo

)

×
(

3z + L

2

) √
α2

o − (L− z)2
]
. (7)
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With the analytical expression for the dressed potential
in equation (7) which is valid for all values of αo and all
points of z, we obtain bound-state energy levels under
intense laser field conditions. We should point out that
for a square quantum well with width L; a closed-form
expression for the dressed potential valid for all αo > 0
is presented by Lima et al. [31]. But, they have restricted
theirs attention to the points with |z| < (L+αo) whereas,
we derive here an analytical expression for the dressed
potential (Eq. (7)) is valid for all z values.

To calculate the changes of the refractive index and
absorption coefficients corresponding to the optical tran-
sitions between two subbands we have used the density
matrix approach method [42,43]. The entire system is si-
multaneously irradiated by a nonresonant ILF with fre-
quency Ω and a light field of frequency ω. We consider
an optical radiation of angular frequency ω applied to the
system with polarization along the growth direction z such
as

E(t) = Eo cos(ωt) = Ẽeiωt + Ẽe−iωt. (8)

The electronic polarization P (t) and susceptibility χ(t)
caused by the optical field E(t) can be defined through
the dipole operator M , and the density matrix ρ as

P (t) = εoχ(ω)Ẽe−iωt + εoχ(−ω)Ẽeiωt

=
1
V

Tr(ρM) (9)

where V is the volume of the system, εo is the permittivity
of the free space, and Tr stands for the trace. The suscep-
tibility χ(ω) is related to the change in the refractive index
as follows [44]

Δn(ω)
nr

= Re
(
χ(ω)
2n2

r

)
(10)

where nr is the refractive index of the system. By using the
same density matrix formalism, the linear and third-order
nonlinear refractive index changes are given as follows [11]

Δn(1)(ω)
nr

=
1

2n2
rεo

|M21|2 σV

[
E21 − �ω

(E21 − �ω)2 + (�Γ12)2

]
,

(11)

Δn(3)(ω)
nr

= − μc

4n3
rεo

|M21|2 σV I[
(E21 − �ω)2 + (�Γ12)

2
]2

× [4 (E21 − �ω) |M21|2

− (M22 −M11)
2

(E21 − �ω)2 + (�Γ12)2
{(E21 − �ω)

× [
E21(E21 − �ω) + (�Γ12)2

]
−(�Γ12)2 (2E21 − �ω)

}
] (12)

where σV is the carrier density in the system, μ is the
permeability of the system, Eij = Ej − Ei is the en-
ergy difference between two electronic states, Mij =
|〈ψi|ez|ψj〉|(i, j = 1, 2) is the matrix elements of the dipole

moment, Γ12 is the relaxation rate which is equals to the
inverse relaxation time T12, c is the speed of the light in
free space and I is the incident optical intensity which
is defined as I = 2nr

μc |E(ω)|2 . The total change of the
refractive index can be written as

Δn(ω)
nr

=
Δn(1)(ω)

nr
+
Δn(3)(ω)

nr
. (13)

The linear and third-order nonlinear optical absorption
coefficients are given as follows [11,45]

α(1)(ω) = ω

√
μ

εR

|M21|2 σV �Γ12

(E21 − �ω)2 + (�Γ12)2
(14)

α(3)(ω) = −ω
√

μ

εR

(
1

2εonrc

)

× |M21|2 σV �Γ12

[(E21 − �ω)2 + (�Γ12)2]
2

[
4 |M21|2

− (M22 −M11)
2 [

3E2
21 − 4E21�ω + �

2(ω2 − Γ 2
12)

]
E2

21 + (�Γ12)2

]

(15)

where εR = n2
rεo is the real part of the permittivity. In

addition, the total optical absorption coefficient is given
by

α(ω) = α(1)(ω) + α(3)(ω). (16)

3 Results and discussions

We have firstly solved numerically the Schrödinger equa-
tion to investigate intense laser field effects on the
linear, third-order nonlinear optical absorption coeffi-
cients and refractive index changes in a semi-parabolic
GaAs/AlxGa1−xAs quantum well with L = 100 Å width
and finite barrier height Vo = 228 meV as a prototype.
We have used the following physical parameters which are
suitable GaAs/AlxGa1−xAs heterostructures [11]: Γ12 =
1/0.2 ps−1, nr = 3.2, σV = 3.0 × 1016 cm−3, μ =
4π × 10−7 H m−1. We assume an uniform effective mass
m∗ = 0.067mo throughout the heterostructures, wheremo

is the electron rest mass.
In Figure 2, we show the variation of the linear α(1)(ω),

third-order nonlinear α(3)(ω) and total α(ω) absorption
coefficients as function of the incident photon energy �ω
in a semi-parabolic GaAs/AlxGa1−xAs quantum well for
an optical intensity of I = 0.4 MW/cm2. This figure
clearly shows that the peak position of the absorption
coefficients are sensitive to intense laser field, the ab-
sorption maximum shifts towards lower energies for in-
creasing laser dressing parameter αo. Since the energy
difference between the ground state and the first excited
state ΔE = E2−E1 decreases as laser dressing parameter
αo increases. Then as αo increases the peak position of the
absorption coefficients decreases. Also it is seen that, the
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Fig. 2. (Color online) The variations of the linear, third-order
nonlinear and total absorption coefficients as a function of the
photon energy for different values of the dressing parameter αo.

Fig. 3. (Color online) The variations of the linear, third-order
nonlinear and total refractive index changes as a function of
the photon energy for αo = 0.

maximum value of the nonlinear and total absorption co-
efficients depend on intense laser field, such that with the
increase of αo, the nonlinear coefficient increases, but the
linear absorption has small variations with αo and hence
the total absorption coefficient decreases with αo since the
large nonlinear variation is opposite to the sign of the lin-
ear variation.

In Figure 3, the linear, third-order nonlinear and the
total refractive index change are plotted as a function of
the incident photon energy �ω for αo = 0. From this figure
it is clearly seen that the large linear change contribution
is the opposite in sign of the nonlinear change. Therefore,
we observe a reduction in the value of the total refraction
index change.

Figure 4 shows the total refractive index change as a
function of the incident photon energy �ω for three differ-
ent intense laser field values. We observe from this figure
that the total refractive index change Δn

nr
is very sensitive

to the intense laser field. As the intense laser field strength
increases, the total refractive index change has been in-
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Fig. 5. The variations of the two lowest energy levels and
intersubband transition energy ΔE as a function of the intense
laser field.

creased in magnitude and also shifted towards lower en-
ergies. This is mainly due to the increasing the effective
quantum well width as the intense laser field increases and
as a result the energy difference ΔE decreases with αo. In
order to explain this behavior we give the variations of the
ground state E1, first excited state E2 and intersubband
transition energyΔE as a function of the intense laser field
in Figure 4. The figure clearly indicates the tunability of
the intersubband transitions by the applied intense laser
field. Also we should point out that in conventional square
wells the energy difference between the ground state and
first excited state ΔE is blue-shifted with αo especially
for small laser field values, α0 < 40 Å, in contrast to the
semi-parabolic well case. This tunability makes the struc-
ture an ideal candidate for both infrared and near infrared
electro-absorption modulators and detectors. This figure
also allows us to understand the variation of the opti-
cal absorption coefficients with intense laser field. These
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results indicate that linear and nonlinear optical prop-
erties of the low dimensional semiconductor heterostruc-
tures can be adjusted in a desired energy range by using
intense laser field.

4 Conclusions

In this work, by using the compact-density matrix ap-
proach, we investigated how the linear, third-order non-
linear optical absorption and refraction index change in a
SPQW are affected by a nonresonant intense laser field.
Our results show that the peak position of the absorption
coefficient is sensitive to intense laser field, the absorp-
tion maximum shifts towards lower energies for increasing
intense laser field value. Also we observe that the total re-
fractive index change is very sensitive to the intense laser
field. As the intense laser field strength increases, the to-
tal refractive index change has been increased in mag-
nitude and also shifted towards lower energies. Moreover,
we see that in SPQW case the intersubband transition en-
ergy decreases with αo in contrast to conventional square
QWs case. The model presented here for optical and elec-
tronic properties in a SPQW under nonresonant intense
laser field also provides a theoretical foundation for further
studies of optoelectronics under intense laser field condi-
tions in other low dimensional semiconductor structures
with different confining potentials.
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