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Abstract. In this work we make a predictive study on the binding energy of the ground state for hydrogenic
donor impurity in vertically-coupled quantum-dot structure, considering the combined effects of hydrostatic
pressure and in growth-direction applied electric field. The approach uses a variational method within the
effective mass approximation. The low dimensional structure consists of three cylindrical shaped GaAs
quantum-dots, grown in the z-direction and separated by Ga1−xAlxAs barriers. In order to include the
pressure dependent Γ−X crossover in the barrier material a phenomenological model is followed. The main
findings can be summarized as follows: 1) for symmetrical and asymmetrical dimensions of the structures,
the binding energy as a function of the impurity position along the growth direction of the heterostructure
has a similar behavior to that shown by the non-correlated electron wave function with maxima for the
impurity in the well regions and minima for the impurity in the barrier regions, 2) for increasing radius of
the system, the binding energy decreases and for R large enough reaches the limit of the binding energy in a
coupled quantum well heterostructure, 3) the binding energy increases for higher Aluminum concentration
in the barrier regions, 4) depending of the impurity position and of the structural dimensions of the system
(well width and barrier thickness) – and because changing the height of the potential barrier makes possible
to induce changes in the degree of symmetry of the carrier-wave function –, the electric field and hydrostatic
pressure can cause the impurity binding energy increases or decreases, and finally 5) the line-shape of the
binding energy curves are mainly given by the line-shape of the Coulomb interaction.

1 Introduction

In recent years, based on the rapid progress in ex-
perimental crystal-growth techniques such as metal-
organic chemical-vapor deposition, liquid-phase epitaxy,
and molecular-beam epitaxy, the external hydrostatic
pressure effects on impurity states of low-dimensional sys-
tems have received increased attention both theoretically
and technologically. These new crystal-growth techniques
open up opportunities to study the optoelectronic prop-
erties and band structure of semiconductor superlattices
and heterostructures under hydrostatic pressure, includ-
ing coupling effects, resonant tunneling effects, and polar-
izability phenomena. It is now known that these effects can
be enhanced under hydrostatic pressure, a fact which may
lead to many potential applications in optoelectronic de-
vices [1–6], such as strained semiconductor quantum well
lasers, transducers, infrared detectors, resonant tunneling
diodes, and ballistic transistors. Many theoretical investi-
gations have been reported concerning the effects of hydro-
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static pressure on shallow-donor impurity states in GaAs-
Ga1−xAlxAs quantum wells (QW) [7–12], quantum-well
wires (QWW) [13–15] and quantum dots (QD) [16–19]. In
the case of vertically coupled GaAs-Ga1−xAlxAs QDs, the
combined effect of hydrostatic pressure and magnetic field
has also been considered [20]. In addition, effects of hydro-
static pressure on both electrical and transport properties
of two-dimensional electron gas in delta-doped systems
have been reported in recent years [21–24]. The Γ − X
crossover for the barrier material in multiple quantum
well (MQW) structures was observed experimentally by
Venkateswaran et al. [25] and Burnett et al. [26] who stud-
ied the pressure dependence of photoluminescence spectra
in such systems. The Γ − X crossover has been theoret-
ically studied [7–9,19] and, as a general feature, the re-
searchers have found a linear dependence on the binding
energy in the direct-gap regime under the applied pres-
sure, while in the indirect-gap regime (applied pressure
larger than 13.5 kbar) the energy grows with the pressure
until a maximum is reached, and then it decreases. Addi-
tionally, they have shown a red-shift in the shallow-donor-
related optical-absorption spectra associated mainly with
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the pressure dependence of the band gap of the well ma-
terial. In almost all the references cited above the general
characteristic is the effective mass approximation and the
use of variational techniques.

The application of an electric field along the growth
direction of the heterostructure gives rise to a polariza-
tion of the carrier distribution and to an energy shift of
the quantum states. Such effects may introduce consider-
able changes in the energy spectrum of the carriers, which
could be used to control and modulate the output of op-
toelectronic devices. Simultaneous effects of hydrostatic
pressure and electric field on shallow donor impurity states
in QW have been investigated by Morales et al. [27]. For
low-pressure regime these authors observed a liner binding
energy behavior, whereas for high pressure the simultane-
ous effects of both the barrier height and the applied elec-
tric field bend the binding energy curves towards smaller
values. For the range of low hydrostatic pressure they ob-
served that the impurity polarization remains constant in
all cases but it increases as the field goes up. Morales
et al. [28] and Kasapoglu [29] have reported the combined
effect of hydrostatic pressure and electric field on the bind-
ing energy of a shallow-donor impurity in a double QW.
Results for the binding energy as a function of the ap-
plied electric field, for fixed values of pressure, show strong
changes for fields smaller than 20 KV/cm and a softer
behavior for larger fields. In the work reported by Bai
et al. [30] the effects of hydrostatic pressure on the bind-
ing energies of shallow-donor impurity states in double
QWW are studied. As a general feature, the authors ob-
served that, for various positions of the donor ion and for
fixed pressure values the coupling effects become stronger
when the barrier widths become smaller. On the other
hand there is increasingly strong coupling with increas-
ing applied pressure for the same barrier widths. Also,
Bai et al. [30] studied the binding energy of the ground
state of shallow-donor impurity, with respect to the first
subband, in vertically coupled QDs. The variation of the
ground-state binding energy of an impurity located at the
center of the inner dot was considered as a function of
the width of a dot as well as the thickness of the barrier
in the z-direction. All the behaviors of the binding energy
are resolved by the competition between the wave function
localization effect and the wave function tunneling effect.
The effects of hydrostatic pressure on the binding energy
of shallow-donor impurity states in double QD have been
calculated by Liu et al. [31]. The pressure dependence of
the binding energy for different donor ion positions has
been reported in that paper: for pressure values up to
13.5 kbar, the binding energy increases linearly with the
pressure; for pressure values greater than 13.5 kbar, the di-
rect gap regime passes into the indirect-gap regime, where
the Γ − X crossover in the barrier material reduces the
barrier height with increasing pressure, causing the non-
linear variation on the binding energy.

Semiconductor QDs are human-made nanostructures
in which the carriers, i.e., electrons and holes, are con-
fined in all spatial directions. In that respect, therefore,
such QDs are often referred to as “artificial atoms” as they

show typical atomic properties like discrete energy levels
and shell structures. Starting from QDs as a nanostruc-
ture, more developed and complex systems are conceiv-
able; they are promissing in future device applications. A
trivial example is the analogy of a two-atom molecule with
a semiconductor nanostructure consisting of two coupled
QDs, in which one may think of the QD coupling as being
either vertical, lateral, or both simultaneously.

Time-resolved photoluminescence measurements in
single period laterally coupled QD and multiple period
vertically stacked QD have been made by Neogi et al. [32].
They observed that at low temperatures the recombina-
tion time in single coupled QDs is over an order of mag-
nitude longer than the nonradiative recombination pro-
cess at 100 K, and that the vertical correlation among
the adjoining stacked layer leads to an enhancement of
the photoluminescence efficiency in multiple period QDs
and results in an efficient emission at room temperature.
They also found that the binding energies in multiple pe-
riod QDs are stronger by more than six times compared
to single period QDs. Lateral quantum coupling between
two self-assembled (In,Ga)As QD has been confirmed by
photon statistics measurements; this could be understood
as a displayed strong antibunching between the various
excitonic and biexcitonic transitions of these lateral QD
molecules [33]. Also, the direct observation of quantum
coupling in individual QD molecules and its manipulation
using static electric fields has been reported by Krenner
et al. [34].

On the other hand, the fabrication of a strain-free,
laterally aligned GaAs/Al0.27Ga0.73As QD pair structure
using droplet epitaxy has been demonstrated by utilizing
the anisotropic surface potentials of the GaAs (100) sur-
face [35]. The micro-photoluminescence spectra of a single
QD pair shows an ensemble of emissions which may indi-
cate the existence of a tunnel coupling between the QDs.

The effects of an applied electric field on the exciton
spectra in vertically coupled QD have been carefully stud-
ied by Szafran and co-workers [36–40]. They considered in
detail the intermediate- and strong-coupling regimes and
they explained how the spectra evolves when an extra dot
is added to the stack. Also, they have shown that for ver-
tically coupled dots their imperfect alignment does not
qualitatively influence the exciton Stark effect of the elec-
tric field oriented in the growth direction and that the
deviations from the quadratic Stark effect are due to en-
ergy levels crossings (or very narrow avoided crossings).
Zheng [41] has reported a theoretical study of the binding
energy of a donor-impurity in cylindrical-shape multiple
QD heterostructures (MQD), showing that the binding
energy is strongly dependent on the quantum dot size.
Magnetic field effects and single electron states in verti-
cally coupled QDs have been also reported [42–44].

The present work is concerned with the theoretical
study of a donor impurity in a multiple GaAs-Ga1−xAlxAs
QD under the combined effects of an electric field ap-
plied in the growth-direction, and hydrostatic pressure.
The effective-mass and parabolic band approximations
have been considered within the variational procedure.
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Fig. 1. (Color online) Pictorial view of the MQD system stud-
ied in the present work.

The paper is organized as follows. In Section 2 we de-
scribe the theoretical status of the discipline. Section 3 is
dedicated to the results and discussion, and finally, our
conclusions are given in Section 4.

2 Theoretical framework

Here we are concerned with the donor-impurity states in
GaAs-Ga1−xAlxAs MQD grown along the z-axis in the
presence of growth-direction electric field (E = −E ẑ)
and under the effects of hydrostatic pressure (P ). In Fig-
ures 1 and 2 we present a pictorial view of the cylindrical-
shape MQD that we are considering in this work. The
material for the potential barriers in the axial and ra-
dial directions are, respectively, Ga1−xAlxAs (with x la-
beling the Aluminum molar fraction) and AlAs. Here,
we have considered that the confinement on the elec-
trons is due to the difference of the bandgaps in the
Γ -point of the first Brillouin’s zone, taking into account
the appropriate band-offsets. The dimensions along the
z-direction of the well and barrier regions have been de-
fined. Figure 2 also shows three particular donor-impurity
positions (in the center of each QD), the applied elec-
tric field, and the barrier confinements along the growth-
direction. The infinite barrier QW, whose size is L, is
used in the work in order to obtain the non correlated
electron wave function along the z-direction [45]. From
now on the dimensions of the MQD heterostructure will
be always refereed as (LQD1, LDQ2, LQD3, LB1, LB2, R).
Also, the three QDs will be refereed as QD1, QD2,
and QD3 (see Fig. 2). The present theoretical approach
uses the envelope-function and parabolic-band approx-
imations [46,47]; so, the Hamiltonian for the donor-
impurity, in cylindrical coordinates, takes the following
form [41,48–50]
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Fig. 2. (Color online) Pictorial view of the hydrostatic pres-
sure dependent z-direction confinement potential for the MQD
system studied in the present work. The quantum dot lengths,
the barriers thickness, and the infinite-barrier quantum well
width, used to model the electron wave function, are depicted.
The direction of the applied electric field, three particular po-
sitions of the impurity along the z-direction (zi

0, i = 1, 2, 3),
and the axial positions of the different interfaces in the MQD
(zi, i = 1, 2, 3, ..., 8), are showed as well.

where (ρ, z) and (0, z0) are the electron and impurity co-
ordinates, e is the the electron charge, and m∗(P ) and
ε(P ) are the hydrostatic pressure-dependent electron effec-
tive mass and static dielectric constant, respectively (for
simplicity, the dielectric constant and the effective masses
are considered to be the same as in GaAs throughout the
GaAs-Ga1−xAlxAs MQD). V (z, ρ, P ) = V (z, P )+V (ρ, P )
are the hydrostatic pressure-dependent MQD confining
potentials with
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(3)

From equation (2), it is clear that in our model we are
approaching to infinite the potential barriers in the ra-
dial direction due to the presence of the AlAs material. In
other words, this limit of the potential barrier in the radial
direction is equivalent to consider, for example, a GaAs-
vacuum interface instead of considering a GaAs-AlAs in-
terface.

In order to obtain the impurity eigenfunctions for
the GaAs-Ga1−xAlxAs DQW, we adopt the variational
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scheme used by Fox et al [51] and Galbraith and
Duggan [52] which consists of minimizing the functional

E(Φ) = 〈Φ|Ĥ |Φ〉 (4)

using the variational wave functions as

Φ(ρ, z) = f(z)J0(k10ρ) e−λ r, (5)

where f(z)J0(k10ρ) [J0 is the ordinary Bessel’s function
with J0(k10R) = 0] is the eigenfunction (with eigenvalue
E0) of the Hamiltonian in equation (1) without the im-
purity potential term at the right and λ is a variational
parameter. We note that the non-correlated function f(z)
is readily obtained via the method of Xia and Fan [45]
which consists of an expansion in terms of sine functions
associated with the infinite barrier QW of width L. For the
applied electric field values reported in this study – less
than 100 kV/cm –, the electron-impurity system always
corresponds to a bound problem. That is the reason for
which the model of the trial wave function that we used is
a correct choice to describe the Stark effect [53,54]. Even
in the case of very strong electric fields, due to the infi-
nite potential barriers in ±L/2, considered in the model,
one always obtain a bound state for the ground energy
of the electron-impurity system. For the GaAs electron
effective mass and the static dielectric constant we have
used [1,55,56], respectively:

m∗(P )=
[

1 +
15020 meV

Eg(P )
+

7510 meV
Eg(P )+341 meV

]−1

m0, (6)

and

ε(P ) = 12.58 exp(−1.67 × 10−3 kbar−1P ), (7)

where Eg(P ) is the bulk GaAs bandgap

Eg(P ) =
(

1519 + 10.7 kbar−1 P
)

meV, (8)

m0 is the free electron mass, and x is the alloy concentra-
tion.

Here we follow the model of Elabsy [7] in which the
Γ − X crossover in the Ga1−xAlxAs material, which
is induced by the effect of hydrostatic pressure, is in-
troduced into the model through the pressure depen-
dence of the height of the barrier that confines the elec-
trons in the z-direction. In particular, for pressures below
∼13.5 kbar [7,26] the height of the barrier remains con-
stant while for pressures larger than this value the height
of the barrier decreases with pressure. The parameters
that describe the dependence of the barrier height with
the hydrostatic pressure are obtained from fittings with
experimental results of the photoluminescence-peak en-
ergy transition in semiconductor heterostructures. So, for
the MQD confined potential along the z-direction we have
used [7]

V0(P ) =

⎧

⎨

⎩

Γ
(P )
b − Γ

(P )
w , P ≤ P1,

X
(P )
b − Γ

(P )
w + S0 x P−P1

P , P1 < P ≤ P2

(9)

here P1 (13.5 kbar) is the crossover pressure between the
X

(P )
b - and the Γ

(P )
b -conduction bands for the barrier ma-

terial, and P2 (35 kbar) is the crossover pressure between
the X

(P )
b -conduction band in the barrier and the Γ

(P )
w -

conduction band in the well. S0 (250 meV) [7] is an ad-
justable parameter used to fit the predicted energy at P1

with the experimental result. Finally, the pressure depen-
dent well-width and barrier-width (Li(P )) are obtained
from

Li(P ) = Li(P = 0) [1 − (S11 + 2S12)P ] , (10)

where S11 = 1.16 × 10−3 kbar−1 and S12 = −3.7 ×
10−4 kbar−1 are the compliance constants of bulk
GaAs [1,57,58] and Li(P = 0) corresponds to the well-
or barrier-width at P = 0.

3 Results and discussion

In Figure 3 we present our results for the binding energy of
a donor impurity in a vertically GaAs-Ga1−xAlxAs MQD
as a function of the impurity position along the growth
direction of the structure. We have considered two dif-
ferent structures: in the first structure (Fig. 3a), due to
the symmetry of the potential, the binding energy is also
symmetric with respect to z = 0. In the second structure
(Fig. 3b), the potential is slightly asymmetric, and corre-
spondingly, the symmetry in the binding energy is broken.
Let us concentrate on Figure 3a. The binding energy shows
a maximum at the center of each well and minima at the
barrier regions. As the impurity gets closer to the barriers,
the binding energy diminishes, because the barriers repel
the wave function and polarize the electron-impurity sys-
tem, thus causing an increase in the expectation value of
the z-distance between them, 〈|z−z0|〉, with a consequent
decrease in the Coulomb interaction. As the Aluminum
concentration increases – dashed line in Figure 3a – the
height of the barriers increases, forcing the probability of
finding the carriers in the region of the barriers to de-
crease, with a corresponding increase of the probability
in the well regions. Thus, when the Aluminum concentra-
tion increases, the binding energy decreases for impurities
in the barriers and increases for impurities in the wells.
When considering structures where the wells have differ-
ent widths (Fig. 3b), it is clear that the probability of
finding the electron is higher in the well of greater width
and decreases towards the regions of lower well widths,
as shown by the solid line in Figure 3d. By moving the
impurity along the growth-direction, it is clear that when
it is in the region of the QD1 the binding energy reaches
a highest value, since 〈|z − z0|〉 is at its minimum pos-
sible value (∼40 Å), as shown by the solid line in Fig-
ure 3c. By moving the impurity to the QD2 the binding
energy naturally decreases, because 〈|z − z0|〉 = 120 Å ∼
LQD1/2+LB1+LQD2/2 = 137.5 Å, with a corresponding
decrease in the Coulomb interaction (see Fig. 3c). When
the impurity is located at the center of the QD3 the bind-
ing energy keeps declining because now 〈|z− z0|〉 = 241 Å
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Fig. 3. (Color online) Binding energy of a donor impurity in
cylindrical-shape vertically coupled GaAs-Ga1−xAlxAs MQD
as a function of the impurity position along the z-direction
(a, b). The dimensions of the structure are (100, 100, 100, 40,
40, 100) Å (a) and (100, 95, 90, 40, 40, 100) Å (b). In (a)
F = 0 and solid lines are for x = 0.1 whereas dashed lines
are for x = 0.3. In (b) x = 0.3 with F = 0 for solid lines
and F = 8kV/cm for dashed lines. In (c) and (d) the results
are for the same configuration as in (b) but, respectively, for
the expectation value of the electron-impurity distance, in the
z direction, as a function of the z0-impurity position and for
the probability density, along the z-direction, for the ground
state of electrons in the heterostructure without consider the
Coulomb interaction.

or ∼ LQD1/2 + LB1 + LQD2 + LB2 + LQD3/2 = 225.5 Å
(see Fig. 3c). When the electric field is applied in the
−z-direction, there is a force on the electrons in the
+z-direction; correspondingly, the probability of finding
the electrons in the QD1 decreases, and the probability
in the QD3 increases (see dashed curve in Fig. 3d). The
shape of the binding energy curve in Figure 3b is essen-
tially asymmetric; but it may be artificially symmetrized
if we apply a suitable electric field. Now, when the impu-
rity is shifted from the center of the QD1 to the center of
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Fig. 4. (Color online) Binding energy of a donor impurity in
cylindrical-shape vertically coupled GaAs-Ga1−xAlxAs MQD
as a function of the radius of the structure. The dimensions of
the structure are taken as (100, 100, 100, 40, 40, R) Å with z0 =
z2
0 and considering different values of Aluminum concentration.

the QD2, the expectation value 〈z − z0〉 diminishes from
170 Å ∼ LQD1/2+LB1+LQD2+LB2+LQD3/2 to 23 Å (see
the dashed line in Fig. 3c). This occurs with a correspond-
ing increase in the binding energy, which is represented by
the dashed curve in Figure 3b.

In Figure 4 we present our results for the binding en-
ergy as a function of the radius of a system of three ver-
tically GaAs-Ga1−xAlxAs MQD. As the radius increases
the binding energy decreases because the wave function
of the system is spreading over a larger transverse region
of the MQD system, with a corresponding increase in the
expectation value of the in-plane electron-impurity dis-
tance, 〈ρ〉. For sufficiently large radii our results reproduce
the exact value of the three coupled QWs system. When
the radius of the structure goes to zero the binding en-
ergy increases monotonically, due to the infinite barriers
in the radial direction. It is clear that an increasing of the
Aluminum concentration (by comparing the solid, dashed,
and dotted line curves) should increase the binding energy
because, in addition to the radial confinement, we now
must add a higher confinement along the z-direction.

In Figure 5 we present our results for the binding en-
ergy of a donor impurity in a GaAs-Ga1−xAlxAs MQD as
a function of the length of the dots and thickness of the
barriers; we study those cases in which both length and
thickness increase in the same proportion. Since in our
calculations we have taken a typical value L = 600 Å, the
maximum value of the length of each dot and/or thick-
ness of each barrier is 600/5 Å= 120 Å; this corresponds
to the maximum value reported on the horizontal axis in
Figure 5. Note (see Fig. 2) that when the length of the
dots and/or barriers is zero, the impurity-electron system
is confined in a Ga1−xAlxAs QD surrounded by infinite
barriers both in the z and ρ directions. In this case the
system is in the minimum value of the confinement effect
because the barriers and the binding energy correspond
essentially to a system confined in a single QD of radius
100 Å. Although it is not shown here, it is important to
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Fig. 5. (Color online) Binding energy of a donor impurity in
cylindrical-shape vertically coupled GaAs-Ga1−xAlxAs MQD
as a function of the well=barrier width of the structure for
R = 100 Å and z0 = z2

0 . Solid lines are for x = 0.1 and dashed
lines for x = 0.3. In (a) F = 0 whereas in (b) F = 30 kV/cm.

clarify that in the limit when both length and thickness
are zero, the two curves – solid and dashed – go exactly
to the same binding energy value; this is consistent with
the fact that in this limit the binding energy only depends
on R and L but not on the Aluminum concentration, due
to the absence of finite potential barriers. When the length
of the dots and the thickness of the barriers acquire a fi-
nite value δ, slightly greater than zero, the system is im-
mediately confined in a quantum dot of radius 100 Å and
length 3δ since in that range the three quantum dots are
strongly coupled. Note that in the small length range the
binding energy is of the order of 4 R∗, which corresponds
to a 2-dimensional hydrogenic atom. As the z dimensions
grow the system looses confinement in z-direction, and
thus should present a decrease in the binding energy, as
observed in both curves in Figure 5a in the range be-
tween 20 Å and 50 Å, approximately. From 50 Å, the
thickness of the barriers begins to decouple the QDs and
thus the binding energy starts to increase; this happens
because the system is essentially confined in the QD2 re-
gion, where the impurity is located. Additionally, in this
range the infinite barriers at ±L/2, begin to exert their
effect because the dimensions of our structure begin to
reach the limits of saturation. The results of increasing
the Aluminum concentration (comparing the dashed to
the solid lines) show a similar behavior but with larger
binding energy corresponding to the presence of a higher
potential barrier in the z-direction. An applied electric
field dramatically changes the behavior of the binding en-
ergy. In the limit of small width we essentially obtain a
strongly polarized hydrogenic atom since the wave func-
tion is oriented towards the infinite wall at z = + L/2
and the expectation value of z-distance between the elec-

tron and the impurity is of the order of 300 Å; this comes
accompanied with a small value in the binding energy.
When the length/thickness is of the order of 10 Å, the
system is essentially confined into a QD of length 30 Å
because the three dots are strongly coupled among them-
selves. Here a low Aluminum concentration, as in the solid
line, cannot confine the system in the QDs regions and
therefore the binding energy remains essentially constant.
But at sufficiently high Aluminum concentration, x = 0.3,
the barriers are high too; in these conditions the binding
energy grows steeply to a maximum (see the dotted line in
Fig. 5b), in spite of the presence of the electric field. For
low Aluminum concentrations (solid line) we also obtain
the same dramatic growth of the binding energy, but in
a larger QD length. Having a larger available space, the
wave function spreads, thus facilitating the polarization
of the system; this comes accompanied with a decrease in
the binding energy: this happens after the binding energy
reaches a maximum and starts to decrease.

Figure 6 shows the dependence with the applied elec-
tric field of the binding energy for a donor impurity in a
system of vertically coupled MQD of lengths 100 Å, 80 Å
and 60 Å for LQD1, LQD2, and LQD3 respectively. Two
positions of the impurity have been considered. Note, Fig-
ure 6c, that without impurity and at 4 kV/cm the prob-
ability of finding the electron in QD1 is maximum, very
low in QD2, and almost zero in QD3. This situation is al-
most the same at zero field, implying that the effect of the
field at 4 kV/cm is negligible. When considering an elec-
tric field of 12 kV/cm the probability is maximum in QD2
and very low in QD1 and QD3. For a field of 24 kV/cm
the electron is essentially located in QD3. Let us now con-
sider the effect of the impurity, when it is located at the
center of the QD2 (Fig. 6a); note that at low fields the
z-distance between the electron and the impurity is of the
order of the distance between the QD1 and QD2. By in-
creasing the field, this distance is of the order of 0, with
the corresponding increase in the binding energy, as shown
by solid and dashed curves in Figure 6a. If now the field
continues to grow, the expectation value of the z-distance
increases again to a value of the order of the distance
between the QD2 and the QD3, with the corresponding
decrease in the binding energy. Note that the QD1-QD2
distance is greater than the QD2-QD3 distance and thus,
in the low field limit, the binding energy value is smaller
than the binding energy for the high fields limit, as we ob-
serve by the dotted line. At low Aluminum concentration
(solid line) the curve shows a similar behavior, but not
as well defined like the one we obtained for high concen-
trations. Now we go to the impurity at the center of the
QD3 (Fig. 6b). In this case, the expectation value of the
z-distance evolves from the QD1-QD3 distance, through
QD2-QD3, and ends at approximately zero. That means
that at any time the binding energy presents an increasing
behavior. For high Aluminum concentrations, this behav-
ior has the shape of “steps” appearing in the dashed line
in Figure 6b. A possible explanation is as follows: in the
low field range, from 0 to 8 kV/cm, the electron is es-
sentially located in the QD1; for fields between 8 kV/cm
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Fig. 6. (Color online) Binding energy of a donor impurity in
cylindrical-shape vertically coupled GaAs-Ga1−xAlxAs MQD
as a function of the in-growth direction applied electric field
(a, b). The dimensions of the structure are (100, 80, 60, 50,
50, 100) Å. In (a) z0 = z2

0 whereas in (b) z0 = z3
0 . Solid and

dashed lines are for x = 0.1 and x = 0.3, respectively. In (c)
the results are for the same dimensions of the structure and
x = 0.3, but for the probability density along the z-direction
for the ground state of the electrons in the heterostructure
without considering the Coulomb interaction. Solid, dashed,
and dotted lines are, respectively, for 4 kV/cm, 12 kV/cm,
and 24 kV/cm of the applied electric field.

and 14 kV/cm the electron passes to the QD2 region, and
finally at fields greater than 20 kV/cm, it is essentially
located in the QD3. For low barriers, solid line, note that
the transition between the QD1 and QD3 regions is made
in a soft way, which reflects the low value of the geometric
confinement in the z-direction.

In Figures 7a and 7b we present our results for the
binding energy of a donor impurity in a coupled MQD
system as a function of the hydrostatic pressure, for two
different values of applied electric field. The results are
presented for impurities located at the centers of each QD
that form the structure. The dimensions of the structure
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Fig. 7. (Color online) (a,b) Binding energy of a donor impu-
rity in cylindrical-shape vertically coupled GaAs-Ga1−xAlxAs
MQD as a function of the hydrostatic pressure. The dimensions
of the structure are (100, 80, 60, 50, 50, 100) Å with x = 0.3.
In (a) F = 0 whereas in (b) F = 15 kV/cm. Solid, dashed,
and dotted lines are, respectively, for z0 = z3

0 , z0 = z2
0 , and

z0 = z1
0 . (c,d) The different energies associated with the four

terms at the right side of equation (1): term 1+term 2+term 3
(E0 – line 1), term 1 (Ekinetic – line 2), term 2 (Econfinement –
line 3), and absolute value of term 4 (|ECoulomb| – line 4). The
results are for the impurity at z3

0 with the same dimensions
considered for Figures (a) and (b). In (c) F = 0 whereas in (d)
F = 15kV/cm.

are the same as the ones presented in Figure 6; and thus
Figure 6c is useful for the discussion of Figure 7. In the
case of Figure 7a and in accordance with the solid line
in Figure 6c, the probability of finding the electron along
the z direction is maximum in the region of the QD1.
Consequently, when the impurity is moved from QD3 to
QD2 and finally to QD1, the expectation value of the z-
distance between the electron and the impurity decreases.
This, in turn, comes accompanied with an increasing in
the binding energy, as we pass from the solid line to the
dashed line and finally to the dotted line in Figure 7a.
For impurities in QD2 and QD3 the binding energy is es-
sentially constant over the pressure regime in which the
height of the barrier is high enough to allow the electron
wave function to remain mainly distributed along QD1.
With an increasing pressure in the regime of the Γ − X
crossover for the barrier material, we have a reduction in
the height of the barriers and hence the electronic wave
function starts to spread around the center of QD2, with
the corresponding decreasing in the expectation value of
z-distance and the increasing in the binding energy, as it
is shown in the upward bending of the solid and dashed
curves. In the case of an impurity in QD1, the behavior
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is as follows. Initially, 〈|z − z0|〉 is close to zero and there-
fore the binding energy is at its maximum. As the pres-
sure increases, there is a decreasing in the dielectric con-
stant, so we have an increasing of the Coulomb interaction
with the corresponding quasi-linear increasing of the bind-
ing energy. When the Γ − X crossover appears, near to
P = 12 kbar, the height of the barrier begins to fall and
then the binding energy reaches a maximum. Finally it
decreases to a value that is similar to the one obtained
for impurities at QD2 and QD3. Now, turning to Fig-
ure 7b, where there is a field of 15 kV/cm, it is clear
that the electron wave function is essentially about the
QD2 and decreases towards QD1 and QD3. In this case,
when the impurity is located at QD2 and in the zero pres-
sure limit, the binding energy must be comparable to the
value obtained with zero field and with the impurity in
QD1 (compare dotted line in (a) with dashed line in (b)).
Note that now, at zero pressure and for the impurity at
QD1, the binding energy is lower than in Figure 7a (com-
pare the two dotted lines in (a) and (b)) and for QD3 is
higher than in Figure 7a (compare the two solid lines in
(a) and (b)). With an increasing in the pressure the height
of the barriers decreases so now the electric field is large
enough to make the probability of finding the electron
along the z-direction maximum in QD3, and minimum in
QD1 and QD2. In this sense for pressures greater than the
Γ −X crossover the binding energy should increase for the
impurity in QD3 and decrease for the impurity in QD2,
because the expectation value of the z-distance between
the impurity and the carriers decreases and increases, re-
spectively. This behavior is clearly illustrated by the solid
and dashed curves for hydrostatic pressure greater than
18 kbar; when the impurity is in QD1 (see the dotted line
in the figure) the binding energy does decrease, but very
gently. Figures 7c and 7d present the hydrostatic pressure
dependence of the different energies associated with the
terms at the right side of equation (1). The same values
for the electric fields of Figures 7a and 7b were consid-
ered. For the position of the impurity it was chosen the
value corresponding to the center of QD3. Notice that at
P = 0, both Ekinetic and E0 are of the order of 60 meV for
F = 0, and of 70 meV for F = 15 kV/cm. For Econfinement

and |ECoulomb|, at F = 0 and P = 0, the two energies
are of the order of 5 meV and become of the order of 20
meV when F = 15kV/cm. The increase of Econfinement

and |ECoulomb| are explained by the fact that the electric
field pushes the electron wave function towards the impu-
rity site, with two effects: (1) a decrease in the expectation
value of the electron-impurity distance, therefore leading
to the increase of |ECoulomb| and (2) a decrease of the
probability of finding the electron in the QD1 and QD2
regions, and thereby causing the increasing of the proba-
bility for the barrier regions. Consequently, there will be
an increase in Econfinement. On the other hand, the rise of
Ekinetic and E0 due to the effect of the applied electric field
can be explained in terms of the shift towards higher en-
ergies of the bottom of the QD1 (see Fig. 2). It should be
noticed that in the MQD system of Figure 7, the QD1 has
the larger dimensions and consequently all the energies in
Figure 7 are mainly associated to the QD1. By augment-

ing the hydrostatic pressure the electron mass increases
and thereby both Ekinetic and E0 go down (curves 1 and
2 in Fig. 7c and curve 1 in Fig. 7d). For pressures up to
13.5 kbar, the line 2 in Figure 7d shows that the Ekinetic

has a constant behavior as a function of the hydrostatic
pressure. This effect is due to: (1) the constant value of the
barrier height and (2) because the applied electric field the
wave function is essentially confined to the QD3. Also, for
line 2 in Figure 7d, for pressures larger than 13.5 kbar the
potential barriers decrease, and because the electric field
the probability of finding the electron spreads over a larger
region of space. This fact is consistent with the principle of
uncertainty and results in a decrease in the speed of the
electron, hence the dramatic decrease in kinetic energy.
The rise with the hydrostatic pressure of the |ECoulomb|
(line 4 in Fig. 7d) and the fall of Econfinement [line 3 in
Fig. 7d] are mainly due to the decrease in the height of
the potential barrier. This essentially makes the electron
wave function to be localized in the region of the QD3.
Additionally, it should be noticed that the binding energy
curves in Figures 7a and 7b follow the same behavior ex-
hibited by |ECoulomb| curves in Figures 7c and 7d, respec-
tively. Finally, we note that for zero applied electric field
the absolute value of the Coulomb interaction evolves from
|ECoulomb| ∼ 10%E0 at P = 0 to |ECoulomb| ∼ 50%E0 at
P = 30 kbar and that for F = 15kV/cm the Coulomb
interaction evolves from |ECoulomb| ∼ 30%E0 at P = 0
to |ECoulomb| ∼ 100%E0 at P = 30 kbar. It means that
in the present work is not possible to use, for example,
perturbative methods to calculate the impurity binding
energy.

In Figure 8 we present our results for the binding en-
ergy as a function of the QD length (a, c) and as a function
of the barrier thickness (b, d), considering two different
values of the applied electric field and two different values
of hydrostatic pressure. Note that for LW = 0, in both
Figures 8a and 8c, our results are in agreement with those
reported and discussed in Figure 5; i.e., the binding energy
goes to the limit of a system confined in a Ga1−xAlxAs
QD of radius R and length L. As soon as LW takes on fi-
nite values, such as 10 Å, the binding energy shows a sud-
den jump to high values because the system is confined in
three coupled QDs slightly coupled by the large barriers.
From these values of LW , the binding energy is almost
insensitive to variations of LW (with minor changes of up
to 1 meV). Of course after this sudden jump the binding
energy decreases because it diminishes the confinement of
the carriers when the dimensions of the QD have an incre-
ment. Near the maximum limit of the length of the dots
(600−2×45)/3 = 170 Å it is clear that the binding energy
must present a slight increase since the infinite barriers at
±L/2 begin to exert their influence. Considering the ef-
fect of pressure in Figure 8a, it is clear that the binding
energy must exhibit a similar behavior; however the curve
(dashed line) is slightly above the solid line, which is con-
sistent with the decreasing of the dielectric constant. Note
that the dotted curve is obtained essentially by a rigid
shift of the continuous curve. When we consider the effect
of an electric field, Figure 8c, the results are quite similar
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Fig. 8. (Color online) Binding energy of a donor impu-
rity in cylindrical-shape vertically coupled GaAs-Ga1−xAlxAs
MQD as a function of the dot length – LW (a, c) and as
a function of the barrier thickness – LB (b, d). The dimen-
sions of the structure are (LW , LW , LW , 45, 45, 100) Å and
(45, 45, 45, LB , LB , 100) Å with x = 0.3 and z0 = z2

0 . In (a)
and (b) F = 0 whereas in (c) and (d) F = 20 kV/cm. Solid
and dashed lines are, respectively, for P = 0 and P = 20 kbar.

to those already discussed in Figure 5b, particularly for
the dashed curve. Here, it is clear that the effect of the
electric field is dominant over the effects of the pressure.
The latter essentially translates into a rigid displacement
of 5 Å towards greater lengths of QD. In Figure 8b in
the limit of LB = 0, the binding energy corresponds to
a donor impurity in the center of a quantum dot of ra-
dius 100 Å and height 135 Å. When a finite value of LB,
such as LB = 20 Å is considered, the binding energy de-
creases due to the augment of the expectation value of the
electron-impurity distance. This is due to the fact that an
important part of the probability amplitude decreases in
the region of the potential barriers and increases towards
the regions of the QD1 and QD3. It is important to keep
in mind that in this figure the impurity is located at the
center of QD2. Since LB = 30 Å, the binding energy rises
as long as LB increases. The reason for this to occur is
that the three QDs regions become uncoupled, with the
consequent confinement of the wave function mainly in the
region of QD2. Notice that from LB = 170 Å the three
quantum dots are completely uncoupled and the binding
energy reaches the limit of an impurity in a cylindrical QD
of radius 100 Å and height 45 Å. Considering now the ef-
fect of the electric field, Figure 8d, it is possible to observe
that at LB = 0 the curves in 8b and 8c have essentially the
same binding energy value. This is explained by the fact
that in a QD of height 135 Å an electric field of 20 kV/cm

is not enough to polarize the electron-impurity system.
If a finite value of LB is introduced, the probability of
finding the electron in the region of QD1 and QD2 tends
to zero, and is maximum in the QD3. Therefore, to en-
large the width of the barrier also increases the expected
value of the electron-impurity distance and consequently
the Coulomb interaction and the binding energy falls. The
effects of hydrostatic pressure in Figures 8b and 8d are
very similar to those observed in Figures 8a and 8c and
for them are valid the same physical interpretations.

To complete the results and discussion section, we dis-
cuss below some of the limits of validity of the model we
have considered. For electric fields above 150 kV/cm the
electron wave function is strongly pushed towards the in-
finite barrier at +L/2 and all the structural information
of the MQD of our model is lost. That value of electric
field is reduced to 30 kV/cm for hydrostatic pressures
around 30 kbar. This is fundamentally associated with
the diminishing of the height of the potential barriers, as
a result of the crossing between the Γ and X conduction
bands. At 33 kbar the finite potential barriers go to zero
and the system essentially reduces to a single QD of ra-
dius R and length L (approximately 600 Å in this work).
For hydrostatic pressure larger than 33 kbar it occurs a
semiconductor-metal transition and the system acquires
an interest which is different from the one that motivates
this investigation. With respect to the case of the values of
the Aluminum concentration, we must emphasize that in
this research we have focused on type I-heterostructures.
This means heterostructures where the minimum of the
conduction band and the maximum of the valence band
are both in the Γ -point of the first Brillouin´s zone. For
this reason, the calculations reported here are restricted
to consider 0 < x < 0.35. Additionally, it is clear that
in this model when R → ∞ the results should reproduce
those of a coupled quantum wells system. In the case of
R → ∞ and L large enough, our results reproduce the
limits of hydrogen-like atom in the bulk, both in the case
of Lw → 0 with finite LB and LB → 0 with LW finite.
The Stark effect for hydrogenic atom in the bulk is also
reproduced under the above two considerations. All of the
aforementioned were the limits used in this investigation
to discuss the convergence of the results presented.

4 Conclusions

By using the effective mass and parabolic band approx-
imations, a variational calculation of the shallow donor
binding energy in cylindrical GaAs-Ga1−xAlxAs vertically
coupled quantum dots was performed. The influence of an
external electric field and applied hydrostatic pressure on
this quantity is discussed for several geometries of the sys-
tem. It has been found that, in general, the position of the
donor atom, the applied electric field, and the hydrostatic
pressure, combined with the structural dimensions of of
the MQD system, are critical parameters determining the
value of the binding energy. The essence of this work can
be stated as a predictive study about the binding energy
of a donor impurity in a MQD, and our main findings can
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be summarized as follow: (1) the binding energy as a func-
tion of the impurity position along the growth direction
of the heterostructure follows the same behavior exhib-
ited by the non correlated electron wave function. This
means that the binding energy is symmetrical (asymmet-
rical) with respect to z = 0 for symmetrical (asymmet-
ric) MQD systems, with maxima in the well regions and
minima in the barrier regions, (2) for increasing radius of
the MQD system, the binding energy decreases and for R
large enough it reaches the limit of the binding energy in a
coupled QW system, (3) the binding energy increases with
the augment of the Aluminum concentration in the barrier
regions, (4) depending on the values of the impurity po-
sition and the structural dimensions of the MQD system
(well and barrier dimensions), the electric field and the
hydrostatic pressure can cause the binding energy to in-
crease or to decrease; and finally, (5) the line-shape of the
binding energy curves are mainly given by the line-shape
of the Coulomb interaction. As a final conclusion we can
mention that our findings confirm that both hydrostatic
pressure and in-growth electric field could be suitable tools
for tuning the electronic properties of multiple quantum
dots, including the effect of shallow-donor impurities. We
do hope this work stimulate experimental studies related
to optical and electronic properties of donor impurities in
vertically coupled MQD heterostructures.
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12. M.E. Mora-Ramos, S.Y. López, C.A. Duque, Eur. Phys. J.

B 62, 257 (2008)
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H. Morkoç, Phys. Rev. B 31, 4106 (1985)

26. J.H. Burnett, H.M. Cheong, W. Paul, E.S. Koteles, B.
Elman, Phys. Rev. B 47, 1991 (1993)

27. A.L. Morales, A. Montes, S.Y. López, C.A. Duque, J.
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