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Abstract. The differential cross-section of electron Raman scattering and the Raman gain are calculated
and analysed in the case of prismatic quantum dots with equilateral triangle base shape. The study takes
into account their dependencies on the size of the triangle, the influence of externally applied electric field
as well as the presence of an ionized donor center located at the triangle’s orthocenter. The calculations
are made within the effective mass and parabolic band approximations, with a diagonalization scheme
being applied to obtain the eigenfunctions and eigenvalues of the x-y Hamiltonian. The incident and
secondary (scattered) radiation have been considered linearly-polarized along the y-direction, coinciding
with the direction of the applied electric field. For the case with an impurity center, Raman scattering with
the intermediate state energy below the initial state one has been found to show maximum differential
cross-section more than by an order of magnitude bigger than that resulting from the scheme with lower
intermediate state energy. The Raman gain has maximum magnitude around 35 nm dot size and electric
field of 40 kV/cm for the case without impurity and at maximum considered values of the input parameters
for the case with impurity. Values of Raman gain of the order of up to 104 cm−1 are predicted in both
cases.

1 Introduction

With the advances of nanotechnology engineering, new op-
portunities of growing low-dimensional heterostructures of
various kinds and geometries, with pre-determined phys-
ical properties, have arisen. Since the 90s the fabrica-
tion and theoretical study of quantum dots (QDs) of
different shapes besides the originally treated circular
and squared ones. In this sense, configurations like tri-
angular, oval, semicircular, elliptical, etc. have been re-
ported [1,2]. Nowadays QDs of even more complicated ge-
ometries are often created like, for example, the sagittal
pyramid case [3]. This opens more and more new possibil-
ities in developing materials or systems with the desired
physical properties.

From the point of view of practical realisation it
is possible to mention reports on metallic, dielectric
and semiconducting nanostructures bearing triangular
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geometry [4–8]. In particular, references [7,8] reported the
fabrication of a thin GaAs QDs with shape of equilateral
triangle grown on a GaAs (111) substrate by droplet epi-
taxy technique. The structures that shall be investigated
in the present article are very similar to these latter QDs
both in shape and size.

From the times of the detection of the stimulated
Raman scattering [9] – one of the first effects of nonlinear
optics discovered – and the first continuous-wave Raman
laser [10], the problem of obtaining efficient Raman lasing
still remains as both a fundamental and technological chal-
lenge despite a number of perspective applications. The
development of semiconductor nanostructure technologies
opens new horizons since low-dimensional systems allow
overcoming the traditional contradiction between gain and
bandwidth for Raman lasers [11]. Therefore the problem
of Raman scattering in 2- , 1-, and 0-dimensional struc-
tures, including semiconductor quantum dots [11–13], con-
stitutes a subject of top interest in contemporary solid-
state physics.
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In previous works we have studied the 2D Schrödinger
problem for the case of a 3-fold symmetrical system (i.e.,
that with 3 axis of symmetry) applied to some semicon-
ductor nanostructures in order to investigate their en-
ergy structure and optical properties. Namely, in the re-
port of reference [14] the eigenvalues and eigenfunctions
for the triangular QD have been numerically obtained
and linear and non-linear intersubband absorption coeffi-
cient and refractive index changes were calculated. After-
wards we studied the electronic and optical properties of
a system of 3-coupled quantum well wires with triangular
cross-sections [15]. Here our aim is to calculate and anal-
yse intersubband optical properties of the triangular QD
connected to electron Raman scattering. We are interested
in discussing the effects of the variation in QD size, the
application of an in-plane external electric field and the
presence of an ionized donor center placed at the ortho-
center of the triangle.

The article is organized as follows: in Section 2 we
give some key elements of the theoretical model employed.
Section 3 is devoted to present and discuss the obtained
results and Section 4 contains the conclusions of the work.

2 Theory framework

2.1 Potential model and Hamiltonian

The model system considered in this work is a prismatic
GaAs QD with the base in the form of an equilateral tri-
angle of side L – taken to lie in the (x, y) plane – in a
Al0.3Ga0.7As bulk environment. According to data on QD
height reported in references [7,8] (where GaAs/AlGaAs
QDs were grown by Stranski-Krastanov method), and [16]
(with the using of droplet epitaxy), we can talk about the
possibility of practical realization of triangular QDs with
vertical size of 2 nm. In this case the QD can be considered
to be practically flat; because lateral size is significantly
larger than the height. Besides, dimensions along the
z-direction are insufficient for quantization of more than
one level in the energy of the vertical motion. Accordingly,
coordinates z and (x, y) can be separated so the problem
actually becomes a two-dimensional one.

For the sake of the numerical procedure, the whole
system is put inside a big prismatic rectangular quantum
box with the dimensions Lx×Ly×h (with h = 2nm is the
height of the QD) and infinite potential outside the box
(the x-y projection of the prismatic QD system structure
is schematically depicted in Fig. 1).

In addition, an ionized donor impurity center is placed
at the orthocenter of the triangle whereas an electric field
F is applied along the y-axis, choosing one of the triangle’s
side to be parallel to the x-axis. The zero potential energy
value corresponds to the conduction band edge of GaAs.

The Hamiltonian of our model, correspondingly, is:

H = − �
2

2 m∗ ∇2 + V1(x, y) + V2(z) − e F y − κ e2

ε r
, (1)

where m∗ is the electron effective mass, e is the carrier
charge, ε is the dielectric constant – taken to be the same

Lx → ∞V(x,y)

F

V(x,y) = V
0

y

Ly xV(x,y) = 0

 L 

Fig. 1. The model of the equilateral triangle QD. Trian-
gle side is L. Potential inside the triangle area corresponds
to GaAs conduction band. The region outside the triangle is
of Al0.3Ga0.7As. The potential outside the rectangular area
Lx × Ly is considered as an infinite. The electric field F is di-
rected along y-direction. Donor impurity center is positioned
at the orthocenter of the triangular area.

for both materials – r ∼=
√

x2 + y2 is the distance from the
impurity center – assumed to have coordinates (0, 0, 0)-,
and V1(x, y) is the in-plane confining potential with val-
ues 0, V0, and ∞ depending on the specific region (see
Fig. 1). The potential V2(z) is defined as zero for |z| ≤ h/2
and infinite elsewhere. The κ-parameter in the last term
at the right-hand side refers to the fact that we consid-
ered both cases with (κ = 1) and without (κ = 0) ionized
impurity center. At this point it is worth saying that our
assumption of a strictly two-dimensional Coulombic inter-
action term in (1) is justified by numerical estimation. We
have verified that the use of a 3D electron-impurity dis-
tance only changes the energy state values in 1% and since
there is a – nearly – rigid shift of the spectrum, the transi-
tion energies are modified only in a 0.1%. In consequence,
the system behaves essentially as a 2D one.

Taking into account that h � L we use the adia-
batic approximation in order to find the eigenfunctions
and eigenvalues of equation (1). In this case the 3D wave
function Υ (x, y, z) is written as the multiplication of the
in-plane function [Ψ(x, y)] times the axial function [g(z)].
That is, Υ (x, y, z) = N Ψ(x, y) g(z), where N is the nor-
malization constant. The g(z) function is the solution of
the differential equation

[
− �

2

2 m∗
∂2

∂z2
+ V2(z)

]
g(z) = Ez g(z). (2)

The following step is to use the first axial subband E1
z en-

ergy (which is constant in this work due to the constant
value of the height of the dot, h), as the adiabatic poten-
tial and to write the eigenvalues equation for the [Ψ(x, y)]
function in the form:

[
− �

2

2 m∗ ∇2 + Ṽ (x, y)
]

Ψ(x, y) = E Ψ(x, y), (3)

where Ṽ (x, y) = V1(x, y) − e F y − κ e2

ε r + E1
z .

The eigenvalues E0, E1, E2, . . . and eigenfunctions
Ψ0, Ψ1, Ψ2, . . . of the 2D problem in equation (3) have
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Fig. 2. Schematic representation of energy levels and consid-
ered transition between them. Panel (a) shows process of ab-
sorption of incident resonant photon with following emission
of the secondary photon. Panel (b) shows the process of ini-
tial emission of secondary photon and subsequent absorption
of incident resonant photons.

been found numerically by means of 2D Fourier expansion
within the big rectangular quantum box as it is described
in [14,15]. To construct the expansion basis we take the
lowest 50 values of the quantum numbers for the quan-
tum box states along the x and y dimensions. Sorting the
corresponding energies in ascending way, we selected the
set of first 400 values. This choice provides both enough
calculation speed and accuracy. It should also be said that
triangle size range of L is chosen so that at least we had
three excited energy states (in the case of 25 nm), look-
ing for keeping a not too small distance between the lev-
els (40 nm). The values of L were changed in increments
of 1 nm, which approximately corresponds to twice the
length of the crystal lattice unit cell for GaAs.

2.2 Raman scattering theory

To study Raman scattering we have considered the low-
est 4 energy levels. As mentioned, the range of triangle
side L is taken from 25 to 40 nm, just to ensure the pres-
ence of the at least 4 levels confined inside the QD. On
the other hand, our calculations show that the outer box
size variations does not have essential influence on the
level positions for the whole range of L.

As was shown in our previous work (see Figs. 2 and 3
in Ref. [14],) the wave functions for the equilateral tri-
angle QD are symmetric with respect to y-axis for the
states Ψ0, Ψ2 and Ψ3 and anti-symmetric for the state Ψ1.
This follows the general trend for the 3-fold symmetry sys-
tems discussed in reference [17]. The applied electric field
– along the y-direction – does not remove this kind of sym-
metry, therefore the electron-light interaction matrix ele-
ments for all the combinations including the first excited
state within our 4-level problem turn to zero. In accor-
dance, the symmetry of the systems prohibits all the tran-
sitions from/to the 1st state and even prohibits using it as
an intermediate state. This means that the included tran-
sitions will be: 0 → 3 → 2 (see Fig. 2a – first type transi-
tion) and 2 → 0 → 3 (see Fig. 2b – second type transition).
Moreover, for both transitions the incident light photon

energy should be equal to �ωL = E3 − E0, and the sec-
ondary radiation will have a maximum at �ωS = E3 −E2

for the first type transition and at �ωS = E2 −E0 for the
second one.

Each process can be divided into initial, intermedi-
ate and final states, with corresponding subscripts i, a(b),
and f :

Ei = E0 + �ωL, Ei = E2 + �ωL,

Ea = E3, Eb = E0 + �ωL + �ωS , (4)
Ef = E2 + �ωS, Ef = E3 + �ωS,

where first the column is for Figure 2a and the second
column is for Figure 2b.

The expression for the electron Raman differential
cross-section (DCS), for processes 2a and 2b, respectively,
is given by [18–22]

d2σ

dΩ dωS

∣
∣
∣∣
iaf,ibf

=
V 2 n(ωS)

8 π3 c4 n(ωL)
ω2

S

×2π

�

∣
∣
∣∣

Tiaf,ibf

Ei − Ea,b + j Γ

∣
∣
∣∣

2

δ (Ef − Ei) ,

(5)

where Tiaf = 〈Ψf |HS |Ψa〉 〈Ψa|HL|Ψi〉 and Tibf =
〈Ψf |HL|Ψb〉 〈Ψb|HS |Ψi〉, where c is the light speed in vac-
uum, n(ω) is the refraction index depending on the radi-
ation frequency, V is a volume of the structure. Indexes
L and S refer to the incident light and emitted secondary
radiation correspondingly. Besides, j =

√−1 and Γ is a
broadening of the corresponding levels due to the lifetime
(here we choose Γ = 1 meV) [23]. In our calculations we
have considered the case of both incident and Raman ra-
diation polarized along y-axis. Under such a configuration
the electron-photon interaction operator is:

Hk = − |e|
m∗

√
2 π �

V ωk

(
j �

∂

∂y

)
, (6)

where k = S, L.
Replacing Dirac delta-function by the Lorentzian with

broadening given by Γ we finally get the expression for
DCS as:

d2σ

dΩ dωS

∣∣
∣
∣
iaf,ibf

=
C1

π

ωS

ωL

|T̃iaf,ibf |2
(Ei − Ea,b)2 + Γ 2

Γ 2

(Ef − Ei)2 + Γ 2
. (7)

Here T̃iaf = Mfa Mai and T̃ibf = Mfb Mbi, with Mmn =
〈Ψm| ∂

∂y |Ψn〉 being the matrix elements,

C1 =
n(ωS)
n(ωL)

�

c4

( |e|�
m∗

e

)4

(8)

assuming n(ωS(L)) = n = const., C1 = const. It is worth
pointing out that the results for DCS below will be pre-
sented in arbitrary units so the constant multiplier is
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not of importance. The maximum amplitude for the DCS
given by equation (7) is reached for secondary radiation
photon energies fulfilling the following conditions: (i) the
usually named as step-like energy, in which � ωS = Esl

with |Ef − Ei| → 0 and (ii) the resonant-like energy
� ωS = Erl, when |Ei − Ea,b| → 0.

2.3 Raman gain theory

The third order nonlinear susceptibility due to electron
Raman scattering, and associated with the process in
Figure 2a, is [24]:

χ(3)(ωS ; ωL, ωS,−ωL)

=
(Nf − Ni) e4 |〈Ψf |y|Ψa〉|2 |〈Ψa|y|Ψi〉|2

ε0 |Ea − Ei − jΓ |2(Ef − Ei − jΓ )
(9)

where Nf and Ni are the occupation numbers of the cor-
responding states.

After some manipulations, the final equation (9)
becomes:

|χ(3)(ωS ; ωL, ωS,−ωL)| =
√

(Ef − Ei)2 + Γ 2

×
∣
∣
∣∣
∣

−ρ e4 |Dia|2 |Daf |2
ε0 [(Ea − Ei)2 + Γ 2] [(Ef − Ei)2 + Γ 2]

∣
∣
∣∣
∣

(10)

where Dmn = 〈Ψm|y|Ψn〉 are the electric dipole matrix
elements and ρ (= 1/(Lx × Ly × h) = 1.4 × 1025 m−3) is
the low temperature electron density in the ground state.

Then, knowing that the Raman gain depends of the
nonlinear susceptibility as

GR = −ωS

n c
Im(χ(3)) |A|2 , (11)

where |A|2 – is a magnitude of the electric field of an
incident radiation, and expressing |A|2 through intensity I
as |A|2 = 2 I

n ε0 c (with refractive index n =
√

εr) we finally
arrive to

GR =
2 I � ωS

c2 εr ε2
0 �

ρ e4 |Dia|2 |Daf |2
Γ 3

. (12)

3 Results and discussion

Before we begin discussing the results, it is necessary to
set clear the set of parameters of the system that de-
fine the configuration considered. The outer box size is
Lx × Ly = 60 nm × 60 nm. The effective electron mass is
m∗ = 0.0665m0 (where m0 is the free electron mass) [25],
and the dielectric constant εr = 12.35 [14,26]. Our cal-
culation assumes that the effective masses and dielectric
constants are the same for both GaAs and AlGaAs. This is
a fairly good approximation in cases where the Al molar
fraction is small. The material conduction band discon-
tinuity is V0 = 0.6 (1155.0 x + 370.0 x2) = 227.88 meV,
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Fig. 3. Energy as function of triangle size L in the case without
(a) and with impurity (b) localized in the centre. Electric field
is directed to y-axiz and F = 60 kV/cm. The energy levels
are referred with respect to the E1

z energy. (c) and (d) are
the graphics of the resonant-like energy Erl (black line) and
the step-like energy Esl (red line), for 1-st type transition (see
Fig. 2a) solid line, and 2-nd type transition (see Fig. 2b) dashed
line.

where x is Al content (x = 0.3 in the present work). As
mentioned, following [23] for all the values of broadening
we have taken 1.0 meV. The intensity of the y-oriented
electric field is taken to reach up to 80 kV/cm. There are
experimental evidences of the possibility of achieving a
lateral electric field with such a big magnitude (see, for
example, Refs. [27–29]).

Raman scattering DCS

Figures 3a and 3b show the energy positions of the low-
est four energy levels as functions of the triangle side
L. Zero energy corresponds to the conduction band edge
at the orthocenter of the triangle. Figure 3a contains
the case without ionized impurity and DC electric field
F = 60 kV/cm. Figure 3b corresponds to the situation
with a ionized impurity on (upper index D refers to ion-
ized donor). With increasing QD size the energy levels
naturally go down, due to the reduction of carrier con-
finement. Additionally, it is possible to notice that with
the fall in the degree of confinement, there is generally a
decrease in the transition energy between different levels,
with the exception of some particular situations like the
energy difference between levels 2 and 3, in the case with-
out impurity (κ = 0), where adjacent states are repulsed
(see Fig. 3a). In fact, there is a kind of anti-crossing be-
tween 2nd and 3rd levels which is discussed below in the
comments to the next figure.
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Fig. 4. Energy as function of variation of the applied electric
field F in the case without (a) and with impurity (b) localized
in the orthocentre of the triangle, with L = 40 nm. The results
in (c) and (d) are the same to Figure 3.

Figures 3c and 3d show the variation of the peak ener-
gies for two considered transitions (step-like and resonant-
like structures) as functions of the triangle size. The
incident radiation frequency was selected in a way that
guarantees the transition E0 → E3, so �ωL = 200 meV.
Similar incident photon energy for the Raman scattering
was considered in reference [30] and experimentally was
used in reference [31] for an optically pumping of intersub-
band laser. The general trend is to increase the step-like
energy with QD size because the difference between en-
ergies decreases, and with the same �ωL a higher energy
should be emitted for the electron in order to reach the
final state. The resonant-like energy generally decreases
as it is a mere difference between energy levels. The ex-
ceptional non-monotonic behavior Erl for the first type
transition and Esl for the second type transition in the
κ = 0 case is due to the anti-crossing mentioned above.

The graphics appearing in Figure 4 are organized as in
the previous one. It contains the dependencies of the same
quantities on the value of the externally applied electric
field intensity. Notice that when F = 0 the first and sec-
ond excited states are degenerated [17] and their superpo-
sition has three-fold symmetry. As expected, the electric
field removes the degeneracy so that the energy of the first
excited state – which has the anti-symmetric wave func-
tion with respect to the y axis (see [14], Figs. 2 and 3) –
goes down in energy and that of the second excited state –
with symmetric wave function- initially goes up. The lat-
ter state, in the κ = 0 case, forms a kind of anti-crossing
point with the third excited state at a field strength about
30–40 kV/cm whose effects can be seen also in Figures 3a
and 3c. For the case with impurity (κ = 1), the splitting

(a)

(c)

Ψ3Ψ2Ψ0

(d)

(b)

Fig. 5. Density plots of the wave functions and their deriva-
tives over y-coordinates for the cases of: (a) row – L = 40nm,
F = 0; (b) row – L = 40 nm and F = 8kV/cm; (c) row – L =
40nm, F = 60 kV/cm; (d) row – L = 25nm, F = 60kV/cm.
No ionized impurity.

is not as large as when κ = 0, and no anti-crossing is
formed within the considered range of the applied electric
field although the distance between second and third ex-
cited states decreases with F . As for the peak energies,
for κ = 0 case they have a change of behaviour around
the point of anti-crossing as all of them involve the states
labeled as 2 and 3. Meanwhile, for the κ = 1 case their
variations show a flatter character and can be viewed as
constants in a first approximation.

In Figure 5 one may observe the density plot of the
wave functions (WFs) and their derivatives for some of
our allowed states. With electric field increasing from 0
to 60 kV/cm and L = 40nm, the potential in the upper
corner of the triangle raises up due to electric field influ-
ence. The system looses its 3-fold symmetry leaving only
one axis of symmetry, namely y-axis. So, in the limit of
higher fields it starts resembling a symmetrical quantum
well confined along the x-direction. This process pushes
up to higher energies the confined state with a probability
density that have 2 maxima, centered at y axis. In con-
sequence, WFs Ψ2 and Ψ3 exchange their order (compare
Ψ2 in Fig. 5a and Ψ3 in Figs. 5b and 5c). Instead, the WF
with four local extrema (Ψ3 in Fig. 5a) looses one upper
extremum and resembles a WF of the 2nd excited state
confined in one dimension. This exchange of mutual posi-
tion in energy is reflected in Figure 4 like an anticrossing,
of which we have already talked about. For the smaller
QD side of L = 25nm (Fig. 5d) the increment of the po-
tential in the upper corner associated to the electric field
is smaller, so the position exchange does not takes place
at F = 60kV/cm. The presence of an ionized impurity
center also slows down that process as can be seen from
Figure 6, where the mentioned exchange does not occur
– at F = 60kV/cm – either; because it creates a kind of
potential “crater” out of the lower edge of the triangle and
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(a)
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Ψ3Ψ2Ψ0
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(b)

Fig. 6. The same as Figure 5 for the case with ionized impurity
center in the orthocenter of the triangle.
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Fig. 7. Matrix element Mmn as function of triangle size L in
the case without (a) and with impurity (b) localized in the or-
thocentre of the triangle. The electric field is directed to y-axis
and F = 60kV/cm.

thus prevents migrating the whole system to the scheme
of one-dimensional confinement.

Figures 7 and 8 show the behaviour of the electron-
photon matrix elements used in equation (5) in a sim-
plified form Mij = 〈Ψi| ∂

∂y |Ψj〉, depending on the QD size
(with F = 60kV/cm), and as functions of the applied elec-
tric field (with L = 40nm), respectively. It must be kept in
mind that for the first-type transition the squared product
of M03 and M32 is used whereas for the second-type one
M20 and M03 are used. Increasing the size of QD leads to
a strong increment of M03, a strong decrease of M02 and
a moderate decrease of M23. Electric field in its turn has
the same qualitative effect. Notice that M03 at low electric
field starts from 0 or almost 0. The addition of an ionized
impurity center keeps the general tendency for both kinds
of dependencies, but makes them less pronounced.

This kind of behaviour becomes clear from our pre-
vious analysis about the transformation of the system
symmetry and WFs. Matrix elements between the ground
state WF and WF with two extreme aligned along the
y-axis are the largest ones. This is due to the fact that the
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Fig. 9. Differential cross-section as function of secondary pho-
ton energy in case without impurity (a,c) and with impurity
(b,d). First-type transition case in (a,b) and second-type tran-
sition case in (c,d). Electric field is F = 60 kV/cm. Several
values of the size of triangle have been considered. Calcula-
tions are for �ωL = 200 meV. The resonant-like and step-like
peaks are shown on the left- and on the right-hand sides of the
energy scale in each of the plots (before and after the break on
the energy axis).

derivative of the latter has the biggest maximum spatially
coinciding with the maximum of the former (see Figs. 5
and 6). So when the WFs exchange their positions in en-
ergy, the magnitude of the matrix elements is exchanged
too; something that we can see especially well from the
field and size dependencies in the κ = 0 case.

Figures 9 and 10 show the DCS of the Raman scatter-
ing plotted versus the secondary photon energy. With our
chosen values of Γ the spectra represent a series of sep-
arated peaks with their positions corresponding to step-
like and resonant-like energy (see Figs. 3 and 4) and their
magnitudes proportional to the square product of matrix
elements – shown in Figures 7 and 8 – and to ωS.

Figure 9 provides a series of curves for different val-
ues of triangle side L for fixed electric field strength
F =60 kV/cm, whilst Figure 10 depicts the case in which
the field intensity is varied for a QD with L = 40nm.
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Fig. 10. Differential cross-section as function of secondary
photon energy in case without impurity (a,b) and with a donor
impurity localized at the orthocentre of the triangle (b,d).
First-type transition case in (a,b) Ψ0 → Ψ3 → Ψ2 and second-
type transition case in (c,d) Ψ2 → Ψ0 → Ψ3. The size of triangle
is L = 40 nm. Several values of the applied electric field have
been considered. Calculations are for �ωL = 200 meV. The
resonant-like and step-like peaks are shown on the left- and on
the right-hand sides of the energy scale in each of the plots
(before and after the break on the energy axis).

The DCS is provided in arbitrary units, which are the
same for all graphs in both figures so they can be com-
pared. The resonant-like peak magnitude expectedly cor-
relates with the step-like peak being several time less. The
biggest – in amplitude – expression of Raman effect is
found for the smallest QD of L = 25nm at F = 60kV/cm
for the second type transitions, with the presence of the
impurity center. That is precisely the configuration in
which both matrix elements M02 and M03 have biggest
magnitude (see Fig. 7).

Since the maximum peak values for electric field in-
tensities of 20 and 40 kV/cm occur when L = 40nm in
the corresponding section of Figure 10, it will be possi-
ble to expect even somewhat bigger values of DCS for the
same fields in case of L = 25nm as well. Further decrease
of QD size would push the third level to the continuous
spectrum so the QD would have less than three confined
levels and that makes the effect of described Raman scat-
tering impossible.

Now if we compare DCS corresponding to the two
types of scattering for our configuration, the second-type
transition effect provides a Raman scattering several times
more intense. However, it should be noticed that in our
calculations we have not account for the electron distri-
bution, assuming that the initial state is occupied and
the final is empty. That allowed us to excluding the tem-
perature and the Fermi level position of the particular
structure and consider the most general case. Allowing
for a more realistic situation of the equilibrium distribu-
tion with some electrons, the temperature would make
corrections to the mutual probabilities of the two types of
transitions thus decreasing the effectiveness of the type 2
scattering. This happens because the ground state E0

(initial for the type 1) statistically is more likely to be oc-
cupied than second excited one, E2, (initial for the type 2).
Nevertheless, at higher temperatures type 2 emission can
be even more detectable than type 1 due to the bigger
DCS.

Another important conclusion is that the presence
of the ionized impurity center increases drastically the
Raman effect in our QD for all calculated cases. And last
but not least, the scattering without electric field is very
small in comparison with the one with the electric field so
one can say that the electric field switches on the whole
mechanism, which works most effectively (has a maxi-
mum) around 20–60 kV/cm, depending on the remaining
parameters.

In this study, the Raman gain is calculated in the low
temperature (T ∼ 0) approximation with only ground
states occupied by the electrons, so we only consider first-
type transitions. Unlike we did for obtaining the Raman
DCS, here we took a different incident photon energy
value, which is exactly equal to the energy difference be-
tween the third excited and the ground confined states.
Therefore, the process does not need phonons taking part
in the scattering: �ωL = E3 − E0. Thus the calculation
was made for 16 values of incident photon energies, with
each being conditioned by the sizes of QDs (4 sizes consid-
ered), values of electric fields (4 values considered) and by
the presence or absence of impurity in the QDs. All these
energies are in the range (40, 106) meV.

Incident laser intensity was taken as I = 1MW/cm2

for all mentioned incident photon energies. The value of
�ωS in equation (12) was taken as at resonant-like peak
(different for each point). The results are presented in
Figures 11 and 12. Expectedly, Raman gain behaviour
(Figs. 11c, 11f, 12c and 12f) repeats that of the squared
product of dipole matrix elements (Figs. 11a, 11d, 12a
and 12d). Interestingly enough, the maximum of the third-
order optical susceptibility in all our cases corresponds to
the minimum energy of Raman photon (Figs. 11b, 11e, 12b
and 12e) and the difference is large enough (mind loga-
rithmic scale) to not be compensated by the multiplier
�ωS in equation (12). The κ = 0 case clearly shows a
maximum gain for a QD size having L ≈ 36 nm, with a
lateral electric field perpendicular to one of triangle sides
F = 40 kV/cm . This points at an important role played
by QD geometry and dimensions at the time of looking for
a possible application to inter-state Raman devices. It is
worth highlighting that its magnitude of ∼27 × 103 cm−1

is significantly higher than the one obtained in the case of
a GaAs-based intersubband Raman laser which is of the
order of 4× 102 cm−1 [32]. The supposed lasing frequency
corresponds to the photon energy of 10 meV, which be-
longs to the Terahertz region. Of course, in a more realistic
environment including finite temperature and statistically
determined electron population these figures will change;
but nevertheless one would expect the Raman gain to re-
sult quite larger than the obtained in quantum wells.

In the case with a ionized impurity, the gain monoton-
ically increases with QD size up to the limiting values. In
the scale versus electric field it has a local maximum at
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Fig. 11. Dipole matrix element as a function of QD size
(a,d); the absolute value of the third-order nonlinear opti-
cal susceptibility as a function of secondary photon energy at
F = 60 kV/cm for several values of the QD size (b,e), and
Raman gain as function of QD size (c, f). Left panel (a,b,c) is
the case without impurity and right panel (d,e,f) corresponds
to the case with ionized impurity center. In (b, c, e, f) the in-
cident poton energy corresponds to �ωL = E3 − E0. In (c, f)
the secondary photon energy corresponds to �ωS = E3 − E2.

about 15 kV/cm but takes maximum magnitude at maxi-
mum electric field studied. Maximum magnitudes for both
cases are comparable. Further increase of both parameters
are expected to remove partially or completely the confine-
ment of the upper involved state and so to pull out the
system from the range of applicability of our model. This
means that in order to reach a stable Raman gain, the
case without ionized impurity looks preferable.

4 Conclusions

In this article we have theoretically studied the
electron-related Raman scattering and Raman gain in
GaAs/AlGaAs triangular quantum dots with all process
taking place within the conduction band. Our discussion
has highlighted the influence on these properties of the
quantum dot size, the presence or absence of an ionized
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Fig. 12. The same as in Figure 11 but with fixed QD size
L = 40 nm, and electric field as a varying parameter.

donor impurity center placed at the orthocenter of the tri-
angle as well as of a external DC electric field applied in
the quantum dot plane. We found that the applied elec-
tric field along one of the triangle symmetry axis changes
the symmetry of the system that leads to the exchange of
energy positions of second and third excited size-confined
states under large enough electric field conditions. Besides,
it is revealed that the size of quantum dot amplifies this ef-
fect and the presence of the ionized impurity center weak-
ens it. Based on that analysis we described the most favor-
able conditions to obtain Raman emission and gain under
the described conditions. Values of the Raman gain of the
order of 103 cm−1 are foreseeable thus giving this kind of
low-dimensional nanostructures a prospective application
in inter-state Raman optical devices.
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para la Ciencia, la Tecnoloǵıa y la Innovación, Francisco José
de Caldas.

References

1. C.Y. Ngo, S.F. Yoon, W.J. Fan, S.J. Chua, Phys. Rev. B
74, 245331 (2006)

2. E. Giraldo-Tobón, W. Ospina, G.L. Miranda-Pedraza,
M.E. Mora-Ramos, Superlattice Microstruct. 83, 157
(2015)

3. S.H. Gong, J.H. Kim, Y.H. Ko, C. Rodriguez, J. Shin,
Y.H. Lee, L.S. Dang, X. Zhang, Y.H. Cho, Proc. Natl.
Acad. Sci. 112, 5280 (2015)

4. T. Kumagai, A. Tamura, J. Phys.: Condens. Matter 20,
285220 (2008)

5. J. Nelayah, L. Gu, W. Sigle, C.T. Koch, I. Pastoriza-
Santos, L.M. Liz-Marzán, P.A. van Aken, Opt. Lett. 34,
1003 (2009)

6. H.Y. Xu, Z. Liu, Y. Liang, Y.Y. Rao, X.T. Zhang,
S.K. Hark, Appl. Phys. Lett. 95, 133108 (2009)

7. M. Jo, T. Mano, M. Abbarchi, T. Kuroda, Y. Sakuma,
K. Sakoda, Cryst. Growth Des. 12, 1411 (2012)

8. M. Jo, T. Mano, M. Abbarchi, T. Kuroda, K. Sakoda, AIP
Conf. Proc. 1598, 71 (2014)

9. G. Eckhardt, R.W. Hellwarth, F.J. McClung,
S.E. Schwarz, D. Weiner, E.J. Woodbury, Phys. Rev.
Lett. 9, 455 (1962)

10. K.O. Hill, B.S. Kawasaki, D.C. Johnson, Appl. Phys. Lett.
29, 181 (1976)

11. M.A. Ferrara, I. Rendina, L. Sirleto, in Nonlinear Optics
(InTech, Croatia, 2012), pp. 53–70

12. J.M. Elzerman, K.M. Weiss, J. Miguel-Sanchez,
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