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A B S T R A C T

Objectives: Carbapenem-resistant Gram-negative bacilli (CRGNB) have been reported in different
wastewater treatment plants (WWTPs) throughout the world; however, few studies have described the
antimicrobial resistance profile in different CRGNB throughout WWTPs, information that would identify
points of selection of resistant bacteria. The objective of this work was to characterize the resistance
profile of CRGNB harbouring blaKPC-2 from a Colombian WWTP.
Methods: Six samples were taken from four points of a WWTP. CRGNB were selected in chromID1 CARBA
and identified by 16S rRNA. Carbapenemases were determined by polymerase chain reaction (PCR), and
susceptibility was assessed using VITEK2.
Results: One hundred and forty-two CRGNB harbouring blaKPC-2 were detected: 41% corresponded to
Aeromonas spp. (n = 58) and 59% to Enterobacteriaceae. To establish the resistance profile, 50% of the
isolates were selected proportionally by family and sampling point (26 Aeromonadaceae and 45
Enterobacteriaceae). All Enterobacteriaceae showed resistance to carbapenems and penicillins + inhibitors,
high percentages of resistance to ceftriaxone (88.9%), and ciprofloxacin (44.4%), and low resistance to
other antibiotics (>30%). In Aeromonadaceae, 76.9% were resistant to ceftriaxone, 58% to carbapenems,
and 65.4% to ciprofloxacin. Twenty-one resistance profiles were observed, the most common of which
were resistant to penicillins + inhibitor, cephalosporins (third to fourth generation), and carbapenems
(19%). The percentage of multidrug resistance was 91% and was similar at all points of the WWTP.
Conclusions: The high frequency of multidrug resistance and great diversity of resistance profiles
observed throughout the WWTP is of concern, and shows the role of WWTP as a reservoir and
dissemination source of antimicrobial resistance to water sources.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Antimicrobial

Chemotherapy. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bacterial resistance to antibiotics is a natural phenomenon that
can be accelerated by the selection pressure exerted by substances
such as antibiotics, biocides, and heavy metals [1]. In recent
decades, this phenomenon has been increasing due to the
excessive and inappropriate use of antibiotics in humans, animals,
and agriculture, which constitutes a threat to public health [2].

Beta-lactams are one of the most used and useful families of
antibiotics in the treatment of human infections. Among them,
carbapenems constitute the last resort treatment for clinically
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important Gram-negative bacillus infections [3], such as those
belonging to the Enterobacteriaceae family, for instance, Klebsiella
spp., Escherichia coli, Serratia spp. and Proteus spp., and to non-
fermenters such as Acinetobacter baumannii and Pseudomonas
aeruginosa. In recent years, a worrying increase in carbapenem
resistance has been reported in these microorganisms, usually due
to the presence of genes in mobile genetic elements that encode
enzymes that degrade the antibiotic, called carbapenemases,
mainly blaKPC, blaNDM, blaVIM, blaOXA-48 types. Additionally,
these elements often carry resistance mechanisms to other
antibiotic families such as quinolones, aminoglycosides, and
sulfonamides, which gives these Gram-negative bacilli (GNB) a
multidrug resistance (MDR) profile.

Due to the ability of these microorganisms to cause serious
infections, and the difficulty of their therapeutic management
because of MDR, the World Health Organization (WHO) classified
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the carbapenem-resistant Gram-negative bacilli (CRGNB) as of
critical priority [2,4].

The description of the CRGNB and other families of antibiotics is
most often done in the hospital setting, where they represent a
serious problem either by causing infection or colonizing [5,6].
However, the alarming resistance situation points to the possibility
of other sources or reservoirs of antibiotic-resistant bacteria (ARB)
such as the environment and the community [5,6].

In this sense, it has been pointed out how wastewater treatment
plants (WWTPs) can play an important role in the appearance and
dissemination of ARB [7], because in WWTPs bacteria and
antibiotics from different origins: human, veterinary, and indus-
trial, converge giving rise to selection processes [7]. Most
antibiotics used in human and veterinary clinical practice are
not fully metabolized, so they are excreted in urine and faeces,
which subsequently go to municipal wastewater and WWTP [8]. In
wastewater and WWTPs antibiotic concentrations, even below the
minimum inhibitory concentration (MIC), appear to be sufficient to
favour the selection or transfer of resistance genes between
bacteria [7,9]. Additionally, ARB that can colonize the human or
animal gastrointestinal tract can reach the WWTPs by being
eliminated through excreta [10].

In general, the description of CRGNB and their antimicrobial
resistance profiles from environmental samples is more limited
[11], and few studies have described the resistance profile to
other antibiotics in these isolates and their behaviour throughout
the treatment, information that would show the simultaneous
presence of resistance mechanisms to different families of
antibiotics and the hotspots of exchange or selection of resistant
bacteria in the WWTP. Taking into account that Colombia has
described a high frequency of CRGNB isolates, exceeding the
percentages reported in other Latin American countries such as
Argentina, Chile and Brazil [12], and that consumption of
antibiotics is high, it is necessary to describe the resistance
profile of GNB resistant to these antibiotics from a WWTP in
Colombia, which will provide relevant information on the degree
of spread of resistance outside clinical environments and its
impact.

2. Materials and methods

2.1. Wastewater treatment plant and sampling

The study was conducted in a WWTP in Antioquia, Colombia,
which collects domestic, industrial, and hospital wastewater from
four municipalities in the region (614 000 inhabitants). The WWTP
uses an activated sludge process with 4-h hydraulic retention time
and receives an average water flow of 1.8 m3/s, but has a maximum
flow rate of 3.6 m3/s. The resulting final effluent is discharged to
the Medellin River.

In total, six samplings were made between January and July
2017. On each visit, 500 mL of water was collected in sterile Schott’s
glass, at four points in the plant: raw influent, aeration tanks,
recycled activated sludge, and final effluent, for a total of four
samples per samplings. To avoid effects associated with organic
loading fluctuations, samples were collected every month on the
same day between 14:00 and 16:00 hours. After collection, the
samples were transported to the laboratory at 4 �C. The
microbiological analysis was performed within 4 h after the
samples were collected.

2.2. Phenotypic identification of carbapenem-resistant Gram-negative
bacilli

For the phenotypic identification of CRGNB, the ChromID1

CARBA chromogenic medium (BioMérieux, Marcy l’Etoile, France)
was used [13,14]. In this medium, 100 mL of the sample was seeded
by confluence, then incubated at 35 �C � 2 �C for 24 h.

In this study, due to the high bacterial growth and the interest in
selecting clinical and environmental carbapenem-resistant bacte-
ria, five colonies from the three morphotypes that grew on
ChromID CARBA chromogenic medium were randomly selected.
Every colony was subcultured on MacConkey agar (Merk Millipore,
Burlington, Massachusetts, United States) and nutrient agar
(Merck Millipore) at 37 �C for 24 h. The oxidase test was also
done [14,15].

2.3. Molecular identification using the RNAr 16s gene

DNA was extracted from suspected CRGNB, which were selected
by ChromID CARBA and MacConkey agar using the DNA Wizard
Genomic Purification Kit according to the manufacturer’s instruc-
tions (Promega, Madison, WI, USA).

Bacterial identification was carried out using the detection of
the 16S ribosomal RNA gene by simple polymerase chain reaction
(PCR), using universal primers 27F-AGAGTTTGATCCTGGCTCAG and
1492R-GGTTACCTTGTTACGACTT, according to the protocol de-
scribed by Dunbar et al. [16]. The amplification products were
sequenced, and the sequences were analysed in the Geneious
software version R8 (https://www.geneious.com) [17]. They were
subsequently compared with sequences available in GenBank,
using the BLAST (Basic Local Alignment Search Tool) program of
the National Center for Biotechnology Information of the United
States (NCBI) (www.ncbi.nlm.nih.gov/BLAST).

2.4. Carbapenemases detection and sequencing

The most clinically important carbapenemases: blaKPC, blaVIM,
blaIMP, blaNDM and blaOXA-48, were evaluated by multiplex PCR,
according to the protocol described by Poirel et al. and Ellington
et al. [18,19].

Subsequently, the detected carbapenemase genes were se-
quenced to determine their respective variants. The sequences
obtained were analysed in the forward and reverse directions and
compared with sequences available in GenBank, using the BLAST
program of NCBI (www.ncbi.nlm.nih.gov/BLAST) and, to establish
the variant of each gene detected, were compared with the Lahey
database (https://www.lahey.org/studies/).

2.5. Antimicrobial susceptibility

GNB positive for any of the carbapenemases evaluated were
tested for antimicrobial susceptibility using the automated system
Vitek2 (BioMérieux, France) [20,21]. The antibiotics evaluated
were ampicillin/sulbactam (SAM), piperacillin/tazobactam (PTZ),
cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), cefepime
(FEP), doripenem (DOR), ertapenem (ETP), imipenem (IMP),
meropenem (MEM), amikacin (AMK), gentamicin (GN), ciproflox-
acin (CIP), tigecycline (TGC), and colistin (COL).

The susceptibility test results were interpreted according to the
M100 Performance Standards for Antimicrobial Susceptibility
Testing, 27th Edition [22] and the M45-A2 Methods for Antimi-
crobial Dilution and Disk Susceptibility Testing of Infrequently
Isolated or Fastidious Bacteria, 2nd Edition [23] both of Clinical and
Laboratory Standards Institute (CLSI).

The isolates of intermediate result were considered resistant.
TGC susceptibility was only interpreted for bacteria of the
Enterobacteriaceae family according to EUCAST 2018 [24].

The intrinsic resistance and antibiotics without card data or
interpretation by CLSI were excluded from the analysis of
antibiotic resistance. The antibiotic ETP was excluded from the
study because the ability of Vitek’s AST N272 card to detect
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resistance in the majority of Enterobacteriaceae in the study is
unknown (BioMérieux, France).

MDR was defined as the resistance of an isolate to three or more
categories of antibiotics. The categories were established as
proposed by Magiorakos et al. [25] which for Enterobacteriaceae
indicate as categories: aminoglycosides, carbapenems, third and
fourth generation cephalosporins, cephamycins, fluoroquinolones,
glycylcyclines, penicillins + inhibitor and polymyxins. These same
categories were applied to the family Aeromonadaceae.

The analysis by sampling point was performed by antibiotics for
Enterobacteriaceae and Aeromonadaceae, taking into account the
antibiotics evaluated for each family.

The antimicrobial resistance profile of the CRGNB was
performed on isolates that had complete data for the antibiotics
evaluated.

2.6. Data analysis

The information was analysed using SPSS 24 software (IBM SPSS
Statistics, IBM Corporation, Somer, NY) and Microsoft Office Excel
(Microsoft Corporation (Redmond, Washington, United States)).

3. Results

3.1. Detection of carbapenemase genes and identification of
carbapenem-resistant Gram-negative bacilli

From the ChromID CARBA chromogenic medium, 360 isolates
suspected of presenting resistance to carbapenems were obtained,
of which in 142 (39.4%) the presence of the blaKPC gene was
confirmed by PCR. The other genes coding for blaVIM, blaNDM, and
blaOXA-48 carbapenemases were not detected. Likewise, the
sequencing of the blaKPC gene showed that every one of them was
harbouring variant 2. On average in the plant, 21–26 CRGNB
harbouring blaKPC were detected per month.

According to the identification of the 16S gene, the genus
harbouring blaKPC-2 found were Aeromonas spp. (n = 58; 41%),
Enterobacter spp. (n = 38; 27%), Klebsiella spp. (n = 11; 8%),
Fig. 1. Number of carbapenem-resistant bacteria harbo
Citrobacter spp. (n = 8; 6%), Pantoea spp. (n = 7; 5%), Kluyvera spp.
(n = 4; 3%), Raoultella spp. (n = 12; 9%), Escherichia spp. (n = 3; 2%)
and Pseudomonas spp. (n = 1; 1%) (Fig. 1).

Thirty-one percent of the isolates came from the raw influent
(n = 44), 20% from the aeration tanks (n = 28), 21% from the recycled
sludge (n = 30) and 28% from the final effluent (n = 40), with a
variable distribution according to the genus of the microorganism.

3.2. Antimicrobial resistance

For the susceptibility analyses, 50% of the isolates harbouring
blaKPC-2 were selected (n = 71), taking into account a proportional
allocation by genus and sampling point.

The 71 bacteria harbouring blaKPC-2 selected corresponded to
26 Aeromonas spp. (36.6%), 17 Enterobacter spp. (24%), 7 Klebsiella
spp. (9.8%), 5 Citrobacter spp. (7%), 5 Pantoea spp. (7%), 4 Kluyvera
spp. (5.6%), 4 Raoultella spp. (5.6%) and 3 Escherichia spp. (4.2%).
Twenty of these isolates were distributed in the raw influent (28%),
12 in the aeration tanks (17%), 14 in the recycled activated sludge
(19.7%), and 25 in final effluent (35%).

3.2.1. Susceptibility in Enterobacteriaceae
A total of 45 isolates harbouring blaKPC-2 belonging to the

Enterobacteriaceae family were selected (45/71). Per sampling
point in the plant, it was observed that 29% (n = 13) were found in
the raw influent, 18% (n = 8) in the aeration tanks, 11% (n = 5) in the
recycled sludge, and 42% (n = 19) in the final effluent (Fig. 1).

In general, the isolates of the Enterobacteriaceae family analysed
were resistant to SAM and PTZ, mostly with a MIC >32 mg/L and
>128 mg/L, respectively. Cephalosporin resistance was highest at
CRO 89% (n = 40) followed by CAZ in 42% (n = 19), and to a lesser
extent for FEP 17.7% (n = 8). Likewise, it was observed that 40% of
the Enterobacteriaceae evaluated were resistant to CAZ and CRO
simultaneously (Fig. 2).

Regarding carbapenems, it was observed that the resistance
frequency obtained was 100% for IMP and 98% for MEM and DOR.
Likewise, 89% (n = 40) of the isolates evaluated were resistant to all
three carbapenems simultaneously.
uring blaKPC in different sampling sites of WWTP.



Fig. 2. Percentage of resistance in carbapenem-resistant Enterobacteriaceae and Aeromonadaceae isolated from wastewater treatment plant. FEP, DOR, TGC and COL were not
evaluated for Aeromonas spp. AMK, amikacin; CAZ, ceftazidime; CIP, ciprofloxacin; COL, colistin; CRO, ceftriaxone; DOR, doripenem; FEP, cefepime; FOX, cefoxitin; GN,
gentamicin; IMP, imipenem; MEM, meropenem; SAM, sulbactam/ampicillin; TGC, tigecycline; TZP, tazobactam/piperacillin.

E.A. Rodríguez et al. / Journal of Global Antimicrobial Resistance 22 (2020) 358–366 361
Similar resistance percentages, 24% and 28%, respectively, were
observed for AMK and GN. In the case of CIP, 44% of the isolates
were resistant to this antibiotic. For TGC and COL, a resistance
percentage of 13% was observed (Fig. 2).

3.2.1.1. Enterobacteriaceae susceptibility analysis by genus. Of note,
in the susceptibility results found in the Enterobacteriaceae by
genus, 40% of Klebsiella spp. and 100% Escherichia spp. tested
positive for extended spectrum beta-lactamase (ESBL). On the
other hand, Enterobacter spp. and Pantoea spp. were resistant to all
antibiotics evaluated (Fig. 3). However, Raoultella spp. was only
resistant to beta-lactam antibiotics.
Fig. 3. Percentage of resistance in carbapenem-resistant Enterobacteriaceae family by
Klebsiella and Raoultella. Intrinsic resistance were excluded for analysis.
3.2.1.2. Antimicrobial resistance in Enterobacteriaceae per sampling
plant point in the WWTP. When the antimicrobial resistance of
the Enterobacteriaceae per sampling plant point was analysed, it
was found that all isolates evaluated were resistant to SAM, PTZ,
and IMP. Similarly, it was found that all strains were resistant to
MEM and DOR, except in the final effluent isolates, where one
reduction in the number of isolates resistant to MEM and DOR was
evidenced.

Interestingly, in sludge or tanks, a high number of isolates
resistant to FOX, CAZ, CRO, and FEP were observed in comparison
with the number of resistant strains to these antibiotics from other
points of the plant. Likewise, it was found that in most cases, the
 category of antibiotics. Colistin was only evaluated for Enterobacter, Escherichia,



362 E.A. Rodríguez et al. / Journal of Global Antimicrobial Resistance 22 (2020) 358–366
number of isolates resistant to these antibiotics decreased in the
final effluent.

Concerning the distribution of CIP resistant isolates per
sampling plant point, a high number of isolates were found in
the raw influent in comparison with other points of the plant. In
addition, in the isolates from the final effluent, a slight increase in
resistance to CIP was observed.

On the other hand, the number of isolates resistant to TGC, AMK,
GN, FOX, and FEP was variable throughout the WWTP but were not
observed in the recycled sludge (n = 5). Likewise, the presence of
COL-resistant isolates was observed in the raw influent strains,
aeration tanks, and recycled sludge (Fig. 4).

3.2.2. Susceptibility in Aeromonadaceae
Twenty-six isolates of the Aeromonadaceae family harbouring

blaKPC were evaluated (Fig. 2), in which 100% (n = 26) showed
resistance to SAM, while 76% (n = 19) of the isolates were resistant
to PTZ. With respect to third-generation cephalosporins and FOX, it
was observed that both FOX and CRO showed high resistance
percentages: 73.1% (n = 19) and 76.9% (n = 20), respectively,
compared to CAZ, where resistance was observed in only 53.8% (n =
14) of the isolates. It was noted that all in the isolates with
resistance to CRO the MIC was >64 mg/L. In relation to
carbapenems, resistance to MEM of 52.2% (n = 12) and to IMP
47.8% (n = 10) was observed, while in 34.6% (n = 9) of the isolates
there was no resistance to any carbapenems, and 27% (n = 7) of the
isolates were resistant to both carbapenems simultaneously.

As for the other antibiotics evaluated, it was observed that
26.9% of Aeromonadaceae were resistant to GN, 3.8% (n = 1) to AMK,
and 65.4% to CIP.

3.2.2.1. Antimicrobial resistance in Aeromonadaceae per sampling
plant point in the WWTP. When observing the frequency of
resistant Aeromonadaceae for each sampling point, it was observed
that the distributions of isolates were seven (27%) in the raw
influent, four (15%) in the aeration tanks, nine (35%) in the recycled
sludge, and six (23%) in the final effluent (Fig. 1).
Fig. 4. Percentage of resistance in carbapenem-resistant Enterobacteriaceae family isolate
final effluent). AMK, amikacin; CAZ, ceftazidime; CIP, ciprofloxacin; COL, colistin; CRO, 

imipenem; MEM, meropenem; SAM, sulbactam/ampicillin; TGC, tigecycline; TZP, tazob
The percentage of SAM resistance in Aeromonadaceae was the
same in all sampling points. With respect to other antibiotics, in
the aeration tanks or the recycled sludge, a high number of strains
resistant to PTZ, FOX, CAZ, CRO, IMP, MEM, and GN were found.
However, the number of isolates resistant to these antibiotics
decreased in the final effluent.

Likewise, a higher frequency of CIP-resistant strains was found
in the raw influent; which decreased along the WWTP, except in
the final effluent, where a slight increase in resistance to this
antibiotic was found. In the same way, the only isolate resistant to
AMK was detected in the activated sludge (Fig. 5).

3.3. Analysis of antimicrobial resistance profiles by antibiotic category

Of the 71 strains used for susceptibility analyses, 64 isolates had
all data of susceptibility for each antibiotic evaluated. Therefore,
the analysis of antimicrobial resistance profiles and MDR was
carried out on 64 isolates.

In the analysis of antimicrobial resistance profiles by antibiotic
category, 21 different profiles were detected, 24% (n = 5) in
Aeromonadaceae, 52% (n = 11) in Enterobacteriaceae, and the
remaining 24% (n = 5) were shared between the two bacterial families.
Ninety-one percent of the isolates in both groups of bacteria presented
MDR (38 of Enterobacteriaceae and 20 of Aeromonadaceae), which
were distributed between 18 different profiles. The most commonly
observed profile in the two bacterial families was resistance to
penicillins + inhibitor, third and fourth generation cephalosporins,
and carbapenems (n = 12; 19%), which was isolated from all
sampling months. The second most observed profile was resistance
to penicillin/inhibitor + cephamycins + third and fourth generation
cephalosporins + carbapenems + aminoglycosides + fluoroquino-
lones with 11% (n = 7), which was detected in the isolates of months
1, 4, 5, and 6. The two profiles were present in the four points of the
plant. The other profiles did not present a significant frequency for
the study, and some of them were only present in one sampling. In
general, this work did not find a tendency in MDR behaviour related
to sampling month (Supplementary Fig. S1).
d at each sampling point (raw influent, aeration tanks, recycled activated sludge, and
ceftriaxone; DOR, doripenem; FEP, cefepime; FOX, cefoxitin; GN, gentamicin; IMP,
actam/piperacillin.



Fig. 5. Percentage of resistance in carbapenem-resistant Aeromonadaceae isolated at each sampling point (raw influent, aeration tanks, recycled activated sludge, and final
effluent). AMK, amikacin; CAZ, ceftazidime; CIP, ciprofloxacin; CRO, ceftriaxone; DOR, doripenem; FOX, cefoxitin; GN, gentamicin; IMP, imipenem; MEM, meropenem; SAM,
sulbactam/ampicillin; TZP, tazobactam/piperacillin.

Fig. 6. Antimicrobial resistance profile in carbapenem-resistant Enterobacteriaceae family to different categories of antibiotics. 3GC, third generation cephalosporins; 4GC,
fourth generation cephalosporins; AMG, aminoglycosides; Ceph, cephamycins; CPs, carbapenems; FQ, fluoroquinolones; GLY, glycylcyclines; Pen/inhib, penicillins/B-
lactamase inhibitors; PMX, polymyxins. Other profiles: these represent the antimicrobial resistance profile found in less to 5% of isolates.
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The antimicrobial resistance profiles in Enterobacteriaceae and
Aeromonadaceae to different categories of antibiotics are shown in
Figs. 6 and 7.

4. Discussion

The worldwide increase in antibiotic resistance has generated a
significant impact on public health in the social and economic
sphere, and its environmental impact has been reported in recent
years [7]. The results of this study demonstrate an important
frequency of multidrug-resistant CRGNB harbouring blaKPC-2 in a
WWTP in Colombia. This resistance mechanism has been
documented by our group in several hospitals in the city [3,12],
and recently in local WWTP (unpublished data in preparation).
These findings reflect the impact of resistance on our region and
the risk of its dissemination to the environment and the
community.

In recent years, CRGNB harbouring blaKPC have been increas-
ingly described in municipal and hospital WWTPs, rivers, and lakes
worldwide [26]. Most of these studies describe or isolate bacteria
of clinical importance from the Enterobacteriaceae family such as
Klebsiella spp., Enterobacter spp., Citrobacter spp. and E. coli [26,27],
although they also describe the presence of other environmental
bacterial genus such as Raoultella spp., Kluyvera spp. and



Fig. 7. Antimicrobial resistance profile in carbapenem-resistant Aeromonadaceae family to different categories of antibiotics. The fourth generation cephalosporins were not
tested in this family. Other profiles: these represent the antimicrobial resistance profile found in less to 5% of isolates. 3GC, third generation cephalosporins; 4GC, fourth
generation cephalosporins*; AMG, aminoglycosides; Ceph, cephamycins; CPs, carbapenems; FQ, fluoroquinolones; GLY, glycylcyclines; Pen/inhib, penicillins/B-lactamase
inhibitors; PMX, polymyxins.
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Aeromonas spp. [26,28]. These microorganisms coincide with those
detected in this work, where the most frequent CRGNB harbouring
blaKPC-2 were Aeromonas spp. and Enterobacter spp.

Likewise, the results of the study related to resistance profiles
highlight the high percentage of multidrug-resistant isolates (91%),
which were found distributed in all the sampling points of the
plant. Multidrug-resistant microorganisms have been described
more frequently in hospital settings [3,12,29]; however, this
finding gives rise to greater concern since a dissemination of
multidrug-resistant bacteria is being carried out in the environ-
ment, with all the implications that this entails.

In addition to the high percentage of MDR among the bacterial
genus found, great diversity in resistance profiles was observed,
which may be a consequence of the pressure of antibiotics on these
environments and of the success in the transmission of resistance
mechanisms between these microorganisms [29]. These findings
confirm, as has been documented in other studies, the importance
of WWTPs as reservoirs of resistant bacteria and the need to search
for alternatives to try to contain the spread such as the use of
ultraviolet light, hydrogen peroxide, persulfate or methods of
oxidation [30]. The high MDR and the great diversity of profiles
imply that there is a constant pressure of selection and
dissemination of resistance mechanisms that, as a consequence,
result in different bacterial populations with the capacity to
harbour and maintain these mechanisms within the WWTP [7,29].

Additionally, the dissemination of ARB and antibiotic resistance
gene throughout the environment can affect the health of the
community: because these emerging pollutants have the ability to
persist for a long time in aquatic environments, they can be
released into the effluents and reach rivers, whose waters are used
for agriculture and/or livestock [29,31].

The most frequently found bacterial genus harbouring blaKPC
in the study was Aeromonas. Although these bacteria are mainly
described in the environment, they are also clinically important
because they can cause infections that are difficult to treat [32].
Interestingly, it was observed that Aeromonas spp. isolates, despite
harbouring the gene for blaKPC, showed low resistance to the
evaluated carbapenems (58%), and some isolates were even
sensitive by both Vitek and Kirby-Bauer. This behaviour can be
because the blaKPC carbapenemase of Aeromonas spp. may not be
expressed due to the biological cost of having this active resistance
mechanism and/or probably not requiring it to be expressed.

Another explanation may be related to technical difficulties, as
described for the detection of carbapenem resistance by CphA
carbapenemase, a substrate-specific metallobetalactamase in that
its detection may be affected by the use of the standard inoculum
of bacteria, requiring higher inoculums [33]. This result highlights
the importance of the use of molecular methods for screening
carbapenem-resistant bacteria in the environment.

The detected isolates of Aeromonas spp. generally showed
greater than 50% resistance to beta-lactams except for IMP (38.5%);
Aeromonas spp. carries an inducible chromosomal ampC, allowing
it to hydrolyse penicillins and first, second and third generation
cephalosporins, including cephamycins [34]. This is consistent
with total SAM resistance and MICs >128 mg/L a PTZ, in addition to
high percentages of the other non-carbapenemic beta-lactams
observed in the study, and which have also been documented in
similar studies [26].

For the isolates of the genus Raoultella, resistance only to beta-
lactam antibiotics was observed, unlike a study in China where
resistance to non-beta-lactam antibiotics was found [15]. This may
indicate that bacteria of this genus should be considered as a
potential reservoir for carbapenem resistance and could be linked
to the clinic [15,26].

All isolates belonging to the Enterobacteriaceae family obtained
total resistance to the carbapenemic and penicillin/inhibitor
categories, but a high susceptibility to FOX (74%), CAZ (58%) and
FEP (82%) antibiotics was observed, possibly due to the fact that the
blaKPC-2 variant may have a weak hydrolysis on FOX and CAZ
[35,36]. This is contrary to what was reported in a study in Brazil,
where percentages of susceptibility from 35.4% to FEP, 19.3% to CAZ
and a low susceptibility to MEM and IMP carbapenems (12.9% and
4.8%, respectively) were found [26].

Generally, in CRGNB harbouring blaKPC, resistance to other
antibiotics such as quinolones and aminoglycosides can be
observed [36,37]. In the isolates detected in this study, it is
observed that after beta-lactam resistance, the resistance to
fluoroquinolones was the next highest, both in Enterobacteriaceae
(44.4%) and Aeromonadaceae (65.4%), in contrast to the other non-
beta-lactam antibiotics such as aminoglycosides (33.3% in
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Enterobacteriaceae and 26.9% in Aeromonadaceae) that did not have
such a high resistance. The resistance in environmental isolates to
fluoroquinolones and aminoglycosides has been consistent with
what has been reported in similar studies where resistance to
fluoroquinolones >50% and aminoglycosides >25% has been found
[26,38]. This could indicate that the aminoglycosides having a low
percentage of resistance could have an effective action against
these positive blaKPC isolates [26].

According to several authors, this relationship of resistance to
beta-lactam and quinolones evidenced in our study could indicate
an association between the gene encoding resistance to beta-
lactams, such as blaKPC, blaCTX-M and blaOXA, and the quinolone
resistance genes, such as gyr, qnr, aac (60)-Ib-cr in the same mobile
genetic element of environmental isolates [7,28,39].

The percentage of antibiotic resistance found at each point of
the treatment plant was very variable at all points of the plant, as
described in other studies of Enterobacteriaceae and Aeromonada-
ceae in WWTPs [26,40]. With Enterobacteriaceae, a similar
percentage of resistance to penicillin and carbapenems in all
points of the plant could indicate the ability of these micro-
organisms to maintain and express carbapenem resistance. This is
in contrast to Aeromonadaceae, where the resistance to these
antibiotics was variable and can be explained by the low rate of
expression of carbapenem resistance found in this study and
described above.

It should be noted that a high expression of resistance to
cephalosporins and carbapenems was found in Aeromonadaceae
and Enterobacteriaceae from aeration tanks and/or recycled
activated sludge. These results suggest that at this point in the
plant, these bacteria could have a high selection pressure that
favours a high expression of resistance to carbapenems. Another
explanation could be the possibility of these isolates harbouring
other beta-lactam resistance mechanisms that enhance expression
resistance to these antibiotics at this point of the plant.

In the case of CIP, the results were similar to Aeromonadaceae
and Enterobacteriaceae; there were a higher number of CIP-
resistant isolates in the raw influent and a slight increase in
resistance to this antibiotic at final effluent with respect to the
secondary treatment. These results indicate how an important
quantity of the CIP-resistant isolates arrive at the WWTP, probably
due to the extensive use of these antibiotics in human and
veterinary infections [41]. Concerning to the slight increase in
resistance to this antibiotic in the raw influent, other authors have
pointed out the decrease in resistance to this antibiotic in
treatment, or its disappearance and its reappearance in samples
of treated wastewater effluents. These results could be explained
by the horizontal transfer of these genes between microbial
communities [41].

Additionally, in Enterobacteriaceae, the resistance to TGC, AMK,
and GN was not observed in the recycled activated sludge. Contrary
to what happened to Aeromonadaceae, in which the resistance to
GN was observed in greater proportion in the recycled sludge and
to AMK in the aeration tanks. These results could indicate that
resistance mechanisms to TGC, AMK, and GN are present in a
variable way between bacterial groups throughout the plant. This
could also be explained by the reorganization of microbial
communities through the WWTP and/or horizontal gene transfer
between bacterial groups [41].

In this study, the presence of Enterobacter spp., suspected of
being COL-resistant, in the raw influent strains, aeration tanks, and
recycled sludge was detected. The absence of COL-resistant isolates
in the final effluent could suggest that the WWTP can reduce
Enterobacter spp. with this type of mechanism of resistance, or that
in secondary treatment the horizontal gene transference between
other microbial communities not evaluated in the study could
occur. Despite these findings, these results should be analysed
carefully in future studies due to the low number of isolates
detected (n = 4) and the need to confirm COL resistance by other
methods.

5. Conclusion

The results obtained show how high percentages of multidrug-
resistant CRGNB are present in all points of the plant, suggesting that
non-beta-lactam antibiotic resistance mechanisms could share the
same mobile genetic element in which the blaKPC gene is found.
Similarly, the presence of phenotypically sensitive Gram-negative
environmental bacilli such as Pantoea spp., Raoultella spp., Kluyvera
spp. and Aeromonas spp. harbouring blaKPC shows how these
microorganisms can harbour resistance genes without expressing
them and act as reservoirs of resistance mechanisms to multiple
antibiotics. These results demonstrate the importance of the health
monitoring of potentially pathogenic and environmental micro-
organisms in water sources and highlight the importance of the use
of phenotypic and molecular methods for screening carbapenem-
resistant bacteria in the environment. Finally, the results obtained
again indicate that WWTPs are a source of dissemination and a
reservoir of multidrug-resistant bacteria, making it necessary to
look for strategies aimed at mitigating the dissemination of
antimicrobial resistance in these scenarios.
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