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Abstract The Bicycle Sharing Systems (BSS) offer a mobility service in which
public bicycles are available for shared use. The demand of this type of systems is
characterized to be unpredictable, asymmetric and spatial-time dependant. These
demand characteristics affect the system balance during specific periods of time.
That is, bicycles accumulate in some stations, leaving no free parking docks for
incoming users, while other stations are empty not being able to satisfy new users
demand. The repositioning of bicycles is the most used strategy to balance the
system. In that strategy, external vehicles transport bicycles from crowded stations
to empty stations in which a demand peak is foreseen. Usually, the operational area
is divided into zones to be served by different repositioning vehicles. This paper
addresses the districting problem arisen when creating the repositionig zones. It
deals with a tactical decision (i.e., districting problem), unlike most of the research
on repositioning bicycles in BSS, which focuses on operational decisions such as
routing and inventory management. Moreover, this work main contribution is to
take into account when defining the districts of the BSS, not only distance and
connectivity, but also criteria such as demand patterns and stations criticality.
A mathematical model that involves those criteria is proposed. It is tested on
instances built from real operational data of ECOBICI in Mexico City, which
allows to draw insights to be taken into account by the system operators.
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1 Introduction

Bicycle Sharing Systems (BSS) have positioned as a sustainable alternative for
urban mobility problematics. The Bicycle Sharing Systems offer a mobility service
in which public bicycles are available for shared use. These bicycles are located at
stations that are displayed across an urban area. The users of the system can take
a bicycle from a station, use it for a journey, leave it in a station (not necessarily
the one of departure), and then pay according to the time of usage (Dell’Amico
et al., 2014).

The project OBIS, Optimising Bike Sharing in European Cities (Büttner and
Petersen, 2011), identifies key influencing factors on the outcomes of BSSs that
can be distinguished into endogenous and exogenous. The former are factors spe-
cific to the city and not easily changed, while the latter are policy sensitive design
factors that can be adjusted. Within the exogenous factors are those related to
the physical design such as service design and technology usage. Additionally, the
study pointed out success factors for bike sharing schemes highlighting the im-
portance of user accessibility, bike and station design, financing model and traffic
redistribution. Most of the factors that determine the success of a BSS are related
to the service level, which can be understood as the likelihood of satisfying the
user need for a bike or parking dock on a specific period of time. An user would
not be provided a satisfactory service level when attempting to rent a bike from
an empty station or return a bike in a full station.

Among the factors that affect the service level of a BSS, one that stands out
is the fact that the demand of this type of systems is characterized to be un-
predictable, asymmetric and spatial-time dependant. Moreover, factors such as
weather and topographical conditions could also influence the demand patterns
(Faghih-Imani et al., 2014). These demand characteristics and usage patterns af-
fect the system balance during specific periods of time. That is, bicycles accu-
mulate in some stations, leaving no free parking docks for incoming user, while
other stations are completely empty not being able to satisfy new user service
demands and, therefore, affecting the service level of the BSS. Several strategies
have been proposed to deal with the problem of balancing the operation of the
BSS, being the repositioning of bicycles the most used in practice. In that strategy,
external vehicles, usually trucks with capacity for several bicycles, transport the
units from crowded stations to empty stations in which a demand peak is foreseen.

During the International meeting of Bicycle Sharing Systems, held in Medelln
in 2016, we had the opportunity to learn from the experience of different BSS oper-
ators. We contacted 11 BSSs and were able to perform depth interviews with four
operators responsible of five systems, namely, EnCicla (Colombia), BikeSantiago
(Chile), ECOBICI (Mexico), BikeRio (Brazil) and ECOBICI (Argentina). Those
interviews showed that the operators address the balancing of the system, and
particularly the repositioning of bicycles, dividing the system into zones. Gener-
ally, the number of zones depends on the size and type of the fleet of repositioning
vehicles. The definition of zones aims at distributing the repositioning workload
among the vehicles and at the same time facilitating the routing of the fleet, par-
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ticularly under heavily congestion conditions.

This paper addresses the districting problem faced by BSS operators when
they have to divide the operation area of the system in a set of zones to be cov-
ered by each of the repositioning vehicles. It deals with a tactical decision (i.e.,
districting problem), unlike most of the research on repositioning bicycles in BSS,
which focuses on operational decisions such as routing and inventory management
problems. Moreover, this work main contribution is to take into account not only
distance and connectivity when defining the districts of the BSS, but also crite-
ria such as demand patterns and stations hierarchy. A mathematical model that
involves those criteria is proposed, and it is tested on instances built from real
operational data of ECOBICI in Mexico City.

The rest of the paper is organized as follows. Section 2 describes the problem.
Section 3 contains a brief literature review on strategies to repositioning bicycles
in BSS that involve tactical or strategic decisions. Section 4 presents the mathe-
matical model and details of the proposed method. Section 5 describes the case
study and presents the results and insights obtained from the experiments. Finally,
Section 6 includes the concluding remarks.

2 Problem definition

The districts of a BSS, also denoted as repositioning zones, are usually created
taking into account several geographical criteria being distance and connectivity
the most commonly used. That is, two stations that belong to the same zone are
close to each other and its is possible to travel between each pair of stations. How-
ever, as observed in some of the studied systems, limiting the definition of zones
to only geographical criteria has some drawbacks. For instance, it generates that
the repositioning vehicles have to travel to adjacent zones in order to be able to
fulfill the requirements of the stations in the zone to which the vehicle is assigned.
This is due to the fact that in specific hours, particularly peak hours, most of
the stations of a zone demand bicycles (or parking docks) while only few of the
stations have excess of them, therefore there is not enough supply of bicycles (or
parking docks) within the zone to fulfill the aggregated demand. Figure 1 shows
the real-time distribution of bicycles in a peak hour for the case of EnCicla, in
Medelĺın Colombia. It shows that for Zone 4 (Zona 4) most of the stations are de-
manding bicycles but only few of the station have a slack that could be used in the
repositioning operation. Additionally, there is not an even distribution of the most
important stations among the zones. Therefore, if something goes wrong with the
repositioning operations in an specific zone that has several important stations,
the impact on the performance of system is significant. For these reasons different
operators have recognized the need of considering additional criteria when solving
districting problems for BSS. Some of the criteria to be considered are station
requirements (i.e., demand patterns of bicycles and parking docks), priority of the
stations in terms of the number of transactions and operational criticality, and
vehicular congestion.
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Fig. 1 Inventory distribution in a peak hour for the system EnCicla

The districting problem of a BSS divides the system into zones. Each zone is
formed by a set of stations that are close to each other and connected. Thus, a set
of geolocated points have to be partitioned into subsets of them that would be as-
signed to a repositioning vehicle. The problem differs from the districting problem
applied to polygons or areas (e.g., political districting problem (Salazar-Aguilar
et al., 2011)) as the basic units are points instead of polygons which, for instance,
allows intersections between the perimeters or convex hulls of two different zones.
Additionally, special data analysis and modeling approaches have to be consider
to involve demand patterns and stations criticality within the districting decision
making.

System operators and researchers have recognized the need of studying the
balancing problem from a broader perspective in which strategic and tactical de-
cisions are taken into consideration. This paper addresses that gap by considering
the relation between the districting problem and the repositioning problem. It
proposes a mathematical model that supports the districting of a BSS network
into zones to be covered by repositioning vehicles while taking into account the
demand patterns and stations importance. The model would help to understand
the effect of considering those additional criteria.

3 Literature review

Based on the literature, Arroyave (2016) proposes a framework that classifies the
problematics faced on the operation of a BSS considering two different perspec-
tives: the level of planning (i.e., strategic, tactical, and operational) and the type of
decisions that it involves (i.e., system design, demand management, and resource
management). Figure 2 summarizes the identified problematics.
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Fig. 2 Operation management problematics of the BSS.

Most of the problematics related to the BSS balancing can be found within
the tactical and operative planning level and are associated to the demand and
resource management decisions. The strategies to address the balancing can be
classified depending on whether they act over the demand process or the supply
process, although mixed approaches might be possible as well. The decisions re-
lated to the strategies that affect the supply process are usually under the system
operator domain, which facilitates their implementation. Among those strategies,
repositioning bicycles has been the most studied. It is usually understood as an op-
erational task that has to be coordinated and executed in the day-to-day operation.

The repositioning can be static or dynamic (Laporte et al., 2015). The former
is carried on during the night, the system idle time or periods of low demand and
prepare the system for the beginning of the operation or to face peak demand
periods. The dynamic repositioning is performed during the operation responding
to the real-time needs of the system (Dell’Amico et al., 2014). Additionally, the
repositioning of bicycles can be carried on exclusively by the system operator or
can involve the users. The latter is denoted as collaborative repositioning. Most of
the literature focuses on the static repositioning, performed by the system oper-
ator, involving routing decisions concerning the vehicles, and inventory decisions
concerning the number of bicycles in the stations. This problematic has attracted
the attention of the research community in the last decade with the number of
publications and conference risen considerably in the last couple of years (Laporte
et al., 2015). However, the scope of the strategies to reposition bicycles can be
enhanced to involve not only operational decisions, such as the routing, but also
tactical and strategic decisions.

We reviewed the literature to identify papers related to strategies to reposition
bicycles that not only involve the definition of collecting and delivering tours, but
consider tactical or strategic decisions. We searched for articles in the databases
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ScienceDirect and Scopus with the terms ”bicycle sharing system” AND (balancing

OR repositioning). A total of 86 not repeated papers were retrieved. Based on a
summary skimming, we focused on 14 of them that involve strategic and tactical
decisions.

The design of the system is the most common topic that involves tactical and
strategic decisions. Authors usually consider decisions such the number and loca-
tion of the stations simultaneously with the inventory level of bicycles at each of
them. Lin et al. (2013) study a strategic design problem formulated as a hub loca-
tion inventory model and take into account not only the number and locations of
bicycle stations, but also the inventory levels of sharing bicycles to be held at the
stations. A similar problem is addressed by Nair and Miller-Hooks (2014) trough
an equilibrium network design model that determines the optimal configuration
of a vehicle sharing system, including bicycles. The problem is formulated as a
bi-level mixed-integer program. At the upper level, the operator determines the
optimal configuration of the system (supply). At the lower level, users respond to
the system configuration and optimize their personal itineraries. Similarly, several
author study strategic decisions at the system design level while considering oper-
ational aspects such as the service level (Çelebi et al., 2018), or the system demand
characteristics (Martinez et al., 2012; Frade and Ribeiro, 2015). In Vogel (2016) a
service network design approach is proposed to cover tactical planning decisions
of BSS. It integrates mathematical optimization and intelligent data analysis to
aggregate operational data. Relocation operations are anticipated by a dynamic
transportation model that triggers relocation services between pair of stations.
Neumann-Saavedra et al. (2015) extended this work to consider the service tours,
that is, the sequence of the relocation services into tours.

The analysis of demand patterns at the operational level has been considered
when tackling tactical and operational decision. Caggiani et al. (2018) proposes an
optimization model to expand a BSS given a restricted budget with the objective
of maximizing the global user satisfaction. They analyze historical usage patterns
and use spatio-temporal clustering to address the need of adding or removing
racks to each station, setting the optimal number of bikes, and deciding the need
of building new stations. Zhang et al. (2017) determines the optimal inventory lev-
els that need to be maintained at each bicycle station such that user dissatisfaction
is minimized. The authors propose a new approach to estimate the user dissatis-
faction and integrate it to bicycle repositioning and the vehicle routing, leading to
a non-linear time-space network flow model. Faghih-Imani et al. (2017) analize not
only the demand patterns but also the rebalancing operation patterns, to quan-
tify and compare the influence of bicycle infrastructure attributes and land-use
characteristics on: (i) demand, consisting of customer arrivals and departures, and
(ii) rebalancing, consisting of the frequency and quantity of operator refills and
removals. The results of two case studies (Barcelona and Seville) confirm that in-
creasing the number of stations generates a reduction of the operator rebalancing
needs. In addition, it showed that the presence of heterogeneous points of interest
in each sub city district leads to lower requirements of rebalancing.

de Chardon et al. (2016) focuse on analyzing the rebalancing operational data
and found that stations that are adjacent to transit hubs receive disproportionate
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amounts of rebalancing services in relation to the number of trips, and that rebal-
ancing more often respond to morning and afternoon lack of parking docks rather
than longer term accumulations of bicycles. Probabilistic and forecasting models
have been used to estimate user patterns, taking into account various exogenous
factors that influence the demand. Reynaud et al. (2018) developed a behaviorally
quantitative model that allows system operators to forecast the potential prob-
lematic stations (full or empty). Understanding of the factors affecting bicycle
availability will yield insights into the supply-and-demand mechanisms of Bicy-
cle Sharing Systems, and allow the operators to better optimize their rebalancing
procedures and/or plan the system modification (addition or relocation of stations
and capacity).

The literature review supports our hypothesis that the analysis of operational
data, trips between stations, and stock levels at the stations, can be used to guide
tactical decisions such as the districting of the system network to facilitate the
repositioning of bikes at the more congested hours of the operation.

4 Mathematical modelling

The districting problem falls within the strategic or tactical planning. It usually
involves data from the day-to-day operation but focuses on the periods of higher
demand (peak periods). The problem is solved to serve those periods and ex-
pected to be robust for the lower demand conditions (valley periods). This section
describes the elements needed to face the districting problem while taking into
account the demand patterns and stations importance.

First, we describe the methodology adapted from (Gaviria et al., 2016) to
identify the peak periods based on the transactional information and to classify
the stations depending on the criticality they have for the performance of the
system. Then, we present a mathematical model for the districting problem in BSS
that helps to understand the effect of considering demand patterns and stations
importance when creating the repositioning zones.

4.1 Peak and valley periods and station priorization

Using data from EnCicla, the BSS of Medelĺın City, (Gaviria et al., 2016) proposed
a methodology to identify the peak and valley periods and prioritize the stations.
We use that methodology in this study using data from the system in Mexico City
(ECOBICI). The methodology involves two elements, the definition of the peak
hours for the operation of the system, as the districting problem would focus on
that peak demand, and the prioritization of the stations regarding their influence
in the performance of the system.

First, the operation shift is partitioned into small intervals. The length of the
intervals is chosen using the percentiles of the distribution of the loans’ duration,
such that a large given percentage of the loans last less than the chosen value.
The value is rounded, for the sake of practicality, to a meaningful value within
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the operational context (e.g., 15 or 30 minutes). The number of the transactions,
loans and returns, in each of the intervals is calculated and statistical tests are
run to validate the similarity of the demand patterns among the different days
of the week. As suggested by authors such as (de Chardon et al., 2016), those
patterns are usually similar for the week days and differ during the weekends. The
distribution of the frequencies in the intervals is used to identify the peak and
valley periods. Following what is observed in the literature at most three peaks
are chosen (i.e., morning, noon and night), which corresponds to those that are
above of a given percentile of the distribution of frequencies.

Once the peak intervals are identified, the information for those specific inter-
vals is used to determine the priority of each station of the system. The priority is
measured trough an index that involves the number of transactions and the unbal-
ance of the station. The number of transaction of a given station Ti is calculated
as the sum of bicycle loans and returns in the station i during the given interval,
while the unbalance Bi of the station i is calculated as the difference between the
number of bicycle loans and returns. The priority index pi for a station i in the
set of stations E is calculated as shown in equation (1). The value of the index is
bigger for those stations that have a large unbalance between loans and returns
and a high number of transactions.

pi =
Ti ∗Bi∑
j∈E Tj

(1)

The percentiles of the priority index distribution are used to identify the level
of priority of each station. The stations are classified in four different levels of
importance based on where they are located in the distribution of the calculated
priority index, as it is shown in Figure 3. For instance, the stations with the highest
priority are those below the 5th percentile and above the 95th percentile of the
priority index distribution.

Fig. 3 Definition of the priority index levels of the stations.
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4.2 Districting problem formulation

We propose a mathematical model based on the formulation for the capacitated
clustering problem described in Koskosidis and Powell (1992). The model can be
formally stated as follows:

Let E be the set of stations, C a subset of E that contains the candidate stations
to be the center of a repositioning zone, and P a set of importance levels that
defines the priority that each station is granted for the repositioning strategy.
We define r+i and r−i as the number of requests of bicycles and parking docks,
respectively, that the station i has during the peak hour. The parameter dij is the
distance between station i and j, and cij is a binary indicator of the connectivity
between stations i and j. The indicator cij takes the value 1 if the distance between
stations i and j is less than a given maximum distance, dmax, and the stations
are accesible from each other, that is, there are not physical barriers between
them. Additionally, pil is a binary parameter that indicates whether the station
i is assigned priority l, and k is the number of repositioning zones to be defined.
The model considers two set of decision variables. The binary variable yj indicates
whether the candidate station j is designated to be the center of a repositioning
zone, while the variable xij indicates whether the station i is assigned to the zone
centered in the station j. The model is described as follow

min
∑
i∈E

∑
j∈C

dijxij (2)

s.t.∑
j∈C

xij = 1 ∀i ∈ E (3)

xij ≤ cijyj ∀i ∈ E ∀j ∈ C (4)∑
j∈C

yj = k (5)

∣∣∣∣∣
∑

i∈E r
+
i xij −

∑
i∈E r

−
i xij∑

i∈E r
+
i xij +

∑
i∈E r

−
i xij

∣∣∣∣∣ ≤ α ∀j ∈ C (6)∣∣∣∣∣∣
∑
i∈E

pilxij −
⌊∑

i∈E pil
k

⌋
yj

∣∣∣∣∣∣ ≤ β ∀l ∈ P ∀j ∈ C (7)

xij ∈ {0, 1} ∀i ∈ E ∀j ∈ C (8)

yj ∈ {0, 1} ∀j ∈ C (9)

Objective function (2) minimizes the sum of the distances of each station to
the center of the repositioning zone to which the station was assigned. It aims
at generating compact zones. To that end, a function that minimizes the maxi-
mum distance between each pair of stations within the same repositioning zone
would be preferred, because it explicitly involves the diameter of the reposition-
ing zones (Kalcsics, 2015). However, linearizing that type of function for instances
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with hundreds of stations would affect the tractability of the model, as it consid-
erably increases the number of constraints. Therefore, we opted for the function
in (2) and included a maximum coverage distance in the definition of the connec-
tivity cij . Constraints (3) to (5) establish the number of repositioning zones and
ensure that each station is assigned to one of the created zones. Constraints (6)
aim at balancing the bicycle and parking docks demand within each zone, such
that at peak hours not all the stations require bicycles (or all them require to free
parking docks). The parameter α is the maximum tolerable percentage of unbal-
ance between the demand of bicycles and the demand of parking docks within any
repositioning zone at the peak hour. Similarly, constraints (7) aim at distributing
homogeneously the stations among the zones respect to the priority levels. That is,
that the most critical stations are not concentrated in a reduced set of zones. The
parameter β is the maximum difference allowed between the number of stations
of a given priority level and the ideal value within each zone. The ideal value is
the ratio between the number of stations of a given priority level and the number
of repositioning zones. A different value of β might be used for each level of prior-
ity. Note that constraints (6) and (7) are not linear but can be easily linearized.
Finally, constraints (8) y (9) define the variables to be binary.

5 Computational analysis

The model proposed in section 4.2 was used to understand how the creation of
the repositioning zones is influenced by considering demand patterns and stations
priority. This section describes the system that is used as a case study and the
experiments and metrics to evaluate the different scenarios that were built. Then,
results and insights obtained from the experiments are discussed.

5.1 Description of the case study

The system ECOBICI, that operates in Mexico City, was used as the case study
to gather information and build the instances to run the computational exper-
iments. ECOBICI was launched in 2010 and by the time of the study it had
452 stations distributed in an operational area of 35km2. The system has a pol-
icy of open data that allows the access to the operational data trough and API
(https://www.ecobici.cdmx.gob.mx/en/). For this study, we consider the transac-
tional record of loans between September and November of 2016 (2’353,389 travel
records).

Figure 4 shows the hourly demand for the three months revealing that the
demand patterns seem to be alike. A similar analysis shows that the demand pat-
terns seem to be independent of the day of the week, except for the weekend
days. Additionally, the peak hours and stations priority are defined following the
methodology described in section 4.1. The operational time frame is divided in
intervals of 30 minutes due to the fact that 92.0% of the trips last less than 32
minutes. Three peak periods were identified. However, we focused on the period of
higher demand during the afternoon (i.e., around 18:00), as it accounts for around
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30.0 % of the total demand of the system.

Fig. 4 ECOBICI hourly demand patterns.

Based on the data, three instances were created. A large instance that considers
the 452 stations (instance1: PT ), and two medium size instances that consider 224
stations (instance2: PT-V1 ) and 228 stations (instance3: PT-V2 ). Figure 5 shows
the spatial distribution of those instances. For the instance1, the stations have to
be partitioned into 15 repositioning zones, while instance2 and instance3 consider
only 7 zones.

5.2 Design of experiments

The computational experiments were designed to address the question of how con-

sidering demand patterns and stations criticality affect the definition of the reposition-

ing zones of a BSS?. Three analysis threads were defined: i.) Reveal the impact of
demand patterns and stations priority on the compactness and spatial distribution
of the repositioning zones ii.) Analize the sensitivity of the repositioning zones to
different values of the parameters that enforce demand patterns and stations pri-
ority within the districting model. iii.) Evaluate the impact that considering the
demand patterns and stations priority has in the difficulty to solve the associated
mathematical model.

The three instances described in section 5.1 were used for the analysis. Sev-
eral scenarios were built for each instance as a combination of the levels of the
experimental factors. The factors considered were:

– The maximum distance, dmax, used to establish the connectivity cij of each
pair of stations. This parameter helps on defining an upper bound for the
diameter of the repositioning zones.
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Fig. 5 Spatial distribution of the instances used in the computational experiments

– Parameter α, described in constraints (6) of the mathematical model, which
represents the maximum tolerable percentage of unbalance between the de-
mand of bicycles and the demand of parking docks within any repositioning
zone at the peak hour.

– Parameter β, described in constraints (7) of the mathematical model, that
represents the maximum difference allowed between the number of stations of
a given priority level and the ideal value within each zone.

– A binary parameter, allPrior, for the optimization model, that establishes
whether the constraints (7) that balance the distribution of the stations among
the zones are applied to all priority levels or only to the stations with higher
priority. That is, allPrior = 1 implies that a constraint to balance the number
of stations of each priority level is considered in the model, while allPrior = 0
indicates that constraint (7) is added only for the stations with higher priority.

Table 1 summarizes the factors and their corresponding experimental levels.
Considering the three instances and all possible combinations of these factors, a
total of 432 experiments were run.

The results of each scenario were compared against the baseline model, that
is, the model that does not consider the constraints to balance the demand of the
zones (i.e., constraints (6)) and the distribution of the stations according their
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Table 1 Experimental factors and levels

Factor Level Units

dmax 2500, 3500, 4500 meters
α 0.05, 0.1, 0.2, 0.3, 0.5, 0.7 deviation from the ideal (%)
β 2, 5, 10, 20 deviation from ideal (# of stations)
allPrior 0, 1

priority level (i.e., constraints (7)). The results of each experiment, specifically
the changes respect to the unrestricted model, were summarized through four
indicators:

– %∆TotalDist: Percentage change on the total sum of distances from the sta-
tions to the center of their zones.

– %∆AvgDiameter: Percentage change on the average of the diameters of the
repositioning zones.

– %∆MaxDiameter: Percentage change on the maximum diameter of the repo-
sitioning zones.

– cpuT ime: Computational time to solve the experiment.

5.3 Results and discussion

The model was implemented in Gurobi 7.5 using the python interface. It was run
in a computer Intel Core i5 with 4GB of RAM. Each scenario was run either for
10.000 seconds or until reach a 2.0% of optimality gap. Not all combination of
parameters are feasible. In total, 252 out of 432 scenarios were feasible, and 242
of them were solved to optimality within the defined time limit. All results were
analyzed using the statistical software R.

We first analyze the impact of the demand patterns and stations priority on the
compactness and spatial distribution of the repositioning zones. Figure 6 shows
the results for the baseline case and two scenarios with different values of the
parameters α and β. The results reveal that enforcing those constraints affects
the compactness of the repositioning zones. Moreover, it is shown that the impact
would depend on the value given to the design parameters. For some combination
of parameters (e.g., α = 15, β = 5) the cluster of the zone are not distinguishable,
while other combinations of them generate well defined zones.

Having shown empirically that parameters α and β affect the design of the
repositioning zones, we focus on understanding the effect that each of the factors
has. Figure 7 shows that among the five factors considered, α and β have the largest
impact on the objective function indicators. The other two factors associated to
parameters of the model, namely dmax and allPrior, seem to have a reduced im-
pact. In the case of the parameter dmax, it was used to define the connectivity
cij between each pair of stations. The double of its value defines an upper bound
for the diameter of any repositioning zone. The objective function incentivizes the
zones to be as compact as possible but it does not consider the diameter of each
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(a) (b) (c)

Fig. 6 Results for three scenarios: (a) baseline (b) α = 15, β = 5 (c) α = 20, β = 8

repositioning zone explicitly. It is observed that the impact on the objective func-
tion indicators related to the diameter of the zones (i.e., %∆AvgDiameter and
%∆MaxDiameter) is larger than to the one related to the sum of all distances.
Regarding the parameter allPrior, the number of stations with the highest prior-
ity is usually less than the number of stations in other priority levels. Enforcing
constraints (7) to the stations with highest priority (i.e., allPrior = 0) would be
usually as restrictive as adding the constraints to each of the priority levels (i.e.,
allPrior = 1). That is the reason for this parameter to have a limited impact on
the objective function indicators. Finally, the factor instance has a moderate effect
on the indicators of the objective function, but it is not a parameter of the model
and it is not controllable by the experimenter.
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Fig. 7 Effect of the different factors over the objective function indicators

Table 2 presents the results of an ANOVA analysis to test the significance of
the factors in the variability of the objective function. The basic model considered
all the factors and their interactions, but the final model that is reported in Table
2 only considers those that are statistically significant. The analysis confirms that
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parameters α and β are also the responsible for most of the variability on the
objective function indicators when the balancing constraints are including into the
districting model. That is, when comparing to the case in which the constraints
that involve those parameters are not taken into account, the objective function
value and variability increase depending on the values given to α and β.

Table 2 ANOVA for the experimental factors

Factor Df Sum Sq. Mean Sq. F Value pr(> F )

α 4 106.9 26.7 60.6 < 2.2e16

β 3 114.1 38.0 86.3 < 2.2e16

allPrior 1 3.3 3.3 7.5 0.007
α : β 12 16.0 1.3 3.0 0.0006
Residuals 220 96.9 3.3 0.441

Figures 8 and 9 show that as the value of α and β decrease, that means that
constraints (6) and (7) are tighten, the objective function deteriorates, which is
also reflected in the increment of the diameter of the repositioning zones. This
effect seems to be stronger for values of α below 20%. Similarly, the objective
function indicators increase drastically when the value of β is less or equal than 5,
in that case an increment on the variability of the indicators is also observed. The
effect of constraints (6) and (7) is more evident for the indicators %∆AvgDiameter
and %∆MaxDiameter than for %∆TotalDist. That is, the percentage of change
in the average and maximum diameter when adding those constraints, respect to
the baseline case in which the constraints are not included, is greater than for
the sum of all distances in a cluster. The variability is smaller in the case of the
%∆MaxDiameter because this indicator is less sensible to small changes in the
distribution of the zones and it only varies when the zone with the maximum di-
ameter changes.
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Fig. 8 Box plot of the objective function indicators vs the parameter α
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Fig. 9 Box plot of the objective function indicators vs the parameter β

Almost 60.0% of the unfeasible instances (i.e., 108 out of 180) were generated
using either a value of α = 0.05 or β = 2. That percentage increases to 90.0% when
α ≤ 0.1 or β ≤ 5. These results show that when enforcing the balance through con-
straints (6) and (7), both constraints can not be set to the minimum value at the
same time. Additionally, the analysis of interaction between the factors presented
in Figure 10 shows that the combined effect of the parameters α and β is intensi-
fied when those parameters are tighten simultaneously. Therefore, there is trade-off
between the parameters that has to be taken into account when involving the bal-
ancing constraints into the model. The figure also shows that constraints (7) do
not have a significant effect on the indicators of the objective function when β is
set to values greater than 10. However, below that value, particularly when β is
set to 5, the increment on those indicators is considerable. Based on the analysis,
we suggest to set parameter α to a value around 2.00% while β should be fixed to
a value between 5 and 10.
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Fig. 10 α vs β interaction plots for the different objective function indicators

We now focus on analyzing the impact that considering the demand patterns
and stations priority has in the difficulty to solve the associated mathematical
model, specifically on the computational time to solve it. Figure 11 shows that the
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parameter β has the largest effect on increasing the CPU time followed by the pa-
rameter α, as those parameters are tighten the computational time increases. The
factor instance also has a significant impact, as the largest instance (PT) demands
more computational time. Although the parameter allPrior does not seem to af-
fect the objective function, it seems to have an effect on the computational time.
As expected, the model that considers the set of constraints (7) for all the priority
levels is more demanding of computational resources due to the large amount of
constraints that it involves. Table 3 presents the average and maximum computa-
tional time for each of the combinations of the parameters α and β. There is not
values for α = 0.05 as most of the instances were unfeasible or not solved within
the time limit. Similarly, only few instances were feasible when α = 0.1, there-
fore the computational time of those instances are not comparable with the other
combinations of the parameters. In general, the computational time increases sig-
nificantly when the parameter β is tighten from 10 to 5, while the computational
time increases moderately as the parameter α decreases.
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Fig. 11 Effect of the different factors on the computational time

Table 3 Computational time for the different combinations of parameters α and β

β

α
2 5 10 20

Avg. Max. Avg. Max. Avg. Max. Avg. Max.
0.1 184.0 399.5 768.0 4331.6 19.2 29.0 17.5 28.0
0.2 1123.1 6660.3 1988.2 8684.2 321.6 2596.3 117.0 525.2
0.3 1420.7 9064.9 1719.7 5002.8 95.5 274.9 83.7 253.7
0.5 1390.2 10000.2 1451.9 8190.9 21.1 86.9 17.2 43.0
0.7 1232.7 8105.6 1082.5 5719.3 15.6 38.7 13.4 35.8
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6 Conclusions

This paper addresses the problem faced by BSS operators when they have to cre-
ate zones to be served by the different repositioning vehicles. This is a tactical
decision that affects some of the most studied operational problems (e.g., routing
and inventory management). Therefore, studying the districting problems for Bi-
cycle Sharing Systems provides a broader perspective for the problematic of how
to balance their operation, and could facilitate the implementation of repositioning
strategies. We argue, based on the literature and the interviews with operators,
that the districting problem should not be based exclusively on proximity and
accessibility but should take into account additional criteria such as demand pat-
terns and stations hierarchy.

We propose a mathematical model that involves constraints to balance the
bicycle and parking docks demand within each zone during a peak hour. It also
distributes the stations among the zones homogeneously respect to the priority
levels. The model was tested using instances built with real operational data from
the system ECOBICI in Mexico City. The results confirm that including those
constraints has an impact on the compactness of the repositioning zones. The sum
of the distances from the stations to the center of their zones increases as the
constraints are tighten, so does the diameter of the zones. There is a trade-off
between the parameters α and β, because the interaction between small values of
them generates a significant increment on the objective function and the compu-
tational time. Based on the analysis, we suggest to set parameter α to a value
around 20% while β should be fixed to a value between 5 and 10. Smaller values
for those parameters usually leads to infeasible instances which means that the
ideal of perfect balance, enforced by constraints (6) and (7), can not be met.

The proposed model solved to optimality 96.0% of the feasible instances within
a time limit of 10.000 seconds. The largest of those instances consider 452 stations
which is representative for a medium size BSS (Citi Bike, the system of New York,
counts with around 750 stations by the end of 2018). The districting problem
models a tactical decision which is usually taken once or twice a year. Therefore,
the results allows us to say that computing times are acceptable for this kind of
decision making process.

Finally, as pointed out when we described the model in section 4.2, it is worth
to try alternative objective functions, as those described in (Kalcsics, 2015). For
instance, minimizing the maximum distance between each pair of stations within
the same repositioning zone. Although, some of those functions would account
better for the compactness of the repositioning zones, in many cases they are non-
linear and would demand a large number of constraints or modifications on the
formulation that would affect the performance of the model. In that case, the use
of approximate approaches, such as metaheuristic methods, is a promising research
direction for future work.
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Martinez, L.M., Caetano, L., Eiró, T., Cruz, F., 2012. An optimisation algorithm

to establish the location of stations of a mixed fleet biking system: an application
to the city of Lisbon. Procedia-Social and Behavioral Sciences 54, 513–524.

Miranda, P.A., González-Ramı́rez, R.G., Smith, N.R., 2011. Districting and cus-
tomer clustering within supply chain planning: a review of modeling and solution
approaches. In Supply Chain Management-New Perspectives. IntechOpen.

Nair, R., Miller-Hooks, E., 2014. Equilibrium network design of shared-vehicle
systems. European Journal of Operational Research 235, 1, 47–61.

Neumann-Saavedra, B.A., Vogel, P., Mattfeld, D.C., 2015. Anticipatory service
network design of bike sharing systems. Transportation Research Procedia 10,
355–363.

Reynaud, F., Faghih-Imani, A., Eluru, N., 2018. Modelling bicycle availability
in bicycle sharing systems: A case study from Montreal. Sustainable cities and

society 43, 32–40.



20 Pablo A. Maya Duque et al.
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