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ABSTRACT
Hoeffding’s lemma provides a representation of the covariance of two
random variables in terms of the difference between the joint and
marginal distributions. This article proposes a multivariate general-
ization of the covariance between functions of bounded variation in
the semialgebra of rectangles on R

2k . Some applications include the
covariance inequality among functions where the variables are positive
orthant dependent.

1. Introduction

The lemma byHoeffding (1940) proves that the covariance between two randomvariables can
be obtained in terms of its joint and marginal distribution functions. This lemma was used to
prove that the correlation ρ between two random variables X,Y with distribution functions
F(x),G(y) is not always bounded between the values−1 and 1. Indeed, it can be shown that ρ
is bounded by two correlations, named minimal ρ− and maximal ρ+, also called Hoeffding’s
correlations, which are strongly related to Fréchet’s bounds.

Lehmann (1966) proved Hoeffding’s lemma and used it in some concepts of dependence;
Jogdeo (1968) studied the multivariate version; Block and Fang (1988) used the cumulative
concept of a random vector X = (X1, . . . ,Xk) to generalize the covariance with more than
two random variables; Mardia (1967) andMardia and Thompson (1972) obtained the covari-
ance for Xr,Ys; Yu (1993) obtained a generalization for absolutely continuous functions of
the components of a random vector; Cuadras (2002) obtained the covariance for a couple of
functions of bounded variation; Quesada-Molina (1992) obtained the covariance for quasi-
monotonic functions; and Yu (1993) obtained the covariance for two multivariate functions.
Further extensions have been obtained by Beare (2009) and Cuadras (2015).

We propose a multivariate generalization of the covariance between functions of bounded
variation, as well as amultivariate extension of the identity proved by Cuadras (2002).We also
set up the relation between the results in Quesada-Molina (1992) and Cuadras (2002). Finally,
we obtain an inequality for the covariances among functions in the case that the random
variables are positively orthant dependent (POD).1

CONTACT W. Díaz walter.diaz@udea.edu.co Department of Mathematics, Faculty of Economics, University of Antio-
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 The randomvariablesX1, . . . ,Xn arepositively orthant dependent if, for all (x1, . . . , xn) ∈ R

n ,P(X1 ≤ x1, . . . ,Xn ≤ xn) ≥∏n
i=1 P(Xi ≤ xi).For the bivariate case, they are called positively quadrant dependent (PQD).
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2. Hoeffding’s Lemma

Let X,Y be two random variables with joint distribution function H(x, y) and marginal dis-
tribution functions F(x),G(y). Hoeffding (1940) found the covariance in terms of the cumu-
lative distribution function

Cov(X,Y ) =
∫
R2
[H(x, y) − F(x)G(y)]dxdy. (1)

Block and Fang (1988) generalized this result for the case of more than two random vari-
ables, providing an integral representation of the joint cumulant.2 Mardia (1967) and Mardia
and Thompson (1972) proved that

Cov(Xr,Ys) =
∫
R2
[H(x, y) − F(x)G(y)]rsxr−1ys−1dxdy. (2)

Cuadras (2002) proved that if α(·) and β(·) are functions of bounded variation and their
expected values exist

E[α(X )β(Y )] − E[α(X )]E[β(Y )] =
∫
R2
[H(x, y) − F(x)G(y)]dα(x)dβ(y). (3)

Equation (3) was initially discussed by Sen (1994), when α(x), β(y) are monotonic func-
tions. Equation (3) provides the covariance Cov(α(X ), β(Y )) and reduces to Hoeffding’s
identity for α(x) = x, β(y) = y and to Mardia and Thompson (1972) identity for α(x) = xr,
β(y) = ys.

Quesada-Molina (1992) proved that ifK(x, y) is a real quasi-monotonic function and con-
tinuous to the right in the sense of

�
(x2,y2 )

(x1,y1 )K(x, y) = K(x1, y1) − K(x2, y1) − K(x1, y2) + K(x2, y2) ≥ 0, (4)

for all x1 ≤ x2 and y1 ≤ y2, the distribution function of X,Y is H(x, y) and the distribution
function of X∗,Y ∗ is H∗(x, y) = F(x)G(y), then

E[K(X,Y )] − E[K(X∗,Y ∗)] =
∫
R2
[H(x, y) − F(x)G(y)]dK(x, y). (5)

In particular, if K(X,Y ) = XY , Equation (5) reduces to Hoeffding’s identity (1).

Definition 1. (Vitali) A function φ(x, y) is of bounded variation in the rectangle [a, b] ×
[c, d], if for all points a = x0 < x1 < · · · < xm = b, c = y0 < y1 < · · · < yn = d, the sum

m∑
i=1

n∑
j=1

�
(xi,y j )
(xi−1,y j−1)

φ(x, y), (6)

is bounded.

The next example shows that not all functions of bounded variation are quasi-monotone,
as Dewan and Rao (2005) said when considering Equation (3) as a particular case of
Equation (5).

 The rth-order joint cumulant of (X1, . . . ,Xn) is defined by

∑
(−1)p−1(p− 1)!

⎛
⎝E

∏
j∈ν1

Xj

⎞
⎠ × · · · ×

⎛
⎝E

∏
j∈νp

Xj

⎞
⎠ ,

where the sum is extended over all partitions (ν1, . . . νp), p = 1, 2, . . . , n, of {1, . . . , n}.
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Example 1. Let the functionφ(x, y) = (x − 1/2)2(y − 1/2)2 be defined in [0, 1]2. Let us con-
sider the function α(x) = (x − 1/2)2 in [0, 1] of bounded variation since it is differentiable
with a bounded derivative; besides, the product φ(x, y) = α(x)α(y) is of bounded variation.
Let us show that φ(x, y) is not a quasi-monotonic function; that is to say, the inequality (4)
is not satisfied. For instance, take the rectangular region [1/2, 1] × [0, 1/2] contained in the
domain of φ(x, y). Then

�
(0,1/2)
(1,1/2)φ(x, y) = φ(1, 1/2) − φ(1/2, 1/2) − φ(1, 0) + φ(1/2, 0)

= − φ(1, 0) = −1/16.

3. Generalization of the covariance

In the next theorem, we extend Quesada-Molina (1992) result to the class of functions of
bounded Vitali variation of two variables in the rectangle [a, b] × [c, d]. This theorem is
related to the result by Cuadras (2002). It is worth noting that Beare (2009) also obtained
a generalization for functions of bounded Hardy–Krause variation, instead of bounded Vitali
variation considered here.
Theorem 1. Let X,Y be random variables with support in the intervals [a, b], [c, d], with joint
distribution function H(x, y) and marginal distribution functions F(x),G(y), respectively, and
let X∗,Y ∗ be random variables with joint distribution function H∗(x, y) = F(x)G(y). Sup-
pose that φ(x, y) is a function of bounded variation in the rectangle [a, b] × [c, d] and that
E[φ(X,Y )] and E[φ(X∗,Y ∗)] exist and are finite. Then

E[φ(X,Y )] − E[φ(X∗,Y ∗)] =
∫ b

a

∫ d

c
[H(x, y) − F(x)G(y)]dφ(x, y). (7)

Proof. Let us consider the function

�
(u,v )

(a,c) φ(x, y) = φ(u, v ) − φ(a, v ) − φ(u, c) + φ(a, c),

where a ≤ u ≤ b, c ≤ v ≤ d. Thus

�
(b,d)

(a,c)φ(x, y) =
∑

�
(u,v )

(a,c) φ(x, y).

If the sum
∑ |�(u,v )

(a,c) φ(x, y)| is less than any fixed positive number and besides φ(x, y) is
for each value of x a function of bounded variation with respect to y, and for each value of
y a function of bounded variation with respect to x, then φ(x, y) is a function of bounded
variation in the rectangle [a, b] × [c, d].

LetV (b,d)

(a,c) φ(x, y) be the upper bound of the sum
∑ |�(u,v )

(a,c) φ(x, y)|. If∑ is expressed in two
parts

∑
1 and

∑
2, where

∑
1 denotes the sum of all those terms for which � is positive and∑

2 denotes the sum of all those terms for which � is negative, we have that
∑

1 �φ(x, y)
and − ∑

2 �φ(x, y) have upper finite bounds denoted by P(b,d)

(a,c) φ(x, y) and N (b,d)

(a,c) φ(x, y),
respectively.

The functions P(x, y) = P(x,y)
(a,c) φ(x, y) and N(x, y) = N (x,y)

(a,c) φ(x, y) are monotonic func-
tions in the sense that if x ≤ x′, y ≤ y′, then P(x, y) ≤ P(x′, y′) and N(x, y) ≤ N(x′, y′).

Hence

φ(x, y) = φ(a, y) + φ(x, c) − φ(a, c) + P(x, y) − N(x, y).

If φ is a function of x, of bounded variation for all x ∈ (a, b), then φ(x) = f (x) − g(x),
where f (x), g(x) are increasing monotonic functions of x. Similarly, if φ is a function of y,
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of bounded variation for all y ∈ (c, d), then it can be represented as the difference φ(y) =
r(y) − s(y) of two increasing monotonic functions of y.

Setting

P̄(x, y) = P(x, y) + f (x, c) + r(a, y)

and

N̄(x, y) = N(x, y) + g(x, c) + s(a, y).

Then

φ(x, y) = P̄(x, y) − N̄(x, y) − φ(a, c), (8)

where P̄, N̄ are quasi-monotonic functions, since they are the sum of a two-variable mono-
tonic function and of separable variable increasing monotonic functions (see Hobson, 1927,
p. 347). This shows that a functionφ(x, y) of bounded variation in the rectangle [a, b] × [c, d]
can be expressed as the difference of two quasi-monotonic functions.

From the definition provided by Quesada-Molina (1992) for each one of the quasi-
monotonic functions P̄, N̄ in the rectangle [a, b] × [c, d], we have that

E[P̄(X,Y )] − E[P̄(X∗,Y ∗)] =
∫ b

a

∫ d

c
[H(x, y) − F(x)G(y)]dP̄(x, y), (9)

and

E[N̄(X,Y )] − E[N̄(X∗,Y ∗)] =
∫ b

a

∫ d

c
[H(x, y) − F(x)G(y)]dN̄(x, y). (10)

Combining Equations (9) and (10) with (8) and considering Lebesgue integration induced
in the rectangle [a, b] × [c, d] by the function of bounded variation φ(x, y), we have

E[φ(X,Y )] − E[φ(X∗,Y ∗)] =
∫ b

a

∫ d

c
[H(x, y) − F(x)G(y)]dφ(x, y).

�

In a similar way to the proof of this theorem, we can obtain an extension to themultivariate
case of even dimension 2k.

Theorem 2. Let X = (X1, . . . ,X2k) be a random vector with joint distribution function H and
marginal distribution functions Fi(xi), 1 ≤ i ≤ 2k, defined in the intervals [ai, bi], 1 ≤ i ≤ 2k.
Let X∗ = (X∗

1 , . . . ,X∗
2k) be a random vector with joint distribution function H∗ = ∏2k

i=1Fi(xi).
Let φ(x1, . . . , x2k) be a function of bounded variation in the semialgebra of rectangles on R

2k.
If A is the class of non empty subsets of {1, 2, . . . , 2k}, suppose that E[φ(X1, . . . ,X2k)] and
E[φ(X∗

ii∈A;Xii/∈A )] exist and are finite. Then

2E [φ(X1, . . . ,X2k)] +
∑
A

(−1)card(A)E
[
φ(X∗

ii∈A;Xii/∈A )
]

=
∫
R2k

∑
A

(−1)card(A)E
[∏

i∈AI(ui, xi)
]
E

[∏
i/∈AI(ui, xi)

]
dφ(x1, . . . , x2k), (11)

where card(A) denotes the cardinality ofA and I(u, x) = 1, if u ≤ x, and 0 otherwise.

Proof. Any function of bounded variation φ(x1, . . . , xn) in the semialgebra of rectangles on
R

n can be expressed as the difference of two functions K1 and K2, which have non negative
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differences of the order n; this class of functions is called n-positive, namely

�
(x′
1,...,x

′
n)

(x1,...,xn)
Kj ≥ 0; j = 1, 2,

for all xi ≤ x′
i, 1 ≤ i ≤ n. In particular, 1-positive functions are the increasing monotonic

functions, and 2-positive functions are called quasi-monotonic functions or 2-increasing.
Following the same procedures for the proof of Theorem 1 in a space of even dimension

2k, we have that

φ(x1, . . . , x2k) ≡ K1(x1, . . . , x2k) − K2(x1, . . . , x2k). (12)

Prakasa Rao (1998) extended the identity of Quesada-Molina (1992) to the multivariate
case; based on this result, for every n-positive function Kj; j = 1, 2

2E[Kj(X1, . . . ,X2k)] +
∑
A

(−1)card(A)E[Kj(X∗
ii∈A;Xii/∈A )]

=
∫
R2k

∑
A

(−1)card(A)E
[∏

i∈AI(ui, xi)
]
E

[∏
i/∈AI(ui, xi)

]
dKj(x1, . . . , x2k). (13)

where
∑

is evaluated over all the non empty proper setsA of {1, 2, . . . , 2k} and {X∗
ii∈A} iden-

tically distributes as {Xii∈A} and independently from {Xii/∈A}.
By combining (13) with (12) we get

2E[φ(X1, . . . ,X2k)] +
∑
A

(−1)card(A)E[φ(X∗
ii∈A;Xii/∈A )]

=
∫
R2k

∑
A

(−1)card(A)E

[∏
i∈A

I(ui, xi)

]
E

[∏
i/∈A

I(ui, xi)

]
dφ(x1, . . . , x2k).

�

As a particular case, when φ is a function of separable variables, i.e., φ(x1, . . . , x2k) =∏2k
i=1αi(xi), we obtain a multivariate extension in even dimension 2k of the identity obtained

by Cuadras (2002).

Corollary 3. Let X1, . . . ,X2k be independent random variables, H the joint distribution func-
tion, and Fi(Xi), 1 ≤ i ≤ 2k, themarginal distribution functions. Letαi(xi), 1 ≤ i ≤ 2k be func-
tions of bounded variation. If E

[∏
i∈Aαi(Xi)

]
and E

[∏
i/∈Aαi(Xi)

]
exist and are finite, then

∑
A

(−1)card(A)E

[∏
i∈A

αi(Xi)

]
E

[∏
i/∈A

αi(Xi)

]

=
∫
R2k

∑
A

(−1)card(A)E

[∏
i∈A

I(ui,Xi)

]
E

[∏
i/∈A

I(ui,Xi)

]
2k∏
i=1

dαi(ui). (14)

Proof. Let X = (X1, . . . ,X2k) be a random vector and X∗ = (X∗
1 , . . . ,X∗

2k) an independent
copy ofX. Let us consider the non decreasing function I(u, x) = 1, if u ≤ x, and 0 otherwise.
Since αi are functions of bounded variation, dαi(xi) is Lebesgue integrable. Then

αi(Xi) − αi(X∗
i ) =

∫ Xi

X∗
i

dαi(ui) =
∫
R

[I(ui,Xi) − I(ui,X∗
i )]dαi(ui).
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Expanding the product, we have

2k∏
i=1

[αi(Xi) − αi(X∗
i )] =

2k∏
i=1

{∫
R

[I(ui,Xi) − I(ui,X∗
i )]dαi(ui)

}

=
∫
R2k

2k∏
i=1

[I(ui,Xi) − I(ui,X∗
i )]

2k∏
i=1

dαi(ui). (15)

The terms of the product can be expressed as a sum, such that

2k∏
i=1

[αi(Xi) − αi(X∗
i )] =

∑
A

(−1)card(A)
∏
i∈A

αi(Xi)
∏
i/∈A

αi(X∗
i ), (16)

and

2k∏
i=1

[I(ui,Xi) − I(ui,X∗
i )] =

∑
A

(−1)card(A)
∏
i∈A

I(ui,Xi)
∏
i/∈A

I(ui,X∗
i ), (17)

where the sum is performed over all non empty subsetsA ⊂ {1, 2, . . . , 2k}.
When replacing (16) and (17) in (15), we get

∑
A

(−1)card(A)
∏
i∈A

αi(Xi)
∏
i/∈A

αi(X∗
i )

=
∫
R2k

{∑
A

(−1)card(A)
∏
i∈A

I(ui,Xi)
∏
i/∈A

I(ui,X∗
i )

}
2k∏
i=1

dαi(ui).

Supposing that E
[∏

i∈Aαi(Xi)
]
and E

[∏
i/∈Aαi(Xi)

]
exist and that the vectors X,X∗ are

independent, from Fubini’s theorem, we get

E

[∑
A

(−1)card(A)
∏
i∈A

αi(Xi)
∏
i/∈A

αi(X∗
i )

]

=
∑
A

(−1)card(A)E

[∏
i∈A

αi(Xi)

]
E

[∏
i/∈A

αi(X∗
i )

]

=
∫
R2k

∑
A

(−1)card(A)E

[∏
i∈A

I(ui,Xi)

]
E

[∏
i/∈A

I(ui,X∗
i )

]
2k∏
i=1

dαi(ui).

Since X,X∗ are identically distributed,

∑
A

(−1)card(A)E

[∏
i∈A

αi(Xi)

]
E

[∏
i/∈A

αi(Xi)

]

=
∫
R2k

∑
A

(−1)card(A)E

[∏
i∈A

I(ui,Xi)

]
E

[∏
i/∈A

I(ui,Xi)

]
dαi(ui).

�
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To clarify Theorem 2, let us consider the case k = 1. Then A contains all the non empty
subsets of {1, 2}, thus

∑
A

(−1)card(A)E

[∏
i∈A

αi(Xi)

]
E

[∏
i/∈A

αi(Xi)

]

= 2(E[α1(X1)α2(X2)] − E[α1(X1)]E[α2(X2)])

= 2Cov(α1(X1), α2(X2))

= 2
∫
R2

Cov[I(u1,X1), I(u2,X2)]dα1(u1)dα2(u2)

= 2
∫
R2

[P(X1 ≤ u1,X2 ≤ u2) − P(X1 ≤ u1)P(X2 ≤ u2)] dα1(u1)dα2(u2)

= 2
∫
R2

[H(u1, u2) − F1(u1)F2(u2)] dα1(u1)dα2(u2).

This result agrees with the expression for the covariance obtained by Cuadras (2002).

Example 2. Let us consider the discrete case where α(x) =sgn(x) and β(y) = sgn(y), where
sgn(x) = 1, if x > 0, 0 if x = 0 and −1 if x < 0. The differential of sgn(x) is dsgn(x) = 2, if
x = 0 and 0 otherwise. Then for any x0 and y0

Cov(sgn(X − x0), sgn(Y − x0)) = 4[H(x0, y0) − F(x0)G(y0)].

4. Some consequences

In this section, we obtain an inequality for the covariance of multidimensional functions of
bounded variation of POD random variables.

Theorem 4. Let X1, . . . ,X2k be POD random variables with finite variance, let αi(xi) be func-
tions of bounded variation on R, whose derivative α′

i(xi) exists and is bounded. Then

∑
A

(−1)card(A)E

[∏
i∈A

αi(Xi)

]
E

[∏
i/∈A

αi(Xi)

]

≤
2k∏
i=1

|max{α′
i(xi)}|

∑
A

(−1)card(A)E

[∏
i∈A

Xi

]
E

[∏
i/∈A

Xi

]
. (18)

Proof. If X1, . . . ,X2k are POD random variables with finite variance, then each I(ui,Xi); 1 ≤
i ≤ 2k is non decreasing in xi for each fixed ui, thus

∑
A

(−1)card(A)E

[∏
i∈A

I(ui,Xi)

]
E

[∏
i/∈A

I(ui,Xi)

]
≥ 0. (19)

Replacing (19) in (14), we have

∑
A

(−1)card(A)E

[∏
i∈A

αi(Xi)

]
E

[∏
i/∈A

αi(Xi)

]
≥ 0. (20)
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Assuming that αi(xi), 1 ≤ i ≤ 2k are functions of bounded variation on R, whose deriva-
tive α′

i(xi) exists and is bounded, we have

∑
A

(−1)card(A)E

[∏
i∈A

αi(Xi)

]
E

[∏
i/∈A

αi(Xi)

]

=
∫
R2k

2k∏
i=1

α′
i(ui)

∑
A

(−1)card(A)E

[∏
i∈A

I(ui,Xi)

]
E

[∏
i/∈A

I(ui,Xi)

]
du1 . . . du2k

≤
∫
R2k

2k∏
i=1

|max{α′
i(ui)}|

∑
A

(−1)card(A)E

[∏
i∈A

I(ui,Xi)

]
E

[∏
i/∈A

I(ui,Xi)

]
du1 . . . du2k

≤
2k∏
i=1

|max{α′
i(xi)}|

∫
R2k

∑
A

(−1)card(A)E

[∏
i∈A

I(ui,Xi)

]
E

[∏
i/∈A

I(ui,Xi)

]
du1 . . . du2k

=
2k∏
i=1

|max{α′
i(xi)}|

∑
A

(−1)card(A)E

[∏
i∈A

Xi

]
E

[∏
i/∈A

Xi

]
.

�

If k = 1, then

Cov(α1(X1), α2(X2)) ≤ |max{α′
1(x1)}max{α′

2(x2)}|Cov(X1,X2). (21)

Example 3. Let X,Y be uniform random variables in the interval (0, 1), PQD with joint dis-
tribution functionH(x, y) = min(x, y)θ (xy)1−θ ; θ ∈ [0, 1] (see Cuadras andAugé, 1981). Let
us consider the functions of bounded variation α(x) = (x − 1/2)2, β(y) = (y − 1/2)2 with
derivatives α′(x) = 2(x − 1/2), β ′(y) = 2(y − 1/2). Then

Cov(X,Y ) =
∫
I2
(H(x, y) − F(x)G(y))dxdy

=
∫
I2
[min(x, y)θ (xy)1−θ − xy]dxdy = θ

4(4 − θ )
, (22)

and

Cov(α(X ), β(Y )) =
∫
I2
[H(x, y) − F(x)G(y)]dα(x)dβ(y)

= 4
∫
I2
[min(x, y)θ (xy)1−θ − xy](x − 1/2)(y − 1/2)dxdy

= 8
3(6 − θ )

+ 1
(4 − θ )

− 10
3(5 − θ )

− 1
36

. (23)

Since max{α′(x)} = max{β ′(y)} = 1, when replacing (22) and (23) in (21), we get

8
3(6 − θ )

+ 1
(4 − θ )

− 10
3(5 − θ )

− 1
36

≤ θ

4(4 − θ )
.

Simplifying, we obtain the following inequality

− 2θ (8 − θ )

9(6 − θ )(5 − θ )
≤ 0,

valid for all θ ∈ [0, 1].
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Corollary 5. LetX = (X1, . . . ,X2k) andX∗ = (X∗
1 , . . . ,X∗

2k) be two POD random vectors with
finite variance, independent and identically distributed. Then

E

⎡
⎣ 2k∏

j=1

(et jXj − et jX
∗
j )

⎤
⎦ ≤

2k∏
j=1

|t j| × E

⎡
⎣ 2k∏

j=1

(Xj − X∗
j )

⎤
⎦ . (24)

Proof. Let α j(x j) = et jx j , 1 ≤ j ≤ 2k, the derivative α′
j(x j) = t jet jx j exists. From (18) we

obtain

E

⎡
⎣ 2k∏

j=1

(et jXj − et jX
∗
j )

⎤
⎦ =

∑
A

(−1)card(A)E

⎡
⎣∏

j∈A
et jXj

⎤
⎦E

⎡
⎣∏

j/∈A
et jXj

⎤
⎦

=
∫
R2k

2k∏
j=1

{t jet ju j}
∑
A

(−1)card(A)E

⎡
⎣∏

j∈A
I(uj,Xj)

⎤
⎦E

⎡
⎣∏

j/∈A
I(uj,Xj)

⎤
⎦ du1 . . . du2k

≤
2k∏
j=1

|t j|
∫
R2k

∑
A

(−1)card(A)E

⎡
⎣∏

j∈A
I(uj,Xj)

⎤
⎦E

⎡
⎣∏

j/∈A
I(uj,Xj)

⎤
⎦ du1 . . . du2k

≤
2k∏
j=1

|t j|
∑
A

(−1)card(A)E

⎡
⎣∏

j∈A
Xj

⎤
⎦E

[∏
i/∈A

Xj

]
=

2k∏
j=1

|t j| × E

⎡
⎣ 2k∏

j=1

(Xj − X∗
j )

⎤
⎦ .

�

In particular, taking k = 1 in (24), we get

E

⎡
⎣ 2∏

j=1

(et jXj − et jX
∗
j )

⎤
⎦ = E

[
(et1X1 − et1X

∗
1 )(et2X2 − et2X

∗
2 )

]

= 2
{
E

[
e(t1X1+t2X2)

] − E
[
et1X1

]
E

[
et2X2

]}
= 2Cov(et1X1, et2X2 ) ≤ 2|t1||t2|E

[
(X1 − X∗

1 )(X2 − X∗
2 )

]
= 2|t1t2|{E[X1X2] − E[X1]E[X2]} = 2|t1t2|Cov(X1,X2).

Therefore,

Cov
(
et1X1, et2X2

) ≤ |t1t2|Cov(X1,X2).
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