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An identity involving invariant polynomials of matrix arguments
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Abstract

The purpose of the present paper is to establish an identity involving invariant polynomials of two matrix argu-
ments. This identity is a generalization of a well known identity that gives evaluation of the Gauss hypergeometric
function when the argument matrix is identity. Applications of the identity derived in this article are also given.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Distributional results of random matrices are often derived in terms of functions of matrix arguments.
Constantine [1] gave the power series representation of hypergeometric functions of matrix arguments
in series involving zonal polynomials. The theory of zonal polynomials was developed in a series of
papers by James and Constantine. For applications and properties of zonal polynomials and functions
of matrix arguments the reader is referred to [2–5]. Davis [6,7] defined a class of invariant polynomials
with two matrix arguments extending the zonal polynomials. These invariant polynomials facilitated
multivariate analysts to derive distributions of latent roots of the non-central Wishart matrix, the non-
central quadratic form and the doubly non-centralF-matrix that they were unable to obtain using zonal
polynomials.
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In the present paper, inSection 2, we will establish an identity involving invariant polynomials of two
matrix arguments. The result is derived by equating two different solutions of an integral involving zonal
polynomials and the Gauss hypergeometric function. The first solution conjectured by Subrahmaniam [2]
and proved by Kabe [8] is in terms of zonal polynomials. The second solution, derived in this article, is
in series involving invariant polynomials of two matrix arguments. Finally, using this identity and several
results on invariant polynomials, two infinite series have been expressed as simple elementary functions.

2. Main result

Before establishing the identity we will introduce some notations. We adhere to standard notations.
See, for example, [1,9,6,7,10]. Throughout,κ, λ, φ and ρ are partitions of the nonnegative integers
k, �, f = k+� andr , respectively. The zonal polynomial of the symmetricm×m matrix X corresponding
to the partitionκ will be denoted byCκ(X). The invariant polynomial ofm × m symmetric matrix
argumentsX and Y will be denoted byCκ,λ

φ (X, Y ). Some of the properties and results on invariant
polynomials are given below:

Cκ,λ
φ (X, X) = θ

κ,λ
φ Cφ(X) (2.1)

where

θ
κ,λ
φ = Cκ,λ

φ (Im, Im)

Cφ(Im)
,

Cκ,λ
φ (X, Im) = θ

κ,λ
φ

Cφ(Im, Im)Cκ(X)

Cφ(Im)
, (2.2)

Cκ,0
κ (X, Y ) ≡ Cκ(X),

Cκ(X)Cλ(Y ) =
∑
φ∈κ·λ

θ
κ,λ
φ θ

κ,λ
φ (X, Y ), (2.3)

whereφ ∈ κ · λ denotes that irreducible representation ofGl(m, R), thegroup ofm × m real invertible
matrices, indexed by 2φ, appears in the decomposition of the tensor product 2κ ⊗ 2λ of the irreducible
representation indexed by 2κ and 2λ, and∫

0<R<Im

det(R)t−(m+1)/2 det(Im − R)u−(m+1)/2Cκ,λ
φ (R, Im − R)dR

= Γm(t, κ)Γm(u, λ)

Γm(t + u, φ)
θ

κ,λ
φ Cφ(Im). (2.4)

In the above expression,Γm(a, ρ) is defined by

Γm(a, ρ) = (a)ρΓm(a), (2.5)

with

(a)ρ =
m∏

j=1

Γ
(

a − j − 1

2

)
r j

, (2.6)

(a)k = a(a + 1) · · · (a + k − 1), k = 1, 2, . . . and (a)0 = 1 (2.7)
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whereρ = (r1, . . . , rm), r1 ≥ · · · ≥ rm ≥ 0, r1 + · · · + rm = r . Note thatΓm(a, 0) = Γm(a), which is a
multivariate gamma function given by

Γm(a) = πm(m−1)/4
m∏

j=1

Γ
[

a − j − 1

2

]
, Re(a) >

m − 1

2
. (2.8)

Now, consider the following integral involving the Gauss hypergeometric function of matrix
argument:

f (Z) =
∫

0<X<Im

det(X)d−(m+1)/2 det(Im − X)σ−(m+1)/2Cλ(Z(Im − X))2F1(a, b; d; X)dX (2.9)

whereλ denotes the partitionλ = (�1, . . . , �m), �1 ≥ · · · ≥ �m ≥ 0, �1 + · · · + �m = �, andCλ(X)

is the zonal polynomial of the symmetricm × m matrix X corresponding to the partitionλ. The Gauss
hypergeometric function of matrix argument is defined by

2F1(a, b; c; X) =
∞∑

k=0

∑
κ

(a)κ(b)κ

(c)κ

Cκ(X)

k! (2.10)

where a, b, c are arbitrary complex numbers,X (m × m) is a complex symmetric matrix and
∑

κ

denotes summation over all partitionsκ. Conditions for convergence of this series are available in the
literature.

It can easily be seen that for anyH ∈ O(m), f (Z) = f (H Z H ′). Thus integratingf (H Z H ′) over
the orthogonal group,O(m), weobtain

f (Z) = f (Im)Cλ(Z)

Cλ(Im)
.

Subrahmaniam [2] conjectured that

f (Im) = Γm(d)Γm(σ, λ)Γm(d + σ − a − b, λ)

Γm(d + σ − a, λ)Γm(d + σ − b, λ)
Cλ(Im). (2.11)

Kabe [8] proved this conjecture using certain identities and integrals involving functions of matrix
argument. Here we will obtain the solution by expanding2F1 and using the definition of invariant
polynomial.

Expanding2F1 in series form, and using the result (2.3), we obtain

Cλ(Im − X)2F1(a, b; d; X)=
∞∑

k=0

∑
κ

(a)κ(b)κ

(d)κk! Cλ(Im − X)Cκ(X)

=
∞∑

k=0

∑
κ

(a)κ(b)κ

(d)κk!
∑
φ∈κ·λ

θ
κ,λ
φ Cκ,λ

φ (X, Im − X). (2.12)

Now, substitutingZ = I and (2.12) in (2.9), and integrating outX , weobtain

f (Im)=
∞∑

k=0

∑
κ

(a)κ(b)κ

(d)κk!
∑
φ∈κ·λ

θ
κ,λ
φ

×
∫

0<X<Im

det(X)d−(m+1)/2 det(Im − X)σ−(m+1)/2Cκ,λ
φ (X, Im − X)dX
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=
∞∑

k=0

∑
κ

(a)κ(b)κ

(d)κk!
∑
φ∈κ·λ

(
θ

κ,λ
φ

)2 Γm(d, κ)Γm(σ, λ)

Γm(d + σ, φ)
Cφ(Im)

= Γm(d)Γm(σ, λ)

Γm(d + σ )

∞∑
k=0

∑
κ

∑
φ∈κ·λ

(a)κ(b)κ

(d + σ )φk!
(
θ

κ,λ
φ

)2
Cφ(Im) (2.13)

where the last step has been obtained by using (2.4). Equating (2.11) and (2.13), we get the following
result:

∞∑
k=0

∑
κ

∑
φ∈κ·λ

(a)κ(b)κ

(c)φk!
(
θ

κ,λ
φ

)2
Cφ(Im) = Γm(c)Γm(c − a − b, λ)

Γm(c − a, λ)Γm(c − b, λ)
Cλ(Im) (2.14)

where Re(c−a) > (m −1)/2−�m, Re(c−b) > (m −1)/2−�m andc = d +σ . Note that forλ = 0, the
left-hand side reduces to a Gauss hypergeometric function and we get the following well known result as
a corollary of the above identity:

2F1(a, b; c; Im) = Γm(c)Γm(c − a − b)

Γm(c − a)Γm(c − b)
. (2.15)

Thus (2.14) can be considered a generalization of (2.15). The identity (2.14) can be used to express
several infinite series involving invariant polynomials in terms of elementary functions. Multiplying
(2.14) by (c − a)λ(c − b)λ/(c − a − b)λ�! and summing overλ and�, weobtain

∞∑
�=0

∞∑
k=0

∑
λ

∑
κ

∑
φ∈κ·λ

(c − a)λ(c − b)λ

(c − a − b)λ�!
(a)κ(b)κ

(c)φk!
[Cκ,λ

φ (Im, Im)]2

Cφ(Im)

= Γm(c)Γm(c − a − b)

Γm(c − a)Γm(c − b)

∞∑
�=0

∑
λ

Cλ(Im)

�! = Γm(c)Γm(c − a − b)

Γm(c − a)Γm(c − b)
exp(m).

Further, multiplying (2.14) by (c − a)λ/�! and summing overλ and�, we arrive at

∞∑
�=0

∞∑
k=0

∑
λ

∑
κ

∑
φ∈κ·λ

(c − a)λ

�!
(a)κ(b)κ

(c)φk!
[Cκ,λ

φ (Im, Im)]2

Cφ(Im)

= Γm(c)Γm(c − a − b)

Γm(c − a)Γm(c − b)1
F1(c − a − b; c − b; Im).

Finally, it may be remarked here that a number of results can be obtained by suitably multiplying (2.14)
and summing overλ and�.
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