
A Parametric Framework for Cooperative
Parallel Local Search

Danny Munera1 , Daniel Diaz1, Salvador Abreu2 and Philippe Codognet3

1 University of Paris 1-Sorbonne, France
Danny.Munera@malix.univ-paris1.fr, Daniel.Diaz@univ-paris1.fr

2 Universidade de Évora and CENTRIA, Portugal
spa@di.uevora.pt

3 JFLI-CNRS / UPMC / University of Tokyo, Japan
codognet@is.s.u-tokyo.ac.jp

Abstract. In this paper we address the problem of parallelizing local
search. We propose a general framework where different local search en-
gines cooperate (through communication) in the quest for a solution.
Several parameters allow the user to instantiate and customize the frame-
work, like the degree of intensification and diversification. We imple-
mented a prototype in the X10 programming language based on the
adaptive search method. We decided to use X10 in order to benefit from
its ease of use and the architectural independence from parallel resources
which it offers. Initial experiments prove the approach to be successful,
as it outperforms previous systems as the number of processes increases.

1 Introduction

Constraint Programming is a powerful declarative programming paradigm which
has been successfully used to tackle several complex problems, among which
many combinatorial optimization ones. One way of solving problems formulated
as a Constraint Satisfaction Problem (CSP) is to resort to Local Search meth-
ods [13,12], which amounts to the methods collectively designated as Constraint-
Based Local Search [18]. One way to improve the performance of Local Search
Methods is to take advantage of the increasing availability of parallel compu-
tational resources. Parallel implementation of local search meta-heuristics have
been studied since the early 90’s, when multiprocessor machines started to be-
come widely available, see [24]. One usually distinguishes between single-walk
and multiple-walk methods. Single-walk methods consist in using parallelism
inside a single search process, e.g., for parallelizing the exploration of the neigh-
borhood, while multiple-walk methods (also called multi-start methods) consist
in developing concurrent explorations of the search space, either independently
or cooperatively with some communication between concurrent processes. A key
point is that independent multiple-walk (IW) methods are the easiest to imple-
ment on parallel computers and can in theory lead to linear speed-up, cf. [24].

Previous work on independent multi-walk local search in a massively paral-
lel context [2,7,8] achieves good but not ideal parallel speedups. On structured



constraint-based problems such as (large instances of) Magic Square or All-
Interval, independent multiple-walk parallelization does not yield linear speedups,
reaching for instance a speedup factor of “only” 50-70 for 256 cores. However on
the Costas Array Problem, the speedup can be linear, even up to 8000 cores [8].
On a more theoretical level, it can be shown that the parallel behavior depends
on the sequential runtime distribution of the problem: for problems admitting
an exponential distribution, the speedup can be linear, while if the runtime dis-
tribution is shifted-exponential or (shifted) lognormal, then there is a bound on
the speedup (which will be the asymptotic limit when the number of cores goes
to infinity), see [23] for a detailed analysis of these phenomena.

In order to improve the independent multi-walk approach, a new paradigm
that includes cooperation between walks has to be defined. Indeed, Cooperative
Search methods add a communication mechanism to the IW strategy, to share
or exchange information between solver instances during the search process.
However, developing an efficient cooperative method is a very complex task,
cf. [6], and many issues must solved: What information is exchanged? Between
what processes is it exchanged? When is the information exchanged? How is it
exchanged? How is the imported data used? [22].

We recently started to work towards a redesigned platform for parallel local
search, for which some early results are described in [17]. In the present arti-
cle we progress towards a general framework, while extending the experimental
evaluation to a distributed computing platform.

In this article, we propose a general framework for cooperative search, which
defines a flexible and parametric cooperative strategy based on the coopera-
tive multi-walk (CW) scheme. This framework is oriented towards distributed
architectures based on clusters of nodes, with the notion of “teams” running
on nodes and regrouping several search engines (called “explorers”) running on
cores, and the idea that all teams are distributed and thus have limited inter-
node communication. This framework allows the programmer to define aspects
such as the degree of intensification and diversification present in the parallel
search process. A good trade-off is essential to achieve good performance. For
instance, a parallel scheme has been developed in [1] with groups of parallel SAT
solvers communicating their best configurations on restart, but performance de-
grades when groups contain more than 16 processes. In [15] another approach
is described where a hybrid intensification/diversification is shown to help when
scaling into hundreds of cores.

We also propose an implementation of our general cooperative framework and
perform an experimental performance evaluation over a set of well-known CSPs.
We compare its performance against the Independent Walk implementation and
show that in nearly all examples we achieve better performance. Of course,
these are just preliminary results and even better performance could be obtained
by optimizing the current version. An interesting aspect of the implementation
it that we use the X10 programming language, a novel language for parallel
processing developed by IBM Research, because it gives us more flexibility than
using a more traditional approach, e.g., an MPI communication package.



The rest of the paper is organized as follow. We briefly review the adaptive
local search method and present the independent Multi-Walks experiments in
section 2. We introduce our Cooperative Search framework in section 3 and,
subsequently, present an implementation of this framework in the X10 language
in section 4. Section 5 compares the results obtained with both the Indepen-
dent Multi-Walks implementation and the Cooperative Search implementation.
Finally, in section 6, we conclude and propose some ideas for future work.

2 Local Search and parallelism

In this study, we use a generic, domain-independent constraint-based local search
method named Adaptive Search [3,4]. This metaheuristic takes advantage of the
CSP formulation and makes it possible to structure the problem in terms of
variables and constraints and to analyze the current assignment of variables
more precisely than an optimization of a global cost function e.g., the number
of constraints that are not satisfied. Adaptive Search also includes an adaptive
memory inspired in Tabu Search [10] in which each variable leading to a local
minimum is marked and cannot be chosen for the next few iterations. A local
minimum is a configuration for which none of the neighbors improve the current
configuration. The input of the Adaptive Search algorithm is a CSP, for each
constraint an error function is defined. This function is a heuristic value to
represent the degree of satisfaction of a constraint and gives an indication on
how much the constraint is violated. Adaptive Search is based on iterative repair
from the variables and constraint error information, trying to reduce the error
in the worse variable. The basic idea is to calculate the error function for each
constraint, and then combine for each variable the errors of all constraints in
which it appears, thus projecting constraint errors on involved variables. Then,
the algorithm chooses the variable with the maximum error as a “culprit” and
selects it to modify later its value. The purpose is to select the best neighbor
move for the culprit variable, this is done by considering all possible changes
in the value of this variable (neighbors) and selecting the lower value of the
overall cost function. Finally, the algorithm also includes partial resets in order
to escape stagnation around local minimum; and it is possible to restart from
scratch when the number of iterations becomes too large.

Independent Multi-Walks

To take advantage of the parallelism in Local Search methods different strategies
have been proposed like functional parallelism and data parallelism. Functional
parallelism aims to parallelize the search algorithm but it generally has too big
overheads due to the management of the fine-grained tasks (creation, synchro-
nization and termination) [17]. In contrast, data parallelism tries to parallelize
the exploration of the search space. A straightforward implementation of data
parallelism is the Independent Multi-Walks (IW) approach. The idea is to use
isolated sequential Local Search solver instances dividing the search space of



the problem through different random starting points [24]. This approach has
been successfully used in constraint programming problems reaching good per-
formance [2,7,8].

We implemented a IW strategy for the Adaptive Search. This implemention
is developed with the PGAS language X10. We tested it on a set of 4 classical
benchmarks. Three of them are taken from CSPLib [9]: the All-Interval Problem
(AIP, prob007) with size 400, Langford’s Numbers Problem (LNP, prob024) with
size 500 and the Magic Square Problem (MSP, prob019) with size 200 × 200.
The last benchmark is the Costas Array Problem [14] (CAP) with size 20. For
all problems, we select difficult instances involving very large search spaces.
These instances are generally out of reach of the traditional complete solvers
like Gecode [21].

1 8 16 24 32

8

16

24

32
LNP500

AIP400

MSP200

CAP20

Ideal

Number of cores

S
p

e
e

d
-u

p

1

Fig. 1. Speed-ups of Independent Multi-Walks
on a distributed system

The testing environment used
in each running was a mixed
cluster with 5 AMD nodes and
3 Intel nodes. Each AMD node
has two quad-core Opteron 2376
processors. Each Intel node has
two quad-core Xeon X3450 pro-
cessors. All systems use a ded-
icated Gigabit-Ethernet intercon-
nect. Figure 1 shows the speed-
ups obtained when increasing the
numbers of cores. We solve the
instances using 8, 16, 24 and 32
cores.

The results show quasi-linear speed-ups for the CAP instance, in accordance
with [8]. However, for MSP and AIP the speed-up tends to flatten out when
increasing the number of cores. For instance, for MSP the speed-up is only im-
proved by 1 unit when going from 16 to 32 cores. Finally for LNP the performance
is very poor with a speed-up of 2 using 32 cores.

3 Cooperative Search Framework

As seen above, the speed-ups obtained with the IW strategy are good with few
compute instances, however when the number of cores increases the performance
tends to taper off and the gain is not significant. To tackle this problem, Co-
operative Search methods add a communication mechanism to the IW strategy,
in order to share information between solver instances while the search is run-
ning. Sharing information can improve the probability to get a solution faster
than a parallel isolated search. However, all previous experiments indicate that
it is very hard to get better performance than IW [16,22].1 Clearly, this may be
explained by the overhead incurred in performing communications, but also by

1 Sometimes it even degrades performance!



the uncertainty of the benefits stemming from abandoning the current state in
favor of another, heuristics-based information which may or may not lead to a
solution.

In this work we propose a parametric cooperative local search framework
aimed at increasing the performance of parallel implementations based on the
Independent Multi-Walks strategy. This framework allows the programmer to
define, for each specific problem, a custom trade-off between intensification and
diversification in the search process. Intensification directs the solver to explore
deeply a promising part of the search space, while diversification helps to extend
the search to different regions of the search space [13].

3.1 Framework Design

Fig. 2. Cooperative Framework
Overview

Figure 2 presents the general struc-
ture of the framework. All available
solver instances (Explorers) are grouped
into Teams. Each team implements a
mechanism to ensure intensification in
the search space, swarming to the most
promising neighborhood found by the
team members. Simultaneously, all the
teams implement a mechanism to col-
lectively provide diversification for the
search (outside the groups). The ex-
pected effect is that different teams will
work on different regions of the search
space. Inter-team communication is needed to ensure diversification while intra-
team communication is needed for intensification. This framework is oriented
towards distributed architectures based on clusters of nodes: teams are mapped
to nodes and explorers run on cores. For efficiency reasons it will be necessary
to limit inter-node (ie. inter-team) communication.

The first parameter of the framework is the number of nodes per team
(nodes per team), which is directly related to the trade-off between intensifi-
cation and diversification. This parameter takes values from 1 to the maximum
number of nodes (frequently linked to maximum number of available cores for
the program in IW). When nodes per team is equal to 1, the framework co-
incides with the IW strategy, it is expected that each 1-node team be work-
ing on a different region of the search space, without intensification. When the
nodes per team is equal to the maximum number of nodes, the framework has
the maximum level of intensification, but there is no diversification at all (only
1 team available). Both diversification and intensification mechanisms are based
on the use of communication between nodes. We will explain the precise role of
each one in the following section.

Although we presented the framework with Local Search, it is clearly applica-
ble to other metaheuristics as well, such as Simulated Annealing, Genetic Algo-
rithms, Tabu Search, neighboring search, Swarm Optimization, or Ant-Colony



optimization. It is also possible to combine different algorithms in a portfolio
approach. For instance a team could implement a local search method, a second
team could use a pure tabu search heuristics and another team could try to find
a solution using a genetic algorithm. Inside a same team it is also possible to use
different versions of a given metaheuristics (e.g. with different values for control
parameters).

3.2 Ensuring Diversification

To provide diversification we propose a communication mechanism between
teams. The teams share information to compute their current distance to other
teams (distance between current configurations in the search space). Thus, if
two groups are too close, a corrective action is executed. The parameters of this
mechanism are defined as follows.

Inter-team communication Topology: This parameter defines the way
in which the communications between teams is done. For instance, in the All-
to-All Scheme each team shares information with every other team; in the Ring
Scheme each team only shares information with the “adjacent” teams, i.e. the
previous and the next teams (e.g., team 5 only communicates with teams 4 and
6). In the Random scheme two teams are selected randomly to communicate
each other.

Inter-team communication interval: This parameter indicates how fre-
quently the communication between teams occurs. One possible approach is to
measure the communication interval in terms of number of iterations elapsed in
the main loop of the algorithm.

Distance function: this function is used to check the closeness of two teams
(in order to detect if they are exploring a similar region of the search space). For
this, the teams compare their current configurations using the distance function.
A simple function can count the number of different values in both configurations
(i.e. vectors). But, depending on the problem, it is possible to elaborate more
complex functions (e.g., taking into account the values and/or the indexes in the
vector, using weighted sums. . . ) When a computed distance is lower than the
minimum permissible distance parameter, the two teams are declared too close.

Corrective action: this parameter controls what to do when two teams are
too close. In that case one team must correct its trajectory (this can be the
“worst” one, i.e. the team whose configuration’s cost is the higher). As possible
corrective action the team’s head node can decide to update its internal state,
e.g., clearing its Elite Pool (see below). It can also restart a percentage of the
team’s explorers, in order to force them to explore a different portion of the
search space.

3.3 Ensuring Intensification

We provide intensification by means of a communication mechanism. Here also,
it is possible to have different communication topologies between the explorers of



a team. In our framework, we select a topology in which each node communicates
with a single other node, thereby constituting a team (see Figure 3).

Fig. 3. Structure of a Team

The team is composed of one head node and
n explorer nodes. Explorer nodes implement
a solver instance of a Local Search method.
Each Explorer node periodically reports to the
head node, conveying some practical informa-
tion about its search process (e.g., its current
configuration, the associated cost, the number
of iterations reached, the number of local min-
imum reached, etc.). The head node then pro-
cesses the messages and makes decisions to ensure the intensification in the search
2. Moreover, the head node stores the configurations with the best costs in its
Elite Pool (EP) and provides it on demand to Explorers. The head node can
also decide to do some actions on its elite pool (e.g., combining configurations
to create a new one, similarly to what is done in genetic algorithms).

Explorer Node Explorer nodes periodically ask the head node for an elite
configuration from the EP. If the cost of the new EP configuration is lower
than its current configuration, the worker node switches to the EP one. Thus
the nodes in a group intensify the search process, progressing towards the most
promising neighbor found by their group. This is mainly intensification, but if
an explorer node luckily finds a better configuration, then the whole team moves
to this new promising neighborhood of the search space. The team is not bound
to any specific region. The parameters of this mechanism are as follows:

– Report interval: The report interval parameter indicates how frequently the
explorer nodes communicate information to the head node.

– Update interval: The update interval parameter indicates how frequently the
explorer nodes try to obtain a new configuration from the EP in the head
node.

Head Node The head node receives and processes all the information from
the explorer nodes in the team. Because of this, it has a more global vision
about what is happening in the team and it can make decisions based in the
comparative performance of the explorers nodes.

The main duty of the head node is to provide an intensification mechanism for
the explorer nodes, resorting to the EP. The EP has different tuning parameters
that must be defined at design time: First, the size of the pool which is the
maximum number of configurations that the EP can store. Second, the entry
policy, which defines the rules to accept or reject the incoming configurations.
Finally the request policy, which defines which configuration is actually delivered
to an explorer node when it makes a request.

2 Recall, the head node also ensures the diversification by inter-team communication
as explained above.



One possible entry policy for this framework is described below. When a
message from the explorer node is received by the head node, the algorithm
discards the configuration instead of storing it in the EP, in the following situa-
tions: (1) if the cost of the configuration is greater than the current worst cost in
the EP, (2) if the configuration is already stored in the EP. If the configuration
is not discarded, the algorithm then looks for a free slot in the EP. If there is
one, the incoming configuration is stored. If not, the algorithm selects a victim
configuration (e.g., random, worst, etc.) to be replaced by the new one.

There are many options to implement the request policy in the head node.
A simple one is to always return the best configuration in the EP, or any (ran-
domly chosen) configuration of the EP. Also, it is possible to implement more
sophisticated algorithms. For instance, a mechanism where the probability of a
configuration being selected from the EP is tied to its cost. We may even create
a mutation mechanism on the EP, inspired in genetic algorithms [25,5], aspiring
to improve the quality of the current configurations.

Although the main function of the head node is to provide intensification
within the team, there exist many smart activities that the head node can carry
out based in the collected information. For example, it can improve the efficiency
of all the nodes in the team by comparing its performance and take corrective
decisions, even before an event happens in the explorer node. Also, path relinking
techniques [11] can be applied when different local minima have been detected.

4 An X10 Implementation

In order to verify the performance of our cooperative search strategy, we imple-
mented a prototype of the framework using the Adaptive Search method, written
in the X10 programming language.

X10 [20] is a general-purpose language developed at IBM, which provides a
PGAS variant, Asynchronous PGAS (APGAS), which makes it more flexible and
usable even in non-HPC platforms [19]. With this model, X10 supports different
levels of concurrency with simple language constructs.

There are two main abstractions in the X10 model: places and activities. A
place is the abstraction of a virtual shared-memory process, it has a coherent
portion of the address space. The X10 construct for creating a place in X10 is the
at operation, and is commonly used to create a place for each physical process-
ing unit. An activity is the mechanism which abstracts the single threads that
perform computation within a place. Multiple activities may be simultaneously
active in one place.

Regarding communication, an activity may reference objects in other places.
However, an activity may synchronously access data items only in the place
in which it is running. If it becomes necessary to read or modify an object
at some other place, the place-shifting operation at may be used. For more
explicit communication, the GlobalRef construct allows cross-place references.
GlobalRef includes information on the place where an object resides, therefore
an activity may locally access the object by moving to the corresponding place.



A detailed examination of X10, including tutorials, language specification and
examples may be found at http://x10-lang.org/.

To implement our framework in X10, we mapped each explorer node to one
X10 place, using a solver instance of the Adaptive Search method as in the
Independent Multi-Walks strategy. In this implementation, the head nodes also
act as explorer nodes in their “spare” time.

The parameter nodes per team is passed to the main program as a external
value. The program reads this value and creates all the instances of the solver
together with the necessary references to perform the communication between
nodes within a team and between the different teams in the execution.

We used the construct GlobalRef to implement communication in X10. Ev-
ery head node reference is passed to the relevant explorer nodes of the team, and
to the other head nodes in the program. The main loop of the solver has code to
trigger all the events in the framework: Inter-Team Communication event (be-
tween teams), Report event (between the explorer nodes and head node into a
team) and Update event (explorer nodes request a new configuration from the
head node).

In the initial implementation, we opted for each explorer node only commu-
nicating its current configuration and cost pair 〈configuration, cost〉 to its head
node. In the request event, we chose to send a random configuration from the EP
to the explorer nodes. For simplicity, this first implementation does not commu-
nicate between head nodes of different teams, so diversification is only granted
by the randomness of the initial point and the different seeds in each node.

5 Results and Analysis

In this section we compare our X10 implementation3 of our framework to the
independent Multi-Walks version in order to see the gain in terms of speed-ups.
For this experiment, we the set of problems presented in section 2.

We used different values for parameter nodes per team: 2, 4, 8 and 16. The
Report Interval and the Update Interval parameters were set to 100 iterations,
finally we tried values from 1 to 4 as the size of the EP. We only retained the
results for the best performing parameters. For all cases, we ran 100 samples
and averaged the times.

Table 1 compares the Independent Multi-Walks implementation (IW) to our
Cooperative Multi-Walks implementation (CW) for each of the problems (LNP,
AIP, MSP and CAP). For each problem, a pair of rows presents the speed-up
factor of the cooperative strategy CW w.r.t. the independent strategy IW (the
best entry in each column is in bold fold).

In figure 4 we visualize same results, in a more directly perceptible form. The
speed-ups obtained with IW (dotted line) and CW (continuous line) clearly show
that in most cases, we are getting closer to a “ideal” speedup. It is worth noticing
that AIP is unaffected by the cooperative solver when using a small numbers of

3 Source at https://github.com/dannymrock/CSP-X10.git, branch teamplaces.

http://x10-lang.org/
https://github.com/dannymrock/CSP-X10.git


Problem time (s) Strategy Speed-up with k cores time (s)
1 core 8 16 24 32 32 cores

AIP-400 280
IW 7.1 13.1 15.3 19.5 14.3
CW 7.3 15.3 17.3 19.2 14.6

speedup gain 3.5 % 17 % 13 % -1.6 %

LNP-500 19.1
IW 2.1 2.0 2.2 2.1 8.95
CW 2.5 3.1 3.4 3.4 5.7

speedup gain 22 % 56 % 54 % 57 %

MSP-200 274
IW 6.1 8.6 10.5 11.5 23.9
CW 8.5 14.6 15.7 18.9 14.6

speedup gain 39 % 69 % 50 % 64 %

CAP-20 992
IW 7.6 13.2 21.5 28.2 35.2
CW 8.9 16.8 27.6 32.2 30.8

speedup gain 18 % 27 % 28 % 15 %

Table 1. Timings and speed-ups for IW and CW on a distributed system

cores and worse when using 24 or 32 cores. However, For the LNP, MSP and
CAP the results clearly show that the cooperative search significantly improves
on the performance of the Independent Multi-Walks approach. For instance, in
CAP the cooperative strategy actually reaches super linear speed-ups over the
entire range of cores (speed-up of 32.2 with 32 cores). The best gain reaches 69%
in the MSP.

1 8 16 24 32

8

16

24

32
LNP500-CW

LNP500-IW

AIP400-CW

AIP400-IW

MSP200-CW

MSP200-IW

CAP20-CW

CAP20-IW

Ideal

Number of cores

S
p

e
e

d
-u

p

1

Fig. 4. Speed-Up CW vs IW

This experiments we carried
out show that our cooperative frame-
work can improve the time to find
a solution for challenging instances
in three of four benchmarks. It
is clear that the overall perfor-
mance of our cooperative teams
strategy is better than the Inde-
pendent Multi-Walks implemen-
tation. The main source of im-
provement can be attributed to
the search intensification
achieved within each team. In-

tensification ensures that the search always stays in the best neighborhood found
by the team. However, diversification is also necessary to ensure the entire set
of cores does not get stuck in a local minimum.

6 Conclusion and Further Work

Following up on previous work on parallel implementations, in this paper we are
concerned with the design of a general cooperative framework for parallel exe-



cution of local search algorithms, enabling a wide range of experimentation. We
decided to work with X10 as the implementation language, because it abstracts
over many interesting parallel architectures while retaining a general-purpose
stance. The general organization of the proposed framework entails structur-
ing the workers as teams, each with the mission of intensifying the search in a
particular region of the search space. The teams are then expected to commu-
nicate among themselves to promote search diversification. The concepts and
entities involved are all subject to parametric control (e.g., trade-off between
intensification and diversification, the team communication topology,. . . ).

The initial experimentation which we carried out with an early prototype al-
ready proved to outperform the independent Multi-Walks parallel approach, even
with very incomplete parameter tuning. We find these results very encouraging,
suggesting that we proceed along this line of work, by defining new organiza-
tional and operational parameters as well as extending the experimentation with
the ones already introduced.

This being only a preliminary work, and looking forward, we will continue
to explore different communication patterns and topologies. The framework we
presented relies on Local Search but it is not limited to it. We therefore plan
on experimenting with other meta-heuristics or a portfolio search scheme. This
is also made convenient by X10’s object-oriented setting. It is also important to
figure out why problems such as the All-Interval Series (AIP) do not benefit from
cooperation among solvers: is it intrinsic to a certain class of problems? Which
problems? Can we improve performance with different settings of the framework
parameters?

Acknowledgments

The authors wish to acknowledge the Computer Science Department of UNL
(Lisbon) for granting us access to its computing resources.

References

1. A. Arbelaez and P. Codognet. Massively Parallel Local Search for SAT. In 2012
IEEE 24th International Conference on Tools with Artificial Intelligence (ICTAI),
pages 57–64, Athens, November 2012. IEEE.

2. Y. Caniou, P. Codognet, D. Diaz, and S. Abreu. Experiments in Parallel
Constraint-Based Local Search. In Evolutionary Computation in Combinatorial
Optimization - 11th European Conference, EvoCOP 2011, pages 96–107, Torino,
Italy, 2011. Springer.

3. P. Codognet and D. Diaz. Yet another local search method for constraint solving.
In Stochastic Algorithms: Foundations and Applications, pages 342–344. Springer
Berlin Heidelberg, London, 2001.

4. P. Codognet and D. Diaz. An Efficient Library for Solving CSP with Local Search.
In 5th international Conference on Metaheuristics, pages 1–6, Kyoto, Japan, 2003.

5. O.A.C. Cortes and J. C. da Silva. A Local Search Algorithm Based on Clonal Se-
lection and Genetic Mutation for Global Optimization. In 2010 Eleventh Brazilian
Symposium on Neural Networks, pages 241–246. Ieee, 2010.



6. T. G. Crainic, M. Gendreau, P. Hansen, and N. Mladenovic. Cooperative parallel
variable neighborhood search for the p-median. Journal of Heuristics, 10(3):293–
314, 2004.

7. D. Diaz, S. Abreu, and P. Codognet. Targeting the Cell Broadband Engine for
constraint-based local search. Concurrency and Computation: Practice and Expe-
rience (CCP&E), 24(6):647–660, 2011.

8. D. Diaz, F. Richoux, Y. Caniou, P. Codognet, and S. Abreu. Parallel Local Search
for the Costas Array Problem. In PCO’12,Parallel Computing and Optimization,
Shanghai, China, May 2012. IEEE.

9. I. P. Gent and T. Walsh. CSPLib: a benchmark library for constraints. Technical
report, 1999.

10. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, July 1997.
11. F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of Scatter Search and Path

Relinking. Control and Cybernetics, 29(3):653–684, 2000.
12. T. Gonzalez, editor. Handbook of Approximation Algorithms and Metaheuristics.

Chapman and Hall / CRC, 2007.
13. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applications.

Morgan Kaufmann / Elsevier, 2004.
14. S. Kadioglu and M. Sellmann. Dialectic Search. In Principles and Practice of

Constraint Programming (CP), volume 5732, pages 486–500, 2009.
15. R. Machado, S. Abreu, and D. Diaz. Parallel local search: Experiments with a pgas-

based programming model. CoRR, abs/1301.7699, 2013. Proceedings of PADL
2013, Rome, Italy.

16. R. Machado, S. Abreu, and D. Diaz. Parallel Performance of Declarative Program-
ming using a PGAS Model. In Practical Aspects of Declarative Languages (PADL
2013). Springer Berlin / Heidelberg, 2013. (forthcoming).

17. D. Munera, D. Diaz, and S. Abreu. Towards Parallel Constraint-Based Local
Search with the X10 Language. In 20th International Conference on Applications
of Declarative Programming and Knowledge Management (INAP), Kiel, Germany,
2013.

18. V. H. Pascal and M. Laurent. Constraint-Based Local Search. The MIT Press,
2005.

19. V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, D. Cunningham, D. Grove,
S. Kodali, I. Peshansky, and O. Tardieu. The Asynchronous Partitioned Global
Address Space Model. In The First Workshop on Advances in Message Passing,
pages 1–8, Toronto, Canada, 2010.

20. V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove. X10 language
specification - Version 2.3. Technical report, 2012.

21. C. Schulte, G. Tack, and M. Lagerkvist. Modeling and Programming with Gecode,
2013.

22. M. Toulouse, T. Crainic, and M. Gendreau. Communication Issues in De-
signing Cooperative Multi-Thread Parallel Searches. In Meta-Heuristics: The-
ory&Applications, pages 501–522. Kluwer Academic Publishers, Norwell, MA.,
1995.

23. C. Truchet, F. Richoux, and P. Codognet. Prediction of parallel speed-ups for las
vegas algorithms. In ICPP’13, 43rd International Conference on Parallel Process-
ing. IEEE Press, October 2013.

24. MGA Verhoeven and EHL Aarts. Parallel local search. Journal of Heuristics,
1(1):43–65, 1995.

25. Q. Zhang and J. Sun. Iterated Local Search with Guided Mutation. In IEEE
International Conference on Evolutionary Computation, pages 924–929. Ieee, 2006.

View publication stats

https://www.researchgate.net/publication/261983770

	A Parametric Framework for Cooperative Parallel Local Search

