
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbeq20

Biotechnology & Biotechnological Equipment

ISSN: 1310-2818 (Print) 1314-3530 (Online) Journal homepage: https://www.tandfonline.com/loi/tbeq20

Control of one Stage Bio Ethanol Production by
Recombinant Strain

V. Lyubenova, S. Ochoa, J. Repke, M. Ignatova & G. Wozny

To cite this article: V. Lyubenova, S. Ochoa, J. Repke, M. Ignatova & G. Wozny (2007) Control of
one Stage Bio Ethanol Production by Recombinant Strain, Biotechnology & Biotechnological
Equipment, 21:3, 372-376, DOI: 10.1080/13102818.2007.10817476

To link to this article:  https://doi.org/10.1080/13102818.2007.10817476

© 2007 Taylor and Francis Group, LLC

Published online: 15 Apr 2014.

Submit your article to this journal 

Article views: 132

View related articles 

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tbeq20
https://www.tandfonline.com/loi/tbeq20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13102818.2007.10817476
https://doi.org/10.1080/13102818.2007.10817476
https://www.tandfonline.com/action/authorSubmission?journalCode=tbeq20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tbeq20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/13102818.2007.10817476
https://www.tandfonline.com/doi/mlt/10.1080/13102818.2007.10817476
https://www.tandfonline.com/doi/citedby/10.1080/13102818.2007.10817476#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/13102818.2007.10817476#tabModule


372 BIOTECHNOL. & BIOTECHNOL. EQ. 21/2007/3

BIOTECHNOLOGICAL EQUIPMENT
ARTICLES BE

Keywords: adaptive control, ethanol production, simultaneous 
saccharifi cation and fermentation, fed-batch process.

Introduction
During the past years, the demand for the production of bio-
fuels has increased rapidly, especially in the bio-ethanol case, 
which currently is produced mostly from sugar cane and starch 
containing raw materials. Traditionally, ethanol production 
from starchy materials is done in a sequential two-step process 
which includes two main stages: i) the enzymatic hydrolysis 
of starch to glucose (by means of the enzymes α-amylase and 
glucoamylase) and ii) the fermentation of glucose to ethanol 
(mostly by the action of yeast). A crucial drawback of the 
sequential (two-step) process is the slow hydrolysis rate (usually 
hours) due to the reduction of the enzymatic activity caused by 
an inhibitory effect when high sugar concentrations are present. 
A challenging perspective to overcome this problem and at 
the same time to increase the yield of the ethanol production 
process is to conduct the process in a one-step mode doing 
the simultaneous saccharifi cation and fermentation of starch to 
ethanol (SSFSE) by means of recombinant strains (2, 16). In 
this way, the ethanol production process from starch is more 
effi cient not only in terms of saving overall production time 
but also in terms of reducing equipment costs. 

Nowadays, for SSFSE processes, Saccharomyces cerevisiae 
recombinant strains are mainly used (1, 2, 4, 14, 15). Recently, 
the genetically modifi ed S. cerevisiae YPB – G strain which is 
able to convert directly starch to ethanol has been developed. 
This strain secretes a bifunctional fusion protein that contains 
both the Bacillus subtilis α- amylase and the Aspergillus 
awamori glucoamylase. Previous studies have demonstrated 
the potential use of the YPB – G strain in SSFSE processes for 
ethanol production (2, 4, 23).

In order to increase starch conversion effi ciently, kinetic 
models such as those proposed in (6, 14, 16, 17, 20, 21), 
have to be used for process investigation and control. In (16), 
experimental data of SSFSE process using S.cerevisiae YPB–
G strain were evaluated in order to develop a two-hierarchic 
level unstructured model. The fi rst level modelled enzymatic 
hydrolysis of starch to glucose by bifunctional protein while 
the second level includes the utilization and bioconversion of 
glucose to ethanol by yeast. It is remarkable that no publications 
on control design of SSFSE processes were found in the open 
literature.

Recently, new methods for adaptive control of bioprocesses 
where one intermediate metabolite is produced in one reaction 
and then is used as substrate in other process reactions have 
been proposed in (7, 13). The SSFSE process could be 
accounted into such class of processes because the glucose is 
produced as intermediate product by starch and then consumed 
as substrate for biomass growth and ethanol production. The 
methods mentioned above are based on the so called General 
Dynamical Model Approach (3, 8-13, 18). Software sensors of 
intermediate metabolite production and consumption rates are 
designed [19] and included in the adaptive control law (7, 13).

In this paper, the methods proposed in (7, 13) are adapted and 
applied for the control of a SSFSE process using S. cerevisiae 
YPB – G recombinant strain. The procedure starts with the 
specifi cation of the process reaction scheme and the derivation 
of the model for control. Estimators of glucose production and 
consumption rates are synthesized and applied for maintaining 
the glucose concentration in an equilibrium state. Applicability 
of the proposed adaptive control is investigated by simulations 
of the control scheme where an unstructured model proposed 
in (20) is used as the object for control.

CONTROL OF ONE STAGE BIO ETHANOL PRODUCTION BY 
RECOMBINANT STRAIN

V. Lyubenova2, S. Ochoa1,3, J. Repke1, M. Ignatova2, G. Wozny1

Berlin Technical University, Department of Process Dynamics and Operation, Germany1

Bulgarian Academy of Sciences, Institute of Control and System Research, Bulgaria2

University of Antioquia, Research Group on Modelling and Control, Colombia3

Correspondence to: Maya Ignatova
E-mail: ignatova@icsr.bas.bg

ABSTRACT
 A new method for adaptive control of simultaneous saccharifi cation and fermentation of starch to ethanol by the recombinant 
strain Saccharomyces cerevisiae YPB–G is proposed. The process monitoring is enriched by new software sensors of glucose 
consumption and production rates. The difference between their values is defi ned as a control marker which is used for switching 
from batch to fed-batch mode automatically and for determining the amplitude and duration of starch feeding pulses (control 
input). Simulation results have shown that the proposed control strategy stabilizes the process at an equilibrium state for the 
glucose concentration. In this way, the ethanol concentration in the reactor and the productivity of the process are increased.
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Materials and Methods
Model for control
According to the General Dynamical Model Approach (3), 
the model for control is derived on the basis of a process 
reaction scheme. The mechanism of bio-ethanol production by 
Saccharomyces cerevisiae from starch is presented as follows:

GS ⎯→⎯ 1j

EnzXG +⎯→⎯ 2j
 (1)

EG ⎯→⎯ 3j

where ϕ1 represents the rate of enzymatic hydrolysis, that is, the 
conversion of starch into glucose. The glucose is consumed in 
the second reaction at a rate ϕ2 for biomass growth and enzyme 
secretion and in the third reaction for ethanol production at a 
rate ϕ3, as is presented in the unstructured model (16), (20).

The model for control for the considered fed-batch process 
is presented as follows:

 (2a)

 (2b)

 (2c)

 (2d)

 (2e)

 (2f)

where F is starch feed rate; V is reactor volume; Sin is  starch 
concentration in the feed; 

resresSusSus SRSR +=ϕ1  (2g) 

 Xμ=ϕ2  (2h) 

 Xν=ϕ3  (2i)

k1- k4 are yield coeffi cients., RSus, Rres - susceptible and resistant 
starch utilization rate respectively, μ and ν - specifi c growth 
and ethanol production rates respectively.

Since the model for control has described the dynamics 
of the main variables as well as the unstructured one, an 
identifi cation of the parameters for model (2) is done using the 
batch phase of the process, applying an optimization procedure 
proposed in [9, 11, 12, 13]. The optimization criterion is the 
minimization of the mean square error between the state 

variables of unstructured model and model (2). The obtained 
optimal values of the parameters are: k1=1.086, k2=1.1151, 
k3=2.0226, k4=28.1748. 

 

Fig.1. Unstructured Model vs. Model for Control.

In Fig. 1, simulations of the model for control (2) are cross-
validated with unstructured model data for the batch condition. 
As can be seen in the fi gures, the model (2) (points) describes 
the dynamics of the main process variables as well as the 
unstructured model (lines). However, some differences can be 
noticed in Fig. 1a due to the effect of the cell death constant, 
included in the unstructured model. It is important to remark 
that for the batch conditions at around 20-60 hours the process 
reaches an equilibrium state for the glucose concentration (Fig. 
1d), which is characterized by a constant biomass growth rate 
(Fig. 1a), a constant ethanol production rate (Fig. 1b) and 
constant starch degradation rate (Fig. 1c). However, after 60 
hours, this equilibrium state can not be maintained because of 
the low level of starch concentration in the reactor. Therefore, 
in order to keep the equilibrium condition and obtain high 
ethanol production rates for longer times, it is necessary to 
feed additional starch into the reactor, which means to operate 



374 BIOTECHNOL. & BIOTECHNOL. EQ. 21/2007/3

under fed batch conditions. For maintaining the process at 
that equilibrium state for glucose concentration, under fed 
batch conditions, it is necessary to estimate fi rst the glucose 
production and consumption rates, which is done in the next 
section through the use of software sensors. 

Software sensors of glucose production and consumption 
reaction rates 
Software sensors design is done applying the method proposed 
in (13). It is assumed that starch and glucose concentrations 
are measured on-line by industrially available hardware 
sensors (5, 24, 25).  The fi rst step is on-line estimation of starch 
consumption rate φ1

 
using on-line measurement of starch 

concentration. The software sensor of φ1 is an observer-based 
estimator with structure:

 (3a)

 (3b)

where C1s and C2s are estimator parameters, Sm=S+ε, ε is 
measurement noise.

The design parameters of estimator (3) are derived using an 
optimal tuning procedure, proposed in [10]. For the considered 
case, the following expressions are obtained:

    (4)

where: m11s is the  upper bound of dϕ/dt; m21s is the upper 
bound of additive noise of starch; ξ= damping coeffi cient, a 
usual value is 0.99 (3).

Glucose production rate is estimated using the fi rst term of 
the right hand side of equation (2b), where ϕ1 is substituted by 
its estimates from (3b):

 (5)

The next step is to design of the glucose consumption rate 
estimator. The second and third terms of right hand side 
of the eq. (2b) are presented as an unknown time-varying 
parameter: 

 33222 ϕ+ϕ=Φ kk  (6)

An estimator of Ф2  can be derived as follows:

 (7a)

 (7b)

The design parameters of estimator (7) are derived using 
the tuning procedure proposed in [10]. For the considered case, 
the following expressions are obtained:

   (8)

where: m11g the upper bound of dФ2/dt; m21g is the upper 
bound of noise ε.

Simulations are carried out using the values of the design 
parameters C1s, C2s, C1g, and C2g calculated by eqs. (4) and (8) 
for estimators (3) and (7), respectively, where m11s=0.35, and 
m21s=1.3, m11g=0.45, and m21g=0.1. The white noise signals, ε, 
simulate measurement noises at standard deviation 5% of the 
mean S and G concentrations. Therefore, the optimal values of 
the design parameters are: C1s opt = 1.23, C2opt = 0.386, C1g opt = 
4.427, C2g =5.

In Fig. 2a and Fig. 2b, a simulation verifi cation of 
estimators (3) and (7) is shown respectively. In Fig. 2, a good 
tracking of Ф^ 1  and Ф^ 1 can be observed, following the trends of 
the “true” values obtained from unstructured model. 

Fig. 2. Simulation verifi cations of glucose production and consumptions rates

Adaptive control design
The adaptive control scheme proposed here for the SSFSE 
process is shown in Fig. 3, where the manipulated variable 
is starch feed rate (F) and the controlled variable is glucose 
concentration (G). It is important to remark that although 
glucose is the “explicit” controlled variable, the real purpose 
of the adaptive control scheme proposed in Fig. 3, is to obtain 
a high ethanol concentration (and at the same time a high 
productivity value), by maintaining a proper value for the 
glucose concentration. 

For increasing the productivity of the process operating 
under fed batch conditions, the main purpose of the control 
strategy proposed in this work, is to stabilize the glucose 
concentration in the equilibrium state observed during batch 
conditions as long as possible. In this way, the process control 
comes down to stabilize the glucose concentration using the 
starch feeding as manipulated variable. Software sensors 
of glucose production and consumption rates are used for 
recognition of this equilibrium state. The difference between 
software sensor’s measurements is defi ned as a marker Δ for 
recognizing the equilibrium state:

 (9)
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Fig. 3. Adaptive Control Scheme.

When the sign of the marker Δ is positive, the glucose 
production is higher than the glucose consumption. The 
negative sign shows the opposite situation. The main purpose 
is to observe the sign of the marker and to stimulate the 
glucose production by starch feeding when the consumption is 
higher. Therefore, the starch has to be added when the marker 
is negative only. The amplitude of the starch feed impulses 
could be calculated by the dynamical equation of glucose 
concentration eq. (7a) (without the last term), assuming zero 
dynamics of the glucose concentration:

 (10)

Investigations of the control scheme (Fig. 3) are realized 
by simulations. The unstructured model proposed in [16, 20] 
is used as the object for control. Simulations of starch and 
glucose concentrations are corrupted by additive noise ε. 
These white noise signals, ε, simulate measurement noises at 
standard deviation 5% of the mean S and G concentrations. 
The ‘estimator’ block develops two tasks: i) it calculates the 
Ф^ 1, Ф

^ 1  values and ii), it estimates the sign of the marker Δ, 
which is used for calculation of the law (10). 

Results and Discussion
The simulation results are shown in Fig. 4 and Fig. 5. In Fig. 
4a and Fig. 4b, the control outputs are presented, in Fig. 4c and 
Fig. 4d – the control marker Δ and the input – starch feed rate, 
are shown respectively. The process starts in batch phase and 
without using the marker (and therefore without control input 
calculation) until glucose reaches an apparent equilibrium state 
(around 20 hours). After that, the calculation of the marker 
starts, but the control is switched on only when the glucose 
production rate starts to decrease, which occurs around 50 h of 
fermentation as can be seen in Fig. 2a. As it is shown in Fig. 
4d, the real starch feeding impulses appear with delay because 
of the estimator error shown in Fig. 2a and Fig. 2b. The control 
input shown in Fig. 4d keeps the glucose concentration close 
to the equilibrium state for more than 100 h. After that, glucose 
concentration increases as can be seen in Fig. 4b. In Fig. 5a, 
a decrease of biomass concentration is observed because of 
the dilution effect due to the fed-batch mode of cultivation. 
At the same time, the concentration of ethanol, shown in Fig. 
5b, increases reaching the highest and constant value around 

250 h of fermentation, which coincides with the time at which 
maximum productivity is reached (Fig. 5c). Until this time, the 
reactor volume is still in an acceptable range (Fig. 5d).

Conclusions
In this paper, an adaptive control strategy for the fed-batch 
SSFSE process is proposed. The process is monitored by 
means of new software sensors for glucose consumption and 
production rates. The difference between the estimated values 
for the consumption and production rates is considered as a 
control marker, which is used i) for switching from batch to fed-
batch phase automatically, and ii) for determining the duration 
and amplitude of the impulses on the starch feed rate. 

The proposed control adaptive algorithm maintains the 
glucose concentration at an equilibrium state during almost 
100 h by feeding starch to the process only when the glucose 
consumption rate is higher than its production rate. This 
guarantees that the ethanol concentration, and therefore the 
productivity, increases constantly as long as the equilibrium 
state for glucose is maintained. The process may be ended 
when the ethanol productivity reaches a maximum and the 
working volume is still in an acceptable range.

The control algorithm is derived on the basis of industrial 
availability of sensors for glucose and starch concentrations. 
Under this assumption, it can be stated that the adaptive 
control scheme proposed for the SSFSE process is suitable for 
industrial applications. 

Fig. 4. Adaptive Control Results: Control Outputs and Inputs

Fig. 5. Adaptive Control Results: Main process variables
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