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ABSTRACT

We use bootstrapping to estimate the bias of concentration estimates on N-body dark matter halos
as a function of particle number. We find that algorithms based on the maximum radial velocity and
radial particle binning tend to overestimate the concentration by 15% — 20% for halos sampled with
200 particles and by 7%-10% for halos sampled with 500 particles. To control this bias at low particle
numbers we propose a new algorithm that estimates halo concentrations based on the integrated mass
profile. The method uses the full particle information without any binning, making it reliable in cases
when low numerical resolution becomes a limitation for other methods. This method reduces the bias
to < 3% for halos sampled with 200-500 particles. The velocity and density methods have to use
halos with at least ~ 4000 particles in order to keep the biases down to the same low level. We also
show that the mass-concentration relationship could be shallower than expected once the biases of the
different concentration measurements are taken into account. These results show that bootstrapping
and the concentration estimates based on the integrated mass profile are valuable tools to probe the

internal structure of dark matter halos in numerical simulations.
Subject headings: Galaxies: halos — Dark matter — Methods: numerical

1. INTRODUCTION

In the current structure formation paradigm the prop-
erties of galaxies are coupled to the evolution of their
dark matter (DM) hosting halo. In this paradigm the
sizes and dynamics of galaxies are driven by the halo
internal DM distribution.

The internal DM distribution in a halo is usually pa-
rameterized through the density profile. In a first approx-
imation this profile is spherically symmetric; the density
only depends on the radial coordinate. One of the most
popular radial parameterizations is the Navarro-Frenk-
White (NFW) profile (Navarro et al|[1997). This pro-
file can be considered as universal (Navarro et al.|2010)),
assuming that one is not interested in the very central
region where galaxy formation takes place, and where
the effects of baryon physics on the DM distribution are
still unknown. This profile is a double power law in ra-
dius, where the transition break happens at the so-called
scale radius, r;. The ratio between the scale radius and
the halo virial radius R, is known as the concentration
c=R,/rs.

The concentration of the NFW profile provides a con-
ceptual framework to study simulated DM halos as a
function of redshift and cosmological parameters. Nu-
merical studies (Neto et al. |2007; Maccio et al.|2008;
Dufty et al.|2008; |Munoz-Cuartas et al.[2011; [Prada et al.
2012; [Ludlow et al.[2014} |2016; Klypin et al.[2016) sum-
marized their results through the mass-concentration re-
lationship; that is, the distribution of concentration val-
ues at a fixed halo mass and redshift. The success of
such numerical experiments rests on a reliable algorithm
to estimate the concentration. Such an algorithm should
provide unbiased results and must be robust when ap-
plied at varying numerical resolution.

There are two established algorithms to estimate the
concentration parameter. The first method takes the

halo particles and bins them into logarithmic radii to
estimate the density in each bin, then it proceeds to fit
the density as a function of the radius. A second method
uses an analytic property of the NF'W profile that relates
the maximum of the ratio of the circular velocity to the
virial velocity, Veire/Vsir- The concentration can be then
found as the root of an algebraic equation dependent on
this maximum value.

The first method is straightforward to apply but
presents two disadvantages. First, it requires a large
number of particles in order to have a proper density es-
timate in each bin. This makes the method robust only
for halos with at least 102 particles. The second problem
is that there is not a way to estimate the optimal radial
bin size, different choices may produce different results
for the concentration.

The second method solves the two problems mentioned
above. It works with low particle numbers and does not
involve data binning. However, it effectively takes into
account only a single data point and discards the rest
of the data. Small fluctuations on the maximum can
yield large perturbations on the estimated concentration
parameter.

In this letter we use bootstrapping to estimate the bias
and standard deviation on the concentration estimates
as a function of particle number. We show that the two
standard methods to estimate concentrations have in-
creasing biases for decreasing particle numbers.

This motivates us to present a third alternative based
on fitting the integrated mass profile. This approach
has two advantages with respect to the above mentioned
methods. It does not involve any data binning and does
not throw away data points. This translates into a robust
estimate even at low resolution/particle numbers. Fur-
thermore, since the method does not require any binning,
there is no need to tune numerical parameters. This is a
new independent method to estimate the concentration
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parameter.

2. BASIC PROPERTIES OF THE NFW DENSITY PROFILE

Let us review first the basic properties of the NF'W
density profile. This shall help us to define our notation.

2.1. Density profile
The NFW density profile can be written as

O
o) = s S

where p. = 3H?/87G is the Universe critical density,
H is the Hubble constant, G the universal gravitational
constant, J. is the halo dimensionless characteristic den-
sity and rs is the scale radius. This radius marks the
point where the logarithmic slope of the density profile
is equal to -2, the transition between the power law scal-
ing poxr~! for r < rs and p oc r=3 for r > r,.

We define the virial radius of a halo, r,, as the bound-
ary of the spherical volume that encloses a density of
Ap, times the mean density of the Universe. The corre-
sponding mass M, the virial mass, can be written as
M, = %ﬁAhrg. From these virial quantities we de-
fine new dimensionless variables for the radius and mass
x=r/r, and m = M(< r)/M,.

In this letter we use Ay = 740, a number roughly cor-
responding to 200 times the critical density at redshift
z=0.

2.2. Integrated mass profile

From these definitions we can compute the total mass
enclosed inside a radius 7:

M(< r) = dmposor’ {m (T“LT) __T } (2)

Tg re+r

or in terms of the dimensionless mass and radius variables
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where

A_ln(1+c)—(cj1), (4)

and the parameter ¢ corresponds to the concentration
C=Ty/Ts.

From this normalization and for later convenience we
define the following function

x
=In(1 — . 5
fla) =t (14a) - () o)
The most interesting feature of Eq. is that the con-
centration is the only free parameter to describe the in-
tegrated mass profile.

2.3. Circular velocity profile

It is also customary to express the mass of the halo in

terms of the circular velocity V., = /GM (< r)/r. From
this we can define a new dimensionless circular velocity
v(< ) = V(< r)/Ve(< 1), using the result in Eq. [3] we
have:

o< I)—\/; [111(1;3;6) xcj—l} ©)

This normalized profile always shows a maximum pro-
vided that the concentration is larger than ¢ > 2. It is
possible to show that for the NFW profile the maximum
is provided by

¢ f(@max)
Tmax f(C) ’

where Zmax = 2.163 (Klypin et al.|2016]) and the function
f(x) corresponds to the definition in Eq. .

max(v(< x)) =

(7)

3. METHODS TO ESTIMATE THE CONCENTRATION
FROM N-BODY SIMULATIONS

3.1. Estimates from the density and velocity profiles

To date, there are two standard methods to estimate
concentrations in DM halos extracted from N-body sim-
ulations. The first method takes all the particles in the
halo and bins them in the logarithm of the radial co-
ordinate from the halo center. Then, it estimates the
density in each logarithmic bin. At this point is possible
to make a direct fit to the density as a function of the ra-
dial coordinate. This method has been broadly used for
more than two decades to study the mass-concentration-
redshift relation of DM halos. A second method uses
the circular velocity profile. It finds the value of x for
which the normalized circular velocity v(< x) shows a
maximum. Using this value it solves numerically for the
corresponding value of the concentration using Eq. .

3.2. Estimate from the integrated mass profile

Here we propose a new method to estimate the concen-
tration. It uses the integrated mass profile defined in Eq.
. We build it from N-body data as follows. First, we
define the center of the halo to be at the position of the
particle with the lowest gravitational potential. Then we
rank the particles by their increasing radial distance from
the center. From this ranked list of ¢ = 1, N particles,
the total mass at a radius r; is M; = ¢ x m,,, where r;
is the position of the i-th particle and m, is the mass
of a single computational particle. We then divide the
enclosed mass M; and the radii r; by their virial values
to finally obtain the dimensionless variables m; and x;.

Using bootstrapping data ( we find that at a given
normalized radius, z, the logarithm of the normalized
integrated mass, m, approximately follows a Gaussian
distribution with variance

1—z1
2

= —. 8
Tz z N (8)

If the integrated mass values at different radii were
independent from each other we could write a likelihood
distribution as £(c|z;) o exp(—x?(c, z;)/2) with

N-1
[logm; — logm(< x;;¢)]?
XQ(C, xz) = Z 2 3 (9)
i=2 i

where 07 = 02(z;), m(< x;;¢) corresponds to the values

in Eq.(3]) at = z; for a given value of the concentration
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F1G. 1.— Left panel. Bias estimated via bootstrapping on the concentration as a function of particle number. Thick (thin) lines correspond
to massive halos in the Bolshoi (Via Lactea) simulation. The density method noticeably overestimates the concentration up to a factor of
20%, while the new method only underestimates the concentrations by less than 3%. Right panel. 1o uncertainties on the bootrsapped
halos (lines) and the MCMC uncertainties on the concentration estimates for each halo using the integrated mass method (circles). Lines
show the width between the 14 and 86 percentiles of the fog distribution at fixed particle number. The lines include the results for the
three methods using Bolshoi data. To allow a fair comparison agains fog, the MCMC uncertainty has been normalized by the preferred

concentration value for each halo.

parameter ¢, and the ¢ index sums over all the particles in
the numerical profile. In this computation the particles
i =1and i = N are discarded to avoid divergent terms
in the sum.

However, tests on the bootstrapping data show that
using 07 = o2(z;), instead of the full inverse covariance
matrix, grossly overestimates x?(c,z;), providing small
uncertainties around the best concentration value. To
avoid the expensive computation and inversion of a full
covariance matrix we use the bootstrapping data to cal-
ibrate an effective 02 &~ 0% (z;).

We impose two conditions on the approximate Jgff. It
must keep the dependence on x that we have discovered
for the diagonal elements and must give similar curves
of x%(c,z;) vs. ¢ around the minimum as the full co-
variance matrix. We found that the effective o%; can be
approximated as

9 1—2 NI
O-eff - 773.
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We then use an Affine Invariant Markov Chain Monte
Carlo (MCMC) implemented in the python module
emcee (Foreman-Mackey et al|2013) to sample the like-
lihood function distribution. From the x? distribution
we find the optimal concentration value and its associ-
ated uncertainty. We stress that different choices for O'SH
do not affect the optimal concentration value, only its
uncertainty.

Run-time is roughly proportional to N. Using a single
2.3Ghz CPU core with two walkers over 500 steps takes
~ 0.5 milliseconds per halo per particle in the halo, i.e.
a halo with N = 2 x 103 can be fit in one second.

4. NUMERICAL SIMULATIONS AND HALO SAMPLES

(10)

We use two different simulations to test our meth-
ods. The first is the Bolshoi run, a cosmological sim-
ulation that follows the non-linear evolution of a DM

density field sampled with 2048 particles over a cubic
box of 250 h~'Mpc on a side. The cosmological pa-
rameters use a Hubble parameter h = 0.73, a matter
density €2, = 0.3071 and a normalization of the power
spectrum og = 0.82. The data is publicly available at
http://www.cosmosim.org/. Details about the struc-
ture of the database and the simulation can be found in
(Klypin et al|2011} Riebe et al.|[2013).

We use the halos located in a cubic sub-volume of 100
h~1Mpc on a side containing a total of 64531 objects.
From this sample we select all the halos at z = 0 de-
tected with a Friends-of-Friends (FoF) algorithm with
more than 300 particles, meaning that the masses are
in the interval 4 x 101° < Mp,r/h~ Mg < 10*. The
FoF algorithm used a linking length of 0.17 times the
mean inter-particle distance. This choice translates into
an overdensity Aj, ~ 400 — 700 dependent on the halo
concentration (More et al|2011)).

From this set of particles we follow the procedure
spelled out in Section [3|with A}, = 740 to select an spher-
ical region that we redefine to be our halo. This choice
makes that the overdensities are fully included inside the
original FoF particle group. On the interest of providing
a fair comparison against the density method we only re-
port results from overdensities with at least 200 particles
(2.6 x 10195~ 1My,).

We also use public data from the Via Lactea simu-
lation project (Diemand et al//2008). This simulation
contains a single isolated halo with a virial mass of the
order of 102~ 1M simulated using the tree code PKD-
GRAV . The simulation had ~ 2 x 10%
particles to resolve this region. The cosmological param-
eters are different from those in the Bolshoi simulation,
with a Hubble parameter h = 0.73, a matter density
Q,, = 0.238 and a normalization of the power spectrum
os = 0.74. The data available to the public corresponds
to a downsampled set of 10° particles, which corresponds
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to a particle mass of 2.24 x 10"h~ M.

5. RESULTS
5.1. Bootstrapping to estimate biases

We take halos with at least 10° particles and subsam-
ple them by factors of 2 up to 103. We measure the
concentration at every resampling. We use a two-sample
Kolmogorov-Smirnov (KS) test to compare the list of ra-
dial distances from each subsample against that of its
parent halo. We find that the resulting p-value distribu-
tion is flat. This confirms that the radial particle distri-
bution in the bootraped halo is consistent with coming
from the distribution given by the parent halo. Why not
using different simulations with the same initial condi-
tions and lower resolutions (i.e. [Springel et al.|2008)?.
Because we want to be sure that we are only measuring
the bias of a given method as a function of particle num-
ber for statistically identical halos, and not a possible
simulation artifact that changes the halo structure.

For every subsample we keep fixed the virial radius and
the center found for the high resolution halo. Leaving the
virial radius and center free in each bootstrapping itera-
tion has an effect smaller than 1% in the concentration.
In the Bolshoi simulation we select 14 massive halos and
create 700 subsamples for each one. For the Via Lactea
simulation the same halo is subsampled 10000 times.

The average concentration value for the largest number
of particles, cy;,,, ., provides a baseline to compare all the
other results. We use the following statistic

foff = CN/CNmam — ]., (11)

to account for the offset between the concentration at a
given downsampled particle number ¢y and the baseline
CNpaw*

Figure [T] summarizes our results. The plot on the left
shows the average value of f,g as a function of particle
number. This can be interpreted as the statistical bias
on the concentration estimate. For large enough particle
numbers, N, > 4 x 103 the results of the three algorithms
show a bias below the 1% level. For a lower number of
particles the results start to deviate. At 200 particles
the velocity method overestimates the concentration by
a factor 14% while the density method overestimates it
by 20%. Around the same sampling scale, the new al-
gorithm shows a more stable behaviour underestimating
the concentration only by a factor of 1%-3%.

The thin lines on the same panel show a fit to the
function N

foff = 4(1 —|—10g10NS)B’

with A = 2842 4+ 1900, B = 7.96 = 0.54; A = 239 + 131,
B =6.23+043 and A =—-0.46+3.49, B=0.79+1.31
for the density, velocity and mass method, respectively.

The right panel in Figure 1| shows different uncertainty
results. The lines show the difference between the 14
and 86 percentiles in the fog distribution at fixed mass.
Each line corresponds to the three different methods to
estimate the concentration applied to both simulations.
This shows that the bootstrapping technique can help us
to assign a lo uncertainty to the concentration values at
a fixed N,as

(12)

A4
g, — 040 (13)

° /N,/200

The circles in the same Figure show the 1o uncertainty
on all the relaxed halos in the Bolshoi simulation sample
using the MCMC results. To allow for a fair compar-
ison with the bootstrapping results, this uncertainty is
normalized to the concentration value. The uncertainty
from the bootstrapping experiment provides an upper
bound uncertainty on the concentration estimate for in-
dividual halos.

5.2. Impact on the Mass-Concentration Relationship

We now inspect the mass-concentration relationship re-
sults with the three different algorithms. This can help
us to identify possible consequences of the biases detected
through the bootstrapping experiments.

Figure 2] shows the mass-concentration relationship for
the density, velocity and integrated mass method. The
left panel shows the results as they are produced by
each of the algorithms. The thin dashed line marks the
trend reported by (Prada et al.|[2012) using the velocity
method, showing that our velocity method implementa-
tion can reproduce their results.

The results from the new algorithm follow very closely
the velocity algorithm at high masses (M, > 1012h~ Mg,
or equivalently for > 4 x 103 particles). For lower masses
there is a difference between the median of the two meth-
ods, but they are still consistent within the statistical
uncertainties.

We hypothesize that the increase in the results for the
velocity and density methods below 4 x 10% particles
comes from the systematic bias described in the previous
section. To test the general consistency of this hypoth-
esis, we correct the concentration values in the velocity
and integrated mass methods by a factor of 1/(1+ foi),
using the definition in Equation and the parameters
obtained from the data presented in Figure (|1)). The cor-
rection brings into good agreement the results between
the velocity /density methods and the new algorithm.

We also notice that the results from the density method
have a systematic 15% offset from the velocity meth-
ods. This offset was already presented by Prada et al.
(2012)) for low concentrations (¢ < 6) and high (M, >
102h~1Mg) halo masses. Recently (Klypin et al.|[2016)
summarized results for the mass-concentration relation-
ship coming from different methods and datasets to show
that similar systematic offsets are present. (Dutton &
Maccio| 2014) studied the mass-concentration relation-
ship using the maximum velocity and density methods
and did not report any significant difference. However,
they implemented a modified version of the velocity al-
gorithm that bins the particle data, which might explain
why they the offset was not reported.

How do these results impact the most recent mass-
concentration estimates? |[Ludlow et al| (2016) and
Klypin et al.| (2016]) estimated the mass-concentration
relation over different suites of cosmological N-body sim-
ulations using the density and velocity methods, re-
spectively. Both used halos with at least 5 x 10% par-
ticles. This imposes a lower halo mass limit of ~
1024~ 'Mg (Figure 8 in Ludlow et al.| (2016), Figure
17 in Klypin et al.| (2016)) to have robust estimates.
This means that their results for individual halos should
not be affected by the bias we report here. This also
leaves open the question about what other methods
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on the bias as a function of particle number.

can robustly say about the flattening we report below
10'2Musing the new method. However, there are other
results at lower masses and higher redshifts (i.e. |Prada
et al.[2012) that should be reconfirmed using higher res-
olution simulations as they use halos with only 500 par-
ticles.

6. CONCLUSIONS

In this letter we used bootstrapping to quantify the
biases on concentration estimates. We found that meth-
ods commonly used in the literature can overestimate the
concentrations by factors of 15%-20% for halos with 200
particles, or 7%-10% for halos with 500 particles. This
procedure provides a robust technique to quantify the
bias in concentration estimates with the advantage that
it works without having to run new simulations.

These results motivated us to introduce a new method
based on the integrated mass profile that show a robust
performance at low particle numbers. The new algorithm
showed a bias of < 3% for halos with 200 particles and
less than 1% for halos with 500 particles or more. To
keep the bias of the velocity and density methods below
2% only halos with at least ~ 4000 particles should be
considered.

The three methods are in broad agreement, within the

statistical uncertainties, concerning their estimates of the
mass-concentration relationship. Some noticeable differ-
ences include a 15% systematically higher concentrations
in the density method compared to the velocity method.
This systematic offset has been reported before with the
same dataset (Prada et al.|2012) and with different simu-
lations (Klypin et al.[2016)) without any conclusive expla-
nation for its origin. Another difference is that the veloc-
ity and integrated mass methods start to differ for masses
below 10124 ~1M, (~ 4000 particles). We found that cor-
recting the mean concentration by the mean bias factor
found through bootstrapping brings these two techniques
into agreement.

These results show that using the integrated mass pro-
file to estimate the DM halo concentrations is a tool de-
serving deeper scrutiny. Further tests with larger simu-
lated volumes, varying numerical resolution, higher red-
shifts, stacked data and different density profiles are the
next natural step to explore the full potential of this new
method.
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