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The fourth industrial revolution (Industry 4.0) has the potential to provide real-time, secure, and autonomous 
manufacturing environments. The Industrial Internet of Things (IIoT) is a powerful tool to make this promise a 
reality because it can provide enhanced wireless connectivity for data collection and processing in interconnected 
plants. Implementing IIoT systems entails using heterogeneous technologies, which collect incomplete, 
unstructured, redundant, and noisy data. This condition raises security flaws and data collection issues that 
affect the data quality of the systems. One effective way to identify poor-quality data is through anomaly 
detection systems, which provide specific information that helps to decide whether a device is malfunctioning, a 
critical event is occurring, or the system’s security is being breached. Using early anomaly detection mechanisms 
prevents the IIoT system from being influenced by anomalies in decision-making. Identifying the origin of the 
anomaly (e.g., event, failure, or attack) supports the user in making effective decisions about handling the data 
or identifying the device that exhibits abnormal behavior. However, implementing anomaly detection systems 
is not easy since various factors must be defined, such as what method to use for the best performance. What 
information must we process to detect and classify anomalies? Which devices have to be monitored to detect 
anomalies? Which device of the IIoT system will be in charge of executing the anomaly detection algorithm? 
Hence, in this paper, we performed a state-of-the-art review, including 99 different articles aiming to identify 
the answer of various authors to these questions. We also highlighted works on IIoT anomaly detection and 
classification, used methods, and open challenges. We found that automatic anomaly classification in IIoT is an 
open research topic, and additional information from the context of the application is rarely used to facilitate 
anomaly detection.
1. Introduction

Internet of Things (IoT) is a paradigm in system design that sup-

plies connectivity to devices to provide intelligent services to system 
users Botta et al. (2016). Industrial Internet of Things (IIoT) applies this 
paradigm to industrial systems Younan et al. (2020). It opens the scene 
to intelligent applications that benefit the development of industrial 
processes Wang et al. (2021a), from monitoring or remote control appli-

cations to early detection of faults or anomalies in the system operation 
Wang et al. (2020b). In this context, anomalies are data collected or 
generated by IIoT devices whose magnitude deviates from the expected 
or predictable value Saurav et al. (2018). Anomalous data can indicate 
that a system is wasting resources, a critical situation occurs in a pro-

cess, or a device exhibits abnormal behavior Fahim and Sillitti (2019). 
Failures, events, or attacks cause these abnormal values DeMedeiros et 
al. (2023), Ghosh et al. (2019), Karkouch et al. (2016). Failures are data 
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generated by faulty or poorly calibrated devices; events are external 
phenomena, incidents, or changes in the application context; attacks, 
in turn, usually breach one or several nodes in the IIoT network, com-

promising the entire system security. Hence, these anomalies must be 
identified and treated to avoid affecting the quality of decisions Kark-

ouch et al. (2016).

Early detection of anomalies in an industrial process is crucial to 
implement decisions based on real-time information, thus reducing 
maintenance costs, minimizing machine downtime, increasing safety, 
and improving product quality Wang et al. (2020b). Different types of 
anomalies have been widely studied separately. However, since they 
coexist in industrial processes, it is necessary to distinguish between 
them (e.g., event, failure, and attack) to reduce consequences, acceler-

ating the attention by addressing the qualified staff in charge to attend 
each specific type of anomaly Tertytchny et al. (2020). For example, 
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events can affect product quality and, therefore, must be handled by the 
production department; failures can lead to process stoppage or cause 
significant damage to machinery. Thus maintenance staff must handle 
these anomalies. Thus, knowing the anomaly source helps to choose the 
right recovery actions to minimize abnormal behavior Tertytchny et al. 
(2020). In contrast, attacks can lead to loss of confidentiality, privacy, 
or integrity of the information and even a system malfunction. The In-

formation Technology (IT) department usually handles these attacks.

However, building a model capable of classifying IIoT anomalies 
is challenging because data are highly unbalanced; data describing an 
anomaly are scarce compared to data related to normal behaviors Sun 
et al. (2020). In addition, predictions must be accurate to avoid false 
alarms, misinterpretations, or overlooking some abnormal behavior. 
Likely, the person who must attend to an abnormal event differs from 
the person who solves a fault or an attack. If the anomaly detection sys-

tem only warns of abnormal behavior without determining its origin, 
additional time and data will be needed to diagnose the anomaly’s cause 
manually. Manual diagnosis of the source of an anomaly implies that 
some people have access to confidential data for determining whether 
the anomaly is an event, a failure, or an attack Langone et al. (2020). 
Human intervention will be necessary to decide who is in charge and 
how to resolve this situation Tertytchny et al. (2020). In contrast, auto-

matic anomaly classification methods restrict the number of personnel 
in contact with critical information from the manufacturing process, 
thus facilitating knowledge protection in digital transformation envi-

ronments with multi-organizational collaborative networks Langone et 
al. (2020).

Differentiating an anomaly’s source without additional device data 
is a complex problem. Nevertheless, IIoT offers an opportunity to have 
redundant application contextual data Moradbeikie et al. (2020). One 
strategy to improve automatic anomaly classification is precisely using 
context information. Alexopoulos et al. (2018) define context as any 
information that characterizes the situation of an entity (i.e., person, 
place, or object). For example, channel or traffic characteristics, qual-

ity of service, environmental data, vibration signals, sound recordings, 
or power consumption patterns may be considered contextual informa-

tion Angelopoulos et al. (2020), Anton et al. (2017), Gai et al. (2017). 
Some techniques for anomaly classification only consider data content 
information (data collected from a system to ensure its routine oper-

ation) without considering the application context. Context awareness 
can help detect spatial, sequential, and temporal correlations between 
devices; as data become increasingly complex, the importance of us-

ing context in anomaly classification increases. Sensors could deliver, 
besides measured variables, data that characterize a device’s spatial or 
temporal location Hayes and Capretz (2014); thus, context information 
allows us to understand the detection methods with unbalanced data 
better Sun et al. (2020).

Anomaly classification uses pattern recognition by extracting statis-

tical information based on prior knowledge. When an anomaly does 
not have a distinct signature, it is detected indirectly because of un-

usual manifested behavior; context information helps train probabilistic 
models for detecting and classifying these anomalies Ehsani-Besheli and 
Zarandi (2017). Therefore, context-based anomaly classification is help-

ful in dynamically changing systems Ehsani-Besheli and Zarandi (2017).

In this work, we performed a review of the state-of-the-art in 
anomaly detection and classification, thus identifying what is being 
done to classify the origin of anomalies and how context information 
helps to achieve this goal. The main contribution of this paper can be 
summarized as follows,

• We performed a literature review to identify works on IIoT 
anomaly detection and classification using statistical, machine 
learning (ML), and deep learning (DL) methods.

• We found that most of the research in this field focuses on detecting 
malicious attacks or anomalies in general. In addition, research that 
2

classifies detected anomalies is rare.
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• We identified some open research topics, such as IIoT anomaly clas-

sification and the incorporation of contextual information in those 
solutions. We identified the level of implementation of the meth-

ods studied by determining the layer of the IIoT system in charge 
of executing the algorithm.

• We analyzed the use of context information in anomaly detection 
systems considering that several authors have highlighted the ben-

efit of its use, as it facilitates the detection of spatial and temporal 
correlation between variables.

This paper is organized as follows. Section 2 discusses related works 
and justifies the need for this literature review. Then, in Section 3, 
some main concepts that will guide the work are defined. Section 5

describes the methodology research and criteria used to analyze the 
different scientific papers selected. Subsequently, Section 5 shows the 
obtained results according to information classification criteria. Finally, 
we highlighted the open challenges for future research and conclusion 
in Sections 6 and 7, respectively.

2. Related works

In this section, we describe different review papers on anomaly de-

tection in industrial environments found in the literature as shown in 
Table 1. De et al. (2022) review deep generative models (DGM) used 
in IIoT. DGM combines the flexibility of deep learning with the infer-

ence power of probabilistic modeling. The authors identify challenges, 
opportunities, and potential research directions in anomaly detection, 
trust boundary protection, network traffic prediction, and platform 
monitoring.

In their systematic mapping, Aranda et al. (2022) study context 
awareness, edge computing, data analysis, and IIoT in smart grids. 
They review some papers that propose machine-learning solutions for 
anomaly detection in smart grids. Fahim and Sillitti (2019) present 
a systematic literature review of abnormal behavior prediction tech-

niques in IoT. The authors analyzed statistical and machine-learning 
methods to identify abnormal behavior in intelligent inhabitant envi-

ronments, transportation systems, health care systems, smart objects, 
and industrial systems. They found research gaps in data collection, 
analysis of unbalanced data sets, and a few research papers on anomaly 
detection in real scenarios. Authors in DeMedeiros et al. (2023), in 
turn, describe how anomaly detection is being performed on Inter-

net of Things and sensor networks. They classify anomaly causes as 
a malicious attack, sensor fault, and significant environmental change 
registered as an abnormal state by the sensor. Still, they need to expand 
on this idea during the report. Also, this survey describes some public 
datasets used to test the anomaly classifiers.

Authors in Angelopoulos et al. (2020) focus on ML-based solutions 
to fault detection, prediction, and prevention in Industry 4.0. They ex-

amine various cloud/fog/edge industrial architectures and their data 
collection and threat detection implications. In Alruwaili (2021), au-

thors study intrusion detection and prevention in IIoT and compare 
different mechanisms used to detect, prevent, and protect IIoT systems 
against various vulnerabilities, threats, and attacks. Finally, authors in 
Zeyu et al. (2020) review the security challenges of edge computing in 
the 5G context, which is a crucial technology to promote a large-scale 
deployment of edge computing. While all the reviewed papers in our 
research discuss anomaly detection results, none address the issue of 
classification of the origin of an anomaly. Hence, in this paper, we pre-

sented a state-of-the-art review on anomaly detection and classification, 
which identifies the use of contextual information on these systems.

3. Background

Different terms in the manufacturing industry have emerged to de-
scribe systems that collect data and decide to act on a physical process 
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Table 1

Related review works in anomaly detection.

Reference Year Short description Context-aware Anomaly detection Anomaly classification

DeMedeiros et al. (2023) 2023 Anomaly detection on the Internet of Things and sensor networks, ✗ ✓ ✗

Aranda et al. (2022) 2022 Context-aware edge computing and IoT in smart grids ✓ ✓ ✗

De et al. (2022) 2022 Deep generative models in IIoT ✗ ✓ ✗

Alruwaili (2021) 2021 Intrusion detection and prevention in Industrial IoT ✗ ✓ ✗

Zeyu et al. (2020) 2020 Edge Computing Security ✗ ✓ ✗

Fahim and Sillitti (2019) 2019 Anomaly detection, analysis and prediction techniques in IoT ✗ ✓ ✗

Angelopoulos et al. (2020) 2019 Tackling faults in the Industry 4.0 ✗ ✓ ✗

This review 2023 Anomaly classification in IIoT ✓ ✓ ✓
through actuators, or to alert a human operator. Boyes et al. (2018) in-

dicate that the most commonly used terms for these systems are Cyber-

Physical Systems (CPS), Operational Technology (OT), and Industrial 
Control Systems (ICS). Authors also consider an overlap between Indus-

try 4.0 and Industrial Internet concepts, which combines technologies 
such as the Internet of Things, cloud computing, and data analytics to 
transform business outcomes. Therefore, before describing how differ-

ent authors detect IIoT anomalies, we considered it essential to define 
the main terms related to the problem we are addressing in this work, 
such as the Industrial Internet of Things, anomaly definition, and con-

text information.

3.1. Industrial Internet of things

IIoT is a “smart objects network that uses generic information tech-

nologies and optional cloud or edge computing platforms, allowing 
them real-time, intelligent, and autonomous access, collection, analysis, 
communications within an industrial environment to optimize overall 
production value” Boyes et al. (2018). IIoT requires high-quality service 
related to determinism, latency, performance, availability, reliability, 
security, and privacy. It does not seek to replace field-level automation 
(i.e., sensors and actuators) but automates monitoring, optimization, 
and prediction tasks that people traditionally perform Sisinni et al. 
(2018). However, this level of connectivity causes some vulnerability 
effects to propagate throughout the industrial plant, where IIoT devices 
share common vulnerabilities with standard IoT devices Hansch et al. 
(2019).

Karkouch et al. (2016) describe some issues compromising data 
quality in IoT systems. Based on that work, we highlighted those aspects 
that apply to industrial settings. For example, communication between 
heterogeneous devices, limited processing and storage resources, inter-

mittent connections and packet loss in IIoT wireless networks, and van-

dalism by disgruntled employees. Environmental conditions in indus-

trial settings can affect device performance. Due to the manufacturing 
process, sensors may lack accuracy, damage from extreme environmen-

tal conditions, lack of calibration, or malfunctions. Another factor that 
can reduce data quality is exposure to electromagnetic noise from mo-

tors and transformers. On the other hand, cyber-attacks compromise 
data privacy, integrity, and availability, and faulty elements can gener-

ate outliers since they keep sending data. However, actions to ensure 
data privacy and processing could reduce data quality Karkouch et al. 
(2016).

3.2. Anomaly as event, attack, or failure

Saurav et al. (2018) define an anomaly as a behavior that is not 
normal. Authors in Ghosh et al. (2019) use the term outlier and describe 
it as an observation (or a subset) that appears inconsistent with the rest 
of the data set. Ghosh et al. (2019), in turn, define the terms event, 
failure, and attack.

• Event: It is a situation that changes the state of the real world, 
such as a natural phenomenon that alters some monitored vari-
3

ables Karkouch et al. (2016): This type of anomaly lasts longer 
than failures and changes the data pattern. It is hard to distinguish 
between event and fault because faulty sensors can also generate 
this error. Thus, spatial correlation is a crucial tool for detecting 
anomalies because data from faulty sensors lack spatial relation-

ships, whereas data measurements from events do possess such 
relationships Ghosh et al. (2019).

• Failure. It refers to data coming from a faulty sensor measurement 
due to a lack of calibration or device malfunction Mohamudally 
and Peermamode-Mohaboob (2018). They occur because of an un-

expected change in data and are different from the rest. These 
errors affect information quality and must be detected and removed 
before using data. Failures can be classified into two categories 
such as transient and permanent. The first type causes an element 
to fail for a specific time, generating random values, and the second 
causes a component to permanently malfunction and continuously 
send erroneous data Moradbeikie et al. (2020).

• Attack: A malicious attack compromises one or more nodes in an 
IIoT network, tricking others into interacting with them and com-

promising the entire network’s security. Wireless communications 
are a primary channel for system intrusions Ghosh et al. (2019).

3.3. Context information

In our review, we differentiated content and context information to 
determine whether an anomaly originated from an event, a failure, or 
a malicious attack. For Alexopoulos et al. (2018), context is any infor-

mation that characterizes the situation of an entity and its interaction 
with a context-aware application. In this work, we referred to content 
information as the data collected from a system to ensure its routine op-

eration. Context information, in turn, is also defined as the additional 
data from an industrial approach to detect or classify anomalies. For 
example, in a water treatment plant, the tank’s level and motor pump’s 
power consumption can be content information, as these data are nec-

essary to operate the system correctly. While surrounding temperature 
and sensor power consumption can be considered context information 
since these data are not required for the plant operation; instead, they 
can help determine whether an anomaly is an event, a failure, or an 
attack.

4. Methodology

This study focuses on understanding anomaly detection in IIoT and 
identifies available solutions to classify anomalies as events, failures, 
or attacks. Also, it is explored how context-aware information has been 
used to improve anomaly detection algorithms. To elaborate this re-

view, we considered the guidelines for conducting systematic mapping 
studies in software engineering by Petersen et al. (2015).

Based on the Petersen guidelines, we defined the following review 
methodology. First, we stated a set of research questions from the main 
objective of this review. Second, a search query is created based on 
the research questions and applied to relevant databases. Third, the re-

trieved papers are filtered by using exclusion criteria. These criteria 
decide which articles were eligible and which were not. After reading 

the abstract, the authors decide whether the article is about “anomaly 
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Fig. 1. Journals and conferences related to IIoT anomaly detection between 2018 and March 2023.
detection in IIoT”. Finally, removing duplicate submissions is a manual 
process that identifies and eliminates duplicate copies of articles in dif-

ferent journal databases. Data obtained from this step is the basis for 
developing this review. Below, we explain each of the steps in detail.

4.1. Research questions

We have defined three research questions for our state-of-the-art 
analysis as described to follow,

• RQ1: Which techniques and methods enable detecting and classify-

ing anomalies in IIoT?

• RQ2: What kind of validation do authors perform for proposed 
strategies?

• RQ3: How does context information improve anomaly detection in 
IIoT?

4.2. Search query and databases

We created the following search query by identifying the main key-

words in the research question:

((“Industrial IoT” OR IIoT OR “Industrial Internet 
of Things”) AND “anomaly detect*”)

Then, this query was applied to four relevant databases in the field, 
such as Springer, Science Direct, ACM, and IEEE.

4.3. Exclusion criteria

We identified peer-reviewed and available online papers describing 
techniques or methods to detect anomalies in IIoT. Still, we excluded 
surveys, systematic reviews, mapping studies, editorials, prefaces, inter-

views, news, correspondences, discussions, comments, readers’ letters, 
panel discussions, poster sessions, abstracts, or books.

4.4. Classification criteria

Following the defined methodology, we used the research questions 
to identify the criteria to extract information from the retrieved papers, 
as shown to follow,

• Criterion 1: Does the work detect events, failures, or attacks? This 
criterion indicates whether a work detects events, failures, attacks, 
or combinations. This information is extracted following the def-

inition of an event, failure, and attack given in the background 
4

Section.
• Criterion 2: Does the work use statistical, machine learning, or deep 
learning methods to detect anomalies? The reviewed papers are di-

vided into three groups: those that primarily use statistical methods 
to detect anomalies, those that use machine learning techniques, 
and those that specifically use deep learning.

• Criterion 3: Does the work diagnose anomaly origin as an event, 
failure, and attack? This criterion determines whether a strategy 
differentiates the anomaly’s origin or not.

• Criterion 4: Does the work use context information? In this review, 
context information is additional data collected from an indus-

trial process for anomaly detection. This criterion aims to identify 
whether a work uses this context information to implement the de-

tection or classification algorithm.

• Criterion 5: Where does the work detect anomalies in the per-

ception, network, or application layer? This criterion indicates 
whether a proposal detects anomalies occurring at the perception, 
network, or application layer of the IIoT system.

• Criterion 6: Which device runs the anomaly detection algorithm 
(node, edge, cloud, or local server)? Each type of device in the IIoT 
network has different constrained resources (e.g., storage, process-

ing, and latency), which limits the possibility of implementing the 
model in real time.

5. Results and discussion

This section presents the results after we applied the above review 
methodology. Fig. 1 shows a summary of the reports found by year. 
After using the exclusion criteria, we selected 99 papers, of which 70 
are journal papers (11 from Springer, 32 from ScienceDirect, and 27 
from IEEE) and 29 conferences (11 from ACM and 18 from IEEE). From 
this figure, we noticed that the number of published papers has been 
growing continuously in the last few years, which indicates that this 
topic has attracted interest from the research community.

We also highlighted the techniques used by different authors to de-

tect anomalies and identified if they detect anomalies in general or 
anomalies of a particular type, such as events, failures, or attacks. 
At the same time, we analyzed the use of contextual information for 
implementing anomaly detectors. Fig. 2 shows an overview of the re-

sults of this report, including the percentage of papers that meet each 
classification criterion. From the 99 articles reviewed, only 8% used 
information considered to be context-aware. Most reports (56.5%) im-

plemented deep learning methods to detect anomalies. The anomaly 
detection is intended mainly for edge devices (48.9%), and the anomaly 
detection system is primarily executed on the edge computing (19%) 
layer. Finally, most papers (58.5%) do not mention where algorithms 

were implemented.
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Fig. 2. Percentage of papers included in this state-of-the-art review that meet each classification criterion described in Section 5.1 (papers classification criteria).
Fig. 3. Histogram of papers performing anomaly detection classified by the 
detection method used and the type of anomaly detected.

To facilitate the detection of research trends, we grouped papers 
according to the anomaly detection methods used (i.e., statistical, ma-

chine learning, or deep learning). We determined if the reports studied 
use information that can be considered context-aware and in which de-

vice the proposed algorithms are executed (i.e., end device, edge, cloud, 
or local server). We identified if the proposed strategy detects events, 
failures, attacks, or a combination. We also analyzed which layer the 
anomaly detection mechanism is implemented (i.e., perception, net-

work, or application). In the following, we present the data extracted 
from the papers, first analyzing the proposed anomaly detection mech-

anism and then classifying the source of the anomaly.

5.1. Anomaly detection

Table 2 presents the papers that detect general anomalies or events, 
failures, and attacks in particular. Attack detection receives the most 
attention from researchers in this field, followed by the detection of 
general anomalies.

Related to the RQ1, “Which techniques and methods make possible 
detecting and classifying anomalies in IIoT?”, Fig. 3 shows the distribu-
5

tion of papers that detects anomalies classified by the detection method 
and the types of anomaly detected. We can see that most of the reports 
(56) use deep learning techniques to detect anomalies. It is worth men-

tioning that many authors combine statistical techniques with Machine 
Learning (ML) or Deep Learning (DL) methods. For example, before 
applying ML or DL method, some authors use Principal Component 
Analysis (PCA) to reduce the number of dimensions based on variable 
correlation De Vita et al. (2020b, 2021), Elnour et al. (2021), Kumar et 
al. (2022), Liu et al. (2019), Shi et al. (2019), Yang et al. (2022b).

Regarding the use of context information (RQ3), according to the 
definition given in the background section of this paper, Fig. 4 shows 
that the largest portion of papers (91 out 99) do not use context infor-

mation, where the analysis is limited to only industrial process data. 
For instance, Hashmat et al. (2022) use a device traffic context identi-

fier to extract information from the vulnerability identification engine. 
The proposal presented in Bodo et al. (2020) records sensing device 
specifications and environmental noise, while Demertzis et al. (2020)

monitors the internal parameters of the device, such as operating tem-

perature, battery status, and operating time. Similarly, in Raposo et 
al. (2019), authors use performance metrics, such as execution time, 
energy counter, and MCU cycles. In Garitano et al. (2019), different 
contextual information is gathered; they measure the time interval be-

tween incoming connections and packet size. The work presented in Shi 
et al. (2019) uses the power consumption of the IIoT device. Authors in 
Peng et al. (2019), in turn, collect geographically relevant and time-

sensitive data, and authors in Ghaeini et al. (2018) include a sensor 
noise model for anomaly detection. The work developed by Hashmat 
et al. (2022) is the only one that uses the term “context”, whereas that 
other works use “metadata” Garitano et al. (2019), “metrics” Raposo et 
al. (2019), or “features” Bodo et al. (2020), Demertzis et al. (2020).

Fig. 5 shows the layer where the algorithm is intended to detect 
anomalies. Most works extract data from the perception layer (47 out 
99), the network layer (44 out 99), or both. A few methods (5) use data 
from the application layer to detect anomalies Peng et al. (2019), Wang 
et al. (2020b).

Regarding the RQ2, “What kind of validation do authors perform 

for proposed strategies?” we found that most of the works only show 
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Table 2

Type of detected anomaly.

Events Failures Attacks

Peng et al. (2019), 
Ouyang et al. (2018)

Ferrari et al. (2019), De Vita et al. (2020a), Liu et al. 
(2020a), De Vita et al. (2020b), Wang et al. (2020b), De 
Vita et al. (2021), Garmaroodi et al. (2020), Rousopoulou et 
al. (2022), Dzaferagic et al. (2021), Kim et al. (2023), 
Çavdar et al. (2023)

Garitano et al. (2019), Anton et al. (2019), Raposo et al. (2018), Li et al. 
(2020b), Liu et al. (2019), Bernieri et al. (2019b), Wang (2020), Al-Hawawreh 
and Sitnikova (2019), Bernieri and Pascucci (2019), Krundyshev and Kalinin 
(2019), Shi et al. (2019), Li et al. (2020a), Bae et al. (2018), Bernieri et al. 
(2019a), Gorbenko and Popov (2020), Garg et al. (2020), Enăchescu et al. 
(2019), Aoudi and Almgren (2020), Tandiya et al. (2018), Wang et al. (2021b), 
Huong et al. (2021), Zhang et al. (2020), Cui et al. (2021), Wang et al. (2021a), 
Hashmat et al. (2022), Khan et al. (2021), Mukherjee (2022), Elnour et al. 
(2021), Cai et al. (2021), Nedeljkovic and Jakovljevic (2022), Seo et al. (2021), 
Weinger et al. (2022), Su et al. (2022), Rey et al. (2022), Friha et al. (2022), 
Kumar et al. (2022), Liu et al. (2022), Yang et al. (2022a), Ghaeini et al. (2018), 
Zugasti et al. (2018), Muna et al. (2018), Schneider and Böttinger (2018), 
Madhawa et al. (2018), Chen et al. (2021), Wangwang et al. (2021), Kozik et al. 
(2021), Kumar et al. (2023), Wang et al. (2021c), Douiba et al. (2023), Halder 
and Newe (2023),

General Anomaly

Raposo et al. (2019), Yang et al. (2020), Park et al. (2020), Razzak et al. (2020), Faisal et al. (2019), Wu et al. (2019), Bodo et al. (2020), He et al. (2020), Demertzis et al. 
(2020), Genge et al. (2019), Al-Hawawreh et al. (2019), Li et al. (2020c), Liu et al. (2020b), Kong et al. (2021), Zhan et al. (2021), Aruquipa and Diaz (2022), Ketonen and 
Blech (2021), Yang et al. (2022b), Liu et al. (2020a), Savic et al. (2021), Wu et al. (2021),

Dang et al. (2021), Wang et al. (2022), Zhou et al. (2020), Kim et al. (2018), Saurav et al. (2018), Ba et al. (2022b), Ba et al. (2022a), Truong et al. (2022), Wang et al. 
(2022), Hu et al. (2022), Pan et al. (2022), Sankaran and Kim (2023), Feng et al. (2022), Nizam et al. (2022)
Fig. 4. Number of papers using context information grouped by the detection 
method.

Fig. 5. Number of papers reporting the layer where the anomaly occurs.

the results of the offline training without reporting the performance of 
the online detection. Sometimes the layer where the algorithm is exe-

cuted is reported. One of the papers reporting the online performance 
is Kumar et al. (2022), which proposes an IoT botnet detection solu-

tion running at a Raspberry Pi as an edge gateway. Huong et al. (2021)

use a Raspberry PI in a federated learning approach to detect cyber-

attacks. Authors in De Vita et al. (2020a) describe a platform for fault 
prediction with ML algorithms running on edge and cloud computing. 
In Demertzis et al. (2020), authors run a deep auto-encoder in the cloud 
and distribute a Blockchain on every device. Authors in De Vita et al. 
(2020b), in turn, use an edge gateway board to support humans in de-
6

tecting mechanical anomalies in a real IIoT testbed (Fig. 6).
Fig. 6. Histogram of papers that reports the IoT layer used to execute the 
anomaly detection algorithm.

5.1.1. Anomaly detection using statistical methods

Various statistical methods have been applied to implement anomaly 
detection systems, such as phase-aware hidden semi-Markov model Cai 
et al. (2021), discrete wavelet transform Dang et al. (2021), fast Fourier 
transform De Vita et al. (2021), swap center metric Gorbenko and 
Popov (2020), singular spectrum analysis Aoudi and Almgren (2020), 
time series correlation with Pearson coefficient Li et al. (2020c), prin-

cipal component analysis Garitano et al. (2019), Markov chains for 
discrete time Faisal et al. (2019), Genge et al. (2019), Bayesian dynamic 
equalization assigning reward and punishment mechanisms to IoT 
nodes Wang et al. (2020a), extended Kalman filter Bernieri and Pascucci 
(2019), deterministic finite automata Bernieri et al. (2019a), Dempster-

Shafer’s “Theory of Evidence” Çavdar et al. (2023), Enăchescu et al. 
(2019), linear dynamic state space models Ghaeini et al. (2018), and 
null space based on stochastic subspace identification methods Zugasti 
et al. (2018).

We reported the information extracted from the selected papers in 
three Tables with a similar format (Tables 3-5). The first column of 
each table shows the paper’s reference, and the second column briefly 
describes the detection strategy. The column identified as anomaly spec-

ifies whether the report detects events, failures, attacks, or any abnor-

mality. The classify column, in turn, indicates whether that research 
identifies anomaly sources. Based on the six criteria cited above, Ta-

ble 3 summarizes the scientific papers using statistical methods to detect 
anomalies. The context-awareness column records report that use addi-

tional information (context information) taken from a process to detect 

anomalies, as well as the detection layer column indicates whether the 
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Table 3

Anomaly detection proposals using statistical methods (E stands for Events, F stands for Failures, and A stands for Attacks).

Reference Anomaly detection strategy Anomaly Classify

(E-F-A)

Context

Aware

Detection

Layer

Execute

Layer

Hashmat et al. (2022) Vulnerability signature formation engine Attacks ✗ ✓ Network -

Aruquipa and Diaz (2022) Bio inspired manufacturing with vibration sensors All ✗ ✗ Device Device

Wang et al. (2022) Correlation between time series through the self-attention mechanism All ✗ ✗ Device -

Zhan et al. (2021) Hierarchical representation for time series anomaly detection All ✗ ✗ Device -

De Vita et al. (2021) Semi-Supervised Bayesian Anomaly Detection Failures ✗ ✗ Device Edge & 
Cloud

Cai et al. (2021) Content-agnostic payload-based anomaly detector Attacks ✗ ✗ Network -

Dang et al. (2021) Discrete Wavelet Transform and Principal Component Analysis All ✗ ✗ Device Local 
server

De Vita et al. (2020a) On board fault prediction by analyzing real time sensor data Failures ✗ ✗ Device Edge & 
Cloud

Gorbenko and Popov (2020) Swap centre metric method Attacks ✗ ✗ Device -

Aoudi and Almgren (2020) Singular spectrum analysis Attacks ✗ ✗ Device -

Li et al. (2020c) Correlation between multivariate time series All ✗ ✗ Device -

Garitano et al. (2019) Monitoring incoming connection patterns on server side Attacks ✗ ✓ Network Local 
server

Faisal et al. (2019) Deep-packet inspection All ✗ ✗ Network -

Wang (2020) Dynamic Bayesian equalization Attacks ✗ ✗ Network -

Bernieri and Pascucci (2019) Extended Kalman Filter (EKF) Attacks ✗ ✗ Device Device

Genge et al. (2019) Hotelling’s T2 statistics and the univariate cumulative sum All ✗ ✗ Device -

Bernieri et al. (2019a) Deterministic Finite Automata Attacks ✗ ✗ Network -

Enăchescu et al. (2019) Dempster-Shafer’s “Theory of Evidence” Attacks ✗ ✗ Device -

Peng et al. (2019) Fuzzy theory Events ✗ ✓ Application Edge & 
Cloud

Ghaeini et al. (2018) Linear Dynamical State-space (LDS) Attacks ✗ ✗ Device Local 
server

Zugasti et al. (2018) Stochastic Subspace Identification Attacks ✗ ✗ Application -

Madhawa et al. (2018) Invariants are formulated by experts Attacks ✗ ✗ Device Device
authors detect anomalies occurring in IIoT devices, networks, or appli-

cation layers. Finally, the execute layer column shows where the authors 
proposed implementing the algorithm.

It can be seen from Table 3 that some authors detect anomalies of 
different origins but without classifying the type of anomaly. For exam-

ple, Garitano et al. (2019) detect (man-in-the-middle) attacks, sensor 
failures, and communication problems by examining the contribution 
of each variable to an abnormal event. However, their proposal does 
not automatically detect the source of the anomaly, limiting the func-

tionality to generate an alarm for a human operator who diagnoses 
whether it is a plant event, a communication event, or an attack. The 
authors include data from physical and network variables in their de-

tection method, which could be considered context information, called 
“metadata”.

Ghaeini et al. (2018) present an approach intended to detect any 
anomaly, although they focus only on malicious attack detection. While 
authors in Hashmat et al. (2022) propose an automated context-aware 
anomaly assessment rule-set framework based on vulnerability signa-

tures. This method uses a cumulative sum of residuals on historical 
system data to detect stealthily changing variables, where noise pat-

terns in sensors (e.g., sensor accuracy level or water movement in a 
tank) can be considered context information for this proposal.

5.1.2. Anomaly detection using machine learning techniques

We identified several machine learning methods used to detect 
anomalies, such as support vector machine Garmaroodi et al. (2020), 
Kumar et al. (2022), Razzak et al. (2020), Rousopoulou et al. (2022), 
k-nearest neighbors Shi et al. (2019), Yang et al. (2020), decision 
trees Ahakonye et al. (2023b), Bodo et al. (2020), Kumar et al. (2022), 
optimized gradient boosting decision tree Cui et al. (2021), Douiba et 
al. (2023), isolation forest Elnour et al. (2021), Yang et al. (2022b), and 
spatial density-based clustering of applications with noise Garg et al. 
(2020).

Table 4 summarizes information extracted from the papers using 
machine learning techniques to detect anomalies. This Table identifies 
several proposals that detect anomalies of different natures without 
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diagnosing the origin. Authors in Raposo et al. (2019) use metrics 
from a specific microcontroller brand to detect firmware and hard-

ware anomalies (buffer overflow attacks, SPI failures, voltage drops, 
and high-temperature failures). However, it assumes that attacks cause 
all anomalies. In this case, metrics delivered by the microcontroller unit 
(execution time, energy counter, microcontroller unit cycles) could be 
considered context information.

Bodo et al. (2020) use decision trees to determine whether data 
correspond to an anomaly. Although they do not determine the ori-

gin of an anomaly, this strategy could detect whether data are labeled 
appropriately. The authors use specifications from detection devices, 
environmental noise, and available processing resources to support de-

tecting an anomaly, which could be considered context information.

Another work presented in Shi et al. (2019) uses the power con-

sumption of an IoT device to detect anomalies. In this case, a device’s 
power consumption could be considered context information. The re-

port in He et al. (2020), in turn, identifies anomalies by comparing 
suspicious data, from a specific sensor, against data from other sensors 
recording similar variables. However, they do not determine whether it 
is a fault, an attack, or an event in the application context. On the other 
hand, authors in Ahakonye et al. (2023a), Douiba et al. (2023) classify 
the specific type of attack using decision trees.

5.1.3. Anomaly detection using deep neural networks

Neural networks are used in most papers for anomaly detection. 
The most common models used are Convolutional Neural Networks 
(CNN) Liu et al. (2022), Nedeljkovic and Jakovljevic (2022), Seo et 
al. (2021), Recurrent Neural Networks (RNN) Park et al. (2020), Wang 
et al. (2020b), bidirectional long and short-term memory (LSTM) Kong 
et al. (2021), Li et al. (2020a), Wang et al. (2021b), Wu et al. (2019), 
variational autoencoders Al-Hawawreh and Sitnikova (2019), Bernieri 
et al. (2019b), Huong et al. (2021), Savic et al. (2021), CNN-LSTM Liu 
et al. (2020b), Khan et al. (2021), Mukherjee (2022), and Transform-

ers Ba et al. (2022b), Chen et al. (2021), Kim et al. (2023), Kozik et al. 
(2021), Kumar et al. (2022), Truong et al. (2022).

Table 5 presents papers proposing anomaly detection using Deep 
Learning techniques. Some works use neural networks as multilabel 

classifier Al-Hawawreh et al. (2019), Çavdar et al. (2023), Mukher-
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Table 4

Anomaly detection proposals using machine learning methods (E stands for Events, F stands for Failures, and A stands for Attacks).

Reference Anomaly detection strategy Anomaly Classify

(E-F-A)

Context

Aware

Detection

Layer

Execute

Layer

Ahakonye et al. (2023a) Decision tree and Chi-square for feature selection Attacks ✓* ✗ Network -

Douiba et al. (2023) Decision tree and gradient boosting Attacks ✓* ✗ Network Local 
server

Yang et al. (2022b) Detect data distribution change in time and train the new model All ✗ ✗ Device -

Rousopoulou et al. (2022) Generic platform for anomaly detection Failures ✗ ✗ Device Cloud

Su et al. (2022) Machine-learning tree-based methods Attacks ✗ ✗ Network -

Rey et al. (2022) Autoencoder in federated learning Attacks ✗ ✗ Device Edge

Kumar et al. (2022) Botnet detection using network-edge traffic Attacks ✗ ✗ Network Edge

Garmaroodi et al. (2020) Data mining Failures ✗ ✗ Device Edge

Cui et al. (2021) Margin synthetic minority oversampling technique for unbalanced data Attacks ✗ ✗ Network Edge

Elnour et al. (2021) data-driven attack detection using Isolation Forest Attacks ✗ ✗ Device -

Yang et al. (2020) Secure vector homomorphic encryption scheme All ✗ ✗ Device Cloud

Razzak et al. (2020) Randomized nonlinear one-class support vector machine All ✗ ✗ Device -

Bodo et al. (2020) Feature selection method based on hierarchical feature ranking All ✗ ✓ Device -

He et al. (2020) Decision triggered data transmission and collection protocol All ✗ ✗ Device -

Garg et al. (2020) Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Attacks ✗ ✗ Network -

Zhang et al. (2020) Maximum correlation minimum redundancy feature selection algorithm Attacks ✗ ✗ Network -

Anton et al. (2019) Matrix Profiles detect attacks that occur multiple times Attacks ✗ ✗ Network -

Raposo et al. (2019) Use on-node metrics available in hardware All ✗ ✓ Device -

Raposo et al. (2018) One Class Support Vector Machine Attacks ✗ ✓ Network Edge

Shi et al. (2019) Extract statistical and spectral features Attacks ✗ ✓ Network -

Ouyang et al. (2018) Multi-view learning based ensemble learning solution Events ✗ ✗ Device Cloud

Methods marked with * classify anomalies but without identifying the three kinds of anomalies defined in this review.
jee (2022), Park et al. (2020), Sankaran and Kim (2023), Saurav et al. 
(2018), Wang et al. (2020a, 2020c). For example, authors in Çavdar et 
al. (2023) combine one-dimensional convolution neural networks and 
the Dempster–Shafer decision fusion method to detect and classify some 
specific failures types, and authors in Sankaran and Kim (2023) use a 
robust multi-cascaded convolutional neural networks (CNN) classifica-

tion approach to distinguish between Sybil and DoS attacks. The deep 
neural network architecture developed by Mukherjee (2022) incorpo-

rates inherent convolutional neural networks, which act as a multi-label 
classifier to determine the intrusion points of attacks. The work pre-

sented in Dzaferagic et al. (2021) trains a multi-class fault classification 
auto-encoder using sensor measurements collected during faulty oper-

ation. The work presented in Wang et al. (2020b) uses RNN to detect 
anomalies and provides insights into the timestep at which an anomaly 
occurred. This system assists a human operator, which in turn, locates 
the source of a problem. Whereas authors in Çavdar et al. (2023), 
Sankaran and Kim (2023) classify the specific type of attack o failure, 
respectively.

Several authors tackle the issue of dealing with many features and 
data in an IoT context. Working with big data in real-time anomaly de-

tection systems presents several challenges because of the constrained 
resources of memory and processing power of edge devices and the high 
latency of cloud computing processing. Regarding neural network mod-

els, some works use long short-term memory (LSTM) to leverage spatial 
and temporal correlation on abnormal detection Ferrari et al. (2019), Li 
et al. (2020a), Wu et al. (2019). Some results use Principal Components 
Analysis (PCA) to reduce the dimensions in a dataset before training a 
neural network De Vita et al. (2020b), Liu et al. (2019). Other papers 
use auto-encoder networks and only train models with normal operat-

ing data, which avoids dealing with rare anomalous data in an industrial 
system Kim et al. (2018), Muna et al. (2018), Schneider and Böttinger 
(2018).

Another solution to take advantage of IIoT characteristics is the 
federated learning technique, which is used for training and detecting 
anomalies in a distributed way Liu et al. (2020a), Wang et al. (2021a). 
In the last two years, modified versions of Transformer and the atten-

tion mechanism Vaswani et al. (2017) have gained momentum in the 
field of anomaly detection Ba et al. (2022b), Chen et al. (2021), Kim 
et al. (2023), Kozik et al. (2021), Kumar et al. (2022), Truong et al. 
(2022), some authors use graph-CNN for feature selection and trans-
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formers for anomaly detection Ba et al. (2022a, 2022b), Chen et al. 
(2021), other works use auto-encoders based on transformers for the 
same task Truong et al. (2022), Wang et al. (2022). In addition, transfer 
learning with a variational graph auto-encoder is used in a trajectory 
anomaly detection strategy Hu et al. (2022). Proposals in this section 
neither perform automatic classification of the anomaly origin as an 
event, attack, or failure nor identify information that could be consid-

ered context information.

5.2. Classification of events, failures, and attacks

It is hard to differentiate between various anomalies in industrial 
control systems because their effects are similar. However, this task 
might be possible with the benefits of IIoT, as it allows collecting a 
large amount of data from the environment through sensors Wang et al. 
(2021a). Differentiating anomalies is necessary to select an appropriate 
action in component reconfiguration, estimate a level of propagation 
in the system, and avoid bad reactions that can worsen the system 
state. Due to strict real-time requirements in industrial systems, it is 
imperative to reduce response times to attend to an anomaly in critical 
infrastructure. That is why fast and accurate detection and classification 
of anomalies are important Moradbeikie et al. (2020).

Several authors have contributed to detecting events, failures, or 
attacks in IIoT systems. Some reports detect general anomalies, while 
others focus on a particular type of anomaly. We have found that most 
of the works analyzed in this review focus on malicious attack detection, 
a smaller percentage detects faults in IIoT systems, and an even smaller 
portion detects events occurring in the application context, as shown 
in Fig. 2. In the scope of our review, we could not find any work that 
classifies events, failures, and attacks with the same algorithm.

Analyzing and differentiating the anomaly source is crucial since all 
these anomalies coexist in the industrial system. The above allows the 
system operator to choose appropriate recovery actions to counteract 
the abnormal behavior. Traditionally, fault diagnosis is based on the 
operator’s experience. Nevertheless, systems are becoming increasingly 
complex and interconnected. Hence, it is necessary to add automatic 
diagnostic functions to avoid relying on the availability of trained oper-

ators Tertytchny et al. (2020).

Some reports perform a dual task. On the one hand, they classify 
the data generated by the IoT system as normal or abnormal. On the 
other hand, they classify the specific type of attack. Authors in Abu 

Al-Haija and Zein-Sabatto (2020) propose an approach to detect and 
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Table 5

Anomaly detection proposals using deep learning methods (E stands for Events, F stands for Failures, and A stands for Attacks).

Reference Anomaly detection strategy Anomaly Classify

(E-F-A)

Context

Aware

Detection

Layer

Execute

Layer

Sankaran and Kim (2023) Multi-cascaded CNN classification Attacks ✓* ✗ Network -

Çavdar et al. (2023) 1D convolution neural networks and the Dempster–Shafer Failures ✓* ✗ Device -

Halder and Newe (2023) Federated learning with GRU Attacks ✗ ✗ Network Local 
server

Kumar et al. (2023) An adaptive transformer model for anomaly detection Attacks ✗ ✗ Network -

Kim et al. (2023) Stacked Transformer representations and 1D Convolutional network Failures ✗ ✗ Application -

Ba et al. (2022b) Automated Configuration of Heterogeneous Graph Neural Networks All ✗ ✗ Device -

Ba et al. (2022a) Transformer-based Graph Convolutional Neural Networks All ✗ ✗ Network -

Truong et al. (2022) Light-weight federated learning-based anomaly detection All ✗ ✗ Device Edge

Hu et al. (2022) Transfer Learning based Trajectory Anomaly Detection All ✗ ✗ Device Edge

Pan et al. (2022) Dual masked self-attention mechanism All ✗ ✗ Device -

Feng et al. (2022) A full graph autoencoder All ✗ ✗ Device -

Nizam et al. (2022) Convolutional neural network and a two-stage LSTM based 
Autoencoder

All ✗ ✗ Device -

Mukherjee (2022) Deep learning models to determine the exact intrusion points in 
real-time

Attacks ✗ ✗ Device -

Nedeljkovic and Jakovljevic (2022) Method for calculating the hyper parameters of CNN to detect 
cyber-attacks

Attacks ✗ ✗ Network Device

Weinger et al. (2022) Data augmentation in federated learning for anomaly detection All ✗ ✗ Device Edge

Friha et al. (2022) Federated learning-based decentralized intrusion detection system Attacks ✗ ✗ Network Edge

Liu et al. (2022) DDoS detection with information entropy analysis Attacks ✗ ✗ Network -

Yang et al. (2022a) One-class broad learning system Attacks ✗ ✗ Network -

Chen et al. (2021) Learning Graph Structures With Transformer Attacks ✗ ✗ Device -

Wangwang et al. (2021) Network Traffic Oriented Malware Detection Attacks ✗ ✗ Network -

Kozik et al. (2021) A hybrid time window embedding with transformer-based traffic data 
classification

Attacks ✗ ✗ Network -

Wang et al. (2021a) Hierarchical Federated Learning Attacks ✗ ✗ Device -

Wang et al. (2021b) Unknown attack Identification using spatial-temporal features Attacks ✗ ✗ Network -

Huong et al. (2021) VAE-LSTM model on edge devices Attacks ✗ ✗ Device Edge

Kong et al. (2021) Generative adversarial networks All ✗ ✗ Network -

Wang et al. (2021a) Federated deep reinforcement Learning Attacks ✗ ✗ Network -

Khan et al. (2021) Temporal and spatial features for the classification and explanation 
attacks

Attacks ✗ ✗ Network -

Ketonen and Blech (2021) Probabilistic Deep Learning All ✗ ✗ Device -

Liu et al. (2020a) Attention Mechanism-Based CNN Unit and LSTM Unit All ✗ ✗ Device Edge

Savic et al. (2021) Autoencoder in edge device All ✗ ✗ Device Edge

Seo et al. (2021) Acoustic-Based Anomaly Detection Attacks ✗ ✗ Device Edge

Dzaferagic et al. (2021) Generative Adversarial Networks to generate missing sensor 
measurements

Failures ✗ ✗ Device -

Wu et al. (2021) Graph Neural Networks All ✗ ✗ Device Edge & 
Cloud

Zhou et al. (2020) LSTM to mitigate dimensional reduction in unbalanced data All ✗ ✗ Network -

Li et al. (2020b) multi-CNN fusion Attacks ✗ ✗ Network -

Park et al. (2020) Setting boundaries based on cosine similarity in network packets All ✗ ✗ Network -

Wu et al. (2019) LSTM with Bayesian and Gaussian Processing All ✗ ✗ Device -

Li et al. (2020a) Bidirectional long and short-term memory (B-LSTM) Attacks ✗ ✗ Network Local 
server

Liu et al. (2020a) On-device collaborative deep anomaly detection Failures ✗ ✗ Device Edge

Demertzis et al. (2020) Blockchained deep learning smart contracts All ✗ ✓ Application Cloud

De Vita et al. (2020b) DeepAutoencoder and PCA blocks Failures ✗ ✗ Device Edge & 
Cloud

Liu et al. (2020b) Federated Learning to collaboratively train a Deep Anomaly Detection All ✗ ✗ Device Edge

Wang et al. (2020b) Recurrent neural networks Failures ✗ ✗ Device Edge

Ferrari et al. (2019) Compare LSTM on edge and cloud Failures ✗ ✗ Device Edge & 
Cloud

Liu et al. (2019) Gated Recurrent Unit (GRU) and Support Vector Domain Description Attacks ✗ ✗ Network -

Bernieri et al. (2019b) Variational Autoencoders(VAE) Attacks ✗ ✗ Network -

Al-Hawawreh and Sitnikova (2019) Variational Auto-Encoder learns the latent structure of system 
activities

Attacks ✗ ✗ Network -

Krundyshev and Kalinin (2019) Determining the normal (legitimate) activity of nodes Attacks ✗ ✗ Network -

Bae et al. (2018) Autoencoder with invasion scoring Attacks ✗ ✗ Network -

Al-Hawawreh et al. (2019) Sparse and denoising autoencoder All ✗ ✗ Network Local 
server

Kim et al. (2018) Squeezed Convolutional Variational AutoEncoder All ✗ ✗ Device Edge

Saurav et al. (2018) Recurrent Neural Networks Recurrent Units (GRU) All ✗ ✗ Network -

Muna et al. (2018) Deep Auto-Encoder (DAE) Attacks ✗ ✗ Network Cloud

Schneider and Böttinger (2018) Stacked denoising autoencoder Attacks ✗ ✗ Network Edge

Tandiya et al. (2018) Frequency-domain data are transformed in 2D image Attacks ✗ ✗ Network Edge
9

Methods marked with * classify anomalies but without identifying the three kinds of anomalies defined in this review.
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classify cyber-attacks in IoT communication networks NSL-KDD dataset, 
using convolutional neural networks running in a Compute Unified De-

vice Architecture (CUDA) based on Nvidia GPUs (Graphical Processing 
Units). In Abu Al-Haija and Al-Dala’ien (2022) authors classify botnet 
attacks in N-BaIoT2021 dataset, using four machine-learning-based de-

cision tree models: AdaBoosted, RUSBoosted, bagged, and their ensem-

ble learning model. Likewise, Abu Al-Haija et al. (2022) use AdaBoost 
machine learning algorithms combined with Decision Trees to classify 
some attacks in an IIoT dataset, such as DoS, DDoS, MitM, backdoor, 
and injection. Whereas, Albulayhi et al. (2022) analyze how feature se-

lection increases detection accuracy and speed training phase. They test 
their proposed classifying between Mirai, DoS, Scan, MAS (MitM-ARP 
Spoofing) attacks, and normal operation.

Other proposals differentiate between physical failures and cyber-

attacks in Cyber-Physical Systems (CPS). The authors in Tertytchny 
et al. (2020) study the problem of distinguishing between component 
failures and attacks on the communication network in a power-aware 
intelligent home system, analyzing the correlation between failures 
and attacks and providing a framework. Authors consider that a nor-

mal state occurs when all variables are within the expected limits (no 
failures) and the nodes are connected to a central node (no attacks). 
However, this research shows that if the effects of failures and attacks 
are similar, they cannot be differentiated for their framework.

Authors in Moradbeikie et al. (2020) propose to classify sensor 
anomalies into four categories such as stealth attacks, random attacks, 
temporary failures, and permanent failures, and then automatically re-

configure the system to react to an anomaly. The proposal has three 
components such as risk detection (comparing the received values with 
a threshold outside of which it is classified as abnormal), risk analysis 
(calculates the probability for each type of risk and its level of damage 
according to a propagation of the risk, taking into account that the mea-

sured variables follow physical laws) and system reconfiguration (if a 
group of damage is above a tolerance threshold, the system reacts). The 
solution requires a deep knowledge of the system to determine the dif-

ferent states it takes, and the time it remains in each one Moradbeikie 
et al. (2020). Notice that even though this proposal defines four cate-

gories, it does not classify among events. Another work is presented in 
Miciolino et al. (2017), where authors propose a system to detect physi-

cal failures and cyber-attacks in critical infrastructure; for this, they use 
a testbed that simulates a water plant with highly nonlinear variables 
and very slow dynamics. With the data collected by a SCADA system, 
the authors investigate how the monitoring modules react to different 
physical and cyber problems while also analyzing cross effects. First, 
normal system behavior data and statistical trends of the water level 
in each tank are collected. Incoming data is compared with expected 
data; the information is considered abnormal if the difference exceeds 
a threshold value. To differentiate between failure and attack, the re-

searchers assume that physical failures influence the variable related to 
the component involved. In contrast, attacks can be reflected in differ-

ent system behaviors.

6. Open challenges

Although detecting anomalies in IIoT are a widely discussed topic, 
implementing these algorithms in IIoT devices are still an open issue. 
Designing a real-time online anomaly detection system on an end- or 
edge device is still challenging because of the limitations that impose 
the constrained resources of these platforms, which restrain the amount 
of data available and the algorithm’s complexity. Real-time cloud so-

lutions present other challenges. For instance, the exhaustive use of 
bandwidth, which is not always available on IoT devices, and the high 
latency of the communication link, affect real-time constraints. The 
main questions are: how to implement a real-time anomaly detector 
using a constrained IIoT device? What are the most appropriate ML or 
10

DL methods to deploy at the edge of the cloud?
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Another exciting result of this review is that automatically classify-

ing anomalies as events, failures, or attacks remains an open research 
subject. This classification is crucial to address the anomaly to the cor-

rect department in the industry, enhancing the response times and the 
efficiency of the process. The production department handles events, 
maintenance staff solves failures, and the IT department counters at-

tacks. Some interesting questions around this topic are: What makes 
failures, events, or malicious attacks statistically different? What is the 
signature of each of these types of anomaly? How to do spatial and tem-

poral correlation help to differentiate the origin of an anomaly? How 
much labeled abnormal data suffices to train a classification model? 
Which device could execute the classification algorithm?

Context awareness can help detect spatial, sequential, and tempo-

ral attributes between devices and better characterize the current state 
of devices. Although some authors have stated that context informa-

tion helps implement anomaly detection and classification, there are 
few systems using it already. We found that automatic anomaly clas-

sification in IIoT is an open research topic, and additional information 
from the application context is rarely used to facilitate anomaly detec-

tion. Finding data sets incorporating variables describing the applica-

tion context is also challenging. Some essential questions are: how does 
context information help to detect and classify IIoT anomalies? Does 
the improvement in anomaly classifier performance justify the cost of 
recording and processing additional context variables?

Finally, new labeled data sets are needed to advance in implement-

ing statistical and machine-learning techniques for detecting and clas-

sifying various anomalies. It is necessary to have datasets, including 
network data and data from physical variables collected by sensors, 
adequately labeled as normal, event, fault, or attack. Here are some 
questions that need to be answered: how complex an IIoT testbed shall 
be to collect a dataset for classifying anomalies? Is it possible to gener-

ate these datasets through simulated IIoT environments? Can a desktop 
or online application create simulations to obtain these datasets?

7. Conclusion

This paper reviewed the state-of-the-art for anomaly detection and 
classification systems in the Industrial IoT. We studied 99 articles in 
the literature from 2018 to 2023. We defined criteria for analyzing the 
papers, including the method’s ability to detect or classify anomalies 
and the layer in which the detection/classification is performed and 
executed.

According to our results, automatic diagnosis of the anomaly ori-

gin is still an open research topic. Several authors use statistical and 
machine-learning techniques to detect anomalies. However, we found a 
few reports that classify the source of an anomaly as a fault or an attack. 
In addition, none of the papers consider event classification; they need 
to address its definition. We also identified the scarce use of data that 
can be regarded as context information to help detect spatial, sequen-

tial, and temporal attributes among IIoT variables and improve anomaly 
detection.

As a prospectus for future research, our aim is to delve deeper 
into particular facets of anomaly classification, primarily concerning 
the implementation of a real-time anomaly detector using a limited 
IIoT device. In addition, we aspire to identify the factors that differ-

entiate failures, events, and attacks statistically, the role of contextual 
information in identifying and categorizing IIoT anomalies, and the 
development of an IIoT testbed to collect datasets for the purpose of 
classifying anomalies.
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