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The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial as-
sumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes
(MinimumNorm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in
terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In
this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic
and practical guide. The aim is to promote and help standardise the development and consolidation of other
schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping
(SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example.
We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-knownMinimum Norm
and LORETAmodels, using the negative variational Free energy for model comparison. Themanuscript is accom-
panied by Matlab scripts to allow the reader to test and explore the underlying algorithm.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

Introduction

In this technical note, we revisit the algorithmic procedures required
for source reconstruction of EEG andMEG.Wewill take a pragmatic and
algorithmic approach and focus on a particular function within the SPM
software (Litvak et al., 2011) that implements Bayesianmodel inversion
and transformations necessary for source reconstruction. This is a
multi-function routine that performs: (i) a projection on spatial and
temporal subspaces, (ii) model inversion and (iii) ensuing estimation
of themaximum a posteriori cortical source estimates.We focus on sin-
gle subject source reconstruction (although the routine can handle
multi-modal data frommultiple subjects), as a vehicle to link themath-
ematical concepts with their implementation and show how they can
be unpacked in terms of Matlab pseudo-code. Our aim is to provide an
operational understanding of the reconstruction scheme so that the
reader can change various parameters and examine the resulting effects
on source reconstruction results. Our focus is more on the algorithmic
architecture and implementation, rather than on providing a compre-
hensive survey of the underlying theory. Having said this, we make

every effort to motivate each step of the scheme in terms of its theoret-
ical principles.

InMEG/EEG source reconstruction based on the Bayesian framework,
we briefly review the basic linear model upon which source reconstruc-
tion is based. We will see that the key ingredient is the specification of
the prior covariance of source activity. This prior covariance accommo-
dates the basic distinctions between commonly employed regularisation
schemes in the source reconstruction literature, and is generalised by the
use ofmultiple and sparse spatial priors. In Pre-processing stage, we start
with a brief review of the necessary pre-processing components required
for the inversion. We will cover the specification of both spatial and
temporal modes in channel space and how these are used to finesse the
estimation of parameters controlling the prior covariance above. In
Inversion scheme we turn to the inversion routine itself. We survey the
different approaches to optimising the prior covariance parameters
and how their form relates to different prior assumptions about the
distribution of cortical activity.

Having established the overall structure of the scheme, in Simulation
example we present some illustrative examples showing how one can
manipulate various parameters to change the data features that are
reconstructed. Some of these parameters can be specified as arguments
or inputs to the routine, whereas others (such as the number of sparse
prior components) can be changed by modifying the code. We first
demonstrate how to produce synthetic data with a known source
geometry and then illustrate the differences between solutions based
on the prior covariance models implicit in the Minimum Norm,
LORETA-like, and sparse priors inversion schemes.
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These simulations are not meant to be exhaustive explorations of
prior models but are used to illustrate how the readers can reproduce
the results that follow to optimise the scheme for their own work. The
simulated dataset and results presented in this paper are available in
the Supplementary material or via the SPM website.

MEG/EEG source reconstruction based on the Bayesian framework

The rawMEG and EEG data can be regarded as sets of waveforms or
scalp topographies that change over time. When attempting to recon-
struct the neural activity producing these topographies, one usually
assumes that they are generated by a set of discrete brain sources.
Each of these sources is formed by a group of neurons (around 104)
whose membrane potentials fluctuate synchronously over a certain
time scale. The signal generated by such a group of neurons can be
represented by a current dipole that gives rise to an electrical potential
difference on the scalp or generates magnetic fields measurable outside
the head.

There are two dominant frameworks for M/EEG neural source activ-
ity reconstruction: (i) Assume a small number of active sources and fit
to the data using a non-linear search throughout the brain (Supek and
Aine, 1993). (ii) Use a large number of fixed dipoles that fill the search
space (the grey matter surface for example) and estimate their ampli-
tude (Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 1984). The
first (few sources) approach is powerful but severely compromised by
the emergence of local extrema in the objective function as the number
of sources increases. The second (distributed) approach has the ad-
vantage that the model is linear with respect to neuronal currents,
but the large number of unknowns creates an ill-posed problem
that can only be solved by including prior information (see Baillet
et al., 2001; Grech et al., 2008; Michel et al., 2004; Pascual-Marqui,
1999 for reviews on the field). In the recent years, major efforts
have been devoted to distributed solutions because they are linear
and independent of the number and characteristics of activated re-
gions. Furthermore, using strategies to reduce the noise and search
space size, distributed solutions have become robust and computa-
tionally feasible.

Distributed neural source activity reconstruction

The distributed solution is based on the linearmapping between the
dipole moments for a fixed set of dipoles distributed inside the brain
and a set of signals recorded by electrodes/gradiometers placed outside
the head. This relation is given by Dale and Sereno (1993):

Y ¼ LJ þ � ð1Þ

where the MEG/EEG dataset Y∈RNc×Nn is formed by Nc sensors and
Nn time samples, and the neural source activity J∈RNd×Nn is repre-
sented by the amplitude of Nd current dipoles distributed through
the cortical surface — generally, with fixed orientations perpendicu-
lar to the surface. The data and sources are related through the gain
matrix L (also known as the lead field matrix), and the measure-
ments are affected by zero mean Gaussian noise � with covariance:
cov(�) = Q�.

The selection of a distributed approach (Nd ≫ Nc) means that the
lead field matrix L is non-invertible, and that the source estimates Ĵ
cannot be recovered directly. This problem can be solved within the
Bayesian framework by assuming a priori that J is a zero mean Gaussian
process with covariance: cov( J) = Q. The representation of the MEG/
EEG inverse problem within the Bayesian framework has been widely
studied (Auranen et al., 2005; Baillet and Garnero, 1997; Phillips et al.,
1997; Sato et al., 2004; Schmidt et al., 1999; Trujillo-Barreto et al.,
2004; Wipf and Nagarajan, 2009). Within this framework, source esti-
mates can be expressed as the expected value of the posterior distribu-
tion of the source activity given the data: Ĵ ¼ E p JjYð Þ½ �. This estimate can

be computed using Bayes' theorem to define p( J|Y) in terms of known
distributions:

p JjYð Þ ¼ p Y j Jð Þp Jð Þ
p Yð Þ : ð2Þ

Here the evidence p(Y) can be neglected, because it is a constant
value for a given dataset:

p JjYð Þ∝ p Y j Jð Þp Jð Þ ð3Þ

In other words, the objective is to obtain the current source distribu-
tion J based on the dataset Y, where the prior probability of the source
activity p(J), is whatwe expect before observing the data. The likelihood
p(Y | J), gives us the probability of the data for a given source activity p
Yj Jð Þ ¼ N LJ;Q �ð Þ, withN �ð Þ themultivariate Gaussian probability distri-
bution. Given that the prior and likelihood are Gaussian, the right hand
side of Eq. (3) can be expressed as:

p Y j Jð Þp Jð Þ∝Θ ¼ exp −1
2

LJ−Yð ÞTQ−1
� LJ−Yð Þ−1

2
JTQ−1 J

� �
ð4Þ

where (·)T denotes the transpose operator. The optimal value of source
activity is the value that minimises Θ, which is equivalent to finding the
source activity where the gradient of log(Θ) is zero:

d logΘð Þ
dJ

���
J¼ Ĵ

¼ 0 ¼ −LTQ−1
� L Ĵ−Y
� �

−Q−1̂J ð5Þ

gives Ĵ (Dale and Sereno, 1993):

Ĵ ¼ QLT Q � þ LQLT
� �−1

Y: ð6Þ

This is the canonical equation used in all distributed source recon-
struction algorithms based on Gaussian assumptions (see Liu et al.,
2002, Appendix, for other approaches to obtain this equation). Since
the data Y are known – and the lead fields can be computed based on
a physical model of the head – one only requires estimates of the sensor
and source level covariances to compute the source currents J with a
single algebraic step.

So the problem of finding a distributed solution reduces to finding a
good estimate of the two covariance matrices Q , and Q � (Baillet and
Garnero, 1997; Phillips et al., 1997, 2005). This is the main objective of
the steps described below. To render the estimation of the source
covariance matrix more computationally efficient, this estimation is
preceded by several data reduction steps.

Selection of the prior covariance components

The accuracy of the reconstructed image of source activity is
highly dependent on the constraints implicit in the form of Q and
Q� used in Eq. (6). In absence of information about noise over sen-
sors, one generally assumes a sensor noise covariance matrix of
the form: Q � ¼ h0INc , where INc ∈RNc�Nc is an identity matrix, and
h0 is the sensor noise variance. That is, the amount of noise variance
is the same on all sensors (uniformity). This covariance parameter
can also be viewed as a regularisation parameter (Golub et al.,
1979; Hansen, 2000) or hyperparameter (Phillips et al., 2002b).
Prior information about sensor noise can also be based on empty
room recordings — and some estimate of empirical noise covariance
can enter as an additional covariance component at the sensor level
(Henson et al., 2011).

Single covariance matrix based approaches
There are multiple constraints that can be used as prior source

covariance matrix Q . The simplest (Minimum Norm) assumption about
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the sources is that all dipoles have approximately the same prior variance
and no covariance (Hämäläinen and Ilmoniemi, 1984):

Q ¼ h0INd
: ð7Þ

Another assumption is to consider that the sources vary smoothly
over space — as assumed in the LORETA model (Pascual-Marqui,
1999; Pascual-Marqui et al., 1994). One such smoothing function was
proposed in Harrison et al. (2007): a Green's function based on a
graph Laplacian was computed using the vertices and faces provided
from a cortical surface mesh (derived from a structural MRI). The graph
Laplacian GL ∈RNd�Nd is based on an adjacency matrix A∈RNd�Nd ,
with Aij ¼ 1 if there is face connectivity (maximum six neighbours for
each voxel), and zero otherwise. The graph Laplacian is then defined as:

GLij
¼ −

XNd

k¼1

Aik ; for i ¼ j;withAi� the i‐throwofA
Aij ; for i≠ j

:

8><>: ð8Þ

Note that the sum of each column of GL is zero. Finally, Green's func-
tion QG ∈RNd�Nd is defined as:

QG ¼ eσGL ð9Þ

with σ a positive constant value that determines the smoothness of the
current distribution or spatial extent of the activated regions. A LORETA-
like solution can be obtained by using Green's function Q = h0QG In
other words, replacing the identity matrix of the Minimum Norm
solution with a smooth prior covariance component.

As superficial sources in M/EEG have a much larger impact on the
sensors than deeper ones, both Minimum Norm and LORETA tend to
produce solutions with a superficial bias (as these solutions can explain
most of the data with the least source power). There have been several
modifications to these algorithms to correct for this bias by means of
column weighting (Fuchs et al., 1999; Hauk, 2004; Ioannides et al.,
1990; Lin et al., 2006) or normalisation by noise (Dale et al., 2000;
Pascual-Marqui, 2002) but we do not consider them here.

The assumption that all the dipoles are active at the same time tends
to make the final solution smooth but also renders it sensitive to ex-
ternal artefacts (i.e., there will be a tendency to explain artefacts in
the source space). An alternative approach known as beamforming
(Hillebrand et al., 2005; Sekihara et al., 1999; Van Veen et al., 1997) ac-
tively attempts to remove smoothness (or covariance) from the solution;
these algorithms have excellent robustness to noise but suffer when
there is true source covariance. In this case,Q is a diagonalmatrix formed
from a direct projection of the data (covariance matrix) into the source
space (Belardinelli et al., 2012).

Multiple Sparse Priors
The classical approaches above can be generalisedwithin the Bayesian

framework, by considering the prior source covariance as the weighted
sumofmultiple prior components:C ¼ C1;…;CNq

� �
, commonly known

as Empirical Bayes (see Wipf and Nagarajan, 2009 for a review on its
treatment in source reconstruction):

Q ¼
XNq

i¼1

hiCi: ð10Þ

Here, each Ci ∈RNd�Nd is a prior source covariance matrix, and can
take any form. For simplicity we consider the case where prior compo-
nent corresponds to a single potentially activated region of cortex. The
hyperparameters h ¼ h1;…;hNq

� �
weight these covariance components.

Regions with large hyperparameters will have large prior variances. Note
that these componentsmay embody different types of informative priors,
e.g., different smoothing functions, medical knowledge, fMRI priors

(Henson et al., 2011). The choice of the set of prior components C used
in Eq. (10) determines the sets of prior assumptions that define the
model; and specific forms of C can be used to emulate standard source re-
construction approaches. For the Minimum Norm solution, for example,
the set is just one identity matrix: C ¼ INd

, and for the LORETA-like solu-
tion it will be a smoothed version C = QG.

In the absence of prior information, the most inclusive set C
should have the same number of components as there are dipoles
distributed through the source space (around 8000). However, this
(over-complete) set precludes beliefs or constraints on source activity:
the number of components usually considered is of the same order as
the number of channels (b500). As we know a-priori that neuronal cur-
rent flow has some local coherence, we model the basic unit of current
flow as a spatially smooth impulse (Green's) function at selected verti-
ces on the cortical surface. The size and the number of the ensuing
patches can be defined based on prior knowledge (López et al.,
2012a). Current implementations are based on fixed sets of patches.
For example, the SPM software package uses a set of Nq = 512 patches
covering the entire cortical surface (Fig. 1(b)), the centres of these
patches are a sparse sample of the original set of dipoles used to form
the lead field matrix (Fig. 1(a) shows a set of Nd = 8196 dipoles for
the “normal” grid in SPM). Fig. 1(c) shows different sizes of patches
obtained with different values of σ in Eq. (9); i.e., they can be modified
if there is prior knowledge about the size or location of the region of
neural activity.

Rather than each covariance component corresponding to a single
patch, this set can then be supplemented by a further Nd / 2 covariance
components; in which patches in opposite hemispheres are correlated.

The priors for different inversion schemes are summarised in Fig. 2.
The Minimum Norm prior is an identity matrix (Fig. 2(a)), while the
LORETA prior is based on a fixed smoothing function that couples near-
by sources (Fig. 2(b)). Finally, MSP is based on a library of hundreds
of covariance components, each corresponding to a different locally
smooth focal region (or patch) of cortex. Figs. 2(c) and (d) show two
possible covariance components, corresponding to two distinct cortical
patches. After the optimisation process (reviewed in the following sec-
tion) the prior covariancematrixQ of theMSPwill be formed by a linear
mixture of covariance components from this library of priors.

Exogenous source priors
If there is prior knowledge that activity is restricted to a volume of

interest, the dipoles outside this volume can bemasked and the solution
will be forced to be inside the specified volume. However this procedure
can lead to errors as all data, regardless of origin, will be explained by
activity in this volume. An alternative and preferred approach is to use
a soft constraint by creating extra components in the set C that specify
sources inside the volume of interest. For example, when functional
MRI (fMRI) data are available, regional activations can be included as
extra components in C, translating the fMRI information into candidate
MSP patches within the library (see Henson et al., 2010). These must
be soft constraints as one cannot assume that volume showing fMRI
responses will necessarily contribute to MEG/EEG data. Note that in-
corporating prior knowledge in this way does not bias the estimate
of source activity — rather it allows the estimate to take non-zero
values.

Pre-processing stage

The source reconstruction scheme implemented in SPM allows
group-based inversions with multiple modalities (MEG and/or EEG,
see Litvak and Friston, 2008), but to simplify things, wewill restrict our-
selves to a single subject and a single modality (MEG).

Before source estimation, several stages are required to prepare the
data for the inversion. Principally, this involves data reduction to in-
crease effective SNR anddecrease the computational burden on the sub-
sequent optimisation.
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Spatial projector

Here, the sensor space is transformed to a subset of orthogonal
sensors (or spatial modes) with a singular value decomposition (SVD)
over the lead field matrix (Gener and Williamson, 1998; Phillips et al.,
2002a). The problem with using the original number of sensors is that
there is some redundancy of information due to the high correlations
between nearby sensors; this redundancy adds unnecessarily to the
computational load. The use of a spatial projection over sensor space fi-
nesses these problems by generating a new set of orthogonal sensors.
For example, Fig. 5(a) shows the singular values of a lead field matrix
with Nm = 274 sensors, illustrating that only the few spatial modes
could actually be generated by the lead field.

This procedure starts by selecting the lead field matrix and re-
ducing it into the space of singular values: USVT = LLT N e−16,
where U ∈RNc�Nm is the transformation matrix from the sensor space
to the space of the Nm ≤ Nc largest singular values (spatial modes larger
than e−16), that forms the spatial projector, so that the newdata becomes
AY, with A = UT. Finally the gain matrix is projected into the new sensor
sub-space:

L ¼ AL: ð11Þ

Typically this orthogonal set comprises the first 100 eigenmodes for
274 sensors.

Temporal projector

The inclusion of temporal data reduction helps to reduce noise,
and guarantees a continuous temporal evolution of the estimated
brain activity. Again the temporal domain data is transformed into
a sub-space of its principal singular components or temporal modes
(Phillips et al., 2002a). Being orthogonal, each component can be
regarded as an independent waveform. Effectively, this allows the
joint inversion of a small number of “instantaneous” forward problems,
where the data are summarised by the spatial patterns generating the
temporal modes.

Applying the spatial projector
EEG/MEG data typically contains several minutes of recordings,

separated into trials and conditions that we will assume have
been averaged to produce the dataset Y. This averaging by itself re-
sults in significant noise reduction, but the sensors still share a
large amount of information. This redundancy can be reduced by
projecting the dataset into Nm orthogonal virtual sensors using the
spatial projector:

eY ¼ AY: ð12Þ

In this case we define our source space based on a cortical manifold
(and its constituent lead fields) but other elegant approaches (Taulu
and Kajola, 2005) have used Maxwells equations to define the signal
subspace within the head volume.

Computation of the temporal projector
In computing the temporal projector one can suppress signals

at early and late peri-stimulus time to accentuate event related

(a) Set of Nd  = 8196 current dipoles (b) Centres of a set of Nq = 512
covariance components (patches)

(c) Examples of patches with different
sizes

Fig. 1. Glass brain showing sagittal, axial and coronal views of the vertex and patch centres. (a) The sources of neural activity are limited to this set of current dipoles distributed over the
cortical surface. (b) Each dot represents the centre of an MSP patch. (c) The parameter of the Green's function controls the size of the focal regions.
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(a) Minimum norm (b) LORETA-like

(c) MSP 1 (d) MSP 2

Fig. 2.Priors for different inversion schemes. (a)MinimumNormsolution doesnot include
spatially structured prior information. (b) LORETA-like is based on a smoother, coupling
each dipole with its nearest neighbours. (c) and (d) MSP is based on a set of covariance
components, each with a different possible location (here two examples).
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(or induced) responses, using a Hanning window W ∈RNn�Nn to
compute the data covariance over time bins:

fW ¼ WT eYTeY� �
W: ð13Þ

Then, a discrete cosine transform (DCT) is used to filter the data
using a transformation matrix K ∈RNn�N f where K contains DCT coeffi-
cients corresponding to the frequency window of interest:

eK ¼ KTfWK: ð14Þ

If there are multiple modalities a normalisation is performed to re-
move scaling differences (see Henson et al., 2009), and the filtered
datasets of all modalities are averaged into a single eK ∈RN f�N f matrix.
At this point the main diagonal of eK contains the main frequencies pres-
ent in the data as shown in Fig. 5(b), where a pure sinusoid signal of
22 Hz can be observed.

Applying a SVD over the filtered data covariance: eUeSeVT ¼ eK N e−8 ,
gives Nr orthogonal temporal modes. The temporal projector P ∈RNn�Nr

is then obtained with:

P ¼ W eU: ð15Þ

Aswith the spatial projector, the temporal projector is an orthogonal
basis set that is used to perform a linear transformation. In this case the
model reduction is considerably higher (from thousands of time bins to
around Nr = 16 temporal modes in SPM).

Data (and model) reduction

Both spatial and temporal data reductions are simple to implement.
For the spatial projector it is only necessary to change the lead field
matrix with L from Eq. (11). The temporal projector is applied directly
to the data, which is in turn reduced to the space of orthogonal sensors:

Y ¼ AYP ð16Þ

withY∈RNm�Nr . Note that all themathematical formalism in this paper
can be equally portrayed usingL andY instead of L and Y. For simplicity,
the original notationwill be retained; however, all the simulation exam-
ples were performed using the reduced forms.

Inversion scheme

In this section, the model specific (Minimum Norm—IID, LORETA,
LOR, and Multiple Sparse Priors—MSP) covariance components are
used to provide an empirically optimised weighted mixture Q matrix.
This estimated source covariance matrix enters the final optimisation
stage (along with the sensor level covariance matrix) to estimate the
current density Ĵ, using Eq. (6).

Optimisation over averaged data

For any set of covariance components C, the optimisation is based
on a standard “Variational Laplace” scheme with the negative varia-
tional Free energy (henceforth “Free energy”) as the objective func-
tion (Friston et al., 2008). Variational Laplace is an approximate
Bayesian inference scheme that assumes that the posterior is Gaussian
(the Laplace assumption). The objective is to obtain the set of hyper-
parameters that maximise the evidence for the data (or Free energy).
The resulting hyperparameters will be used to form the prior source
covariance matrix Q in a second inversion stage.

This implementation is made computationally feasible by using
the (reduced) sensor rather than source level covariance matrix (see
Appendix A for a full derivation of this equation):

Σ ¼ Q � þ LQLT ð17Þ

where Q � is the sensor noise covariance. This definition allows us to
project the source covariance components into the (typically more
compact) sensor space. Now, given a set of arbitrary source covariance
components Ci and sensor noise covariance Q �, the sensor covariance
can be modelled as:

Σ ¼ eλ0Q � þ
XNq

i¼1

eλi LCiL
T
; ð18Þ

the change of variable hi ¼ eλi guarantees positive values, a convex op-
timisation, and Gaussian assumptions on the prior of hyperparameters
(Friston et al., 2008; Wipf and Nagarajan, 2009).

There are two advantages of using Σ instead of Q for optimising the
hyperparameters: the size of thematrices is significantly reduced due to
the projection into the sensor space, and the inclusion of the noise
variance into the equation allows the regularisation parameter to be
treated as another hyperparameter.

Free energy as an objective or cost function
For the linear Gaussian models underlying source reconstruction,

the model evidence p(Y) (see Eq. (2)) is well approximated by the
variational Free energy (Friston et al., 2007b; Penny, 2012; Wipf and
Nagarajan, 2009). The Free energy is used as the cost function to
fit the modelled covariance (determined by the hyperparameters λ in
Eq. (18)) to the data covariance: ΣY ¼ 1

Nt
YYT . The Free energy can be

expressed as Friston et al. (2007b):

F ¼ −Nn

2
tr ΣYΣ

−1
� �

−Nn

2
log Σj j−NnNc

2
log2π

−1
2

λ̂−ν
� �T

Π λ̂−ν
� �

þ 1
2
log ΣλΠj j

ð19Þ

where | · | is the matrix determinant operator. Here, we consider
the prior: q(λ), and approximate posterior: p(λ), densities of the
hyperparameters as Gaussian:

q λð Þ ¼ N λ;ν;Π−1
� �

p λð Þ ¼ N λ; λ̂;Σλ

� �
: ð20Þ

Each term of the Free energy can be expressed in words as follows:

F ¼ − Model
error

	 

− Sizeof model

covariance

	 

− Numof data

samples

	 

− Error in

hyperparameters

	 

þ Error incovariance

of hyperparameters

	 

:

The Free energy can be divided into accuracy and complexity
(Penny, 2012). The accuracy is given by the model error, the size of
the model based covariance Σ, and the number of data samples.
The complexity is the key difference between the Free energy and
other Bayesian approaches (Wipf andNagarajan, 2009). The complexity
acts as a penalty term and defines the “distance” between the prior and
posterior hyperparameter means and covariances.

The optimal combination of hyperparameters is achieved for the
maximum Free energy value: λ̂ ¼ argmaxλ F , where the Free energy
approximates the log evidence. Themaximumof this function can be lo-
catedwith a gradient ascent,which is based on the gradient andHessian
of the Free energy (Friston et al., 2008). The gradient is calculated as the
derivative of Eq. (19) with respect to the hyperparameters:

∂F
∂λi

¼ −Nn

2
tr Di ΣY−Σð Þð Þ−Πii λ−νð Þ ð21Þ

with

Di ¼
∂Σ−1

∂λi
¼ eλiΣ−1CiΣ

−1 ð22Þ
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and its curvature is obtained with the derivative of the gradient:

∂2 F
∂λi∂λ j

¼ −Nn

2
tr DiCiDiC j

� �
−Πii: ð23Þ

This gradient ascent is known as the Newton non-linear search algo-
rithm (see Grippo et al., 1989 and the references therein)— an efficient
minimisation approach for high dimensional problems.

Variational Laplace
Variational Laplace (VL) is an iterative optimisation process

based on variational Bayes and generalises things like Restricted
Maximum Likelihood (ReML) and Expectation–Maximization (by in-
cluding hyperpriors on the hyperparameters). Its objective is to obtain
the combination of hyperparameters λ that maximise Free energy, by
following its gradient at a rate that is determined by its Hessian —

with Eqs. (21) and (23) respectively. The VL optimisation proceeds as
follows:

1. For the k-th iteration, compute the model based sample covariance
matrix Σ(k) with Eq. (18). The hyperparameters can be initialized
with zero values for the first iteration — if there are no informative
hyperpriors.

2. Compute the gradient of the Free energy with Eq. (21) for each
hyperparameter. In absence of informative hyperpriors use: v = 0,
Π≈ 0INq , with INq a Nq × Nq identity matrix.

3. Compute the curvature of the Free energy with Eq. (23) for each
hyperparameter.

4. Update the hyperparameters:

λ kð Þ
i ¼ λ k−1ð Þ

i þ Δλi ð24Þ

where the variation on each parameter Δλi is computed with a Fisher
scoring over the Free energy variation

Δλi ¼ − ∂2 F
∂λi∂λ j

 !−1 ∂F
∂λi

: ð25Þ

5. Eliminate those hyperparameters near to zero, and (implicitly) their
corresponding covariance component.

6. Update the Free energy variation

ΔF ¼ ∂F
∂λΔλ: ð26Þ

Finish if the variation is less than a given tolerance (here ΔF b 0.01).
Otherwise go back to step 1.

Variational Laplace enables us to estimate the most likely value of
the hyperparameters associated with each of the multiple prior covari-
ance components (or patches), but this does not afford a sparse solu-
tion. In other words, we have not yet implemented the prior belief
that only a small number of “patches” will be active at any one time. It
is at this point that the full variational scheme comes into play. This is
because we can implement the sparsity assumption by eliminating
silent patches by optimising hyperpriors — namely, priors that can
shrink the covariance hyperparameters to zero. If a hyperparameter is
zero the patch can have no variance and is effectively eliminated. The
problem now is to find the hyperpriors that maximise model evidence
or Free energy. This is essentially a model selection problem, because
each set of hyperpriors (combination of patches with zero and nonzero
hyperpriors) represents a differentmodel. This model selection can also
be viewed as optimisation of the hyperpriors, because both maximise
variational Free energy. SPM model selection uses two schemes: An

Automatic Relevance Determination (ARD) and a Greedy Search (GS)
over the Multiple Sparse Priors, optimised for sparse patterns.

Finally, the source estimation is obtained by using another round of
VL to weight the source covariance estimates produced by these two
subsidiary optimisation stages. We will now look at this part of the
optimisation more closely:

The search for optimal priors
The goal now is to find the optimal mixture of prior covariance com-

ponents C, that optimises the model evidence (or Free energy). There
are many possible schemes to do this, the most computationally inten-
sive (and impractical) being the sequential testing of all possible combi-
nations of prior covariance components. The two schemes, ARD and GS,
used in SPM are both deterministic schemes that use different com-
putational strategies to simplify this high dimensional problem. In
brief, both schemes use informative hyperpriors that ensure that
most of the hyperparameters shrink to zero — thereby producing a
sparse solution in source space. The ARD scheme does this by itera-
tively optimising Free energy in a bottom up fashion (removing re-
dundant hyperparameters), while the GS uses a top-down strategy
(creating new hyperparameters by partitioning the covariance compo-
nent set). Instead of working with the original covariance component
matrices, the computations are made more efficient by encoding covari-
ance components in termsof their eigenvectors, that can be stacked into a
single largematrixQ∈RNd�Nq (as opposed to an array or list of matrices),
with each column of Q being the main diagonal of its corresponding co-
variance component Ci (in these approaches only diagonal covariance
components are allowed).

The ARD scheme exploits efficient matrix computation in Matlab to
optimise all Nq hyperparameters (wrt Free energy) simultaneously
through a gradient descent — removing hyperparameters that
fall below some (small) threshold. In contrast the GS algorithm reduces
the dimensionality of the problem by optimisingmixtures of covariance
components and then splitting these mixtures until the Free energy
ceases to increase.

Automatic relevance determination. The main objective of the ARD ap-
proach is to avoid the computation of the gradient and curvature of
the Free energy for each hyperparameter (Eqs. (21) and (23)),
which accounts for the greatest computational cost. To achieve this,
ARD performs a projection that allowsmatrix computations to optimise
the hyperparameters. This is implemented using a stacked matrix Q .
With this stacked matrix Q , it is possible to obtain the gradient of
the Free energy with respect to all hyperparameters with a single
computation:

dF
dλ

¼ −1
2
diag eλ

� �
QT Σ−1ΣYΣ

−1−Σ−1
� �

Q ð27Þ

with diag(x) a diagonal matrix with the vector x on its main diagonal.
In similar way the curvature of the Free energy can be computed:

d2 F
dλ2 ¼ diag eλ

� �
QΣ−1Q
� �T � QΣ−1Q

� �� �
diag eλ

� �
: ð28Þ

Just by replacing Eqs. (21) and (23)with Eqs. (27) and (28), the ARD
approach allows one to optimise large sets of hyperparameters without
the use of “for” loops, considerably reducing the computation time.

Greedy search
In contrast to ARD, the Greedy Search performs a single-to-many

optimisation of hyperparameters (Friston et al., 2007a). It is initialized
by including all covariance components in the stacked matrix Q . It
then prunes this matrix iteratively by removing columns of Q that do
not contribute to the solution.
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Before going into the GS algorithm in depth, let us define the set of
up to Ng diagonal matrices G ¼ G1;G2;…;GNg

� �
that will be used to

switch on or off the columns of Q that model the original covariance
components. Each Gi ∈RNq�Nq is generated with ones on the diagonal
values corresponding to active components. This setwill growwith iter-
ations, but it will be initialised with the identity matrix: G1 ¼ INq , indi-
cating that all the components are equally feasible at the beginning.
The main idea of the GS algorithm is to apply VL with relatively few
hyperparameters (Ng ≪ Nq) while allowing for a larger number of
covariance components C.

The following is the iterative algorithm performed for the GS
optimisation:

1. For the k-th iteration solve the inverse problem in the space of Nq co-
variance components. First compute the reduced source covariance
matrix:

ΣGS ¼ Q � þ
Xk
i¼1

eβi LQGiQ
TLT ð29Þ

with β the new set of hyperparameters computed with VL. Then ob-
tain the source reconstruction in the space of covariance components:

ĴQ ¼
Xk
i¼1

eβi Gi

 !
QTLTΣ−1

GS Y ð30Þ

where the set of neural sources in the space of covariance components
is ĴQ ∈RNq�Nr .

2 Select the most active dipoles in ĴQ and create a new Gk + 1 matrix
with ones on the corresponding diagonal elements; by switching
off the least active dipoles. Eliminating one half of the dipoles
seems to provide a reasonable trade-off between speed and efficien-
cy, although other proportions could be entertained.

3 Go back to Step 1 until the log evidence converges.

When the GS optimisation is complete, it is possible to recover the
source space estimates with:

Ĵ ¼ Q ĴQ : ð31Þ

In summary, ARD takes the set of all possible priors and prunes
them until convergence, while GS splits and prunes mixtures of

these priors. Both ARD and GS are based on the same prior informa-
tion and ideally should provide the solutions; however, given the di-
mensionality of the problem, the two searches may get stuck in local
maxima. For this reason, solving the problem with two search
schemes provides a more robust solution. An example of how ARD
and GS prune the covariance components over iterations is shown
in Fig. 3.

Fig. 3(a) shows the evolution of the hyperparameters across the
iterations of the ARD reconstruction of two sources (this example
is reduced to 30 components). In ARD there is one hyperparameter
per covariance component. Initially (iteration 1) all components
are equally likely. After each iteration, those hyperparameters (one
per component) close to zero are removed. At the end of the iterative
process only those covariance components corresponding to active
hyperparameters (in this case components 21 and 24) are used to
reconstruct the sources.

Fig. 3(b) shows the corresponding evolution of the selected compo-
nents over 4 iterations of the GS source reconstruction for the same
data. After each iteration, a new hyperparameter is added and the
new set of components is scored and pruned. The first set (encoded
by the G matrix) just contains the identity matrix, indicating that at
the beginning, all covariance components are equally probable. In this
example hyperparameters 1 and 2 were eliminated by the algorithm
and so, the final solution was produced using combinations of priors
determined by hyperparameters 3 and 4 (i.e., prior components 21
and 24).

Final optimisation

In the SPM implementation of MSP, a second inversion is performed
using the prior covariance matrices produced by the GS and ARD
searches. This adds some robustness in the event that either determin-
istic search got stuck in a local maximum. In this second inversion the
ARD, GS and sensor noise covariances are mixed using VL, and the
resulting single covariance matrix is used to get the posterior mean
and variance of the current density:

eJ ¼ QLT Q � þ LQLT
� �−1

Y ð32Þ

eQ ¼ LTQ−1
� Lþ Q−1

� �−1 ð33Þ

(a) ARD optimisation of hyperparam-
eters

(b) GS optimisation of hyperparame-
ters

Fig. 3. ARD and GS optimisations for a set of 30 dipoles or patches. Active components are coloured in white: (a) For ARD, each patch has a covariance component has an associated
hyperparameter and these are pruned as the search evolves. Note that at iteration 1 all patches are considered but by iteration 20 all but two have been eliminated. (b) The Greedy search
is based on a singlematrix inwhich each column defines a covariance component in terms of combinations ormixtures of patches. At each iteration, a new component is created (with the
most active patches) and this component has its own associated hyperparameter. That is, in contrast to panel (a) (ARD) in which there is a hyperparameter for every patch, in panel
(b) (GS) each iteration produces a different combination of patches and it is these combinations that are weighted by the hyperparameters.
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where eQ is the estimated posterior covariance over source space. The
temporal responses in source space can be recoveredwith the temporal
projector:

Ĵ ¼ eJPT
: ð34Þ

Simulation example

Tohelp understand the different inversion approaches implemented
in the SPM software,1 we have developed a simulation example that can
be downloaded from the SPMweb page— and run to obtain the results
presented below.

A single trial dataset of Nn = 161 samples over Nc = 274MEG sen-
sors was generated from the neural source distribution shown in
Fig. 4(a). These sources consisted of two synchronous lateral sinusoidal
signals of 20 Hz. Noisewas added to the data usingwhite randomnoise,
where the signal-to-noise ratio was: SNR = 10log10|var(Y)/var(noise)|.
Both sources were focal Gaussian sources (on a cortical mesh), with
a spatial extent of approximately 10 mm. Fig. 4(b) shows the data col-
lected by sensor MLP56 with and without noise. The head model used
for simulations is the canonical model provided with the SPM software
package, it consists in a Single shell head model (Nolte, 2003). The
source model consisted of a canonical cortical mesh (Mattout et al.,
2007) of Nd = 8196 dipoles distributed over the cortical surface (see
Fig. 1(a)), each with fixed perpendicular orientation; computed follow-
ing the procedure described in Phillips et al. (2002a). The same head
and source models were used to simulate data and solve the inverse
problem (although this needs not be the case, see López et al., 2012b).
The glass brains (maximum intensity projections) in Fig. 4 show the
frontal, lateral and superior views of the 512 sources with the highest
variance during the time window of interest.

Pre-processing stage

The synthetic dataset generated for this example is based on a single
subject with a single (averaged) trial. In the spatial projector stage, the
sensor space was reduced to Nm = 103 spatial modes (Fig. 5(a)).

In this case Nr = 16 temporal modes were selected, accounting
84.56% of the total variance present in the data. Fig. 5(b) shows an

image of eK computedwith Eq. (14), which is the basis set of the tempo-
ral projector.

Inversion scheme

This reduced dataset Y∈R103�16 was generated and used as a
benchmark to compare a number of inversion schemes:

Using suboptimal priors
In order to demonstrate the sensitivity of the inversion to the correct

prior assumptions, we first consider the case of reconstructing data sim-
ulated with MSP priors using Minimum Norm or LORETA assumptions.
Note that this is not a comparison of different algorithms, simply a
demonstration that using sub-optimal prior assumptions will result in
sub-optimal source reconstruction. In this case we simulate sources
consistent with MSP assumptions (above) and try and reconstruct
using alternative (MinimumNormand LORETA)prior covariancematri-
ces. Fig. 6(a) shows theMinimumNorm and LORETA reconstructions of
the source distributions shown in Fig. 4(a): as expected (consistentwith
the prior assumptions) both source estimates were superficial and
extended relative to the true simulated source. Note that ad-hoc so-
lutions exist to compensate for this superficial bias (Dale et al., 2000;
Fuchs et al., 1999; Hauk, 2004; Ioannides et al., 1990; Lin et al., 2006;
Pascual-Marqui, 2002), however, the aim here is to illustrate how
this bias arises from a suboptimal prior covariance model.

Multiple Sparse Priors
The MSP algorithm returns a Variational Laplace optimisation of

the candidate covariance estimates from GS and ARD optimisations.
Fig. 7(a) shows the source reconstruction given by the GS: both domi-
nant sources perfectly matched the original sources, with some spuri-
ous activity attributable to noise. This algorithm is well suited to deal
with bilateral synchronous sources because it can accommodate them
within a single column of G (controlled with a single hyperparameter).
The ARD starts with a large number of hyperparameters and prunes the
patches independently. In this case (Fig. 7(b)) the covariance prior asso-
ciated with the smaller amplitude correlated source was erroneously
rejected by the algorithm. Both candidate covariance models are then
further mixed with a final VL stage to give a more robust estimate of
source covariance weighted by model evidence. Given that the MSP is
an optimal mixture of the GS and ARD solutions, we would expect
that it should rely more on the GS reconstruction due to its higher1 Available for free download from http://www.fil.ion.ucl.ac.uk/spm/.
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Free energy (see below). This is indeed the case, as can be seen in
Fig. 7(c).

In order to illustrate the link between better models (as quantified
through Free energy) and more traditional measures of algorithm
performance through localisation error, we simulated (100 times) a sin-
gle smooth patch of active cortex (i.e., a source matching MSP prior as-
sumptions) randomly located on the cortical surface, and reconstructed
using the different modelling assumptions. Fig. 8 shows the distance of
the simulated source to the peak in the source reconstruction for each
assumption set (blue bars) alongside the corresponding relative (to
the minimum) Free energy or log model evidence (green bars). Note
that the prior assumptions with the highest model evidence also have
the smallest localisation error. Note that this is not a demonstration
that MSP works better than other algorithms; rather it shows that
model evidence that allows us to score different prior source covariance
matrices and reconstructions based on an optimal model will generally
minimise localisation error. In this case we set the prior covariance ma-
trix to be consistentwithMSP butwe could have just as easily simulated
data with LORETA like assumptions.

Discussion and conclusions

In this tutorial paper, we have tried to unpack and explain the inver-
sion scheme used in the SPM software. This manuscript and accompa-
nying software provides examples of the pre-processing and inversion
procedure involved in the classical (Minimum Norm, LORETA etc.).

Importantly all algorithms can be seen within the same mathemati-
cal framework and differing only in their prior assumptions about the
structure of the source covariance matrix (Mosher et al., 2003; Wipf
and Nagarajan, 2009). In turn, the fitness of any prior covariancematrix
to explain measured data can be quantified in terms of Free energy or
model evidence. Here, we have focused on describing the MSP frame-
work and have consequently simulated (sparse focal) data on the corti-
cal surface— consistent with the sparse priors algorithm. It is important
to note that had we simulated data based on LORETA-like assumptions,
then the LORETA priors would have had maximum evidence and least
localisation error. The question of which priors work best in practice is
an empirical one, but hopefully we have been able to describe some of
the tools that can be used to establish this optimal set. Note that because
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Fig. 6. RMS current estimates for reconstructions of the focal sources simulated in Fig. 4(a) (red circles) based on (a)MinimumNorm and (b) LORETA prior covariancematrices. Note that
both these assumption sets lead to localisation error, as both algorithms tend to project sources superficially and increase the spatial extent of the estimated current distribution (158 and
226 sources exceed half the maximum amplitude).
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a combination of MSPs can emulate the LORETA covariance assumptions,
in principle, it should never be necessary to actually use the LORETA
covariance component – because this will be selected automatically – if
it provides the best explanation for the data (c.f., the first component
considered by the Greedy search above).

For real data, no ground truth is available, and although one solution
might appear more focal than another, there is no reason why it should
be more accurate. Given certain caveats (see below), it is clear that the
model evidence is a useful and objective test of plausible prior covariance
models, and these should provide the most accurate estimates of neuro-
nal current distribution.

It is also important to note that in all of these examples the propaga-
tionmodel (the lead-field matrix) has been considered as ground truth.
This is rarely the case in practice, several errors such as co-registration
error, head movement, MRI distortion, poor cortical segmentation,
amongst others, add extra uncertainty to the problem that should ideal-
ly be accounted for in the confidence interval on the final solution (see
Chung et al., 2008; López et al., 2012b, 2013; Troebinger et al., 2013 for
some recent work in this field). One important drawback of methods
with higher resolution (MSP, beamformers, etc.) is that they are also
the most sensitive to errors in the forward model (Hillebrand and
Barnes, 2002; López et al., 2012b). For example, in (López et al.,
2012b) we showed that co-registration errors of the order of 4 mm
and 4° were enough to compromise the MSP inversion. It is also the
case that methods which require a non-linear search over the space of
priors, although more flexible, may also be less robust to situations in

which there are large numbers of independent sources (due to local
maxima in the cost function) or non-Gaussian noise (such as un-
modelled artefacts in the data). In Appendix Bwe show the relative per-
formances of the different algorithms for different numbers of simulat-
ed sources in both ideal Gaussian and real noise conditions.

There are many unsolved problems and many possible improve-
ments to the schemes we have considered. These include the opti-
mal tree size for the Greedy search, the optimal number of
patches, patch spacing and patch smoothness. We hope that the
technical details presented here will be sufficient for others to fa-
miliarise themselves with this software and address these and
other outstanding issues.
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Appendix A. Model based sample covariance matrix

The definition of the prior source covariance matrix Qwith Eq. (10)
implies a redefinition of the joint probability distribution, due to the
inclusion of hyperparameters: p(Y, J, h). A priori, the weights of Q
(hyperparameters) are independent, the parameters J are fully depen-
dent on them, and the model based data is also strictly dependent on
J, allowing us to define:

p Y ; J;hð Þ ¼ p Yj Jð Þp Jjhð Þp hð Þ ðA:1Þ

The prior distribution of the parameters now depends on h: p( J|h). It
is now necessary to assume a prior on h (such as the general probability
distribution proposed in Wipf and Nagarajan (2009):

p hð Þ∝∏
Nq

i¼1
ef i hið Þ ðA:2Þ

(a) Greedy search reconstruction (b) Automatic relevance determination
reconstruction

(c) Multiple sparse priors algorithm
solution

Fig. 7.Using the variational Laplace schemes to select the optimal prior set from the library. (a) Greedy search reconstruction with zero localisation error. (b) Automatic relevance deter-
mination performs poorly in this case. (c) Multiple Sparse Priors are based on the weighted mixture of GS and ARD estimates (in this case the localisation error is zero and there are 8
sources that exceed half the maximum amplitude).
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where each fi(·) is a known unspecified function (preferably convex).
With a known distribution on h it can be integrated out (marginalised)
on what is known as a Gaussian scale mixture:

p Jð Þ ¼ ∫p J; hð Þdh ¼ ∫p Jjhð Þp hð Þdh ðA:3Þ

and the prior on h is again independent. Now the problem is how to
obtain these h values. Rather than estimate a complete posterior distri-
bution of the hyperparameters, it should be possible to obtain their
expected value ĥ.

Initially let us assume that h is known, then Q is known and the
conditional distribution p( J|Y, h) can be expressed as a fully specified
Gaussian distribution. However, since h is not known, a suitable approx-
imation h≈ ĥ must be computed:

p JjY ;h ¼ ĥ
� �

¼ p JjYð Þ ðA:4Þ

to solve the problemwith Eq. (6). This approximation can be optimised
with Empirical Bayes (Berger, 1985),where the prior p( J|h) canbe empir-
ically learned from the data using the evidence p(Y) as a cost function.
This approach is based on the fact that each set of hyperparameters will
approximate the solution to the evidence, and that the optimal set ĥ is
the one that provides the highest evidence.

Given that the parameters J are fully dependent on h, they can be
marginalised out of the optimisation problem by integrating them out
of the joint probability distribution p(Y, J, h):

p Y ;hð Þ ¼ ∫p Y ; J;hð ÞdJ ¼ p Y jhð Þp hð Þ ðA:5Þ

where p(Y |h) can be derived from Eq. (A.1):

p Y ;hð Þ ¼ ∫p Y j Jð Þp Jjhð Þp hð ÞdJ ðA:6Þ

because p(h) is independent of J, it can be extracted from the integral
and by comparison with Eq. (A.5):

p Y jhð Þ ¼ ∫p Yj Jð Þp Jjhð ÞdJ: ðA:7Þ

To which solution is a Gaussian distribution:

p Y jhð Þ∝ exp −1
2
tr YTΣ−1

Y Y
� �� �

ðA:8Þ

where ΣY = Σ� + LQLT is the “model based sample covariance ma-
trix” given the set of hyperparameters h. This result is important
because it obviates the use of J in the optimisation problem, and al-
lows us to formulate a cost function for h exclusively in terms of
the data. The ensuing evidence, computed with the optimal set of

hyperparameters: p Yð Þ ¼ p Y jh ¼ ĥ
� �

, is a rigorous upper bound that
can be used for model selection (Friston et al., 2008; López et al., 2012b).

Appendix B. Performance analysis of different algorithms under
Gaussian and real noise conditions

Fig. B.9 shows the relative log model evidence (as approximated
through Free energy) of 100 simulations with 1, 2, 5, 10, and 20 simul-
taneous active sources (consisting of sinusoids of random frequency)
randomly located on the cortical surface. All the data were simulated
using MSP priors and so it is no surprise that MSP models have the
highest evidence. One might expect changes in differential evidence
amongst solutions that involve a non-linear search over multiple priors
(like MSP) and single component models (like Minimum Norm,
LORETA, and Beamformer) as the complexity of the solution increases,
but we did not observe that here.

Fig. B.10 shows the results of the same example of Fig. 8 butwith real
noise acquired from resting state activity (the complete experiment is
presented in Sedley et al. (2011). Note that the average localisation
error increased in all approaches, but trendswere unaffected. Thisfigure
also shows how the increase in Free energy correlates with lower aver-
age localisation error.

Appendix C. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.09.002.
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is the same observed with Gaussian noise.
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