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Abstract

In recent years the multi-component scalar dark matter models with discrete
symmetries ZN have been widely studied in the literature. Among them, the
Z5 model proposes two complex fields that transform as singlets under the
Standard Model gauge group. The scalar potential brings along with eleven
free parameters that must be restricted. In that sense, the primary purpose
of this research is to develop a detailed analysis of the scalar potential with
the objective of establishing the perturbative unitarity, vacuum stability, and
positivity conditions, and finally to determine the viable parameter space of the
model.

Resumen

En los últimos años, los modelos de materia oscura escalar multicomponente
con simetrías discretasZN han sido ampliamente estudiados en la literatura. En-
tre ellos, el modelo Z5 propone dos campos complejos que transforman como
singletes bajo el grupo de gauge del modelo estándar. El potencial escalar trae
consigo once parámetros libres que deben ser restringidos. En ese sentido, el
propósito principal de esta investigación es desarrollar un análisis detallado
del potencial escalar con el objetivo de establecer las condiciones de unitari-
dad perturbativa, estabilidad del vacío, estabilidad del potencial, positividad, y
finalmente determinar el espacio de parámetros viable del modelo.
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1
Introduction

One of the great hit of physics in the past century is the Standard Model (SM)

of the particle physics, which explains a part of the observable universe through a

set of seventeen particles. The SM is then a well-structured quantum field theory

that describes the electroweak and strong interactions under the assumption that

these follow the transformation rules of the U(1)Y ⊗SU(2)L⊗SU(3)c symmetry

group. However, in the first half of the last century some anomalies were

observed in different situations where the SM and general relativity would

have explained the phenomena but they do not do it correctly, for instance, the

expected rotation speed of some galaxies in distant clusters, the characteristic

angle of gravitational lensing due to a galaxy, the homogeneity of the radiation

in the photon decoupling epoch, etc [1–9]. The inconsistency is in the fact that

the baryonic matter is not sufficient to explain some observed cosmological

phenomena; therefore, due to the non-observable features of the missing matter
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1.1. EARLY EVIDENCE

that complete the phenomena explanations, this was called Dark Matter (DM).

The ordinary (baryonic) matter only composes roughly 5% of the total mass-

energy density in the current cosmological paradigm (ΛCDM), whilst the DM

constitutes about 27% and the rest is given by dark energy [10]. This means

that dark (baryonic) matter represents about 84% (16%) of the total matter in the

universe. Though the abundance of DM is higher than the baryonic matter, this

has been detected only through its gravitational interactions. Thus, in recent

years several theories and models have surged in order to explain this kind of

matter and how it works [11–13].

In the rest of this chapter, we discuss some of the early evidence supporting

the existence of DM in the section 1.1 while in 1.2 modern evidence. The so-

called Weakly Interacting Massive Particles (WIMPs) paradigm in section 1.3,

and finally the introduction of models with scalar dark matter stabilized by ZN

symmetries in section 1.4.

1.1 Early Evidence

Usually, in the literature, the first event where the first dark matter effects

were detected is attributed to the Coma Cluster’s studies developed by Zwicky

in his paper published in 1937 [4]. The Coma Cluster is about 99 Mpc from Earth

and using the method of Doppler shifts analysis in the galactic spectra, Zwicky

calculated the velocity dispersion of the galaxies in this cluster. According to

Newton’s theory, the relationship between gravitational and centripetal strength

2



CHAPTER 1. INTRODUCTION

leads to the relation

m
[v(r)]2

r
= G

mM(r)

r2
(1.1)

outside the region where the majority of galaxy mass is enclosed. Therefore, the

rotation velocity of the object at a radius r is given by v(r) =
√︁
GM(r)/r, being

M(r) the mass contained in the region within r, and G the usual gravitational

constant. There exist a "Keplerian" behavior v(r) ∝ 1/
√
r, which suggests that

the rotation velocity must decrease according to the inverse of the square root

of the radius.

Around the same time, as Zwicky made his discovery, Oort [2] found that

the motion of stars in the Milky Way is so fast that their velocities should allow

them to escape the gravitational pull of the luminous mass in the galaxy. One

of the lights from the galactic center is not visible by dust or other bodies which

obscured its track to the Earth, therefore the Doppler shifts can not be totally

described.

Zwicky unlike Oort calculated the specific missing mass that could cause

these behaviors. Following the virial theorem, giving the relation between the

average kinetic and potential energy in the Coma cluster ⟨U⟩ = −2 ⟨T ⟩, Zwicky

found that the mass in the cluster is roughly 4.5× 1013M⊙.

On the other hand, the mass of the ∼ 1000 nebulae in the cluster in around

4.5× 1010M⊙, a result that is not consistent since the measurement through the

usual standard ratio between the mass of the nebulae and its luminosity (M/L),

gave a total mass of approximately 2% of this value [14, 15]. Then, the majority

3



1.1. EARLY EVIDENCE

of the mass in the Coma cluster is not visible for some reason (non-luminous).

After roughly 40 years following the above discoveries, in the 1970’s, Vera

Rubin and collaborators [16] performed a more detailed study of the rotational

velocities in spiral galaxies, specifically 60 isolated galaxies were chosen for

calculating the relations between the distance of the center and the rotational

velocity. They employed the analysis of spectral lines such that the material

on one side of the galactic nucleus was approaching our galaxy and on the

other side was receding. This analysis gave also angular information about the

distance of the target object in the galaxy from the center. As above, in the

Zwicky studies, Vera Rubin found a contradiction with the keplerian behavior

v(r) ∝ 1/
√
r. According to Gauss’s law for the gravitational field, one expects

that one gaussian surface which encloses a gravitational mass M(r), will have a

flux

M(r) = (1/4πG)

∫︂
S

g⃗ · dA⃗, (1.2)

then g⃗ increases if M(r) increases with r, but g⃗ decreases if this mass enclosed

decreases or remains constant while r increases; thus g⃗ will fall giving smaller

v(r) ar large r. Since at some r the density of luminous mass falls but the stars

acquire high velocities, the important conclusion is that the missing mass is not

luminous and is not concentrated near the center of spiral galaxies. The figure

1.1 shows the measurement developed by Vera Rubin for rotational velocities.

In the same decade, was observed another event that probes the presence of

DM in the cosmological context. In Einstein’s theory of relativity, there is an

4



CHAPTER 1. INTRODUCTION

Figure 1.1: Measurement of the rotation velocities for stars into the NGC 3198
barred spiral galaxy. The red dots represent the experimental data taken by

Vera Rubin and collaborators and the dotted line is the predicted (kepplerian)
behavior [14].

interesting effect associated with the curvature of the light around a massive

object like a cluster of galaxies, called gravitational lensing [17, 18]. If there is

a galaxy located directly behind the cluster of galaxies, we may observe an

"Einstein ring" around this massive object. The likelihood of two appropriate

objects lining up perfectly with the Earth is low, but in 1979, Walsh et al. [7],

were the first to observe this. Figure 1.2 shows the observed gravitational lensing

called LRG 3-757 Cosmic Horseshoe. For a calculation of "Einstein radius" (the

radius of an arcle in radians), associated with the "amount" of gravitational

lensing effect [14], Einstein’s theory leads to

θE ∝ Mcluster. (1.3)

5



1.2. MODERN COSMOLOGICAL EVIDENCE

Figure 1.2: The LRG 3-757 Cosmic Horseshoe. It is a gravitational lens to 11
billion light years away.

The studies show that the mass calculated through this theory is much larger

than the mass obtained by implementing the usual ratio of mass-luminosity

M/L.

1.2 Modern cosmological evidence

The general theory of standard cosmology so-called the Friedmann-Robertson-

Waker (FRW) cosmological model or the Hot Big Bang model is so successful

and allows us to understand the total evolution of the universe [19]. The FRW

cosmology is so robust that it is possible to make sensible speculations about

the universe at times as early as 10−3 seconds after the bang. The theory then

may explain the Big Bang Nucleosyntesis (BBN), where the universe had a few

seconds of age. The deuterium, helium, lithium, and other light elements were

the first in be formed at the BBN . All the sources of deuterium come from the

BBN epoch and when it is produced into stars or other sites, this immediately

is destroyed by fusing it into 4He. Therefore, the abundance of this element is a

6



CHAPTER 1. INTRODUCTION

key piece since the current abundance must be a lower limit of the initial amount

created at the BBN epoch [14,20].

Using nuclear physics and the ratio between the observable deuterium abun-

dance and the hydrogen abundance, we are able to calculate BBN elemental

abundances. In fact, the FRW cosmological model has the important triumph

of the precise agreement between the observable abundance and the theoretical

predictions for several elements. The ratio between deuterium and hydrogen

leads to the numerical density of baryons in the universe, giving Ωbh
2, where Ωb

is the baryon density relative to a reference critical density ρc, and h = H/100

kms−1 Mpc−1 is the reduced Hubble constant.

The Cosmic Microwave Background (CMB) was discovered by Penzias and

Wilson in 1965 as an excess background temperature of about 2.73 K [9]. It is a

remnant from the epoch when the universe was 380000 years old, therefore ana-

lyzing it we can obtain information about the composition of the early universe.

In this epoch, the free protons and electrons of the primordial plasma form the

neutrally charged atoms. The CMB is then the last scattering surface from the

early universe.

The CMB is a nearly perfect blackbody, hence we can use statistical thermo-

dynamics to describe the early universe. However, the Differential Microwave

Radiometer (DMR) of Cosmic Background Explorer (COBE) showed in 1989,

that CMB has fundamental anisotropies (fluctuations) of only about 30 ± 5 µK

[21]. The figure 1.3 shows the CMB fluctuations and their representation through

7



1.2. MODERN COSMOLOGICAL EVIDENCE

spherical harmonics.

Figure 1.3: The CMB fluctuations (left), and the power spectrum of the fluctua-
tions as a function of the angular moment (right) [10].

A possible explanation for these fluctuations (at large scales) may be since

at the time of the last scattering there were areas with larger density and thus,

lower photons are observed today. Another explanation (at small scales) is due

to acoustic oscillations: before photons decoupling, the fluid of protons-photons

is compressed by the gravitational well; the pressure of the fluid in this process

increases but after decreases since it expands outward due to the high pressure;

finally, the gravity pulls it back and the cycle repeats so that we understand this

as an oscillation into the plasma. The CMB fluctuations turn out then that in the

early universe there was a gravitational dynamic in the proton-photon fluid.

The problem in the explanation of the universe is that considering only

baryonic matter before photon decoupling in the fluid, the current structures

could not be observed since, e.g. in the acoustic oscillations dynamics, the

electrostatic forces do not allow to perform the cycle. In that epoch, protons and

electrons had not been recombined, then all the ordinary matter was charged.

8
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It suggests that there was an electrically neutral kind of matter which promoted

the gravitational effects of forming structure.

The Wilkinson Microwave Anisotropy Probe (WMAP) was launched in 2001

to develop a precise measure of the anisotropies in the CMB [22]. With this

collaboration, we start the knowledge of the total and baryonic matter densities.

Currently, the latest results obtained from these parameters were presented by

PLANCK collaboration in 2018 [10]. The total matter density and the baryonic

matter density (relative to a critic matter density) are

ΩMh2 = 0.1430± 0.0011, ΩBMh2 = 0.02237± 0.00015, (1.4)

therefore baryonic matter is not the only form of matter in the universe.

The dark matter relic density is given by

ΩDMh2 = (ΩM − ΩBM)h2 = 0.1200± 0.0012, (1.5)

which is roughly 83% of the total matter density.

1.3 The WIMP paradigm

In recent years, many dark matter candidates have been proposed and one of

the better motivated are the WIMPs [23,24] since they are electrically neutral and

the theoretical considerations lead to appropriate number densities to compose

9



1.3. THE WIMP PARADIGM

the DM in the current universe [25–27]. This term was coined by Gary Steigman

and Michael Turner in 1984 [28], originally to include all particle dark matter

candidates in the epoch.

The early universe was very hot, and massive and energetic particles were

created. However, while the universe expanded it cooled, and the number of

particles stabilized due to the interactions occurring with low frequency. In

addition, the lighter particles lose kinetic energy to produce heavier particles

through interactions; then lighter particles fill the majority of the universe. Ac-

cording to the above arguments, in the early universe the DM numeric density

decreases but at some point, it stabilizes because of the low frequency of inter-

actions with other particles. In that moment, the thermal equilibrium of the

universe is violated, and the DM number density "freezes in". This final number

density at the time of freeze-out is known as the relic density of DM. See e.g. [19]

for a deep exposition of the topic.

In order to calculate the number density of a specific particle as DM, we may

implement the Boltzmann equation which describes the temporal evolution of

the numeric density for a particle specie taking into account the decay into other

particles, the co-annihilations, scattering off of the thermal background and the

expansion of the universe. The temporal evolution of the numeric density of a

χ-DM particle which interacts with a X-SM particle reads

dnχ

dt
= −

⟨︁
σχχ→XX |v|

⟩︁ [︃
n2
χ −

(︂
nEQ
X

)︂2
]︃
− 3Hnχ (1.6)

10



CHAPTER 1. INTRODUCTION

where
⟨︁
σχχ→XX |v|

⟩︁
is the thermally-averaged annihilation cross section, v the

relative velocity of the particles in the thermal bath, nEQ
X the equilibrium value

of nX , and H is the Hubble constant. However, as the model studied in this

research, there are interaction terms that allow semi-annihilation processes in

the early universe, and in the case of more than one DM particle (χ1, χ2 . . . χN ),

we would have conversion processes if they interact among themselves. For the

temporal evolution of the DM particle χi, the Boltzmann equation can be written

completely as

dnχi

dt
=−

N∑︂
j,k,l=1,
k,l ̸=i

⎧⎨⎩⟨︁
σχiχj→XX |v|

⟩︁⏞ ⏟⏟ ⏞
annihilations

[︃
nχi

nχj
−
(︂
nEQ
X

)︂2
]︃

+
⟨︁
σχiχj→χkX |v|

⟩︁⏞ ⏟⏟ ⏞
semi-annihilations

(︂
nχi

nχj
− nEQ

χk
nEQ
X

)︂

+
⟨︁
σχiχj→χkχl

|v|
⟩︁⏞ ⏟⏟ ⏞

conversions

(︁
nχi

nχj
− nEQ

χk
nEQ
χl

)︁⎫⎬⎭− 3Hnχi
. (1.7)

Motivated by the WIMP paradigm, in recent years have been several experi-

ments that are expected to detect any signal of this kind using the fact that it can

interact directly with the baryonic matter: direct detection experiments. They

consist on detecting WIMP scattering off of a nuclei of some element so sensitive

to any energy change from the motion of the atoms within it, i.e., an element that

allows reconstructing events of the type DM + SM → DM + SM, by analyzing

the fluctuations on the energy of each zone of the element through a detector

that contains it, and neglecting background events which seem like the target

11
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event. We are assuming that the DM is traveling around every place in our local

galaxy, then must exist a probability that it interacts with the observable bary-

onic matter. The amount of energy that a WIMP deposits in the target element is

around ∼27 keV, considering that the DM moves at velocities of about 220 km/s

with a mass of ∼100 GeV [14]. The radiation, in general deposits more energy

of the MeV order, thus the detection of signals in the keV order are very difficult

to reconstruct. Therefore, the experiments must ensure that the target element

for the scattering with WIMPs be radioactively clean. Among the current exper-

iments in the direct detection field, there are the LUX-ZEPLIN (LZ) experiment

[29] at Sanford Underground Research Facility, the Particle and Astrophysical

Xenon Detector (PandaX) [30] at China Jinping Underground Laboratory, and

XENON experiment [31] at Italian Gran Sasso National Laboratory. All of them

work with a tank with 3 to 10 tons of xenon which is a very sensitive material

allowing the easy detection of energy depositions. In general, they constraint the

spin-independent cross section for the scattering off of a WIMP with nuclei of

xenon. There are many experiments, however, the aformentioned have imposed

the most restricted bounds over this physical observable.

12



CHAPTER 1. INTRODUCTION

1.4 Scalar dark matter and multi-component sce-

narios with ZN symmetries

The WIMPs are the most popular candidates and since the discovery of the

Higgs boson by CMS [32] and ATLAS [33] experiments at the Large Hadron

Collider (LHC), the scalar DM has taken a better position in the description

of WIMPs. Hence the discrete ZN symmetries which stabilize this kind of

candidate are well motivated, furthermore, these models adjust to the results of

recent collaborations and N -body simulations. The first of them to be proposed

was the scalar singlet model [34], which contains a DM particle stabilized by a

Z2 symmetry,

LZ2 =
1

2
(∂ϕ)2 − 1

2
m2

ϕϕ
2 − 1

4
λϕ2|H|2, (1.8)

where ϕ is the new real scalar field candidate to DM and H is the SM-like

Higgs doublet. The main problem with this model is that recent results from

direct and indirect detection experiments, have shown that the parameter space

must be widely restricted in order to adjust the model with the predicted spin-

independent cross-section for elastic scattering of ϕ with nuclei, according to

direct detection experiments data [35]. On the other hand, the non-consistency

of the model with N -body simulations, the DM density in galaxy centers and

dwarf galaxies, and other cosmological observations suggest the DM freeze-out

processes may be non-standard [36] including more complicated dynamics that

13
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SYMMETRIES

theZ2 does not allows such as semi-annihilations processes [37–39]. These kinds

of interactions are viable inZN models withN ≥ 3. Also, we may have a scenario

of multi-component DM allowed by the other ZN symmetries. Generically, this

kind of model stabilizes the SM Higgs potential through interactions between

scalar DM couplings with the Higgs boson which imply that the SM particles

interact with DM via the so-called "Higgs portal"; then, instead of including

new mediators in the dark sector to establish interactions between DM and SM

particles as other models propose, the ZN models allow interactions of the DM

particles with the Higgs boson.

Motivated by the above problems and the recent results which restrict the

WIMP paradigm, the ZN models arise as an alternative of multi-component DM

including non-standard processes, e.g. DM conversions and semi-annihilations.

In general, the ZN framework is viable by implementing abelian ZN or discrete

non-abelian symmetries [40,41], therefore there are many of possible scalar DM

models. For a better exposition of this kind of model, see [42].

A ZN symmetry can appear as a remnant from the spontaneous breaking

of either a U(1)X gauge symmetry by a scalar field S with X charge equal to

N or a SU(N) gauge group by a scalar multiplet transforming as the adjoint

representation, therefore we can relate the DM stability to gauge extensions of

the SM such as Grand Unification Theories (GUTs).

The ZN group is generated by the N Nth roots of 1 and consists of transfor-

14
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mations of the form

ϕ → ω
Xϕ

N ϕ, (1.9)

where ϕ is a scalar field and the ω
Xϕ

N factor is the charge of ϕ under the ZN

group. As an usual assumption [42], the SM particles are singlets under this

symmetry and the new scalar particles are singlets under the gauge group of

SM. Since ωN
N = 1 with ωN = ei2π/N , we restrict the possible charge values to

ω
Xϕ

N = 1, ω, ω2
N , ..., ω

N−1
N for N ≥ 3 in order to stabilize the DM. In addition, for

two or more fields, they must have different charges to avoid mixing among

them and thus avoid that the lightest be the only stable field.

Given (ω
Xϕ

N )∗ = ω
−Xϕ

N = ω
N−Xϕ

N , we observe that the maximum number of

scalar fields charged under ZN is ⌊N/2⌋. There are k ≤ ⌊N/2⌋ scalar fields

ϕXϕ
∼ ω

Xϕ

N with Xϕ different for each one. However, if N is odd, all the fields are

complex, but ifN is even, one of the fields must be real since necessarily it would

have a charge equal to ω
N/2
N = −1, then ω

Xϕ

N =
(︂
ω
Xϕ

N

)︂∗
= −1 and the field is real.

For instance, the Z4 symmetry group is composed by the four 4th roots of 1,{︁
1, eiπ/2, eiπ, ei3π/2

}︁
and with N/2 = 2, there are two possible scalar fields in the

model; however, neglecting the trivial transformation in order to ensure stability,

we can only choose the transformations ϕ1 → eiπ/2ϕ1 and ϕ2 → −ϕ2 due that

3 = −1 mod 4, then ϕ2 is a real field. For a similar argument, the Z3 symmetry

group only allows one complex scalar DM particle although the charges are 1, ω3

and ω2
3 , we know that 2 = −1 mod 3; therefore ϕ → ei2π/3ϕ is the only allowed

transformation. The scenario with k DM particles may be minimally realized by
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1.4. SCALAR DARK MATTER AND MULTI-COMPONENT SCENARIOS WITH ZN

SYMMETRIES

aZ2k symmetry. In that sense, Z4 (Z5) is the lowestZN symmetry consistent with

two-component DM (two-component of complex DM) composed by a complex

scalar field ϕ1 and a real scalar field ϕ2 (composed by two complex scalar fields

ϕ1 and ϕ2). Z6 (Z7) is the smallest ZN symmetry that allows three DM particles

(three complex DM particles), two of them complex scalar fields ϕ1,2 and one

real scalar field ϕ3 (all of them complex scalar fields ϕ1,2,3).

The DM stability is not only guaranteed by symmetry transformations. The

DM particles can not acquire vacuum expectation value (vev) since this leads to

ZN symmetry breaking, therefore it must imposed that

⟨ϕi⟩0 = 0, (1.10)

such that the symmetry remains unbroken.

One must ensure that all the possible decays of ϕi into other ϕj’s (i ̸= j)

are kinematically forbidden. This imposes restrictions on the masses of the

scalar fields, for instance, in the case of Z4 model it includes the invariant terms

ϕ2
1ϕ2+h.c. where ϕ1 ∼ ω4 and ϕ2 ∼ ω2

4 ; there may be decays of the form ϕ2 → 2ϕ1.

To forbid this, the masses M1,2 of the scalar fields ϕ1,2 (without loss of generality

M1 < M2) must fulfill the relation M2 < 2M1 to avoid decays of one particle into

the another particle.

In the following chapter (2), we will discuss the considerations and features

of the case N = 5, which is the center of this research. In the chapter 3 we show

the theoretical bounds that have to be imposed on the model in order to describe

16



CHAPTER 1. INTRODUCTION

a viable DM scenario. The chapter 4 exposes the result of implementing all of the

constraints considered in the previous chapter. Finally, the work concludes with

the chapter 5, where we discuss the obtained results and list some conclusions

around them.

17





2
The Z5 model

The Z5 group contains the five 5th roots of 1,

Z5 = {ωα
5 = exp(i2πα/5), with α = 0, 1, . . . , 4} . (2.1)

Since 4 = −1 mod 5 and 3 = −2 mod 5, we are left with the charged ω5 and

ω2
5 . As was previously mentioned, the Z5 model is the lowest ZN which allows

a scenario of two-component of DM. The fields transform as

ϕ1 ∼ ω5, ϕ2 ∼ ω2
5; ω5 = ei2π/5. (2.2)

Due to the different charges underZ5, as was exposed above, they do not mix and

the quadratic terms in Lagrangian only include the fields as mass eigenstates.

19



The invariant interaction terms are

V2 ⊃ ϕ1ϕ
∗
1, ϕ2ϕ

∗
2; (2.3)

V3 ⊃ ϕ2
1ϕ

∗
2, ϕ

2
2ϕ1; (2.4)

V4 ⊃ ϕ2
1ϕ

∗2
1 , ϕ2

2ϕ
∗2
2 , ϕ1ϕ

∗
1ϕ2ϕ

∗
2, ϕ

3
1ϕ2, ϕ1ϕ

∗3
2 . (2.5)

The most general renormalizable scalar potential at tree level, invariant under

Z5 symmetry reads

V =− µ2
H |H|2 + λH |H|4 + µ2

1|ϕ1|2 + λS1|H|2|ϕ1|2 + λ41|ϕ1|4 + µ2
2|ϕ2|2

+ λ42|ϕ2|4 + λS2|H|2|ϕ2|2 + λ412|ϕ1|2|ϕ2|2

+
1

2

(︁
µS1ϕ

2
1ϕ

∗
2 + µS2ϕ

2
2ϕ1 + λ31ϕ

3
1ϕ2 + λ32ϕ1ϕ

∗3
2 + h.c.

)︁
, (2.6)

where H is the SM-like Higgs doublet. The scalar fields are singlets under the

SM gauge group and the SM particles are singlets under the Z5 symmetry.

The new complex scalar fields do not acquire vev, so both are stable. Without

loss of generality, we study the case M1 < M2. The terms ϕ2
1ϕ

∗
2 and ϕ3

1ϕ2 would

lead to decays of the form ϕ∗
2 → 2ϕ1 and ϕ2 → 3ϕ1, then we must impose the

condition M1 < M2 < 2M1 to avoid decays of ϕ2 into ϕ1. Defining the Higgs

doublet as H = (G+, (h + vH)/
√
2)T , where vH = 246 GeV is the Higgs doublet

vev, the Higgs mass term is obtained with ∂V/∂h|Φ=0 where Φ = (h, ϕ1, ϕ2),

−µ2
H = λHv

2
H . (2.7)
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CHAPTER 2. THE Z5 MODEL

The mass-squared matrix is obtained by performing
(︁
M 2

)︁
ij
= ∂2V/∂ϕi∂ϕ

∗
j

⃓⃓
Φ=0

,

where i, j = 0, 1, 2 and ϕ0 = h. We have then

M 2 =

⎛⎜⎜⎜⎝
M2

h 0 0

0 M2
1 0

0 0 M2
2

⎞⎟⎟⎟⎠ , (2.8)

where

M2
h = 2λHv

2
H , (2.9)

M2
1 = µ2

1 +
1

2
λS1v

2
H , (2.10)

M2
2 = µ2

1 +
1

2
λS1v

2
H . (2.11)

Fixing the value of the Higgs self-coupling as λH = 0.129, the parameter space is

reduced of thirteen to eleven free parameters: seven dimensionless (λ4i, λSi, λ412

and λ3i) and four dimensionful (Mi and µSi). after the spontaneous symmetry

breaking, the full scalar potential can be written as

V =
1

2
M2

hh
2 + λHvHh

3 +
1

4
λHh

4

+
2∑︂

i=1

(︃
M2

i |ϕi|2 + λ4i|ϕi|4 + λSivHh|ϕi|2 +
1

2
λSih

2|ϕi|2
)︃
+ λ412|ϕ1|2|ϕ2|2

+
1

2

(︁
µS1ϕ

2
1ϕ

∗
2 + µS2ϕ

2
2ϕ1 + λ31ϕ

3
1ϕ2 + λ32ϕ1ϕ

∗3
2 + h.c.

)︁
(2.12)
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The main characteristic of the model resides in the terms

V ⊃ µS1ϕ
2
1ϕ

∗
2 + µS2ϕ1ϕ

2
2 + λ31ϕ

3
1ϕ2 + λ32ϕ1ϕ

∗3
2 + h.c., (2.13)

allowed by the new symmetry. Whilst models invariant under other ZN symme-

tries as the Z3 model, only allow a new DM semi-annihilation term, this model

has a set of new processes associated with DM conversion and semi-annihilation.

Therefore, we have relevant terms that may change the number density of DM

in the early universe.

In the table 2.1, are listed all the processes which modify the relic abundance

of each DM particle according to the terms in the Z5 scalar potential [43].

ϕ1 processes Type

ϕ1 + ϕ∗
1 → h+ h 1100

ϕ1 + ϕ∗
1 → ϕ2 + ϕ∗

2 1122

ϕ1 + h → ϕ2 + ϕ2 1022

ϕ1 + ϕ∗
2 → ϕ∗

2 + ϕ∗
2 1222

ϕ1 + ϕ1 → ϕ1 + ϕ2 1112

ϕ1 + ϕ2 → ϕ2 + h 1220

ϕ1 + ϕ1 → ϕ2 + h 1120

ϕ2 processes Type

ϕ2 + ϕ∗
2 → h+ h 2200

ϕ2 + ϕ∗
2 → ϕ1 + ϕ∗

1 2211

ϕ2 + ϕ2 → ϕ∗
1 + h 2210

ϕ2 + ϕ2 → ϕ1 + ϕ∗
2 2212

ϕ2 + ϕ1 → ϕ∗
1 + ϕ∗

1 2111

ϕ2 + ϕ∗
1 → ϕ1 + h 2110

ϕ2 + h → ϕ1 + ϕ1 2011

Table 2.1: The 2 → 2 processes that are allowed in the Z5 model and that can
modify the relic density of ϕ1 (left) and ϕ2 (right). h denotes the SM Higgs

boson. Conjugate and inverse processes are not shown.

The table 2.2 (2.3) displays the ϕ1 annihilation and semi-annihilation (con-

version) processes through different channels involving the terms in (2.13). For
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Type Process Channels
A

nn
ih

ila
tio

n ϕ1 + ϕ∗
1 → h+ h

(1100)
h

ϕ∗
1

ϕ1

h

h

ϕ1

ϕ∗
1

ϕ1

h

h

∼ λHλS1v
2
H ∼ λ2

S1v
2
H

ϕ∗
1

ϕ1

h

h

∼ λS1

Se
m

i-a
nn

ih
ila

tio
n

ϕ1 + ϕ2 → ϕ2 + h

(1220)

ϕ2

ϕ2

ϕ1

ϕ2

h

ϕ1

ϕ2

ϕ1

ϕ2

h

∼ µS2λS2vH ∼ µS2λS1vH

ϕ1 + ϕ1 → ϕ∗
2 + h

(1120) ϕ2

ϕ1

ϕ1

ϕ∗
2

h

ϕ1

ϕ1

ϕ1

ϕ∗
2

h

∼ µS1λS2vH ∼ µS1λS1vH

ϕ1 + h → ϕ2 + ϕ2

(1022) ϕ1

h

ϕ1

ϕ2

ϕ2

ϕ2

h

ϕ1

ϕ2

ϕ2

∼ µS2λS1vH ∼ µS2λS2vH

Table 2.2: DM annihilation and semi-annihilation processes via qubic and quar-
tic interactions involving the characteristic parameters of Z5 symmetry. The
notation 0, 1 and 2 corresponds to the fields h, ϕ1(ϕ∗

1) and ϕ2(ϕ∗
2), respectively

ϕ2, we can replace λS1 → λS2, µS1 → µS2 and λ31 → λ32. The relic abundance of

DM may be computed by using (1.7), and taking into account all the processes

that modify the numeric density of ϕi in the early universe (all the processes
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Type Process Channels

C
on

ve
rs

io
n

ϕ1 + ϕ∗
1 → ϕ2 + ϕ∗

2

(1122)

h

ϕ∗
1

ϕ1

ϕ∗
2

ϕ2

ϕ1

ϕ∗
1

ϕ1

ϕ2

ϕ∗
2

∼ λS1λS2v
2
H ∼ |µS1|2

ϕ2

ϕ∗
1

ϕ1

ϕ∗
2

ϕ2

ϕ∗
1

ϕ1

ϕ∗
2

ϕ2

∼ |µS2|2 ∼ λ412

ϕ1 + ϕ∗
2 → ϕ∗

2 + ϕ∗
2

(1222)

ϕ1

ϕ∗
2

ϕ1

ϕ∗
2

ϕ∗
2

ϕ1

ϕ∗
2

ϕ1

ϕ∗
2

ϕ∗
2

∼ µS1µ
∗
S2 ∼ µS1µ

∗
S2

ϕ∗
2

ϕ1

ϕ∗
2

ϕ∗
2

∼ λ32

ϕ1 + ϕ1 → ϕ1 + ϕ2

(1112) ϕ2

ϕ1

ϕ1

ϕ2

ϕ1

ϕ2

ϕ1

ϕ1

ϕ2

ϕ1

∼ µS1µS2 ∼ µS1µS2

ϕ1

ϕ1

ϕ2

ϕ1

∼ λ31

Table 2.3: DM conversion processes via cubic and quartic interactions involving
the characteristic parameters of Z5 symmetry. The notation 0, 1 and 2 corre-
sponds to the fields h, ϕ1(ϕ∗

1) and ϕ2(ϕ∗
2), respectively.
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shown in these tables). Thus, the Boltzmann equation for ϕ1 reads

dn1

dt
=−σ1100

v

(︁
n2
1 − n̄2

1

)︁⏞ ⏟⏟ ⏞
annihilation of ϕ1
into SM particles

−1

2
σ1220
v (n1n2 − n2n̄1)− σ1120

v

(︃
n2
1 − n2

n̄2
1

n̄2

)︃
+

1

2
σ1022
v

(︃
n2
2 − n1

n̄2
2

n̄1

)︃
⏞ ⏟⏟ ⏞

semi-annihilation of ϕ1 into ϕ2 or SM particles

−σ1122
v

(︃
n2
1 − n2

2

n̄2
1

n̄2
2

)︃
− 1

2
σ1222
v

(︃
n1n2 − n2

2

n̄1

n̄2

)︃
− 1

2
σ1112
v

(︃
n2
1 − n1n2

n̄1

n̄2

)︃
⏞ ⏟⏟ ⏞

conversion of ϕ1 into ϕ2

− 3Hn1, (2.14)

where we adopted the notation followed in [43]: the numbers 0, 1, and 2 corre-

spond to the SM sector, ϕ1, and ϕ2 DM particles respectively. ⟨σab→cd|v|⟩ ≡ σabcd
v ,

and nEQ
i ≡ n̄i. In addition, we use the fact that

n̄an̄bσ
abcd
v = n̄cn̄dσ

cdab
v . (2.15)

Similarly, the Boltzmann equation for ϕ2 can be constructed only by changing

1 ↔ 2 in (2.14). Thus, we have

dn2

dt
=−σ2200

v

(︁
n2
2 − n̄2

2

)︁⏞ ⏟⏟ ⏞
annihilation of ϕ2
into SM particles

−1

2
σ1210
v (n1n2 − n1n̄2) +

1

2
σ2011
v

(︃
n2
1 − n2

n̄2
1

n̄2

)︃
− σ2210

v

(︃
n2
2 − n1

n̄2
2

n̄1

)︃
⏞ ⏟⏟ ⏞

semi-annihilation of ϕ2 into ϕ1 or SM particles
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−σ2211
v

(︃
n2
2 − n2

1

n̄2
2

n̄2
1

)︃
− 1

2
σ1211
v

(︃
n1n2 − n2

1

n̄2

n̄1

)︃
− 1

2
σ2221
v

(︃
n2
2 − n1n2

n̄2

n̄1

)︃
⏞ ⏟⏟ ⏞

conversion of ϕ2 into ϕ1

− 3Hn2. (2.16)

According to the characteristic terms displayed in the tables 2.2 and 2.3, we

can compute the thermally averaged cross-section at tree level. For ϕ1 anni-

hilations, taking M1 >> Mh, we neglect the s,t-channels and it only acquires

contribution from the quartic interaction,

σ1100
v ∼ λ2

S1

16πM2
1

. (2.17)

Therefore, the annihilation regime increases as λS1.

As we saw, the semi-annihilation regime is governed by the trilinear cou-

plings µSi. Assuming λS2 << λS1, we neglect the channels dependents of

µSiλS2vH ; also setting M1 << Mh, this gives thermally averaged cross sections

such as

σ1220
v ∼ |µS2|2λ2

S1v
2
H

16πM6
1

, σ1120
v ∼ |µS1|2λ2

S1v
2
H

16πM6
1

, σ1022
v ∼ |µS2|2λ2

S1v
2
H

16πM6
1

, (2.18)

being then ξsemi strongly dependent of the M1 value: lower values of M1 imply

that the semi-annihilations processes dominate.

On the other hand, the conversion processes involve the new trilinear and

quartic terms at once. However, if we assume λS2 << λS1, M1 >> Mh and
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λ3i = 0, the following dependence is obtained:

σ1122
v ∼ λ2

412

16πM2
1

, (2.19)

so that the DM conversion rate increases according to λ412, and such as the

previous processes, it depends on M1.

In [43], the above discussion is summarized by analyzing the figure 2.1 where

ξianni, ξisemi, and ξiconv are the annihilation, semi-annihilation and conversion rates

of ϕi respectively; of course, ξianni + ξisemi + ξiconv = 1. These quantities were

calculated by solving the equations (2.14) and (2.16) through a scan on the

parameter space, running each parameter in a specific interval (see section 4.1

for a detailed description of the scan). Notice that low values of M1 imply

increments in the annihilation fraction, intermediate values increase the semi-

annihilation fraction and high values lead to high conversion rates.

Figure 2.1: Semi-annihilation and annihilation fractions with the M1 value
plotted as the color-code. The figure was taken from [43].
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3
Theoretical bounds

The theoretical bounds consist of a set of mathematical constraints that come

from the quantum field theory and give theoretic sense to the model. In addition

to experimental constraints, we must ensure that the model fulfills the following

restrictions:

• Perturbativity

• Unitarity

• Positivity of the scalar potential

• Stability of the scalar potential

We can find in the literature research as [37, 44] which impose these kind of

constraints on specific ZN models. In the following, we present each restriction

mentioned above and its mathematical consistency.
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3.1. POSITIVITY

3.1 Positivity

Ensuring the positivity of the scalar potential means maintaining its bound

from below for each point in the parameter space. This can be fulfilled if we

guarantee the copositivity of the coupling matrix. Researches like [45, 46] show

the conditions for that purpose. For this model, we have different cases to ensure

positivity. In the case λ3i = 0 expressing |H| = h and ϕi = φie
iθi , we have that

the scalar potential for quartic terms can be expressed as

V(4)
Z5

=
1

2

(︂
h2 φ2

1 φ2
2

)︂⎛⎜⎜⎜⎝
2λH λS1 λS2

λS1 2λ41 λ412

λS2 λ412 2λ42

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
h2

φ2
1

φ2
2

⎞⎟⎟⎟⎠ , (3.1)

where we obtain the following constraints for the copositivity of the above

coupling matrix,

λH > 0, λ4i > 0,

Λi ≡ λSi + 2
√︁
λHλ4i ≥ 0,Λ3 ≡ λ412 + 2

√︁
λ41λ42 ≥ 0,

2
√︁

λHλ41λ42 + λS1

√︁
λ42 + λS2

√︁
λ41 + λ412

√︁
λH +

√︁
Λ1Λ2Λ3 ≥ 0,

(3.2)

Notice that the positivity conditions do not take into account any dimensionful

parameter, then this only restricts the dimensionless couplings.

On the other hand, the case λ3i ̸= 0, again with |H| = h and ϕi = φie
iθi , the
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quartic potential reads

V4 = λHh
4 + λS1h

2φ2
1 + λ41φ

4
1 + λ42φ

4
2 + λS2h

2φ2
2 + λ412φ

2
1φ

2
2

+ λ31φ
3
1φ2 cos θ+ + λ32φ1φ

3
2 cos θ−,

where θ+ = 3θ1 + θ2 and θ− = θ1 − 3θ2.

According to [45,46], when the three scalar fields are non-zero, we obtain the

following conditions:

λ4i > 0, D > 0 ∧ (Q > 0 ∨R > 0) , (3.3)

where

D =− 27λ2
42|λ31|4 − 4|λ32|3|λ31|3 + 18|λ32|λ42λ412|λ31|3

− 4λ42λ
3
412|λ31|2 + |λ32|2λ2

412|λ31|2 − 6|λ32|2λ41λ42|λ31|2

+ 144λ41λ
2
42λ412|λ31|2 − 192|λ32|λ2

41λ
2
42|λ31| − 80|λ32|λ41λ42λ

2
412|λ31|

+ 18|λ32|3λ41λ412|λ31|+ 16λ41λ42λ
4
412 + 256λ3

41λ
3
42 − 4|λ32|2λ41λ

3
412

− 27|λ32|4λ2
41 − 128λ2

41λ
2
42λ

2
412 + 144|λ32|2λ2

41λ42λ412, (3.4)

Q = 8λ41λ412 − 3|λ31|2, (3.5)

R =− 3|λ31|4 + 16λ41λ412|λ31|2 + 64λ3
41λ42 − 16λ2

41

(︁
λ2
412 + |λ31||λ32|

)︁
. (3.6)

If λSi are allowed to take negative values, new conditions are added. The
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case λSi < 0 leads to

4λHλ4i − λ2
Si > 0 ∧

[︂
D̃ > 0 ∧

(︂
Q̃ > 0 ∨ R̃ > 0

)︂]︂
, (3.7)

where D̃, Q̃ and R̃ being D, Q and R with λ4i → λ4i − λ2
Si/ (4λH) and λ412 →

λ412 − λS1λS2/ (2λH).

Finally, for the case λS1λS2 < 0, arise the following conditions:

λ′
4i > 0 ∧

{︂[︂
D̃ ≤ 0 ∨

(︂
λ′
31 (λ

′
42)

1/2
+ λ′

32(λ
′
41)

1/2
)︂
> 0

]︂
∨
[︂
−2 (λ′

41λ
′
42)

1/2
< λ′

412 < 6 (λ′
41λ

′
42)

1/2 ∧ D̃ ≥ 0 ∧ Λ′
1 ≤ 0

]︂
∨
[︂
6 (λ′

41λ
′
42)

1/2
< λ′

412 ∧
(︂
(λ′

31 > 0 ∧ λ′
32 > 0) ∨

(︂
D̃ ≥ 0 ∧ Λ′

2 ≤ 0
)︂)︂]︂}︂

, (3.8)

where

λ′
41 = λH

(︁
λ42λ

2
S1 − λ412λS1λS2 + λ41λ

2
S2

−
√︁
|λS1λS2| (|λ32| |λS1|+ |λ31| |λS2|)

)︂
, (3.9)

λ′
31 = 2λHsgn(λS2 − λS1)

(︁
2λ42λ

2
S1 − 2λ41λ

2
S2

−
√︁
|λS1λS2| (|λ32| |λS1| − |λ31| |λS2|)

)︂
, (3.10)

λ′
412 = 2λH

(︁
3λ42λ

2
S1 + λ412λS1λS2 + 3λ41λ

2
S2

)︁
− 4λ2

S1λ
2
S2, (3.11)

λ′
32 = 2λHsgn(λS2 − λS1)

(︁
2λ42λ

2
S1 − 2λ41λ

2
S2

+
√︁
|λS1λS2| (|λ32| |λS1| − |λ31| |λS2|)

)︂
, (3.12)

λ′
42 = λH

(︁
λ42λ

2
S1 − λ412λS1λS2 + λ41λ

2
S2
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+
√︁

|λS1λS2| (|λ32| |λS1|+ |λ31| |λS2|)
)︂
, (3.13)

and

Λ′
1 =

[︂
(λ′

42)
1/2

λ′
31 − λ′

32 (λ
′
41)

1/2
]︂2

− 32 (λ′
42λ

′
41)

3/2

− 16
[︂
λ′
41λ

′
412λ

′
42 + (λ′

41)
3/4

λ′
31 (λ

′
42)

5/4
+ (λ′

42)
3/4

λ′
32 (λ

′
41)

5/4
]︂
, (3.14)

Λ′
2 =

(︂
(λ′

42)
1/2

λ′
31 − λ′

32 (λ
′
41)

1/2
)︂2

− 4 (λ′
42λ

′
41)

1/2
(︂
λ′
412 + 2 (λ′

41λ
′
42)

1/2
)︂

×
[︃
(λ′

42)
1/2

λ′
31 + (λ′

41)
1/2

λ′
32 + 4 (λ′

41λ
′
42)

1/2
(︂
λ′
412 − 2 (λ′

41λ
′
42)

1/2
)︂1/2

]︃
×

(︂
λ′
412 − 2 (λ′

41λ
′
42)

1/2
)︂−1/2

. (3.15)

3.2 Perturbative unitarity

As is known, in a classic paper Lee, Quigg, and Tracker (see e.g., [47]) showed

that in order to maintain perturbative unitarity, the Higgs mass has to be below 1

TeV. This means that the bounds which impose the perturbative unitarity allow

restricting the free parameters of the theory. The S-Matrix of the model has to

maintain unitary for all the viable points in the parameter space. In that sense,

SS† = 1. (3.16)
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3.2. PERTURBATIVE UNITARITY

Neglecting the non interacting processes, as is usual, we define S = 1+ iT . This

leads to

−i(T − T †) = TT †, (3.17)

which expresses the probability conservation. Thus, ensuring the unitarity of

S-Matrix leads to probability conservation. Research like [47,48] shows that this

can be easily ensured if we impose over the eigenvalues ai of the S-Matrix, the

condition

|Re (ai)| ≤
1

2
. (3.18)

For a pair a of scalars which scatters to another pair b, it can be computed as [44]

aba =
1

32π

√︃
2|pb||pa|
2δ122δ34s

∫︂ 1

−1

d(cos θ)Mba(cos θ)P0(cos θ). (3.19)

Of course, these eigenvalues depend on the center-of-mass energy, as we can see.

Rarely in the literature we may find this kind of analysis with s finite, usually

we found that for s → ∞. In this research, we impose perturbative unitarity for

s finite, setting
√
s ≥ 2M2 to avoid spurious poles. For more details, see section

4.3 where is explained the conditions that must fulfill s to keep the physical

sense of the model.

We implemented the model in SARAH 4.14.4 to obtain the S-Matrix entries.

This matrix contains all the information about the scattering amplitudes, which

in this case has 36 entries. We found that the condition (3.18) leads, in the limit
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CHAPTER 3. THEORETICAL BOUNDS

of large-s at tree-level and setting λ3i = µSi = 0, to the following constraints:

λSi < 8π,⃓⃓⃓⃓
2λ4i + λ412 ±

√︂
18λ2

3i + (2λ4i − λ412)
2

⃓⃓⃓⃓
< 16π,

|α1,2,3| ≤ 1/2,

(3.20)

where αi are the roots of the polynomial c3x3 + c2x
2 + c1x+ c0 with

c0 = 2v2H
(︁
−3λ2

412λH + λ41

(︁
48λ42λH − 4λ2

S2

)︁
− 4λ42λ

2
S1 + 2λ412λS1λS2

)︁
,

c1 = 6πv2H
(︁
24 (λ41 + λ42)λH − λ2

412 + 16λ41λ42 − 2
(︁
λ2
S1 + λ2

S2

)︁)︁
,

c2 = 512π2v2H (3λH + 2 (λ41 + λ42)) ,

c3 = 4096π3v2H .

(3.21)

In the scan development, the general conditions will be considered for a

better review of the constraints on the model.

3.3 Stability

Among the minima of the scalar potential, we have several cases that must

be analyzed. The main condition that we must guarantee about those minima

is that the SM minimum be the global minimum of the theory. The different

minima are showed in the following for the cases in that EW symmetry is broken

or the Z5 is broken, i.e., ⟨ϕ1⟩ = v1 ̸= 0 or ⟨ϕ2⟩ = v2 ̸= 0:
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3.3. STABILITY

• MA : v2H = 0, v2i = 0.

• MB : v2H = 0, v2i ̸= 0, v2j = 0, for i ̸= j.

• MC : v2H = 0, v2i ̸= 0.

• MD : v2H ̸= 0, v2i ̸= 0, v2j = 0, for i ̸= j.

• ME : v2H ̸= 0, v2i = 0.

• MF : v2H ̸= 0, v2i ̸= 0.

We have then eight different minima. The first four minima are ruled out

since they do not lead to SM-like minima, while those with v2i ̸= 0 do not

allow multi-component DM, thus we are left with the minimum ME where

EW symmetry is broken and Z5 symmetry is conserved. The minimum of the

potential turns to be then

VZ5

⃓⃓⃓⃓
ME

= − µ4
H

4λH

, (3.22)

and must fulfill

VZ5

⃓⃓⃓⃓
ME

< VZ5

⃓⃓⃓⃓
MA,B,C,D,F

(3.23)

to be the global extremum.

The most important minimum is MF since it contains all the conditions for

the other minima. Of course, the solution for this is not analytical, but we can

develop a numerical solution, solving the following two coupled equations for
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v2i and v2j (with i ̸= j),

∂V
∂ϕi

= 0 = 4λ4iv
3
i + 3λ3iviv

2
j + vi

(︁
v2HλSi + 2µ2

i + 2vjµSi + 2λ412v
2
j

)︁
+ v22 (µSj + λ3jvj) , (3.24)

and after of that, (3.23) must be fulfilled taking into account the fixed value for

the SM-minimum given in (3.22).

3.4 RGEs running

The Renormalization Group Equation (RGEs) are a set of coupled differential

equations that describe the behavior at different energy scales for each parameter

of the model. We calculated the RGEs at 2-loop level by implementing the model

in SARAH 14.4.4. The expressions are:

β
(2)
λ4i

= 3λ2
3j (λ4i − 3λ412)− 9λ2

3i (11λ4i + 3λ412)−
2

5

(︁
−6g21λ

2
Si − 30g22λ

2
Si

+600λ3
4i + 25λ2

412λ4i + 10λ3
412 + 50λ4iλ

2
Si + 20λ3

Si

)︁
, (3.25)

β
(2)
λSi

=
72

5
g21λHλSi + 72g22λHλSi +

1671

400
g41λSi +

3

5
g21λ

2
Si +

9

8
g22g

2
1λSi

+ 3g22λ
2
Si −

145

16
g42λSi − 72λHλ

2
Si − 60λ2

HλSi − 11λ3
Si

− 48λ4iλ
2
Si − 40λ2

4iλSi − λ2
412λSi − λSiλ

2
Sj − 8λ412λSiλSj

− 9

2
λ2
3i (3λSi + 2λSj) +

3

2
λ2
3j (λSi − 6λSj)− 4λ412λ

2
Sj − 4λ2

412λSj, (3.26)

β
(2)
λ412

=
72

5
g21λHλS2 + 72g22λHλS2 +

1671

400
g41λS2 +

3

5
g21λ

2
S2 +

9

8
g22g

2
1λS2
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+ 3g22λ
2
S2 −

145

16
g42λS2 − 72λHλ

2
S2 − 60λ2

HλS2 − 4λ412λ
2
S1

− 4λ2
412λS1 − λ2

S1λS2 − 8λ412λS1λS2 +
3

2
λ2
31 (λS2 − 6λS1)

− 9

2
λ2
32 (2λS1 + 3λS2)− 11λ3

S2 − 48λ42λ
2
S2 − 40λ2

42λS2 − λ2
412λS2, (3.27)

β
(2)
λH

= −9

5
g21λH − 9g22λH +

1

16π2

(︃
1887

200
g41λH +

108

5
g21λ

2
H +

117

20
g22g

2
1λH

+ 108g22λ
2
H − 73

8
g42λH +

17

2
g21λHy

2
t +

45

2
g22λHy

2
t + 80g23λHy

2
t −

171

100
g41y

2
t

− 8

5
g21y

4
t +

63

10
g22g

2
1y

2
t − 32g23y

4
t −

9

4
g42y

2
t −

3411g61
2000

− 1677

400
g22g

4
1 −

289

80
g42g

2
1

+
305g62
16

− 312λ3
H − 10λHλ

2
S1 − 10λHλ

2
S2 − 144λ2

Hy
2
t − 3λHy

4
t − 4λ3

S1

−4λ3
S2 + 30y6t

)︁
+

27g41
200

+
9

20
g22g

2
1 +

9g42
8

+ 24λ2
H + 12λHy

2
t + λ2

S1

+ λ2
S2 − 6y4t (3.28)

The purpose of this work is to study the mentioned bounds at energy scales

from top quark scale ∼ 173 GeV to Planck energy scale ∼ 1019 GeV. With this, we

explore the viability of the model, and ensure its consistence at all the energy

scales below of Planck energy scale.
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4
Results and analysis

In this section, we expose and discuss the results obtained after the imple-

mentation of the constraints established in the past section.

4.1 Scan

Since the majority of the restrictions are not analytic including the RGEs

solutions, we are going to do a scan over all the parameter space, running on

the intervals suggested in [43].

40 GeV ≤ M1 ≤ 2 TeV,

M1 < M2 < 2M1,

10−4 ≤ λ4i, |λ412,Si,3i| ≤
√
4π,

100 GeV ≤ |µSi| ≤ 10 TeV.

(4.1)
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4.1. SCAN

The above intervals are viable to describe a two-component DM scenario.

The scan will be performed initially taking λ412 = λ3i = µS2 = 0. Later, in

section 4.7 some results of the scan with these non-zero values are detailed.

Before the implementation of constraints, we must ensure that ΩDMh2 is

within the range mentioned in chapter 1. The calculation of the relic density is

found with micromegas_5.3.35.

On the other hand, for direct detection experiments, we take into account

the bound presented by the PANDAX experiment [30]. In [43], we may find the

results of implementing these experimental constraints in order to examine the

viable parameter space through a scan in the intervals mentioned above; the

figure 4.1 displays these results.

Figure 4.1: Scan results taken from [43] for spin-independent cross-sections for
elastic scattering of ϕi with nuclei. The factor ξi = Ωi/ΩDM scales the

cross-section per particle. The upper limit (solid line) is established by
XENON1T collaboration [31], and the projected sensitivity of LZ [29] and
DARWIN [49] experiments correspond to the dot-dashed, and dotted lines
respectively. Yellow points indicate that both DM particles lay within the

sensitivity region of DARWIN.
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CHAPTER 4. RESULTS AND ANALYSIS

4.2 Parameter space behavior through energy

scales

One additional constraint that will be taken into account in the scan, is to

guarantee that the parameters remain real to all the energy scales. For this, we

neglect the points where a parameter takes complex values, and we store the

value of energy scale Λ where this happened as the maximum energy scale Λmax

where the model has real parameters. Figure 4.2 shows the results of imple-

menting this constraint. These results (as the next sections) will be compared

with the ones obtained in [43], where the constraints considered in this analysis

were not taken into account.

The results show that the initially considered parameter space mostly satisfies

the condition, however, regions in the plane (λS2,M1) show a set of points for

λS2 of the order of the unit, which take complex values at Λ ∼ 108 GeV, which

is a fairly high energy value and therefore not of concern in this study. The

aforementioned case can be seen in figure 4.3, where λS2 is restricted according

to the energy scale. Additionally, we have considered a set of benchmark points

shown in the figures mentioned and listed in the table 4.1. The selected points

are such that they are found in extreme places of some of the planes considered,

for example, point 2 corresponds to the largest value of the examined mass and

shows that the condition considered here is maintained at a large energy scale

( ∼ 107 GeV), having a mass of ϕ1 greater than 1 TeV. On the other hand, the
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SCALES
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Figure 4.2: Viable parameter space with the real-parameters filter at energy
scales up to GUT. The figure shows the free parameters µS1, |λS1|, |λS2| and

M2/M1 as a function of the mass of ϕ1. The color code represents the maximum
energy scale where the point remains real values for all the parameter space.

The benchmark points in the plot are listed in the table 4.1.

region that includes mass values lower than 0.1 TeV shows that there are points

that verify the condition for a wide interval of values of the parameters in figure

4.2.

In summary, the parameter space is not modified by imposing the condition

of maintaining the real values of the parameters, it would only be restricted

considering very large energy scales greater than the order of 107 GeV, which is

not of interest for this study.

We can state that most of the space is viable at high energy scales with
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CHAPTER 4. RESULTS AND ANALYSIS

Param. Point 1 Point 2 Point 3 Point 4 Point 5
λ41 0.3475 2.2745 0.0018 0.0321 3.4144
λ42 0.4641 0.0125 3.2527 0.0025 0.3661
λS1 0.0004 −0.3525 0.0002 0.0014 −0.1967
λS2 −2.3683 2.1376 3.1533 −0.0002 0.0001

M1 (GeV) 116.06 1442.11 48.94 59.09 917.92
M2 (GeV) 123.85 1978.09 52.31 91.87 1069.96
µS1 (GeV) 101.98 9620.26 696.18 4681.35 9986.56

Ω1h
2 0.118 0.111 0.113 0.129 0.125

Ω2h
2 2.48×10−11 0.0106 1.14×10−7 1.75×10−10 0.0014

ΩDMh2 0.118 0.1216 0.113 0.129 0.1264
Ω1/Ω2 4.76×109 10.4717 9.91×105 7.37×108 91.24
σSI
1 (pb) 1.12×10−13 5.26×10−10 1.53×10−13 4.50×10−12 4.04×10−10

σSI
2 (pb) 3.18×10−6 1.03×10−8 3.09×10−5 3.28×10−14 1.70×10−16

log(Λmax/GeV) 8.9 6.9 4.9 17.0 8.2

Table 4.1: Benchmark points that fulfill the real-parameters filter up to some
energy scale Λmax. The table displays all the free parameters of the model at the
top quark mass energy scale, and point 4 is viable at energies beyond of GUT.
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Figure 4.3: Evolution of the viable |λS2| as a function of log(Λmax/GeV). The
figure displays the maximum value of the energy scale for a given point with a

specific |λS2| value where all the parameter space remains real.

respect to the constraint of keeping the parameter space real, even though the

condition is unsatisfied at certain energy scales, these turn out to be too high

to bring phenomenological implications. In addition, the benchmark points do

not present recurring characteristics in their values and therefore no specific

conditions are established to guarantee the viability of the model space under
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4.3. PERTURBATIVE UNITARITY

this condition.
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Figure 4.4: Viable parameter space with perturbative unitarity at energy scales
up to GUT. The figure shows the free parameters µS1, |λS1|, |λS2| and M2/M1 as
a function of the mass of ϕ1. The color code represents the maximum energy

scale where the point remains perturbative unitarity unbroken. The
benchmark points in the plot are listed in the table 4.2.

4.3 Perturbative unitarity

As mentioned in the previous chapter, perturbative unitarity is a condition

that forces the parameter space to keep the scattering matrix unitary in order to

guarantee probability conservation. The perturbative unitarity constraints have

been calculated via SARAH_4.14.4. To avoid spurious poles, the center-of-mass
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energy is fixed to
√
s = 8 TeV > 2M2. Most of the works in unitarity set the s-

channel at infinity, but it is interesting to check what happens when s decreases

to a finite value as is the case. Besides, we implement the perturbative unitarity

also at s → ∞ for comparison purposes. Since the perturbative unitarity at finite-

s leads to non-analytic expressions, the restrictions presented in (3.20) can not

be considered, then we use Wolfram_Mathematica_13 to compute numerically

it.

When implementing the condition (3.18) on the S-matrix, we obtained the

results shown in figure 4.4, where as well as the section above, points in the

four planes previously considered verify the condition in all regions for several

energy scales. Although regions are shown that favor the breaking of the con-

dition at specific energy scales, for instance, λS2 ∼ 1 in the plane (|λS2|,M1),

these scales are considered high since they exceed the order of 104 GeV. The

benchmark points shown in the mentioned figure are arranged in the table 4.2

and have been chosen in such a way that they are in particular regions of the

planes, for instance, point 2 verifies the perturbative unitarity for M1 ∼ 1 TeV

and breaks said condition at Λ ∼ 1012 GeV. Therefore, it shows the existence of

points that fulfill the condition up to high energy scales.

The perturbative unitarity exposes an interesting behavior for the DM self-

couplings λ4i, and the Higgs-DM coupling, this is shown in the figure 4.5 where

these couplings must take values below the unit to guarantee Λmax ≥ 1017 GeV.

Then this condition forces the values of these couplings to decrease with the en-
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4.3. PERTURBATIVE UNITARITY

Parameter Point 1 Point 2 Point 3 Point 4 Point 5
λ41 0.0038 0.0002 2.2119 0.2496 0.0284
λ42 0.001 0.0003 1.4049 0.015 0.0002
λS1 −0.0737 0.0021 −0.0113 0.0002 −0.0034
λS2 0.3868 −1.8328 0.0052 −0.2223 0.0022

M1 (GeV) 677.81 1188.96 355.25 53.27 57.48
M2 (GeV) 753.0 1226.25 434.76 57.24 97.7
µS1 (GeV) 5656.33 6897.21 4140.98 1064.44 104.22

Ω1h
2 0.114 0.116 0.123 0.129 0.118

Ω2h
2 0.0016 0.0032 0.0002 3.48×10−8 0.0005

ΩDMh2 0.1156 0.1192 0.1232 0.129 0.1185
Ω1/Ω2 69.51 35.69 514.64 3.71×106 226.92
σSI
1 (pb) 1.04×10−10 2.65×10−14 8.91×10−12 7.80×10−14 2.94×10−11

σSI
2 (pb) 2.32×10−9 1.97×10−8 1.23×10−12 1.29×10−7 4.38×10−12

log(Λmax/GeV) 17.0 12.0 4.0 17.0 17.0

Table 4.2: Benchmark points that verify the perturbative unitarity condition up
to some energy scale Λmax. The table displays all the free parameters of the
model at the top quark mass energy scale, and point 4 is viable at energies

beyond of GUT.

ergy scale in order to admit larger scales of viability. The new quartic couplings

λ3i also present the same behavior under this constraint.

The results show that the parameter space is not restricted after the imple-

mentation of this condition. Most of the regions in the studied planes present

several rupture energy scales for the condition. The benchmark points do not

make any correlation explicit, we could only mention the fact that λS1λS2 < 0 at

all the benchmark points except point 3, however, this will be studied in detail

in the next section.
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Figure 4.5: Evolution of the viable λ41 (top-left), λ42 (top-right) and |λS2|
(bottom) as a function of log(Λmax/GeV). The figure displays the maximum

value of the energy scale for a given point with specific values of these
parameters where the model fulfills the perturbative unitarity bound.

4.4 Scalar potential positivity

As was exposed in section 3.1, the positivity conditions only restrict the

dimensionless (quartic) couplings of the model, so that fixing λ3i = λ412 = 0

we obtain conditions with minor complexity than those shown in the previous
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chapter. Specifically, taking λ412 = 0 in equation (3.2), we have

2
√︁

λHλ41λ42 + λS1

√︁
λ42 + λS2

√︁
λ41

+

√︃(︂
λS1 + 2

√︁
λHλ41

)︂(︂
λS2 + 2

√︁
λHλ42

)︂(︂
2
√︁

λ41λ42

)︂
≥ 0,

(4.2)

as well as the vacuum stability conditions λH > 0 and λ4i > 0. The results of the

scan for these conditions are shown in figure 4.6. In this case, the benchmark

points chosen are viable points beyond of GUT energy scale except for point 5

which breaks positivity at∼ 1013 GeV. The figure shows that the parameter space

fulfills positivity in several regions. The color code in the top-left plot suggests

that the positivity is mainly guaranteed at 0.1 ≲ |λS2| ≲ 1, for values of M1 less

than ∼ 300 GeV. Point 3 was chosen as the point with a greater value of mass,

with positivity fulfilled at the GUT energy scale. In summary, the parameter

space presents viability under this condition in all the regions and mass ranges

initially considered. Some regions privilege certain energy scales like the ones

mentioned above, but these scales are too large to imply a significant restriction

to the parameter space. Future works that are concerned with analyzing the

restrictions of the model to Λ ∼ 1017 GeV, can consider these regions as the

admitted ones.

We have some points where λH(Λmax) < 0 which can be interpreted as the

green dots of the color code in the figure 4.6. We selected some of these points

in order to study the evolution of λH with the solution of RGEs, and store each

value that takes this coupling at the different Λ-energy scales. The figure 4.7
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Figure 4.6: Viable parameter space with scalar potential positivity at energy up
to GUT scale. The figure shows the free parameters µS1, |λS1|, |λS2| and M2/M1

as a function of the mass of ϕ1. The color code represents the maximum energy
scale where the point keeps the scalar potential positivity unbroken. The

benchmark points in the plot are listed in the table 4.3.

(left) present the evolution, where the Higgs self-coupling breaks the vacuum

stability at 1010.6 GeV ≲ Λ ≲ 1010.9 GeV. However, we found points where the

Higgs self-coupling decreases whilst the energy scale increases, but change their

behavior at some energy scale, then do not broken the vacuum stability (figure

4.7−right panel).

The reason of the Higgs self-coupling behavior comes from its β-function,
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4.4. SCALAR POTENTIAL POSITIVITY

Parameter Point 1 Point 2 Point 3 Point 4 Point 5
λ41 2.4798 0.0624 0.3423 0.0049 0.2273
λ42 0.0006 0.3767 0.0007 0.0003 0.5123
λS1 0.0024 0.0001 0.2727 −0.0002 0.0046
λS2 0.0007 0.5896 2.6574 0.2191 −0.3834

M1 (GeV) 58.12 705.55 1952.8 149.54 414.98
M2 (GeV) 90.98 1117.92 1978.25 193.91 435.83
µS1 (GeV) 206.64 7916.0 9795.41 2872.28 1968.29

Ω1h
2 0.129 0.124 0.105 0.117 0.115

Ω2h
2 2.57×10−5 0.0045 0.0067 4.67×10−34 0.0024

ΩDMh2 0.129 0.1285 0.1117 0.117 0.1174
Ω1/Ω2 5019.46 27.56 15.65 2.51×1032 47.13
σSI
1 (pb) 1.45×10−11 2.10×10−16 1.72×10−10 1.46×10−14 1.06×10−12

σSI
2 (pb) 4.61×10−13 2.45×10−9 1.59×10−8 1.12×10−8 6.79×10−9

log(Λmax/GeV) 17.0 17.0 17.0 17.0 12.8

Table 4.3: Benchmark points for scalar potential positivity, that fulfill the
constraint up to some energy scale Λmax. The table displays all the free

parameters of the model at the top quark mass energy scale. All of them except
point 5 are viable under this condition up to energies around the GUT scale.
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Figure 4.7: The behavior of λH as a function of the energy scale log(Λmax/GeV)
after of running the RGEs. Left: eight benchmark points that break the vacuum

stability taking negative values of the Higgs self-coupling. Right: two
benchmark points characterized by its change of monotony in the Higgs

self-coupling behavior along the energy scales.
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which includes the terms

8π2β
(2)
λH

⊃ (5λH − λS1)λ
2
S1 + (5λH − λS2)λ

2
S2. (4.3)

Then we observe that when the Higgs coupling with DM particles increases with

energy scale, the Higgs self-coupling decreases. However, it is not guaranteed

for all the points, since it may happen that gauge and Yukawa coupling of

top quark represent the largest contribution to λH . On the other hand, since

this analysis has been carried out using the β-functions with two loops, the

dependence on λSi of this function for the self-coupling of the Higgs is given

precisely because it admits processes with two loops; when considering one-

loop processes, there is no dependency on λSi, and therefore, the viability of the

parameter space could change in terms of the stability of the vacuum.

To explore how the sign of the Higgs couplings influences the viability of the

model, in figure 4.8 we plot the impact of λ41 and λ42 in the positivity condition.

This shows that the region where λS1, λS2 > 0 is viable. On the other hand, we

may observe that an increase in DM self-coupling leads to changes in the zones

of viability. The top-left of the figure starts with weak DM self-interactions but

while they increase up to λ4i = 1 (bottom-right), the model allows regions in

the plane where λS1λS2 < 0. Of course, energies of the order of 1016 GeV like

those shown in the figure 4.8 are quite high, but they make it possible to see

that the model fulfills the condition at considerable energy scales. However, it

is interesting to observe the mentioned case λ4i = 1 (bottom-right panel), where
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4.4. SCALAR POTENTIAL POSITIVITY

negative values are allowed for only one of the couplings at scales up to 107

GeV. The four panels of the mentioned figure show that the case λS1, λS2 < 0 is

forbidden since it does not verify the conditions for positivity.

−3 −2 −1 0 1 2 3

λS1

−3

−2

−1

0

1

2

3

λ
S

2

λ41 = λ42 = 0.001

16

16

16

16

−3 −2 −1 0 1 2 3

λS1

−3

−2

−1

0

1

2

3

λ
S

2

λ41 = λ42 = 0.01

16

1616
16

16

16

−3 −2 −1 0 1 2 3

λS1

−3

−2

−1

0

1

2

3

λ
S

2

λ41 = λ42 = 0.1

16

16 16

16

1
6

−3 −2 −1 0 1 2 3

λS1

−3

−2

−1

0

1

2

3
λ
S

2
λ41 = λ42 = 1

5

5
5

5

5

7

7
7

7

7

16

16

Figure 4.8: The allowed regions in the plane (λS2, λS1) which maintain the
scalar potential positivity at different energy scales given fixed values of λ4i.
The color code describes the viability of the model relative to the value of

log(Λmax/GeV) which encloses the curves.

In addition, we want to study how is the impact of the couplings of one of

the DM particles on the other. The figure 4.9 shows the plane (λS1, λ41) fixing the

values of λ42 and λS2, where in the bottom-left plot we observe viability to GUT

energy scales due the negative value of Higgs coupling with ϕ1. We observe

that the parameters associated with one of the particles influence the admissible

values of the second particle to verify a viable model under positivity. We note

that the region λS1 > 0 is viable at high energy scales for any value of λS2 and
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Figure 4.9: The allowed regions in the plane (λS1, λ41) which maintain the
scalar potential positivity at different energy scales given fixed values of λ42

and λS2. The color code describes the viability of the model relative to the
value of log(Λmax/GeV) which encloses the curves.

λ42, but significant changes are observed in the regions of λS1 < 0.

To examine in depth how the values of λS2 influence λS1 at very high energy

scales, the figure 4.10 shows models with Λmax ≥ 1016 GeV, and implies the ne-

cessity of having one of the DM particles featuring a sizeable λSi. This restriction

is significant in case of taking into account the feasibility of the model at these

scales, however, for Λ ∼ 104 GeV or up to Λ ∼ 107 GeV, the plane (λS2, λS1) is not

restricted considerably.

As a synthesis, we state that the positivity of the scalar potential has shown

that the parameter space verifies viability at high energy scales, provided that

λS1, λS2 > 0 or λS1 λS2 < 0. The stability of the vacuum is not guaranteed for

53



4.5. SCALAR POTENTIAL STABILITY

10−4 10−3 10−2 10−1

|λS1|

10−4

10−3

10−2

10−1

100

|λ
S

2
|

log (Λmax/GeV) > 16

Figure 4.10: Viable values of Higgs coupling with ϕ2 (λS2) as a function of its
coupling with ϕ1 (λS1). The figure displays the values at the top quark energy
scale for both couplings, which guarantee the scalar potential positivity in the

case λS1λS2 < 0.

all points due to the dependence of the β-Higgs function on two loops. On

the other hand, the benchmark points do not show recurring behavior precisely

because of the viability of the general region initially considered. Finally, when

considering energy scales of the GUT order, we can talk about restrictions that

can be studied by works concerned with the viability of the model at said scales.

4.5 Scalar potential stability

Ensuring the SM global minimum is a complex task in this model since

we have a set of eight possible minima, according to (3.23). Since evaluating

this condition involves the solution of the (3.24) equations, it has been solved

numerically to evaluate the values of the minima of the fields over the scalar

potential implemented inWolfram_Mathematica_13 . In this way, we developed

a scan that satisfies the stability constraints (see figure 4.11). The majority of the

points in the scan are blue, then the stability is broken to low energy scales;
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however, there are points that survive to high energies. It is important to

mention that these excluded regions that break the condition at low energy

scales do verify it at the top quark mass scale, of course.
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Figure 4.11: Viable parameter space with scalar potential stability at energy
scales up to GUT. The figure shows the free parameters µS1, |λS1|, |λS2| and

M2/M1 as a function of the mass of ϕ1. The color code represents the maximum
energy scale where the point remains the SM minimum stable as global. The

benchmark points in the plot are listed in the table 4.4.

Once again we choose a set of five benchmark points with different features:

three of them are viable at GUT energy scales, and the other two break stability

at Λmax ∼ 103 and 106 GeV as shows the table 4.4. First, we observe that all

the points except point 4, are such that λS1λS2 < 0. This feature will play an

important role in the combination of constraints since as we saw in the past
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4.5. SCALAR POTENTIAL STABILITY

section, positivity leads to stringent bounds when this happens. On the other

hand, all of the points do not pass the perturbative unitarity filter due to their

λ4i values (if we only take into account very large Λ); according to the discussion

in the section 4.3, this breaks that condition at low energy scales and does not

achieve perturbative unitarity at GUT energy scales.

Parameter Point 1 Point 2 Point 3 Point 4 Point 5
λ41 2.825 0.2523 1.4123 2.3072 2.7987
λ42 2.5346 0.3937 0.0014 2.3547 1.9836
λS1 0.0009 −0.0037 −0.0042 0.0374 −0.0015
λS2 −1.6753 0.0263 0.044 0.3482 1.5053

M1 (GeV) 322.8 57.28 235.93 310.8 1200.75
M2 (GeV) 533.95 79.38 353.94 401.92 1216.81
µS1 (GeV) 2576.0 102.66 9941.96 1863.13 6035.15

Ω1h
2 0.11 0.119 0.119 0.126 0.106

Ω2h
2 1.51×10−8 0.0002 1.99×10−7 0.0022 0.0044

ΩDMh2 0.11 0.1192 0.119 0.1282 0.1104
Ω1/Ω2 7.28×106 610.26 5.98×105 58.33 24.2
σSI
1 (pb) 6.39×10−14 3.56×10−11 2.81×10−12 1.27×10−10 1.45×10−14

σSI
2 (pb) 8.65×10−8 9.48×10−10 1.35×10−10 6.59×10−9 1.35×10−8

log(Λmax/GeV) 6.3 17.0 2.6 17.0 17.0

Table 4.4: Benchmark points that ensure to maintain the SM minimum of the
scalar potential as global. The showed points fulfill the constraint up to some

energy scale Λmax. The table displays all the free parameters of the model at the
top quark mass energy scale, and points 2, 4, and 5 are viable under this

condition at energies beyond GUT.

Since the (µS1,M1) and (|λS1|,M1) planes present the most homogeneous

regions with points with stability broken at low energy scales, we plot the same

planes setting Λmax > 104 GeV in order to neglect this points and see better the

exclusion zones for these parameters; we show this in figure 4.12. All the points

which fulfill stability at GUT energy scales verify M1 ≲ 1.2 TeV which is the

mass value of point 5. On the other hand, it is interesting to observe that the
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M1 ∼ 40 GeV region has a wide interval for the values of the other parameters

in which the condition is verified at high energy scales.

We see then that the figure 4.12 shows an important restriction in the planes,

which prevails for high energy scales. Unlike the previously studied conditions,

the stability of the scalar potential is highly restrictive if the model is expected

to exceed scales of 104 GeV. Once again, the non-correlation found between the

benchmark points is highlighted.
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Figure 4.12: Viable parameter space with scalar potential stability at energy
scales up to GUT. The figure shows the free parameters µS1 and |λS2| as a

function of the mass of ϕ1. The color code represents the maximum energy
scale (from Λmax > 104 GeV) where the point remains the SM minimum stable

as global.

4.6 Combination of constraints

In this section we study the impact of imposing all the theoretical bounds at

once. Of course, we expect a wide restriction in each parameter, especially in

Higgs couplings with DM and trilinear couplings such as we saw previously.
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Figure 4.13: Viable parameter space with the theoretical bounds combined at
energy scales up to GUT. The figure shows the free parameters µS1, |λS1|, |λS2|

and M2/M1 as a function of the mass of ϕ1. The color code represents the
maximum energy scale where the point remains all of the conditions
unbroken. The benchmark points in the plot are listed in the table 4.5.

On the other hand, we expect after combining the constraints further excluded

regions arise due to the necessity of fulfilling each one, i.e., is not only a "super-

position" of the previously observed constraints.

In order to combine the constraints, we selected points that verify all the

restrictions at the top quark mass energy scale. Then we run the RGEs and

determine the Λmax-energy scale where any condition breaks, so that the model

is viable up to that energy scale. We show the results in the figure 4.13. The

benchmark points plotted in the figure are such that they fulfill the constraints
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Parameter Point 1 Point 2 Point 3 Point 4 Point 5
λ41 0.3174 0.2931 0.2703 0.1756 0.186
λ42 0.0925 0.0001 0.0004 0.0863 0.0003
λS1 0.0039 −0.0003 −0.0056 0.0006 −0.0005
λS2 0.1992 0.4952 0.3063 −0.9917 0.6255

M1 (GeV) 57.18 123.58 130.48 149.96 144.22
M2 (GeV) 77.35 130.5 140.01 186.67 169.11
µS1 (GeV) 127.26 127.46 171.73 239.57 178.26

Ω1h
2 0.117 0.117 0.127 0.123 0.12

Ω2h
2 0.0001 2.57×10−7 3.19×10−5 8.31×10−13 1.00×10−6

ΩDMh2 0.1171 0.117 0.127 0.123 0.12
Ω1/Ω2 1539.47 4.55×105 3981.19 1.48×1011 1.17×105

σSI
1 (pb) 4.00×10−11 5.03×10−14 1.63×10−11 1.23×10−13 9.50×10−14

σSI
2 (pb) 5.71×10−8 1.25×10−7 4.16×10−8 2.46×10−7 1.19×10−7

log(Λmax/GeV) 13.7 14.7 15.7 16.5 17.0

Table 4.5: Benchmark points that fulfill all of the combined constraints up to
some energy scale Λmax, ordered from the minimum energy scale values to the
maximum. The table displays all the free parameters of the model at the top

quark mass energy scale, and point 5 under the constraints, is viable at energies
beyond of GUT. These points have the maximum values of Λmax obtained in the

scan.

to higher energy scales, for instance, there is a point that has Λmax > 1017 GeV

(point 5).

To detail the analysis to all the parameters, we have considered the planes of

each parameter against the value of the energy scale. This is shown in the figure

4.14. First, we may see that all the benchmark points have DM masses below

M1 ≲ 150 GeV, being the point 4 highest. In addition, all the benchmark points

except point 1 show that λS1λS2 < 0. However, though is a recurrent behavior, it

is not necessary. Respect to the values of |λS1| and |λS2|, the benchmark points

show that all of them have suppressed interactions between ϕ1 with Higgs boson

but sizeable interactions between ϕ2 with Higgs boson, i.e., |λS1| << |λS2|.

In general, we emphasize the following observations to the parameter space
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Figure 4.14: Evolution of the viable parameter space as a function of Λ. The
figure displays the maximum value of the energy scale for a given point with
specific values of each parameter where the model fulfills all of the constraints

combined.

as a result of observing the planes in the figure 4.14.

• M1 and M2: The value of the mass should decrease when the model is

expected to verify all conditions at high energy scales. The figures show

how the mass takes smaller values as Λmax increases.
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• µS1: This trilinear coupling must also be restricted to lower values than

those initially considered if a viable model is to be obtained at larger

energy scales. For example, for benchmark points (where the energy is

quite large), low values of this coupling correspond.

• λ41 and λ42: The perturbative unitarity showed that these couplings have to

decrease with the energy scale, as long as the model is expected to be viable

at high scales. This behavior prevails in the current results. However, it

can be seen that the decrease of λ41 is slightly faster than that of λ42.

• λS1 andλS2: The couplings between the DM particles and the Higgs behave

differently. With respect to λS1, a behavior similar to that of the couplings

λ4i is observed, where the energy scale must be correlated with the decrease

in the value of the coupling, that is, high energy scales imply imposing

smaller values on the mass scale of the top quark than those initially

considered. Additionally, it is observed that λS1 at the energy scale of the

top quark must take values below 0.2, while in principle
√
4π was admitted

as the maximum value. On the other hand, the coupling λS2 presents a

behavior opposite to that of λS1; it is observed that the high energy scale

restricts the range of this parameter below. For example, for the benchmark

points, the values are close to unity. Then, lower values are excluded as

the viability scale increases.

• ξ1σ
SI
1 : The values of the spin-independent cross section for elastic scattering

with nuclei do not present a specific behavior at high scales of model
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viability.

Although global restrictions are not obtained, but are clearly dependent on

the energy scale for which viability is requested, it should be noted that there

is a correlation between the implemented restrictions and the values admit-

ted by the model parameters. The figures discussed allow us to observe the

aforementioned, each plane presents a specific behavior with the energy scale.

The condition of keeping the parameter space real mainly influenced the val-

ues of λS2 (see fig. 4.3). Perturbative unitarity has imposed important behaviors

for the values of DM self-couplings with respect to the feasibility scale (see fig.

4.5). Scalar potential positivity constrains the values of the DM couplings with

the Higgs, correlating these λSi with each other and with the self-couplings (see

fig. 4.8, 4.9 and 4.10), also prohibiting points where λS1, λS1 < 0; furthermore,

vacuum stability is not guaranteed for all points due to the dependence of the

Higgs self-coupling on λSi (see fig. 4.7). The stability of the scalar potential,

by guaranteeing the minimum of the SM as global, eliminates many points that

verify the condition at the energy scale of the top quark mass and reduces the

admitted values for all parameters (see fig 4.11 and 4.12).

4.7 Constraints with λ412, λ3i, µS2 ̸= 0

When considering the new coupling parameters associated with the DM con-

version (λ412, λ3i) and the trilinear term for semi-annihilations of ϕ2, the model
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acquires a greater number of combinations for the parameter space, and the

behaviors at high energy scales change, allowing different regions in the studied

planes that with λ412 = λ3i = µS2 = 0 were prohibited. On the other hand,

the β-functions associated with these new parameters can also become unstable

and acquire complex values at certain energy scales. The figures 4.15 and 4.16,

show some results obtained from the scan when the mentioned parameters are

considered. It is observed that the perturbative unitarity similarly constrains the

quartic couplings λ3i. The combination of the constraints eliminates many viable

points, such that the maximum energy scale obtained in the scan is around 107

GeV, which is important since the viability of the model is demonstrated at high

scales of energy, even with all the parameters taking non-zero values. Finally,

the change in the constraints of µS1 and the DM masses when considering these

additional parameters is highlighted; we note that larger values are allowed

according to the increment of the energy scale compared to the figure 4.14.
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Figure 4.15: The combination of constraints over the parameter space, taking
λ412, λ3i, µS2 ̸= 0. The figure plots the energy scale where each parameter

breaks the considered constraints.
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Figure 4.16: Evolution of the viable λ31 and λ32 as a function of Λ. The figure
displays the maximum value of the energy scale for a given point with specific
values of these parameters where the model fulfills the perturbative unitarity

bound.
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5
Discussion and conclusions

We have studied the Z5 model of two-component DM. Initially, we con-

sider the admitted values for the free parameters, taking into account the phe-

nomenology reported in [43]. With this, we did a scan over the parameter space

to guarantee that the points under study, verify the constraints of relic density

and direct detection. After having a large set of points that verify these con-

ditions, we evaluate new theoretical constraints at energy scales in the range

105/2 ≤ Λmax/GeV ≤ 1017 , with the purpose of exploring how perturbative uni-

tarity, positivity and stability of the scalar potential impose new limits on the

free parameters of the model over these energy scales. This type of analysis has

suggested important constraints and behaviors of the parameter space:

• Keep parameter space values real: Viability at high energy scales, greater than

Λ ∼ 108 GeV, can lead the λS2 coupling to take complex values over a wide

range of values considered at the top quark mass scale.
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• Perturbative unitarity: Keeping the S-matrix unitary implies reducing the

maximum value that the self-couplings λ4i, the coupling λS2 and the quar-

tic couplings λ3i can take. It was observed that increasing the energy

scale up to which the model maintains perturbative unitarity restricts the

admitted value for these couplings to the top quark mass scale.

• Scalar potential positivity: Although phenomenologically there are points

that verify the restrictions of direct detection experiments and the relic

density condition, this condition showed that if these points are such

that λS1, λS2 < 0, the matrix of couplings does not hold copositive, and

therefore, the positivity of the scalar potential does not hold. In addition,

the viability of points with λS1λS2 < 0was checked, restricted to the values

taken by the DM self-couplings and the expected viability energy scale.

The stability of the vacuum is not guaranteed for all points, since some

points break it at Λ ∼ 1010 GeV due to the behavior of Higgs self-coupling

dependent on the λSi couplings.

• Scalar potential stability: Imposing the globality of the minimum of the

scalar potential as the minimum of the SM (���EW,Z5) greatly restricts the

values that the DM masses can take, the new trilinear couplings µSi and

even the couplings of the DM with the Higgs λSi, so that the energy scale

up to which the model verifies this condition influences the value that

these parameters can acquire. High energy scales imply values smaller

than the mass scale of the top quark.
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These remarks apply for values of λ412, λ3i, µS2 zero and non-zero. However,

for the non-zero case, the maximum energy scale obtained is highlighted: 108

GeV.

The Z5 model is the minimum ZN model that allows a multi-component DM

scenario with two complex fields. The results obtained in this research can be

extended to models for N > 5. For instance, the scalar potential of the model Z7

allowing for three complex fields, in general, contains the interaction terms

V3 ⊃ ϕ2
2ϕ3, ϕϕ

2
3, ϕ

2
1ϕ

∗
2, ϕ1ϕ2ϕ

∗
3, (5.1)

V4 ⊃ ϕ1ϕ
3
2, ϕ

2
1ϕ2ϕ3, ϕ2ϕ

2
3ϕ

∗
1, ϕ

2
1ϕ

∗2
1 , ϕ3ϕ

∗3
1 , ϕ3

3ϕ
∗
2, ϕ1ϕ2ϕ

∗
1ϕ

∗
2, ϕ

2
2ϕ

∗2
2 , ϕ1ϕ3ϕ

∗2
2 ,

ϕ1ϕ3ϕ
∗
1ϕ

∗
3, ϕ2ϕ3ϕ

∗
2ϕ

∗
3, ϕ

2
3ϕ

∗2
3 , (5.2)

V5 ⊃ ϕ4
1ϕ3, ϕ2ϕ

4
3, ϕ1ϕ

∗4
2 , (5.3)

to which correspond more free parameters than those studied in this research.

Of course, this number of parameters leads to complicated conditions, but they

are largely satisfied by the large number of combinations that can be generated

with the parameter values. We can state that the results associated with this

type of model must be similar to those obtained with the Z5 model, where most

of the regions of the parameter space fulfill the viability at several energy scales.

The Z5 model is considered as a prototype for other two-component DM

models. A key piece of this model is the trilinear coupling µS1. Other models

such as Z9 (four complex fields), also allow trilinear terms associated with DM
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semi-annihilations such as µS2ϕ
2
2ϕ

∗
4. The Z10 model (four complex fields and one

real field) has a Lagrangian similar to the Z5, which allows trilinear (µSi) and

quartic terms (λ3i). The results can be extended to these models analogous to

Z5.

Although this type of analysis is not recurrent in the literature, research

such as [44], like this research, have found limits on the ZN models for N ≤ 3.

Future works in this field can examine the viability of these models under the

considerations presented here. Also, one can think of applying the theory

presented to possible extensions of the Z5 model. For example, the simplest

extension consists in associating the symmetry Z5 to a spontaneously broken

gauge symmetry U(1)X . Thus, the trilinear term µS1 is allowed, but µS2 requires

a new vacuum expectation value. The model can also be extended as scotogenic,

considering extra fields that explain the neutrino masses through vectorlike

fermions, Majorana masses for neutrinos (at two-loops) can be generated. For

an exposition of this topic in detail, see [43, 50–52].
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