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ABSTRACT

L-amino acid oxidases (LAAOs) are ubiquitous enzymes in nature. Bioactivities
described for these enzymes include apoptosis induction, edema formation, induction
or inhibition of platelet aggregation, as well as antiviral, antiparasite, and antibacterial
actions. With over 80 species, Micrurus snakes are the representatives of the Elapidae
family in the New World. Although LAAOs in Micrurus venoms have been predicted
by venom gland transcriptomic studies and detected in proteomic studies, no enzymes
of this kind have been previously purified from their venoms. Earlier proteomic studies
revealed that the venom of M. mipartitus from Colombia contains ~4% of LAAO.
This enzyme, here named MipLAAOQ, was isolated and biochemically and functionally
characterized. The enzyme is found in monomeric form, with an isotope-averaged
molecular mass of 59,100.6 Da, as determined by MALDI-TOF. Its oxidase activity
shows substrate preference for hydrophobic amino acids, being optimal at pH 8.0.
By nucleotide sequencing of venom gland cDNA of mRNA transcripts obtained from
a single snake, six isoforms of MipLAAO with minor variations among them were
retrieved. The deduced sequences present a mature chain of 483 amino acids, with
a predicted pI of 8.9, and theoretical masses between 55,010.9 and 55,121.0 Da. The
difference with experimentally observed mass is likely due to glycosylation, in agreement
with the finding of three putative N-glycosylation sites in its amino acid sequence.
A phylogenetic analysis of MmipLAAO placed this new enzyme within the clade
of homologous proteins from elapid snakes, characterized by the conserved Serine
at position 223, in contrast to LAAOs from viperids. MmipLAAO showed a potent
bactericidal effect on S. aureus (MIC: 2 ug/mL), but not on E. coli. The former activity
could be of interest to future studies assessing its potential as antimicrobial agent.
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INTRODUCTION

L-amino acid oxidases (LAAOs, E.C. 1.4.3.2) are flavoenzymes that catalyze the
stereospecific oxidative deamination of L-amino acid substrate to a-keto acid, producing
ammonia and hydrogen peroxide (Izidoro et al., 2014). These enzymes are widely
distributed in different organisms such as bacteria (Huang et al., 2011; Hossain et al.,
2014) fungi (Davis, Askin & Hynes, 2005; Pislar et al., 2016), birds (Struck & Sizer, 1960)
mammals (Puiffe et al., 2013), and plants (Du ¢ Clemetson, 2002). In snake venoms
(svLAAO) they are present in the Viperidae and Elapidae families, in amounts between 0.1
and 30% of total protein content (Izidoro et al., 2014). Also, these enzymes have been found
in non-venomous snakes such as Python regius and Pantherophis guttatus (Hargreaves et
al., 2014). These proteins are responsible for the characteristic yellow color of many snake
venoms ([zidoro et al., 2014).

svVLAAOs are generally homodimeric glycoproteins (with approximately 4% of
carbohydrates), with molecular masses ranging between 120 and 150 kDa in native forms,
and from 55 to 66 kDa in monomeric forms, possibly with a non-covalent association
between the two subunits (Du ¢ Clemetson, 2002). They have a wide range of isoelectric
points (pI), from about 4.4 to 8.5, and they can bind either to flavine mononucleotide
(FMN) or to flavine adenine dinucleotide (FAD) (Izidoro et al., 2014). Most svLAAOs
demonstrate a relatively high affinity for hydrophobic and aromatic amino acids, including
L-Phe, L-Met, L-Leu and L-Ile because of substrate specificity related to side-chain binding
sites (Costa et al., 2014; Geueke & Hummel, 2002), and they are sensitive to temperature,
pH changes and lyophilization (Du ¢» Clemetson, 2002).

svLAAQOs are multifunctional enzymes exhibiting a wide range of biological activities
including apoptosis induction (Tan et al., 2017; Carone et al., 2017; Costa et al., 2017),
edema formation (Ali et al., 2000; Teixeira et al., 2016), inhibition or induction of
platelet aggregation (Takatsuka et al., 2001; Samel et al., 2008; Naumann et al., 2011),
leishmanicidal (Tempone et al., 2001; Ciscotto et al., 2009; Stdbeli et al., 2007; Carone et
al., 2017) and antibacterial functions, among other activities.

The antibacterial activity of svLAAOs was reported more than forty years ago (Skarnes,
1970) in Crotalus adamanteus venom. Since then, other authors have also reported
antibacterial activity against Gram-positive and Gram-negative bacteria (Toyama et al.,
2006; Stdbeli et al., 2007; Rodrigues et al., 2009; Zhong et al., 2009; Lee et al., 2011; Vargas et
al., 2013; Vargas Murfioz et al., 2014; Lazo et al., 2017). However, such activity has not been
reported for a Micrurus mipartitus venom enzyme. The aim of this work was to isolate and
characterize the biochemical properties of LAAO from this venom, and its antibacterial
activity.

MATERIALS AND METHODS

Isolation of MipLAAO

MipLAAO, the fraction identified as LAAO in proteomic analysis of M. mipartitus venom
(Rey-Sudrez et al., 2011), was isolated using size exclusion chromatography in a high
performance liquid chromatographic system (SEC-HPLC). For this, two mg of lyophilized
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venom (obtained from specimens maintained in Serpentarium of Universidad de Antioquia
from the western region of Antioquia, Colombia), were dissolved in PBS (phosphate-
buffered saline; 0.12 M NaCl, 40 mM sodium phosphate, pH 7.2) and separated on a
Biosec S-2000 column (Phenomenex, 5 pm particle diameter; 300 x 7.8 mm), using a
Shimadzu Prominence-20A chromatograph, monitored at 215 nm. Elution was performed
at 0.7 mL/min using the same buffer. Five chromatographic separations were repeated
and the LAAO fraction was collected, immediately concentrated, and finally desalted with
Amicon Ultra filters (MWCO 10,000 membrane).

To assess the purity of MipLAAO, the protein was submitted to analytical reverse-phase
high performance liquid chromatographic (RP-HPLC) using a C;s column (Pinnacle,
5 wm particle diameter; 250 x 4.6 mm), eluted at 1 mL/min with a linear gradient from 0
to 70% solution B (0.1% TFA, 99.9% acetonitrile) in 25 min. Electrophoretic homogeneity
was evaluated by SDS-PAGE (Laemmli, 1970) after reduction with 5% 2-mercaptoethanol
at 100 °C for 5 min.

Molecular mass determination

The molecular mass of MipLAAO was determined by MALDI-TOF mass spectrometry.
The protein (1 ng) was diluted in water-TFA (0.1%), mixed at 1:1 with saturated sinapinic
acid in 50% acetonitrile, 0.1% TFA, and spotted (1 nL) onto an OptiToF-384 plate for
MALDI-TOF MS analysis. Spectra were acquired on an Applied Biosystems 4800-Plus
instrument (Foster City, CA, USA), using 500 shots/spectrum and a laser intensity of 4,200,
in linear positive mode, over the m/z range 10,000—80,000.

Protein identification by MALDI-TOF/TOF peptide sequencing

For MS peptide sequencing, MipLAAO (40 g) was reduced with dithiothreitol (10 mM),
and alkylated with iodoacetamide (50 mM), followed by digestion with sequencing grade
trypsin for 24 h at 37 °C, as described (Rey-Sudrez et al., 2012). The resulting peptides
were separated by RP-HPLC on a Cjg column (2.1 x 150 mm; Phenomenex), eluted

at 0.3 mL/min with a 0-70% acetonitrile gradient over 40 min, manually collected,
and dried in a vacuum centrifuge (Vacufuge, Eppendorf). Peptides were redissolved in
50% acetonitrile, 0.1% TFA, and analyzed by MALDI-TOF/TOF (4,800 Plus Proteomics
Analyzer; Applied Biosystems, Foster City, CA, USA) using a.-cyano-hydroxycinnamic acid
as matrix, at 2 kV in positive reflectron mode, 500 shots/spectrum, and a laser intensity
of 3,000. Fragmentation spectra were initially searched using the Paragon® algorithm
of ProteinPilot 4.0 (AB; Sciex, Framingham, MA, USA) against the UniProt/SwissProt
serpentes database, and further they were manually interpreted de novo.

Snake venom gland cDNA synthesis and sequencing

mRNA was extracted from M. mipartitus venom gland of a specimen which died in
captivity in the Serpentarium of Universidad de Antioquia, using the trizol method (Life
Technologies, Carlsbad, CA, USA). The cDNA was obtained using Maxima First Strand
cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA). The conditions used
in thermocycler were 95 °C for 8 min, followed by 10 min at 95 °C, 10 min at 53 °C and 2
min at 72 °C and 7 min at 72 °C to complete the cycle.
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The LAAO-cDNA was obtained using the forward primer 5-GAT GAA TGT CTT
CTT TAT GTT CTC-3, and the reverse 5-GCA AGA GAT GTG AAT CGT GCT-3' and
PCR Supermix (Invitrogen), and conditions described by Pierre et al. (2005). The purified
product was ligated to the pGEM-T Easy cloning vector (Promega, Madison, WI, USA)
and used to transform Escherichia coli competent cells DH5-a and TOP10. The cells were
cultured on LB (Luria-Bertani) agar, and transformed colonies were used to the obtain the
plasmid using the QIA prep Spin Miniprep kit (QIAGEN, Hilden, Germany). The extracted
product was sent to Macrogen Korea, specifying that it corresponded to complete plasmids
with gene inserted at the multiple cloning site, to be sequenced from the vector promoter T7
and SP6 in order to confirm the direction in which the construct was inserted into the vector.

Bioinformatics procedures

The edition of cDNA sequences was performed in BioEdit version 7.0 (Hall, 1999).
Nucleotide sequences were translated into amino acids to evaluate the reading frame
and ensure the absence of premature stop codons or other nonsense mutation using
GeneDoc software (Nicholas, Nicholas ¢~ Deerfield, 1997). SignalP 4.01 server available at
http://www.cbs.dtu.dk/services/SignalP/ was used for signal peptide prediction (Petersen
et al., 2011) and the posterior analyses were performed only with the predicted mature
protein. NetNglyc (http://www.cbs.dtu.dk/services/NetNGlyc/) was used to predict the
glycosylation sites.

Phylogenetic relationships and genetic distance

Bayesian inference (BI) algorithms implemented in MrBayes v3.0B4 (Ronquist ¢»
Huelsenbeck, 2003) was used to infer phylogenetic trees. A total of 48 related amino
acid sequences of venom LAAOs, including 17 from Elapidae, 30 from Viperidae and
one from Polychrotidae were obtained in two protein databases, BLAST (BLASTp
http://blast.ncbi.nlm.nih.gov/Blast.cgi) and Uniprot (http://www.uniprot.org/blast/).
These sequences were selected with E-values close to zero and with percentage of identity
>30% (Pearson, 2013) (Supplementary material S1).

The multiple alignment of amino acid sequences of mature chains was performed in
PRALINE (Heringa, 1999) using default parameters. After including gaps to maximize
alignments, the final number of amino acid positions was 500. For phylogenetic analysis
we used Anolis carolinensis sequence (R4GD21) as outgroup. The best-fitting model of
amino acid substitution was selected using Bayesian Information Criterion (BIC) (Neath
& Cavanaugh, 2012) implemented in the program MEGA version 7 (Kumar, Stecher ¢
Tamura, 2016). These results gave a best fit for the JTT + I (Jones, Taylor & Thornton,
1992) amino acid substitution model.

We executed three parallel MCMC runs simultaneously, each one was run for
30 x 10° generations with four Markov chains (one cold and three heated chains).
We used Tracer v1.6 (Rambaut & Drummond, 2013) for visualizing output parameters
to ascertain stationarity and whether or not the duplicated runs had converged on
the same mean likelihood. Nodes were considered supported if posterior probabilities
(PP) > 0.95. Trees were visualized using FigTree v1.1 (Rambaut, 2009) available at
http://tree.bio.ed.ac.uk/software/figtree/.
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In order to establish the genetic distance among LAAOs obtained in this study with
LAAOs corresponding to Micrurus species used in the phylogenetic analysis, a matrix
distance from aligned Micrurus sequences was obtained in Mega Version 7 (Supplemental
Information 2).

Enzymatic characterization

LAAO activity was determined using the method of Kishimoto ¢ Takahashi (2001). In
brief, increasing doses (0.9 png—3.0 pg) of MipLAAO (in 10 pL of water) were added to
90 nL of a reaction mixture (250 pM L-Leucine, 2 mM o-phenylenediamine, and 0.8 U/ml
horseradish peroxidase) in 50 mM Tris pH 8.0 buffer. After incubation at 37 °C for 60 min,
the reaction was stopped with 50 nL of 2 M H;SOy, and absorbances were recorded at
492 nm.

To determine the substrate specificity of MipLAAO, L-Leu was replaced with other
L-amino acids (L-His, L-Ser, L-Arg, L-Ala, L-Trp, L-Glu, L-Cys, L-Lys, L-Tyr, L-Val, L-Ile,
L-Thr), under standard assay conditions. The amount of MipLAAO in the reaction mixture
was 1.5 pg. LAAO activity on L-Leu was also evaluated at different pH values (5.0-11.0).

Antimicrobial assay

Antimicrobial assays were performed according to the National Committee for Clinical
Laboratory Standards (Clinical and Laboratory Standards, 2009) using two methods: the
first, agar diffusion assays, in which 5 pL (10 pg) of MipLAAO was added to media
(Muller-Hinton medium) with a suspension of 1.5 x 10° colony forming units (CFU)/mL
of E. coli (ATCC 25922) or S. aureus (ATCC 25923) and incubated at 37 °C for 24 h. Sterile
saline solution and chloramphenicol (10 pg; Phyto Technology Laboratories, Lenexa, KS,
USA) were used as negative and positive controls, respectively. Diameters of the bacterial
growth inhibition zones were measured (Vargas et al., 2013). Each assay was performed in
triplicate.

The second method was the broth microdilution in 96-well plates (Clinical and
Laboratory Standards, 2009). Inoculum suspensions of S. aureus cultures were prepared and
adjusted to a density of 1.5 x 10°> CFU/mL. In each well, 50 L of the bacterial suspension
and 50 pL of MipLAAO (0.01-7.0 wg/mL) were mixed. Plates were incubated at 37 °C
for 24 h, and the minimum inhibitory concentration (MIC) was defined as the lowest
concentration of enzyme that prevented visible growth (absence of turbidity) in the broth.
Assays were performed in triplicate. Sterile saline solution and chloramphenicol were used
as controls.

Statistical analysis

Results were expressed as mean + SD. Analysis of variance (ANOVA- Kruskal-Wallis test)
followed by Bonferroni post-test was employed to evaluate the statistical significance of
data on LAAO activity, substrate preference, and pH effects. Differences were considered
statistically significant when p < 0.05.
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RESULTS

Isolation, determination of molecular mass, cloning and amino acid
sequencing of MipLAAO

The fraction identified as LAAO in M. mipartitus venom (Rey-Sudrez et al., 2011), here
named MipLAAO, was isolated using SEC-HPLC, with an retention time of 4.5 min, (Fig.
1A). This fraction corresponds to 6% of the chromatogram with a final yield of 100 ng per
run. The protein eluted as a homogeneous peak by RP-HPLC analysis, at 19.6 min (Fig. 1B).
SDS-PAGE of MipLAAO under reducing (Fig. 1B, insert), or non reducing conditions (not
shown) both presented a single band, with a migration at ~57 kDa, indicating that it is a
monomeric protein.

The cDNA obtained from the venom gland mRNA of M. mipartitus evidenced a product
of ~1,503 bp, corresponding to the expected molecular mass for the LAAO coding
sequence. The primers amplified a DNA fragment, which was purified, ligated and used
to transform E. coli cells. Eight positive clones, randomly selected, were sequenced and six
coding sequences, including signal peptide, were obtained and designated as MipLAAO-1
to MipLAAO-6 (Fig. 2). These sequences were deposited in Genbank, with access codes
(MH010800, MH010801, MH010802, MH010803, MH010804, MH010805).

Protein sequences deduced from the six cDNA clones consist of 501 amino acids,
with a segment of 18 amino acids corresponding to signal peptide, and 483 amino acids
corresponding to mature chain (Fig. 2). Few changes among the sequences were observed.
MALDI-TOF/TOF peptide sequences obtained de novo matched the amino acid sequences
deduced from cDNA (Fig. 2). These sequences evidenced high identity values compared
to other LAAOs from elapid and viperid snakes (Supplemental Information 1). Highest
identities were obtained against elapid LAAOs, especially from other Micrurus, the LAAOs
of which have been predicted by transcriptomic studies, such as M. spixi LAAO (89%
identity; Supplemental Information 1).

The observed isotope-averaged molecular mass of the isolated MipLAAO was 59,100.6
Da, by MALDI-TOF MS (Fig. 1C). The theoretical molecular masses predicted (https:
//web.expasy.org/peptide_mass/) from the nucleotide-sequenced clones MipLAAO-1 to -6
vary from 55,121.02 Da to 55,010.94 Da. These variations correspond to few amino acid
substitutions among them (Fig. 2). The difference between these theoretical mass values and
that determined for the isolated protein are suggestive of post-translational modification
of the enzyme, for example glycosylation. MALDI-TOF/TOF peptide sequencing matched
the predicted MipLAAO ¢cDNA-deduced sequence, covering 56% (Fig. 2). In addition, the
deduced amino acid sequences of MipLAAO isoforms predict these to be basic proteins,
according to the Compute Mw/pl tool at https://web.expasy.org/compute_pi/, with pI
values within the range of 8.85-8.93.

Phylogenetic relationships

The deduced protein sequences of six MipLAAO isoforms obtained in this study and
48 other related LAAOs were aligned to infer phylogenetic relationships. Our analysis
recovered a deep split of LAAOs into two lineages (Clades A and B, Fig. 3), separating all
Elapidae family enzymes in Clade A from those of Viperidae family in Clade B, except for the
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Figure 1 Isolation of MipLAAO from M. mipartitus venom. (A) SEC-HPLC separation of M. miparti-
tus venom (2 mg) on a Biosec S-200 column eluted at 0.7 mL/min with PBS. MipLAAO (shadowed area)
was collected in the peak eluting at 4.58 min, indicated with an arrow. (B) Protein homogeneity was ob-
served for RP-HPLC on C;3 column eluted with a gradient of 0 to 70% solution B (Acetonitrile). The pro-
tein was analyzed by SDS-PAGE (15% gel) under reducing conditions (insert in B). MM, molecular mass
standards, in kDa. (C) Molecular mass of the isolated MipLAAO by MALDI-TOF analysis.
Full-size B DOI: 10.7717/peerj.4924/fig-1
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Figure 2 Amino acid sequences of six MipLAAO isoforms deduced from M. mipartitus venom gland
cDNA sequences. Multiple alignment of 483 amino acids corresponding to the mature chains is shown.
Polymorphic sites are highlighted in blue. Tryptic peptide sequences confirmed by MALDI-TOF/TOF MS
are shown in bold and underlined in the MipLAAO-1 sequence. The three domains of LAAO are high-
lighted in colors: FAD-binding domain (FAD-BD in pink), substrate binding domain (S-BD in blue) and
helical domain (H-BD in yellow). For reference to colors in this figure legend, the reader is referred to the
web version of this article.

Full-size Gl DOI: 10.7717/peerj.4924/fig-2

King Cobra (Ophiophagus hannah) LAAO, which shares between 49.0% and 50.8% identity
with other Elapidae LAAOs, and looped out with Anolis carolinesis LAAO (outgroup). This
split, in clear agreement with snake taxonomy, is associated to differences in the amino
acid residue at position 223, occupied by Ser in all LAAOs from clade A (with the exception
of M. surinamensis and Bungarus sp., having Asp and Asn, respectively) or by His in all
members of clade B.

Within Clade A (Elapidae family), all LAOOs from Micrurus conform a well-supported
group (PP =1.00) with genetic distance range between 12% with M. spixii and 18.9%
with M. tener (Supplemental Information 2). MipLAAOs sequences here obtained present
variations with other Micrurus LAAOs at positions 175 (His instead of Tyr), 301 (His
instead of Arg) and 384 (His instead of Leu).

Functional characterization of MipLAAO
MipLAAO was obtained in active form, presenting a conspicuous concentration-dependent
enzymatic activity upon L-Leu (Fig. 4A). This enzyme only oxidized hydrophobic amino
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acids like L-Trp, L-Tyr, and L-Leu (Fig. 4B). Furthermore, the enzyme maintained its
activity within the pH range 7.0-10.0, being optimal at pH 8.0 (Fig. 4C).

Antibacterial activity of MipLAAO
MipLAAO exhibited antibacterial activity against S. aureus, b

ut not against E. coli. Against

the former, the enzyme produced a bacterial growth inhibition halo of 19.8 & 0.6 mm,
while chloramphenicol used as a control produced a halo of 12 £+ 1 mm. The MIC against
S. aureus evaluated by the broth microdilution method was 2 pg/mL.

DISCUSSION

LAAO:s are widely found in snake venoms, both in Elapidae and Viperidae families.
In Micrurus, this enzyme has been detected by proteomic or transcriptomic analyses
in M. corallinus (Corréa-Netto et al., 2011; Aird et al., 2017; Morais-Zani et al., 2018),

M. altirostris (Corréa-Netto et al., 2011), M. fulvius (Margres et al., 2013), M. surinamensis
(Olamendi-Portugal et al., 2008; Aird et al., 2017), M. mipartitus (Rey-Sudrez et al.,
2011), M. nigrocinctus (Ferndndez et al., 2011), M. lemniscatus, M. paraensis, M. spixii
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Figure 4 Functional characterization of MipLAAO. (A) Enzymatic activity on L-Leu. (B) Substrate pref-
erence: L-Leu was replaced with other L-amino acids (L-His, L-Ser, L-Arg, L-Ala, L- Trp, L-Glu, L-Cys,
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(Aird et al., 2017), M. clarki (Lomonte et al., 2016), M. tener (Rokyta, Margres ¢» Calvin,
2015), M. mosquitensis (Ferndndez et al., 2015), M. alleni (Ferndndez et al., 2015), and M.
tschudii (Sanz et al., 2016).

The abundance of this enzyme in venoms varies among species, from traces (0.15%) as
in Naja oxiana (Samel et al., 2008) to major proportions (25%) as in Bungarus caeruleus
(More et al., 2010). In Micrurus venoms, it represents a low abundance component, with a
range of 0.7-4.0% of the total proteins. Interestingly, the highest proportion of LAAO in
this genus has thus far been found in M. mipartitus venom (4%; Rey-Sudrez et al., 2011).

This study reports the first LAAO isolated and characterized from Micrurus venoms.
MipLAAO is a basic protein with 483 amino acid residues. The enzyme was obtained
in active form, showing substrate specificity for hydrophobic amino acids, and optimal
catalytic activity at basic pH. Sequencing of cDNA clones obtained from the venom glands
of a single individual, evidenced the presence of at least six isoforms, with few conservative
differences among them. Similarly, transcriptomic analyses of M. fulvius (Margres et al.,
2013), M. tener (Rokyta, Margres & Calvin, 2015), and M. lemniscatus (Aird et al., 2017)
venom glands reported three, two, and two LAAO isoforms, respectively.

Structurally, the obtained MipLAAO sequences conserve the three well-known domains
named FAD-binding domain (Asp2 to Val72, Gly238 to Arg322 and Tyr425 to Ala483),
substrate binding domain (Lys73 to Argl29, Arg232 to Val237 and Ser323 to Lys424),
and helical domain (Val130 to Lys231) (Feliciano et al., 2017). Few sequence variations
were observed between the LAAO isoforms of M. mipartitus venom. In the FAD-binding
domain, MipLAAO-2 has one substitution at residue His35, and MipLAAO-6 presents
two, Leu52Pro and Thr329Ala. In the substrate binding domain, MipLAAO-4 displays one
modification, Pro351Ser, and MipLAAO-3, 5, 6 all present the same change, His342Arg.
Finally, in the helical domain, only MipLAAO-6 varied from the others, presenting the
substitution Ser220Gly. The role of isoform sequence substitutions in the enzymatic activity
and substrate preferences remains to be explored.

Amino acids involved in catalytic activity of the enzyme (Arg90, Tyr372, Gly464, Ile430,
Phe227, and Lys326) are conserved in the sequences obtained for M. mipartitus LAAO,
with the exception of residue 374 that presents a conservative Ile/Leu substitution. This
amino acid is of key importance given that it participates in the hydrophobic interactions
that are formed with the side chains of the substrate in the catalytic mechanisms (Izidoro
etal., 2014).

As for almost all Elapidae LAAOs, MipLAAO presents Ser at position 223, which is
occupied by His in LAAOs from Viperidae. His223 has been shown to play an important
role in the enzymatic reaction during the binding of substrate to the catalytic site (Moustafa
et al., 2006). However, His223 is substituted by Ser in almost all sequences of venom LAAOs
from Elapidae, except in M. surinamensis (Asp223), B.multicinctus, and B. multifasciatus
(Asn223). Chen et al. (2012) observed that His223 was present in all viperid LAAOs, Ser223
in most of elapid LAAOs, while Asn223 is present in krait LAAOs, and Asp223 is found in
king cobra LAAO. These authors suggested that the different residues at position 223 may
regulate substrate specificities of LAAOs by expanding the substrate-binding pocket and
reducing steric repulsion.

Rey-Suarez et al. (2018), PeerJ, DOI 10.7717/peerj.4924 11/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.4924

Peer

MipLAAO has three potential N-glycosylation sites at Asn145, Asn194, and Asn361,
indicating that it possibly presents this post-translational modification, in similarity with
other venom LAAQs (Chen et al., 2012). Furthermore, this could explain the difference
between the calculated and observed molecular mass values. It has been suggested that
carbohydrates in LAAOs could contribute to cytotoxicity by mediating the binding of the
enzyme to the cell surface and local accumulation of H,O, (Geyer et al., 2001).

Similar to other svLAAOs (Ponnudurai, Chung ¢ Tan, 1994; Sakurai et al., 2001; Vargas
et al., 2013; Zhong et al., 2009; Jin et al., 2007), MipLAAQ oxidized a variety of L-amino
acids, especially the hydrophobic L-Trp, L-Tyr and L-Leu, indicating its optical isomer
selectivity. In contrast, positively charged amino acids such as L-Lys and L-Arg present
unfavorable electrostatic interactions with the catalytic site of the enzyme and are not
oxidized (Moustafa et al., 2006).

Snake venom LAAOs exhibit wide ranges of pl, from acidic (Alves et al., 2008; Tonismiigi
et al., 2006; Toyama et al., 2006; Izidoro et al., 2006; Rodrigues et al., 2009; Okubo et al.,
2012; Vargas Muiioz et al., 2014) to basic (Lu et al., 2018; Zhang & Wei, 2007; Zhang et
al., 2004; Vargas et al., 2013). According to its sequence, MipLAAO is predicted to be a
basic protein, with a theoretical pI of 8.9. Differences in charge density may influence the
pharmacological activities of LAAOs (Izidoro et al., 2014).

Many snake venom LAAOs have been shown to be bactericidal (Toyama et al.,
2006; Stdbeli et al., 2007; Rodrigues et al., 2009; Zhong et al., 2009; Lee et al., 2011; Vargas
et al., 2013; Vargas Mufioz et al., 2014; Lazo et al., 2017). Bacteria inhibited by these
enzymes include the Gram-positives Bacillus dysenteriae, B. megatherium, B. subtilis,

S. aureus and S. mutans, and Gram-negative bacteria such as Aeromonas sp., E.

coli, Pseudomonas aeruginosa, Salmonella typhimurium, Acinetobacter baumannii and
Xanthomonas axonopodis pv passiflorae (Lee et al., 2011). According to literature, the most
likely mode of action involved in the bactericidal activity of LAAOs involves oxidative
stress in the target cell caused by hydrogen peroxide, triggering disorganization of the
plasma membrane and cytoplasm, and consequent cell death (Toyama et al., 2006; Souza
et al., 1999; Izidoro et al., 2014). These activities can be inhibited by the addition of catalase
and other H, O, scavengers (Torii, Naito ¢ Tsuruo, 1997; Tempone et al., 2001; Suhr ¢
Kim, 1999; Zhang et al., 2004). However, according to several studies, the role played by
hydrogen peroxide in the biological activities of LAAOs is uncertain. It is likely that there
are other mechanisms involved in their pharmacological and toxicological effects (Suhr &
Kim, 1999; Zhang et al., 2004; Izidoro et al., 2014).

Lee et al. (2011) suggest that binding to bacteria is important for the activity of LAAO,
as the concentration of H,O, generated by the enzyme is not sufficient to kill bacteria. It
was argued that binding of LAAO to the bacteria enables production of highly localized
concentrations of H,O, in or near the binding sites that will be sufficiently potent to
kill the bacteria. This also explains why a very small amount of LAAO could effectively
inhibit bacteria growth, as the MIC of King cobra LAAO against S. aureus was as low as
0.78 pg/mL (Lee et al., 2011). The interaction of LAAO with different cell membranes was
demonstrated by Abdelkafi-Koubaa et al. (2016) in a study with CC-LAAO from Cerastes
cerastes venom.
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Present results showed that MipLAAO was effective against the Gram-positive S. aureus,
with alow MIC value of 2 pg/mL, whereas the Gram-negative E. coli was not affected. This is
in agreement with the selectivity of antibacterial action described for LAAOs of B. schlegelii
(Vargas Muiioz et al., 2014), O. hannah (Lee et al., 2011), C. durissus cumanensis (Vargas
et al., 2013), D. russellii siamensis (Zhong et al., 2009), C. durissus cascavella (Toyama et
al., 2006), and T. mucrosquamatus (Wei et al., 2003) against gram positive bacteria. On the
other hand, LAAOs from B. pauloensis (Rodrigues et al., 2009), V. labetina (Tonismdgi et al.,
2006), N. oxiana (Samel et al., 2008) and P. australis (Stiles, Sexton ¢~ Weinstein, 1991) were
more active against Gram-negative than Gram-positive bacteria, and LAAOs from A. halys,
B. alternatus, and B. moojeni inhibited both Gram-positive and Gram-negative bacteria.
These differences in the selectivity of the antibacterial action of LAAOs are presumably due
to differences in their binding to bacteria.

CONCLUSIONS

MipLAAO, the first LAAO characterized from a coral snake venom, is a basic protein
with 483 amino acid residues. The enzyme was obtained in active form, showing substrate
specificity for hydrophobic amino acids, and optimal catalytic activity at basic pH. It showed
a significant antimicrobial effect against S. aureus, a clinically relevant Gram-positive
bacterium. It will be of interest to explore its potential applications as antimicrobial agent
in future studies.
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