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Abstract

The automatic analysis of different bio-signals from patients with Parkinson’s
disease is a highly relevant topic that has been addressed by the research commu-
nity within several years. Identifying bio-markers for early and differential diagnosis,
severity assessment, and response to therapy is a primary goal of the research on
Parkinson’s disease today. There are important contributions of these topics consid-
ering different bio-signals individually. Multimodal analyses, i.e., considering infor-
mation from different sensors, have not been extensively studied. Although many
improvements have been shown in several tasks, there is still an absence of a mul-
timodal system able to deliver an accurate prediction of the disease severity and to
monitor the disease progression. The aim of this thesis is to develop robust models
for the accurate diagnosis of Parkinson’s disease and to evaluate the disease severity
of patients using different bio-signals such as speech, online handwriting, gait (using
inertial sensors), and those signals collected from smartphones. The proposed mod-
els are evaluated in three application scenarios: (1) The automatic classification of
healthy subjects and Parkinson’s patients. (2) The evaluation of the disease sever-
ity of the patients based on a clinical scale, including both the motor-state severity
and the dysarthria level of the subjects. (3) The classification of patients into differ-
ent groups according to their disease severity e.g., mild, moderate, and severe. The
experiments covered both traditional pattern recognition and novel deep learning
models.

Three approaches are introduced to model the speech of Parkinson’s patients: (1)
phonological analysis of speech, which is more interpretable for clinicians by directly
modeling information about the mode and manner of articulation. (2) Representation
learning strategies using recurrent autoencoders, which have the potential to extract
more abstract and robust features than those traditionally computed. Finally, (3)
convolutional neural networks trained to process time-frequency representations of
the speech of the patients. Regarding handwriting analysis, the proposed approach
involves the computation of traditional kinematic features, combined with novel ap-
proaches based on geometric, and in-air features. Deep learning models based on
convolutional neural networks are also proposed to evaluate both raw online hand-
writing data, and the reconstructed offline images created by the patients. The
proposed approaches for gait analysis involve the computation of traditional kine-
matic and spectral features, combined with novel approaches based on non-linear
dynamics. A deep-learning approach combining convolutional and recurrent neural
networks is also introduced to model the gait signals from the patients. Finally, this
thesis covered a multimodal analysis of the speech, handwriting, and gait signals col-
lected from the patients. The addressed experiments are carried out using both early
and late fusion strategies. The proposed methods are also evaluated in two scenarios:
(1) high quality sensors, which can be available in medical centers for the assessment
of patients, and (2) data collected via smartphones, which can be used for continu-
ous monitoring of patients at home. The results indicate that the combined results
outperformed those obtained with each bio-signal separately, both for the automatic
classification of the disease and the evaluation of the disease severity. In addition, the
proposed models are robust to be applied both on signals collected with high-quality
sensors and smartphones.



Resumen

El análisis automático de diferentes bio-señales en pacientes con enfermedad de
Parkinson es un tema altamente relevante y que ha sido abordado por la comunidad
científica durante varios años. La identificación de bio-marcadores para la detección
temprana y diferencial, evaluación de la severidad, y respuesta a la terapia es un
objetivo primordial en la investigación actual de la enfermedad de Parkinson. Exis-
ten importantes contribuciones en estos temas considerando diferentes bio-señales de
manera individual. Sistemas multimodales que consideren información de diferentes
sensores no han sido ampliamente estudiados. A pesar de que muchas contribuciones
se han propuesto para diferentes tareas, aún existe una ausencia de un sistema mul-
timodal capaz de entregar una predicción acertada de la severidad de la enfermedad
y monitorear el progreso de la misma. El objetivo de esta disertación es desarrollar
modelos para apoyar el diagnóstico y evaluar la severidad de la enfermedad de Parkin-
son por medio de diferentes bio-señales como la voz, la escritura online, y la marcha
(usando sensores inerciales), además de señales capturadas con teléfonos inteligentes.
Los modelos propuestos se evalúan en tres escenarios de aplicación: (1) clasificación
automática de personas sanas y pacientes con Parkinson. (2) Evaluación de la severi-
dad de le enfermedad basada en una escala clínica tanto para la severidad motora y el
nivel de disartria de los pacientes. (3) Clasificación de pacientes en diferentes grupos
de acuerdo con su estado de severidad, por ejemplo, inicial, moderado, y severo. Los
experimentos realizados cubren tanto esquemas tradicionales de reconocimiento de
patrones además de modelos novedosos de aprendizaje profundo.

Se proponen tres enfoques para modelar la voz de pacientes con Parkinson: (1)
análisis fonológico de la voz, el cual es más interpretable para los médicos al mod-
elar directamente la información acerca del modo y manera de articulación. (2)
Estrategias de aprendizaje por representación utilizando autoencoders recurrentes,
los cuales tienen el potencial de extraer características más abstractas y robustas
que aquellas tradicionalmente calculadas. Finalmente, (3) redes neuronales convolu-
cionales entrenadas para procesar representaciones tiempo-frecuencia de la voz de los
pacientes. Para el análisis de escritura, el enfoque propuesto envuelve el cálculo de
características cinemáticas tradicionales, combinado con enfoques novedosos basados
en características geométricas y en-aire. Modelos de aprendizaje profundo basados en
redes neuronales convolucionales también se proponen para evaluar tanto las señales
brutas de escritura online, así como las imágenes offline reconstruidas creadas por los
pacientes. Los enfoques propuestos para el análisis de marcha envuelven el cálculo
de características cinemáticas y espectrales, combinadas con un enfoque novedoso
basado en dinámica no lineal. Un enfoque basado en aprendizaje profundo com-
binando redes neuronales convolucionales y recurrentes también se considera para
modelar las señales de marcha de los pacientes. Finalmente, esta disertación cubre
un análisis multimodal de señales de voz, escritura, y marcha. Los experimentos re-
alizados consideran estrategias de fusión temprana y tardía. Los métodos propuestos
son evaluados en dos escenarios: (1) usando sensores de alta calidad, y que pueden
estar disponibles en centros clínicos para la evaluación de los pacientes, y (2) datos
obtenidos de teléfonos inteligentes, los cuales pueden ser usados para el monitoreo
continuo de los pacientes en casa. Los resultados indican que el análisis conjunto de
diferentes bio-señales mejora aquellos obtenidos individualmente, tanto para la clasi-



ficación automática de la enfermedad y la evaluación de la severidad de los pacientes.
Adicionalmente, los modelos propuestos son robustos para ser aplicados tanto en
señales de alta calidad, como de aquellas obtenidas de teléfonos inteligentes.



Kurzdarstellung

Die automatische Analyse verschiedener Biosignale von Patienten mit Parkinson-
Krankheit ist ein hochaktuelles Thema, das seit mehreren Jahren in der Forschungs-
gemeinschaft behandelt wird. Die Identifizierung von Biomarkern für die Früh- und
Differenzialdiagnose, die Bewertung des Schweregrads und das Ansprechen auf die
Therapie ist heute ein primäres Ziel der Forschung zur Parkinson-Krankheit. Es gibt
wichtige Beiträge zu diesen Themen, die verschiedene Biosignale einzeln betrachten.
Multimodale Analysen, d.h. die Berücksichtigung von Informationen verschiedener
Sensoren, wurden nicht umfassend untersucht. Obwohl bei mehreren Aufgaben viele
Verbesserungen gezeigt wurden, fehlt noch immer ein multimodales System, das in
der Lage ist, eine genaue Vorhersage der Schwere der Erkrankung zu liefern und den
Krankheitsverlauf zu überwachen. Das Ziel dieser Dissertation ist es, robuste Mod-
elle für die genaue Diagnose der Parkinson-Krankheit zu entwickeln und die Schwere
der Erkrankung von Patienten anhand verschiedener Biosignale wie Sprache, Online-
Handschrift, Gang (mit Inertialsensoren) und der von Smartphones gesammelten Sig-
nale zu bewerten. Die vorgeschlagenen Modelle basieren auf drei Anwendungsszenar-
ien: (1) Die automatische Klassifizierung von gesunden Probanden und Parkinson-
Patienten. (2) Die Bewertung der Schwere der Erkrankung der Patienten basierend
auf einer klinischen Skala, die sowohl die Schwere des motorischen Zustands als auch
den Grad der Dysarthrie der Probanden umfasst. (3) Die Einteilung von Patienten
in verschiedene Gruppen entsprechend ihrer Schwere der Erkrankung, z. B. leicht,
mittelschwer und schwer. Die Experimente umfassten sowohl traditionelle Muster-
erkennung als auch neuartige Deep-Learning-Modelle.

Drei Ansätze werden vorgestellt, um die Sprache von Parkinson-Patienten zu mod-
ellieren: (1) phonologische Analyse der Sprache, die für Kliniker besser interpretierbar
ist, indem Informationen über die Art und Weise der Artikulation direkt model-
liert werden. (2) Repräsentation Lernstrategien unter Verwendung wiederkehrender
Autoencoder, die das Potenzial haben, abstraktere und robustere Merkmale zu ex-
trahieren als die herkömmlich berechneten. Schließlich (3) konvolutionale neuronale
Netze, die darauf trainiert sind, Zeit-Frequenz-Darstellungen der Sprache der Pa-
tienten zu verarbeiten. In Bezug auf die Handschriftanalyse umfasst der vorgeschla-
gene Ansatz die Berechnung traditioneller kinematischer Merkmale, kombiniert mit
neuartigen Ansätzen, die auf geometrischen und in der Luft befindlichen Merkmalen
basieren. Deep-Learning-Modelle auf der Grundlage von Convolutional Neural Net-
works werden ebenfalls vorgeschlagen, um sowohl rohe Online-Handschriftsdaten als
auch die von den Patienten erstellten rekonstruierten Offline-Bilder auszuwerten. Die
vorgeschlagenen Ansätze zur Ganganalyse beinhalten die Berechnung traditioneller
kinematischer und spektraler Merkmale, kombiniert mit neuartigen Ansätzen, die auf
nichtlinearer Dynamik basieren. Ein Deep-Learning-Ansatz, der konvolutionelle und
rekurrente neuronale Netze kombiniert, wird ebenfalls eingeführt, um die Gangsignale
der Patienten zu modellieren. Schließlich befasste sich diese Arbeit mit einer mul-
timodalen Analyse der von den Patienten gesammelten Sprach-, Handschrift- und
Gangsignale. Die angesprochenen Experimente werden sowohl mit frühen als auch
mit späten Fusionsstrategien durchgeführt. Die vorgeschlagenen Methoden werden
auch in zwei Szenarien evaluiert: (1) hochwertige Sensoren, die in medizinischen
Zentren zur Beurteilung der Patienten zur Verfügung stehen können, und (2) über



Smartphones gesammelte Daten, die zur kontinuierlichen Überwachung der Patien-
ten verwendet werden können zu Hause. Die Ergebnisse zeigen, dass die kombinierte
Analyse verschiedener Biosignale die mit jedem Biosignal erhaltenen sowohl bei der
automatischen Klassifizierung der Krankheit als auch bei der Bewertung der Schwere
der Erkrankung der Patienten übertraf. Darüber hinaus sind die vorgeschlagenen
Modelle robust, um sowohl auf Signale angewendet zu werden, die mit hochwertigen
Sensoren als auch auf Smartphones gesammelt wurden.
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Chapter 1

Introduction

1.1 Motivation

Parkinson’s disease (PD) is a neurological disorder characterized by the progressive
loss of dopaminergic neurons in the midbrain, producing several motor and non-motor
impairments. PD affects approximately 10 million people worldwide, with a doubling
of the global burden over the past 25 years because the increase in longevity of people
and a longer disease duration thanks to modern medicine methods [Dors 18b]. In
Europe, the prevalence of PD was estimated to be between 1280 and 1500 per 100,000
inhabitants by 2005 [Camp05]. According to the Global Burden of the disease study,
PD is the fastest growing neurological disease in terms of age-standardized rates of
prevalence, disability, and deaths [Feig 17]. It is expected that by 2040 the incidence
of PD will exceed 17 million patients in the world because the increased longevity
and other factors [Feig 19].

The International Parkinson and Movement Disorder Society (MDS) defined a
diagnostic criterion based on the presence of bradykinesia, resting tremor, and rigid-
ity [Post 18]; however, these symptoms appear when the dopaminergic neurons in the
striatum have been reduced by about 80% [Iran 18] and after roughly 50% of neurons
in the substantia nigra have been irrevocably damaged [Duff 13]. In addition, it can
take more than 20 years for the motor impairments to appear [Fere 19]. These rea-
sons lead to a need for an early diagnosis of the patients, in order to provide them
appropriate treatment before losing such high amount of neurons. The traditional
assessment and diagnosis of the disease depends to some extent on the experience
of the clinician performing the screening. This fact makes the determination of the
exact type of disease as well as its degree of severity difficult. The rate of misdiag-
nosis of PD is high, especially when it is performed by a non-specialist neurologist.
The probability of an inaccurate diagnosis can be up to 20%. This is particularly
problematic for patients in the early stages of disease [Rizz 16]. These facts highlight
the importance of being able to identify the earliest symptoms of PD in order to be
able to treat the disease in the prodromal phase. It also requires the ability to eval-
uate how severe are the symptoms of a given patient by an accurate and consistent
quantification method.

According to the Royal College of Physicians in London [Nati 06], in order to
relieve the impact of the disease, PD patients should have access to specialized nurs-
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2 Chapter 1. Introduction

ing care, physiotherapy, and speech and language therapy, in addition to the phar-
macological treatment administered by clinicians [Wort 13]. All of these PD-related
treatments exceed $US 303,000 per patient during the 12.8 years after diagnosis. The
economic burden of PD could be significantly decreased if the disease progression is
slowed down by at least 20% [John 13]. Moreover, many PD patients do not see a
neurologist [Will 11]. Even in developed countries, the doctor appointments are once
or twice per year e.g., in Sweden 1.7 times/year with regional variation between 1.1
and 2.1 [Lokk 11]. Additionally, accessibility to healthcare services is worse in rural
regions [Will 11]. For all these reasons, identifying accurate bio-markers for early and
differential diagnosis, severity, and response to therapy is a primary goal of the re-
search on PD today. A systematic approach for continuous monitoring of the state of
the patients will help in slowing down the impact of PD, and to improve the quality
of life of patients.

By 2040, it is expected that prodromal evaluations will be incorporated into active
neuroprotective treatment programs, followed by early treatment to slow down the
incidence of the disease [Berg 18]. In order to achieve this goal, it is important to
develop novel biomarkers using signal processing and machine learning approaches,
in addition to the integration of smartphone and wearable technologies to develop
progression biomarkers in early stages of the disease [Berg 18, Oroz 20b].

We believe that within the next decade, monitoring of motor and non-motor
symptoms of PD patients will gradually shift from the clinic to at-home, where a
continuous and non-intrusive monitoring can be performed. This monitoring is going
to be addressed with wearable sensors and smartphone technology to monitor different
symptoms of the disease, including motor impairments in the upper limbs, lower
limbs, and in the speech production, in addition to non-motor impairments such as
depression or sleep disorders. The developed technology is going to interact with
the electronic health record of the patients in the clinic, and with platforms for
population health analysis. The developed technologies are going to generate alerts
if some specific behavior appears in the collected data, thus an expert neurologist
will be able to prescribe a better and personalized treatment for each patient. This
vision is summarized in Figure 1.1.

1.2 Parkinson’s Disease
PD was first described by Dr. James Parkinson in [Park 17]. Dr. Parkinson de-
fined the disease as “Involuntary tremulous motion, with lessened muscular power, in
parts not in action and even when supported; with a propensity to bend the trunk
forward, and to pass from a walking to a running pace: the senses and intellects
being uninjured” [Park 17]. PD is a neuro-degenerative disorder that produces dif-
ferent motor and non-motor symptoms in the patients. Motor symptoms include
tremor, slowed movement, rigidity, bradykinesia, lack of coordination, among others.
Non-motor symptoms include depression, anxiety, sleep disorders, and olfactory dys-
functions, among others [Horn 98]. Approximately 70-90% of PD patients develop a
multidimensional speech impairment called hypokinetic dysarthria [Loge 78], which
manifests typically in the imprecise articulation of consonants and vowels, monoloud-
ness, monopitch, inappropriate silences and rushes of speech, dysrhythmia, reduced
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Figure 1.1: The future of digital medicine for monitoring of PD patients. EHR:
electronic health records. BPM: beats per minute

vocal loudness, and harsh or breathy vocal quality. Usually, the motor symptoms are
more or less evident from the onset of the disease. However, these motor impairments
are different among the patients. This leads to one of the most challenging aspects
to manage the disease progression and the treatment: each PD patient experiences
the symptoms and the response to the treatment in a different manner.

The underlying cause for these symptoms is the spread of the protein α-synuclein
throughout the peripheral and central nervous systems. The function of α-synuclein
is to help regulate the release of dopamine, a type of neurotransmitter critical to
control the start and stop of voluntary and involuntary movements [Horn 98]. For
the case of PD patients, α-synuclein begins to accumulate along the peripheral and
central nervous systems, being toxic to different cells. This ultimately leads to a loss
of neural population, in particular, dopaminergic neurons in the substantia nigra and
contralateral striatum; both being structures in the basal ganglia largely responsi-
ble to regulate both the reward network and motor systems [Rodr 09]. In the last
two decades it also has been observed that the presence of PD is associated with a
plethora of gastrointestinal symptoms produced in the gut and its associated neural
structures [Sche 18]. This is of particular interest because the evidence suggests that
these symptoms precede the motor impairments and the diagnosis of PD by several
years, at least for a subgroup of patients [Sche 18]. This fact gives important insights
about the origin of the disease and the possible detection of prodromal stages, which
will help to develop novel neuroprotective therapies to halt or slow down the disease
progression in early stages.

Despite the fact PD is not an infectious disorder, the disease exhibits many of
the characteristics of a pandemic [More 09, Dors 18a], similar to what we are seeing
now during the COVID-19 crisis. Pandemics extend over large geographic areas, and
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PD is increasing in every major region of the world [Feig 17, Dors 18a]. Pandemics
also tend to migrate, and PD appears to be shifting in response to changes in ag-
ing and industrialization [Dors 18a]. Similar to other pandemics, PD is experiencing
exponential growth, and no one is immune to the condition [Dors 18a]. The PD pan-
demic seems to be fueled by several factors, including aging populations, increasing
longevity and by the use of chemical industrial products [Dors 18a]. Particularly, it
has been observed that the contact with numerous products such as specific pesti-
cides, solvents, and heavy metals increase the incidence of PD [Gold 14]. Countries
with the most increased industrialization in recent years like China have observed also
the greatest increase in incidence of PD. For China, the growing rate of the disease
was higher than for any other country in the world between 1990 and 2016 [Feig 19].
In addition, the use of specific pesticides linked to PD such as paraquat still persists
in the world. For instance, although 32 countries have banned the use of paraquat,
it is still exported and used in several countries like Brazil, Colombia, or the United
States [Haki 16].

Besides the environmental factors described previously as a possible cause for PD,
there is also evidence of some genetic mutations that make a person more susceptible
to acquire the disease. The Leucine-Rich Repeat Kinase 2 (LRRK2) [Gilk 05] and the
Parkin (PRKN) [Arki 18] are the most recognized genes associated with increasing a
person risk for developing PD. Particularly, there is a well known mutation in the
PRKN gene, which particularly produced one of the most extensive genetic clusters of
early onset PD in a population in the countryside of Antioquia (Colombia) [Pine 06].
The genetic mutation seemed to be introduced to Antioquia by Spanish immigrants
during the colonial times in the 16th century [Pine 06].

At the moment, there is no treatment to halt or to slow down the progression
of PD, although there are several pharmacotherapeutic and neurosurgical options
available to alleviate certain symptoms. Pharmacotherapeutic treatments include
Levodopa as one of the most used medication to alleviate the motor symptoms;
however, it seems that the medication is only effective in the early stages of the
disease. The neurosurgical option is the deep brain stimulation, which consists of the
implantation of electrodes in the brain. These electrodes are connected by wires to
a type of pacemaker device (called an implantable pulse generator) placed under the
skin of the chest, which creates electrical pulses to stimulate continuously the area
of the brain that produces the motor symptoms. There are three areas in the brain
that are used for deep brain stimulation in PD patients: the subthalamic nucleus, the
globus pallidus internus, and the ventral intermediate nucleus of the thalamus. Each
area plays a role in the brain’s circuitry responsible for the control of movements.
For many patients, the response to deep brain stimulation is similar to Levodopa but
without the secondary symptoms associated to the medication such as dyskinesia.

1.3 Contribution to the Progress of Research
The vision about the use of technology based on signal processing, machine learning,
and mobile computing for the assessment of PD motivates the development of this
work. In particular we aimed to develop robust models for the accurate diagnosis and
for the evaluation of the disease severity using different bio-signals such as speech,
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online handwriting, gait, and those signals collected from smartphones. This work
also aimed to model and understand different phenomena in the speech, handwriting,
and general movement of patients affected with PD. In order to contribute to this
aim, the following are the main outcomes of this work.

1. A multimodal corpus with speech, handwriting, and gait signals collected from
106 PD patients and 105 HC subjects, age- and gender-balanced was built.
Additionally, the longitudinal corpus was built with a subset of 9 PD patients,
who were recorded in up to 7 different session between 2012 and 2020 in order
to evaluate the progress of the disease in long-term time intervals. At the same
time, seven of the PD patients were included in the At-home corpus to monitor
the progress of the speech deficits of PD patients in short-term periods of time.

2. The modified-Frenchay dysarthria assessment (m-FDA) is introduced as an al-
ternative scale to evaluate the dysarthria severity of PD patients. The scale can
be administered without the physical presence of the examiner by considering
only speech recordings of the patients. The assessment of the dysarthria sever-
ity of the patients can be fully automated with the application of this scale,
especially within short time intervals, where a phoniatrician is not available for
the patients.

3. Two novel approaches are proposed to evaluate the speech of PD patients,
both to accurately discriminate between PD and HC subjects and to predict
the dysarthria severity of the patients. The two novel methods include: (1)
phonological posterior features to model the pronunciation of different groups
of phonemes based on the mode and manner of articulation of the Spanish
language. The phonological features are created using recurrent neural networks
with a multi-task learning strategy. (2) An unsupervised representation learning
strategy using autoencoders to encode the most important information of the
speech of PD patients.

4. Novel deep learning strategies are considered to model the speech of PD pa-
tients, both to detect the presence of the disease, and to evaluate the dysarthria
severity of the patients.

5. Novel deep learning strategies are proposed to model the online handwriting
and gait signals collected from PD patients, both to detect the presence of the
disease, and to evaluate the neurological state of the patients.

6. Different fusion strategies were tested to combine the information from speech,
online handwriting, and gait from PD patients. This leads to get more accurate
models to detect the presence of the disease and to evaluate the severity of the
patients.

7. The longitudinal evaluation of the disease progression of the patients is ad-
dressed following the methodology introduced in [Aria 18a], and which is based
on GMM-UBMs to model features extracted from speech signals. The con-
sidered methodology is extended in this thesis to process additional features
extracted from speech, handwriting, and gait signals.
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8. I participated in the development of the mobile application Apkinson, which
was developed to collect speech and movement data from PD patients, and to
be used to monitor continuously the state of the patients using information from
speech, hand movements, and fine-motor skills. The app was the main result
of a Colombian - German project, financed by BMBF and COLCIENCIAS, in
which 16 young researchers from both countries participated.

1.4 Structure of this Work

Chapter 2 describes the fundamentals of classical pattern recognition and novel
deep learning techniques used in the scope of this work to train the classification and
regression models based on speech, online handwriting, gait, and smartphone data
collected from PD patients.

Chapter 3 starts with the description of the scales used to evaluate the severity of
the PD patients, including the movement disorder society-unified Parkinson’s disease
rating scale (MDS-UPDRS) and the proposed m-FDA scale. Then it describes a list
of existing databases from the state-of-the-art to model speech, handwriting, and gait
of PD patients. Finally the chapter describes the different corpora considered for the
experiments, including the multimodal, longitudinal, and at-home data; and the data
collected using the Apkinson app.

Chapter 4 describes the methods considered to model speech signals from PD
patients. The chapter includes a state-of-the-art review on methods for speech analy-
sis of PD patients. Then, it describes classical acoustic analyses based on phonation,
articulation, and prosody to model speech of PD patients, followed by the novel
analysis based on phonological analysis of speech, and the proposed unsupervised
representation learning strategy using autoencoders. The chapter finishes with the
description of the end-to-end deep learning systems to model the speech signals of
PD patients.

Chapter 5 describes the methods considered to model online handwriting signals
from the patients. The chapter starts with an overview of current techniques to model
handwriting data from PD patients. Then it describes methods based on kinematics,
geometrical, and in-air analyses of online handwriting, followed by the description of
end-to-end deep learning systems to model the handwriting data.

Chapter 6 describes the methods considered to model gait signals from the
patients. The chapter starts with a review of techniques to model gait signals from
PD patients using inertial sensors. Then it describes methods based on kinematics,
spectral, and non-linear dynamics analyses of gait, followed by the description of
end-to-end deep learning systems to model the gait data.

Chapter 7 provides a review on asynchronous multimodal systems to model the
state of PD patients, followed by a set of early and late fusion techniques to com-
bine the different speech, handwriting, and gait methods, described in the previous
chapters.

Chapter 8 starts by describing the existing applications and technologies to
model PD using smartphones. Then it includes a detailed explanation about the
development of Apkinson and the main features included in the app.
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Chapter 9 includes the details of the experiments that are addressed to evaluate
the capability of the proposed methods to discriminate between PD and HC speakers,
to evaluate the dysarthria severity of the speakers based on speech signals, and the
evaluation of the neurological state using all bio-signals. At the end of this chapter
there is an extensive discussion about the performed experiments and their results.

Chapter 10 presents an outlook on future research in the area of PD assessment
using different bio-signals such as speech, handwriting, gait, and those collected with
smartphone devices.

Chapter 11 summarizes the main insights about PD analysis using speech, hand-
writing, gait, and smartphone-based signals, and about the main experimental results.
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Chapter 2

Theoretical Background

The suitability of the proposed models based on speech, handwriting, gait, and smart-
phone data is evaluated in three main scenarios: (1) to discriminate between healthy
subjects and PD patients, (2) to predict the disease severity of the patients, based on a
clinical scale, and (3) the classification of PD patients into different groups according
to their disease severity e.g., mild, intermediate, and severe. For these applications,
different pattern recognition methods for automatic classification and regression have
to be considered. Two different strategies are considered to solve the classification
and regression problems: (1) a classical pattern recognition approach using support
vector machines (SVM) for classification and regression, and Gaussian mixture mod-
els (GMM) for longitudinal monitoring of the disease progression; and (2) a novel
approach based on deep learning methods for an end-to-end analysis of the data col-
lected from the patients. These two strategies are explained in detail in the following
sections. The end of the chapter describes practical aspects addressed in this work
such as cross-validation and hyper-parameter optimization strategies, which are used
to validate and select the most robust models to evaluate the proposed approaches.

2.1 Classical Methods of Pattern Recognition

Traditional machine learning methods are considered to model extracted features
from speech, handwriting, gait, and smartphone data collected from PD patients with
the aim to solve different classification and regression problems. The classification
problems consist of discriminating PD patients and HC subjects, and classifying PD
patients in different stages of the disease based on their clinical evaluation. These
classification problems are solved with support vector machine (SVM) classifiers. The
regression problems consist of predicting the neurological scale of the patients based
on the MDS-UPDRS-III score assigned by an expert neurologist, and predicting the
level of dysarthria of the subjects according to the proposed m-FDA scale assigned
by expert phoniatricians. The regression problems are solved using support vector
regression (SVR) and GMMs adapted from universal background models (UBMs).
Particularly, the GMM-UBM systems are considered to model the disease progression
of the patients using longitudinal data. The following subsections explain in detail
each of the addressed techniques.

9
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2.1.1 Support Vector Machines

The SVM is a method introduced by the computer science community in the 1990s
to solve classification problems [Bose 92]. SVMs have been shown to perform well
in a variety of scenarios, especially for medical applications like pathological speech
detection, where the high amount of data is often scarce. Despite the fact SVMs were
intended for binary classification problems, they can be extended to solve problems
with more than two classes i.e., such as the classification of patients in several stages
of the disease, or adapted to solve a regression problem when the target variable is
continuous.

Support Vector Machines for Classification

The classification of PD patients and HC subjects is evaluated with an SVM, which
assigns the feature vector from a training set xi ∈ Rd with d number of features into
one of the available training labels yi ∈ {−1,+1} i.e., PD or HC. The main aim of
the SVM is to find the optimal separating hyper-plane to maximize the separability
between the two classes. When the two classes are linearly separable we have the
case of a hard-margin SVM. For this first case, the separating hyper-plane satisfies
the following constraints:

b+ β1xi1 + β2xi2 + · · ·+ βdxid ≥ 1 if yi = +1, (2.1)

and

b+ β1xi1 + β2xi2 + · · ·+ βdxid ≤ −1 if yi = −1. (2.2)

Equivalently, a separating hyper-plane has the property from Equation 2.3 for all
i = 1, · · · , N . N is the number of training samples from the database.

yi(b+ β1xi1 + β2xi2 + · · ·+ βdxid) > 1 (2.3)

In general, if the database is perfectly separated using a hyper-plane, there will
be in theory an infinite number of such hyper-planes. The different hyper-planes can
usually be shifted up or down, or rotated, without coming into contact with any of the
feature vectors from the training set. The SVMs are focused on finding the optimal
hyper-plane i.e., the one that is farthest from the training data. The process of finding
such optimal hyper-plane starts by finding the perpendicular distance from the closest
feature vectors to the separating hyper-plane. The distance to each feature vector xi

to the separating hyper-plane is given by 〈β,xi〉+b
||β|| , where ||·|| denotes the Euclidean

norm. This means that the closest feature vectors to the hyper-plane (those points
where yi · (〈β,xi〉+ b) = 1) will be separated a distance 1

||β|| . Hence, the width of the
margin from the closest feature vectors to the hyper-plane will be 2

||β|| . These closest
points to the hyper-plane are called support vectors. Figure 2.1 shows an example of
the separating hyper-plane for 2-dimensional feature vectors.

The optimization problem to find the optimal hyper-plane that maximizes the
margin in the training data is defined according to Equation 2.4.
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Figure 2.1: Hard-margin SVM

maximize
β,b

2
||β||2

subject to yi · (〈β,xi〉+ b) ≥ 1, i = 1, · · · , N
(2.4)

The previous problem can be re-written as a constraint convex optimization prob-
lem, according to Equation 2.5.

minimize
β,b

1
2
||β||2

subject to yi · (〈β,xi〉+ b) ≥ 1, i = 1, · · · , N
(2.5)

This type of problems are typically solved by introducing the Lagrangian multipli-
ers λi to include the restrictions as a linear combination into the objective function.
Thus, the optimization problem can be re-formulated according to Equation 2.6. Our
aim is now to minimize the Lagrangian of the primal problem Lp(β, b,λ).

Lp(β, b,λ) =
1

2
||β||2 −

N∑
i=1

λi[yi · (〈β,xi〉+ b)− 1] (2.6)

The optimal conditions are found by setting the partial derivatives of Lp(β, b,λ)
to zero, thus we obtain:

∂Lp
∂β

= β +
N∑
i=1

λiyixi = 0 ∴ β =
N∑
i=1

λiyixi (2.7)

∂Lp
∂b

= −
N∑
i=1

λiyi = 0 ∴
N∑
i=1

λiyi = 0 (2.8)

and substituting these in Equation 2.6 we obtained the so-called Wolfe dual op-
timization problem shown in 2.9. In addition, the solution must satisfy the Karush-
Kuhn–Tucker conditions, which include Equations 2.7, 2.8, λi ≥ 0, and λi[yi·(〈β,xi〉+
b)−1] = 0. The solution for LD can be found using a standard optimization software.
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LD(λ) =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
ᵀ
ixj (2.9)

According to 2.7, the solution vector β is defined as a linear combination of the
support vectors, i.e., those feature vectors xi associated to those λi > 0, in order to
fulfill the Karush-Kuhn–Tucker conditions. The bias term b is obtained by solving
λi[yi · (〈β,xi〉 + b) − 1] = 0 for any of the support vectors. Finally the optimal
separating hyper-plane produces Equation 2.10 to classify the feature vectors from
the test set.

f(x) =
N∑
i=1

λiyix
ᵀxi + b = 0 (2.10)

Note that until now, the perfect separability of the training data is assumed.
However, this is not the case in real-world scenarios. For those problems when the
training data is not perfectly separable i.e., where there are errors that could be made
by the machine, the soft-margin SVMs are considered, and explained as follows.

One way to deal with classes that are not perfectly separated is still to maximize
the width of the margin, but allow for some points to be on the wrong side of the
hyper-plane or inside the margin. This is done by the inclusion of positive slack
variables ξ ∈ RN to penalize those errors. Hence, our constraint from Equation 2.3,
is re-formulated as follows.

yi(b+ β1xi1 + β2xi2 + · · ·+ βdxid) > 1− ξi (2.11)

The values of ξi measure the proportional amount by which the predictions from
Equation 2.10 are on the wrong side of the margin. Miss-classification appear when
ξi > 1, thus the sum

∑
x ii is an upper bound for the training errors. The cost

associated to the miss-classification errors is included in the optimization problem
from Equation 2.5, which is re-written as 2.12. The cost hyper-parameter C represents
the chosen penalty to the errors. The case of the hard-margin SVM explained before
corresponds to C =∞.

minimize
β,b,ξ

1
2
||β||2 + C

∑N
i=1 ξi

subject to yi · (〈β,xi〉+ b) ≥ 1− ξi
ξi ≥ 0

(2.12)

We can also define the Lagrange primal function re-formulating Equation 2.6 as
Equation 2.13. νi corresponds to the Lagrange multipliers associated to the restriction
ξi ≥ 0.

Lp(β, b,λ,ν) =
1

2
||β||2 +C

N∑
i=1

ξi−
N∑
i=1

λi[yi · (〈β,xi〉+ b)− 1 + ξi]−
N∑
i=1

νiξi (2.13)

Similar to the case of the hard-margin SVM, we set the derivatives of Lp(β, b,λ,ν)
to zero, thus we obtain:
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∂Lp
∂β

= β +
N∑
i=1

λiyixi = 0 ∴ β =
N∑
i=1

λiyixi (2.14)

∂Lp
∂b

= −
N∑
i=1

λiyi = 0 ∴
N∑
i=1

λiyi = 0 (2.15)

∂Lp
∂ξ

= C − λi − νi = 0 ∴ λi = C − νi (2.16)

By substituting these restrictions into the primal function, we also obtain the
Wolfe Lagrangian dual objective function as 2.17. LD is maximized subject to 0 ≤
λi ≤ C and

∑
λiyi = 0.

LD(λ) =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
ᵀ
ixj (2.17)

The Karush-Kuhn–Tucker conditions for this problem include the conditions 2.14, 2.15,
and 2.16, in addition to the constraints

λi[yi · (〈β,xi〉+ b)− 1 + ξ] = 0 (2.18)

νiξi = 0 (2.19)

yi · (〈β,xi〉+ b)− 1 + ξ ≥ 0 (2.20)

The support vectors for the case of the soft-margin SVM are those feature vectors
that lie on the edge of the margin, and are associated by ξi = 0. Those feature
vectors with 0 ≤ ξ ≤ 1 are inside the margin but are on the right side of the hyper-
plane i.e., they are well classified. Finally, those points associated to ξi ≥ 1 are the
miss-classification errors penalized by the hyper-parameter C. Given the solutions of
the dual problem for b and β join with the tuning hyper-parameter C, the decision
function of the soft-margin SVM is written according to Equation 2.21. Figure 2.2
shows an example of the soft-margin SVM for 2-dimensional feature vectors.

f(x) =
N∑
i=1

λiyix
ᵀxi + b = 0 (2.21)

So far, we show that SVMs are powerful classifiers; however, in practice their
computational and storage costs highly increase with the size of the training set. the
computational cost of the SVM is associated to the quadratic programming solver
used to find the support vectors, and usually ranges from O(d × N2) to O(d × N3)
(d is the number of features and N is the size of the training set) depending on how
efficient is the cache management of the solver (dataset dependent) [Chan 11].

Until now, we assume that the classes from the database are linearly separable
with an hyper-plane. This restriction can be more flexible by increasing the feature
space using expansion functions φ(xi) such as polynomials or splines. These func-
tions transform the non-linear decision in the original space into a linear decision
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Figure 2.2: Soft-margin SVM. xm corresponds to a miss-classified feature vector. xC
is a correctly classified feature vector which lies inside the margin.

in the expanded space, which will have a much higher dimension (infinite in some
cases). The Lagrangian dual function LD for the transformed feature vectors φ(xi)
can be estimated in a similar way to the previous case, and has the form of Equa-
tion 2.22. The decision function for this dual problem is found and written according
to Equation 2.23.

LD(λ) =
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyj〈φ(xi), φ(xj)〉 (2.22)

f(x) =
N∑
i=1

λiyi〈φ(x), φ(xi)〉+ b = 0 (2.23)

Note that both Equations 2.22 and 2.23 involve φ(x) only through inner prod-
ucts, which indicates that we do not need to know the specific transformation function
φ(x) but only the Kernel function K(x,xi) = 〈φ(x), φ(xi)〉. Such a kernel function
computes the inner product in the transformed space. K(x,xi) should be a sym-
metric positive (semi-) definite function. The most common kernel functions used in
the literature are the polynomial and Gaussian kernels, depicted in Equations 2.24
and 2.25, respectively. p and γ are hyper-parameters, and correspond to the order of
the polynomial kernel and to the bandwidth of the Gaussian kernel, respectively.

K(x,xi) = (1 + 〈x,xi〉)p (2.24)

K(x,xi) = exp
{
−γ ||x− xi||2

}
(2.25)

Support Vector Machines for Regression

The SVM paradigm can be adapted to solve regression problems were the target
value is continuous (yi ∈ R). These new models are defined as SVRs. The core idea
of SVRs is to minimize the prediction error |y − f(x)| using the same principles of
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SVMs designed for classification. For the case of the SVR we consider an hyper-
tube to minimize a symmetric loss function with a ε-insensitive parameter to define a
margin where some errors are tolerated. This is expressed according to Equation 2.26
and observed in Figure 2.3.

|y − f(x)| < ε (2.26)

x

y
ξi +ε

-ε
0

+ε-ε

ξi

〈𝛽, xi〉+b-ε=yi
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Figure 2.3: Support vector regressor

The optimization function for the SVR can be expressed according to Equa-
tion 2.27. C is the penalty hyper-parameter to determine the trade-off between
f(x) and the errors larger then ε that are allowed. Only those feature vectors for
which |yi − f(xi)| > ε contribute to the loss function.

minimize
β

1

2
||β||2 + C

N∑
i=1

{|yi − f(xi)| > ε} (2.27)

The optimization problem from Equation 2.27 can be reformulated as a constraint
optimization problem by the inclusion of slack variables ξi that count when yi −
f(xi) > ε, and ξ∗i when f(xi)−yi > ε. Hence the optimization problem is transformed
to Equation 2.28.

minimize
β,,ξ,ξ∗

1
2
||β||2 + C

∑N
i=1(ξi + ξ∗i )

subject to 〈β,xi〉+ b− yi ≤ ε+ ξi
yi − 〈β,xi〉+ b ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(2.28)

The Lagrangian of the previous optimization problem is defined according to
Equation 2.29. λi, λ∗i , νi, ν∗i are the Lagrangian multipliers associated to the restric-
tions.
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Lp = 1
2
||β||2 + C

∑N
i=1(ξi + ξ∗i )−

∑N
i=1(νiξi + ν∗i ξ

∗
i )

−
∑N

i=1 λi(ε+ ξi + yi − 〈β,xi〉 − b)

−
∑N

i=1 λ
∗
i (ε+ ξi − yi + 〈β,xi〉+ b)

(2.29)

Setting the partial derivatives of the primal problem to zero, we obtain the fol-
lowing expressions.

∂Lp
∂β

= β +
N∑
i=1

(λ∗i − λi)xi = 0 ∴ β =
N∑
i=1

(λ∗i − λi)xi (2.30)

∂Lp
∂ξi

= C − νi − λi = 0 ∴ C = νi + λi (2.31)

∂Lp
∂ξ∗i

= C − ν∗i − λ∗i = 0 ∴ C = ν∗i + λ∗i (2.32)

∂Lp
∂b

=
N∑
i=1

(λ∗i − λi) = 0 (2.33)

By substituting these partial derivatives in the primal problem, we obtain the
dual problem according to Equation 2.34.

LD = −1

2

N∑
i=1

N∑
j=1

(λ∗i − λi)(λ∗j − λj)〈xi,xj〉 − ε
N∑
i=1

(λ∗i − λi) +
N∑
i=1

yi(λ
∗
i − λi) (2.34)

From the partial derivative with respect to the weights β in Equation 2.30 we
found that the regression function for a sample from the test set can be written
according to:

f(x) =
N∑
i=1

(λ∗i − λi)〈xi,x〉+ b (2.35)

2.1.2 Gaussian Mixture Models - Universal Background Mod-
els

In previous studies [Aria 18a], we introduced the use of GMM-UBM systems to quan-
tify the disease progression of PD patients. The main hypothesis is that if the speech
of a patient is changing due to the disease progression, such changes can be modeled
by comparing a model created for a patient in a specific session with respect to a
reference model created with recordings of a group of speakers. The GMM-based
systems are parametric probabilistic models represented as a linear combination of
L Gaussian densities. For a feature vector xi ∈ Rd a GMM is defined according to
Equation 2.36. The term ωi represents the mixture weights. The probability densi-
ties pi(xi) are modeled as a multivariate Gaussian distribution with a mean vector
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µj ∈ Rd and a covariance matrix Σj ∈ Rd×d [Reyn 00]. The parameters of the GMM
for each Gaussian density are denoted as Λ =

{
ωj,µj,Σj

}
, and they are estimated

using the expectation maximization (EM) algorithm [Reyn 00].

p(xi|Λ) =
L∑
j=1

ωjpj(xi) (2.36)

L∑
j=1

ωj = 1 (2.37)

GMMs are used to represent the distribution of feature vectors extracted from
a single speaker or a group of speakers. When the GMM is trained using features
extracted from a large sample of speakers, the resulting model is a UBM. Ideally,
the UBM is trained to represent the entire space of possible speakers. For a given
set of speakers, the conditional probability p(XUBM |Λ) is known as the maximum
likelihood function that best represents the speaker’s population. XUBM ∈ RN×d are
the set of N feature vectors extracted from the group of speakers. The parameters
Λ of the model are estimated using the expectation maximization (EM) algorithm,
which increases the likelihood of the UBM LL(XUBM |Λ) in each iteration according
to Equation 2.38.

LL(XUBM |Λ) =
N∏
j=1

L∑
i=1

ωipi(xj|Λi) (2.38)

The model of the test speakers i.e., PD patients recorded in different sessions,
is derived from the UBM by adapting its parameters Λ following a maximum a
posteriori (MAP) process, which consists of a two step estimation process. The first
step is the alignment of the feature vectors xi to be adapted into each j-th component
of the UBM, using Equation 2.39. Then, Pr(j|xt) and xi are used to compute the
sufficient statistics for the weights, the mean vectors, and the covariance matrices,
using Equations 2.40, 2.41 and 2.42.

Pr(j|xi) =
ωjpj(xi)∑L
k=1 ωkpk(xi)

(2.39)

nj =
N∑
i=1

Pr(j|xi) (2.40)

Ej(x) =
1

nj

N∑
i=1

Pr(j|xi)xi (2.41)

Ej(x
2) =

1

nj

N∑
i=1

Pr(j|xi)x2
i (2.42)

The second step of the MAP process consists of using the sufficient statistics to
update the parameters of the adapted model Λ̂ =

{
ω̂j, µ̂j, Σ̂j

}
for the j-th mixture.

The adapted parameters are computed using the following Equations for the weights,
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means, and covariances, respectively. δjω, δjµ, δjΣ are the adaptation coefficients to
control the trade-off between the old and new estimates for the weights, means, and
covariances, respectively. In addition, the scale factor r is considered to guarantee
that

∑
ωj = 1.

ω̂j = [δjωnj/N + (1− δjω)ωj]r (2.43)

µ̂j = δjµEj(x) + (1− δjµ)µj (2.44)

Σ̂2
j = Ej(x

2) + (1− δjΣ)(Σ2
j + µ2

j)− µ2
j (2.45)

Finally, the disease progression of the patients is estimated by comparing the
adapted GMM model with respect to the UBM using a distance measure. We use
the Bhattacharyya distance dBha, which considers differences in the mean vectors
and covariance matrices between the UBM and the adapted models. dBha is defined
by Equation 2.46, where µ̂j and Σ̂j are the mean vector and the covariance matrix
of the j-th component of the adapted model. µj and Σi are the parameters of the
UBM [You 10]. The first term of Equation 2.46 measures the similarity between the
mean vectors of the UBM and the adapted model. The second term measures the
similarity between the covariance matrices.

dBha =
1

8

L∑
i=1

(µ̂i − µi)
ᵀ

[
Σ̂i + Σi

2

]−1

(µ̂i − µi)

+
1

2

L∑
i=1

log

∣∣∣ Σ̂i+Σi

2

∣∣∣√
|Σ̂i| |Σi|

 (2.46)

2.2 Deep Learning Methods
Deep learning is a subset of machine learning methods that has shown a lot success
and has gained public attention in recent years, particularly because its ability to
learn useful patterns from high dimensional non-structured data like images, video,
speech, and natural language, among others. Deep learning methods usually are
based on the concept of Neural networks, which are mathematical models inspired on
how the brain processes information using multiple layers of abstraction to process
the input information to make a decision.

Novel deep learning methods are considered to model the speech, handwriting,
and gait data collected from PD patients and HC subjects. We propose different
deep learning strategies based on convolutional and recurrent neural networks to
process the speech, handwriting, and gait signals in an end-to-end fashion both to
classify PD patients and HC subjects, and to evaluate the disease severity of the
patients. We additionally propose two deep learning architectures to obtain robust
speech features to model state of PD patients. The first architecture is designed to
detect and extract phonological features related to the pronunciation of the patients of
different groups of phonemes (see Section 4.3). The second one is designed two extract
meaningful features based on a representation learning strategy using autoencoders
to characterize the speech of PD patients (see Section 4.4). The following subsections
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will explain the basic theory behind deep neural networks (DNN) and how they are
considered to process the different biosignals collected from PD patients within the
scope of this work.

2.2.1 Feed-Forward Neural Networks

The most common form of DNNs are the feed-forward neural networks, or Multi-
layer perceptrons (MLPs). In this type of networks, the feature vector xi ∈ Rd

is propagated forward via multiple processing layers until a set of output nodes.
Figure 2.4 illustrates how the nodes are connected in the MLP to process the feature
vectors. The nodes in the MLP are called neurons, and they are connected to process
the information from the input vector. An example of a neuron of an MLP is shown
in Figure 2.5.

Input
layer

Hidden
layer

Hidden
layer

Output
layer

Figure 2.4: Feed-forward neural network with a depth of three layers. It consists of
one input layer, two hidden layers and one output layer. All nodes are fully connected
from the previous layer to the next one.

ωᵀxi + b

1

x1

x2

xd

b

w1

w2

w d

..
. fa()

h(x)

Figure 2.5: Single neuron. A linear combination of input values passes trough an
activation function fa(). b indicates the bias term. h(xi) is the output value of the
neuron.

A linear combination of the feature vector is computed with the weights ω =
ω1, ω2 · · · , ωd. b is the bias term. This linear combination then is processed by a non-
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linear function fa() called activation function to create the output h(xi). Formally,
the feature vector is processed according to Equation 2.47 with a set of multiple
neurons in one layer. W ∈ Rh×d is the weight matrix of the layer with h neurons,
b ∈ Rh is the bias vector of the layer. For a neural network with more than one
hidden layer, like the one shown in Figure 2.4 the output is expressed according to
Equation 2.48. J is the number of layers and ŷi is the estimated output of the neural
network.

h(xi) = fa(W
ᵀxi + b) (2.47)

ŷi = hJ(hJ−1(· · ·h2(h1(xi)))) (2.48)

There are different kinds of activation functions available. The sigmoid() or
tanh() functions were the most popular when the topic was starting to gain atten-
tion [Good 16]. However, the introduction of the rectified linear unit (ReLU) [Nair 10]
brought high improvements to deep learning. The ReLU function is piecewise linear,
which makes it easy and fast to optimize (see Equation 2.49). In fact, Krizhevsky
et al. [Kriz 12] reported a speed-up by a factor of six compared to a standard tanh()
in their application. ReLU functions also help to prevent the vanishing gradient
problem, which means that no further training is performed due to a neglectable
gradient. However, if the input distribution tends to be more negative, the ReLU
sets all activations to 0 which prevents further learning. This problem can be solved
using the Leaky-ReLU [Maas 13] activation, where a slight slope factor α is applied
(see Equation 2.50) in the negative value, which prevents the gradient from becoming
0.

fa(x) = max(0, x) (2.49)

fa(x) =

{
x if x > 0
αx otherwise

(2.50)

When a classification problem needs to be solved, the network usually makes
the decision according to the most likely output. Hence, it is beneficial to map the
output values to a probability distribution to find the most probable output class. The
activation function to perform this computation is the softmax(), which is expressed
according to Equation 2.51.

softmax(x)j =
exj∑
j e

xj
(2.51)

Loss functions

The performance of the training process of a neural network is determined by the
loss functions. They are a set of metrics designed to measure the difference between
the output of the neural network and the expected value (label). The weights of
the neural network are updated during the training process to minimize the loss
function. One of the most common loss functions is the mean square error (MSE),
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which is commonly used to solve regression problems. The MSE is defined according
to Equation 2.52. The MSE loss penalizes large errors in the model and is insensitive
to the small errors by the optimization of the L2-norm.

L(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)2 (2.52)

An additional loss function used for regression problems is the Huber loss, de-
scribed by Equation 2.53. It uses the scaled L2-norm if the error falls below 1 and
the L1-norm in other cases. The Huber loss is less sensitive to outliers than the MSE
and in some cases prevents exploding gradients [Girs 15].

L(y, ŷ) =
1

N

N∑
i=1

{
0.5(yi − ŷi)2 if |yi − ŷi| < 1
|yi − ŷi| − 0.5 otherwise

(2.53)

Regarding classification problems, the most common loss function is the cross-
entropy, which is designed to solve classification problems whose output is a proba-
bility value. Despite other loss functions like MSE penalize wrong predictions, cross-
entropy gives a greater penalty when incorrect predictions have high confidence. The
cross-entropy loss increases as the predicted probability diverges from the actual la-
bel. For binary classification problems the cross-entropy loss is defined according to
Equation 2.54. For multi-class problems the loss function is extended to 2.55. Nc is
the number of classes.

L(y, ŷ) = − 1

N

N∑
i=1

[yi log(ŷi)− (1− yi) log(1− ŷi)] (2.54)

L(y, ŷ) = − 1

N

N∑
i=1

Nc∑
c=1

yi,c log(ŷi,c) (2.55)

Gradient-based optimization

The typical method to optimize the parameters of a neural network is the gradient
descent, which minimizes the loss function in an iterative process by computing the
gradient of the loss with respect to the parameters of the model. The optimization
is performed following the negative gradient direction of the cost function g (see
Equation 2.56). η is the learning rate, and denotes the step size taken at the k-th
iteration during the optimization step.

ωk+1 = ωk − ηg (2.56)

In practice, the mini-batch gradient descent is used to approximate the gradient of
the cost function in the training process. It replaces the actual gradient (computed
from the entire dataset) with an estimation (computed from a randomly selected
subset of the data). Such an estimation reduces the computational cost. The opti-
mization using the mini-batch does not guarantee to reach the global minimum of
the cost function, but it often finds a very low value fast enough to be useful. The
core idea of the mini-batch gradient descent is that it is an expectation, which can
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be approximated using a batch of samples, uniformly distributed from the training
set. Hence, we can compute the gradient g from Equation 2.56 using Equation 2.57,
where m is the batch size.

g =
1

m
∇ω

m∑
i=1

L(yi, ŷi) (2.57)

In practice, it is necessary to gradually decrease the learning rate over time, so
we now denote the learning rate at the k-th iteration as ηk. This is because the mini-
batch gradient estimator introduces a source of noise due to the mini-batch sampling
that does not vanish even when the minimum is reached. In practice, it is common to
decay the learning rate linearly until the τ -th iteration, according to Equation 2.58,
with α = k/τ [Good 16].

ηk = (1− α)η0 + αητ (2.58)

The most important property of the mini-batch gradient descent is that com-
putation time per update does not grow with the size of the training data, which
allows convergence even when the number of training examples is very large. For
a large enough dataset, the mini-batch gradient descent may converge before it has
processed the entire training set, within some fixed tolerance of the errors in the test
set [Good 16].

Although the mini-batch gradient descent is mostly used for supervised learning
because it is easy to compute the loss L(y, ŷ) between the actual and the predicted
values, it can also be used for unsupervised learning, for instance when we train
representation learning networks such as autoencoders [Vasq 20a]. In these scenarios,
a common trick is to use the reconstruction loss L(x, x̂) for the training process, as
it is further explained in Section 4.4.

Adam optimizer

The Adam algorithm [King 14] is an adaptive learning rate optimization algorithm,
which acts as an extension of the gradient descent. The name Adam is derived from
adaptive moment estimation. The core idea of Adam is that the method computes
individual adaptive learning rates for different parameters of the neural network ac-
cording to the first and second moments of the gradients, shown in Equations 2.59
and 2.60, respectively. β1 and β2 are hyper-parameters known as the exponential
decay rate for the first and second moment of the gradient, respectively, and they
were originally defined as β1 = 0.9 and β2 = 0.999 [King 14]. These values for β1 and
β2 have become standard for the community. For additional information about their
inference and validation, the reader may refers to [King 14].

mk = β1mk−1 + (1− β1)gk (2.59)

vk = β2vk−1 + (1− β2)g2
k (2.60)

Then, the update rule for the parameters of the neural network using Adam is
shown in Equation 2.61. ε = 10−8 is chosen to avoid the division by 0. An overview
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of other optimization methods based on gradient descent to train neural networks
can be read on [Rude 16].

ωk+1 = ωk −
η

√
vk + ε

mk (2.61)

Backpropagation

The core idea of training a neural network is to update the weight matrix associated
to each layer according to the current loss function. The backpropagation algorithm
was proposed for such a purpose. It is an efficient way to compute the gradients with
respect to the weights based on the chain rule and dynamic programming. The basic
procedure is as follows:

1. Forward pass: Propagate the input mini-batch through the network in a
layer-by-layer fashion to compute all activations and get the loss at the output
layer.

2. Backward pass: Recursively apply the chain rule to propagate backwards
through the network and compute all gradients. In this way each neuron weight
is updated according to its contribution to the total loss.

3. Repeat the forward and backward steps iteratively for the different mini-batches
from the training set until convergence of the loss function.

Figure 2.6 shows the basic concept of backpropagation. The green lines indicate
the activations computed in the forward pass until the loss function L is computed.
Consequently, the chain rule is applied to compute the gradient with respect to the
output y and it is propagated backwards through the network (red lines).

x1

x2

∂L
∂ω1 = ∂L

∂y
∂y
∂ω1

∂L
∂ω2

=
∂L
∂y

∂y

∂ω2

y

∂L
∂y

Figure 2.6: Illustration of the backpropagation algorithm. Green lines denote the
activations computed in the forward pass. In the backward pass (red lines) the chain
rule is used to compute the gradients. Adapted from the Stanford CS231n lecture
notes [Li 18].
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2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a specific case of neural networks that
use convolutional operators instead of matrix multiplications in at least one of their
layers [Good 16]. The fully connected layers in MLPs are replaced by convolutional
layers. Hence, Equation 2.47 is replaced by 2.62 in CNNs.

h(xi) = fa(W ~ x + b) (2.62)

Convolutional layers can deal with 1, 2, or 3-dimensional signals. 1-dimensional
signals include raw speech frames, online handwriting signals, or gait signals. 2-
dimensional signals may include gray-scale images with only one channel, color images
with three channels (red, green, blue), or time-frequency representations of speech
signals. Finally, 3-dimensional signals may include video frames transmitted over
time. The main advantage of CNNs is the local-connectivity i.e., each of the CNN
filters captures a local context, which helps to get more accurate models and to reduce
complexity because it requires less parameters. The discrete convolution operation
used in CNNs is defined according to Equations 2.63 and 2.64 for the case of 1, and
2-dimensional signals, respectively.

ω ~ x[i] =
N∑
j=1

x[j] · ω[i− j] (2.63)

W ~ X[i, j] =

N1∑
k=1

N2∑
l=1

x[k, l] · ω[i− k, j − l] (2.64)

Given the nature of the convolution operation, which process the signals with CNN
filters, make these layers particularly useful to learn time-invariant representations
in 1D signals like speech waveforms, or time-frequency invariant in 2D signals such
as spectrograms). Due to that reason, CNNs are commonly used in lower layers of
the model because these are powerful to encode relevant local stationarities - like
sinusoids in waveforms [Diel 14], or frequency traces in spectrograms.

After each convolutional layer, there is usually a pooling layer that down-samples
the hidden representation in order to compress the feature space and use only the
most relevant information. A pooling function replaces the output of the layer at
a certain location with a summary statistic of the nearby outputs [Good 16]. For
example, themax pooling operation reports the maximum output within a rectangular
neighborhood. Pooling operation helps to make the representation approximately
invariant to small translations of the input. Translation invariance means that if we
shift or rotate the input by a small amount, the values of most of the pooled outputs
do not change. Invariance to local translation can be a very useful property if we care
more about whether some feature is present than exactly where it is [Good 16] e.g.,
we want to detect the presence of dysarthria in a speech frame but not the time-frame
where it is present. Pooling layers also improve the computational efficiency of the
network because the next layer has roughly k times fewer inputs to process (being k
the size of the pooling neighborhood). Figure 2.7 shows a typical CNN architecture
to process a spectrogram, consisting of 2 convolutional layers, 2 pooling layers and a
classification layer formed with an MLP.
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Figure 2.7: Typical structure of a CNN.

Residual layers

One of the architectures that has become the state-of-the-art for CNNs is ResNet [He 16].
The architecture uses residual layers to provide a solution to the vanishing gradient
problem, which appears when deeper models are considered. Instead of training a set
of stacked layers to directly fit an underlying distribution, the ResNet-based models
fit a residual mapping. Formally, denoting the expected output of the layer as h(x),
the output of the residual block is designed to learn the function F(x) = h(x) − x.
Hence, the desired function can be recovered as F(x) + x. The residual function is
easier to optimize than the originally expected. The formulation of F(x) + x can be
implemented via skip connections (see Figure 2.8). These skip connections make it
easier for the gradient to flow from output layers to layers nearer the input. The skip
connections perform an identity mapping, whose output is added to the output of
the convolutional layers.

Conv. layer 

Conv. layer

x

x

identity
mapping

h(x)=𝓕(x)+x

𝓕(x)
Conv. layer 

Conv. layer

x

h(x)

a)                                      b)

Figure 2.8: Comparison between a) a normal convolutional block and b) a residual
block.

2.2.3 Recurrent Neural Networks

RNNs have been proposed to model a sequence of feature vectorsX = {x1,x2, · · · ,xt,
· · · ,xT}. These networks are designed in a way such that they have an output ht()
that depends on both the feature vector in a time instant xt and the output in the
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previous time instant ht−1(). Equation 2.65 represents the output of a hidden layer
in an RNN in a time t.

ht(x) = tanh(W[xt,ht−1] + b) (2.65)

The weight matrix W is learned to process the input and the previous output state
of the RNN, respectively. These weights are shared across the different time steps of
the network. If we had separate parameters for each time step, the network would
not be able to generalize to sequence lengths not seen during training, nor to share
statistical strength across different sequence lengths and across different positions in
time [Good 16]. Such weight sharing is particularly important when a specific piece of
information can occur at multiple positions within the sequence [Good 16]. The tanh()
is usually considered because it does not vanish easily during the back-propagation
trough time, as it occurs for other activation functions like the sigmoid().

Figure 2.9 shows the basic structure of an RNN. The sequence of feature vectors
is fed to the recurrent layer, producing the output sequence h, which is then used as
input for the RNN in the next time steps. The hidden outputs are finally processed
by an activation function to produce the output sequence y.

Recurrent 
layer

Recurrent 
layer

Recurrent 
layer

... Recurrent 
layer

...

x1 x2 xt xT

h1 h2 ht hT-1ht-1 hT

Activation function

y1 y2 yt yT... ...

Figure 2.9: General scheme of a basic RNN.

The recurrent layer from Figure 2.9 has a causal structure, i.e., the state at time
t only captures information from the past x1, · · ·xt−1 and the present input xt. How-
ever, in many applications it is important for the predictions to have information
also from the future time steps. For instance, in speech recognition, the mapping
of the current sound into a phoneme may depend on the next few phonemes be-
cause of co-articulation and potentially may even depend on the next few words
because of the linguistic dependencies between nearby words [Good 16]. This is also
true for handwriting modeling and many other sequence-to-sequence learning tasks,
such as those addressed in this work. Bidirectional RNNs were created to address
that need [Schu 97], and have been very successful in tasks such as speech recogni-
tion, handwriting modeling, machine translation, among others. Bidirectional RNNs
combine an RNN that processes the input sequence forward through time with an
additional RNN that moves backwards the input sequence. The output of the for-
ward and backward RNNs is combined via addition, multiplication, or concatenation
operation, as it is shown in Figure 2.10.

Traditional RNNs exhibit a vanishing gradient problem, which appears when mod-
eling long temporal sequences. The problem occurs because the repeated application
of the same operation at each time step of a long temporal sequence produces very
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Figure 2.10: General scheme of a bidirectional RNN.

small gradients, which are vanish in the backward pass due to the chain rule, thus
the weights of the network are not properly updated. In other words, during back-
propagation through time, as gradients are calculated by the chain rule, the small
numbers produced by the derivatives of the tanh() function are multiplied T times,
which squeezes the final gradient to almost zero, thus there are no changes to up-
date the weights of the RNN. Another problem that appears in traditional RNNs
is the exploding gradients, which is associated to the consecutive multiplication by
the weight matrix in each time step when the weights are too large. This causes a
blowing up of the gradients, which makes the RNN training highly unstable. Several
methods were proposed to address the problem of vanishing and exploding gradients
in RNNs, such as adding skip-connections through time [Lin 98], or including leaky
units to integrate signals with different time constants [Moze 92]. However, the most
successful approach to solve the training problems in RNNs was the introduction of
gated RNNs. These include the long short-term memory units (LSTMs) [Hoch 97],
and the gated recurrent units (GRUs)[Cho 14].

Long Short-Term Memory Units

The core idea of LSTMs to solve the training problems of traditional RNNs is the
inclusion of a long term memory using self-loops to produce paths where the gradient
can flow for long term duration sequences [Hoch 97]. This self-loop is controlled by
another hidden unit, which makes the memory of the LSTM to have a dynamical
temporal context. The LSTM architecture consists of a set of four recurrently con-
nected sub-networks, known as memory blocks. Each block contains one or more
self-connected memory cells and three multiplicative units: the input, output and
forget gates, which work analogously to write, read and reset operations for the
cells [Grav 12].

The most important component in the LSTM block is the state unit st, which
defines the self-loop for the long-term memory of the block. It is controlled by the
forget gate fg, which activates the state unit via a sigmoid function σ() according
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to Equation 2.66. xt is the input vector in the present time, and ht−1 is the hidden
output at the previous time instant. Wf and bf are the weights and bias terms of
the forget block.

fg = σ (Wf [ht−1,xt] + bf ) (2.66)

The input gate ig is used to control how much information is used to update the
state unit of the LSTM block. The output of the input gate is obtained according to
Equation 2.67, with the associated weights and bias terms Wi and bi, respectively.

ig = σ (Wi[ht−1,xt] + bf ) (2.67)

The state unit of the LSTM block is updated using to Equation 2.68, according
to the output values from the input gate ig, and the self-loop controlled with the
forget-gate.

st = fgst−1 + ig tanh (Wc[ht−1,xt] + bc) (2.68)

Finally, the output gate is used to control how much information is passed to the
output of the LSTM block. The output gate is activated using Equation 2.69, in a
similar way to the input and forget gates, but with its own parameters. The output
of the LSTM block is then computed with Equation 2.70.

og = σ (Wo[ht−1,xt] + bo) (2.69)

ht = og tanh(st) (2.70)

Figure 2.11a) shows an LSTM memory block with a single cell. The scheme is
compared with the one obtained for a traditional RNN block in Figure 2.11b). An
LSTM network is the same as a standard RNN, except that the summation units in
the hidden layer are replaced by memory blocks [Grav 12]. Each cell has the same
inputs and outputs as a traditional RNN, but has four times more parameters and a
system of gating units that controls the flow of information [Good 16].

a) b)
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Figure 2.11: a) General scheme of an LSTM block. b) General scheme of an RNN
block. σ() represents sigmoid activation functions, and the symbol× denotes a matrix
multiplication.
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LSTMs have a much cleaner backpropagation compared to traditional RNNs. This
structure avoids the vanishing and exploding gradient problems. The main reason is
because there is no multiplication with the weight matrices during the backward pass,
but only an element-wise multiplication with the forget gate, thus the complexity in
the backward pass is reduced.

Gated Recurrent Units

The GRUs were introduced in [Cho 14] as an alternative to the LSTMs with the aim
to reduce the number of parameters to learn, but keeping the core idea of gates to
control the flow of information and to prevent vanishing and exploding gradients.
The main difference between the GRU and the LSTM is that a single update gate
unit ug simultaneously controls the forgetting factor and the decision to update self-
loop of the state unit. Conversely to the LSTM that has four gates, the GRU only
has two: the update gate and the reset gate rg, which acts similar to the forget gate
of the LSTM. Figure 2.12 shows the main structure of the GRU block. Note that it
includes only three weight matrices compared to four in the LSTM.

xt

𝜎() 𝜎() tanh()

ht-1
ht-1 xt

Wr Wu Wh

ht

rg ug

rght-1 xt

1-

Figure 2.12: General scheme of a GRU block. σ() represents sigmoid activation
functions, and the symbol × denotes a matrix multiplication.

The update gate acts similar to the forget and input gate of an LSTM, and its
output is computed by Equation 2.71. The update gate helps the GRU to determine
how much of the past information needs to be transferred to the future.

ug = σ (Wu[ht−1,xt] + bu) (2.71)

The reset gate is used in the GRU block to decide how much of the past informa-
tion to forget, similar to the forget gate in the LSTM. The output of the reset gate
is computed by Equation 2.72.

rg = σ (Wr[ht−1,xt] + br) (2.72)

Finally, the output of the GRU block is computed by Equation 2.73. The element-
wise multiplication between the reset gate and ht−1 determines what information to
forget from the previous time steps.

ht = (1− ug)ht−1 + ug · tanh(Wh[rght−1,xt] + bh) (2.73)



30 Chapter 2. Theoretical Background

2.2.4 Regularization in Deep Learning

One of the biggest issues to train deep learning models is to guarantee generalization
to new test data that appear in the final application. As we move towards more
complex deep learning models, the method learns very well details and also noise from
the training data, which ultimately results in poor performance on the unseen test
data. Regularization comprises a set of techniques that make slight modifications to
the learning algorithm to improve the generalization of the models, which is translated
into an improvement in the performance on unseen test data. Different regularization
methods have been proposed in the literature to improve generalization and to avoid
over-fitting. Four different regularization strategies are considered within the scope of
this work to obtain models that are more robust to process unseen data not included
in the training set. Thus to create models suitable for the clinical practice.

Early Stopping

It is commonly observed in the training process of deep learning methods that the
training error is reduced over the iterations, but in some cases the development error
starts to increase. This behavior indicates that the model is starting to over-fit the
training data. The core-idea of early-stopping is to monitor the loss in the develop-
ment data, and when such loss starts to increase after a number of epochs, then we
stop the training process (see Figure 2.13). The number of epochs with no further
reduction of the development loss is usually known as patience, and it is an indicator
of when to stop the training process.

Development
Train

Loss

epochs

early
stopping

Figure 2.13: Early stopping strategy.

Dropout

This regularization method turns-off randomly a set of neurons in the model, ac-
cording to a fixed probability value. On each training iteration different neurons are
deactivated, therefore they no longer contribute neither to the forward nor the back-
ward pass. Dropout helps to prevent that nearby neurons depend to each other, thus
they have to learn the weights in a more independent way without considering the
values of the neighbor neurons. The training process using dropout includes a hyper-
parameter pdrop, which defines the probability of a neuron to be turned-off during
each iteration. An additional consequence of dropout is that it roughly doubles the
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number of iterations required to converge. However, training time for each epoch is
also reduced, which compensates the training time. Similar to other regularization
methods, dropout is more effective on those problems where there is a limited amount
of training data, which is the typical scenario in clinical applications like the ones
considered in this work.

Batch Normalization

Batch normalization [Ioff 15] is one of the most used methods to optimize the train-
ing process of deep learning models. It is a reparametrization technique to normalize
the activation in intermediate layers of deep learning models [Bjor 18] using a z-score
standardization function, according to Equation 2.74. The output of the hidden layer
h(x) is standardized using statistics from the mini-batch µc and σc. The standardiza-
tion is controlled by the parameters γc and βc, which are learned during the training
process. ε is a small value used for numerical stability.

h(x) = γc
h(x)− µc√

σ2
c + ε

+ βc (2.74)

Batch normalization reduces the amount by which the hidden unit values shift
around (internal-covariance shift). This has the effect of stabilizing the learning pro-
cess and reducing the number of training epochs required to train the model [Ioff 15].
Batch normalization acts also as regularizer because the standardization of each mini-
batch using its mean and standard deviation introduces some noise to each layer,
providing a regularization effect that reduces over-fitting.

L2 Regularization

This is one of the most common methods to regularize the weights of deep learning
models. It is also known as Tikhonov regularization. This method is used to regularize
the cost function associated to the weights ω by adding the term 1

2
||ω||2 to penalize

those weights with higher values. Due to the addition of the regularization term,
the values of weight matrices decrease since it assumes that a neural network with
smaller weight matrices leads to simpler models, thus reducing over-fitting. The
regularization level is controlled by an additional hyper-parameter ζ. Hence, the cost
function L is updated according to Equation 2.75. The update rule for the weights
from Equation 2.56 is also re-formulated using Equation 2.76. L2 regularization is
also known as weight decay as it forces the weights to decay towards zero (but not
exactly zero).

L(ω)′ = L(ω) + ζ
1

2
||ω||2 (2.75)

ωk+1 = ωk − ηg − ζωk (2.76)
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2.3 Experimental Evaluation

This section describes the strategies considered to validate and to optimize the pro-
posed models based on classical pattern recognition and deep learning methods both
to classify PD patients vs. HC subjects and to evaluate the severity of the disease of
the patients.

All classification and regression models addressed in this work are validated fol-
lowing a nested 10-fold cross-validation strategy, which consists of dividing the feature
sets extracted from all subjects into two partitions, one used to train and optimize
the hyper-parameters of the algorithms, and the other one is used for test. At the
same time, the training partition is divided into 9-folds, using 8 of them to train the
models and the remaining one to optimize the hyper-parameters of the learning algo-
rithm i.e., development set. A summary of this process is shown in Figure 2.14. The
cross-validation is always performed subject-independent, i.e., it is guaranteed that
all samples collected from the same subject are always in the same partition, and they
are not mixed in the train and test set. The 10-folds are also randomly selected, but
with the same seed in order to guarantee that all experiments are comparable to each
other. In addition, the training sets for the classification problems are stratified i.e.,
we consider equal number of samples from both classes in order to have a balanced
training data.

10-Fold
cross-validation

Database

Test set

Train/development 
set

9-Fold 
cross-validation

(hyper-parameter 
optimization)

Figure 2.14: Distribution of the database into a nested 10-fold cross-validation.

The hyper-parameters of the learning algorithms are optimized based on the per-
formance obtained on the development set. For the case of the SVM, the complex-
ity hyper-parameter C, the bandwidth of the Gaussian kernel γ and the ε hyper-
parameter for the loss function in the SVR are optimized in a randomized search
strategy, which is a slight variation on grid search. Instead of searching over the en-
tire grid of possible values of hyper-parameters, the randomized search only evaluates
a random sample of points on the grid. This makes the optimization computationally
cheaper than the full grid search optimization. Bergstra and Bengio show in [Berg 12]
that in many scenarios, randomized search performs about as well as the full grid
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search optimization. Even they show that using only 60 randomized samples from
the hyper-parameters, there is a probability of 0.95 of reaching the global optimum
with an error of 5%. To derive the previous conclusion, imagine the 5% interval
around the global optimum. Now imagine that we generate sample points from the
entire space and see if any of them lies within the selected optimal interval. Each
random sample has a 5% chance of landing in the optimal space, thus if we select
n points independently, the probability that all of them miss the desired interval is
(1 − 0.05)n. Hence, the probability that at least one of the n samples lies in the
optimal interval is 1− (1− 0.05)n. If we want at least a 0.95 probability of success,
we solve Equation 2.77 for n, and we get n = 60.

1− (1− 0.05)n > 0.95 (2.77)

The randomized search optimization is performed as follows: the values of the
hyper-parameters C, γ, and ε are modeled with an exponential probability density
function, which generates values for each hyper-parameter to be evaluated according
to the performance in the development set. After several iterations with different
generated values from the probability functions, the hyper-parameters that produced
the highest accuracy are stored. After the 10-folds, the optimal hyper-parameters
are found based on the median of the values of the hyper-parameters obtained for
each fold. Finally, the 10-fold cross-validation is repeated but only with the train and
test set in order to guarantee that all test samples are evaluated with the optimal
hyper-parameters, which leads to more realistic and stable results.

For the case of the GMM algorithms, the number of Gaussian components is se-
lected from the intervalM = {2, 4, 8, 16, · · · , 1024}, in the same way as the addressed
in [Aria 18a], and the optimal value is found as the one that minimizes the Bayesian
information criterion (BIC).

For the methods based on DNNs, the hyper-parameters include the kernel size of
the convolutional layers, the number of hidden units in the recurrent cells, the number
of neurons in the fully connected layers, the dropout probability, and the initial learn-
ing rate. The values for those hyper-parameters are manually optimized, based on
prior knowledge about the problem, and aspects about training error, generalization
error, and available computational resources.
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Chapter 3

Clinical Assessment of Patients and
Data Collection

This chapter describes the perceptual scales used to evaluate the disease severity of
the patients. The motor state severity is evaluated with the MDS-UPDRS-III scale.
In addition, the proposed m-FDA scale is used to evaluate the dysarthria severity of
the participants. Both scales are described in Section 3.1. The chapter then describes
in Section 3.2 existing databases used in the literature for motor examination of PD
patients using information from speech, handwriting and gait. Finally the chapter in
Section 3.3 includes a detailed description of the different corpora collected and used
for the experiments of this thesis.

3.1 Clinical Assessment of the Participants

3.1.1 Movement Disorder Society - Unified Parkinson’s Dis-
ease Rating Scale

There is no standard test to evaluate the severity of the symptoms associated to PD.
Neurologists rely on clinical history and physical examination to assess the patients.
Although there exist several scales to assess the neurological state of PD patients, the
most widely used are the Movement Disorder Society - Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS ) [Goet 08] and the Hoehn & Yahr scale. Particularly,
the MDS-UPDRS is a perceptual scale used to evaluate motor and non-motor as-
pects of PD patients. The total MDS-UPDRS is divided into four parts: part I (13
items) concerns non-motor experiences of daily living such as cognitive impairment,
depressed mood, sleep disorders, and fatigue. Part II (13 items) considers motor ex-
periences of daily living such as eating, handwriting, and tremor. Part III (33 items)
includes the motor examination in lower limbs, upper limbs, and speech production.
Part IV (6 items) concerns motor complications such as time spend without medi-
cation. The ratings of each item range from 0 (normal) to 4 (severe) and the total
score for each part is obtained from the sum of the corresponding items.

In this thesis only the third section (MDS-UPDRS-III) is considered because it
evaluates the motor capabilities of the patients. The section has a total of 33 items to
evaluate different motor capabilities. Thus, the ground truth to label the neurological
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state of the patients is a score ranging between 0 and 132 (33 items×4=132). The
MDS-UPDRS-III has only one out of 33 items to evaluate the speech of the patients.
However, the speech production process involves different muscles and it is one of
the most impaired symptoms of the patients [Horn 98]. Thus, it makes sense to
consider a specific scale, in addition to the MDS-UPDRS-III to model only the speech
impairments developed by PD patients.

3.1.2 Modified Frenchay Dysarthria Assessment Scale

Speech impairments developed by PD patients are described as hypokinetic dysarthria.
Therefore, a scale to assess dysarthria is appropriate to assess speech of PD pa-
tients. Different scales to evaluate dysarthria include, for instance, the dysarthria
profile [Robe 82], the dysarthria examination battery [Drum93], and the Frenchay
Dysarthria Assessment (FDA) [Ende 08]. Particularly, FDA was introduced in 1983
and later revised in 2008 [Ende 08]. The scale covers a wide range of aspects including
reflexes, breathing, lips movement, palate movement, laryngeal capacity, tongue pos-
ture/movement, intelligibility, and swallowing. To evaluate swallowing the examiner
requests the patient to drink different beverages like water and yogurt before speak-
ing, therefore the evaluation requires the patient to be present during the assessment.
In many cases the transportation to the clinic is not possible, especially for PD pa-
tients in intermediate or severe stages because their reduced mobility. Additionally,
the scale is also not suitable for patients who live in remote rural areas where there
is almost no clinical expert.

To overcome these issues we recently proposed a modified version of the FDA
scale, namely m-FDA [Vasq 18b], which can be administered considering only speech
recordings of the patients. Of course swallowing aspects are not covered in this ver-
sion of the scale, however most of the speech aspects included in the original FDA
scale are included in the modified version. The introduced m-FDA scale consists of 13
items and evaluates seven aspects of the speech including breathing, lips movement,
palate/velum movement, laryngeal movement, intelligibility, and monotonicity. Each
item ranges from 0 to 4 (integer values), thus the total score ranges from 0 (healthy
speech) to 52 (completely dysarthric) [Vasq 18b]. Table 3.1 summarizes the speech
aspects and items included in the scale. Different speech tasks are considered to evalu-
ate each item of the m-FDA. Respiratory capability (Aspect: Breathing) is evaluated
with sustained phonations of vowel /ah/ and diadochokinetic (DDK) tasks. Strength
and control of lips closing (Aspect: Lips) are evaluated with DDK tasks and a read
text, respectively. Nasal escape and velar movement (Aspect: Palate/Velum) are
evaluated with the read text and a DDK task, respectively. Phonatory capability
and effort to produce speech (Aspect: Laryngeal) are evaluated with the sustained
vowel /a/ and the read text. Correctness and velocity in the tongue movement (As-
pect: Tongue) are evaluated with DDK tasks. Finally, intelligibility and monotonicity
are evaluated with the read text.

The labeling process for the m-FDA was performed by three phoniatricians who
first agreed on the evaluations of ten speakers (five PD patients and five HC subjects,
randomly chosen). These initial evaluations allowed the experts to standardize the
evaluation criteria. Afterwards, the experts evaluated the speech of the additional
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Table 3.1: Aspects and items included in the m-FDA scale

Aspect m-FDA items Speech task

Breathing 1) Duration of respiration Vowel /ah/
2) Respiratory capability Vowel /ah/ and /pa-ta-ka/

Lips 3) Strength of closing the lips /pa-ta-ka/
4) General control the lips Read text

Palate/Velum 5) Nasal escape Read text
6) Velar movement /pa-ta-ka/

Laryngeal
7) Phonatory capacity in vowels Vowel /ah/
8) Phonatory capacity in continuous speech Read text
9) Effort to produce speech Read text

Tongue 10) Velocity to move the tongue /pa-ta-ka/
11) Velocity to move the tongue /ta/

Intelligibility 12) General intelligibility Read text

Monotonicity 13) Monotonicity and intonation Read text

speakers independently. The speakers from the multimodal, longitudinal, and At-
home data, considered in this thesis were labeled according to the m-FDA scale. The
inter-rater reliability among the phoniatricians was 0.75. It was computed by calculat-
ing the average Spearman’s correlation between all possible pairs of raters [Vasq 18b].
The m-FDA scale has not been clinically validated yet, however, it can be used to get
information about the progression of symptoms related with speech. Additionally, it
can be administered based on speech recordings, i.e., patients can stay at home to
do the exercises on their own or following the instructions given by the doctor who
is in the clinic, or even given by a virtual agent. This scale represents a step towards
the automatic administration of speech and language therapy for PD patients. The
administration of this scale can be included in following releases of the Apkinson
software (see Section 8.2)

3.2 Existing Data

The main aim of this section is to provide information about existing databases (some
of them public) that could be used to start or deepen the study of motor impairments
in PD patients using different bio-signals. Speech, gait, handwriting, and multimodal
studies are reviewed.

3.2.1 Speech

One of the first studies for quantitative analysis of PD speech was the Parkinson’s
voice initiative1. Data collected during that project included utterances of sustained
phonations of the vowel /ah/ pronounced by about 50 PD patients. Although the
recordings are not publicly available, the main contribution of this initiative was to

1Parkinson’s voice initiative, http://www.parkinsonsvoice.org/

http://www.parkinsonsvoice.org/
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capture the attention of the research community to address this problem. Few years
later, Prof. Sabine Skodda in [Skod 11a] presented a study with data collected from
73 PD patients and 43 HC subjects, German native speakers. The participants were
asked to do several speech tasks including the sustained phonation of the vowel /ah/,
DDK exercises such as the rapid repetition of the syllables /pa-ta-ka/, the reading of a
text with 81 words, and a monologue. This corpus was extended [Skod 11b, Oroz 16b]
and its current version includes data from 88 PD patients and 88 HC subjects. In
the same year, Prof. Jan Rusz introduced a corpus with 20 newly diagnosed PD
patients and 16 HC subjects, Czech native speakers [Rusz 11]. The corpus included
recordings of sustained vowels, DDK exercises, 12 isolated words, three sentences, a
read text with 80 words and a monologue. The database has been updated since the
first release, and now includes a total of 40 PD patients and the same number of HC
speakers [Rusz 18b]. In 2013, the authores from [Saka 13] released a database with
utterances of 20 PD and 20 HC subjects, Turkish native speakers. The speech tasks
included sustained vowels, isolated words, digits, and sentences. This corpus is freely
available to be used by the research community interested in the topic2. One year
later, the PC-GITA corpus was released [Oroz 14]. This database contains utterances
of 50 PD patients and 50 age and gender balanced HC subjects. All of the partic-
ipants are Colombian Spanish native speakers. The participants were requested to
perform several exercises, including: sustained phonation of the five Spanish vowels,
six different DDK exercises, a set with 45 isolated words, 10 sentences, a read text
with 36 words, and a monologue. This corpus is available upon request by contacting
the first author of the paper where the data was released3. In 2015 another corpus was
presented in [Baye 13]. The data include recordings of 168 PD patients, all of them
English native speakers. No HC people participated in the study. The speech tasks
included the sustained phonation of the vowel /ah/, one DDK task, and a reading
passage. In 2016, the authors from [Nara 16] presented a corpus with data from 40 PD
patients and 40 HC subjects, Spanish speakers from Extremadura (Spain). The sub-
jects pronounced three repetitions of the vowel /ah/ (for at least five seconds, and on
a single breath). Although the speech recordings are not available, a set of extracted
features can be downloaded4. There is also a recent initiative that pushed the study
of Parkinson’s speech. It is lead by the mPower consortium and contains recordings
of more than 2000 speakers, including PD patients and HC subjects [Bot 16b]. The
corpus includes recordings of the sustained vowel /ah/ collected using smartphones.
The data can be downloaded after registration in the Synapse portal5. The authors
from [Beri 17] compiled and released a database with interviews with Muhammad Ali
available on YouTube to track longitudinal changes in speech production due to the
disease. The speech data contain utterances from 23 interviews performed between
1968 and 1981. These data are also available for the research community6. In 2018
the in the wild speech medical corpus (WSM) [Corr 18, Corr 19] was released. The

2https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multipl
e+Types+of+Sound+Recordings

3email to Prof. Juan Rafael Orozco-Arroyave: rafael.orozco@udea.edu.co
4https://archive.ics.uci.edu/ml/datasets/Parkinson+Dataset+with+replicated+acou

stic+features+
5https://www.synapse.org/mPower
6http://www.public.asu.edu/%7Evisar/software/AliSpeechData.zip

https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multiple+Types+of+Sound+Recordings
https://archive.ics.uci.edu/ml/datasets/Parkinson+Speech+Dataset+with++Multiple+Types+of+Sound+Recordings
rafael.orozco@udea.edu.co
https://archive.ics.uci.edu/ml/datasets/Parkinson+Dataset+with+replicated+acoustic+features+
https://archive.ics.uci.edu/ml/datasets/Parkinson+Dataset+with+replicated+acoustic+features+
https://www.synapse.org/mPower
http://www.public.asu.edu/%7Evisar/software/AliSpeechData.zip
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corpus contain data from PD, depression, and cold patients. The data was collected
from video blogs (vlogs) from Youtube, when patients talk about different topics, in-
cluding their disease, present experiences, or personal opinions. The PD data contain
videos from 34 PD patients and 19 HC subjects. Recently, in [Moro 19a] the authors
introduced the Neurovoz corpus, which contains speech utterances from 47 PD pa-
tients and 32 HC subjects, Castilian Spanish speakers. The speech tasks included
DDK exercises, six sentences, and a description of a picture. Table 3.2 summarizes
the main existing corpora for PD assessment from speech.

Table 3.2: Summary of existing data for speech assessment of PD patients

Database Source Participants Speech tasks Available
[Y/N]

German PD [Skod 11b] 88 PD, 88 HC sustained vowels, DDKs, read text, monologue N
Czech PD [Rusz 11] 20 PD, 15 HC sustained vowels, DDKs, read text, monologue N
de-novo PD Czech [Rusz 18b] 40 PD, 40 HC sustained vowels, DDKs, read text, monologue N
Turkish PD [Saka 13] 20 PD, 20 HC sustained vowels, words, read sentences Y2

PC-GITA [Oroz 14] 50 PD, 50 HC sustained vowels, DDKs, read sentences, Y3

read text, monologue
English PD [Baye 13] 168 PD sustained vowels, DDK, read passage N
Extremadura PD [Nara 16] 40 PD, 40 HC sustained vowels N
mPower [Bot 16b] 2000 speakers sustained vowels Y5

Ali speech data [Beri 17] 23 interviews from Muhammad Ali performed between Y6

1968 and 1981
WSM [Corr 18] 34 PD, 19 HC monologues obtained from YouTube videos N
Neurovoz [Moro 19a] 47 PD, 32 HC DDKs, read sentences, picture description N

3.2.2 Handwriting

The automatic handwriting assessment of PD patients has increased in the recent
years. One important aspect considered in the existing data is the handwriting ex-
ercises performed by the participants. Handwriting tasks can be divided into simple
drawing exercises, writing tasks, and complex exercises, where the participants have
to perform additional activities to the writing process. Handwriting data can be
collected offline i.e., on paper and using a normal pen, or online i.e., collected with
specialized tablets or smart-pens. For the first case, the obtained static images are
analyzed with different computer vision methods. For the second case, it is possible
to analyze the dynamics of the handwriting process, including information such as
the pressure of the pen and kinematic aspects of the strokes.

There are several databases available to perform research on handwriting assess-
ment of PD patients. For instance, the publicly available data from [Isen 14], which
was released in 20147 and that contains drawings of Archimedean spirals performed
by 62 PD patients and 15 HC subjects. These data contain three types of handwrit-
ing exercises: (1) the static spiral test, where three Archimedean spirals appeared on
a tablet, and the patients have to retrace them. (2) The dynamic spiral test, where
the spirals appear and disappear at certain time stamps, by forcing the patients to
keep the pattern in mind while drawing. (3) The stability test, which consists of a

7https://www.kaggle.com/team-ai/parkinson-disease-spiral-drawings

https://www.kaggle.com/team-ai/parkinson-disease-spiral-drawings
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red point in the screen where the participants were asked to hold the pen without
touching the tablet’s surface. In 2016, researchers from the Brno University of Tech-
nology released the PahaW database [Drot 16] to the public8. The corpus contains
data from 37 PD patients and 38 HC subjects, who were requested to perform dif-
ferent handwriting tasks including drawings of Archimedean spirals, the repetition
the graph ‘l ’, the bi-graph ‘le’, a set of words, and the sentence in Czech language:
Tramvaj dnes uz nepojede (the tram wont’t go today). Several signals were collected
including the on-surface movement, in-air movement, pressure, and position.

In addition to online handwriting data, in [Pere 16b] the authors presented the
HandPD dataset, which is formed with Archimedean spirals drawn by 18 HC sub-
jects and 74 PD patients, using normal pen and paper. The corpus was collected
at Botucatu Medical School, São Paulo State University, in Brazil, and it is pub-
licly available9. The HandPD dataset was updated and called the NewHandPD
dataset [Pere 18a]. The new version contain information from 35 HC and 31 ad-
ditional PD patients. Each subject was asked to perform 12 exercises, 4 of them
related to spirals, 4 related to meanders, 2 circle movements (one in the air and
another on the paper), and left and right-handed wrist movements. During the ex-
ercises, the handwriting dynamics was also captured by means of a smart-pen with
several sensors: microphone, finger-grip, axial pressure, and tri-axial accelerometers.
This database is also publicly available. In 2019, the authors from [Zham19] intro-
duced a database with handwriting data from 31 PD patients and 31 HC subjects,
who were instructed to write a sentence in English, to repeat the scripts b, d, and
bd, and to write and Archimedean spiral. Table 3.3 summarizes the main existing
corpora for PD assessment from handwriting.

Table 3.3: Summary of existing data for handwriting assessment of PD patients

Database Source Participants Handwriting tasks Available
[Y/N]

PD Spirals [Isen 14] 62 PD, 15 HC Spirals, hold the pen in a fixed point Y7

PaHaW [Drot 16] 37 PD, 38 HC Spirals, graph repetition, sentence Y8

Hand PD [Pere 16b] 74 PD, 18 HC Spirals, meanders Y9

new Hand PD [Pere 18a] 35 PD, 31 HC Spirals, meanders, wrist movements Y9

[Zham19] 47 PD, 32 HC Spirals, script repetition, sentence, fluency test N

Common drawing tasks in the existing data include Archimedan spirals, meanders,
and circles. Drawing these type of figures is easy to perform and well tolerated by the
patients; however, complexity may increase with the inclusion of more complex figures
like houses, cubes, among others, when the patients usually apply different drawing
strategies, i.e., the strokes of the figures can be drawn in different orders, which
is then reflected in the extracted dynamic features [Impe 19c]. On the other hand,
writing tasks included in the existing data include the repetition of scripts, which
are easy to write and contain suitable information about the stability of the writing
process. In addition, writing words or sentences is suitable to assess agraphia. Writing
a sentence requires a higher neuromotor programming load than repeating scripts

8https://bdalab.utko.feec.vutbr.cz/
9http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/

https://bdalab.utko.feec.vutbr.cz/
http://wwwp.fc.unesp.br/~papa/pub/datasets/Handpd/
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because it also involves linguistic skills, attention, and memory. Writing sentences also
provides the possibility to evaluate the motor-planning activity within consecutive
words. Finally, there are studies that consider more complex handwriting exercises
such as the Rey Osterrieth complex figure [Shin 06], fluency tests based on writing
a list of animals [Zham19], or modified versions of the Fitt’s task [Fitt 54], which
evaluates the act of pointing, i.e., how to move a cursor to a target point [Smit 17b].

3.2.3 Gait

Several studies have performed gait analysis of PD patients. For such a purpose,
some repositories with data available to work on the topic have been created. For
instance the PhysioNet repository10 was released in 2000. This database contains
gait data from 93 PD patients and 73 HC subjects, where the participants were
asked to walk during 2 minutes on level ground using force-sensitive sensors in the
shoes. Later in [Bach 10], the authors introduced the Daphnet Freezing of Gait (FoG)
dataset, which aimed to evaluate and detect FoG episodes. The recording system used
accelerometers placed at the ankles, thighs, and the waist of the patients. About 8
hours of signals were captured from 10 PD patients and FoG episodes were observed
in 8 of them. This corpus is available in the UCI-ML repository11. In [Bart 11] the
authors presented a database with data from 92 PD patients and 81 HC subjects. Gait
signals were collected using the eGaIT system12, which consists of accelerometers and
gyroscopes attached to the lateral heel of the shoes. The study was extended and now
the database includes recordings of 190 PD patients and 101 HC subjects [Bart 17].
The tasks recorded include 20-meter and 40-meters walking with a pause every 10-
meters, heel-toe tapping, and timed up and go (TUG) tests. Most of the recent
studies of gait are based on wearable sensors attached to the body or to the shoes.
However, there exists another way of collecting walking signals, by using a walkway.
In [Hass 12a] the authors presented a database with signals recorded from 310 PD
patients while walking on a walkway. Different gait parameters can be extracted
from this recording device, however note that its use is restricted only to clinical
environments. Table 3.4 summarizes the main existing corpora for PD assessment
from handwriting.

3.3 Data Collected During this Thesis

3.3.1 Multimodal Corpus

The multimodal corpus is an extended version of the PC-GITA database [Oroz 14],
described in Section 3.2.1. This extended version contains recordings of speech, hand-

10PhysioNet: the research resource for complex physiologic signals. https://physionet.org/co
ntent/gaitpdb/1.0.0/

11Daphnet Freezing of Gait dataset. https://archive.ics.uci.edu/ml/datasets/Daphnet+
Freezing+of+Gait

12https://www.astrum-it.de/healthcare-medizintechnik/forschungsprojekte/sensorba
sierte-bewegungsanalyse.html

https://physionet.org/content/gaitpdb/1.0.0/
https://physionet.org/content/gaitpdb/1.0.0/
https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait
https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait
https://www.astrum-it.de/healthcare-medizintechnik/forschungsprojekte/sensorbasierte-bewegungsanalyse.html
https://www.astrum-it.de/healthcare-medizintechnik/forschungsprojekte/sensorbasierte-bewegungsanalyse.html
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Table 3.4: Summary of existing data for gait assessment of PD patients

Database Source Participants Gait tasks Available
[Y/N]

Physionet [Gold 00] 93 PD, 73 HC Two minutes walking Y10

Daphnet FoG [Bach 10] 10 PD Induced walking tests for FoG Y11

[Mazi 12] 10 PD Free walking N
[Trip 13] 11 PD, 5 HC Daily living activities N

eGaIT [Bart 17] 190 PD, 101 HC Scripted walking, heel-toe tapping, TUG N
[Orne 17] 46 PD Scripted walking N
[Cuzz 17] 156 PD, 24 HC 10 meters walking N
[Kuhn 17] 14 PD, 26 HC 10 meters walking, TUG N
[Cara 18] 25 PD, 25 HC 15 meters walking N
[Rehm20] 81 PD, 61 HC Two minutes walking N
[Agha 20] 19 PD Heel tapping N
[Pfis 20] 30 PD Daily living activities N

writing, and gait collected from PD patients and HC subjects. Additional details are
explained in the following subsections.

Recruitment Process

Data from 106 PD patients and 105 HC subjects were collected and included in
the multimodal corpus. All of the subjects are Colombian Spanish native speakers.
The inclusion criteria for the HC group guarantee that none of the participants has
history of symptoms related to PD or any other kind of movement or speech disorder.
In addition, we look for the age and gender distribution for the HC subjects to be
non-significantly different than for the PD patients. Most of the recorded patients
participate in the weekly meetings of Fundalianza Parkinson Colombia13.

Speech, handwriting, and gait were captured in the same session during 1 hour,
distributed as follows: 15 minutes for speech, 30 minutes for gait, and 15 minutes for
handwriting. Unfortunately, not all bio-signals are available for all recorded sessions
because the equipment to collect handwriting and gait signals was not available at the
beginning, and we collect only speech signals. Information of the three bio-signals is
available for 39 of the HC subjects and for 70 PD patients, which makes multimodal
data available for 109 of the 211 (106 PD + 105 HC) recording samples.

Demographic and Clinical Information of the Participants

The database includes speech, handwriting, and gait signals collected from 106 PD
patients and 105 HC subjects. 94 of the PD patients were evaluated by a neurologist
expert and labeled according to the MDS-UPDRS-III scale. Additionally, the speech
recordings from 93 of the PD patients and from 48 of the HC subjects were labeled
by expert phoniatricians according to the m-FDA scale described in Section 3.1.2.
The data were collected with the patients in ON state, i.e., under the influence of
medication. The recording procedure is in compliance with the Helsinki Declaration

13Fundalianza Parkinson Colombia: https://sites.google.com/view/fundalianzaparkinson
colombia

https://sites.google.com/view/fundalianzaparkinsoncolombia
https://sites.google.com/view/fundalianzaparkinsoncolombia


3.3. Data Collected During this Thesis 43

and it was approved by the Ethics Committee of the medical faculty of the Univer-
sity of Antioquia, and a written informed consent was signed by each participant.
Table 3.5 summarizes clinical and demographic aspects of the participants included
in the corpus. The neurological state of the patients was evaluated according to the
MDS-UPDRS-III scale, which was administered by a neurologist in the Pablo Tobón
Uribe Hospital in Medellín, Colombia. The average MDS-UPDRS-III of patients is
36.2, which indicates that the patients are in an intermediate state of the disease
(maximum value of the scale is 132). The average m-FDA score for PD patients
is 23.9, which indicates that their dysarthria severity is moderate to severe in some
cases. For the HC subjects, the average m-FDA score is 7.8, which reflects a mild
dysarthria severity, characteristic of the normal aging process. Statistical tests are
included in the caption of Table 3.5 to validate the balance in gender and age, and the
significant difference that exists between the m-FDA scores assigned to PD patients
and HC subjects. The complete metadata of the participants from this corpus can be
accessed online14. The distributions of age, MDS-UPDRS-III, m-FDA, and the time
post diagnosis are shown in Figure 3.1. An interactive dashboard with information
of the subjects from the corpus is also available online15.

Table 3.5: Clinical and demographic information of the subjects from the multimodal
corpus.

PD patients HC subjects Patients vs. controls
Gender [F/M] 49/57 53/52 *p = 0.99
Age [F/M] 60.9(11.2)/64.7(9.4) 59.9(8.7)/63.5(10.4) **p = 0.08
Time since diagnosis [F/M] 15.5(14.5)/8.1(5.9) –
MDS–UPDRS–III [F/M] 36.2(18.1)/36.3(18.9) –
m–FDA total [F/M] 23.7(8.9)/24.1(7.6) 6.6(7.0)/9.0(8.2) **p� 0.005
Time since diagnosis and age are given in years. [F/M]: Female/Male. Average(Standard deviation).
*p–value calculated through Chi–square test. **p–value calculated through Mann-Whitney U-test.
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Figure 3.1: Distribution of: a) age, b)MDS-UPDRS-III, c) total score of the m-FDA
scale, and d) time post PD diagnosis.

Speech Data

Speech data is available for the 106 PD patients and 87 of the HC subjects. The
data include 48 PD patients and 48 HC subjects from the original PC-GITA corpus.

14Metadata Multimodal corpus: https://bit.ly/2UwNUlG
15Dashboard Multimodal corpus: https://bit.ly/3cWUyYn

https://bit.ly/2UwNUlG
https://bit.ly/3cWUyYn
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Two of the original 50 HC subjects and 50 PD patients from PC-GITA were excluded
to guarantee the age-balance among participants. The speech of the resulting 48
PD patients and 48 HC subjects from the PC-GITA corpus was recorded with a
sampling frequency of 44.1 kHz and 16-bit resolution, in a soundproof booth from the
Noel Clinic16 at Medellin, Colombia. These recordings were re-sampled to 16 kHz.
The remaining recordings were recorded with a noise-cancellation headset with a
sampling frequency of 16 kHz, using the Neurospeech software [Oroz 18].

The speech protocol considers the same speech tasks recorded in the PC-GITA
corpus [Oroz 14], except for the isolated words. The speech tasks include the sustained
phonation of the vowel /ah/, six different DDK exercises (/pa-ta-ka/, /pa-ka-ta/, /pe-
ta-ka/, /pa/, /ta/, /ka/), the reading of 10 different complex and simple sentences
(from the syntactic point of view), a read text with 36 words phonetically balanced
that contains all the Spanish phonemes (spoken in Colombia), and a spontaneous
speech tasks where the participants were asked to speak about their daily routine.
Detailed information about duration, number of words, number of phonemes, and
phonetic distribution of the 10 sentences is included in Table 3.6 and Figure 3.2.

Table 3.6: Details of the sentences included in the corpus

Sentence Duration # # # unique
words phonemes phonemes

1 Mi casa tiene tres cuartos Simple 1.9(0.4) 5 20 12
2 Omar, que vive cerca, trajo miel Complex 2.6(0.7) 6 22 14
3 Laura sube al tren que pasa Complex 2.2(0.5) 6 19 12
4 Los libros nuevos no caben en la mesa de la oficina Simple 3.4(1.0) 11 39 15
5 Rosita Niño, que pinta bien, donó sus cuadros ayer Complex 4.3(1.2) 9 37 17
6 Luisa Rey compra el colchón duro que tanto le gusta Complex 4.0(1.2) 10 38 19
7 Viste las noticias? Yo vi ganar la medalla de plata Complex 7.9(2.2) 17 67 24

en pesas, Ese muchacho tiene mucha fuerza!
8 Juan se rompió una pierna cuando iba en la moto Simple 3.2(0.9) 10 34 19
9 Estoy muy triste, ayer vi morir a un amigo Simple 3.3(0.8) 9 32 16
10 Estoy muy preocupado, cada vez me es más difícil hablar! Complex 4.3(1.1) 10 41 19
Duration is given in seconds. Average (Standard deviation)

Handwriting Data

Handwriting data is available for 76 PD patients and 57 HC subjects. The data consist
of online drawings captured with a Wacom cintiq 13-HD17 tablet with a sampling
frequency of 180Hz. The system to capture handwriting data is shown in Figure 3.3.
The tablet captures six different signals: x-position, y-position, in-air movement,
azimuth, altitude, and pressure of the pen. Figure 3.4 illustrate the difference in the
azimuth and altitude angles.

The handwriting protocol includes a total of 17 exercises divided into drawing
and writing tasks. On the one hand, drawing tasks consist of geometrical shapes like
Archimedean spirals, circles, a house, two concentric rectangles, a rhombus, and a
cube. Particularly, spirals and circles have been frequently used to evaluate motor
impairments in patients with different neurodegenerative diseases [Vess 19], and they

16Clinica Noel: http://www.clinicanoel.org.co/en/home/
17Cintiq 13HD Graphic pen tablet for drawing https://www.wacom.com/es-ar/products/pen

-displays/cintiq-13-hd

http://www.clinicanoel.org.co/en/home/
https://www.wacom.com/es-ar/products/pen-displays/cintiq-13-hd
https://www.wacom.com/es-ar/products/pen-displays/cintiq-13-hd
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Figure 3.2: Phonetic details of the read sentences included in the corpus

Figure 3.3: System to capture handwriting data
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are usually easy to perform by most patients. We additionally include the drawing
of the Rey-Osterrieth complex figure [Shin 06] (see Figure 3.5), which is a neuropsy-
chological task typically used to evaluate the spatial constructional ability and visual
memory, and has been used to measure executive functions mediated by the pre-
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frontal lobe [Shin 06]. Besides, writing tasks include simple writing exercises such
as the writing the scripts l and m in a continuous and long trace. For these simple
writing exercises, PD patients may produce slower and more irregular movements
than the HC subjects. In addition, PD patients may exhibit micrographia over time
when performing these exercises. The additional writing tasks include more complex
exercises like writing the digits (0 to 9), the identification number of the patients,
the name and signature of the participant, a free sentence, and the alphabet. These
more complex exercises require a higher degree of simultaneous processing and cogni-
tive load than the script repetition, since they also involve linguistic skills, attention,
and memory [Vess 19]. Particularly, the sentences allow to capture a large number
of in-air movements between the words. Table 3.7 summarizes the handwriting tasks
included in the database. Particularly, the template used to draw Archimedean spiral
is shown in Figure 3.6. The diameter of the spiral and the distance between the loops
were set to 15.2 cm and 1.9 cm, respectively. Figure 3.7 includes some examples of
the drawing tasks included in the corpus. The color of the drawings indicates the
pressure of the pen.

Figure 3.5: Rey-Osterrieth complex figure.
Source: [Canh 00]

x

y

1.9cm 15.2cm

Figure 3.6: Template for the
Archimedean spiral

Table 3.7: Handwriting tasks included in the corpus

Writing tasks Drawing tasks

Alphabet Circle
Free sentence Guided circle
ID number Cube
Name House
Digits Rectangles
Signature Rhombus
Repetition of the graph l The Rey-Osterrieth figure
Repetition of the graph m Free Archimedean spiral

Archimedean spiral with template
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a) b) c) d)

e) f) g) h)

Figure 3.7: Example of drawings from the handwriting data: a) circle, b) cube, c)
house d) graph l, e) graph m, f) rectangles, g) the Rey-Osterrieth figure, and h)
Archimedean spiral.

Gait Data

Gait data is available for 76 PD patients and 57 HC subjects. Gait signals were
captured with the eGaIT system18, which consists of 3D-accelerometers (range ±6g)
and 3D gyroscopes (range±500◦/s) attached to the external side (at the ankle level) of
the shoes [Bart 17]. Data from both feet were captured at a sampling rate of 100Hz
and 12-bit resolution. Figure 3.8 shows the eGait system and the inertial sensor
attached to the lateral heel of the shoe. The signals are transmitted by Bluetooth
to a tablet where they are received and stored by an android app (see Figure 3.8a).
Seven tasks are included in the protocol to capture gait data.

a) b)

Figure 3.8: eGait system to capture gait data.

2–10m walk with stop (2x10): The test begins with the patient standing. The
subject walks in a straight line for 10 meters at a comfortable pace, then stops for
2–3 seconds, then turns clockwise and walks back to the initial point.

18https://www.astrum-it.de/healthcare-medizintechnik/forschungsprojekte/sensorba
sierte-bewegungsanalyse.html

https://www.astrum-it.de/healthcare-medizintechnik/forschungsprojekte/sensorbasierte-bewegungsanalyse.html
https://www.astrum-it.de/healthcare-medizintechnik/forschungsprojekte/sensorbasierte-bewegungsanalyse.html
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4–10m walk without stop (4x10): This task begins also with the subject stand-
ing. The participant walks in a straight line for 10 meters at a comfortable pace.
Then turns clockwise and walks back without pausing. In the starting point the
subject turns counterclockwise and repeat the first 10 meters, then turns clockwise
and walks back again.

2–10m stop-and-go: The participant starts walking a distance of 10 meters. For
three times during the walk (every three meters), the subject is asked to stop and
then to resume walking. The same instructions are executed again when the patient
returns to the starting point.

TUG: The subject is sitting on a chair with his/her back leaned against the back-
rest. Then the participant stands up, walks a 3 meters distance, turns clockwise,
returns, and sits down again.

Heel-toe tapping-left foot: The patient is on a chair, where (s)he alternate taps
the ground with their left heel and their tiptoes for 20 seconds.

Heel-toe tapping-right foot: This tasks is the same as the previous one, but
with the right foot instead of the left one.

2-min walk: The subject walks at his/her own pace for 2 minutes.

3.3.2 Longitudinal Corpus

The longitudinal corpus was built with a subset of 9 PD patients from the multimodal
corpus, who were recorded in up to 7 different sessions. The aim of this corpus is to
evaluate the impact of the motor deficits of the patients in long-term. The group of
patients was recorded in seven sessions from 2012 to 2019. The data for the seven
sessions were collected in 2012 (June), 2014 (June), 2015 (February), 2015 (August),
2016 (February), 2017 (December), and 2018 (December). Table 3.8 indicates the
MDS-UPDRS-III and the m-FDA labels assigned to the patients of this corpus. Age
and gender are also provided. Unfortunately, the MDS-UPDRS-III labels of the
third recording session (S3), and the m-FDA labels for session S7 are not available.
Patients PD08 and PD09 enrolled later in the study, thus data in the first session is
not available for them.

Regarding the collected signals in the corpus, speech data is available in all ses-
sions; however, handwriting and gait data is only available for sessions S2, S6, and
S7. The protocols for collecting speech, handwriting, and gait data are the same as
the ones described for the multimodal corpus. A professional audio setting was used
for the first two sessions and the patients were asked to come to the clinic to perform
the speech exercises; however, this represented a limitation for some of the patients
due to their motor complications. The remaining five sessions were recorded with a
conventional headset when the patients attend the weekly meetings at Fundalianza
Parkinson Colombia.
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Table 3.8: General information of patients included in the longitudinal corpus. Si, i ∈
{1, 2, . . . , 7}:ith longitudinal session

Patient ID Gender Age MDS-UPDRS-III m-FDA
S1 S2 S3 S4 S5 S6 S7 S1 S2 S3 S4 S5 S6 S7

PD01 M 64 28 19 - 13 - 31 27 15 17 16 17 20 17 -
PD02 F 55 41 35 - 35 33 38 31 22 31 24 21 37 22 -
PD03 F 51 38 49 - 44 45 40 33 13 14 16 10 18 25 -
PD04 F 55 43 10 - 19 - - 19 7 9 20 21 23 - -
PD05 M 59 6 8 - 24 21 20 23 25 35 22 25 27 27 -
PD06 M 68 14 25 - 7 - 17 33 23 18 19 25 23 24 -
PD07 F 55 29 26 - 26 31 41 32 24 24 17 24 25 32 -
PD08 M 67 - 58 - 65 49 41 59 - 29 33 39 31 31 -
PD09 M 70 - 64 - 37 26 57 39 - 13 24 18 24 21 -

3.3.3 At-Home Corpus

The At-Home corpus is considered to monitor the progress of the speech deficits of
PD patients in short-term periods of time and the impact of the medication. The data
were recorded in 2016, within the scope of our participation in the 2016 Frederick
Jelinek Memorial Summer Workshop (JSALT)19, and comprise a group of seven PD
patients recorded four times per day (every two hours), once per month during four
months. Thus, there is a total of 16 recording sessions per patient. Speech of the
patients were recorded at their homes with a conventional headset. The neurological
state of the patients was evaluated according to the MDS-UPDRS-III scale at the
beginning of the first recording session. The speech recordings of the 16 sessions were
evaluated following the m-FDA scale.

The speech data collected in the At-Home corpus include three DDK exercises
(/pa-ta-ka/, /pa-ka-ta/, /pe-ta-ka/), the read text with 36 words, phonetically bal-
anced from the PC-GITA corpus [Oroz 14], and continuous speech utterances from
conversations between the patients and the interviewers. Table 3.9 shows demo-
graphic information about the patients from the At-Home corpus, and their m-FDA
scores within the 16 sessions.

Table 3.9: General information of patients included in the At-Home corpus. Si, i ∈
{1, 2, . . . , 16}:ith at-home sessions

Patient ID Gender Age m-FDA
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

PD01 M 64 20 23 21 12 21 18 17 16 17 20 25 20 27 23 22 22
PD02 F 55 35 35 35 35 33 35 34 34 36 37 39 39 42 42 42 42
PD03 F 51 19 15 20 19 14 19 18 16 20 20 17 17 24 23 23 23
PD04 M 59 20 25 24 23 28 26 25 25 29 29 29 27 28 28 28 28
PD05 M 68 25 25 26 25 24 30 27 28 28 25 28 28 25 24 24 25
PD06 F 55 26 32 31 30 32 30 31 31 33 33 30 34 37 38 37 34
PD07 M 67 40 35 38 36 37 34 35 34 33 28 37 37 36 36 37 38

19Remote Monitoring of Neurodegeneration through Speech https://www.clsp.jhu.edu/works
hops/16-workshop/remote-monitoring-of-neurodegeneration-through-speech/

https://www.clsp.jhu.edu/workshops/16-workshop/remote-monitoring-of-neurodegeneration-through-speech/
https://www.clsp.jhu.edu/workshops/16-workshop/remote-monitoring-of-neurodegeneration-through-speech/
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3.3.4 Apkinson Corpus

This corpus corresponds to the data collected using the Apkinson android appli-
cation [Vasq 19a, Oroz 20a]. Apkinson was designed to record several signals using
sensors embedded on the smartphone (microphone, accelerometer, and gyroscope)
and performs different analyses to model the neurological progression of PD patients.
A detailed description of Apkinson is presented in Section 8.2.

General Description of the Participants

At the moment, data from up to 38 PD patients and 60 HC subjects were collected
using Apkinson. The two groups are matched by age, gender, and scholarity. A total
of 17 of the 38 patients were evaluated with the MDS-UPDRS-III. The reason for
the other patients not to be evaluated is because the project that finances the cost of
the neurological evaluation was not running for the time of those recordings. None of
the participants in the HC group presented any neurological or movement disorder.
Table 3.10 includes details of clinical and demographic information of the HC and
the PD patients. The complete metadata of the participants from this corpus can be
also accessed online20. The distributions of age, MDS-UPDRS-III, and the time post
the diagnosis are shown in Figure 3.9.

Table 3.10: Clinical and demographic information of the subjects from the Apkinson
corpus.

PD patients HC subjects Patients vs. controls
Gender [F/M] 17/20 30/30 *p = 0.697
Age [F/M] 66.5(12.5)/69.3(9.0) 63.6(6.3)/60.9(12.9) **p = 0.008
Sholarity [F/M] 12.1(4.0)/12.8(3.8) 9.6(3.5)/11.2(4.7) **p = 0.007
Time since diagnosis [F/M] 9.8(10.3)/8.3(5.5) –
MDS-UPDRS-III [F/M] 14.9(7.5)/19.9(6.9) –
Time since diagnosis, age, and scholarity are given in years. [F/M]: Female/Male. Average(Standard deviation).
*p–value calculated through Chi–square test. **p–value calculated through Mann-Whitney U-test.
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Figure 3.9: Distribution of metadata for the Apkinson corpus: a) age, b) scholarity,
c) MDS-UPDRS-III, d) time post PD diagnosis.

20Metadata Apkinson corpus: https://bit.ly/3490rPq

https://bit.ly/3490rPq
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Data collection

The data collected from Apkinson comprise 38 different exercises. The set includes
tasks of different nature like speech production, hands movement, gait, and finger
tapping. There are three groups of exercises, the first group has a total of 21 speech
tasks including the sustained phonation of the vowels /ah/, /ih/, and /uh/, the same
six DDK exercises from the multimodal corpus, the reading of the 10 sentences from
Table 3.6, and the description of the cookie theft picture from the Boston Diagnostic
Aphasia Examination [Boro 80], which is observed in Figure 3.10.

Figure 3.10: Cookie theft Picture from the Boston Diagnostic Aphasia Examination

The second group of exercises includes 11 tasks that are captured with the inertial
sensors of the smartphone. The aim is to evaluate different abnormal aspects in move-
ments including postural tremor, kinetic tremor, gait deficits, among others. These
11 tasks includes: (1) Posture, where the patient has to stands up straight during 30
seconds, (2-3) circles, where the patient has to make circles with the extended left and
right arm, (4-5) pronation/supination, where the patient stretches out the left/right
arm with the downward palm, and then turns the palm up & down, several times,
(6-7) finger to nose, where the patient extends the left/right arm and then touches
his/her nose and extends the arm again, several times, (8-9) postural tremor, where
the patient extends the left/right arm and holds the smartphone in this position for
at least 10 seconds, (10) gait, where the patient performs a short path walking four
times, and (11) 2 minutes walk, where the patient performs a normal walk exercises
during two minutes.

Finally, the third group of exercises include three tasks to model fine-motor skills
of the patients. The first one consists on tapping with the thumb of the dominant
hand ladybugs that randomly appear on the screen. For the second task the finger
tapping is repeated but now with both thumbs to hit two ladybugs that appear ran-
domly on the screen (each ladybug is located in the right and left half of the screen
thus each finger is close to a ladybug and a natural movement is guaranteed). The
third task is to slide horizontally a bar until reaching a target point, which moves ran-
domly every time it is reached. This third task is inspired in the Fitt’s test to evaluate
human computer interaction systems [Fitt 54]. Each fine-motor task requires rapid
reaction, concentration, ability to associate, spatial location and repeated movements
of extension and contraction of the fingers [Oroz 20a].
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Chapter 4

Analysis of Parkinson’s Disease from
Speech

Speech is well known to be one of the most complex motor skills of humans, requiring
precise/accurate control of about 100 different muscles, thus making our vocal system
one of the more sensitive to the effects of PD [Chen 11]. Different speech impairments
associated to PD are grouped as hypokinetic dysarthria, which appears in about 90%
of the patients [Ho 99]. Hypokinetic dysarthria includes symptoms such as rigidity
of the vocal folds, bradykinesia, reduced muscular control of the larynx and other
organs related to the speech production. The effect of dysarthria in the speech of
patients include increased acoustic noise [Horn 98], reduced intensity [Bake 98], harsh
and breathy voice quality [Tsan 10], increased voice nasality [Spen 05], monopitch,
monoludness, speech rate disturbances [Skod 11a], imprecise articulation of conso-
nants [Tyka 17], and involuntary introduction of pauses [More 03]. In general, speech
impairments appear in initial stages of the disease [Rusz 11], producing a negative
impact in the communication skills and thus limiting social life of patients [Pell 06].
These symptoms can be highly dependent on the pharmacological therapy of the
patients. According to [Rusz 16], speech impairments tend to improve or remain rela-
tively stable after the initiation of dopaminergic treatment, especially for patients in
early stages of the disease. Several studies have described the speech impairments de-
veloped by PD patients in terms of four different dimensions: phonation, articulation,
prosody, and intelligibility [Rusz 11, Bock 13, Oroz 16b].

Phonation symptoms are related to the stability and periodicity of the vocal fold
vibration, and with difficulties in the process of producing air in the lungs to make the
vocal folds vibrate. For some cases, the speech of patients is not necessarily affected
but the respiration does, which in the end affects phonation. Different phonation
deficits are associated to PD patients, including differences in glottal noise compared
to healthy speakers, incomplete vocal fold closure, and vocal folds bowing, which are
typically characterized with measures such as noise to harmonics ratio (NHR), glottal
to noise excitation ratio (GNE), harmonics to noise ratio (HNR), and voice turbu-
lent index (VTI), among others [Tana 11]. On the other hand, phonation symptoms
have been analyzed in terms of perturbation measures such as jitter, shimmer, am-
plitude perturbation quotient (APQ), pitch perturbation quotient (PPQ), and non-
linear dynamics (NLD) measures such as the correlation dimension (CD), the largest
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Lyapunov exponent (LLE), the Hurst exponent (HE), or the Lempel-Ziv complexity
(LZC) [Trav 17].

Articulation symptoms are related to the modification of the position, stress, and
shape of several limbs and muscles to produce speech. These symptoms have been
modeled by means of features such as vowel space area (VSA), vowel articulation in-
dex (VAI), formant centralization ratio (FCR), DDK regularity, and the onset energy.
One of the first observed articulation impairments was the imprecise production of
stop consonants such as /p/, /t/, /k/, /b/, /d/, and /g/ [Loge 78, Acke 91, Tyka 17].
Particularly, PD patients usually have incomplete vocal closure by maintaining a
continuous level of vocal fold activity to avoid the difficulty of initiating the phona-
tion [Blan 09]. This behavior causes that voiceless stops such as /p/, /t/, and /k/ are
replaced by /b/, /d/, and /g/. Figure 4.1 shows an example of an HC subject and a
PD patients uttering the syllables /pa-ta-ka/. The red line indicates the countour of
the fundamental frequency (F0). In Figure 4.1b), for the case of the PD patient, the
periodic signal before the consonant burst reveals an incomplete lip closure or a possi-
ble lack of control of the velum. When the velum is not well controlled, air continues
to come through the mouth while producing the phoneme /k/. These effects are also
visible in the spectrogram, especially for the plosive /k/, where the fundamental fre-
quency from the previous vowel /ah/ is joined with the fundamental frequency from
the following vowel /ah/, transforming the plosive /k/ into something similar to a
fricative /g/, which in Spanish is the closest voiced phoneme to the /k/. This effect
makes observable problems to control the velum and to stop the vibration of vocal
folds. These effects are not observed for the case of the HC subject in Figure 4.1a),
where the closures of lips, palate, and velum are well defined both in time domain
signal, the fundamental frequency, and the spectrogram.
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Figure 4.1: Speech signals, fundamental frequency and spectrograms of a PD patient
and a HC speaker pronouncing the syllables /pa-ta-ka/. a) 49 year old male healthy
speaker. b) 48 year old male PD patient with MDS-UPDRS-III: 9, and m-FDA:36

The literature also reported that the first and second formant frequencies exhibit
shallower slopes for the case of PD patients with respect to HC subjects, which
indicates decreased tongue/jaw movements [Kim09, Wals 12]. Other articulation
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symptoms include reduced duration of voiced segments and transitions, difficulties to
start/stop vocal fold vibration while speaking [Oroz 16b], and increased voiced onset
time (VOT), which increases with the disease severity [Forr 89].

Prosody deficits in PD are manifested as monotonicity, monoloudness, reduced
stress, and changes in speech rate and pauses [Skod 11a]. Monrad-Krohn, in [Monr 57]
denoted as aprosody all these symptoms related to pitch attenuation, rate, and loud-
ness variation, often observed in PD patients. In addition to aprosody, the bradykine-
sia and freezing of movement sometimes cause difficulty in the initiation of voluntary
speech and inappropriate long silences. Prosody is commonly evaluated with features
related to pitch, intensity and duration. Prosody impairments may be caused also
by non-motor symptoms like depression, which also affects PD patients [Star 90].

Finally, intelligibility is a measure of how comprehensible is the speech of a
person. In other words, how much of the speech of a person can be understood.
Several studies have reported a reduction of the perceived intelligibility in PD pa-
tients [Barn 16, Dima 17]. The intelligibility assessment have been performed using
speech recognizers, where the word error rate (WER) can be computed for HC and
PD patients [Oroz 16a].

The rest of the chapter is divided as follows: Section 4.1 shows a review of the
literature about automatic speech evaluation of PD patients from a pattern recog-
nition point of view, both to classify PD patients and HC subjects, to evaluate the
neurological state of the patients, and to estimate the dysarthria severity of the pa-
tients. Then, Section 4.2 describes the methods classically addressed in the literature
to model the speech of patients in terms of phonation, articulation, and prosody di-
mensions. These methods are used within the scope of this thesis as baselines for the
proposed approaches. Then, Section 4.3 describes the proposed approach to model
the speech of PD patients using phonological features. Section 4.4 described our
proposed approach to model the speech of PD patients based on an unsupervised
learning strategy using recurrent autoencoders. The chapter finishes in Section 4.5,
where we describe methods to model the speech of PD patients in an end-to-end
fashion using different configurations of CNNs.

4.1 A Review on Automatic Assessment of Speech
in PD Patients

The clinical observations in the speech of PD patients can be objectively and auto-
matically measured by computer aided methods supported in signal processing and
pattern recognition with the aim to address three main aspects: (1) to support the
diagnosis by classifying HC subjects and PD patients, (2) to evaluate the neurologi-
cal state of patients according to a neurological scale such as the MDS-UPDRS, and
(3) to evaluate the level of degradation of the speech of the patients according to a
specific dysarthria scale such as the m-FDA. The review presented in the following
subsections will cover studies focused on these three aspects. In addition, we will
cover both classical pattern recognition approaches and novel studies based on deep
learning strategies.
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4.1.1 Automatic Classification of PD and HC Subjects

The studies addressed here aim to support the diagnosis of PD patients using several
strategies based on speech processing and pattern recognition to classify PD patients
vs. HC subjects. One of the first studies was proposed by Tsanas et. al. [Tsan 12],
who extracted phonation features such as jitter, shimmer, noise measures, and NLD
features. The authors considered several feature selection algorithms and classifiers
based on SVMs and random forest (RF) to classify 263 utterances from the sustained
vowel /ah/ from 43 subjects (10 HC and 33 PD), English speakers. The authors
reported accuracies of up to 97.7% depending on the selected features. Although
the high reported accuracies, the authors mixed the speakers from the train and test
sets, which makes the results highly optimistic and biased. Phonation features were
also considered by Sakar et al. [Saka 13], who computed perturbation features such
as jitter, shimmer, APQ, and PPQ. The authors classified utterances from 20 PD
patients and 20 HC subjects, Turkish speakers, who pronounced sustained vowels,
isolated words, and short sentences. Classifiers based on K-nearest neighbors (KNN)
and SVM were considered. The authors reported accuracies of up to 75% with ut-
terances of the sustained vowels. The phonation analysis considered in [Oroz 15]
included four different approaches to characterize sustained vowels: stability and pe-
riodicity, noise measures, spectral wealth, and NLD. The four approaches were used
to classify utterances from the PC-GITA database [Oroz 14], using an SVM classi-
fier. The authors reported accuracies of up to 84%, depending on the analyzed vowel
and on the feature set. Similar phonation features were considered in [Nara 16] to
characterize sustained phonations of vowel /ah/ from 40 PD patients and 40 HC
subjects, Spanish speakers. The features included: (1) perturbation measures such
as jitter, shimmer, PPQ, and APQ, (2) noise measures such as HNR and the GNE,
(3) Mel frequency cesptral coefficients (MFCC), and (4) NLD measures such as the
recurrence period density entropy, the detrended fluctuation analysis (DFA), and the
pitch period entropy. The authors proposed a Bayesian classification strategy and
reported accuracies of up to 75.2%. In [Vill 15] the authors proposed a phonation
analysis based on time frequency representations to assess tremor in the speech of
PD patients. The extracted features were based on energy and entropy computed
from three time frequency representations: modulation spectra, the wavelet packet
transform, and the Wigner-Ville distribution. The proposed features were extracted
from short sentences from the PC-GITA corpus [Oroz 14], and classified using GMMs
and SVMs algorithms. The proposed approach achieved an accuracy of up to 77%.
In [Hemm16] the authors proposed a novel phonation analysis based on the Hilbert-
Huang transformation computed upon modulated (varying between low and high
pitch) and sustained vowels. The authors analyzed the fundamental frequency (F 0)
contour and its range to measure monotonicity in PD speakers. The classification
was performed with an SVM, and accuracies of up to 86% were reported in the
PC-GITA database [Oroz 14]. In [Meky 16] the authors characterized utterances of
sustained vowels using perceptual features to classify 84 PD patients and 49 HC sub-
jects, Czech speakers. The perceptual features were based on MFCC, linear frequency
cepstral coefficients, linear prediction coefficients, perceptual linear predictive coeffi-
cients (PLP), among others. The authors considered a feature selection method based
on sequential forward feature selection and a RF classifier, and reported accuracies
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of up to 91.7%. The authors from [Saka 19], proposed a phonation analysis based on
the Q-factor wavelet transform computed upon sustained phonations of vowel /ah/,
pronounced by 188 PD patients and 64 HC subjects, Turkish speakers. This version
of the wavelet transform has higher frequency resolution than the standard discrete
wavelet transform (DWT). Wavelet decompositions were computed over the F 0 con-
tour of sustained vowels. The authors extracted features based on the energy-content
and entropy of the decompositions. The extracted features were classified with an
ensemble of several classifiers. The authors reported an F1-score of up to 0.84 when
the proposed features were combined with standard phonation features based on per-
turbation and noise measures. In [Aror 19], the authors classified utterances from
sustained vowels from 14483 PD patients and 15321 HC subjects, obtained via tele-
phone calls. The phonation features included classical perturbation, noise, and NLD
features, as in [Tsan 12]. The authors considered also several feature selection strate-
gies, and RF classifiers. The best reported results showed a sensitivity of up to 64.9%,
and a specificity of up to 67.9%. However, the HC subjects were younger than the
PD patients, which may induce a bias in the results [Aria 17]. NLD features were
also considered in [Visw 20], where the authors computed the fractal dimension and
the normalized mutual information in sustained phonations of /ah/, /uh/, and /m/
sounds, pronounced by 22 PD patients and 24 HC speakers. A linear SVM classifier
achieved an accuracy of 81% with the extracted features. In [Ali 19b] the authors
proposed a method based on linear discriminant analysis and neural networks op-
timized with a genetic algorithm. The proposed model was trained with phonation
features extracted from sustained vowels from the Turkish corpus from [Saka 13]. The
authors reported an accuracy of up to 95%. The authors from [Wodz 19] proposed
a deep learning-based phonation analysis. The method aimed to classify sustained
phonations of PD patients and HC subjects using a ResNet architecture trained with
spectrograms. The network was pre-trained with utterances from the Saarbruecken
voice database [Wold 07] and then fine-tuned to classify utterances from sustained
vowels from the PC-GITA corpus [Oroz 14]. The proposed strategy achieved an ac-
curacy of up to 92%.

There are some studies that have considered a reconstruction of the glottal signal
to evaluate different phonation aspects of PD patients. For instance, in [Bela 16], the
authors performed a reconstruction of the glottal source signal using an iterative adap-
tive inverse filtering algorithm, and extracted several temporal, spectral, and NLD
features from the reconstructed glottal signal. The temporal features included the
opening, closing, speed, amplitude, and normalized amplitude quotients. The authors
classified utterances of the five Spanish vowels from the PC-GITA database [Oroz 14]
with an SVM classifier, and reported accuracies of up to 78%, when the features com-
puted from the five vowels are concatenated. In [Novo 20], the authors also performed
a reconstruction of the glottal source and extracted different features such as the quasi
open quotient, the normalized amplitude quotient, and the harmonic richness factor
of the glottal signal. The features were extracted from 40 HC subjects and 40 newly
diagnosed PD patients, Czech native speakers, who produced sustained phonations
of the vowel /ah/. The classification of PD vs. HC subjects was performed with an
SVM. The AUC reported by the authors was 0.78.
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Regarding the articulation analysis, the authors in [Rusz 13] considered several
features such as the VSA, the VAI, the formant frequencies (F1 and F2), and the
ratio F2i/F2u. The extracted features were used to classify utterances of 20 early PD
patients and 15 aged-matched HC Czech native speakers. The patients pronounced
sustained phonations of the Czech vowel /ih/, the repetition of short sentences, the
reading of a text with 80 words, and a monologue. The monologue was the most
accurate task to differentiate speech of early PD patients and HC speakers, with an
accuracy of up to 80%. In [Novo 14], the authors modeled six articulatory deficits in
PD: vowel quality, coordination of laryngeal and supra-laryngeal activity, precision
of consonant articulation, tongue movement, occlusion weakening, and speech tim-
ing. The authors considered DDK exercises from the same data from [Rusz 13], and
reported an accuracy of 88% discriminating between PD patients and HC speakers,
using an SVM classifier. An additional articulation model was proposed in [Oroz 16b],
to model the difficulty of PD patients to start/stop the vocal fold vibration in con-
tinuous speech. The model was based on the energy content in the transitions from
unvoiced to voiced and from voiced to unvoiced segments. The authors classified
PD patients and HC speakers with speech recordings in three different languages
(Spanish, German, and Czech), and reported accuracies ranging from 80% to 94%
depending on the language. A combined phonation and vowel articulation model was
considered in [Aria 17]. Phonation features included perturbation measures such as
jitter, shimmer, APQ, and PPQ. Articulation features included formant frequencies,
the VSA, the FCR, and MFCCs. The authors classified PD patients and two groups
of HC subjects: (1) young speakers with ages ranging from 22 to 50 years and (2) HC
subjects with age matched compared to the PD patients. The aim was to analyze
the impact of aging when discriminating PD vs. HC subjects. Accuracies of up to
79% were reported, which also concluded that phonation and articulation capabilities
are impaired not only due to the presence of PD but also due to the aging process.
In [Mont 18] the authors proposed articulation features based on VOT segments to
classify 27 PD patients and 27 HC subjects, Spanish speakers. Different temporal and
spectral features were extracted from the VOT from DDK exercises. Temporal fea-
tures included the VOT duration, the VOT ratio, the vowel variability quotient, and
the articulation rate, while the spectral features considered 13 MFCC extracted from
the VOT segments. The authors considered an SVM classifier, and reported an accu-
racy of up to 92.2%. A different articulation analysis were introduced in [Godi 17] to
model the dynamics of the amplitude envelope of DDK exercises. The proposed fea-
tures were based on the permutation entropy and other NLD features computed over
the derivatives of the amplitude envelope of DDK exercises. The features were used
to classify the speakers from the PC-GITA database [Oroz 14]. The authors reported
accuracies over 85% using an SVM classifier. A different articulation model was pro-
posed in [Moro 19a]. The authors considered a forced alignment strategy based on
GMM-HMM systems to segment the different phonemes in the utterances, with the
aim to train an independent GMM-UBM system for each phoneme. The classification
was performed with a threshold of the difference between the posterior probabilities
from models created for HC subjects and PD patients. The model was tested with
utterances from the PC-GITA database [Oroz 14], the Czech data from [Rusz 13], and
an additional data in Spanish language from Madrid (Neurovoz). The authors re-
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ported accuracies of up to 81% for the PC-GITA and the Neurovoz data, and of up to
94% for the Czech data. The study from [Moro 19a] was extended in [Moro 19b]. The
authors trained individual GMM-UBM systems for specific phonological classes such
as fricatives, liquids, nasals, plosives, and vowels. The same classification strategy was
considered. The proposed methods were tested with the same data from [Moro 19a],
using the same classification strategy. The authors reported accuracies of up to 85%
for the PC-GITA corpus, 89% for the Neurovoz data, and 94% for the Czech data.
In [Kara 19] the authors proposed a combined phonation and articulation analysis
based on the empirical mode decomposition to compute new features called intrinsic
mode function cepstral coefficients. The authors claimed that the first four intrinsic
mode functions give information about vocal tract whereas higher order functions
give information about the vocal fold vibrations. The features were used to classify
PD and HC subjects using the data from [Saka 13], and a subset of 20 PD patients
and 25 HC subjects from the PC-GITA corpus [Oroz 14]. The authors considered
an SVM classifier. The reported accuracy was 95% for the data from [Saka 13], and
93% for the subset of the PC-GITA corpus [Oroz 14]. The results are not conclusive
due to the small amount of data considered. In addition, the authors performed
an independent cross-language test, i.e., training with the recordings from one cor-
pus and test with the utterances from the other one, obtaining an accuracy of only
58.3%. These independent cross-language experiments have also been performed in
other studies [Vasq 17a, Oroz 16b]; however, the reported accuracy is lower than 60%
for all cases.

Deep learning models have also been proposed to model articulation impairments
in PD patients. In [Zhan 17] the authors combined perturbation and articulation fea-
tures with a deep learning model based on autoencoders to classify PD patients and
HC subjects. Different acoustic features were used as input for the autoencoder. The
bottleneck features from the autoencoder were used to feed a KNN classifier. The
authors considered the Turkish PD data from [Saka 13]. The authors reported accu-
racies of up to 94%; however, the results were slightly optimistic because the hyper-
parameters of the autoencoder were optimized according to the accuracy obtained in
the test set. A deep learning based articulation model was proposed in [Vasq 17a]
to model the difficulties of the patients to stop/start the vibration of the vocal folds
based on the transition between voiced and unvoiced segments. The segmented tran-
sitions were modeled with time-frequency representations based on the short time
Fourier transform and the continuous wavelet transform. The time-frequency repre-
sentations were used as input for a CNN to classify PD patients and HC speakers in
three languages: Spanish, German, and Czech, and reported accuracies ranging from
70% to 89%, depending on the language. An additional deep learning model was
proposed in [Korz 19] to classify patients with dysarthria and HC speakers. The pro-
posed model consisted of a combination of convolutional and recurrent layers trained
with a multitask learning strategy to address two tasks: (1) to detect the presence of
dysarthria, and (2) to reconstruct the Mel spectrogram from the input. The authors
reported a recall of up to 0.93 in the dysarthria detection. The authors in [Mall 20]
classify PD patients and HC subjects using a CNN-LSTM network with a transfer
learning strategy. A trained model to classify between ALS and HC speakers was
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used to initialize a model to classify a set of 60 PD patients and 60 HC subjects. The
authors reported an accuracy of up to 90%.

Regarding prosody analysis, the authors from [Bock 13] considered voiced seg-
ments to compute prosody features based on the F 0 contour, energy contour, du-
ration, and pitch periods to classify 88 PD patients and 88 HC speakers, German
speakers. The prosody features were combined with acoustic and glottal features.
Accuracies of up to 82% were reported. In [Zhao 14] the authors considered prosody
features such as the voiced ratio, the average and variance of F 0, and average dura-
tion of pauses to classify speech of 5 PD and 7 HC subjects, and to detect emotions
in the speech of the patients, since for PD patients, the capacity to produce emo-
tional speech is also reduced [Pint 04]. The utterances were labeled with five different
emotions. The authors reported accuracies of up to 73.3% discriminating between
PD and HC subjects, and of up to 65.5% by classifying the emotions of the patients,
using an SVM classifier. In [Gala 16] the authors considered several prosody features
based on the F 0 and intensity variation, and on the speech rate to classify utterances
from 98 PD patients and 51 HC subjects, Czech speakers. The authors considered
a RF classifier, and reported accuracies of up to 67%. In [Beru 19] the authors com-
puted several phonation and prosody features to classify the 20 PD patients and 20
HC subjects, Turkish speakers from [Saka 13]. The extracted features were classified
with a neural network. Accuracies of up to 86.5% were reported by the authors, by
combining different speech tasks using a voting strategy. In [Benb 19] the authors
considered the articulation and prosody features introduced in [Hlav 17] to evaluate
whether patients with rapid eye behavioral movement disorder (RBD) are classified
as PD patients or HC subjects. The extracted features included the entropy, rate, and
acceleration of speech timing, the duration of unvoiced stops, the decay of unvoiced
fricatives, the relative loudness of respiration, among others. The authors trained
an SVM classifier with data from 30 PD patients and 50 HC subjects, Czech native
speakers, which achieved and accuracy of 85%. Then, a set of 50 RBD patients were
tested by the classifier, of which 66% of them were assigned to the PD group.

Classical feature extraction approaches have been also used to train speaker mod-
els to represent the presence of PD in a group of speakers. For instance, in [Garc 17]
the authors considered phonation, articulation, and prosody features to train speaker
models based on i-vectors [Deha 11]. Reference i-vectors were computed for HC and
PD subjects. The cosine distance between the reference i-vectors and a test speaker
i-vector was used to classify PD patients and HC subjects. Accuracies of up to
78% were reported. In [Moro 18] the authors combined phonation and articulation
features with state-of-art speaker recognition techniques. The authors considered
GMM-UBMs and i-vectors trained with different phonation and articulation features.
The authors reported accuracies of up to 87% in the PC-GITA database [Oroz 14].
In [Wu18] the authors proposed a strategy based on Mel-scale spectrograms and K-
means clustering to create reference models for PD and HC speakers. The features
of the speaker to be evaluated were encoded by reference models based on a multipli-
cation between the features and the centroids of the clusters. The encoded features
were used to classify speech utterances from 27 PD patients and 446 HC subjects
using an SVM classifier. The authors considered a data augmentation strategy called
adaptive synthetic sampling to balance the data in the training set. The authors
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reported an accuracy of up to 90.2%. In [Lope 19] the authors considered phonation,
articulation, and prosody features to train speaker models based on a Fisher vector
approach. The extracted Fisher vectors fed a linear SVM classifier to discriminate
between PD and HC subjects. The authors reported an accuracy of up to 84% for the
PC-GITA corpus. Recently, in [Moro 20] the authors considered novel speaker models
based on the state-of-the-art speaker recognition technique called X-vectors [Snyd 18],
obtained as embeddings from a time delay neural network trained with MFCC for a
speaker recognition application. The authors classify the 43 PD patients and 46 HC
subjects from the Neurovoz corpus [Moro 19b]. The extracted X-vectors were classi-
fied with probabilistic linear discriminant analysis (PLDA) classifier, which achieved
an accuracy of up to 90%.

In addition to the previous studies, an important aspect considered in the classi-
fication of PD vs. HC subjects is the acoustic conditions of the speech signals. For
instance, in [Vaic 17] the authors evaluated the effect of non-controlled acoustic condi-
tions on several algorithms to detect PD from speech. The authors considered speech
signals from 99 PD patients and 98 HC Lithuanian speakers, which were recorded with
a high quality cardioid microphone and a smartphone. The speakers pronounced the
sustained vowel /ah/ and short sentences. The authors compared the performance
of 18 different acoustic feature sets. Most of the feature sets were computed using
the OpenSMILE toolkit [Eybe 15]. The authors reported accuracies of up to 80.7%
when the high quality microphone was considered. The performance was reduced
around 5% when the speech signals captured from the smartphone were considered;
however, the experiments were performed in a matched scenario, i.e., the train and
test sets were formed with recordings captured in the same acoustic conditions. A
more realistic approach should consider the mismatched conditions. In [Vasq 17b]
the authors analyzed the impact of several acoustic conditions on the performance of
several methods to classify PD and HC subjects both in matched and mismatched
scenarios. The extracted features considered the phonation model from [Oroz 15], the
articulation model based on the transitions between voiced and unvoiced segments
from [Oroz 16b], a speaker model based on super-vectors [Bock 13], and features ex-
tracted using OpenSMILE [Eybe 15]. The acoustic conditions considered include
saturation, dynamic compression, additive white Gaussian noise, different environ-
mental background noises, audio codecs, and real telephone channels. Accuracies of
up to 82% were reported with the noise-free speech signals. The authors concluded
that background noise produced the highest impact in the accuracy of the models,
especially in mismatched conditions. In addition, the impact of telephone channels,
dynamic compression, and saturation was not as critical as in the case produced by
background noise. In [Corr 19] the authors evaluated the difference to classify PD
and HC subjects from data in controlled and non-controlled acoustic conditions. The
PC-GITA corpus [Oroz 14] was considered as the controlled database. The WSM
corpus [Corr 18], which contains data from vlogs from 34 PD patients and 19 HC
subjects was used as the non-controlled acoustic conditions corpus. Both corpora
were classified with a deep learning model based on a CNN-LSTM network with self
attention mechanism. The authors reported an UAR of 0.94 for PC-GITA and of
0.83 for WSM, the later one obtained in a cross domain experiment, using the PC-
GITA corpus for training. In [Rusz 18a] the authors evaluated the impact of speech
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captured with a smartphone to detect speech deficits in patients with RBD, and early
untreated PD patients. Speech data were recorded from 50 RBD, 30 PD patients, and
30 HC subjects, all of them Czech speakers. The authors computed phonation, ar-
ticulation, and prosody features, and classified the pairs of the three different groups
with a binary logistic regression algorithm. The results indicated that a combination
of three features representing monopitch, inappropriate silences, and decreased rate
was able to discriminate between PD and HC subjects with an AUC of 0.85. In
addition, the same features were able to classify the patients with the sleep disorder
and HC subjects with an AUC of 0.69. The results also suggested that there are
strong correlations between the features computed from the smartphone signals and
those computed from professional microphone recordings. A different approach us-
ing data captured from smarthphones was proposed in [Zhan 19], where the authors
considered non-speech body sounds such as breathing, clearing throat, and swallow-
ing to classify PD vs. HC subjects. The non-speech body sounds were modeled
using a deep learning strategy based on ResNet architectures. The proposed method
achieved an accuracy of up to 83.3% in a dataset formed with 321 PD patients and
569 HC subjects. The results obtained were comparable to the ones obtained with
normal speech sounds. However, the speaker independence was not guaranteed in
the training process, which leads to biased and optimistic results.

4.1.2 Automatic Evaluation of the Neurological State of Pa-
tients

The evaluation of the neurological state of the patients is focused on the automatic
estimation of clinical scales assigned to the patients by neurologist experts. The most
common scale that has been automatically predicted is the UPDRS scale, especially
the part III, which is related to the motor symptoms of the patients [Tsan 10, Eski 12,
Baye 13, Schu 15, Gros 15, Oroz 16a]. The assessment of the neurological state has
been performed in two ways: (1) a regression approach, where the clinical score is
predicted [Tsan 10, Eski 12, Baye 13, Schu 15, Gros 15, Oroz 16a], and (2) a multi-
class classification strategy, where the patients are divided into three or four groups
according to their neurological state [Bock 13, Oung 18, Vasq 18a].

One of the first approaches to assess the neurological state of the patients was
proposed in [Tsan 10]. The authors considered recordings of sustained vowels, which
were modeled using phonation features. The UPDRS-III scores were estimated using
different regression techniques. The speech of 42 PD patients was recorded once per
week during six months. Neurologist experts evaluated the patients three times along
the study. The weekly UPDRS scores were obtained by the authors using a piecewise
linear interpolation. The best result reported corresponds to a MAE of 7.5 points in
the prediction of the total the UPDRS scale. The scores of the motor section in the
UPDRS (UPDRS-III) were estimated with a MAE of 6 points. The same data and
features from [Tsan 10] were considered in [Eski 12] to predict the neurological state
of the patients based on the total UPDRS score and its third part. The authors used
regression algorithms based on SVRs and neural networks. The performance of the
regression methods was evaluated according to the MAE and the Pearson correlation
coefficient (r). The authors reported correlations of up to 0.65 (MAE=6.32) to pre-
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dict the total UPDRS score, and of up to 0.63 (MAE=4.96) to predict only the motor
part of the scale. In [Cast 14], the authors also considered the same data and features
from [Tsan 10] to predict both the total UPDRS scale and its third part using a com-
bination of genetic programming and semantic genetic operators. Phonation features
computed from sustained vowels were used to train the genetic algorithms. The au-
thors reported a MAE of 7.5 by predicting the total UPDRS score, and a MAE of 5.5
predicting only the motor part of the scale. In [Nila 18] the authors considered the
same data and features from [Tsan 10] to predict both the total UPDRS score and the
motor section of the scale (part III). The authors proposed a novel regression strategy
called incremental SVR, combined with a clustering method based on self-organizing
maps, and a dimensionality reduction strategy based on non-linear iterative partial
least squares. The authors reported a Pearson correlation coefficient of up to 0.885
(MAE=0.466) for the UPDRS-III score and of up to 0.868 (MAE=0.497) for the total
scale. The same authors in [Nila 19] predicted the total UPDRS scale and its third
part in the same data from [Tsan 10]. The authors proposed a technique based on
an ensemble of adaptive neuro-fuzzy inference system networks with singular value
decomposition for dimensionality reduction and a clustering strategy based on self-
organizing maps. The authors reported a Pearson correlation coefficient of up to 0.956
(MAE=0.491) for the UPDRS-III score and of up to 0.967 (MAE=0.480) for the total
scale. Despite the results from [Tsan 10, Eski 12, Cast 14, Nila 18] and [Nila 19] look
promising, the results are optimistic and biased for two main reasons: (1) the authors
do not guarantee the speaker independence because they include data from the same
speaker both in the train and test sets, and (2) most of the labels of the considered
data were interpolated, which makes the data not reliable for the addressed problem.
In addition, the MAE and the Pearson correlation coefficient are not the most reli-
able performance metrics for the addressed problem, especially the MAE, which only
makes sense when there is a baseline to compare the performance of the models.

A different approach was introduced in [Baye 13]. The authors considered phona-
tion features such as jitter, shimmer, and the HNR to predict the UPDRS-III score
of 168 PD patients, English speakers, who performed different tasks such as the sus-
tained phonation of the vowel /a/, DDK exercises, and a read text. The authors
reported a MAE of 5.5 points using a ridge regression algorithm; however, as we
mention previously, the MAE is not a reliable metric to evaluate the performance
of the addressed problem. Later on, the 2015 computational paralinguistic challenge
(ComParE) [Schu 15] had one of the sub-challenges about the automatic estimation
of the neurological state of PD patients according to the MDS-UPDRS-III score.
The baseline of the challenge was computed using features extracted with the openS-
MILE toolkit [Eybe 15] and the regression was performed with an SVR. The reported
baseline for the challenge corresponded to a Spearman’s correlation (ρ) of 0.39. The
winners of the challenge [Gros 15] reported a Spearman’s correlation of 0.65 when
grouping automatically the speech tasks per speaker and using Gaussian processes
and deep neural networks to perform the prediction of the clinical score. In [Oroz 16a]
the authors predicted the neurological state of PD patients according to the MDS-
UPDRS-III scale combining articulation and intelligibility features. The articulation
was modeled by computing the energy content in the transitions from unvoiced to
voiced (onset) and from voiced to unvoiced (offset) segments. The authors reported
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Spearman’s correlations of up to 0.69 between the original MDS-UPDRS-III scores
and the predicted ones using an SVR. In [Tu 17b] the authors aimed to predict the
MDS-UPDRS-III score of 61 PD patients using several features based on spectral
and glottal analysis. The prediction was performed using a non-parametric regres-
sion strategy based on the Hausdorff distance between a speaker from the test set
and the speakers in the training set. The neurological state of the patients was pre-
dicted with a Pearson’s correlation of up to 0.58. The authors also predicted the
dysarthria level of 56 patients, English speakers, and reported a Pearson’s correlation
of up to 0.78. In [Rame 17] the authors considered acoustic features computed with
the openSMILE toolkit [Eybe 15] to predict the neurological state of the patients
according to the MDS-UPDRS-III score. The authors proposed a feature selection
algorithm based on the maximal relevance and minimal redundancy based on correla-
tions (mRMRc) criterion. Gaussian mixture regression and SVRs were considered to
predict the MDS-UPDRS-III scale. The authors reported a Spearman’s correlation
of up to 0.52 and concluded that the most informative features were those related to
spectral flatness and the energy content distributed in the spectrum. In [Smit 17a]
the authors aimed to predict motor, cognitive, and depressive symptoms of 35 PD pa-
tients, English speakers. The motor state was predicted based on the UPDRS score,
the cognitive state was predicted based on the Montreal cognitive assessment (MoCA)
scale, and the depressive state was evaluated with the geriatric depression scale. The
clinical scales were predicted with articulation features such as formant frequencies
and the derivatives of MFCCs; and prosody features based on the phoneme rate.
The extracted features were used to train a Gaussian staircase regression algorithm.
The authors reported moderate correlations predicting motor severity (ρ=0.42) and
global cognition (ρ=0.52) but not depression (ρ=-0.21).

An additional approach was proposed in [Aria 16] to track the disease progression
per speaker. The authors created individual speaker models for seven PD patients
recorded in five sessions during three years. The speaker models followed a GMM-
UBM approach trained with articulation features. The Bhattacharyya distance was
computed between the speaker model and a UBM trained with utterances of 62
PD patients and 50 HC, Spanish speakers. The distance measure was correlated
with the MDS-UPDRS-III scale assigned to each patient to assess the progress of the
disease. The authors reported an average Pearson’s correlation of 0.60 for all patients.
Another study to evaluate the progress of the neurological state of the patients was
presented in [Gala 18]. The authors predicted the changes in the UPDRS score for
51 PD patients, Czech native speakers, recorded in two sessions within two years.
The authors compute several phonation features for sustained vowels. The difference
of the UPDRS score between the two sessions for all patients was predicted with
a Gradient boosted trees regressor. The authors reported an estimated error rate
(EER) of 11% (MAE=1.7) for the prediction of the part IV of the UPDRS, and
an EER of 26% (MAE=7.3) for the prediction of the changes of the part III of the
UPDRS.

Regarding the evaluation of the neurological state based on grouping patients in
several stages of the disease (initial, intermediate, and severe), in [Bock 13] the authors
considered phonation, articulation and prosody features to classify PD patients in
three levels of the disease, and reported accuracies of up to 46.6%.
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4.1.3 Automatic Evaluation of the Dysarthria Severity of Pa-
tients

Although the MDS-UPDRS-III evaluates motor skills including the movement of
hands and arms, gait, and posture, among others, it is not suitable nor fair to as-
sume that the scale can accurately be predicted only based on speech recordings. To
evaluate the impact of PD solely on the speech, a scale to evaluate speech would be
a valuable tool. Several studies have considered the application of scales to assess
only the speech deficits of PD patients [Skod 11a, Pate 16]. There are several studies
to predict the speech deficits of the patients based on clinical scores. In [Tsan 14] the
authors used phonation features to evaluate the response of 14 PD patients to the
Lee Silverman voice treatment as acceptable or unacceptable. The authors consid-
ered only information from the sustained vowel /ah/, and reported accuracies close
to 90% discriminating between acceptable vs. unacceptable utterances. In [Tu 17a]
the authors proposed a deep learning model to assess dysarthric speech. The model
aimed to predict the dysarthria severity adding an intermediate interpretable hidden
layer that contains four perceptual dimensions: nasality, vocal quality, articulatory
precision, and prosody. The authors evaluated the performance of the model on a
dysarthric speech corpus and showed that their approach provided an interpretable
output highly correlated (ρ=0.82) with a subjective evaluation performed by speech
and language pathologists. In [Vasq 18b] the authors computed phonation, articula-
tion, prosody, and intelligibility features to predict the dysarthria severity of 68 PD
patients and 50 HC subjects according to the introduced m-FDA scale, explained
in Section 3.1.2. The dysarthria level was estimated using several regression mod-
els. In addition, speaker models based on i-vectors were also explored. The results
indicated that articulation features were the most accurate to predict the m-FDA
score, obtaining Spearman’s correlations of up to 0.69 between the predicted scores
and those assigned by the phoniatricians. In [Cern 17] the authors modeled the com-
position of non-modal phonations, i.e., voice quality spectrum, in PD using a deep
learning approach to compute phonological posteriors from the speech signal. Those
posteriors were used to assess the dysarthria level of the speakers from the PC-
GITA corpus [Oroz 14]. The authors correlated (ρ=0.56) the phonological posteriors
and the subjective evaluation performed by speech therapists following the m-FDA
scale [Vasq 18b]. In [Beri 17] the authors computed prosody and articulation features
from interviews performed by Muhammad Ali to assess the progress of the disease.
The results reveal that Mr. Ali’s speaking rate sharply declined over time (Pearson
correlation of -0.574) as did his ability to clearly articulate vowels. In [Laar 17] the
authors considered an i-vector approach to predict the dysarthria level of 129 patients
with several diseases, including 31 PD patients. The labeling of the dysarthria level
was based on the DEB. All patients were native French speakers, and they were asked
to pronounce a read text with 550 phonemes. The prediction of the dysarthria level
considered three dimensions of the speech impairments: articulation, intelligibility,
and the total severity. The proposed method consisted of training an i-vector ex-
tractor with 19 linear frequency cepstral coefficients, and then use those extracted
i-vectors to train an SVR. A Spearman’s correlation coefficient of 0.88 was reported
for the prediction of the total dysarthria level. The correlations reported for the
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specific levels of intelligibility and articulation were of 0.84 and 0.87, respectively.
In [Vasq 18a] the authors improved the articulation model introduced in [Vasq 17a]
to predict the neurological state and the dysarthria level of the patients from the
PC-GITA corpus [Oroz 14]. The model based on CNNs was trained using a multitask
learning strategy to jointly classify PD patients and HC subjects, PD patients in
different stages of the disease according to the MDS-UPDRS-III score, and to clas-
sify the participants into several groups based on their level of dysarthria according
to the m-FDA scale. The proposed model was able to classify the PD patients and
HC subjects with accuracies of up to 89%, to classify the patients according to their
neurological state with accuracies of up to 55%, and to classify the subjects according
to their level of dysarthria with accuracies over 43.3%.

An additional approach to monitor the disease progression per speaker was in-
troduced in [Aria 18a]. The authors considered the speaker models based on GMM-
UBMs [Aria 16] and i-vectors to monitor the progression of the level of dysarthria
in a longitudinal study. The speaker models based on i-vectors and GMM-UBMs
were trained with phonation, articulation, and prosody features. The speaker mod-
els were tested in two different scenarios: (1) a test set with utterances from seven
patients captured in five sessions distributed from 2012 to 2016, and (2) the At-home
database, described in Section 3.3.3. The authors considered the effect of different
communication channels (Skype, Hangouts, mobile phone, and land-line) to test the
suitability of the speaker models to perform a remote monitoring of the speech im-
pairments of the patients. The speaker models were able to monitor the progression
of the m-FDA score in the at-home data with a Spearman’s correlation of up to 0.55.
The results for the long-term progression indicated a correlation of up to 0.77.

4.1.4 Main Outcomes from the Literature

Different applications have been considered for the speech assessment of PD patient.
A summary of the literature about the considered applications within the last years
is shown in Figure 4.2 and Table 4.1. Most of the papers are focused on the clas-
sification of PD vs. HC subjects, the assessment of the neurological state of the
patients, or the evaluation of the severity of the speech impairments of the patients,
following a dysarthria scale. The number of papers about these applications has in-
creased within the years. Particularly, regarding the assessment of the neurological
state of the patients and the prediction of their dysarthria severity, there are a couple
of studies focused on longitudinal evaluation of the patients for a continuous and
individual monitoring of the disease progression [Aria 18a, Gala 18]. Other studies
are focused on evaluating the effect of medication in the speech production of pa-
tients [Rusz 16, Pomp20, Nore 20, Hemm20], the assessment of the intelligibility of
patients [Dima 17], or the prediction of whether patients with RBD are classified as
PD patients or HC subjects [Benb 19].

There are other applications that are not well not enough studied yet and that
can have a direct impact for the medical community, patients, or caregivers. Those
applications include the automatic assessment of non-motor impairments exhibited
by patients such as depression or cognitive decline, which highly affect the quality
of life of the patients, and their communication capabilities. A couple of studies to
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Figure 4.2: Different applications addressed in the literature for speech assessment
of PD.

Table 4.1: Different applications addressed in the literature for speech assessment of
PD.

References Application

[Tsan 12],[Rusz 13],[Saka 13],[Bock 13],[Novo 14],[Zhao 14],[Oroz 15],[Vill 15],
[Bela 16],[Gala 16],[Hemm16],[Meky 16],[Nara 16],[Oroz 16b],[Aria 17],[Garc 17],
[Godi 17],[Rusz 17],[Vaic 17],[Vasq 17b],[Vasq 17a],[Zhan 17],[Mont 18],[Moro 18],
[Vasq 18a],[Wu18],[Aror 19],[Benb 19],[Corr 19],[Kara 19],[Korz 19],[Lope 19], Classification PD vs. HC
[Moro 19a],[Moro 19b],[Rued 19][Saka 19],[Vasq 19c],[Zhan 19],[Wodz 19],[Moro 20],
[Novo 20],[Visw 20],[Mall 20],[Kodr 20],[Oroz 20b],[Jean 20],[Kara 20],[Rios 20],[Mill 20],
[Vasq 21c],[Rios 21],[Garc 21],[Quan 21],[Np 21],[Kara 21b],[Kara 21a],[Amat 21]
[Vasq 21a],[Jean 21]

[Tsan 10],[Eski 12],[Baye 13],[Bock 13],[Cast 14],[Gros 15],[Schu 15],[Aria 16],
[Oroz 16a][Garc 17],[Rame 17],[Smit 17b],[Tu 17b],[Aria 18a],[Nila 18],[Oung 18], Assessment of the neurological state
[Gala 18],[Vasq 18a],[Nila 19],[Vasq 19c],[Hemm20],[Sech 21]

[Tsan 10],[Beri 17],[Cern 17],[Garc 17],[Laar 17],[Rusz 17],[Tu 17a],[Tu 17b],
Assessment of speech impairments[Aria 18a],[Vasq 18b],[Vasq 18a],[Gala 18],[Oroz 20b],[Kara 20],[Mill 20],[Vasq 21b],

[Kara 21b]

[Rusz 16],[Dima 17],[Benb 19],[Pomp 20],[Nore 20],[Hemm20],[Pere 21b],[Pere 21c] Others[Garc 21],[Roma 21]

address such applications have been recently performed. [Garc 21, Pere 21b]. Other
application include the detection of patients in prodromal stages of the disease, which
would benefit the development of neuroprotective therapies [Post 15]. Patients in pro-
dromal stages may include subjects with genetic mutations responsible for producing
PD but with no clinical signs of the disease. Another potential application is the
discrimination between PD and other neurological disorders with similar symptoms
such as Huntington’s disease or essential tremor [Rusz 15].

The studies addressed in the literature considered different speech tasks for the
assessment of the patients. A summary of the most common addressed tasks is shown
in Figure 4.3 and Table 4.2. The most common speech tasks include the phonation of
sustained vowels, reading isolated sentences, or read texts, DDK tasks like the rapid
repetition of /pa-ta-ka/, or spontaneous speech. The use of continuous speech tasks
like monologues has increased within the last years, mainly because the motivation of
developing technology for continuous monitoring of the patients. There are additional
tasks that have not been considered enough, but that contain suitable information
about the disease including phonation of modulated vowels [Hemm16], non-speech
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body sounds like swallowing or coughing [Zhan 19], the sustained phonation of nasal
consonants like m [Visw 20].
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Figure 4.3: Different speech tasks considered in the literature for speech assessment
of PD.

Table 4.2: Different speech tasks considered in the literature for speech assessment
of PD.

References Speech task

[Tsan 10],[Eski 12],[Tsan 12],[Baye 13],[Rusz 13],[Cast 14],[Tsan 14],[Oroz 15],
[Bela 16],[Hemm16],[Meky 16],[Nara 16],[Rusz 16],[Aria 17],[Rusz 17],[Vaic 17],
[Vasq 17b],[Zhan 17],[Gala 18],[Moro 18],[Nila 18],[Oung 18],[Vasq 18b],
[Wu 18],[Aror 19],[Beru 19],[Kara 19],[Nila 19],[Saka 19],[Wodz 19],[Novo 20], Sustained vowels
[Mall 20],[Pomp 20],[Kara 20],[Hemm20],[Vasq 21b],[Quan 21],[Np 21],
[Kara 21a],[Jean 21]

[Saka 13],[Zhan 17],[Beru 19],[Korz 19],[Kodr 20],[Kara 20],[Kara 21b],[Amat 21] Isolated words

[Saka 13], [Zhao 14],[Schu 15],[Vill 15],[Oroz 16b],[Vaic 17],[Tu 17a],[Zhan 17],[Vasq 18b],
Isolated sentences[Beru 19],[Moro 19a],[Vasq 19c],[Moro 20],[Pomp20],[Oroz 20b],[Sech 21],[Quan 21]

[Kara 21b],[Vasq 21a],[Jean 21]

[Bock 13],[Baye 13],[Gros 15],[Schu 15],[Aria 16],[Gala 16],[Oroz 16b],[Oroz 16a],

Read texts[Cern 17],[Dima 17],[Garc 17],[Laar 17],[Rame 17],[Rusz 17],[Tu 17a],[Aria 18a],
[Moro 18],[Vasq 18b],[Benb 19],[Lope 19],[Moro 19b],[Vasq 19c],[Pomp 20],[Oroz 20b],
[Rios 20],[Garc 21],[Sech 21],[Roma 21],[Jean 21]

[Bock 13],[Baye 13],[Novo 14],[Gros 15],[Schu 15],[Oroz 16b],[Oroz 16a],[Rusz 16],
[Cern 17],[Garc 17],[Godi 17],[Laar 17],[Rame 17],[Rusz 17],[Vasq 17a],[Tu 17a], DDK
[Moro 18],[Vasq 18b],[Lope 19],[Moro 19a],[Moro 19b],[Rued 19],[Vasq 19c],[Moro 20],
[Mall 20],[Pomp 20],[Nore 20],[Oroz 20b],[Rios 20],[Mill 20],[Vasq 21c],[Rios 21],
[Vasq 21b],[Vasq 21a],

[Gros 15],[Schu 15],[Oroz 16b],[Oroz 16a],[Rusz 16],[Beri 17],[Garc 17],[Laar 17],

Spontaneous speech[Rame 17],[Rusz 17],[Vasq 17b],[Tu 17a],[Aria 18a],[Moro 18],[Vasq 18b],[Benb 19],
[Corr 19],[Lope 19],[Moro 19b],[Moro 19a],[Vasq 19c],[Mall 20],[Pomp 20],[Oroz 20b],
[Rios 20],[Jean 20],[Pere 21b],[Pere 21c],[Jean 21]

[Hemm16],[Zhan 19],[Visw 20],[Nore 20],[Garc 21] Others

There are additional speech tasks that can be explored to find markers about other
aspects present in the speech of patients, especially those focused on the evaluation of
non-motor symptoms that affects the speech and language production. These speech
tasks include retelling, i.e., the examiner tells a story to the patient, who has to tell
later what (s)he remembers about the story. This task is suitable to evaluate aspects
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about memory load and hesitations of the patients [Garc 18a, Garc 21]. Other task
that can be explored is image description [Nore 20], where a picture with different
actions in it is shown to the patients, who have to describe it with as much details
as possible. This type of task is useful to evaluate aspects of cognitive decline in the
patients.

The studies addressed in the literature have also considered or proposed different
methods to evaluate the speech of PD patients. The methods were divided in different
categories such as phonation, articulation, prosody, intelligibility, those based on deep
learning, and others. A summary of the use of those methods is observed in Figure 4.4
and Table 4.3. In the initial years, most of the studies were only focused on phonation
or articulation analyses. In the last five years, works on deep learning started to
appear, showing interesting and accurate results in modeling different aspects of the
speech of PD patients. Additional methods that appear in the literature that have
not been enough explored include the use of phonological features [Cern 17, Oroz 20b],
which is deeply explored in the scope of this thesis and explained with details in
Section 4.3. Additional methods explored in the literature include speaker models
based on speaker recognition methods such as i-vectors [Aria 18a, Garc 17, Laar 17],
or the X-vectors [Moro 20, Jean 20].
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Figure 4.4: Different methods considered in the literature for speech assessment of
PD.

4.2 Acoustic Analysis of Speech

This section aims to cover classical acoustic analyses methods designed to characterize
the speech of PD patients. We include a detailed description of phonation, articula-
tion, and prosody features that are used to model different phenomena exhibited in
the speech of the patients. For instance, phonation analysis give information about
the capability to control respiration and expel air from the lungs to make the vocal
folds vibrate. Articulation analysis is considered to model the capability of patients
to control the movement of several articulators to produce speech e.g., tongue, lips,
jaw, and velum. Finally, prosody analysis provides information about the intonation,
loudness, and timing in continuous speech. The analysis of these three dimensions
of speech was included in the Neurospeech software [Oroz 18], released to model the
speech of PD patients. In addition, the implementation of these features is avail-
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Table 4.3: Different methods considered in the literature for speech assessment of
PD.

References Methods

[Tsan 10],[Tsan 12],[Eski 12],[Baye 13],[Bock 13],[Saka 13],[Cast 14],[Tsan 14],[Oroz 15],

Phonation
[Bela 16],[Hemm16],[Meky 16],[Nara 16],[Aria 17],[Garc 17],[Rusz 17],[Tu 17a],
[Vasq 17b],[Zhan 17],[Aria 18a][Gala 18],[Moro 18],[Nila 18],[Oung 18],[Vasq 18b],
[Aror 19],[Kara 19],[Nila 19][Beru 19],[Lope 19],[Saka 19],[Novo 20],[Visw 20],
[Oroz 20b],[Hemm20],[Vasq 21b],[Moro 21],[Quan 21],[Np 21],[Kara 21b]

[Bock 13],[Rusz 13],[Novo 14],[Zhao 14],[Vill 15],[Aria 16],[Oroz 16b],[Oroz 16a],

Articulation
[Rusz 16],[Aria 17],[Beri 17],[Garc 17],[Godi 17],[Rusz 17],[Smit 17b],[Vasq 17a],
[Vasq 17b],[Aria 18a],[Mont 18],[Moro 18],[Vasq 18b],[Kara 19],[Benb 19],[Lope 19],
[Moro 19b],[Rued 19],[Oroz 20b],[Kara 20],[Hemm20],[Mill 20],[Garc 21],[Quan 21],
[Amat 21]

[Bock 13],[Zhao 14],[Gala 16],[Beri 17],[Garc 17],[Rusz 16],[Rusz 17],[Smit 17b],
Prosody[Aria 18a],[Vasq 18b],[Benb 19],[Beru 19],[Lope 19],[Nore 20],[Oroz 20b],[Garc 21],

[Quan 21],[Roma 21]

[Oroz 16a],[Dima 17],[Parr 18],[Roma 21] Intelligibility

[Gros 15],[Vasq 17a],[Tu 17b],[Zhan 17],[Vasq 18b],[Corr 19],[Zhan 19],[Korz 19],

Deep learning[Vasq 19c],[Wodz 19],[Moro 20],[Mall 20],[Pomp 20],[Jean 20],[Rios 20],[Vasq 21c],
[Pere 21b],[Rios 21],[Pere 21c],[Vasq 21b],[Moro 21],[Quan 21],[Kara 21a],[Vasq 21a]
[Jean 21]

[Schu 15],[Cern 17],[Laar 17],[Rame 17],[Vaic 17],[Wu 18],[Kodr 20],[Oroz 20b],[Mill 20], Others
[Garc 21],[Sech 21]

able as an open source toolkit called Disvoice, available online1. We additionally
described in this section a set of features extracted with the OpenSMILE [Eybe 15]
toolkit, which was designed to extract features to recognize paralinguistic aspects
from speech.

The features described in this section are considered as a baseline and comple-
ment for the proposed methods in this thesis for speech assessment of PD patients:
the phonological analysis described in Section 4.3 and the representation learning
analysis described in Section 4.4. The reliability of all these methods is evaluated
in two different applications: the automatic classification of PD patients and HC
subjects, and the prediction of the dysarthria severity of the speakers, according to
the introduced m-FDA scale, described in Section 3.1.2.

4.2.1 Phonation Features

The phonation features are used to model abnormal patterns in the vocal fold vibra-
tion and are extracted from the voiced segments, where there is vibration of the vocal
folds. They can be computed in sustained vowels, in DDK exercises, and in contin-
uous speech signals. The phonation analysis comprises seven features computed for
short-time frames of the speech signal.

1Disvoice: python framework to extract features from speech https://github.com/jcvasquez
c/DisVoice

https://github.com/jcvasquezc/DisVoice
https://github.com/jcvasquezc/DisVoice
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Jitter and shimmer: these two features describe temporal perturbations in the
fundamental frequency and amplitude of the speech signal, respectively. Jitter is
computed according to Equation 4.1. N is the number of frames in the speech
utterance, Mf is the maximum of the fundamental frequency, and F 0 corresponds
to the fundamental frequency computed on the k-th frame. Shimmer is computed
using Equation 4.2, where Ma is the maximum amplitude of the signal, and A(k)
corresponds to the maximum amplitude on the k-th frame.

Jitter(%) =
100

N ·Mf

N∑
k=1

|F0(k)−Mf | (4.1)

Shimmer(%) =
100

N ·Ma

N∑
k=1

|A(k)−Ma| (4.2)

Amplitude perturbation quotient (APQ): this feature measures the long-term vari-
ability of the peak-to-peak amplitude of the speech signal. The computation includes
a smoothing factor of 11 voiced periods.

Pitch perturbation quotient (PPQ): similar to APQ, PPQ measures the long-term
variability of the fundamental frequency, with a smoothing factor of five periods.

Both APQ and PPQ are computed as the absolute average difference between the
amplitude or period values (for APQ or PPQ, respectively) of each frame and the
average of its neighbors, divided by the average values for the signal. The perturbation
quotients are computed using Equation 4.3, where L = N− (k−1) , D(i) is the pitch
period sequence when computing the PPQ or the pitch amplitude sequence when
computing the APQ. N is the number of frames, k is the length of the moving
average (11 for APQ or 5 for PPQ), and m = (k − 1)/2.

PQ =
1

L

L∑
i=1

1
k

∑k
j=1D(i+ j − 1)−D(i+m)

1
N

∑N
n=1 D(i)

(4.3)

Additionally, the first and second derivatives of F 0 are included in the feature
set, along with the energy content of the signal. Additional details of the methods
can be found in [Oroz 18]. Four statistical functionals are calculated per feature
(mean, standard deviation, skewness, and kurtosis), forming a 28–dimensional feature
vector per utterance. Figure 4.5 shows an example with two speech signals and
their F 0 contour produced by two male speakers with similar age: an HC speaker
(left) and a PD patient (right). Note the stability of the F 0 contour for the HC
subject compared to the one obtained for the PD patient, who exhibits clear signs of
hypokinetic dysarthria because of the uncontrolled movement of his vocal folds.

4.2.2 Articulation Features

Articulation reflects the ability of a speaker to move and put the muscles of the vocal
tract in the correct position, on the correct time, and with the appropriate energy
and duration while producing speech. The evaluation of articulation in PD patients is
performed typically with measurements of the vocal space and with spectral and cep-
stral analyses. This thesis considers the articulation analysis introduced in [Oroz 16b]
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Figure 4.5: Sustained phonations of vowel /a/ and their corresponding F 0 contour
for: a) a 71 years old healthy speaker with m-FDA = 0, and b) a 77 years old PD
patient with m-FDA = 41 and MDS-UPDRS-III = 92

to model the difficulties of the patients to start or stop the vocal fold vibration based
on an analysis of the energy content in the transitions between voiced and unvoiced
segments.

Articulation capabilities of the patients are evaluated considering the energy con-
tent in the transition from unvoiced to voiced segments (onset) and from voiced to
unvoiced segments (offset). The detection of voiced/unvoiced segments is based on
the computation of F 0. Those segments where there are F 0 values are considered as
voiced, conversely segments where no F 0 values are found, are labeled as unvoiced.
Then, the border between voiced and unvoiced sounds are detected, and 40ms of the
signal are taken to the left and to the right, forming a segment with 80ms length.
Figure 4.6 shows an example of the resulting spectrograms of an onset transition for
a HC speaker and a PD patient. Note that the transition for the HC subject is well
defined, while the transition for the PD patient is not clearly identified. In addition,
note for the case of the PD patient there is a small vibration in the unvoiced part
that produces a F 0 around 100Hz in the left part. This is a characteristic of the lack
of control of the vocal fold vibration since the patient was unable to completely stop
the vibration for the unvoiced part in the left.

Once the transition is detected, the spectrum of the segment is distributed into
22 critical bands according to the Bark scale according to [Zwic 80]. For frequencies
below 500Hz the bandwidths of the critical bands are constant at 100Hz, while
for medium and high frequencies the increment is proportional to the logarithm of
frequency. The distribution of the frequency according to the Bark scale is shown in
Equation 4.4 . arctan(·) is measured in [radians] and f in [Hz].

Bark(f) = 13 · arctan(0.00076f) + 3.5arctan

(
f

7500

)2

(4.4)

Finally, after dividing the spectrum into the critical bands, the energy content
is computed for each frequency band, forming the Bark band energies (BBE). In
addition to the BBE computed upon the transitions, 12 MFCCs and their first two
derivatives are also calculated per segment to obtain a smooth representation of the
voice spectrum in the transitions. The aim of introducing the MFCCs is to take
into account the human auditory perception, which makes it more suitable to model
speech signals. A summary of this process is shown in Figure 4.7. At the end, a set
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Figure 4.6: Speech signals, fundamental frequency, and spectrograms of an onset
transition for a) a 71 years old healthy speaker with m-FDA = 0, and b) a 77 years
old PD patient with m-FDA = 41 and MDS-UPDRS-III=92

of 58 features (22 BBEs+12×3 MFCCs with ∆s) are computed for each transition.
The features extracted for onset and offset segments are also concatenated forming a
vector with 116 components.

Computing
F0

Detecting transitions

Time (s)
Onset Offset

BBE
MFCC+Δ+ΔΔ

BBE
MFCC+Δ+ΔΔ

Figure 4.7: Model of articulation features extracted from onset and offset segments.

The articulation features are complemented with the computation of the first
and second formant frequencies, and their first two derivatives (six features in to-
tal). These additional features allow to represent resonances in the vocal tract and
the capacity of the speaker to keep the tongue in a certain position while producing
voiced sounds. For instance, the literature has determined that the first derivative
of the second formant is highly correlated with the speed of the tongue, representing
a precise measure of articulatory speech [West 94]. Finally, similar to the phonation
analysis, four statistical functionals are calculated per feature (mean, standard devia-
tion, skewness, and kurtosis), forming a 488-dimensional ((6+116)×4) feature vector
per utterance to model the articulation of each speaker.
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4.2.3 Prosody Features

This group of features is designed to model timing, intonation, and loudness during
the production of natural speech. Prosody has been typically modeled with measures
related with duration and the contours of F 0 and energy of the speech signal. Prosody
features allow to model the monotonicity, monoloudness, and speech rate disturbances
in PD patients. Figure 4.8 shows an example of the prosody differences that exist
between an HC subject (left) and a PD patient (right). Note that the variability of
the F 0 contour (measured according to the standard deviation of F 0) is lower for the
case of the patient, which is translated into monotonicity. In addition, the tilt, i.e.,
slope of a linear reconstruction, is more negative for the case of the PD patient, i.e.,
the patient tends to lower the pitch at the end of the words more frequently than the
HC subject.
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Figure 4.8: Speech signals and fundamental frequency contours for a) a 71 years old
healthy speaker with m-FDA = 0, and b) a 77 years old PD patient with m-FDA =
41 and MDS-UPDRS-III=92. F0SD: standard deviation of F 0.

Different features are considered in this thesis to model the prosody impairments
exhibited by PD patients. A complete list of the considered features is shown in
Table 4.4. The total feature set is divided into three groups to model the pitch
contour (30 features), the energy contour (48 features), and the duration and speed
(25 features). The F 0 contour is computed using the robust algorithm for pitch
tracking (RAPT) [Talk 95], which shown to be more accurate than other methods,
like the ones based on autocorrelation function from Praat [Garc 14].

4.2.4 OpenSMILE Features

This feature set comprises a set of 6373 features extracted with the OpenSMILE
toolkit [Eybe 15], which is highly used for research in recognition of paralinguistic
aspects from speech since several years now. This feature set is classically used as
a baseline in the annual Computational paralinguistic challenge (ComParE) since
2009. The extracted features comprise several acoustic measures based on spectral,
cepstral, linear predictive coding, and perceptual linear prediction analysis, among
others. It includes also articulation-based features based on formant frequencies, and
prosody features based on pitch and loudness. The toolkit is available online to be
used for the community 2. The extracted features from OpenSMILE are used in

2OpenSMILE: https://www.audeering.com/opensmile/

https://www.audeering.com/opensmile/
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Table 4.4: Description of prosody features. Avg: Average, SD: standard deviation,
Max: maximum value, Min: minimum value.

Num. Feature Description

Features based on F 0

1-6 F 0 contour Avg, SD, Max, Min, Skewness, Kurtosis
7-12 Tilt of a linear estimation of F 0 for voiced segments Avg, SD, Max, Min, Skewness, Kurtosis
13-18 MSE of a linear estimation of F 0 for voiced segments Avg, SD, Max, Min, Skewness, Kurtosis
19-24 F 0 on the first voiced segment Avg, SD, Max, Min, Skewness, Kurtosis
25-30 F 0 on the last voiced segment Avg, SD, Max, Min, Skewness, Kurtosis

Features based on energy

31-34 Energy-contour for voiced segments Avg, SD, Skewness, Kurtosis
35-38 Tilt of a linear estimation of energy contour for voiced segments Avg, SD, Skewness, Kurtosis
39-42 MSE of a linear estimation of energy contour for voiced segments Avg, SD, Skewness, Kurtosis
43-48 Energy on the first voiced segment Avg, SD, Max, Min, Skewness, Kurtosis
49-54 Energy on the last voiced segment Avg, SD, Max, Min, Skewness, Kurtosis
55-58 Energy-contour for unvoiced segments Avg, SD, Skewness, Kurtosis
59-62 Tilt of a linear estimation of energy contour for unvoiced segments Avg, SD, Skewness, Kurtosis
63-66 MSE of a linear estimation of energy contour for unvoiced segments Avg, SD, Skewness, Kurtosis
67-72 Energy on the first unvoiced segment Avg, SD, Max, Min, Skewness, Kurtosis
73-78 Energy on the last unvoiced segment Avg, SD, Max, Min, Skewness, Kurtosis

Features based on duration

79 Voiced rate Number of voiced segments per second
80-85 Duration of Voiced Avg, SD, Max, Min, Skewness, Kurtosis
86-91 Duration of Unvoiced Avg, SD, Max, Min, Skewness, Kurtosis
92-97 Duration of Pauses Avg, SD, Max, Min, Skewness, Kurtosis
98-103 Duration ratios Pause/(Voiced+Unvoiced), Voiced/Pause,

Pause/Unvoiced, Unvoiced/(Voiced+Unvoiced),
Unvoiced/Pause , Voiced/(Voiced+Unvoiced),

this thesis as a baseline and complement to the classical features based on phonation,
articulation, and prosody, described previously; and to the proposed features based on
phonological analysis and representation learning, described in the following sections.

4.3 Phonological Analysis of Speech

Different groups of features such as MFCCs, PLPs, or embedding from neural net-
works are commonly used for several speech processing applications. However, for
pathological speech processing such as PD classification or dysarthria modeling, only
a small subset of features are used. The most important ones were those described
in the previous sections to model phonation, articulation, or prosody impairments of
the patients. More complex feature sets are rarely used by the medical community to
model pathological speech, mainly because their lack of interpretability. Neverthe-
less, those high-dimensional feature vectors contain a great amount of information
about the state of the patients that can be exploited by clinicians. Thus, it is impor-
tant to provide clinically meaningful features that at the same time carry meaningful
information about the health state of the patients.

Phonological features are more understandable for clinicians than the traditional
high-dimensional features used in speech processing. Phonological features are rep-
resented by a vector with information about the mode and manner of articulation
of the speaker, which are specifically related with the movements of the articulators
in the vocal tract. Phonological features have been considered for different patho-
logical speech processing applications [Midd 09], including assessment of dysarthric
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speech [Jiao 17, Cern 17], the evaluation of progressive apraxia of speech [Asae 16], or
the assessment of speech of cochlear implant users [Aria 19].

Different models have been proposed to extract phonological features from speech.
In [Zhao 15] the authors detected phonological categories such as consonant, nasal,
and bilabial, among others. The model was trained with utterances from isolated
phonemes, syllables, and English words using a deep-belief network that achieves
accuracies over 90%. In [Cern 16] the authors presented a toolkit called Phonvoc3 to
estimate 15 phonological posteriors based on the sound patterns of English. The au-
thors considered a parallel bank of fully connected networks to recognize each phono-
logical class. Accuracies over 96% were reported to detect the phonological classes.
In [Jiao 17] the authors detected 15 phonological classes using a model based on RNNs
with LSTM units trained with the TIMIT corpus. The phonological classes were de-
tected with accuracies over 90%. In spite of the success on the use of phonological
features to characterize pathological speech, there is a lack of models available for the
research community that can be used and adapted for different pathological speech
applications. The availability of models is even more scarce for languages different to
English. That is the reason why we proposed a new model to extract phonological
features from speech, in the context of PD evaluation. The model was designed for
Spanish native speakers, and is available as a toolkit for the research community. The
next subsections describe the Phonet toolkit to extract phonological posterior prob-
abilities from speech, and how we consider those phonological posteriors to extract
meaningful features to model the speech impairments of PD patients.

4.3.1 Phonet

Phonet is a toolkit designed to estimate phonological posteriors based on bidirectional
RNNs with GRU units. The models are available online4 to be used by the research
community interested in pathological speech assessment. The toolkit was originally
presented in [Vasq 19b]. However, by the time of writing this thesis, the architecture
of the model has been updated from its original version to get more accurate phono-
logical features. The model is trained with Spanish language utterances to test the
reliability of the phonological analysis in a language different to English.

The phonetic alphabet for Spanish includes 24 different phonemes, represented by
5 vowels and 19 consonants [Hier 93]. These phonemes are grouped into phonological
classes based on the mode and manner of articulation of the sounds. Tables 4.5
and 4.6 show the distribution of the Spanish phonemes into the phonological classes
for vowels and consonants, respectively. The notation of the phonemes is based on
the international phonetic alphabet.

Some conventions were considered in the design of Phonet to extract the phono-
logical features based on Spanish language: (1) the phoneme /θ/ was not considered
because it is only used in Spanish from central Spain. (2) The phoneme /J/ from the
word cayado and the phoneme /L/ from the word callado were grouped together since
they are pronounced similarly in many Latin American countries [Bagu 17]. (3) The

3Phonvoc: Phonetic and phonological vocoding platform https://github.com/idiap/phonvoc
4Phonet: Keras-based python framework to compute phonological posterior probabilities from

audio files https://github.com/jcvasquezc/phonet

https://github.com/idiap/phonvoc
https://github.com/jcvasquezc/phonet
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Table 4.5: Distribution of Spanish vowels into phonological classes.
Source: [Vasq 19b].

Front Central Back
High /i/ /u/
Mid /e/ /o/
Low /a/

Table 4.6: Distribution of the Spanish consonant into phonological classes based on
the mode and manner of articulation. Source: [Vasq 19b].

Labial Dental Alveolar Palatal Velar
Nasal /m/ /n/ /ñ/
Stop /p/ /b/ /t/ /d/ /tS/ /k/ /g/Fricative /f/ /θ/ /s/ /J/ /x/
Lateral /l/ /L/
Flap /R/
Trill /r/

phoneme /n/ from the word cana and the phoneme /ñ/ from the word caña were also
grouped together because they belong to the same phonological categories. Based on
the aforementioned conventions, we have a phonetic alphabet with 21 phonemes to
train the phonological feature extractor in Phonet. Those phonemes are distributed
into 18 phonological classes defined according to Table 4.7. The silence is considered
as an additional phonological class.

Table 4.7: Distribution of the different Spanish phonemes into phonological classes.

# Phonological class List of phonemes
Manner of articulation

1 Nasal /m/, /n/
2 Stop /p/, /b/, /t/, /k/, /g/, /tS/, /d/
3 Continuant /f/, /b/, /tS/, /d/, /s/, /g/, /L/, /x/
4 Lateral /l/
5 Flap /R/
6 Trill /r/
7 Strident /f/, /s/, /tS/
8 High /i/, /u/
9 Low /a/, /e/, /o/

Place of articulation
10 Dental /t/, /d/
11 Labial /m/, /p/, /b/, /f/
12 Velar /k/, /g/, /x/
13 Back /a/, /o/, /u/
14 Front /e/, /i/

Other categories
15 Vocalic /a/, /e/, /i/, /o/, /u/
16 Consonantal /b/, /tS/, /d/, /f/, /g/, /x/, /k/, /l/,

/L/, /m/, /n/, /p/, /R/, /r/, /s/, /t/
17 Voiced /a/, /e/, /i/, /o/, /u/, /b/, /d/, /l/,

/m/, /n/, /r/, /g/, /L/
18 Silence /sil/
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The phonological posteriors will be the conditional posterior probability of a
speech frame to belong to one or more phonological classes. The phonological pos-
teriors are computed with a deep learning model based on RNNs with GRU units,
trained to detect the occurrence of the phonological classes. The deep learning model
is trained following a multitask learning strategy to detect the different phonological
classes. The proposed model to extract the phonological posteriors is shown in Fig-
ure 4.9. Speech segments of 400ms length are windowed into frames of 25ms with a
time-shift of 10ms to compute the feature sequence for the input layer of the neural
network. The input features correspond to the log-energy of the signal distributed
into 33 triangular filters separated according to the Mel scale. The feature sequences
from the input are processed by two bidirectional GRU layers with 128 cells to model
information from the past (backward) and future (forward) states of the sequence,
simultaneously. The output of the second recurrent layer is connected to 18 time
distributed dense layers (one per phonological class) with 128 neurons and ReLU
activations. Then, the output for each time distributed dense layer is connected to
its respective output layer with a Softmax activation function to get posterior prob-
abilities for the output sequence. The model is trained with a multitask learning
strategy because it has shown to improve generalization in the training process of
a deep learning model [Caru 94]. When part of the network is shared across differ-
ent tasks, i.e., different phonological classes, the feature maps are more constrained,
yielding better generalization.
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Figure 4.9: Architecture of the proposed neural network to estimate the phonological
posteriors from the speech. P (ci|X): conditional probability for each phonological
class ci, i : {1, 2, · · · , 18}.

The loss function in a multitask learning strategy is a linear combination of the
individual loss functions for each task, following Equation 4.5 when two tasks are
considered. The term γ is a weight hyper-parameter, L1(Θ) is the loss for the first
task, and L2(Θ) is the loss function for the second task. When γ = 0, the network only
learns the first task, and when γ = 1, the network is trained to predict only the second
task. The loss function can be generalized using Equation 4.6 when more than two
tasks are considered, subject to the condition

∑
i γi = 1. The values of γi were set to

1/18 to give the same weight to each phonological class in the loss function. The loss
function for each task Li(Θ) corresponds to the weighted categorical cross-entropy,
defined according to Equation 4.7 to avoid the unbalance of the classes in the training
process. The weight factors wi for each class are defined based on the percentage of
samples from the training set that belong to each class. The network was trained
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using an Adam optimizer [King 14]. In addition, dropout layers with probability of
0.2, and batch normalization were considered to improve the generalization of the
proposed network. The model was trained with an early stopping strategy with a
patience of 15 epochs.

L(Θ) = γL1(Θ) + (1− γ)L2(Θ) (4.5)

L(Θ) =
∑
i

γiLi(Θ) (4.6)

Li(Θ) = −wilog (p (ci|X)) + (1− wi)log (1− p (ci|X)) (4.7)

The training of Phonet was performed with the CIEMPIESS corpus [Hern 14],
which consists of 17 hours of FM podcasts in Mexican Spanish. The database was
designed to be used in speech recognition systems, and it was annotated at word
level, considering all phonemes of the Spanish language. The data contain 16717
audio files with a sampling frequency of 16 kHz and 16-bit resolution. 700 utterances
from the entire corpus (from a set of different speakers) were separated to be used
as the test set for the detection of phonological classes. The CIEMPIESS corpus was
forced-aligned using the BAS CLARIN web service5 [Kisl 17] based on the phonetic
segmentation introduced in [Schi 99] for Spanish. The audio files and their corre-
sponding transcriptions were uploaded to the server, which provides Textgrid files
with phonetic alignment for each utterance. The aligned phonemes were used as la-
bels to train Phonet. The accuracy of Phonet to recognize the different phonological
classes are shown in Table 4.8. The proposed model shows to be highly accurate
to detect the different phonological classes. The F-score ranges from 0.827 to 0.956,
depending on the phonological class.

Table 4.8: Accuracy of Phonet to detect the different phonological classes.

Phonological F-score Precision Recall Phonological F-score Precision Recall
class class

1 Nasal 0.892 0.944 0.869 10 Dental 0.894 0.947 0.867
2 Stop 0.862 0.902 0.847 11 Labial 0.846 0.931 0.806
3 Continuant 0.877 0.905 0.865 12 Velar 0.900 0.962 0.864
4 Lateral 0.873 0.960 0.822 13 Back 0.884 0.894 0.881
5 Flap 0.827 0.955 0.754 14 Front 0.889 0.913 0.882
6 Trill 0.945 0.995 0.903 15 Vocalic 0.853 0.854 0.853
7 Strident 0.933 0.954 0.924 16 Consonantal 0.837 0.842 0.836
8 High 0.886 0.927 0.868 17 Voiced 0.891 0.894 0.890
9 Low 0.843 0.855 0.842 18 Silence 0.956 0.965 0.952

Figures 4.10a) and 4.10b) show the difference between the phonological posteriors
estimated for a PD patient (a) and an HC speaker (b) when they pronounce the
Spanish sentence mi casa tiene (my house has). Phonological posteriors for vocalic,
stop, nasal, and strident are included. Note that the toolkit is accurate to estimate all
phonological classes for the HC subject, but it is not able to accurately differentiate
several classes for the PD patient, for instance nasal, stop, and vocalic posteriors

5https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/WebMAUSBasic

https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/WebMAUSBasic
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are overlapped. Similar, Figures 4.10c) and 4.10d) show the difference in the labial,
dental, vocalic, and velar phonological posteriors between a PD patient and an HC
subject when they perform a DDK task like the repetition of /pa-ta-ka/. Note that
for the case of the PD patient in Figure 4.10c) the dental posterior appears to be
active when it should not, e.g., in the first and second /p/ phonemes. Same behavior
is observed for velar, which is active for the /t/ phoneme between 0.9 and 1.0 seconds.
For the case of the HC subject in Figure 4.10d) note that the posteriors are generally
higher, more stable , and less overlapped than the observed for the PD patient.
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Figure 4.10: Phonological posterior probabilities for for a) a PD patient, pronouncing
a sentence. b) an HC speaker, pronouncing a sentence. c) a PD patient performing
a DDK task, and d) an HC subject performing a DDK task. The PD patient corre-
sponds to a 77 years old subject with m-FDA = 41 and MDS-UPDRS-III=92. The
HC subject is a 71 years old speaker with m-FDA = 0. The sentence produced by
the subjects is the Spanish sentence /mi casa tiene/ (my house has), and the DDK
task corresponds to the repetition of the syllables /pa-ta-ka/.

A different visualization of the difference in the phonological posteriors between
PD patients and HC subjects is observed in Figure 4.11. The radar plot in Fig-
ure 4.11a) shows the phonological posteriors in the Spanish sentence Mi casa tiene
tres cuartos (my house has three rooms), for a PD patient and an HC subject, who
acts as a reference speaker. The posteriors are generally higher for the HC subject
compared with the PD patient, especially for labial, stop, and nasal, which indicates
a better pronunciation of those groups of phonemes for the case of the HC subject.
Figure 4.11b) shows a similar analysis, but for a DDK task, where labial, dental,
velar, vocalic, and stop classes appear. For this case note also that the posteriors
are higher for the HC subject patient compared with the PD patient. Figure 4.11c)
shows the difference in the phonological posteriors that are not active during the
DDK task i.e., the ideal probability should be 0. For this case, the area of the radar
is smaller for the HC subject than for the PD patient, which reflects problems in the
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pronunciation of the phonemes present in the DDK task for the PD patient, e.g., the
vowels appear to sound more low and frontal than back, for the case of vowel /a/, or
the original stops appear to sound more continuant for the case of PD patient.

a) b) c)

stop
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nasal

strident

labial

dental

velar

continuant

PD HC

stop

vocalic

labial

dental

velar

PD HC

nasal

strident

low

front

continuant

PD HC

Figure 4.11: Difference in phonological posteriors between PD patients and HC sub-
jects. a) Active phonological classes in the sentence Mi casa tiene tres cuartos (my
house has three rooms). b) Active phonological classes during the repetition of /pa-
ta-ka/. c) Not active phonological classes during the repetition of /pa-ta-ka/.

4.3.2 Phonological Features

Different features can be computed from the contour of the phonological posteri-
ors. We propose the use of phonological log-likelihood ratio (PLLRs) features, as an
effective set to characterize acoustic and phonetic aspects from PD patients. The
features are designed to model the capabilities of the speakers to pronounce dif-
ferent groups of phonemes. These type of features have shown to be accurate to
model different aspects of speech, such as spoken language [Diez 14a, Diez 14b], or
non-nativeness [Abad 16] due to their ability to model the pronunciation of different
groups of phonemes. PLLRs are computed from the set of N phonological posteriors
pi following Equation 4.8.

∑N
i=1 pi = 1 and pi ∈ [0, 1].

ri = logit(pi) = log
pi

1− pi
i = 1, · · · , N (4.8)

As explained in [Diez 14b], PLLRs overcome the non-Gaussian nature of phonolog-
ical posteriors, which is better to exploit different classification methods, or speaker
models based on GMM-UBM or i-vectors. However, according to [Diez 14b], when the
distribution of two (or more) PLLRs is observed, these Gaussian distributed features
show to be a strongly bounded, which limits the distribution of the feature space. In
order to avoid the bounding effect, and with the aim to obtain a smoother represen-
tation of the features, PLLRs are projected as described in [Diez 14b, Diez 14a] using
the projection matrix P from Equation 4.9. 1̂ = 1√

N
[11, 12, · · · , 1−N ] and I stands

for the Identity matrix.

P = I− 1̂ᵀ1̂ (4.9)
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The projected PLLRs are computed for the speech signals from the available
corpora. Then six statistical functionals are computed: average, standard deviation,
skewness, kurtosis, maximum, and minimum, in a similar way as in the phonation,
articulation, and prosody features. The final phonological feature vector per utterance
is formed with 18 PLLRs × 6 functionals= 108 features.

4.4 Unsupervised Representation Learning for Speech
Analysis

As it was explained previously, traditional methods to model pathological speech
are based on the computation of single hand-crafted features such as jitter, shim-
mer, or formant frequencies that may not completely model all of the phenomena
that appear due to the presence of the disease and the dysarthria level of PD pa-
tients. Methods based on feature representation learning have the potential to extract
more abstract and robust features than those manually computed. These features
could help to improve the accuracy of different models to characterize pathological
speech [Cumm18]. There are recent studies focused on extracting features based on
deep learning strategies to characterize speech signals for different applications. One
of the most well known methods to characterize speech signals using deep learning
corresponds to X-vectors [Snyd 18], which were designed for speaker recognition ap-
plications. X-vectors are extracted from time-delay neural networks to model a fixed
temporal context size from the speech signal. X-vectors have even been considered
to classify PD vs. HC subjects from speech [Moro 20]. Additional representation
learning methods include the one presented in [Chor 19], where the authors aimed
to learn a feature representation with information about the phonetic distribution of
the utterance, and at the same time being invariant to the identity of the speaker
or the acoustic conditions. The proposed model consisted of a vector quantized vari-
ational autoencoder based on Wavenet [Oord 16] to decode the raw waveform from
the bottleneck space. The authors applied their proposed model for acoustic unit
discovery and phoneme recognition problems. The model achieved an accuracy up
to 64.5% recognizing 41 phonemes from the librispeech corpus. In [Pasc 19] the au-
thors consider a self-supervised learning scheme to encode a feature representation
from raw speech signals. The proposed method consisted of an end-to-end encoder-
decoder neural network with multiple decoders to learn different speech features. The
encoder processed the raw speech waveform with convolutional layers with Sincent
filters [Rava 18] to get the feature embedding. The decoders aimed to learn differ-
ent speech aspects such as the log-power spectrum, MFCC, and prosody features.
The proposed model was evaluated in a speech recognition problem using the TIMIT
corpus, achieving an accuracy up to 85.3%. The model from [Pasc 19] was recently
updated in [Rava 20b], by including a quasi RNN and skip connections in the encoder,
and more decoders to learn also Gammatone and Mel filterbanks. The model was
applied in a phoneme recognition problem using the TIMIT corpus, and achieved a
phoneme error rate of 32.7%. Although there are different strategies to learn feature
representations from speech, to the best of our knowledge, non of them have been
applied to model pathological speech utterances, with the exception of X-vectors. We
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recently proposed a model based on unsupervised representation learning to extract
suitable features for pathological speech classification considering convolutional and
recurrent autoencoders [Vasq 20a]. The aim is not only to have a robust feature space
in the bottleneck layer but also to obtain meaningful and interpretable features based
on the reconstruction error of the autoencoders. The features proposed in [Vasq 20a]
are applied and extended in this thesis to detect the presence of PD and to evaluate
the dysarthria severity of the speakers. Only the features based on the recurrent
autoencoder (RAE) are considered, since they showed to be more robust to model
the presence of pathological speech [Vasq 20a].

4.4.1 Recurrent Autoencoders

The RAE is considered to characterize the temporal structures of the input spec-
trogram. The architecture of the implemented RAE is shown in Figure 4.12. The
input is a spectrogram with 128 frequency bins distributed according to the Mel-
scale and 126 time steps. The speech signal is segmented into chunks of 500ms with
a time-shift of 250ms. The spectrogram is computed for each chunk with a window
length of 32ms and a step-size of 4ms, forming the 126 time-steps. The STFT is
computed with 512 frequency points, which are transformed into the Mel-scale using
128 filters, forming the input spectrogram observed in the left part of Figure 4.12.
In these spectrograms we did not lose information about the fundamental frequency
contour because the high number of Mel filters and the large frame size. Each column
of the n = 126 time steps of the spectrogram serves as input for a sequence to one
RNN in the encoder, which is formed with a bidirectional LSTM (BLSTM) with 128
cells to model information from the past (backward) and future (forward) states of
the sequence, simultaneously. The output sequence of the BLSTM layer at the last
time step xn is stacked with the hidden state of the layer at the last time step sn
because they have observed and carry information about the whole input sequence.
This stacked vector then passes trough a fully connected layer to get the bottleneck
representation h. The decoder is formed with a sequence of 2 LSTM layers to retrieve
the original spectrogram from the bottleneck representation. The bottleneck features
were replicated 126 times for the decoder because every LSTM cell in the decoder
requires an input vector. The complete architecture of the RAE is shown in Fig-
ure 4.12. The Pytorch [Pasz 17] implementation of the trained models are available
online6 for the research community. The repository also contains scripts to train the
autoencoders with different datasets, and methods to use the trained autoencoders
to extract the proposed features.

The RAE was trained with the CIEMPIESS corpus [Hern 14], using the same
strategy explained previously for the phonological features. The RAE was trained
using the MSE loss function between the input and output spectrograms. We consider
also an Adam optimizer [King 14].

6AEspeech: feature extraction from speech signals based on representation learning strategies
using pre-trained autoencoders: https://jcvasquezc.github.io/AEspeech/

https://jcvasquezc.github.io/AEspeech/
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126x128                            BLSTM          cat                                Repeat               LSTM           LSTM                              126x128 
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Figure 4.12: Scheme of the RAE. Source: [Vasq 20a]. h: bottleneck representation.
xn output of the BLSTM layer at the last time step, sn hidden state of the BLSTM
at the last time step.

4.4.2 Representation Learning Features

Two different feature sets are extracted and stacked from the trained RAE, according
to Figure 4.13. The first set consists of the bottleneck features h ∈ R128 obtained
from the autoencoder, computed from the 500ms length segments. The bottleneck
features derived from Mel-scale spectrograms have shown to be more effective than
the MFCC to characterize speech signals [Deng 10]. We consider 128 hidden units
in the bottleneck space because it shown to be slightly more accurate to model the
presence of PD, according to [Vasq 20a]. The second feature set is based on the MSE
between the input and the decoded spectrograms, computed for each frequency band
(MSE(f), f ∈ R128). We hypothesize that not all frequency regions of the spectrogram
are reconstructed with the same error, and that such an error is related to the presence
of paralinguistic aspects such as the presence of PD or the dysarthria level of the
speakers. This approach is inspired from models designed for anomaly detection in
time-series [Pere 18b, Fan 18], where for this case, the anomalies are referred to speech
signals affected by the presence of PD, and which cannot be reconstructed properly by
the RAE autoencoder. In [Vasq 20a] we showed that there are significant differences
between the reconstruction error from the autoncoder between PD patients and HC
subjects.

hEncoder Decoder

Bottleneck

.

.

.

MSE(f)

error 1

error 2

error 3

error 128

Figure 4.13: Features extracted from the autoencoders. Source: [Vasq 20a]
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For each utterance, we obtain a feature matrix X ∈ R256×N formed with the
concatenation of the bottleneck features and error features. N is the number of
500ms length spectrograms extracted from the utterance. We then compute four
statistical functions, similar to the other feature sets described previously (mean,
standard deviation, skewness, and kurtosis), forming a vector xu ∈ R1024 to represent
the complete utterance.

4.5 Deep Learning Models for Speech Analysis
Besides the previous models, which are based on different feature extraction strategies
for a latter classification, we also consider end-to-end deep learning models both to
classify PD patients and HC subjects and to evaluate the dysarthria severity of the
subjects. The proposed models are based on the CNNs described in Section 2.2.2
using time-frequency representations from the short-time Fourier transform. Two
different spectral representations are considered for the input of the CNNs.

The first input comprises spectrograms of onset and offset transitions. This repre-
sentation is an improved version of the proposed in [Vasq 17a, Vasq 19c]. The aim in
this case is to model the difficulties of PD patients to start-stop the vocal fold vibra-
tion based on the transitions between voiced and unvoiced segments e.g., offset and
between unvoiced to voiced segments e.g., onset. The offset and onset segments are
detected according to the presence of the fundamental frequency using the RAPT
algorithm, in a similar process than the addressed for the articulation features in
Section 4.2.2 (see Figure 4.6). The borders are detected, and 80ms of the signal
are taken to the left and to the right of each border, forming chunks of signals with
160ms length. Each one of those chunks is modeled using a Mel-spectrogram. The
Mel-spectrograms of the transitions are computed with a frequency resolution of 512
points, 64 Mel filters, a window size of 32ms and a time-shift of 4ms. These parame-
ters lead us to a time frequency representation of 41 time steps and 64 frequency bins,
used as input for the CNNs. Figure 4.14 shows the difference in the onsets between a
HC subject and three patients in different stages of the disease (mild, intermediate,
and severe), according to their assigned m-FDA scores. Note that the HC speaker
clearly defines the transition, conversely the patients are not able to produce clean
transitions, especially for the patients in intermediate and severe levels of the disease.

The second input considered for the CNNs includes continuous speech segments.
For this case, we consider similar Mel-spectrograms than the ones used to train the
recurrent autoencoders from Section 4.4. For the second input, we consider Mel-
spectrograms computed for speech segments with 500ms length with a time-shift of
250ms. The Mel-spectrograms of the speech segments are computed with a frequency
resolution of 512 points, 64 Mel filters, a window size of 32ms and a time-shift of
4ms, similar to the previous case. These parameters lead us to a time frequency
representation of 126 time steps and 64 frequency bins, used as input for the CNNs.

The two input spectrograms considered are processed by two different deep CNNs.
The first model is based on a traditional CNN based on LeNet [LeCu 98]. It consists
of three convolutional layers, with max-pooling and dropout, followed by a fully
connected layer and the output layer. Leaky-ReLu activations are considered in the
hidden layers, and a Softmax activation function is considered in the output to make
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Figure 4.14: (a) Mel-spectrogram of an onset produced by a 75 years old female HC
subject with m-FDA=3. b) Mel-spectrogram of an onset produced by a 73 years
old female PD patient in with mild dysarthria severity state (m-FDA = 21). c)
Mel-spectrogram of an onset produced by a 72 years old female PD patient with
intermediate dysarthria severity (m-FDA = 31). d) Mel-spectrogram of an onset
produced by a 75 years old female PD patient with severe dysarthria severity (m-
FDA=47). All figures correspond to the syllable /ka/.

the final decision. The number of feature maps on each convolutional layer is twice
the previous one in order to get more detailed representations of the input space in
the deeper layers. The CNN is trained using the cross-entropy loss function, using an
Adam optimizer. Figure 4.15 summarized this first architecture to process the input
Mel-spectrograms.
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Figure 4.15: Architecture of the first CNN to process the Mel-spectrograms of the
speech signals. FC: Fully connected layers. c= number of output channels in the
convolutional layers. The values in parenthesis indicate the size of the convolutional
filters and the number of neurons in the fully connected layers.

The second architecture is based on the ResNet models [He 16]. We consider a
ResNet18 model, which has three residual blocks and 18 convolutional layers (see
Figure 4.16). The skip connections helps to control the vanishing gradient problem
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when we have deeper models, as it was explained in Section 2.2.2. Dropout layers
were also considered to regularize the output of the residual blocks. The final decision
is made by a fully connected layer with a Softmax activation function, similar to the
first architecture.
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Figure 4.16: Architecture of the second CNN based on ResNet to process the Mel-
spectrograms of the speech signals. FC: Fully connected layers. c= number of output
channels in the convolutional layers. The values in parenthesis indicate the size of
the convolutional filters and the number of neurons in the fully connected layers.
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Chapter 5

Analysis of Parkinson’s Disease from
Handwriting

The main symptoms of PD in handwriting include micrographia, bradykinesia, and
tremor [Smit 14]. On the one hand, micrographia is related to the reduction of the size
in handwriting. The prevalence of micrographia in PD remains unclear. However, it
has been observed that in general it affects less than 50% of the patients [Leta 14],
which makes it not the most successful biomarker to evaluate the presence or severity
of the disease. On the other hand, bradykinesia in PD patients causes longer times
to complete a handwriting task than as usually required. Finally, tremor is related
to involuntary movements, which produce irregular shapes in the drawings of the
patients. The complete handwriting impairments in PD patients have been grouped
and called PD dysgraphia, which is related to difficulties performing the controlled
fine motor movements required to write [Leta 14]. The term dysgraphia implies that
motor impairments related to the disease (e.g., tremor, rigidity, bradykinesia, akine-
sia, freezing of the upper limb) may affect handwriting kinematics without necessarily
affecting writing size. In addition, it implies that dynamic and kinematic features are
appropriate to diagnose and to monitor the disease severity of patients, or to evaluate
the efficacy of a given treatment [Leta 14].

Handwriting assessment of PD can be divided according to the acquisition of the
handwriting samples into two categories: online or offline. Online handwriting is
captured from digitizer tablets, and contains information related to the dynamics of
the handwriting process, the pressure of the pen, and the azimuth (orientation) and
altitude (inclination) angles. Some tablets capture also information from the in-air
movement, before the patient places the pen onto the tablet’s surface. Conversely,
offline handwriting can be captured also from tablets, and paper. Offline handwriting
includes only spatial attributes from the drawings.

This chapter describes state-of-the-art methods and different proposed approaches
to model handwriting in PD patients, both from a classical pattern recognition per-
spective and novel deep learning strategies. Section 5.1 shows a review of the lit-
erature about automatic handwriting evaluation of PD patients both to classify PD
patients and HC subjects and to evaluate the neurological state of the patients. Then,
Section 5.2 describes the classical kinematic features used in the literature to model
handwriting in PD patients. Section 5.3 describes the geometric features proposed

89
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initially in [Rios 19], and which are extended in this thesis to model Archimedean spi-
ral shapes drawn by the patients. In Section 5.4 a feature set based on in-air analysis
of handwriting is proposed to model the difficulties of patients to start or to stop new
strokes. The chapter finishes in Section 5.5, where I describe methods to model the
handwriting of PD patients in an end-to-end fashion using different configurations of
CNNs, which process the reconstructed images from the online handwriting data.

5.1 A Review on Automatic Assessment of Hand-
writing in PD Patients

There is interest in the research community to automatically assess the handwriting
process of PD patients. The handwriting assessment is commonly performed to dis-
criminate between PD patients and HC subjects or to evaluate the neurological state
of the patients. The overview presented here intends to provide the reader with a
comprehensive and well structured view of methodological approaches and analyses
regarding handwriting analysis of PD patients from a pattern recognition perspec-
tive. The survey is divided into two aspects: studies to classify PD vs. HC using
handwriting, and those focused to evaluate the neurological state of the patients.
Classical pattern recognition approaches and novel studies based on deep learning
strategies will be covered.

5.1.1 Automatic Classification of PD and HC Subjects

Several studies have considered handwriting signals to classify PD patients and HC
subjects. Most of these studies extracted kinematic features based on the dynamics of
the velocity, acceleration, and jerk of the strokes [Rose 13, Drot 14, Drot 16, Kots 17,
Much 18a, Jerk 18, Zham18, Rios 19]. These kinematic features have been commonly
combined with other ones based on the pressure of the pen, azimuth or altitude
angles [Rose 13, Drot 16, Zham18, Rios 19]. Recent studies have shown that the
in-air movement is also important to characterize the handwriting impairments of
PD patients [Rose 13, Drot 16, Jerk 18, Rios 19]. In [Rose 13] the authors computed
kinematic features from 20 HC subjects and 20 PD patients, who were requested to
write an address and their full name. The extracted features included the average
on-surface and in-air times, the speed of the trajectory, and the average pressure of
the pen. The authors used an LDA classifier, and reported accuracies close to 97%.
In [Drot 14] the authors introduced the use of in-air movements in the handwriting
of 37 PD patients and 38 HC subjects, who wrote a sentence in Czech language. The
classification was performed with an SVM classifier. The results showed that the
combination of features based on pressure, in-air, and on-surface times produces the
highest accuracy (86%). This study was extended in [Drot 16], where the authors
extracted kinematic and pressure-based features, and considered several classifier
methods, reporting accuracies over 76.5%. In [Much 18a] the authors introduced a
new strategy based on fractional derivatives to extract kinematic features from the
handwriting of PD patients. Archimedean spirals from the PahaW database [Drot 16]
were considered. The extracted features were classified using SVM and RF classifiers.
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The authors reported an accuracy of up to 72.4% discriminating between PD and HC
subjects. In [Jerk 18] the authors considered kinematic features from the in-air and
on-surface trajectories to classify 10 HC subjects, 14 PD patients, 8 patients with
progressive supranuclear palsy, and 11 patients with multiple system atrophy. The
features from the four populations were classified with an LDA classifier. The authors
reported an accuracy of up to 86% discriminating between the four groups, combining
the in-air and the on-surface features. Similar kinematic, pressure, and angular-based
features were considered in [Zham18] to classify 31 PD patients and 31 HC subjects.
The patients performed several tasks including the drawing of Archimedean spirals,
the writing of an English sentence, and the repetition of the graphs b, d, and bd. The
features were classified with a naive Bayes algorithm. The authors reported an AUC
up to 0.933. New kinematic features were introduced in [Impe 19a] to characterize the
velocity contour of the handwriting of PD patients. The features were extracted from
different tasks from the PaHaW database [Drot 16]. The proposed features were based
on the Sigma-lognormal model, which considers the state of the neuromuscular system
to perform the handwriting process [ORei 09]. The extracted features were classified
with a linear SVM. The authors reported an accuracy of up to 98.4% combining the
features obtained for different tasks using an early fusion strategy.

Other studies have shown the importance of other groups of features based on
geometric, spectral, and NLD analyses to characterize the handwriting impairments
of PD patients. For instance, in [Sarb 13] the authors proposed features related to the
power spectral density of the speed stroke to classify online handwriting from 17 HC
subjects and 13 PD patients. The participants wrote a sentence in Persian language.
The features were classified with a neural network, which achieved an accuracy of
86.2%. A different strategy was considered in [Pere 16b]. The authors classified of-
fline drawings from 18 HC subjects and 74 PD patients, from the handPD database,
by extracting geometric features based on the difference between the strokes drawn
by the participants and the template that they have to follow. The classification
was performed with different algorithms including SVMs and naive Bayes classifiers.
The authors reported accuracies over 66% with the proposed approach. The authors
in [Kots 17] classified handwriting samples from 24 PD patients and 20 HC subjects,
who were instructed to draw several horizontal lines. The data were characterized
with kinematic features based on the velocity of the trajectory, and NLD features
based on the entropy on the horizontal and vertical movements. The features were
classified with a naive Bayes algorithm, which achieved accuracies over 90.9%. Kine-
matic, geometric, spectral, and NLD features were considered in [Rios 19] to classify
Archimedean spirals and sentences written by 39 PD patients, 31 HC subjects, and
a set of 40 young HC subjects, The aim was to evaluate as well the influence of age
in the classification problem. Accuracies over 94% were reported discriminating PD
patients and young HC subjects, and over 89% classifying the patients and the HC
subjects with similar age. In [Sena 19] the authors proposed the use of a classification
strategy based on evolutive algorithms such as Cartesian genetic programming to
classify the 18 HC subjects and 74 PD patients of the HandPD dataset [Pere 16b].
The authors considered the same geometric features extracted in [Pere 16b] based on
the error between the spiral drawn by the participants and a template. Accuracies
of up to 76.6% were reported. The same data and features used in [Sena 19] where
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considered in [Ali 19a] to classify PD and HC subjects. The authors proposed a clas-
sification strategy based on AdaBoost to combine the output of several classifiers.
The proposed strategy achieved an accuracy of up to 78.1% In [Cast 19] the authors
considered a combination of kinematic, NLD and neuromotor features to classify data
from 55 PD patients, 49 elderly HC subjects, and 45 young HC subjects. The par-
ticipants performed a total of 17 exercises, divided into writing and drawing tasks.
Kinematic features included the velocity, acceleration, and duration of the strokes.
NLD features considered the CD, the LZC, the LLE, the HE, EMD decomposition,
and entropy measures. Neuromotor features were based on the Sigma-lognormal
model. The features were classified using different classifiers. The authors reported
accuracies of up to 96.9% classifying PD patients vs. the young HC participants, and
of up to 81.7% classifying the patients and the HC subjects with similar age.

Recent deep learning approaches have also been used to classify the handwriting
of PD and HC subjects. In [Pere 16a] the authors classified offline Archimedean spiral
drawings from 14 PD patients and 21 HC subjects using a CNN. The authors reported
accuracies of up to 89.6% when the hyper-parameters of the CNN were optimized with
a meta-heuristic optimization technique. In [Pere 18a] the same authors modeled the
handwriting dynamics of 18 HC and 74 PD subjects from the newHandPD database.
The authors proposed a model based on CNNs to classify the PD patients and the
HC subjects. The signals from the smart pen were transformed into images by con-
catenating and reshaping the time series and the sensors into a square image. Several
CNN configurations were considered and trained for each exercise performed by the
patients. Afterwards, a majority voting scheme was implemented to make the final
decision. Accuracies of up to 95% were reported. In [Gall 18] the authors considered
a model called deep echo state network to classify 67 PD patients and 15 HC subjects
who drew Archimedean spirals on a digitizer tablet. The deep learning model is based
on RNNs, which process the time series of horizontal and vertical movements, the grip
angle, and the pressure of the pen when the patients draw the spirals. The authors
reported accuracies of up to 88.3% with the proposed model. A combination of NLD
analysis and CNNs was proposed in [Afon 19] to classify handwriting samples from 21
HC subjects and 14 PD patients from the HandPD dataset [Pere 16b]. The authors
considered a spatial representation based on recurrent plots to visualize the temporal
dynamics of the handwriting samples. The images obtained from the recurrent plots
were characterized and classified with a CNN. The authors reported accuracies over
87%. The same subjects of the HandPD dataset [Pere 16b] were classified in [Ribe 19]
using a model based on bidirectional GRUs with an attention mechanism to process
the raw data captured with the smart-pen. The authors reported an accuracy of
up to 92.2%. A combined analysis of NLD analysis and deep learning was also pro-
posed in [Cant 20]. The authors computed fuzzy recurrent plots to convert time series
from online handwriting samples into gray scale texture images. The fuzzy recurrent
plots were used to train a CNN based on AlexNet pre-trained with the Imagenet cor-
pus. The proposed model was tested with data from Archimedean spirals collected
from 25 PD patients and 15 HC subject. The authors reported an accuracy of 94%.
In [Diaz 19] the authors transformed online drawings of the PahaW database [Drot 16]
into offline images. The obtained images are passed trough a pre-trained version of a
CNN based on VGG16 to extract features from the drawings. The extracted features
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were classified with an AdaBoost algorithm. The authors reported an accuracy of up
to 86.7% In [Moet 19] the authors modeled offline images of the handwriting of 37
PD patients and 38 HC from the PahaW database [Drot 16]. The authors proposed
the use of parallel CNNs to extract different features from the hand drawn shapes
of the patients. The CNN was based on a pre-trained version of AlexNet [Kriz 12]
trained with the ImageNet dataset. The features obtained from the CNNs are com-
bined and classified with an SVM. The highest accuracy reported by the authors is
83%. A pre-trained version of AlexNet was also considered in [Nase 20] to classify
the handwriting samples from the PahaW database [Drot 16]. The authors applied
a transfer learning strategy on CNNs initially trained with ImageNet and MNIST
databases. The authors reported an accuracy of up to 98.2% obtained with images
from the Archimedean spirals. However, the reported results seemed to be optimistic
and biased, since some hyperparameters of the networks were optimized based on
the accuracy obtained in the test set. An additional approach based on CNNs was
proposed in [Gil 19] to classify 62 PD patients and 15 HC subjects using the Spiral
drawings from the data from [Isen 14]. The input to the CNN was the FFT obtained
from the X, Y, pressure, and grip angle, forming a 4-channel at the input. The
authors reported an accuracy of up to 96.5% with their proposed strategy.

5.1.2 Automatic Evaluation of the Neurological State of Pa-
tients

Some studies focused not only on the classification of PD patients and HC subjects,
but also on the assessment of the neurological state of the patients. For instance,
in [Agha 17] the authors performed a handwriting assessment using a smartphone
application where the patients draw a spiral. The authors computed several features
including the kurtosis of the speed stroke, the length of the spiral drawing curve, the
area of the spiral in each loop and the time of the drawing. The authors evaluated
different items of the UPDRS score related to the upper limbs, and reported correla-
tions ranging from 0.47 to 0.52 combining handwriting features with finger-tapping
measures. The assessment of the neurological state of the patients based on the H&Y
score was addressed in [Much 18b]. The authors used a regression algorithm and the
kinematic features based on fractional derivatives proposed in [Much 18a]. The ex-
periments also considered the classification of the 33 PD patients and 36 HC subjects
from the PaHaW database [Drot 16]. The classification and regression algorithms
were based on gradient-boosting trees. The highest accuracy for the classification
problem was obtained with classical kinematic features (97.1%) rather than with
those based on fractional derivatives. For the prediction of the neurological state, the
authors reported an equal error rate of 12.5% (MAE=0.6). The assessment of the
neurological state of the patients performed in [Rios 19] was focused on the classifica-
tion of PD patients in several stages of the disease according to the MDS-UPDRS-III
score. The patients were divided according to their MDS-UPDRS score into three
groups (initial, intermediate, and severe). The highest accuracy was obtained with
the combination of kinematic and geometric features (F-score=0.64).

As the UPDRS-III score involves a complete evaluation of the motor symptoms
of the patients, it might be less suitable to assess only the impairments in the upper
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limbs of the patients. There are a few studies that consider only the assessment of the
motor symptoms of the patients in the upper limbs. In [Smit 17b] the authors eval-
uate the dysfunction on the upper limbs of 14 PD patients according to the Purdue
pegboard test [Desr 95], which aims to evaluate manual dexterity in rehabilitation
processes. The patients performed seven exercises using a smart pen, including hand
resting, drawing a spiral, a circle, a zig-zag figure, the repetition of the graph le,
and a modified version of the Fitt’s task [Fitt 54]. The authors extracted kinematic
features based on the drawing time and the writing size, features based on the Fitt’s
law [Fitt 54] to measure the trade-off between the speed and the accuracy to perform
the modified Fitt’s task, and spectral features extracted from a gyroscope attached to
the smart pen to measure resting tremor. The features were correlated with the score
from the Purdue pegboard test and with the UPDRS-III subscore for bradykinesia.
A Spearman’s correlation of up to 0.65 was reported between the drawing time fea-
tures and the Purdue pegboard test score. Non-significant correlations were reported
between the features and the UPDRS-III subscore for upper limbs.

The effect of dopaminergic medication in the handwriting of the patients was ad-
dressed in [Zham19]. The authors evaluated whether there are significant differences
in kinematic features computed from 24 PD patients in ON vs. OFF states. The
patients performed several handwriting tasks such as the drawing of the Archimedean
spiral, the repetition of simple graphs, the writing of a sentence, and a fluency test by
writing names of animals. The results showed that there were significant differences
between the features computed for the patients in ON vs. OFF states, especially for
the features computed from simple tasks like the repetition of graphs. Differences
were not observed in complex tasks like sentence writing or fluency, which carry
memory and cognitive loads. In [Dann 19] the authors considered kinematic features
extracted from Archimedean spirals of 20 PD patients and 20 HC subjects. The pa-
tients were examined in ON and OFF states to evaluate the effect of medication in the
handwriting process. Different constraints were included for the patients to draw the
spirals, e.g., spontaneous, as fast as possible, small, big, among others. An ANOVA
test was conducted to compare the features from HC subjects, patients in OFF state,
and patients in ON state. The features were able to discriminate between the three
groups (p-val<0.05). The results indicated that the number of velocity peaks and the
variation of the altitude angle were the most relevant features to separate between
HC subjects and patients; and between PD patients in ON and OFF states.

5.1.3 Main Outcomes from the Literature

Although several studies have been performed to assess the handwriting process of
PD patients, there are some open issues to be addressed in future studies. First, there
is an absence of a proper and well-designed database that can be used to compare the
different proposed approaches [De S 19]. A proper database should include most of the
important tasks addressed in the literature, such as the Archimedean spiral (with and
without reference templates), the repetition of the l and le patterns, and continuous
writing exercises, among others. The use of the PahaW database [Drot 14, Drot 16]
or the data from the multimodal corpus described in Section 3.3.1 shown to be the
most complete to evaluate different handwriting impairments of PD patients.
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According to the literature, the drawing tasks such as the Archimedean spirals are
more suitable to assess the handwriting impairments of the patients. Writing tasks
like sentences can be highly influenced by the education level of the patients [Saun 08].
Other important tasks include the repetition of graphs like e, l, and their combina-
tions [Drot 16, Impe 19a]. The repetition of these graphs includes both up- and down-
velocity strokes, and involves the writing of the same character scaled in amplitude.
These aspects are observed in more detail in Figure 5.1 and Table 5.1, which summa-
rize the most common handwriting tasks performed by PD patients in the literature.
The described handwriting exercises have shown to be important to assess the hand-
writing deficits of the patients [Impe 19b]. More complex tasks such as the sentence
writing or the Rey Osterrieth figure may be suitable to evaluate other aspects in the
handwriting process, since they carry additional information related to memory and
cognitive load [Impe 19b, Zham19].
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Figure 5.1: Different exercises considered in the literature for handwriting assessment
of PD.

Table 5.1: Different exercises considered in the literature for handwriting assessment
of PD.

References Handwriting task

[Bart 12a],[Drot 16],[Pere 16a],[Pere 16b],[Agha 17],[Smit 17b], [Gall 18],[Much 18a],
[Much 18b],[Pere 18a],[Zham18],[Afon 19],[Ali 19b],[Cast 19],[Gil 19],
[Impe 19b],[Moet 19],[Nase 20],[Ribe 19],[Rios 19],[Sena 19],[Vasq 19c], Archimedean Spirals
[Zham19],[Cant 20],[Oroz 20b],[Arra 20],[Nomm20],[Gupt 20],[Moet 20],[Gazd 21],
[Cant 21b],[Lamb 21],[Diaz 21],[Parz 21],[Nola 21],[Impe 21]

[Drot 16],[Smit 17b],[Much 18a],[Zham18],[Cast 19],[Impe 19b],[Moet 19],
[Nase 20],[Zham19],[Oroz 20b],[Tale 20],[Gupt 20],[Moet 20],[Gazd 21],[Diaz 21], Graph repetition
[Nola 21]

[Sarb 13],[Drot 14],[Drot 16],[Jerk 18],[Much 18a],[Zham18],[Cast 19],[Impe 19b],
[Moet 19],[Nase 20],[Rios 19],[Vasq 19c],[Zham19],[Oroz 20b],[Tale 20],[Gupt 20], Words and sentences
[Moet 20],[Gazd 21],[Diaz 21],[Ammo21],[Nola 21],[Impe 21]

[Rose 13],[Kots 17],[Smit 17b],[Cast 19],[Vasq 19c],[Zham19],[Oroz 20b],[Alis 21],[Dent 21] Other

Figure 5.2 and Table 5.2 summarize the most important methods considered for
the handwriting analysis of PD patients. An important aspect to consider is that
most of the studies consider only kinematic and pressure features, which only model
some of the handwriting impairments of the patients. There are additional studies to



96 Chapter 5. Analysis of Parkinson’s Disease from Handwriting

model the handwriting impairments of PD patients using spectral or NLD features.
In addition, the use of deep learning methods has increased within the last years.
Additional features should be proposed to assess other aspects in the handwriting
process of the patients such as fluency, micrographia, or tremor.
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Figure 5.2: Different methods considered in the literature for handwriting assessment
of PD.

Table 5.2: Different methods considered in the literature for handwriting assessment
of PD.

References Method

[Rose 13],[Drot 14],[Drot 16],[Kots 17],[Smit 17b][Jerk 18],[Much 18a],[Much 18b],
[Zham18],[Cast 19],[Impe 19b],[Rios 19],[Zham19],[Oroz 20b],[Gupt 20],[Lamb 21], Kinematic
[Diaz 21],[Ammo21],[Parz 21],[Nola 21]

[Bart 12a],[Sarb 13],[Impe 19b],[Rios 19],[Nola 21] Spectral

[Kots 17],[Ali 19b],[Afon 19],[Impe 19b],[Rios 19],[Cant 20] NLD

[Pere 16a],[Agha 17],[Ali 19b],[Rios 19],[Sena 19] Geometric

[Pere 16a],[Gall 18],[Pere 18a],[Afon 19],[Gil 19],[Moet 19],[Nase 20],[Ribe 19],
[Vasq 19c],[Cant 20],[Tale 20],[Nomm20],[Gazd 21],[Alis 21],[Cant 21b],[Diaz 21], Deep learning
[Dent 21],[Impe 21]

[Smit 17b],[Cast 19],[Impe 19b],[Arra 20],[Ammo21] Other

Regarding the applications addressed in the literature, most of the studies have
focused on the classification of PD patients vs. HC subjects. There are few studies
focused on evaluating other aspects of the patients such as the evaluation of the
neurological state, the assessment of upper-limbs impairments of the patients, and
the evaluation of the effect of dopaminergic medication in the handwriting process,
among others. There is also need of longitudinal studies with the aim to understand
and track the progress of the disease in the PD patients through time.

Finally, most of the studies consider only data from online handwriting, where
the patients perform the exercises in a digitizer tablet. The handwriting process in
a tablet may produce an uncomfortable feeling for the patients, and may introduce
some bias in the results due to external factors such as education level or less contact
with technology. Additional studies that compare online and offline handwriting
should be proposed.
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5.2 Kinematic Analysis of Handwriting
There are several kinematic features that can be extracted from online handwriting
data. These features are based on the trajectory, velocity, and acceleration of the
strokes, both in the horizontal, vertical, radial, and angular axes. These features also
include measures based on the pressure of the pen and their derivatives, and those
based on the azimuth and altitude angles of the pen (see Figure 3.4). The literature
has also shown the importance of features based on in-air movement, i.e., before the
participant places the pen on the tablet’s surface [Drot 16].

The feature set used in this thesis to model the kinematic of the handwriting
process of PD patients consists of 80 features, computed from 8 signals obtained from
the tablet, according to Table 5.3. r and θ are the radial and angular trajectories,
computed according to Equations 5.1 and 5.2, respectively.

r =
√
x2 + y2 (5.1)

θ = arctan
(y
x

)
(5.2)

A set of 10 functionals are computed from each signal from Table 5.3, including
standard deviation, skewness, and kurtosis of the signal, its velocity, and its acceler-
ation, and the average velocity of the signal. The complete description is observed in
Table 5.3.

Table 5.3: Description of kinematic features for handwriting analysis. Avg: Average,
SD: standard deviation. v: velocity, a: acceleration.

# Signal Description

1-10 x

SD., skewness, kurtosis,
avg. v, SD v, skewness v, kurtosis v,

SD a, skewness a, kurtosis a

11-20 y
21-30 in-air
31-40 r
41-50 θ
51-60 pressure
61-70 azimuth
71-80 altitude

The velocity v is computed as the first derivative of the signal s, using second order
accurate central differences1, according to Equation 5.3. ts is the sampling period of
the signal. In a similar way, the acceleration is computed as the first derivative of
the velocity. In addition, the velocity and acceleration are filtered with a moving
average filter of 11th order to get a smoother representation of the signals and get
more reliable kinematic features.

v(t) =
s(t+1) − s(t−1)

ts
(5.3)

1https://numpy.org/devdocs/reference/generated/numpy.gradient.html

https://numpy.org/devdocs/reference/generated/numpy.gradient.html
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Figure 5.3 shows an example of the difference in the kinematic of handwriting be-
tween a PD patient and a HC subject. Figures 5.3a) and 5.3b) show an Archimedean
spiral drawn by an HC subject and a PD patient, respectively. Note the tremor ex-
hibited in the spiral drawn by the patient. The signals extracted from the pen when
the subjects draw the spirals are shown in Figures 5.3c) and 5.3d) for the HC subject
and the PD patient, respectively. For this case, note the difference in the stability of
the pressure of the pen, the difference in the trajectory r followed by the patient and
by the HC subject. Note also that the number of pen-up and pen-down movements
(in-air) performed by the PD patient is larger than the number exhibited by the HC.
Particularly, the analysis of those pen-up pen-down transitions is explored with more
details in Section 5.4.
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Figure 5.3: Difference in the handwriting kinematic between PD patients and HC
subjects. a) Archimedian spiral drawn by a 71 years old HC subject. b) Archimedian
spiral drawn by a 73 years old PD patient with MDS-UPDRS-III = 65. c) Signals
extracted from the pen while the HC subject was drawing the spiral. d) Signals
extracted from the pen while the patient was drawing the spiral. Dark blue indicates
the pen in in the air.

5.3 Geometric Analysis of Handwriting

This feature set is inspired by [Rios 19] to model geometric and symmetry aspects in
the Archimedean spirals drawn by the patients. In [Rios 19] the authors modeled the
trajectory of the Archimedean spiral as an amplitude-modulated signal r̂(t) defined
by Equation 5.4.



5.3. Geometric Analysis of Handwriting 99

r̂(t) =
(
a3t

3 + a2t
2 + a1t+ a0

)
· sin(2πft) (5.4)

The real trajectory r(t) was modeled as a sinusoidal signal with increasing am-
plitude and frequency f . The amplitude coefficients (ai) of the modeled trajectory
values were estimated with a third-order polynomial regression based on the maxi-
mum peaks of the real trajectory. The third-order polynomial was chosen because
it avoids an oscillatory behavior across the samples, and because it guarantees a
smooth first derivative and a continuous second derivative across the trajectory. f is
the fundamental frequency of the trajectory and it was estimated using the Fourier
transform in the original implementation.

For this thesis, the original model is updated to consider two additional aspects
not considered initially: (1) the initial phase of the trajectory to model the initial
position and velocity of the pen, and (2) the frequency modulations that appear in
the signal because the deceleration when the patients draw the outer loops of the
spiral (it takes more time to complete the loop). With these two modifications, the
model of the trajectory of the spirals changes to Equation 5.5.

r̂(t) =
(
a3t

3 + a2t
2 + a1t+ a0

)
· sin(2πf(t) · t+ φ) (5.5)

The frequency f(t) is estimated according to the analytic signal ra(t) of the tra-
jectory, shown in Equation 5.6. F is the Fourier transform, U the unit step function,
and hr(t) the Hilbert transform of r(t). The time derivative of the unwrapped in-
stantaneous phase ξ is the instantaneous frequency f(t), according to Equation 5.7.

ra(t) = F−1 (F(r(t)) · 2U) = r(t) + jhr(t) = rm(t)ejξ(t) (5.6)

f(t) =
1

2π

dξ

dt
(t) (5.7)

Finally, φ is estimated according to the cross-correlation between the real trajec-
tory and an initial model that does not consider phase information. After φ estima-
tion, both the trajectory and the model are phase-synchronized. Figure 5.4 shows
an example of the real and modeled trajectories estimated for a PD patient and an
HC subject. The figure also includes the instantaneous frequency estimated from
the Hilbert transform for both trajectories. Note that the frequency is higher at the
beginning for both subjects and then it starts to decrease. This behavior appears be-
cause at the beginning the inner loops of the spiral are smaller, thus it takes less time
to draw them. Note also the oscillatory behavior of the instantaneous frequency for
the PD patient, which could be an indicator about the presence of kinematic tremor.

Different features based on the geometry from the trajectory are extracted from
the model, including the coefficients of the third order polynomial (ai, i ∈ {0, 1, 2, 3}),
the location and amplitude of the peaks in the trajectory, and the phase difference φ.
The error between the real and modeled trajectories is computed using three different
metrics: (1) the MSE, (2) the DTW distance to measure a time-aligned error between
the real and modeled trajectories, and (3) the Frenchet distance, which takes into
account the ordering of the points along the estimated and real trajectories. The
Frenchet distance is defined as the shortest distance in-between two curves, where
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Figure 5.4: Difference in the real and modeled trajectories between a PD patient and
an HC subject. a) Real and modeled trajectories (top), and instantaneous frequency
of the real trajectory (bottom) for the Archimedean spiral drawn by a 71 years old
HC subject. b) Real and modeled trajectories (top), and instantaneous frequency of
the real trajectory (bottom) for the Archimedean spiral drawn by a 72 years old PD
patient with MDS-UPDRS-III=44

it is allowed to change the velocity along each curve independently (walking dog
problem) [Eite 94]. The feature set is completed with different statistical functionals
(average, standard deviation, skewness, kurtosis, maximum, minimum, maximum
position, and minimum position) computed over the instantaneous frequency f(t) of
the analytic signal.

5.4 In-air Analysis of Handwriting

The in-air movements of online handwriting has been considered particularly in
the literature to model different handwriting impairments of PD patients [Drot 14,
Drot 16, Vess 19]. The in-air trajectories corresponds to the movements performed by
the hand while transitioning from one stroke to the next one. Most of the studies in
the literature have explored a small set of in-air parameters, such as the in-air time,
the velocity in-air, or different entropy measures over the in-air trajectories [Drot 14].
The analysis is extended for this thesis by including additional features to model other
aspects of the in-air trajectories, not addressed previously. Particularly, the analysis is
focused on the assessment of the transitions between in-air and on-surface segments,
following the hypothesis that patients commonly exhibit difficulties to start/stop
movements, both in the upper and lower limbs, and in the speech production sys-
tem [Oroz 16b, Vasq 19c]. A set of 9 features is considered to model the in-air move-
ment performed by PD patients: (1-2) the number of pen-ups and pen-downs per
second to model mainly hesitations to start or to stop writing. (3-6) the average and
the standard deviation of the slopes of the pen-up and pen-down transitions with the
aim to model the stability of the hand when placing/lifting the pen from the tablet
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surface. (7) the percentage of time in-air, similar to the included in [Drot 14]. (8)
the Shannon entropy of the in-air trajectory to model the complexity of movements
in-air, Finally (9) the LZC to model the complexity and repetitiveness of the binary
sequence formed by in-air (1) on-surface (0) movements. The LZC reflects the rate
of new patterns in the binary sequence. It ranges from 0 (deterministic sequence)
to 1 (random sequence). Further details of the computation process can be found
in [Kasp 87, Trav 17].

5.5 Deep Learning Models for Handwriting Analysis
Besides the previous models, which are based on different feature extraction strategies
for a latter classification, end-to-end deep learning methods are also considered both
to classify PD patients and HC subjects and to evaluate the motor state of the
patients based on the MDS-UPDRS-III score. Two different models are proposed in
this thesis to model both online and reconstructed offline handwriting data.

5.5.1 Deep learning for Online Handwriting Modeling

Online handwriting data of the patients is modeled in an end-to-end strategy using
an improved version of the architecture introduced in [Vasq 19c]. The network is
formed with a stack of 3 one-dimensional convolutional layers to process the raw
signals collected from the tablet and, which include the horizontal (x) and vertical
(y) positions, in-air movement, pressure of the pen, and azimuth and altitude angles.
Figure 5.5 illustrates the considered network architecture. Other architectures were
considered as well, like those based on combination of convolutional and recurrent
layers; however, the performance of the current architecture was superior for the
addressed experiments.
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Figure 5.5: Deep learning model for end-to-end handwriting modeling of PD patients.
FC: Fully connected layers. c= number of output channels in the convolutional
layers. The values in parenthesis indicate the size of the convolutional filters and the
number of neurons in the fully connected layers.

Two different inputs are considered for the CNN. The first one comprises the
difference among consecutive samples of the sequences ∆S = {s2−s1, s3−s2, · · · , sN−
sN−1}, computed for the six input channels (x, y, in-air, pressure, azimuth angle,
altitude angle). The aim of using the difference is to transform the sequence from a
point-level sequence, which depends on the position of the tablet, into a stroke-level
sequence, which represents the direction of the pen movement [Zhan 16]. The second
input sequence to the CNN corresponds to the handwriting transitions that occur
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when a starting point of the stroke is detected (pen-down) or when the pen takes-off
the surface of the tablet after drawing a stroke (pen-up). The aim is to evaluate the
difficulties observed in the patients when they start/stop the handwriting movements.
This is similar to the addressed in speech signals considering the onset and offset
transitions to model the difficulties of patients to start/stop the vocal fold vibration,
or in gait modeling the patient start or stop walking [Vasq 19c]. Once each pen-up or
pen-down transition is detected, segments of 500ms are taken to the left and to the
right of the six signals captured with the tablet. Figure 5.6 shows the handwriting
pen-down transitions of one HC subject and three patients in mild, intermediate, and
severe states of the disease, respectively. Note that the dynamics of the in-air signals
(black lines) is different for PD patients and HC subjects before starting the stroke
(the first 0.5 seconds of the figure). Note that tremor is observed for the case of the
patients, especially for the PD patient in Figure 5.6c), where oscillations around 7Hz
are observed when the pen is in the air.
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Figure 5.6: Handwriting pen-down transitions produced by: a) 68 years old male HC
subject. b) 48 years old male PD patient in low state (MDS-UPDRS-III = 13). c)
41 years old male PD patient in intermediate state (MDS-UPDRS-III= 27). d) 75
years old female PD patient in severe state (MDS-UPDRS-III = 108).

5.5.2 Deep learning for Offline Handwriting Modeling

The aim of this model is to analyze and process the spatial patterns that appear
in the drawings made by the patients and which reflect the presence of the disease.
Those symptoms that are reflected in the images drawn by the patients may include
the tremor observed in the drawing of Archimedean spirals (see Figure 5.3) or the
micrographia that is present when patients write their name or a sentence.

The first step for this analysis is to reconstruct the images drawn by the patients
from the online time-series. The following procedure was performed with the aim
to reconstruct more realistic images, similar to what a patient would draw with a
normal pen and paper. First a plot of the horizontal vs. the vertical positions of the
pen is made, removing those points were the subjects have the pen in the air. The
plot was made in gray-scale using the pressure of the pen as the gray level intensity
for the reconstructed figure. The figure was then normalized to 8-bit integer values,
similar to traditional RGB images. The images are then resized to 224x224 pixels to
match the input to the networks used to process the ImageNet database. Finally, the
background is removed and the colors are inverted in order to match the conditions of
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the MNIST corpus to model handwriting digits. Figure 5.7 summarizes the performed
procedure.

Remove in-air 
segments

X vs. Y plot 
with intensity 
based on 
pressure

8-bit integer 
normalization

Image resize 
(224x224)

Color 
inversion

Figure 5.7: Pre-processing stages to reconstruct offline handwriting images from the
online time-series.

The pre-processed images are used as input for a CNN model based on the
SqueezeNet architecture [Iand 16]. The architecture has nearly 50 times less param-
eters than a CNN based on AlexNet [Kriz 12] but keeping a similar and competitive
accuracy. The use of SqueezeNet makes the trained model available to be exported
and used in low-power devices like smartphones, thus they can be included in further
releases of Apkinson (see Section 8.2). A patient can perform one or several hand-
writing exercises in a normal pen and paper, and then take a picture with his/her
smartphone, which will be processed locally to evaluate the upper motor skills of the
patients. The main ideas/strategies of SqueezeNet include: (1) to make the network
smaller by replacing the 3×3 filters used in the literature by that time, with 1×1
filters, which has 9 times fewer parameters. (2) to reduce the number of inputs for
the remaining 3×3 filters, which is achieved by using only 1×1 filters prior to the
3×3 convolutional layer. (3) to make the downsample operation late in the network
thus convolution layers have large activation maps. These three strategies are im-
plemented into what the authors called the Fire module, which is the main building
block used in SqueezeNet. The Fire module comprises Squeeze layers which are con-
volutional layers with 1×1 filters, and Expand layers which have a mix of 1×1 and
3×3 convolution filters. In addition, the number of filters in the squeeze layer must
be less than the ones in the expand layer. Figure 5.8 shows an example of how the
Fire module looks like.

The complete architecture of SqueezeNet with the Fire modules is shown in Fig-
ure 5.9. The network is formed with two parts: a feature extraction block formed
with the first convolutional layer (Conv. 1) and 8 Fire modules, and the classifica-
tion stage formed with a 1×1 convolutional layer with two channels (Conv. 2) and
a global average pooling layer. The SqueezeNet model is trained using a transfer
learning strategy, using pre-trained models from the ImageNet corpus. The weights
of the layers corresponding to the feature extraction part were frozen i.e, they were
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1x1 convolution filters

1x1 and 3x3 convolution filters

Squeeze

Expand ReLU

ReLU

Figure 5.8: Organization of convolution filters in the Fire module of SqueezeNet.
Adapted from [Iand 16]

kept from the pre-trained model. Only the weights for the layers of the classification
part are updated.
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Figure 5.9: Full architecture of SqueezeNet. The values in parenthesis for the 8
Fire modules indicate the number of 1×1 filters in the Squeeze layer, the number of
1×1 filters in the Expand layer, and the number of 3×3 filters in the Expand layer,
respectively.



Chapter 6

Analysis of Parkinson’s Disease from
Gait

One of the major manifestations of PD appears in gait, and typically causes disability
of PD patients. More than 85% of PD patients develop gait impairments after three
years of diagnosis [Kell 12]. The main symptoms in the gait of PD patients include
speed reduction, smaller stride length, altered cadence, and increased gait variability.
In the earliest stages of the disease bradykinesia is reflected in smaller arm swing,
slower turns and reductions in step length [Yang 08]. In addition, although gait
impairments are not clearly exhibited in early stages, their prevalence and severity
increase with the disease progression [Kell 12], where gait becomes more unstable,
freezing of gait (FoG) episodes occur, and falls are frequently reported [Galn 15].

The potential consequences of gait impairments in PD include increased disabil-
ity, risk of falls, and reduced quality of life. As the disease progresses, PD patients
typically exhibit shuffling gait with a forward-stooped posture and festinating gait.
These characteristics make the patients to spend a lot of energy while walking, lead-
ing them to their maximum metabolic capacity every day [Coen 13]. PD patients
consider mobility and walking limitations the most disabling aspects of the disease
and consistently identify improvement in walking as the most relevant outcome when
rating the success of the treatment [Hass 12b].

One of the most common symptoms in the gait of the patients is FoG, which
is defined as an absence or marked reduction of forward progression of the feet de-
spite the intention to walk [Nutt 11]. Patients describe FoG as a feeling of having
the feet glued to the ground and being temporarily unable to re-initiate gait. FoG
is context-dependent, that is, it triggers when patients walk through narrow spaces,
initiate or end gait, an obstacle avoids patients to follow their gait trajectory, or
during turns [Scha 03]. It has been observed that FoG produces harmonics in accel-
eration signals between 3 and 8Hz [Moor 08]. Another important symptom of the
patients is tremor, which is defined as a rapid back-and-forth movement of a body
segment [Bach 89]. Tremor in PD patients appears mainly at rest, and tends to
disappear during posture or movement [Deus 96]. However, in severe stages of the
disease, the tremor may remain present during movement, and it is called kinetic
tremor [Wenz 00]. The frequency associated to resting tremor typically ranges be-
tween 3.5 and 7.5Hz [Clee 87], and the frequency for kinetic tremor ranges from 4 to
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12Hz [Wenz 00]. Additional symptoms in the gait of PD patients include increased
double support time [Sala 04], reduced stride length and speed [Chan 16], decreased
gait symmetry and regularity [Demo 15], reduced range of rotation of thigh, knee,
trunk, and foot [Sala 04], and reduced knee symmetry [Toos 15].

This chapter describes state-of-the-art methods and different proposed algorithms
to model lower limbs movement in PD patients, both from a classical pattern recog-
nition perspective and novel deep learning strategies. Section 6.1 shows the reader a
review of the literature about automatic gait assessment of PD patients using inertial
sensors both to classify PD patients and HC subjects and to evaluate the neurological
state of the patients. Studies based on video analysis of gait of PD patients are left
out of the review. Then, Section 6.2 describes the classical kinematic features used in
the literature to model gait in PD patients, and based mainly on the models proposed
in [Bart 17]. Section 6.3 describes a set of spectral features to model the harmonic
structure and spectral wealth of gait signals from PD patients. Section 6.4 described
the application of NLD features to model gait impairments in PD patients. The
chapter finishes in Section 6.5 with the description of methods to model the gait of
PD patients in an end-to-end strategy using different configurations of convolutional
and recurrent neural networks.

6.1 A Review on Automatic Assessment of Gait in
PD Patients

The research community has shown a growing interest in the automatic gait analysis
of PD. The studies are focused on the classification of PD patients and HC sub-
jects, the assessment of the neurological state of the patients, and the detection of
specific walking impairments in the patients, such as FoG episodes. The analyses
have been performed commonly with inertial sensors e.g., accelerometers and gyro-
scopes attached to the body of the patients [Kluc 13, Shul 14, Oung 15, Hann 17],
and with force-sensitive sensors placed inside the shoes of the participants [Xia 15,
Ren 16]. There are also some studies that consider gait acquisition using walkway
paths [Hass 12a, Rehm19]; however, their use is restricted only to clinical environ-
ments. Gait analysis using wearable sensors is expected to play an increasingly impor-
tant role in the assessment of PD. By using inertial sensors, it is possible to detect and
characterize specific movements and register variations in the clinic and to monitor
activities of daily living of PD patients at their own home [Brog 19].

Most of the studies have considered kinematic features based on the duration and
velocity of the steps [Kluc 13, Pari 15, Ren 16, Hann 17, Djur 17, Kim15, Cara 18].
Other studies have considered spectral features [Mazi 12, Das 12, Sanc 18, Sama 18]
to evaluate the harmonic structure of the gait process of PD patients, compared to
HC subjects. Despite the majority of studies which use kinematic, spectral and sta-
tistical features to model gait impairments of PD patients, there are some studies
to model non-linearities that appear during the walking process [Sejd 14, Prab 20,
Trip 13, Xia 15, Pere 18c, Chom19]. For instance, a higher complexity and random-
ness has been observed in the accelerations of healthy gait in the sagittal plane,
compared to PD patients due to the step-to-step adjustments for an effective bal-
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ance control [Sejd 14, Baub 00]. Conversely, in the frontal and transversal planes,
higher complexity and chaotic behavior can be observed in the gait of PD patients
due to the tremor condition and the FoG episodes [Sejd 14]. Other studies that have
considered the raw data as input for machine learning pipelines based mainly on se-
quence learning strategies via hidden Markov models [Cuzz 17], or novel deep learning
algorithms [Camp18].

6.1.1 Automatic Classification of PD and HC Subjects

Regarding the gait analysis using inertial sensors attached to the body of the pa-
tients, one of the first studies for automatic assessment of PD patients was performed
in [Kluc 13]. The authors classified gait signals captured from 42 PD patients and
39 HC subjects using the eGaIT system1. The participants performed several ex-
ercises, including walking 10 meter 4 times at a comfortable walking speed (4× 10
task), heel-toe tapping, and circling foot movements. The authors computed several
spectral and statistical features, including the energy content in several frequency
bands, the variance, the root-mean square energy, among others. The authors re-
ported accuracies up to 82% using different classification strategies. The accuracy
improved up to 91% when only considering PD patients in severe state of the dis-
ease. In [Sejd 14] the authors classified gait signals from 10 PD patients and 14
HC subjects using several statistical, spectral, and NLD features. The signals were
captured with inertial sensors placed at the L3 segment of the lumbar spine when
the participants walked on a treadmill. Statistical features included the variance,
skewness, and kurtosis of the signals. Spectral features included the peak frequency,
spectral centroids, the bandwidth of the signal, and the energy content distributed
in several bands according to the discrete wavelet transform. NLD features included
the LLE, the LZC, and several entropy measures. The results from different statis-
tical tests showed that features such as the skewness, kurtosis, LZC, entropy, the
centroid frequency and the wavelet bands were able to discriminate between the HC
subjects and the PD patients. In [Bart 17] the authors proposed a set of kinematic
and statistical features to classify 190 PD patients and 101 HC subjects with gait
signals collected using the eGaIT system. Kinematic features are computed over the
single steps, which are segmented by comparing the strides of the participants with
a template, using DTW. Accuracies of up to 82% were reported with the proposed
approach, using an AdaBoost classifier. In [Djur 17] the authors aimed to identify
the most accurate kinematic features to classify 40 PD patients and 40 HC subjects.
The authors extracted several kinematic features and proposed a feature selection
method based on an affinity propagation clustering and a random forest classifier.
The selected features were classified using an SVM. The selected features included:
the stride length, the stride time, the swing time, and the step time asymmetry. The
selected features showed an accuracy of up to 85%. The authors in [Cuzz 17] consid-
ered data from inertial sensors attached to the lower spine of 24 HC subjects and 156
PD patients, who performed a 10 meter walking test. The raw gait data were used to
train a hidden Markov model to discriminate between the patients and the healthy
subjects. An F1-score of up to 0.81 was reported by the authors. In [Kuhn 17] the

1https://www.egait.de/

https://www.egait.de/
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authors classified 26 HC subjects and 14 PD patients in OFF state by turning off
their implanted DBS device. A set of 17 inertial sensors were placed in different parts
of the body, covering both the upper and lower limbs. The patients performed sev-
eral exercises, including a TUG test, and a 10 meter walking. The authors computed
kinematic features based on the velocity of the strides. The authors reported an accu-
racy of up to 94.6% in the classification task using a random forest classifier. Results
covering the classification of HC subjects and patients in ON state, which is a more
challenging problem were not reported by the authors. In [Cara 18] the authors clas-
sified 25 PD and 25 HC subjects using information from 8 inertial sensors placed in
different parts of the body. The participants performed a 15 meter walking exercise.
The authors computed two different types of kinematic features: (1) range of motion
features, which are defined as the difference between the maximum and minimum
angle drawn in the sagittal plane between two adjacent articular segments within
one gait cycle; and (2) standard kinematic features such as stride time, stride length,
among others. The extracted features were classified with different algorithms. In
addition, a majority voting strategy was considered to combine the information from
the different sensors and feature sets. The authors reported accuracies over 90%.
The authors in [Pere 18c] considered different NLD features to classify a set of age-
balanced 45 PD patients and 45 HC subjects. The NLD features include the CD,
LLE, HE, and the LZC, in addition to six entropy measures to quantify the general
regularity of the gait process. Gait signals were collected with the eGait system, de-
scribed previously. The authors reported an accuracy up to 85% using RF and SVM
classifiers. The study from [Pere 18c] was extended in [Pere 20b], where the authors
proposed a novel NLD analysis based on spatial clustering of Poincaré sections using
GMMs. The proposed models were used to classify PD patients and HC subjects and
to discriminate patients in different stages of the disease according to three levels of
the MDS-UPDRS-III score. Accuracies of up to 86.7% were obtained in the 2-class
problem. The automatic classification of three different stages of the disease shows
accuracies of around 65%. In [Rehm20], the authors aimed to compare different sets
of kinematic, spectral, and NLD features to classify 81 PD patients and 61 HC sub-
jects. The subjects wore inertial sensors attached to the lower back and performed
a 2 minute walking test. The authors reported an accuracy of up to 87.3% using a
partial least square discriminate analysis classifier. The best result was reported with
the combination of spectral and NLD features.

There are some studies that have considered gait signals collected with pressure
sensors placed in the sole of the feet of the patients. Those studies mainly considered
the Physionet corpus, described in Section 3.2.3. For instance, the authors in [Xia 15]
classified gait signals from 15 PD patients and 16 HC subjects from the Physionet
corpus. The authors considered several statistical and NLD features computed from
the raw signals, including the LZC, the fuzzy entropy, and the Teager-Kaiser en-
ergy. The features were classified using several algorithms. The authors reported
accuracies close to 100% discriminating between PD patients and HC subjects. The
Physionet corpus was also considered in [Ren 16]. The authors computed several kine-
matic features such as the stride time, the swing time, the stance time, among others.
The features extracted from each foot were used to compute a phase synchroniza-
tion coefficient and the conditional entropy to analyze the gait rhythm fluctuations
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between both feet. The authors considered several classifiers, and reported an AUC
of up to 0.928. The authors in [Prab 20] considered also the Physionet database to
classify 13 PD patients and 13 HC subjects. The authors proposed NLD features
based on recurrence quantification analysis. The classification was performed with
an SVM and with a probabilistic neural network, which achieved an accuracy of up
to 94.4% In [Ertu 16] the authors proposed a statistical transformation called shifted
one-dimensional local binary pattern domain to classify the 93 PD patients and 73
HC subjects from the Physionet corpus. The authors computed several statistical fea-
tures, which were transformed with the proposed method, and then classified using
eight different algorithms. The highest accuracy was obtained with a neural network
classifier (88.9%). The Physionet corpus was considered in [Zeng 19] to classify PD
and HC subjects. The authors proposed a set of non-linear features extracted from
the phase space using the empirical mode decomposition, which was applied to the
euclidean distances computed between the trajectory of the attractor and the origin.
The extracted features were classified with a neural network with a Gaussian kernel.
The authors reported an accuracy of up to 97%. Novel deep learning strategies have
also been considered to classify the gait of PD patients and HC subjects. In [Zhao 18]
the authors classified data from the Physionet database using a combination of a
two-layer CNN with a two-layer LSTM networks, which process the raw signals from
the pressure sensor. The authors classified HC subjects and PD patients in three
levels of the disease distributed based on the H&Y scale. The authors reported an
accuracy over 98% for the four-class problem.

6.1.2 Automatic Evaluation of the Neurological State of Pa-
tients

One of the first studies that considered inertial sensors to predict the neurological
state of PD patients was reported in [Sala 04]. The authors attached several gyro-
scopes to the lower and upper limbs of 10 PD patients with an implanted DBS and 10
HC subjects. The gait signals for the patients were captured both when the DBS was
ON and OFF. The authors computed several kinematic features, including the stride
length, stride velocity, stance time, double support time, and gait cycle time. The
results indicated that the DBS significantly improved the gait performance. In addi-
tion, some of the features such as the stride length were highly correlated with the
UPDRS sub-score for lower limbs (Pearson correlation of 0.87). In [Pari 15] the au-
thors considered inertial sensors attached to the chest and to the kneels to assess the
neurological state of 34 PD patients according to the UPDRS score. The participants
performed several tasks, including 20 meter walking, TUG, and foot tapping. The
authors computed kinematic features such as the standing time, the stride length,
the stride velocity, among others. The regression algorithm was based on a KNN to
predict the UPDRS score of the patients. A Spearman’s correlation coefficient of 0.60
was reported for the prediction.

There are studies to assess specific items of the MDS-UPDRS score of the pa-
tients. In [Riga 12], the authors evaluated the severity of kinetic and resting tremor
in 18 PD patients and 5 HC subjects, who performed several exercises using iner-
tial sensors attached to different parts of the body. The authors computed several
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spectral features such as the dominant frequency, the energy in different frequency
bands, the entropy of the spectrum, among others. The participants were classified
into four classes according to the tremor severity score from the UPDRS scale. The
authors reported an accuracy of 87% with the proposed approach. In [Orne 17] the
authors proposed a model to quantify the turning capacity of 46 PD patients. The
patients were asked to walk 10 meter in a straight line, turn 180 degrees, and return
to the starting point using inertial sensors placed in their ankles. The proposed model
consisted of kinematic features such as the number of strides, the turning time, the
number of continuous strides, and the number of hesitations. Those features were
used to train a fuzzy inference system to map the kinematic features into a continuous
scale related with the turning capabilites of the patients. The output of the model
was consistent with the MDS-UPDRS-III item for gait; however, the accuracy was
not reported. In [Sanc 18] the authors estimated the resting tremor severity using
inertial sensors placed on top of the dorsal side of the hand, and in front of the shank
right on top of the ankle. Data was collected from 57 PD patients, who performed
a complete motor examination test based on the MDS-UPDRS-III scale. Kinematic
and spectral features were considered to detect the presence of resting tremor in the
exercises performed by the patients. Then, the estimation of the tremor severity was
performed with a fuzzy inference system, which transforms the extracted features into
five categories, namely: normal, slight, mild, moderate, and severe. Unfortunately,
the authors did not correlate the output of the proposed inference model with the
clinical score assigned to the patients. In [Agha 20] the authors predicted different
subscores of the MDS-UPDRS-III scale for lower limbs, including the bradykinesia
sub-score, and the sum of the scores for leg agility, rising from a chair, and gait. The
proposed models were evaluated with data from 19 PD patients, who used inertial
sensors placed in their ankles when they performed a heel tapping exercise. The au-
thors computed spectral features based on the DWT, and NLD features such as the
approximate entropy. The clinical scores were predicted using an SVR. The authors
reported the results in terms of the intra-class correlation coefficient, and reported a
correlation of 0.83 for the bradykinesia subscore, and of 0.78 for the combination of
the other sub scores for lower limbs impairments. The authors in [Orne 19] proposed
a model to quantify the leg agility of 50 PD patients, who performed a heel tapping
exercise with inertial sensors attached to their ankles. The authors computed features
related to the heel tapping exercise such as the amplitude when rising the leg, number
of hesitations, the amplitude trend, and the speed trend. These features were used
to create a fuzzy inference system to quantify the leg agility. The authors reported
accuracies over 92.4% with respect to the MDS-UPDS-III item for leg agility. The
authors from [Borz 20] aimed also to quantify the leg agility from PD patients by
predicting its item from the MDS-UPDRS-III. Data from 93 PD patients were col-
lected using the inertial sensors embedded in a smartphone. The patients performed
a heel tapping test with the smartphone attached to the leg with an elastic band.
The authors computed several kinematic and spectral features from the collected data
and reported an accuracy of 77.7% predicting the four classes of the leg agility item
using an MLP classifier. The authors in [Rava 20a] aimed to predict the progression
rate of 160 PD patients over two years. The authors defined patients with fast pro-
gression as those ones who their MDS-UPDRS-III increases by more than 20% over
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two years. The authors considered inertial sensors attached to different parts of the
body, including ankles, wrist, lower back, and chest, and compute different kinematic
features over the collected data. The patients performed the TUG test and the sway
test, i.e., subjects stand still with their feet separated a certain distance and their
hands across their chest for 30 seconds. The authors were able to detect the fast
progression patients with a positive predictive value of 71%. A different application
was considered in [Pfis 20]. The authors classified continuous states of ON, OFF, and
dyskinesia events based on the bradykinesia item of the MDS-UPDRS scale. The
authors trained an end-to-end CNN using raw signals with 1 minute length. The sig-
nals were collected with accelerometers placed in the wrist, and data were collected
from 30 PD patients who performed different activitis of daily living. The authors
reported an accuracy of 65.3% for the three-class problem.

6.1.3 Automatic Detection of FoG and other Gait Impair-
ments

One of the most common symptoms addressed by the research community inter-
ested in gait assessment of PD patients is FoG [Silv 17]. Most of the algorithms
considered statistical features [Mazi 12, Rodr 17, Sama 18], NLD features [Trip 13,
Chom19], the Freeze index (FI) [Kim15, Zach 15, Rezv 16], or novel deep learning
strategies [Camp18]

One of the first studies to detect FoG episodes was performed in [Mazi 12], where
the authors detected FoG episodes during walking, for a set of 10 patients. Several
accelerometers were placed in the ankle, knee, and hip of the patients, who simulated
walking activities of daily living like raising from bed and go to the kitchen. Statis-
tical and spectral features were computed from the signals. The extracted features
were used to discriminate between FoG episodes and normal walking, with accuracies
of up to 95%. In [Trip 13] the authors detected FoG events considering six accelerom-
eters and two gyroscopes placed in the lower and upper limbs of 5 HC subjects and
11 PD patients. The participants performed activities of daily living such as rising
from a chair, free walking, opening and closing doors, making stops to drink wa-
ter, among others. The collected signals were characterized with entropy measures.
The FoG events were detected using several classifiers, which achieved accuracies of
up to 96.1%. In [Kim15] the authors considered only the inertial sensors from a
smartphone to detect FoG events from 15 PD patients. Subjects were instructed to
walk straight 3 meters. Then, they turned around and returned to their place. The
smartphone was placed in several parts of the body when the patients performed the
exercises. The authors defined the FI as the ratio between the acceleration power
in the band 3-8Hz and the power in the band 0.5-3Hz. The FI was combined with
other statistical and spectral features to classify the FoG episodes using an Adaboost
classifier. The highest accuracy was reported when the smartphone was placed in the
waist (86%). The FI was also considered in [Zach 15] to detect FoG episodes in 23
PD patients, who performed several walking activities to provoke the FoG episodes
using a single inertial sensor placed in the wrist. The authors reported an accuracy
over 75% using only the FI and a classifier based on a threshold. A modified version
of the FI, computed using the continuous wavelet transform (CWT) was proposed
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in [Rezv 16] to detect FoG episodes in 10 PD patients, who use a single inertial sen-
sor placed in the shank. The detection of the FoG episodes was performed with a
threshold. The reported results indicate a sensitivity of 82.1% and a specificity of
77.1%. In [Ahlr 16] the authors detected FoG episodes in 20 PD patients, who use
an inertial sensor placed in the wrist. Several spectral features were computed from
the collected signals. The detection of the FoG events was performed with an SVM
classifier, which provided an accuracy of up to 96.1%. In [Rodr 17] the authors de-
tected FoG episodes in 21 PD patients using several statistical features and an SVM
classifier. The features were extracted from signals collected with an inertial sensor
placed in the wrist of the patients, while they performed several walking exercises
at home. The proposed approach achieved a sensitivity of 74.7% and a specificity of
79%. Recently, in [Sama 18] the authors detected FoG episodes of 15 PD patients
from patients at home. The patients used an inertial sensor at the waist, while per-
forming four activities: (1) showing the house, (2) a FoG provocation test by walking
in a narrow space with several turns, (3) going outdoors for a short walk, and (4) a
dual task activity (walking while carrying and object). The authors computed several
statistical and spectral features from the raw signals, and used several classifiers to
detect the FoG episodes. The features were computed in three frequency regions:
(1) from 0.04 to 0.68Hz, which corresponds to the posture transition band, (2) from
0.68 to 3Hz, which corresponds to walking frequency content, and (3) between 3
and 8Hz, which is related to FoG episodes. The results reported showed that the
proposed approach was able to detect the FoG episodes with a sensitivity of 91.7%
and a specificity of up to 87.4%. In [Chom19] the authors detected FoG events in 21
PD patients and 9 HC subjects. The participants performed several activities such as
turning, carrying a cup while walking, and other dual-task activities to provoke FoG
episodes. Gait data were collected with inertial sensors from an i-Pod touch that the
participants have inside their pockets. The proposed model consisted of the use of
NLD features based on recurrent quantification analysis and an SVM classifier. The
authors reported an accuracy of up to 99.3% with the proposed approach.

Deep learning strategies have also been considered to detect FoG episodes in PD
patients. In [Camp18] the authors detected FoG episodes in PD patients using a deep
learning approach. The data were collected from 21 PD patients with FoG using a
waist-placed inertial sensor. The tasks performed by the participants included free
walking inside an apartment, walking 10 meters outdoors, and a TUG test. The
authors considered a six-layer one-dimensional CNN. In total, the input of the CNN
consisted of 64 frequency bins obtained from 9 inertial sensors (3-axis accelerometer,
gyroscope and magnetometer) along with those obtained from the previous time
interval, forming a tensor X ∈ R64×1×18. Accuracies of up to 90% were reported for
the addressed problem. The authors from [Torv 18] proposed a method based on
LSTM units to detect the time instant before the appearance of the FoG events in a
set of 5 PD patients from the Daphnet FoG dataset [Bach 10]. The patients performed
several walking activities with inertial sensors attached to their ankles. The raw gait
data was used to train the LSTM network. A transfer learning strategy was applied
to adapt the model obtained from different subjects into a specific model for the
target subject. Accuracies over 85.5% were reported by the authors. The accuracy
increased up to 93% with the transfer learning strategy, leading to a patient dependent
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model. In [Xia 18] the authors detected FoG episodes in the 10 PD patients from the
Daphnet FoG corpus [Bach 10], using a 1D-CNN to process the raw signals captured
with the inertial sensors placed in different parts of the body. The authors reported an
accuracy of 80.7% in a patient independent strategy, while the accuracy for a patient
dependent model improved up to 99%. The Daphnet FoG corpus [Bach 10] was also
considered in [Moha 18] to predict the FoG of PD patients. The authors proposed an
unsupervised learning approach based on a novelty detection strategy. Data from HC
subjects were used to train a convolutional autoencoder with the aim to model the
distribution of healthy gait and to obtain a reference model. Then, the predictions
from the autoencoder for the PD gait were compared to the reference model using a
distance measure based on the generalized extreme value distribution. The decision
to detect the FoG episode was performed using a threshold of the distance. The
authors reported an AUC of 0.77 with their proposed unsupervised strategy.

There are also studies to detect other movement impairments of the patients
besides FoG. For instance in [Das 12] the authors detected dyskinesia episodes in
2 PD patients using five inertial sensors attached both to lower and upper limbs.
The patients were continuously monitored during four consecutive days. The signals
obtained from the inertial sensors were characterized using statistical and spectral
features. Then, a multi-instance classification strategy was considered to detect the
presence of dyskinesia events in the patients in a semi-supervised way. The authors
reported accuracies up to 90% with the proposed approach.

6.1.4 Main Outcomes from the Literature

Although the increasing research in automatic gait assessment of PD patients using
wearable sensors, there are several challenges that need to be addressed. Most of
the proposed methods and systems are highly variable among themselves. There
is no standard procedures about the place where the wearable sensors have to be
attached, the exercises to be performed by the patients, or the features to be com-
puted [Brog 19]. These aspects are seen in Tables 6.1, 6.2, 6.3, and 6.4.

Different applications have been considered for the gait assessment of PD pa-
tient. A summary about the considered applications within the last years is shown
in Figure 6.1 and Table 6.1. Most of the papers are focused on the classification of
PD vs. HC subjects, the assessment of the neurological state of the patients, or the
prediction of FoG events on the patients. Particularly, regarding the assessment of
the neurological state of the patients, the studies are focused on the prediction of
the total MDS-UPDRS scale, or some specific items related to gait impairments such
as bradykinesia, rigidity or tremor. There are also some studies focused on longi-
tudinal evaluation of the patients [Abra 20, Rava 20a]. Other studies are focused on
the classification between ON and OFF states [Pfis 20], the detection of dyskinesia
events [Das 12], or the assessment of the turning capacity of PD patients [Orne 17].

Figure 6.2 and Table 6.2 show the most common methods used by the research
community for gait assessment of PD. It can be noted that many of the current
approaches have focused on extracting features based only on the kinematic analysis
of the gait process, e.g., amplitude, frequency components, cadence, stride length,
among others, which are not specifically designed for PD. This fact makes still unclear
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Figure 6.1: Different applications addressed in the literature for gait assessment of
PD.

Table 6.1: Different applications addressed in the literature for gait assessment of
PD.

References Application

[Bart 12a],[Kluc 13],[Sejd 14],[Xia 15],[Ertu 16],[Ren 16],[Bart 17],
[Cuzz 17],[Djur 17],[Kuhn 17],[Cara 18],[Prab 20],[Zeng 19], Classification PD vs. HC
[Vasq 19c],[Pere 20b],[Rehm20],[Oroz 20b],[El M20],[Alkh 20],[Alha 20],[Seti 21],
[Vasq 21a],[Varr 21],[Bala 21a],[Cant 21a]

[Sala 04],[Riga 12],[Zhao 18],[Agha 20],[Orne 19],[Vasq 19c], Neurological state
[Abra 20],[Pere 20b],[Rava 20a],[Borz 20],[Oroz 20b],[Bala 20],[El M20], assessment
[Alha 20],[Seti 21],[Vasq 21a],[Bala 21a],[Kher 21],[Vidy 21],[Cant 21a],[Bala 21b]

[Mazi 12],[Trip 13],[Kim15],[Zach 15],[Ahlr 16],[Mazi 16],
[Rezv 16],[Rodr 17],[Camp 18],[Moha 18],[Sama 18],[Xia 18], FoG detection
[Chom19],[Asho 20],[Zhan 20],[Borz 21],[Nagh 21]

[Das 12],[Orne 17],[Pfis 20],[Rava 20a],[Moon 20],[Pere 20a] Other

which gait features are the most informative to assess gait in PD [Brog 19]. The only
proposed feature designed specifically for gait assessment in PD is the FI [Kim15].
The use of NLD-based features seemed to be suitable for the assessment of the disease,
and should be further explored, according to the literature. In addition, the use
of feature learning strategies using deep learning methods have not been enough
explored in the assessment of gait impairments of PD patients. These features can
be able to improve the performance of the current systems for assessment of gait
disturbance, especially in PD.

Regarding the different gait exercises to be performed by patients, Table 6.3 and
Figure 6.3 show the ones that are most common in the literature. Most of the studies
considered straight walking or free walking exercises, which are designed and robust
for unobtrusive monitoring of the patients, especially in at-home environments. More
controlled exercises include heel tapping and TUG test, which are included mainly
because they are part of the MDS-UPDRS evaluation. There is an increasing use
of dual tasks, e.g., carrying objects while walking, which can be explored in further
research to evaluate the effect of those secondary cognitive tasks in the walking process
of PD patients.

Regarding the location of the sensors to evaluate the gait impairments of the
patients, there is a high variability in the positions considered in the literature (see
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Figure 6.2: Different methods considered in the literature for gait assessment of PD.

Table 6.2: Different methods considered in the literature for gait assessment of PD.

References Method

[Sala 04],[Bart 17],[Djur 17],[Kuhn 17],[Orne 17],[Rodr 17],[Pari 15],
[Cara 18],[Orne 19],[Rava 20a],[Rehm20],[Borz 20],[Oroz 20b],[Bala 20],[Alkh 20] Kinematic
,[Moon 20],[Varr 21]

[Bart 12a],[Das 12],[Mazi 12],[Riga 12],[Kluc 13],[Sejd 14],[Kim15],[Xia 15],
[Zach 15],[Ahlr 16],[Mazi 16],[Rezv 16],[Sama 18],[Agha 20],[Rehm20],[Borz 20] Spectral
[Alha 20],[Seti 21],[Bala 21a],[Borz 21],[Zhan 20],[Kher 21],[Bala 21b],[Vidy 21]

[Trip 13],[Sejd 14],[Xia 15],[Ren 16],[Prab 20],[Pere 18c],[Agha 20],[Chom19], NLD
[Zeng 19],[Pere 20b],[Rehm20],[Oroz 20b]

[Camp18],[Moha 18],[Torv 18],[Xia 18],[Zhao 18],[Vasq 19c],[Pfis 20],[El M20], Deep learning
[Asho 20],[Seti 21],[Nagh 21],[Vasq 21a]„[Cant 21a]

[Ertu 16],[Cuzz 17],[Abra 20] Other
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Figure 6.3: Different tasks considered in the literature for gait assessment of PD.

Table 6.4). Even some of the developed systems require multiple sensors located
on different parts of the body, which is impractical for many clinical and especially
home-based applications [Brog 19].
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Table 6.3: Different tasks considered in the literature for gait assessment of PD.

References Task

[Sala 04],[Bart 12a],[Riga 12],[Kluc 13],[Kim15],[Pari 15],[Bart 17],
[Cuzz 17],[Djur 17],[Kuhn 17],[Orne 17],[Camp18],[Cara 18],[Pere 18c], n-meter walk
[Torv 18],[Xia 18],[Vasq 19c],[Pere 20b],[Oroz 20b],[Moon 20],[Pere 20a],[Vasq 21a]
[Vidy 21]

[Bart 12a],[Kluc 13],[Pari 15],[Agha 20],[Orne 19],[Borz 20],[Vasq 21a] Heel tapping
[Varr 21]

[Das 12],[Mazi 12],[Trip 13],[Xia 15],[Zach 15],[Ahlr 16],
[Ertu 16],[Mazi 16],[Ren 16],[Rezv 16],[Rodr 17],[Camp18],[Moha 18],
[Prab 20],[Sama 18],[Torv 18],[Xia 18],[Zhao 18],[Zeng 19],[Abra 20],[Pfis 20], Free walk
[Rehm20],[Bala 20],[El M20],[Alkh 20],[Alha 20],[Seti 21],[Vasq 21a],[Bala 21a]
,[Kher 21],[Cant 21a],[Bala 21b]

[Djur 17],[Sama 18],[Chom19] Dual tasks

[Pari 15],[Kuhn 17],[Camp 18],[Rava 20a],[Vasq 21a],[Borz 21] TUG test

[Riga 12],[Sejd 14],[Rava 20a],[Asho 20],[Zhan 20],[Nagh 21] Other

Table 6.4: Location of sensors considered in the literature for gait assessment of PD.

References Location

[Bart 12a],[Kluc 13],[Bart 17],[Pere 18c],[Vasq 19c],[Pere 20b],[Oroz 20b],[Pere 20a], Shoes
[Vasq 21a]

[Sejd 14],[Cuzz 17],[Xia 18],[Rehm20],[Zhan 20] Back

[Xia 15],[Ertu 16],[Ren 16],[Prab 20],[Zhao 18],[Zeng 19],[Bala 20],[El M20], Soles
[Alha 20],[Alkh 20],[Pere 20a],[Seti 21],[Bala 21a],[Kher 21],[Vidy 21],[Cant 21a],
[Bala 21b]

[Sala 04],[Das 12],[Mazi 12],[Riga 12],[Trip 13],[Pari 15],[Kuhn 17], Multiple positions in
[Cara 18],[Rava 20a],[Varr 21],[Moon 20],[Asho 20] upper and lower limbs

[Orne 17],[Moha 18],[Torv 18],[Xia 18],[Agha 20],[Orne 19],[Nagh 21] Ankles

[Zach 15],[Ahlr 16],[Mazi 16],[Rodr 17],[Camp18],[Sama 18],[Abra 20],[Pfis 20] Wrist

[Kim15],[Chom19],[Rezv 16],[Borz 21] Other

6.2 Kinematic Analysis of Gait

This is the first feature set considered for the experiments in this thesis, and com-
prises several measurements to model different properties in the strides such as time,
distance, and velocity. This feature set is based on the proposed in [Bart 17]. The
individual strides are segmented based on the DTW algorithm, where the gait signals
are compared with a template generated from HC subjects [Bart 11]. At the same
time, each stride is divided into two phases that are analyzed individually: the stance
phase when the foot is on the ground and the swing phase when the foot is in the air.
The toe-off and the heel-strike angles are also analyzed. Figure 6.4 shows the main
kinematic aspects that are analyzed during the walking process.

Several kinematic features are computed according to the described aspects of
the gait process. The feature set includes the stride, stance and swing times, the
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Figure 6.4: Different phases of the walking process. Source: [Oroz 20b]

stride length, the velocity of each stride, the toe-off angle, and the max clearance.
The average and standard deviation are computed per each feature. In addition,
these features are computed per foot (left and right) with the aim to evaluate the
contra-laterality effect [Sade 00], i.e., right handed patients are more affected in the
left lower limbs, while left handed patients may exhibit more impairments in the right
parts of the body. The differences in the kinematic feature between PD patients and
HC subjects is observed in Figures 6.5 and 6.6. Figure 6.5 shows the stride, swing,
and stance duration of an HC speaker and three PD patients in mild, intermediate,
and severe stages of the disease. Note how the variability of the duration within
consecutive strides increases with the MDS-UPDRS-III score, particularly for the
patient in severe stage (Figure 6.5d)).
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Figure 6.5: Stride duration when participants perform a 2x10 walking exercise: a) HC
subject, b) PD patient in mild stage (MDS-UPDRS-III=10), c) PD patient in inter-
mediate stage (MDS-UPDRS=19), d) PD patient in severe stage (MDS-UPDRS=64)

Figure 6.6 includes the difference between PD patients and HC subjects in other
kinematic aspects of the gait process, such as the stride length, the stride velocity,
and the toe off angle. Regarding the length of the strides, note that the HC subject
and the PD patient with the mild stage of the disease perform longer strides than
the remaining two patients. In addition, note the high variability of the stride length
exhibited by the PD patient in intermediate stage of the disease in Figure 6.6c). The
same differences are observed for the stride velocity (blue lines) comparing the HC
subject and the three PD patients. Finally, regarding the toe-off angle, note that
for the HC on the one hand the angle is centered around 0°. On the other hand,
the angles for the PD patients shift towards either positive (feet looking outward),
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e.g., PD patients in Figures 6.6b) and 6.6d), or towards negative values (feet looking
inward) as for the case of the PD patient in Figure 6.6c).
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6.3 Spectral Analysis of Gait

This feature set is designed to model the spectral wealth and the harmonic structure
of the gait signals obtained from the inertial sensors. The features are based on the
CWT extracted from the accelerometer and gyroscope signals, obtained from each
foot. The CWT for the gait signal s(t) is defined according to Equation 6.1. ψ(t) is
the mother wavelet (Morlet), a is the scale factor, and b is the translational factor.

CWTs(a, b) = 〈s, ψ(t)a,b〉 =
1√
a

∫ ∞
−∞

s(t)ψ

(
t− b
a

)
dt (6.1)

The CWT is able to analyze non-stationary signals with a better resolution than
the short-time Fourier transform (STFT) because the window size is adapted as a
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function of the time and frequency of the signal. Lower frequencies are analyzed with
longer window sizes to have a higher time-resolution. Conversely, higher frequencies
are modeled with shorter window sizes to have better frequency resolution. On the
contrary, for the STFT, all frequencies are analyzed with the same window size,
independent on the frequency content of the signal. The magnitude of the CWT is
known as the scalogram. The feature set is formed with the energy content from 8
different frequency bands from the scalogram, three spectral centroids, and the energy
in the 1st, 2nd, and 3rd quartiles of the wavelet spectrum. The energy content
in the locomotor band (0.5–3Hz) is also computed, which is the frequency region
where the normal gait process occurs; the energy content in the freeze band (3–8Hz),
which is related to the presence of FoG symptoms of the patients [Zach 15]; and
the freeze index, which is the ratio between the energy in the locomotor and freeze
bands [Zach 15, Rezv 16].

Figure 6.7 shows the difference in the spectral features computed for an HC subject
and two PD patients in mild and severe stages of the disease, respectively. The figure
shows the time domain gait signal from the accelerometer in the frontal plane (x-axis),
the computed scalogram, the energy in the 8 frequency regions of the scalogram, and
bar plots of the energy content in the locomotor and freeze bands, and the freeze
index. Note that the energy content for the HC subject (Figure 6.7a)) and the PD
patient in mild stage of the disease (Figure 6.7b) is centered around 1.6Hz, which is
part of the normal locomotor band. For the PD patient in severe stage of the disease,
the energy is distributed across all spectrum, especially in higher frequencies, which
are related with the presence of FoG symptoms. Note also that the pause performed
by the subjects in the 2x10 exercise is well defined for the HC subject and the PD
patient in mild stage of the disease, but not for the PD patient in severe stage of the
disease in Figure 6.7c). In addition, note the difference in the energy in the motor
band between the three participants: it is 10 times higher for the HC subject than
for the PD patient in mild stage of the disease, and 2 times higher than for the PD
patient in severe stage of the disease. Finally, note that the freeze index is lower for
the HC subject than the values observed for both PD patients.

6.4 Non-linear Analysis of Gait

Gait signals are characterized as quasi-periodic time series, with autocorrelations in
the stride intervals when considering walking on a long-time scale [Dier 17]. The
origin of these autocorrelations may be attributed to neural central pattern genera-
tors [Haus 96], and/or to the biomechanics of walking [Gate 07, Ahn 13]. For many
years, gait analysis has been studied with classical kinematic and biomechanical mod-
els in which variability was not of interest. Those traditional methods only provide
estimates of the average variations within the strides, and therefore they are insuf-
ficient to characterize the local dynamic stability properties of the walking process.
In order to characterize properly such underlying complexity during movement, more
recent techniques derived from chaos theory and NLD are considered to model gait
signals [Dier 17, Phin 20]. These novel techniques are well adapted to analyze time se-
ries with long-range autocorrelation. NLD features have shown to be also informative
to evaluate the walking patterns of PD patients [Chom19, Pere 20b].
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Figure 6.7: Spectral features from gait signals when participants perform a 2x10
walking exercise: a) HC subject, b) PD patient in mild stage (MDS-UPDRS-III=10),
c) PD patient in severe stage (MDS-UPDRS=64).

The first step to extract these features is the phase space reconstruction. The
process is performed following the Taken’s theorem [Take 81], which indicates that
there exists a dimension m such that a signal s(t) is represented in a multidimen-
sional space St, known as phase space or attractor. The phase space is created using
Equation 6.2, where the time-delay τ is computed by the first minimum of the mu-
tual information function, and the embedding dimension m is found using the false
neighbors method, proposed in [Kenn 92].

St =
{
s(t), s(t− τ), · · · , s(t− (m− 1)τ)

}
(6.2)

Figure 6.8 shows the phase space reconstructed from gait signals corresponding to
a 10 meter walking test. The signals were captured from a gyroscope in the transverse
plane (z-axis) for an HC subject and for two PD patients in mild and severe stages of
the disease, respectively. The reconstructed attractor for the HC subject (Figure 6.8a)
exhibits well defined trajectories with a clear recurrence. Conversely, the trajectories
for the patients are more dispersed, especially when the neurological state is severe
(Figure 6.8c).

Different NLD features are extracted from the reconstructed attractors to as-
sess and compare the complexity, stability, and recurrence of the walking process
performed by PD patients [Pere 20b]. The computed features extracted from those
embedded attractor are briefly described as follows.
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Figure 6.8: Phase space representation from gait signals captured with a gyroscope
in the transverse (z) plane of a) HC subject, b) PD patient in mild stage (MDS-
UPDRS-III=10), c) PD patient in severe stage (MDS-UPDRS=64).

Correlation Dimension

This feature measure the dimensionality of the phase space where the attractor is
embedded [Gras 04]. The CD is an indicator about the complexity and dimensionality
of gait signals and it is related to local instability during the walking process [Buzz 03].
The computation of CD starts with the estimation of the correlation sum C(ε), using
the Equation 6.3. ϑ is the Heaviside step function. C(ε) can be interpreted as the
probability to have pairs of points in a trajectory of the phase space inside the same
hyper-sphere of radius ε.

C(ε) = lim
N→∞

1

N(N − 1)

N∑
i=1

N∑
j=i+1

ϑ (ε− |si − sj|) (6.3)

For small values of ε, C(ε) can be computed according to Equation 6.4, thus, the
CD can be estimated using Equation 6.5 [Gras 04]. Then, CD is computed as the
slope of the linear regression of log(C(ε)) vs. log(ε).

C(ε) = lim
ε→0

εCD (6.4)

CD = lim
ε→0

log(C(ε))

log(ε)
(6.5)

Largest Lyapunov Exponent

This feature measures the sensitivity of the system to changes in the initial conditions
of the signal according to the rate at which the nearby trajectories of the phase space
converge or diverge. The LLE gives information about the stability properties of
the signal, which implies that a small perturbation introduced at any time, makes
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the behavior of the signal unpredictable. The estimation of the LLE follows the
algorithm introduced in [Rose 93]. After the phase space reconstruction, the nearest
neighbor of every point in the attractor is located. The nearest neighbor sĵ minimizes
the euclidean distance dj(t) to the point sj. sĵ and sj must be separated a distance
larger than the average period of the signal to guarantee that the points are in different
trajectories in the attractor. The average separation of all nearest neighbor points in
the attractor at the time t is defined as d(t) = Ceλ1t, where λ1 is the LLE.

Hurst Exponent

This feature measures the long-term dependence of a time series. It is defined ac-
cording to the asymptotic behavior of the re-scaled range of a signal as a function of
time [Hurs 65]. The literature shows that patients with neurodegenerative diseases
such as PD exhibit a decrease in HE compared to healthy young individuals [Jian 08],
which indicates that long-term correlations of human gait from healthy young people
are stronger than those from the elderly and the patients [Jian 08]. The randomness
of the walking process has been observed to increase with age and by the presence
of neurological disorders using the HE [Haus 97, Haus 00]. As a results, HE could
be used as an indicator for gait adaptability, gait disorder, and fall risk [Phin 20].
The estimation process consists of dividing the signal into intervals of size L and
calculating the average ratio between the range R and the standard deviation σ of
the signal. HE is computed as the slope of the curve obtained from Equation 6.6.

LHE =
R

σ
(6.6)

Lempel-Ziv Complexity (LZC)

This feature measures the degree of disorder of temporal patterns in a time se-
ries [Lemp 76]. In the computation process the signal is transformed into binary
sequences according to the difference between consecutive samples, and the LZC
reflects the rate of new patterns in the sequence [Trav 17]. It ranges from 0 (deter-
ministic sequence) to 1 (random sequence). Further details of the computation can
be found in [Kasp 87]. The LZC has been considered to model differences in the
gait rhythm that appear due to the presence of neurodegenerative diseases [Xia 15].
The LZC also shows to be useful to quantify how the complexity of the fluctuation
dynamics changes over time during walk, especially in PD patients [Kama 16]. The
authors in [Kama 16] showed using the LZC that the gait signals from young people
exhibits a less complex dynamical behavior than elder subjects, where the dynamical
complexity increases, resulting in local instability. In addition, the authors showed
that for PD patients the dynamical complexity is significantly increased resulting in
increased risk of falls.

Sample Entropy (SampEn)

This feature is a regularity statistic to measure the average conditional information
generated by diverging points on trajectories in the attractor. Gait signals with sev-
eral repetitive patterns have smaller SampEn than signals with a complex dynamics.
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This feature does not include self comparisons of points in the attractor, resulting
in a more efficient computation than for the case of the Approximate entropy, which
requires the comparison of all points in the phase space [Rich 00]. The SampEn has
been related to the presence of bradykinesia in PD patients [Tzal 14, Hssa 19].

Detrended Fluctuation Analysis (DFA)

Similar to the HE, DFA evaluates the long-term dependency of a time-series, with the
difference that DFA can be applied when the signal exhibits a non-stationary behav-
ior. DFA is used to estimate the stochastic component of the gait process by looking
at trends over time intervals in the signal. This feature has been highly applied to
model the presence of non-stationarities in gait signals [Damo 10]. Particularly, the
authors in [Haus 97] showed that the stride-interval fluctuations for patients with
Huntington’s disease are more random than for HC subjects, according to measures
of the DFA. It is expected that a similar behavior will be present for PD patients.
DFA has been also associated with gait stability [Herm05], and gait velocity [Jord 07].
Details about implementation of DFA can be found in [Damo 10].

6.5 Deep Learning Models for Gait Analysis
Besides the previous models, which are based on different feature extraction strategies
for a latter classification, end-to-end deep learning models are also considered both
to classify PD patients and HC subjects and to evaluate the neurological state of the
patients. A novel deep learning model is proposed. The neural network structure is
based on one-dimensional convolutions to learn a filter bank from the raw gait signals,
followed by a stack of two bidirectional GRU layers to model the temporal structure
of the sequence. The proposed network includes at the end a layer with an attention
mechanism with the aim to learn and give more importance to specific parts of the
gait sequences e.g., the pauses, the swing phase, or the stance phase. Figure 6.9
illustrates the proposed architecture to model the gait signals of the patients.

The input corresponds to 3 second-length frames of the gait signals. The input
is formed with 12 channels corresponding to the 3D-accelerometer and 3D-gyroscope
attached to the left and right foot. The duration was chosen to guarantee at least 3
periods of the gait signals. The input then passes through a set of two one dimensional
convolutional layers, which learn a filter-bank to process the gait sequence. The
filtered signals then pass through a stack of two bidirectional GRU layers to model
the temporal structure of the sequences. The last part of the network is an attention
mechanism, which assigns more weights to specific parts of the gait sequence, such
as pauses, the swing phase, the stance phase, or the beginning/stopping of the gait
task. For the particular case of the data collected using Apkinson and due to the fact
that the smartphone can be always placed in a different orientation when performing
the gait tasks, a data augmentation strategy is proposed by randomly switching the
axes of the inertial sensors in the input to the CNN-GRU model. With this approach
a better generalization is guaranteed.
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Figure 6.9: Deep learning model for end-to-end gait modeling of PD patients. FC:
Fully connected layers. c= number of output channels in the convolutional layers.
The values in parenthesis indicate the size of the convolutional filters and the number
of neurons in the fully connected layers.



Chapter 7

Asynchronous Multimodal Analysis
of Parkinson’s Disease

Most psychological phenomena are complex and multifaceted, therefore requiring
multimodal information to detect and to quantify them. The integration of multiple
sources of data helps to get a more complete view about the neurological state of
the patients. However, at the same time, the multimodal data imposes challenges
in terms of information perception and data fusion strategies. Different modalities
can be complementary, redundant, or even conflicting. For instance, It can be PD
patients with a normal healthy handwriting, but a very impaired gait or speech.

This chapter is divided in two parts. Section 7.1 describes the most important
studies that combine information from multiple modalities such as speech, hand-
writing, or gait to evaluate PD patients (other modalities such as medical images
or electromyography are excluded from the review). Then Section 7.2 describes the
fusion methods considered in this thesis to combine the information from speech,
handwriting, and gait data from PD patients.

7.1 A Review on Multimodal Assessment of PD Pa-
tients

Although there are several works considering different bio-signals to assess motor
impairments of PD patients, most of the studies consider only one modality. Mul-
timodal analyses, i.e., considering information from different sensors, have not been
extensively studied [Oung 15]. Although many improvements have been shown in
several tasks, there is still an absence of a multimodal fusion system able to de-
liver an accurate prediction of the PD severity [Past 13] and to monitor the disease
progression [Aria 18a].

One of the first studies that combined information from different modalities was
developed in [Bart 12b]. The authors considered handwriting signals captured with
a smart-pen with several gait signals collected with the first version of the eGait
system. The signals were collected from 18 PD and 17 HC subjects, who performed
several handwriting and gait exercises such as drawing an Archimedean spiral, heel-
toe tapping, straight walking, among others. Several statistical and spectral features
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were computed from the handwriting and gait signals. The features were combined
following an early fusion strategy, and classified using an AdaBoost algorithm. The
authors reported an accuracy of up to 97% with the proposed strategy. In [Oung 18],
the authors extracted features based on energy and entropy from the empirical wavelet
transform computed from speech and movement signals. Speech signals comprised
utterances of sustained vowels. Movement signals were collected from inertial sen-
sors attached to the waist, both wrist, and legs. 65 PD patients performed different
movement exercises, including TUG, supination/pronation, toe tapping, among oth-
ers. The authors classified the patients in four severity levels of the disease distributed
according to the H&Y scale. The authors considered an extreme learning machine
classifier, and reported accuracies of up to 95%; however, the approach considered by
the authors is optimistic since the classifiers were optimized according to the accuracy
obtained in the test set. A different approach to combine information from speech,
handwriting, and gait was proposed in [Vasq 19c] by modeling the difficulty of pa-
tients to start/stop the movement of muscles in the upper and lower limbs, and in the
vocal folds. The modeling considered the transitions between voiced and unvoiced
segments in speech, the movement when the patient starts or stops a new stroke in
handwriting, or the movement when the patient starts or stops the walking process.
These transition movements were processed with time frequency representations and
CNNs, trained with information from speech, handwriting, and gait. Data from 44
PD patients and 40 HC subjects were classified in two scenarios: (1) binary classi-
fication of PD and HC, which yielded an accuracy up to 97.6%, and (2) a 4-class
problem classifying HC and patients in three stages of the disease, according to their
MDS-UPDRS-III score, which resulted in an accuracy up to 55.6%. The best results
were always obtained when information from the three modalities were combined. An
additional model was proposed in [Garc 18b], where the authors computed i-vectors
from features extracted from speech, handwriting, and gait signals from 49 PD pa-
tients and 41 HC subjects. The i-vectors for each modality were concatenated and
classified using an SVM, which achieved an accuracy of up to 85%.

7.2 Fusion Methods for Multimodal Assessment of
the Disease

Fusion of different modalities is a critical task, which can be implemented at data,
feature, and decision levels. Each fusion scheme operates at a different level of analysis
as illustrated in Figure 7.1 [Oung 15].

The data-level fusion gives the highest level of information details, as the signal
is directly processed, but it can be highly susceptible to noise as there is an absence
of pre-processing. An example of this type of fusion is the combination of accelerom-
eter with gyroscope signals for the gait analysis, or the fusion between position and
pressure for the handwriting analysis. Then, fusion at feature level, also known as
early-fusion is a general type of fusion when closely-coupled modalities are combined.
The typical example of this fusion strategy is when we stack together features from
speech, handwriting, and gait; or features from different tasks within the same modal-
ity. This level of fusion produces a moderate level of information details, but it is
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Figure 7.1: Different levels of fusion for multimodal data.

less sensitive to noise than the fusion at data level. Finally, the decision-level fusion
or late fusion is the most common type of fusion in multimodal applications. The
key reason is because its ability to manage loosely-coupled modalities, or when the
number of feature sets to be combined is big. For instance, in the addressed problem,
it is necessary to combine information from three different modalities, and for each
modality the patients perform a set of different tasks. The fusion at decision level
is highly robust against noise, improving accuracy and interpretation, because it is
possible to check and evaluate the most important modalities and tasks in the global
decision [Duma 09]. The experiments addressed in this thesis are carried out using
three fusion strategies: the early fusion, were the different feature sets from different
tasks and modalities are stacked together before the classification, and two late fusion
strategies, which are explained as follows.

Late Fusion 1: Weighted Majority Voted Decision

This fusion strategy aims to map local predictions yj made by the j-th classifier
into a global decision Y, using a linear combination with weights α̂j, according to
Equation 7.1, where C is the number of classifiers to combine. This approach is widely
used because of its robustness, simplicity and scalability due to small computational
costs [Atre 10]. It is also appropriate when there exist dependencies between the
feature sets through the classifiers [Ma 12, Wu04] e.g., when the output from different
speech tasks is combined.

Y =
C∑
j=1

α̂jyj (7.1)

The goal of this fusion strategy is to find the most appropiate weights α̂j to
maximize the global decision score. In this thesis a method based on AdaBoost is
considered. For this case, the weight associated to each classifier depends on the



128 Chapter 7. Asynchronous Multimodal Analysis of Parkinson’s Disease

errors committed by each model, following Equation 7.2, where εj is the error rate
from each classifier on the training set. Hence, a classifier with an error rate of 0.5
will produce an α̂j = 0, thus not contributing to the global decision. Conversely, a
classifier with a very low error rate will produce a very high α̂j, contributing the most
to the global decision.

α̂j =
1

2
log

(
1− εj
εj

)
(7.2)

The previous Equation can be extended to multi-class problems, when the error
rate for random guessing is not 0.5. For these cases when more than two classes
is available, for instance to classify patients in different severity levels e.g, mild,
intermediate, and severe, Equation 7.2 is extended to 7.3 [Hast 09], where K > 2 is
the number of classes. The addition of the term log(K − 1) is critical in the multi-
class case. Now in order to α̂j > 0 there is only need that (1 − εj) > 1/K, or the
accuracy of each classifier to be better than random guessing, rather than 0.5 as for
the bi-class problems.

α̂j =
1

2
log

(
1− εj
εj

)
+ log(K − 1) (7.3)

The estimation of the weights is also adapted to solve regression problems, fol-
lowing Equation 7.4. ρj is a performance metric for the j−th regressor, like the
Spearman’s correlation coefficient. For this case, a value of ρj = 0 will produce val-
ues for α̂j = 0, thus not contributing to the global decision. Conversely, positive
correlations will produce high positive weights and negative correlations will produce
slightly low negative weights to the global fusion.

α̂j =
1

2
log

(
1

1− ρj

)
(7.4)

Late Fusion 2: Dynamic Score Combination

In the previous fusion method, the computed weights for the fusion are static i.e.,
they are computed once based on the performance from the training set and they
are equally applied to all samples in the test set. Conversely, in the dynamic score
combination (DSC) methods the computed weights for the fusion are not fixed for
all samples, but they change according to the sample to be classified [Tron 09]. The
DSC strategy estimates dynamically a set of weights for each sample to be classified,
thus Equation 7.1 changes to Equation 7.5 for the DSC, for the i-th sample in the
test set. si,j is the score obtained from the j-th classifier for the i-th sample in the
test set e.g., the distance to the hyper-plane for the case of SVMs or the output of
the Softmax activation for the case of DNNs.

Yi =
C∑
j=1

α̂i,jsi,j (7.5)

Ideally the weights α̂i,j are adapted both to each sample in the test set, and to the
performance of the local classifiers for each sample, instead of having a set of weights
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α̂j based on the global performance of each classifier on the training set [Tron 09].
The formulation of the DSC establishes that if the scores for each classifier si,1 ≤
si,2 ≤ · · · ≤ si,C are sorted, Equation 7.5 is equivalent to Equation 7.6.

Yi = β̂i,1min
j

(si,j) + β̂i,2max
j

(si,j) (7.6)

If the constrain that the weights should sum to one is included, then Equation 7.6
can be rewritten as Equation 7.7 [Tron 09]. Hence, β̂i will be an adaptive score,
estimated for each particular sample of the test set.

Yi = (1− β̂i)min
j

(si,j) + β̂imax
j

(si,j) (7.7)

Now, combining Equations 7.5 and 7.7, the value of β̂i is dynamically estimated
for each sample from the test set, according to Equation 7.8 [Tron 09]. This is known
as supervised DSC, because there is still necessary to estimate the weights α̂j for each
individual classifier. Equation 7.2 can be used to estimate the weights α̂j for each
classifier.

β̂i =

∑C
j=1 α̂jsi,j −min

j
(si,j)

max
j

(si,j)−min
j

(si,j)
(7.8)

The main advantage of the supervised DSC is that it is still possible to map the
importance of each classifier to the final decision based on its performance on the
training set, but adapting the scores individually to each sample of the test set by
the computation of β̂i. This is the approach considered in this thesis for the fusion
of the different feature sets from the different modalities and from the different tasks
performed by the participants in each modality.
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Chapter 8

Analysis of Parkinson’s Disease using
Smartphones

Motor symptoms observed in PD patients progress differently among patients, thus
it is important to monitor their symptoms individually and continuously. The con-
tinuous monitoring is not always possible for many patients, especially those with
low accessibility to healthcare services. Hence, there is a need for a system to track
the disease progression of the patients individually. A smartphone application that
combines speech and movement analysis could be a suitable mechanism to monitor
the disease progression. Such an application will be beneficial for patients and care-
givers to be informed about the current stage of the disease; and for clinicians to
make timely decisions regarding the medication and therapy of the patients.

This chapter is focused on the analysis and evaluation of PD patients using smart-
phone technologies. Section 8.1 describes existing mobile applications that are de-
signed to evaluate different motor symptoms of PD patients. Then, Section 8.2
describes the Apkinson app, which was designed and developed in cooperation be-
tween researchers from the University of Antioquia (Medellín, Colombia) and the
Friedrich-Alexander University Erlangen-Nuremberg (Erlangen, Germany).

8.1 A Review on Automatic Assessment of Parkin-
son’s Disease using Smartphones

In the past years, several smartphone applications were developed to monitor the
symptoms of PD patients [Post 19]. However, most of them only consider the evalu-
ation of the upper and lower limbs using the inertial sensors embedded in the smart-
phone [Post 19, Stam18]. Additionally, many of the existing applications designed
for PD patients are focused only on the evaluation of specific aspects of the disease
such as postural tremor [Frai 16], bradykinesia [Prin 14], fine motor skills [Lee 16],
and FoG [Mazi 12, Kim15, Cape 16].

One of the first studies to evaluate PD symptoms using smartphones was devel-
oped in [Mazi 12], where the authors proposed the use of a smartphone application and
wearable accelerometers to detect FoG episodes during walking. Several accelerome-
ters were placed in the ankle, knee and hip of 10 PD patients, who performed walking
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simulating activities of daily living. Signals captured with the accelerometers were
transmitted to a smartphone application via Bluetooth. The app computed statis-
tical and spectral features from the collected gait signals. The extracted features
where used to classify FoG episodes vs. normal walking. The authors reported an
accuracy up to 95%. In [Grac 14] the authors developed an Android application to
evaluate automatically three aspects of PD patients: (1) handwriting with the draw-
ing of an Archimedean spiral, (2) finger tapping, and (3) gait. Different features
were computed for each task, e.g., geometric features from the Archimedean spiral
and kinematic features from the tapping and gait exercises. The extracted features
were used to classify 17 PD patients and 18 HC subjects, using a Bayesian network
that achieved an accuracy of up to 87.5%. In [Kim15] the authors used the inertial
sensors from smartphones to detect FoG events from 15 PD patients. Subjects were
instructed to walk straight for 3 meters. Then, they turned around and returned to
the starting place. The smartphone was placed in several parts of the body when the
patients performed the exercises. The authors computed the FI and other statistical
and spectral features to classify the FoG episodes using an Adaboost classifier. The
highest accuracy was reported when the smartphone was placed in the waist (86%).
In [Kost 15], the authors presented a smartphone application to capture data from
postural tremor of PD patients. The authors extracted kinematic features such as the
average and standard deviation of the acceleration signals. The features were used
to classify a group of 25 PD patients and 20 HC subjects. The authors reported an
AUC of up to 0.91 with an Adaboost classifier. The authors from [Cape 16] created
a smartphone application to detect FoG episodes in real time. the proposed method
consisted of the computation of the FI, the Energy index (EI), and the step cadence.
EI is defined as the sum of the energies in the freeze and locomotor bands. The step
cadence was computed based on the amplitude of the second harmonic of the power
spectrum. The three features were computed for frames of 0.4 seconds length, and
the FoG episodes were detected based on a set of rules and thresholds for EI and FI.
The proposed model was tested with data from 20 PD patients that experienced FoG
episodes when they performed a TUG test. The FoG episodes were detected with
an AUC of up to 0.90. In [Agha 17] the authors performed a handwriting assessment
using a smartphone application when patients draw a spiral. The authors computed
several features including the kurtosis of the speed stroke, the length of the spiral
drawing curve, the area of the spiral in each loop and the time of the drawing. The
authors evaluated different items of the UPDRS scale related to the upper limbs, and
reported correlations ranging from 0.47 to 0.52 combining handwriting features with
finger-tapping measures. In [Stam18] the authors developed the CloudUPDRS app
to predict the UPDRS score of PD patients when they perform a set of movement
exercises at home. The application includes a set of 17 exercises to evaluate postural,
kinematic and resting tremor, finger tapping, and gait. The exercises are used to
classify three levels of the UPDRS score of 12 PD patients recorded in several ses-
sions during three months, using a deep learning approach. The authors reported an
accuracy of 78%. However, it is not clear whether the results obtained are subject in-
dependent. In addition, no suitable feedback is shown to the patients in the app, but
in a web application. This fact may affect the usability and interest of the patients to
use the app. The authors from [Iako 19] collected data from the touchscreen keyboard
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of smartphones using the i-Prognosis application1. The touchscreen patterns of 27
PD patients and 84 HC subjects were classified with a CNN to process the press and
release time sequences of the keyboard. The authors reported an AUC of up to 0.78.

There are few applications to evaluate the speech symptoms of PD patients [Bot 16a,
Zhan 18]. However, the analysis only considers the phonation of sustained vowels. In
the mPower for iPhones [Bot 16a], the patients respond to a subset of questions
from the MDS-UPDRS scale, and perform short activities such as finger tapping or
the phonation of the sustained vowel /a/. In [Zhan 18] the authors introduced the
HopkinsPD smartphone application, where the patients have to perform 5 exercises
related to speech, finger tapping, gait, balance, and reaction time. The authors pro-
posed the Parkinson’s disease score (mPDS) based on the performed exercises by the
participants. The mPDS aimed to detect intra-day symptoms fluctuation, even those
related to the dopaminergic medication. The authors correlate the mPDS and the
MDS-UPDRS-III scores of the patients, and report Pearson’s correlations of up to
0.88; however, such correlation could be optimistic since the comparison is performed
considering only three time periods in the longitudinal analysis. Additional studies
also have shown that it is possible to evaluate the speech impairments of PD patients
using signals captured with smartphones [Zhan 17, Aria 18b, Rusz 18a, Zhan 19]. How-
ever, such studies only consider the smartphone to record the speech data, without
providing a feedback mechanism to the patient about their current state of the dis-
ease. A summary of the existing apps for the assessment of PD until February 2021
is available in Table 8.1. Note that there is no application specifically designed for
speech assessment of PD patients. There are also apps designed only to collect data,
which does not provide feedback to patients.

8.2 Apkinson

The need to monitor continuously the disease progression of PD patients, and to
make a motor evaluation of the patients that includes specifically the speech produc-
tion yields to the development of Apkinson [Oroz 20a], a mobile application designed
with the aim to provide patients, caregivers and clinicians with a technological tool
that supports them in the process of following the disease progression. Apkinson is
an android application that records several signals using sensors embedded on the
smartphone (microphone, accelerometer gyroscope, and the touch screen) and per-
forms different analyses with the aim to model the disease progression of PD patients.
The app incorporates exercises and models for speech, walking, hand movements and
finger tapping, and the patient receives immediate and individual feedback with the
results of the exercises. The individual feedback to the patients motivates them to
continue using the app and trying to perform better every day. Apkinson is available
to be downloaded by patients in the Google Playstore2. The source code is also avail-
able for the research community interested in performing updates or adaptations to
other neurological or speech-related diseases3

1http://www.i-prognosis.eu/
2Apkinson: https://play.google.com/store/apps/details?id=com.sma2.apkinson
3Source code of Apkinson: https://github.com/jcvasquezc/SMA2

http://www.i-prognosis.eu/
https://play.google.com/store/apps/details?id=com.sma2.apkinson
https://github.com/jcvasquezc/SMA2


134 Chapter 8. Analysis of Parkinson’s Disease using Smartphones

Table 8.1: List of existing mobile applications for assessment of PD patients

Name Platform Exercises Evaluation link Cost (e)
PD Warrior Android Movement exercises No feedback https://pdwarrio

r.com/
Freemium

ARAT Android Exercises for upper limbs Self evaluation Free
MyTremorApp Android Postural tremor, balance,

finger to nose, prona-
tion/supination

Report of tremor and
bradykinesia

https://medapple
ts.com/mytremor-
app/

Free

Swallow Prompt Android,
iOS

Swallowing therapy No feedback https://speechto
ols.co/swallow-p
rompt

1.99

ListenMee Android Gait Auditory feedback to
improve gait

30

myParkinson’s Android Postural tremor No feedback Free
Neurofit Android Movement exercises No feedback http://albertosan

chez.net/neurofi
t.html

Free

AppTUG Android,
iOS

TUG test No feedback https://www.mon4
t.com/

Free

StudyMyTremor iOS Postural tremor Frequency and power
of the postural tremor

http://studymyhea
lth.com/funktion
en/studymytremor/

4.49

PD Me Tools iOS Balance, memory, reaction,
time perception

Indicators for each of
the four exercises

http://bellesfarm
.com/

Free

TUG App Android,
iOS

TUG test time to perform the
test

Free

Tippy Tap iOS Finger tapping Tapping scores Free
mPower2 iOS Finger tapping, gait, pos-

tural tremor, sustained
phonation

History of performed
exercises

https://parkinso
nmpower.org/your
-story

Free

MAP in PD iOS Finger tapping, balance Self evaluation Free
Motion in PD iOS Sustained phonation, Self evaluation Free

finger tapping, balance
read text

PD LifeKit iOS Finger tapping, cogni-
tion, sustained phonation,
memory, postural tremor,
singing

Global and individual
indicators per task

http://connectedn
euro.com/

14.99

Voice Analyst Android,
iOS

speech (not clearly defined) Pitch and volume 10

DigiTap iOS Finger tapping number of tapps http://www.app-st
ore.es/digitap

2.99

Lift Pulse iOS Postural tremor Frequency of the
tremor

http://www.app-st
ore.es/lift-pulse

Free

Tremor12 iOS Postural tremor No feedback Free
cloudUPDRS Android Movement of upper limbs,

gait, finger tapping
No feedback http://www.updrs.

net/
Free

iPrognosis Android,
iOS

Usage interaction with the
smartphone

Interaction of the pa-
tient with the smart-
phone

http://www.i-prog
nosis.eu/

Free

The app was developed within the framework of the project Speech and Move-
ment Analysis using your SMArtphone for neurological diseases (SMA)2, which was
financed by the Ministry of Education and Research in Germany (BMBF). Differ-
ent researchers from the Pattern Recognition Lab from the University of Erlangen-
Nuremberg (Erlangen, Germany), the Machine Learning and Data Analytics Lab
also from the University of Erlangen-Nuremberg and the GITA research Lab from
the University of Antioquia (Medellín, Colombia) participated in the development of

https://pdwarrior.com/
https://pdwarrior.com/
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https://medapplets.com/mytremor-app/
https://medapplets.com/mytremor-app/
https://speechtools.co/swallow-prompt
https://speechtools.co/swallow-prompt
https://speechtools.co/swallow-prompt
http://albertosanchez.net/neurofit.html
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https://www.mon4t.com/
https://www.mon4t.com/
http://studymyhealth.com/funktionen/studymytremor/
http://studymyhealth.com/funktionen/studymytremor/
http://studymyhealth.com/funktionen/studymytremor/
http://bellesfarm.com/
http://bellesfarm.com/
https://parkinsonmpower.org/your-story
https://parkinsonmpower.org/your-story
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http://connectedneuro.com/
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http://www.i-prognosis.eu/
http://www.i-prognosis.eu/
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the app during two Sprints within two years, following a SCRUM methdology. The
list of contributors to the app is available online4.

There is a set of 38 exercises included in Apkinson, and the patient is requested
to do between six and eight of them every day (in its current version the set of
exercises is repeated every week). The set includes tasks of different nature like
speech production, hand movement, gait and finger tapping. The information from
those signals is stored and processed on the phone, allowing Apkinson to compare
the results with previous recording sessions, providing the patient with a direct and
individual comparison. Those exercises that require more computation power due
to more elaborated and complex algorithms are sent to a server. Specifically, the
evaluation of pronunciation and intelligibility of speech need to be computed on the
server side. The first one requires the use of Phonet (see Section 4.3) to compute
phonological posteriors, and the second one is based on an ASR. Once all of the
computations are performed, the result is sent back to Apkinson and included in the
feedback that is provided to the patient.

When the patient uses Apkinson for the first time, it requests the patient to
introduce several metadata including the birth date, gender, dominant hand, years
of education, years of diagnosis, medication name, dose and intake time, weight,
height and others. After the patient uses Apkinson for several sessions, s(he) can
see the progress in the performed exercises, and move to the different modules of the
app, including access to exercises, results and other settings. In the main screen,
the patient can start to do the exercise session of the day. Figure 8.1a) shows these
options. The name Camilo is a reference that corresponds to the name of the patient.
Apart from the registration and the metadata information, Apkinson incorporates
a settings module where the patient can manage general aspects of the app like
updates of the demographics or medication information, or to change the time of the
notifications to remind the patients to do their daily exercises. In addition, when
the patient attends a medical appointment, Apkinson allows the medical examiner to
export the information from the patients’ smartphone, and also to update exercises
that the patient has to perform. A screenshot of the settings module is shown in
Figure 8.1b).

When the patients press the QUICK START (see Figure 8.1a)), they are moved
to the module with the exercises that should be performed on a daily basis. The
patient will receive a daily notification as a reminder to do the exercises. There are
three groups of exercises, the first group has a total of 21 speech tasks including the
sustained phonation of the vowels /a/, /i/ and /u/, six DDK exercises, ten different
sentences that the patient has to read, and the description of images that appear
on the screen. The speech tasks are thought to evaluate phonation, articulation and
prosody impairments in the speech of the patients. Additional information about
the data collection using Apkinson was described in Section 3.3.4. The other two
groups of exercises contain a total of 17 tasks that are captured using the inertial
sensors of the smartphone. The aim is to evaluate different abnormal aspects in
movements including postural tremor, kinetic tremor, finger tapping, gait deficits,
among others. The patient can access the instructions via video, voice and text
on the App. Those instructions guide the patient to perform the exercises correctly.

4Apkinson contributors https://github.com/jcvasquezc/SMA2/graphs/contributors

https://github.com/jcvasquezc/SMA2/graphs/contributors
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.1: Different screens from Apkinson to monitor the disease progression of PD
patients.

Figure 8.1c) indicates a list of exercises to perform in the current session; Figure 8.1d)
shows the instructions (text and audio) to explain the patient how to perform a DDK
exercise. Figure 8.1e) shows the screen that the patient can see when is about to start
one of the walking tasks. Note that the patient is asked to put the smartphone in
the pocket before starting the walking tasks. Figure 8.1f) shows the example that
the patient sees when doing the finger-to-nose test. Figure 8.1g) shows the example
of how to do the hand tremor exercise; and Figure 8.1h) shows the screen of the
task where the patient has to touch the lady-bug alternating between the two finger
thumbs. For each exercise, the patient can see a video with the example and can also
read the instruction that is written below the video screen.

One relevant aspect when using sensors embedded in smartphones with an An-
droid operating system is the sampling frequency. The smartphone is programmed
to do the sampling when the scheduler allows it, which means it depends on whether
the user or the device itself is running other applications at the same time and the
sampling frequency can oscillate in a range between 20 and 200Hz. There is no way
to avoid that situation because it is programmed like that in the Android operating
system. With the aim to avoid that potential problem, we implemented a resampling
method that is always applied such that it assures a constant sampling frequency of
100Hz. The method is standard and it is based on a linear interpolation.
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8.2.1 Speech Assessment

For the evaluation of speech, Apkinson focuses on the analysis of stability, speech rate,
intonation, intelligibility and pronunciation. The first three are computed directly
on the phone and the last two are computed on the server. The sampling frequency
for the speech signals in Apkinson is set at 16 kHz and it is important to mention
that speech signals do not have stability problems in the sampling frequency. Once
it is set, the value is constant for every recording. The stability of the vocal folds’
vibration is measured by computing Jitter from the sustained phonation of the vowel
/ah/, following the same procedure described in Section 4.2.1. The speech rate is
considered to evaluate the speed of the articulation movements necessary to produce
DDK exercises. The speech rate is computed considering the number of voiced sounds
per second produced by one speaker during the rapid repetition of /pa-ta-ka/. The
method used in Apkinson to identify the voiced frames is based on the presence of
pitch in short-time speech frames of 40ms extracted with a time-shift of 10ms. The
intonation in Apkinson is measured as the standard deviation of the pitch contour
extracted from the longest sentence included in the speech protocol. The pronun-
ciation is evaluated with the Phonet toolkit, described previously (see Section 4.3)
by computing phonological posteriors of stop consonants (/p-t-k/) when the patients
perform the DDK exercises. Finally intelligibility is measured based on the word
error rate computed between the read sentences and the recognized ones using a
pre-trained ASR system. The ASR was trained using the Kaldi framework, using a
general GMM-HMM architecture, and it is installed on the web server. The model
was trained with the ten sentences included in the protocol, read by 103 healthy par-
ticipants. Each sentence was repeated ten-times, which gives us 10,300 recordings,
for an approximate of 10 h duration of recordings to train the ASR.

8.2.2 Movement Assessment

The evaluation of the motor symptoms of the patients in the upper and lower limbs is
performed in Apkinson with measures of: (1) regularity of movements, (2) FoG, (3)
hand tremor, postural stability, and gait dynamics. All these features are computed
locally on the phone.

Movement Regularity

Apkinson includes several movement exercises where the patients perform repeti-
tive patterns that form quasi-periodic signals. These exercises are inspired on the
MDS-UPDRS-III scale [Goet 08] and include the finger-to-nose test, the pronation-
supination test, and the arm-circles exercise. Apkinson evaluates the regularity in
the repetition of these exercises according to the temporal variability (TV) of the
fundamental period of the acceleration signals in the z-axis. TV is measured accord-
ing to the standard deviation of the fundamental period of the signal computed for
windows of 400ms length with a time-shift of 20ms. The value of TV is normalized
according to a sigmoid factor to get a regularity index (RI) score between 0 and 100%
(see Equation 8.1). With the normalized score, a person with very regular movements
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will get a regularity measure near to 100%, while a patient with irregular movements
will get lower scores.

RI =
200

1 + e2TV
(8.1)

FoG

FoG is one of the most debilitating motor symptoms in advanced stages of PD, as
it was described in Section 6. The computation of the FI [Kim15] was included in
Apkinson to measure how the patient is affected by FoG. The FI is computed in the
gait exercises included in Apkinson.

Postural Stability

Posture stability is a common problem in PD patients and one of the main causes of
falls. The postural stability is evaluated in Apkinson in the standing task, where the
patient should be standing straight for 30 s with the smartphone in his/her pocket.
The postural stability is measured based on the energy of the acceleration signals
in the three axes, according to Equation 8.2, where ax, ay and az correspond to the
acceleration measured in frontal, sagittal and transversal planes, and N is the length
of the gait signal. The value of the energy is normalized according to a sigmoid factor
to get a postural stability index (PSI) between 0 and 100%, following Equation 8.3.
With the normalized score, a person with small movements will get a PSI near to
100%, while a patient with strong movements will get a lower score.

Ep =
1

N

∑
(a2
x + a2

y + a2
z) (8.2)

PSI =
200

1 + e2Ep
(8.3)

Hand Tremor

Hand tremor in Apkinson is evaluated in the postural tremor exercise, where the
patient extends the arm holding the phone, keeping such a position for at least 10 s.
Apkinson computes the energy of the acceleration signals when the patient is holding
the phone, using the same strategy considered for the postural stability in order to
get a tremor performance between 0 and 100%.

Gait Dynamics

Apkinson has incorporated a step detection algorithm based on a peak detection
method of the acceleration signals. With the number of detected steps and their
location in the acceleration signal, we computed the duration of each step. The
number of steps and the average duration are also included in the report section of
Apkinson to show the patient their current performance when they perform the free
walking test.
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8.2.3 Fine Motor Assessment

Fine motor tasks aim to evaluate different dimensions of PD such as akinesia (inabil-
ity to initiate movement), bradykinesia (slow movements), freezing (momentary loss
of movement), deficit in space-visual ability, and loss of cognitive ability. Apkinson
includes three finger tapping exercises based on those proposed in [Tava 05] to evalu-
ate the patient performance in fine movements. The first one consists of tapping with
the thumb of the dominant hand ladybugs that randomly appear on the screen for
10 s. The second one is a two-finger tapping test where the patient uses both thumbs
to hit two ladybugs that appear randomly on the screen (see Figure 8.1h) The third
task is to slide horizontally a bar until reaching a target point, which moves randomly
every time once it is reached. This third task is inspired in the Fitt’s test to evaluate
human computer interaction systems [Fitt 54]. Each exercise requires rapid reaction,
concentration, ability to associate, spatial location and repeated movements of ex-
tension and contraction of the fingers. The evaluation of the fine movement skills
of the patients is performed with four features: (1) tapping accuracy, which is the
number of lady-bugs the patient manages to capture during the time of the exercise,
relative to the number of times the patient touches the screen. (2) Tapping velocity
is computed as the number of taps performed, relative to the duration of the tapping
exercise. (3) Tapping precision measures the distance between the point in the screen
pressed by the patient and the real place of the lady bugs in the tapping exercises.
Finally (4), the sliding velocity measures the number of times the patient is able to
reach the target bar during the time of the sliding exercise.

8.2.4 Feedback to Patients

Patients can see their performance after doing the exercises, and also compare their
results with respect to previous sessions. Figure 8.2 shows the different screens that
the patient can visualize to get feedback about the current state. Figure 8.2a) shows
the results obtained from the speech exercises. The five vertices of the radar plot
correspond to the evaluation of stability, speech rate, intonation, intelligibility and
pronunciation. The general speech performance is obtained from the area of the
resulting pentagon. Figure 8.2b) indicates results obtained from movement exercises
and the six vertices of the plot correspond to the computed features: regularity of
movements, hand tremor tremor, average duration of the strides, number of steps,
postural stability and the FI. As in the previous case, the area of the resulting hexagon
is computed as a general performance for movement analysis. Figure 8.2c) shows the
evaluation of fine motor skills including the tapping accuracy, tapping velocity, the
tapping precision, and the sliding velocity. The general fine motor skill indicator
is computed as the area of the resulting quadrangular. For all cases, the reference
plot in cyan color is computed as the result of evaluating 60 HC subjects. The
plot computed for the patient is in orange and when there is overlap between the
reference subjects and the patient, the resulting plot is in light green. The global
motor evaluation considers the areas of the geometrical figures obtained from each
evaluation separately (speech, movement and fine motor). The result is composed by
three area values that are used as the vertices for a triangle. As in the case of the
individual evaluations, there is a reference plot computed with the results of 60 HC
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subjects (see Figure 8.2d)). Finally, Figure 8.2e) indicates how the historic results
are displayed for the follow-up evaluation of the patient.

(a) (b) (c) (d) (e)

Figure 8.2: Different screens from Apkinson to show results and give feedback to the
patients.

8.2.5 Communication between Apkinson and the Server

The communication between Apkinson and a server is guaranteed for different appli-
cations. On the one hand to perform the most complex speech analyses that cannot
be computed locally on the smartphone and that include the ASR system trained on
Kaldi to compute the intelligibility metrics, and the phonological analysis module to
compute the pronunciation scores. On the other hand, to receive and store properly
the data collected from the application and that include metadata and medication
information of the patients, multimedia files with the speech and movement record-
ings, and results of the exercises performed by the patients. Our aim is that potential
users like patients, caregivers, and medical doctors can access the data of the patients
to track the evolution of the neurological state of the patients. This option is still
under development and will be configurable according to the Ethical regulations of
each country or institution. The data collection using the web server is right now
available only for patients in Colombia because of privacy and ethical requirements.
It is important to mention that the app senses the WiFi connection of the smartphone
and files are only sent to the server when there is WiFi connection. This is with the
aim to avoid consuming all of the mobile data of the user, which could potentially
demotivate to use Apkinson.

8.2.6 Limitations of Apkinson

The current version of Apkinson is able to handle audio and movement resulting files
from the exercises. Additionally, the system is able to compute the complex speech
indicators on the server side. Although all features of the system are working properly,
the current version of Apkinson does not include different profiles (patient, caregiver
or clinician). Future work includes developing graphic user interfaces for caregivers
and clinicians, such that they can remotely monitor the progress of the patient while
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using the app. Another limitation of the app is that it only works on Android devices,
thus we encourage the research community to work on the adaptation of Apkinson
to make it usable on iOS devices as well.
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Chapter 9

Experiments & Results

This chapter includes details of the experiments addressed during the development
of this thesis. It is divided into five main sections. Section 9.1 is dedicated to the
assessment of PD from speech, including the analysis of the high quality speech data
from the Multimodal corpus, and the assessment of the speech collected from the
smartphones using the Apkinson app, described in Section 8.2. The analysis is per-
formed using the methods described in Chapter 4 for traditional feature analysis and
deep learning techniques. Section 9.2 includes experiments and results about hand-
writing assessment of PD patients. The assessment is performed using all methods
described in Chapter 5 to model the kinematic, geometric, and in-air aspects of online
handwriting, as well as the deep learning methods to model both online and offline
handwriting. Section 9.3 includes experiments and results about gait assessment of
PD patients. The assessment is performed using all methods described in Chapter 6
to model the kinematic, spectral, and non-linear aspects of gait signals, as well as the
deep learning methods. The experiments are performed with the data collected from
both the high-quality eGait sensors and with those embedded in the smartphones via
the Apkinson app. Section 9.4 shows the results obtained combining speech, hand-
writing, and gait analysis, described in Chapter 7. Finally, Section 9.5 summarizes
and discusses the analysis of the most important results. The validation strategy for
the results presented in this chapter follows the methodology described in Section 2.3.

9.1 Speech Assessment

The automatic assessment of the speech of PD patients covers three scenarios: (1)
the automatic classification of PD patients vs. HC subjects, (2) the evaluation of
the dysarthria severity of patients based on the m-FDA scale, and (3) the assessment
of the motor-state severity of patients based on the MDS-UPDRS-III scale. The
evaluation of the dysarthria severity includes also the longitudinal evaluation of the
patients from the longitudinal and the At-Home corpus to evaluate the progress of the
speech impairments in the patients. The speech assessment is addressed considering
different modeling strategies. The focus is always to analyze different speech dimen-
sions, speech tasks, and their different combinations. The speech dimensions include
the feature sets to model phonation, articulation, prosody, phonological, among other
speech aspects, in addition to the end-to-end modeling using deep learning techniques.

143



144 Chapter 9. Experiments & Results

The speech tasks include read sentences, DDK exercises, read texts and monologues
pronounced by the participants. The fusion of feature sets and speech tasks is per-
formed with the three methods described in Section 7.2: (1) early fusion (referred as
Early), (2) weighted majority voted decision (referred as Late 1 ), and dynamic score
combination (referred as Late 2 ).

9.1.1 Automatic Classification of Parkinson’s Disease Patients

The results classifying PD patients vs. HC subjects from the Multimodal corpus (Sec-
tion 3.3.1) are presented in Table 9.1 using the different feature sets and speech tasks.
The feature sets include phonation, articulation, prosody, phonological, OpenSMILE,
those obtained from the RAE, and their combinations. The results are presented in
terms of the unweighted average recall (UAR), which is used to avoid bias due to
the unbalance in the groups and it can be interpreted as an average ratio of the true
positives per class. The OpenSMILE features are included only as a baseline, and
they are not included in the fusion strategies because the computational cost that
they represent, and because the lack of clinical interpretability of the feature set.
Results of the best model per task are highlighted in bold.

Table 9.1: Results classifying PD patients vs. HC subjects from the Multimodal
corpus using different speech feature sets and SVM classifiers. Results in terms of
unweighted average recall (UAR [%]).

Feature sets F. F. F. F. F. F.
Task Phonation Articulation Prosody OpenSMILE Phonological RAE Early Late 1 Late 2
DDK1 71.5 (9.6) 76.3 (12.1) 70.0 (8.0) 79.8 (6.3) 75.8 (7.4) 74.1 (7.6) 83.5 (7.0) 77.4 80.8
DDK2 69.2 (9.1) 74.5 (12.2) 68.0 (11.4) 82.3 (6.9) 78.3 (8.9) 75.3 (5.8) 85.6 (7.1) 78.5 82.8
DDK3 71.0 (10.2) 74.5 (6.6) 69.1 (12.1) 77.3 (11.1) 79.5 (9.1) 74.5 (7.7) 80.8 (10.5) 77.7 80.0
DDK4 64.3 (8.8) 70.9 (5.5) 64.1 (5.9) 77.7 (8.5) 75.8 (9.9) 66.8 (8.9) 75.5 (6.9) 75.1 76.5
DDK5 64.3 (9.1) 68.6 (4.8) 69.4 (11.1) 79.3 (9.6) 75.9 (8.7) 66.6 (12.3) 80.5 (7.8) 73.9 77.9
DDK6 68.1 (6.8) 76.1 (4.7) 67.3 (14.7) 82.3 (8.1) 75.3 (7.8) 64.2 (9.0) 78.8 (7.1) 77.5 78.8
Sentence 1 62.2 (6.3) 74.6 (10.4) 65.4 (12.1) 79.6 (6.5) 74.3 (6.6) 62.5 (7.9) 79.6 (5.5) 79.2 79.3
Sentence 2 66.3 (3.5) 75.1 (7.6) 67.6 (6.8) 82.0 (6.3) 73.8 (9.6) 68.1 (6.0) 82.2 (7.9) 78.2 81.2
Sentence 3 63.4 (5.9) 75.5 (4.1) 61.1 (9.6) 75.7 (8.9) 76.3 (8.4) 63.6 (11.4) 78.6 (5.7) 76.6 79.7
Sentence 4 70.7 (11.3) 74.8 (5.7) 71.6 (6.9) 83.3 (5.6) 78.1 (8.8) 68.4 (10.3) 84.3 (6.6) 82.4 84.4
Sentence 5 64.5 (6.9) 72.1 (6.6) 70.8 (8.2) 77.1 (7.7) 78.3 (5.9) 67.3 (8.7) 79.9 (5.1) 78.0 77.6
Sentence 6 69.9 (5.1) 76.4 (6.3) 71.4 (9.0) 76.9 (8.4) 79.8 (9.8) 74.4 (7.3) 77.8 (7.0) 78.9 78.0
Sentence 7 67.9 (6.9) 79.8 (6.8) 71.2 (8.9) 77.9 (7.5) 81.6 (11.6) 70.9 (5.3) 78.6 (6.6) 80.4 79.6
Sentence 8 69.4 (9.4) 73.4 (10.0) 68.3 (6.8) 79.0 (8.4) 74.9 (10.7) 70.8 (5.1) 78.4 (4.4) 80.3 80.0
Sentence 9 74.1 (4.8) 79.7 (8.4) 76.4 (4.7) 82.3 (9.8) 76.8 (10.5) 71.7 (7.0) 78.0 (9.8) 83.7 82.4
Sentence 10 65.5 (9.8) 77.7 (8.8) 69.9 (6.3) 78.9 (5.3) 78.5 (7.5) 69.6 (5.1) 80.5 (5.4) 79.3 80.1
Read text 65.0 (8.4) 78.4 (9.2) 73.4 (10.1) 82.7 (7.7) 83.3 (9.9) 75.5 (8.4) 84.2 (7.4) 82.5 81.7
Monologue 68.1 (7.5) 78.6 (8.1) 72.0 (10.7) 80.8 (8.5) 82.9 (5.8) 81.5 (6.7) 83.1 (7.5) 86.0 85.2
F. T. Early 70.8 (7.7) 80.1 (7.9) 79.1 (7.5) 86.2 (6.7) 85.1 (7.1) 83.9 (9.3)
F. T. Late 1 75.3 79.8 80.5 85.8 86.1 80.6 84.8 85.2
F. T. Late 2 74.5 81.1 82.2 85.3 86.0 83.3 87.7 86.0
Average 68.4 76.1 70.9 80.6 78.3 72.1 81.1 79.5 80.6
RAE: recurrent autoencoder. F. T.: Fusion of tasks. F. F.: fusion of feature sets.
Results of the best feature set per task are highlighted in bold.

The highest UAR is obtained by combining information from all speech tasks and
all feature sets, using the early fusion for the feature sets and the Late 2 fusion for
the tasks (87.7%). The early fusion seems to be the most accurate method for most
of the speech tasks, while late fusion strategies are the most accurate for the fusion
at task-level. This is explained because early fusion is better to model different and
complementary information produced by each feature set, and late fusion methods
deal better with the redundant information that may appear when using the same
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features computed from different speech tasks. When considering different models in-
dividually, the highest UARs (above 80%) are obtained mainly with the OpenSMILE
and phonological features. OpenSMILE features comprises an extensive feature set
with more than 6000 computed features, which can be difficult to interpret and to
analyze in the clinical practice. Conversely, the phonological analysis was designed
specifically for pathological speech modeling, and comprises only 108 features based
on 18 phonological classes to model the pronunciation of the different phonemes of
the language. This fact makes the phonological analysis more useful in the clinical
practice. Phonation, articulation, prosody, and the RAE-based features are also ac-
curate to classify the addressed population, and provide complementary information
to improve the accuracy. The results obtained with phonation and prosody features
are around 70%. This is likely because although these dimensions are affected in PD
patients, they are not the most sensitive aspects to evaluate dysarthric speech signals.

The most accurate speech tasks for the classification in the early fusion are the
different DDK exercises (up to 85.6%) and the read text (84.2%). On one hand, the
DDK exercises are very easy to produce and are potentially useful to evaluate the
speech of patients in almost every language. This is mainly because the production
of these DDK tasks requires the speaker to move several articulators including lips,
tongue, and velum. On the other hand, the read text is a more complete exercise that
involves the pronunciation and assessment of the different phonemes of the language.
Hence it helps to perform a controlled evaluation of the speech of the patients. In
summary, each feature set and speech task is useful to characterize different aspects
related to speech production. The improvements observed when models and tasks
are combined indicate that the information is complementary and suitable to be used
to assess the speech of PD patients.

The results in the Multimodal corpus suggest that the proposed methods are
valid and accurate to model the speech of PD patients in a clinical setting. Now the
aim is to evaluate whether those methods are also accurate to model the speech of
PD patients in at-home environments using smartphone data, which can be used to
monitor the state of the patients at-home. The results classifying PD patients vs. HC
subjects from the Apkinson corpus are presented in Table 9.2. The best results per
task are also highlighted in bold. The highest UAR in this case is obtained with the
Late 2 fusion strategy, both at feature and task-levels (89.5%). This result is similar
to the obtained previously for the Multimodal corpus. The best result is slightly
higher in this case probably because the size of the Apkinson corpus is smaller than
the size of the Multimodal corpus. For most speech tasks the best result is obtained
using any of the fusion strategies, similar to the previous case with the Multimodal
corpus. The most accurate feature sets on average correspond to the RAE (76%),
phonological (75.8%), and articulation (75.6%). This is also similar to the results
previously reported. The only feature sets that are highly affected because of the
smartphone data are phonation and prosody. The reduction of the accuracy for such
feature sets is 6% for phonation and 7.9% for prosody. The reduction for the other
feature sets is 2.5% for phonological and 0.5% for articulation. The RAE feature
set experienced a slight improvement of 3.9%. In summary, the results indicate that
there is not a visible impact in the classification when speech signals collected from
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smartphones are considered. In addition, only phonation and prosody analyses seems
to be affected because of the use of smartphone data.

Table 9.2: Results classifying PD patients vs. HC subjects from the Apkinson corpus
using different speech feature sets and SVM classifers. Results in terms of UAR [%].

Feature sets F. F. F. F. F. F.
Task Phonation Articulation Prosody Phonological RAE Early Late 1 Late 2
DDK1 69.8 (9.4) 81.7 (9.9) 60.3 (13.0) 78.1 (10.5) 83.3 (9.1) 74.7 (13.7) 87.0 85.0
DDK2 61.1 (16.6) 77.1 (9.0) 66.5 (14.6) 69.9 (11.7) 73.7 (14.6) 64.9 (12.3) 77.7 78.7
DDK3 67.6 (20.2) 76.3 (12.7) 60.4 (11.3) 72.3 (14.0) 71.1 (14.6) 76.0 (10.0) 78.0 83.7
Sentence 1 48.3 (11.2) 70.8 (11.5) 63.3 (19.0) 68.3 (17.5) 72.5 (11.5) 74.6 (9.4) 73.6 77.9
Sentence 2 65.0 (9.4) 69.6 (12.1) 67.1 (16.2) 68.8 (16.7) 70.0 (17.6) 71.7 (15.8) 71.6 72.1
Sentence 3 61.7 (12.5) 76.3 (12.4) 57.9 (16.4) 68.8 (11.2) 72.9 (14.3) 77.1 (11.4) 75.8 74.0
Sentence 4 53.8 (13.9) 66.7 (11.3) 59.2 (13.4) 68.3 (17.8) 76.3 (10.4) 77.9 (14.8) 76.3 75.8
Sentence 5 54.8 (16.2) 71.3 (14.7) 60.2 (19.7) 75.4 (10.8) 76.3 (12.4) 78.3 (11.0) 73.3 77.6
Sentence 6 65.8 (9.6) 70.0 (19.5) 59.2 (10.5) 76.3 (16.3) 66.3 (15.0) 72.5 (14.7) 75.8 75.8
Sentence 7 53.8 (14.0) 67.1 (15.4) 51.7 (16.9) 76.3 (15.8) 68.3 (12.9) 75.0 (10.5) 68.0 70.2
Sentence 8 54.2 (14.6) 76.7 (14.0) 53.8 (12.1) 73.3 (7.0) 79.2 (12.2) 79.6 (8.2) 79.7 80.9
Sentence 9 62.1 (14.8) 72.1 (6.7) 74.6 (18.0) 77.1 (14.3) 75.0 (12.8) 76.7 (14.7) 83.5 81.7
Sentence 10 57.1 (15.1) 76.7 (12.8) 55.4 (18.2) 70.4 (11.1) 64.2 (14.1) 73.8 (10.9) 74.1 75.4
Monologue 71.7 (16.9) 77.1 (12.3) 62.5 (13.4) 81.9 (11.1) 82.5 (15.8) 82.7 (14.7) 82.6
F. T. Early 65.4 (11.8) 85.4 (7.7) 68.8 (14.6) 87.9 (9.4) 86.3 (11.8)
F. T. Late 1 72.4 86.4 73.6 87.2 87.2 88.4 88.4
F. T. Late 2 75.7 84.9 77.2 88.4 87.2 88.4 89.5
Average 62.4 75.6 63.0 75.8 76.0 77.0 77.7 78.5
RAE: recurrent autoencoder. F. T.: Fusion of tasks. F. F.: fusion of feature sets.
Results of the best feature set per task are highlighted in bold.

Additional to the analysis based on feature extraction and the later SVM classifier,
the classification is performed using the different deep learning methods explained in
Section 4.5. The results are seen in Tables 9.3 and 9.4, for the Multimodal and
Apkinson corpus, respectively.

For the Multimodal corpus, no high differences in the accuracy are observed among
the different models. The highest UAR for the Multimodal corpus is obtained using
the ResNet architecture when processing the Mel-spectrogams of the onset transitions
and when all speech tasks are combined using the Late 1 fusion strategy (96.2%). This
is particularly positive because the network is able to learn about the articulatory
impairments present in the onset transitions, and which are related to the difficulties
of the patients to start the vibration of the vocal folds [Vasq 17a, Oroz 16b]. The best
results for the Apkinson corpus is obtained also with the ResNet model and with the
combination of the different tasks (97.2%). These results indicate that there is not
a visible impact in the classification when speech signals collected from smartphones
are considered. In this case the most accurate results were obtained when using the
Mel spectrogram from the full chunks rather than only the onset transitions. This
result could be likely explained due to the small size of the Apkinson corpus. The
number of samples in the Multimodal data is big enough to train an accurate model
using only the spectrograms of the transitions, while the Akinson corpus needs to be
trained with the full set of chunks to get accurate results. This explanation can be
validated based on Table 9.5, which shows the number of training tensors for each
corpus and model.

A summary of the best results obtained classifying PD patients vs. HC subjects
using the different methods is shown in Table 9.6. The results include additional
performance metrics like sensitivity, specificity, F-score, and the area under the ROC
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Table 9.3: Results classifying PD patients vs. HC subjects from the Multimodal
corpus using deep learning methods to model speech signals. Results in terms of
UAR [%].

Task CNN Transitions CNN Full ResNet Trasitions ResNet Full
DDK1 90.0 88.8 88.8 90.1
DDK2 85.7 90.8 90.8 92.0
DDK3 90.5 91.3 91.3 90.1
DDK4 85.1 89.2 90.1 86.3
DDK5 89.6 89.9 91.0 86.2
DDK6 91.3 91.9 91.5 87.7
Sentence 1 87.4 90.1 91.8 87.9
Sentence 2 91.4 90.0 93.3 86.3
Sentence 3 88.2 91.3 89.7 86.3
Sentence 4 89.8 92.8 91.4 87.5
Sentence 5 87.9 91.0 89.6 88.7
Sentence 6 90.6 92.8 90.6 88.7
Sentence 7 87.1 92.1 90.2 87.2
Sentence 8 88.8 94.1 92.1 87.7
Sentence 9 89.2 92.0 91.4 87.2
Sentence 10 91.0 91.7 87.7 88.0
Read Text 90.7 92.4 90.0 92.4
Monologue 75.6 81.6 75.5 88.8
F. T. Late 1 93.2 94.9 96.2 93.5
F. T. Late 2 93.2 94.2 95.5 91.7
Average 88.3 90.8 89.8 88.3
Results of the best feature set per task are highlighted in bold. F. T.: Fusion of tasks.

Table 9.4: Results classifying PD patients vs. HC subjects from Apkinson corpus
using deep learning methods to model speech signals. Results in terms of UAR [%].

Task CNN Transitions CNN Full ResNet Trasitions ResNet Full
DDK1 71.7 73.7 71.2 93.8
DDK2 77.5 69.4 61.4 89.1
DDK3 78.2 68.9 69.8 93.5
Sentence 1 63.5 68.3 68.5 83.6
Sentence 2 74.8 67.4 72.5 86.2
Sentence 3 72.2 71.2 71.6 85.7
Sentence 4 53.5 67.8 56.4 87.9
Sentence 5 69.5 70.4 67.7 87.8
Sentence 6 82.4 63.2 62.6 86.6
Sentence 7 77.8 71.2 74.2 83.7
Sentence 8 70.4 72.9 69.2 88.7
Sentence 9 72.4 69.6 63.5 88.7
Sentence 10 60.0 72.5 66.2 87.9
Monologue 70.9 78.1 65.5 87.2
F. T. Late 1 74.0 79.7 67.1 97.2
F. T. Late 2 76.2 79.7 71.3 96.8
Average 71.6 71.5 67.4 89.0
Results of the best feature set per task are highlighted in bold. F. T.: Fusion of tasks.

curve (AUC). The best result obtained for each corpus is highlighted in bold. They
were obtained with the deep ResNet models. In addition, for almost all cases, the
best results are obtained using late fusion strategies to combine the speech tasks.
UARs up to 96.2% and up to 97.2% are obtained for the Multimodal and Apkison
corpus, respectively. After the results using the ResNet models, the best results are
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Table 9.5: Number of training tensors for the Multimodal and Apkinson corpus to
train the ResNet models.

Segments
Data Full Transitions

Multimodal 208220 92374
Apkinson 37880 14000

obtained with the fusion of the feature sets using the Early fusion for the Multimodal
corpus (UAR=87.7%) and the Late 2 fusion for the Apkinson corpus (UAR=89.5%).

Table 9.6: Best results obtained for each method classifying PD patients and HC
subjects in the Multimodal and Apkinson corpus using speech signals.

Feature set Task ACC [%] F-score UAR [%] SENS [%] SPEC [%] AUC
Multimodal corpus

Phonation F. T. Late 1 68.5 0.675 75.3 59.8 90.8 0.855
Articulation F. T. Late 2 81.3 0.785 81.1 81.7 80.5 0.905
Prosody F. T. Late 2 82.5 0.797 82.2 83.0 81.4 0.902
OpenSMILE F. T. Early 86.2 0.845 86.2 86.3 86.1 0.934
Phonological F. T. Late 1 86.1 0.837 86.1 86.2 86.0 0.931
RAE F. T. Early 85.5 0.830 83.9 87.8 80.0 0.925
F. F. Early F. T. Late 2 85.8 0.838 87.7 83.5 91.9 0.950
F. F. Late 1 Monologue 86.0 0.837 86.0 86.0 86.0 0.918
F. F. Late 2 F. T. Late 2 84.9 0.827 86.0 83.5 88.5 0.941
ResNet Transitions F. T. Late 1 94.4 0.935 96.2 92.3 100.0 0.999

Apkinson corpus
Phonation F. T. Late 2 78.6 0.765 75.7 58.1 93.3 0.795
Articulation F. T. Late 1 88.4 0.875 86.4 74.4 98.3 0.950
Prosody F. T. Late 2 79.6 0.780 77.2 62.8 91.7 0.816
Phonological F. T. Late 2 90.3 0.896 88.4 76.7 100.0 0.959
RAE F. T. Late 1 & 2 89.3 0.885 87.2 74.4 100.0 0.919
F. F. Early F. T. Late 1 & 2 90.3 0.896 88.4 76.7 100.0 0.966
F. F. Late 1 F. T. Late 1 90.3 0.896 88.4 76.7 100.0 0.971
F. F. Late 2 F. T. Late 2 91.3 0.907 89.5 79.1 100.0 0.988
ResNet Full F. T. Late 1 97.0 0.970 97.2 97.7 96.7 0.997
ACC [%]: accuracy, UAR [%]: unweighted average recall, SENS [%]: sensitivity, SPEC [%]: specificity
AUC: Area under the ROC curve, RAE: recurrent autoencoder. F. T.: Fusion of tasks. F. F.: fusion of features.
The best result for each corpus is highlighted in bold

The confusion matrices, ROC curves, and the histograms obtained with the scores
of the predictions of the ResNet models are shown in Figures 9.1 and 9.2 for the
Multimodal and Apkinson corpus, respectively. The scores for the histograms are
obtained as the difference between the probabilities of a speech sample to be classified
as PD patient or as an HC subject. These probabilities are computed at the output of
the Softmax activation in the neural network. Note that almost a perfect classification
is obtained for both corpora.

The results are compared to the ones obtained with the classical feature extrac-
tion and classification using the SVM. The confusion matrices, ROC curves, and the
respective histograms obtained using the traditional techniques are shown in Fig-
ures 9.3 and 9.4 for the Multimodal and Apkinson corpus, respectively. For this case
the scores used to compute the histograms correspond to the distance to the hyper-
plane of the SVM classifier. The results for the Multimodal corpus correspond to the
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Figure 9.1: Details of the best result obtained classifying PD patients and HC subjects
from the Multimodal corpus using the ResNet models. a) Normalized confusion
matrix. b) ROC curve. c) Distribution of the classification scores.
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Figure 9.2: Details of the best result obtained classifying PD patients and HC subjects
from the Apkinson corpus using the ResNet models. a) Normalized confusion matrix.
b) ROC curve. c) Distribution of the classification scores.

ones obtained with the Early fusion at feature level and Late 2 fusion at task-level.
The results for the Apkinson corpus correspond to the Late 2 fusion at feature- and
task-levels.

Besides the results obtained with the different methods, and with the aim to
evaluate how such models are affected by the phonetic content pronounced by the
patients, Figure 9.5 shows the ranking of the predictions for the 10 sentences of the
Multimodal corpus, using the different methods. The sentences are sorted according
to their average accuracy. Sentences 9 and 7 are the most accurate on average to
classify PD vs. HC subjects. Conversely, sentences 1 and 5 show to be the less
accurate for the addressed problem. This could be explained because such sentences
can contain phonemes that are more difficult to pronounce by PD patients than for
HC subjects. It is important to find which are those groups of phonemes in order to
design more proper and standardized tests for the evaluation of the patients.

The correlation between the UAR obtained with each method and different pho-
netic aspects of the sentences is shown in Table 9.7. Those values with strong cor-
relations are highlighted in bold. The results indicate that specially the accuracy
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Figure 9.3: Details of the best result obtained classifying PD patients and HC subjects
from the Multimodal corpus using the different features and SVM classifiers. a)
Normalized confusion matrix. b) ROC curve. c) Distribution of the classification
scores.
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Figure 9.4: Details of the best result obtained classifying PD patients and HC sub-
jects from the Apkinson corpus using the different features and SVM classifiers. a)
Normalized confusion matrix. b) ROC curve. c) Distribution of the classification
scores.
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Figure 9.5: Ranking of the sentences of the Multimodal corpus. The sentences are
sorted according to their average accuracy.

obtained with the phonological features is highly correlated with different aspects
of the sentences like the average duration, the standard deviation of the duration,
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the number of words, the number of phonemes, the number of plosives, the number
of fricatives and the number of vowels. A high correlation is observed between the
accuracy of the prosody features and the number of voiced phonemes in the sentence.
These results suggest that such a group of phonemes has to be considered with special
attention when designing speech protocols for the assessment of the disease, depend-
ing on the method used for the analysis. In addition, novel characterization strategies
should be designed focused on the assessment of such groups of phonemes, like the use
of specific phonological features designed only for plosives, vowels, fricatives, among
others. For phonation, articulation, OpenSMILE, and the ResNet models there are no
visible correlations between the accuracy obtained and the phonetic content present
in the sentences, which indicate that these methods are text-independent and they
can be used for non-intrusive evaluation of the patients.

Table 9.7: Spearman’s correlation between the accuracy obtained with each feature
set in the 10 sentences and different phonetic aspects of the sentences.

Aspect Phonation Articulation Prosody OpenSMILE Phonological RAE ResNet
Avg duration 0.234 0.405 0.451 -0.236 0.762 0.514 -0.421
Std Duration 0.292 0.343 0.489 -0.233 0.751 0.547 -0.372
# words 0.469 0.383 0.588 -0.070 0.750 0.631 -0.286
# phonemes 0.365 0.375 0.559 -0.112 0.770 0.580 -0.365
# V phonemes 0.466 0.366 0.600 -0.075 0.753 0.641 -0.306
# U phonemes -0.161 0.058 0.187 -0.239 0.522 0.122 -0.432
# plosives -0.050 0.182 0.182 -0.430 0.611 0.413 -0.397
# fricatives 0.092 0.353 0.364 -0.071 0.625 0.256 -0.397
# nasals 0.459 0.068 0.513 0.068 0.513 0.513 -0.014
# laterals 0.426 0.158 0.328 -0.134 0.304 0.353 -0.012
# vowels 0.399 0.421 0.581 -0.094 0.786 0.609 -0.393

9.1.2 Automatic Evaluation of the Dysarthria Severity of Pa-
tients

The automatic classification of PD patients and HC subjects is important because it
represents a step forward in the development of computer aided tools to support med-
ical experts in the diagnosis process. However, once patients are already diagnosed, it
is necessary to evaluate their disease severity. Particularly, the speech signals are suit-
able to evaluate the dysarthria severity of the patients. An accurate evaluation of the
dysarthria severity helps to make timely decisions regarding the medication and the
therapy for the patients. Additionally, if such a screening is performed from speech
recordings, the treatment can be followed remotely, then the costs of the treatment
would decrease dramatically.

The evaluation of the dysarthria severity of patients is based on the m-FDA scale,
which was administered by phoniatricians using the collected speech recordings. As it
was mentioned in Section 3.1.2, the m-FDA scale can be administered remotely using
only speech recording of the patients. The evaluation of the dysarthria severity is
performed in three scenarios: (1) the prediction of the value of the m-FDA scale using
the methods described in Chapter 4 and regression algorithms; (2) the longitudinal
evaluation of the patients from the Longitudinal and the At-Home corpus using both
speaker models based on GMM-UBM systems and regression algorithms; and (3) the
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classification of patients in different levels of dysarthria severity (mild, intermediate,
severe) using multi-class classification methods.

Dysarthria Level Evaluation based on Regression Algorithms

Similar to the classification experiments previously addressed, the evaluation of the
dysarthria severity of the participants is performed considering the different speech
dimensions, speech tasks, and their combinations. The speech dimensions include the
feature sets to model phonation, articulation, prosody, phonological, and the RAE-
based models, in addition to the end-to-end modeling using deep learning techniques.
The regression is performed using an SVR algorithm. The results obtained estimating
the m-FDA score from the Multimodal corpus are presented in Table 9.8. The results
are presented in terms of the Spearman’s correlation coefficient. The OpenSMILE
features are also included only as a baseline, and they are not included in the fusion
strategies. Results of the best feature set per task are highlighted in bold.

Table 9.8: Results estimating the m-FDA scale of the subjects from the Multimodal
corpus using different speech eature sets and SVR regressors. Results in terms of the
Spearman’s correlation coefficient.

Feature sets F. F. F. F. F. F.
Task Phonation Articulation Prosody OpenSMILE Phonological RAE Early Late 1 Late 2
DDK1 0.340 0.416 0.309 0.442 0.509 0.353 0.379 0.535 0.600
DDK2 0.333 0.512 0.446 0.474 0.409 0.389 0.429 0.531 0.605
DDK3 0.302 0.466 0.331 0.383 0.495 0.344 0.433 0.497 0.566
DDK4 0.343 0.413 0.353 0.357 0.390 0.383 0.428 0.519 0.566
DDK5 0.394 0.481 0.403 0.371 0.371 0.284 0.409 0.450 0.543
DDK6 0.402 0.454 0.355 0.498 0.396 0.289 0.470 0.478 0.578
Sentence 1 0.293 0.455 0.315 0.436 0.389 0.286 0.490 0.463 0.548
Sentence 2 0.280 0.405 0.438 0.375 0.344 0.390 0.391 0.457 0.513
Sentence 3 0.230 0.393 0.262 0.397 0.399 0.347 0.471 0.471 0.520
Sentence 4 -0.007 0.364 0.224 0.386 0.271 0.415 0.446 0.493 0.540
Sentence 5 0.236 0.356 0.345 0.434 0.341 0.257 0.473 0.487 0.536
Sentence 6 0.353 0.484 0.459 0.347 0.367 0.412 0.416 0.483 0.513
Sentence 7 0.258 0.334 0.253 0.351 0.328 0.315 0.446 0.442 0.519
Sentence 8 0.186 0.354 0.321 0.444 0.294 0.353 0.416 0.501 0.561
Sentence 9 0.368 0.436 0.292 0.399 0.387 0.294 0.321 0.529 0.599
Sentence 10 0.197 0.400 0.303 0.413 0.407 0.249 0.441 0.492 0.514
Read text 0.279 0.353 0.302 0.344 0.407 0.234 0.387 0.478 0.537
Monologue 0.321 0.415 0.391 0.437 0.379 0.382 0.381 0.476 0.508
F. T. Early 0.419 0.515 0.377 0.506 0.451 0.432 0.591
F. T. Late 1 0.549 0.587 0.420 0.476 0.493 0.423 0.521 0.567
F. T. Late 2 0.528 0.582 0.488 0.588 0.611 0.552 0.581 0.605
Results of the best feature set per task are highlighted in bold.
RAE: recurrent autoencoder. F. T.: Fusion of tasks. F. F.: fusion of features.

The highest correlation is obtained by combining information from all speech tasks
and using the phonological features (0.611). The best results for individual speech
tasks are obtained by the fusion of all features using the late 2 fusion strategy. When
considering the different features individually, moderate correlations (ρ >0.4) are
observed mainly with the articulation and phonological features. This gives an idea
about the suitability of these feature sets to accurately model the dysarthria severity
of patients, and about which speech dimensions are more affected when the severity
increases. The results obtained with phonation and prosody are around 0.35. This
is likely because although phonation and prosody are impaired with the dysarthria
severity, these are not the most sensitive symptoms. Finally, the most sensitive tasks
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to evaluate the dysarthria severity are the DDK exercises, among which particularly
DDK1 (/pa-ta-ka/) and DDK2 (/pa-ka-ta/) exhibit strong correlations with the total
m-FDA scale (0.600, and 0.605, respectively).

Additional to the analysis based on feature extraction and the later SVR regres-
sion, the estimation of the m-FDA scale is performed using the ResNet models. The
results are observed in Table 9.9. Unfortunately, the results in this case are not that
accurate as the ones obtained in the classification experiments. The main reason
would be the lack of labeled data about the m-FDA score of the patients to train the
deep regression models. The results can improve if there is access to a largest group
of patients labeled according of the m-FDA scale. The results could improve as well
if a transfer learning strategy is considered by using an already existing pre-trained
model for speech severity assessment, in a similar way as the previously addressed
for pathological speech classification [Vasq 21c].

Table 9.9: Results estimating the m-FDA scale of the subjects from the Multimodal
corpus using deep learning methods to model speech signals. Results in terms of the
Spearman’s correlation.

Task ResNet Transitions ResNet Full
DDK1 0.421 0.392
DDK2 0.423 0.334
DDK3 0.423 0.346
DDK4 0.405 0.326
DDK5 0.390 0.331
DDK6 0.412 0.327
Sentence 1 0.348 0.231
Sentence 2 0.308 0.249
Sentence 3 0.326 0.286
Sentence 4 0.332 0.280
Sentence 5 0.284 0.300
Sentence 6 0.386 0.340
Sentence 7 0.360 0.262
Sentence 8 0.374 0.269
Sentence 9 0.327 0.256
Sentence 10 0.305 0.262
Read Text 0.265 0.240
Monologue 0.219 0.304
F. T. Late 1 0.493 0.392
F. T. Late 2 0.486 0.391
F. T.: Fusion of tasks.

A summary of the best results obtained with each method is shown in Table 9.10,
including additional metrics like the Pearson’s correlation coefficient and the mean
average error (MAE). The results include also the p-values of the correlations to test
whether the results are significant or not. The best result is obtained using the phono-
logical features, and combining all speech tasks using the late 2 fusion at task-level.
Figure 9.6 shows the errors in the evaluation of the m-FDA scores. The displayed
result corresponds to the ones obtained with the phonological features combining all
speech tasks. Although the result is satisfactory, other regression strategies can be
considered to improve the correlation values.

Figure 9.7 shows the ranking of the estimation of the m-FDA score for the 10
sentences of the Multimodal corpus. The sentences are sorted according to their
average correlation. Sentence 6 is the most accurate on average to estimate the
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Table 9.10: Best results obtained for each method to evaluate the m-FDA scale of
the subjects in the Multimodal corpus using speech signals.

Feature set Task r p-val r ρ p-val ρ MAE
Phonation F. T. Late 1 0.217 0.002 0.549 �0.005 10.4
Articulation F. T. Late 1 0.197 0.006 0.587 �0.005 10.5
Prosody F. T. Late 2 0.565 �0.005 0.488 �0.005 6.9
OpenSMILE F. T. Late 2 0.652 �0.005 0.588 �0.005 5.9
Phonological F. T. Late 2 0.689 �0.005 0.611 �0.005 5.8
RAE F. T. Late 2 0.587 �0.005 0.552 �0.005 5.8
F. F. Early F. F. Early 0.660 �0.005 0.591 �0.005 6.3
F. F. Late 1 F. T. Late 1 0.595 �0.005 0.567 �0.005 9.6
F. F. Late 2 F. T. Late 2 0.672 �0.005 0.605 �0.005 6.4
ResNet Transitions F. T. Late 1 0.363 �0.005 0.493 �0.005 10.3
r: Pearson’s correlation, ρ: Spearman’s correlation, MAE: mean average error,
RAE: recurrent autoencoder. F. T.: Fusion of tasks. F. F.: fusion of feature sets.
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Figure 9.6: Details of the best result obtained estimating the m-FDA scale of the
subjects from the Multimodal corpus using the different features and SVR regressors.

m-FDA score. Conversely, sentences 7 and 5 show to be the less accurate for the
addressed problem.
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Figure 9.7: Ranking of the sentences of the Multimodal corpus estimating the m-FDA
score of the subjects. The sentences are sorted according to their average Spearman’s
correlation.
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The correlation between the Spearman’s correlation obtained with each method
and different phonetic aspects of the sentences is shown in Table 9.11. Those values
with strong correlations (|ρ| > 0.6) are highlighted in bold. A negative correlation is
observed between the number of nasal phonemes in the sentence and the performance
of the regression algorithms for articulation and phonological features. There are
also correlations between the number of laterals and the outputs of the openSMILE
and RAE-based features. For phonation, prosody, and the ResNet models there are
no correlation between the performance of the regressors and the phonetic content
present in the sentences, which indicate that these methods are text-independent and
they can be used for non-intrusive evaluation of the patients.

Table 9.11: Spearman’s correlation between the performance obtained with each
speech feature set to evaluate the m-FDA score and different phonetic aspects of the
sentences.

Aspect Phonation Articulation Prosody OpenSMILE Phonological RAE ResNet

Avg. Duration -0.027 -0.538 -0.260 -0.349 -0.332 -0.138 0.166
Std. Duration -0.058 -0.540 -0.204 -0.386 -0.423 -0.029 0.219
# words -0.189 -0.588 -0.394 -0.329 -0.502 0.070 0.340
# phonemes -0.133 -0.544 -0.328 -0.312 -0.423 -0.057 0.257
# V phonemes -0.171 -0.590 -0.325 -0.302 -0.501 0.027 0.277
# U phonemes -0.135 -0.445 -0.213 -0.071 -0.213 -0.355 0.135
# plosives 0.099 -0.347 0.149 -0.099 -0.132 -0.347 0.231
# fricatives -0.147 -0.549 -0.517 -0.321 -0.299 -0.179 0.082
# nasals -0.243 -0.703 -0.311 -0.095 -0.743 0.135 0.432
# laterals -0.255 0.012 -0.182 -0.693 -0.328 0.766 0.474
# vowels -0.149 -0.554 -0.354 -0.288 -0.393 -0.083 0.210

Longitudinal Assessment of Patients

The longitudinal evaluation of the dysarthria severity of patients is performed in two
scenarios to cover both the long- and short-term progression of the disease. The long-
term evaluation is performed with the Longitudinal corpus (see Section 3.3.2). The
short-term evaluation is performed with the At-Home corpus (see Section 3.3.3). At
the same time, two different methods are considered to model each corpus. The first
one comprises the use of an SVR trained with the data from the Multimodal corpus
(excluding those subjects from the longitudinal and At-Home data), and using both
corpora as independent test sets for the regression problems. The second approach
consists of the use of unsupervised speaker models based on the GMM-UBM approach
introduced in [Aria 18a], and adapted here with more data and additional feature
sets, in a similar way as in [Vasq 20b]. In this case UBM models are trained using
information from the HC subjects from the Multimodal corpus. Then specific GMMs
are adapted for each speaker in each session from the Longitudinal and the At-Home
corpus. At the same time, the modeling is performed with the different feature sets
considered in the previous experiments, and the different speech tasks.

The results predicting the dysarthria severity of the patients in the Longitudinal
corpus in all sessions using the SVR regression strategy are shown in Table 9.12.
The best result is obtained with the phonological features and the DDK exercises
(ρ =0.506). This result gives insights about the generalization capacity of the trained
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model to a new hidden test set. In this case, the fusion of the feature sets and tasks did
not yield the most accurate results, contrary to the previous experiments evaluating
the m-FDA score of the patients.

Table 9.12: Results predicting the m-FDA scale of the subjects from the Longitudinal
corpus using different speech feature sets and SVR regressors. Results in terms of
the Spearman’s correlation coefficient.

Feature sets F. F. F. F. F. F.
Speech task Phonation Articulation Prosody Phonological RAE Early Late 1 Late 2
DDK1 0.288 0.038 0.040 0.506 0.154 0.281 0.215 0.393
DDK2 0.027 0.085 0.014 0.312 0.034 0.322 0.211 0.314
DDK3 0.166 0.092 0.161 0.436 0.170 0.114 0.211 0.387
DDK4 -0.090 0.292 0.310 0.231 0.091 0.054 0.209 0.379
DDK5 0.049 0.095 -0.238 0.020 -0.080 0.253 0.019 0.210
DDK6 0.314 0.277 -0.148 0.209 0.057 0.155 0.122 0.342
Sentence 1 -0.117 0.082 -0.330 0.223 0.165 0.175 0.106 0.416
Sentence 2 0.168 -0.022 -0.074 0.272 -0.040 0.401 0.176 0.365
Sentence 3 0.264 0.057 0.100 -0.066 0.088 0.063 0.078 0.250
Sentence 4 0.049 0.135 -0.019 0.176 0.162 0.180 0.153 0.246
Sentence 5 0.128 0.052 -0.051 0.125 0.178 0.169 0.082 0.200
Sentence 6 0.153 0.029 -0.223 0.115 0.057 0.214 0.211 0.312
Sentence 7 0.178 0.120 -0.107 0.339 -0.023 0.180 0.138 0.306
Sentence 8 0.149 -0.017 0.029 0.185 0.227 0.178 0.158 0.183
Sentence 9 0.057 0.130 0.213 0.355 0.209 0.165 0.290 0.384
Sentence 10 0.098 0.032 -0.034 0.224 0.205 0.273 0.168 0.307
Read text 0.058 0.060 0.015 0.036 -0.121 -0.042 -0.065 0.152
Monologue 0.296 0.011 -0.253 0.217 0.126 0.081 0.032 0.439
F. T. Early 0.052 0.226 -0.382 0.081 0.073 0.217 0.280
F. T. Late 1 0.305 0.056 -0.055 0.278 0.103
F. T. Late 2 0.361 0.240 -0.601 0.396 0.235
RAE: recurrent autoencoder. F. T.: Fusion of tasks. F. F.: fusion of features.
Best result is highlighted in bold.

The results predicting the m-FDA score of the participants in the longitudinal
corpus using the unsupervised GMM-UBM systems are shown in Table 9.13. In this
case, the fusion of features and the fusion of tasks are obtained based on the median
of the predictions using each method separately. The highest correlation (ρ =0.350)
is observed when all features are considered together in the DDK5 task (/ta/). In
general, the results are not satisfactory, and they are lower than the observed with
the SVR approach. This is contrary to the results obtained in [Aria 18a], where the
GMM-UBM was better than the SVR. The main reason is because here there are
more data to train the regression models, thus obtaining more accurate results using
a supervised model like the SVR.

Figure 9.8 displays curves with the comparison of the estimated m-FDA scores
(cyan lines) and the real labels assigned by the phoniatrician (black lines) for each
of the nine speakers of the Longitudinal corpus. The horizontal axis represents
the recording session. The lines for each speaker represent the progression of the
dysarthria level among recording sessions. The predicted scores follow the trend of
the dysarthria level for most of the cases. The largest differences are observed in pa-
tients PD05 and PD07, specially in the first two recording sessions. The dysarthria
progression is predicted with strong correlation (ρ >0.6) for four of the nine PD
patients, and with moderate correlations (ρ >0.4) for six of the nine patients. The
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Table 9.13: Results predicting the m-FDA scale of the subjects from the Longitudinal
corpus using different speech feature sets and GMM-UBM models. Results in terms
of the Spearman’s correlation coefficient.

Feature sets
Speech task Phonation Articulation Prosody Phonological RAE F. F.
DDK1 -0.105 -0.094 -0.013 0.191 -0.026 0.156
DDK2 -0.100 -0.128 0.055 0.187 0.026 0.072
DDK3 -0.034 -0.195 0.196 0.117 0.026 0.044
DDK4 -0.037 -0.102 0.109 0.013 0.007 -0.172
DDK5 -0.162 -0.055 0.243 0.334 0.027 0.350
DDK6 -0.100 0.019 0.032 0.260 0.013 0.158
Sentence 1 0.069 0.008 0.052 0.009 0.100 -0.020
Sentence 2 0.137 0.213 0.167 0.053 0.186 0.170
Sentence 3 0.250 0.190 0.014 0.064 0.338 0.254
Sentence 4 0.200 0.131 0.119 0.073 0.235 0.267
Sentence 5 0.312 0.091 0.064 0.150 0.300 0.331
Sentence 6 0.112 0.039 0.054 0.159 0.126 0.098
Sentence 7 0.055 0.054 0.032 0.140 0.107 0.230
Sentence 8 0.185 0.058 0.075 -0.143 0.197 0.216
Sentence 9 0.058 0.077 -0.145 -0.061 0.287 0.180
Sentence 10 0.107 -0.028 -0.006 0.237 0.212 0.207
Read text 0.087 0.018 -0.034 0.087 0.150 0.222
Monologue 0.117 0.000 0.036 0.250 -0.024 0.112
F. T. -0.004 0.056 -0.024 0.116 0.111 0.051
RAE: recurrent autoencoder. F. T.: Fusion of tasks. F. F.: fusion of features.
Best result is highlighted in bold.

results from Figure 9.8 suggests that the proposed approach is suitable to monitor
the progression of the dysarthria level in PD patients.
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Figure 9.8: Predictions of the m-FDA score of each patient in the Longitudinal corpus
with the phonological features and the SVR regression.

The results predicting the dysarthria severity of patients in the At-Home corpus
using the SVR regression are shown in Table 9.14. The aim here is not only to
predict the dysarthria severity in short-term time intervals but also the influence of
the medication intake. The SVR is trained with the data from the Multimodal corpus,
excluding those subjects that appear as well in the At-Home data, thus the results
shown here corresponds to the ones obtained with an independent test set. The best
result is observed as well with the phonological features (ρ =0.491), similar to the
results obtained in the longitudinal corpus for long-term progression assessment. In
this case, the best results is obtained when all speech tasks are combined using the
Late 2 fusion strategy.
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Table 9.14: Results predicting the m-FDA scale of the subjects from the At-Home
corpus using different speech feature sets and SVR regressors. Results in terms of
the Spearman’s correlation coefficient.

Feature sets
Speech task Phonation Articulation Prosody Phonological RAE F. F. Early F. F. Late 1 F. F. Late 2
DDK1 -0.065 -0.288 0.129 0.245 -0.041 -0.114 -0.038 -0.365
DDK2 -0.032 -0.054 -0.045 0.411 0.001 0.264 0.125 0.462
DDK3 -0.201 -0.232 -0.092 -0.283 0.025 0.237 -0.171 -0.356
Read text -0.314 0.145 0.308 0.219 -0.017 0.214 0.203 0.331
Monologue 0.000 -0.147 -0.135 -0.160 -0.243 -0.151 0.032 0.439
F. T. Early 0.000 -0.006 -0.180 -0.100 0.017 0.030 0.432
F. T. Late 1 0.000 -0.060 -0.043 -0.107 0.000
F. T. Late 2 0.000 -0.406 0.334 0.491 -0.208
RAE: recurrent autoencoder). F. T.: Fusion of tasks. F. F.: fusion of features.
Best result is highlighted in bold.

The results predicting the m-FDA score of the participants in the At-Home corpus
using the unsupervised GMM-UBM systems are shown in Table 9.15. The highest
correlation (ρ =0.496) is observed as well with the phonological features. In general,
the results are similar to the ones obtained with the SVR. The results with the GMM-
UBM system are better here than for the case of the Longitudinal corpus probably
because in this case there is less variability in the m-FDA scores of the patients i.e.,
in short-term intervals there is less variation of the m-FDA score than the observed
in long-term intervals for each speaker. Hence the GMM-UBM is more able to track
these small changes of the m-FDA rather than the big changes that appear in long-
term intervals.

Table 9.15: Results predicting the m-FDA scale of the subjects from the At-Home
corpus using different speech feature sets and the GMM-UBM models. Results in
terms of the Spearman’s correlation coefficient.

Feature sets
Speech task Phonation Articulation Prosody Phonological RAE F. F.
DDK1 -0.141 0.146 0.002 -0.006 -0.227 0.062
DDK2 -0.131 -0.231 0.074 0.050 -0.182 -0.200
DDK3 -0.052 -0.310 0.123 -0.010 -0.145 -0.355
Read text 0.409 0.043 0.001 0.250 0.257 0.480
Monologue 0.248 0.365 0.303 0.496 0.017 -0.024
F. T. -0.132 -0.092 0.172 0.181 -0.090 -0.199
RAE: recurrent autoencoder). F. T.: Fusion of tasks. F. F.: fusion of features.
Best result is highlighted in bold.

Figure 9.9 displays the curves comparing the estimated m-FDA scores (cyan lines)
and the real labels assigned by the phoniatrician (black lines) for each speaker of the
At-Home corpus. The predicted scores follows the trend of the dysarthria level for
many of the patients. The largest differences are observed in patients PD02 and PD03.
Particularly PD02 is the one with the highest m-FDA score among all participants. In
general, the dysarthria progression is predicted with moderate correlation (ρ >0.4)
for four of the seven patients. These results suggests that the proposed model is
suitable to monitor the progression of the dysarthria level in PD patients in short-
term intervals, as well as the influence of the medication intake.
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Figure 9.9: Predictions of the m-FDA score of each patient in the At-Home corpus
with the phonological features and the GMM-UBM model.

Classification of Patients in Different Levels of the Dysarthria Severity

Although there is a correlation between the predicted and real m-FDA scores, from
the clinical point of view it is easier to understand for the patients to know in which
stage of the disease they are, rather than to have the prediction of a continuous
scale. In addition, for medical applications it is difficult to have a great amount
of data to train suitable regression algorithms like an SVR or a CNN, as it was
observed in the previous section. For these reasons it should be better to divide the
patients into different groups according to their disease severity. In order to perform
these experiments the subjects from the Multimodal corpus were grouped into three
classes according to their dysarthria severity based on the m-FDA scale. These
classes are defined based on the 33rd and 66th percentiles of the total scale in order
to discriminate between mild, intermediate, and severe levels of speech impairments
associated with hypokinetic dysarthria. For the total m-FDA score the ranges per
class are defined as follows: 0 to 16 (mild), 17 to 24 (intermediate), and higher than
25 (severe). The distribution and limits of the scores were chosen in order to have
three equal priors for the classes. The distribution is shown in Figure 9.10.

0 5 10 15 20 25 30 35 40

m-FDA

0

5

10

15

20

25

# 
sp

ea
ke

rs

Figure 9.10: Histogram of the m-FDA score of the subjects from the Multimodal cor-
pus and the three groups defined to classify subjects with mild (green), intermediate
(blue) and severe (red) dysarthria severity.
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With these new labels, a multiclass SVM is trained in a one vs. all strategy
to classify the subjects in the three levels of the disease, using all speech features,
all speech tasks, and their combinations both at feature and task-level. The results
are presented in Table 9.16. As in the bi-class problems, the OpenSMILE features
are included only as a baseline, and they are not included in the fusion strategies.
The multi-class classification is a more challenging problem due to the distribution
of classes. Results of the best feature set per task are highlighted in bold. The
highest UAR is observed with the OpenSMILE features in the monologue (55.5%).
These results indicate that non of the proposed feature sets neither their combinations
were as good as the baseline for this particular and more challenging classification
problem. In addition, the fusion of the speech tasks and feature sets does not improve
the results.

Table 9.16: Results classifying subjects from the Multimodal corpus in different
dysarthria levels using speech features sets and SVM classifiers. Results in terms
of UAR [%].

Feature sets F. F. F. F.
Task Phonation Articulation Prosody OpenSMILE Phonological RAE Early Late 1
DDK1 45.2 (9.2) 48.8 (13.9) 46.7 (8.5) 47.4 (5.1) 48.1 (10.1) 45.8 (6.3) 46.4 (6.3) 49.7
DDK2 46.4 (8.9) 50.5 (9.7) 46.5 (9.1) 50.2 (8.2) 46.8 (5.1) 48.0 (8.0) 48.8 (8.9) 49.7
DDK3 46.3 (7.3) 48.8 (7.7) 43.2 (9.9) 47.2 (7.7) 53.9 (7.6) 42.2 (5.3) 46.7 (10.8) 46.9
DDK4 43.5 (12.6) 42.8 (6.9) 45.8 (10.2) 52.0 (5.9) 49.1 (9.8) 45.2 (7.2) 48.4 (11.0) 47.4
DDK5 47.3 (8.7) 44.7 (8.8) 46.7 (9.6) 48.8 (3.4) 49.8 (10.7) 44.3 (4.3) 44.3 (7.2) 45.4
DDK6 42.6 (9.1) 45.5 (7.3) 43.4 (5.8) 46.3 (6.8) 50.4 (3.3) 46.8 (12.5) 52.7 (8.2) 47.4
Sentence 1 39.1 (11.4) 45.6 (11.2) 47.7 (8.4) 48.6 (7.6) 43.3 (8.1) 44.1 (6.9) 46.3 (9.0) 46.9
Sentence 2 39.8 (7.1) 47.1 (9.6) 51.7 (12.2) 42.0 (7.9) 40.0 (12.1) 44.4 (11.2) 46.0 (8.2) 47.9
Sentence 3 44.1 (8.0) 48.1 (7.1) 42.7 (14.4) 44.1 (6.4) 46.3 (10.3) 38.6 (12.6) 48.7 (9.3) 44.8
Sentence 4 42.0 (9.7) 45.4 (10.4) 43.9 (12.49 44.2 (6.6) 44.3 (8.6) 47.2 (10.3) 46.0 (7.7) 47.3
Sentence 5 36.5 (8.5) 48.4 (8.2) 46.3 (10.0) 49.6 (9.6) 42.4 (6.0) 41.2 (10.5) 45.9 (8.1) 40.7
Sentence 6 41.5 (9.3) 46.7 (11.8) 45.7 (5.5) 45.1 (9.5) 44.0 (7.6) 39.1 (9.6) 43.2 (7.2) 47.8
Sentence 7 45.2 (9.0) 46.1 (5.4) 47.0 (8.1) 48.2 (9.0) 50.9 (15.8) 48.7 (8.6) 46.5 (9.7) 46.3
Sentence 8 44.0 (9.0) 46.5 (8.5) 49.1 (13.6) 54.4 (6.0) 48.4 (9.5) 41.2 (3.1) 35.2 (3.8) 44.3
Sentence 9 43.6 (10.7) 44.6 (8.8) 42.5 (11.0) 46.6 (5.4) 45.2 (9.2) 38.5 (7.7) 43.6 (5.4) 49.4
Sentence 10 42.4 (4.8) 33.3 (0.0) 42.9 (11.9) 44.5 (11.0) 48.6 (12.4) 42.5 (7.7) 46.7 (9.9) 52.2
Read text 41.2 (11.6) 42.5 (10.3) 44.7 (14.0) 52.7 (11.2) 47.8 (10.4) 45.4 (8.3) 48.6 (9.1) 47.7
Monologue 43.1 (4.6) 50.4 (10.0) 45.7 (9.5) 55.5 (9.2) 50.6 (11.6) 44.7 (9.0) 46.9 (12.2) 45.3
F.T. Early 49.8 (6.5) 47.9 (7.1) 40.8 (6.8) 45.7 (8.4) 42.7 (8.7) 46.5
F.T. Late 1 47.6 52.6 42.5 48.2 43.1 48.8 47.7 45.3
RAE: recurrent autoencoder. F.T.: Fusion of tasks. F.F.: fusion of feature sets.
Results of the best feature set per task are highlighted in bold.

The multi-class experiments are also performed with the ResNet-based models
with the aim to improve the results. The results are shown in Table 9.17. An
UAR up to 57.3% was obtained with this approach, which improves in 1.8% the
results reported previously with the OpenSMILE features and the SVM classifier.
The best result is obtained here with the combination of the speech tasks using the
Late 1 fusion strategy. Additionally, higher UARs are obtained using the ResNet
models trained with the full spectrograms, rather than the ones computed only for
onset transitions, which is contrary to the results observed for the bi-class problems
(see Table 9.3). This is explained because the multi-class classification is a more
challenging problem that needs more data to achieve better results.

The summary of the best results obtained using the different methods is shown
in Table 9.18. The results include additional performance metrics like the weighted
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Table 9.17: Results classifying subjects from the Multimodal corpus in different
dysarthria levels using the deep learning models to model speech signals. Results
in terms of UAR [%].

Task ResNet Trasitions ResNet Full
DDK1 53.4 52.5
DDK2 51.1 54.5
DDK3 46.5 55.6
DDK4 48.0 51.6
DDK5 49.5 55.4
DDK6 45.2 50.4
Sentence 1 47.9 57.2
Sentence 2 48.0 53.4
Sentence 3 51.4 51.9
Sentence 4 41.2 46.7
Sentence 5 40.8 51.8
Sentence 6 50.7 55.0
Sentence 7 47.4 49.5
Sentence 8 47.8 52.9
Sentence 9 45.4 50.4
Sentence 10 41.7 50.5
Read Text 48.7 52.0
Monologue 43.0 55.7
F. T. Late 1 50.4 57.3

accuracy, the F-score, and the accuracies obtained for each of the three classes. As
it was stated previously, the best result is obtained with the ResNet-based models.

Table 9.18: Best results obtained for each method classifying subjects from the Mul-
timodal corpus in different dysarthria levels according to the m-FDA score.

Feature set Task ACC F-score UAR ACC ACC ACC
Mild Intermediate Severe

Phonation F. T. Early 50.7 0.492 49.7 61.0 40.0 49.0
Articulation DDK2 52.3 0.511 52.6 78.0 34.0 45.0
Prosody Sentence 2 51.6 0.510 51.7 64.0 38.0 54.0
OpenSMILE Monologue 55.3 0.538 55.5 65.0 39.0 62.0
Phonological DDK3 54.2 0.537 53.9 61.0 53.0 48.0
RAE F. T. Late 1 48.2 0.442 48.7 88.0 16.0 42.0
F. F. Early DDK6 52.7 0.506 52.7 67.0 29.0 61.0
F. F. Late 1 Sentence 10 51.8 0.507 52.2 76.0 35.0 45.0
ResNet Full F. T. Late 1 57.3 0.573 57.3 67.0 52.0 53.0
ACC [%]: accuracy, UAR [%]: unweighted average recall,
RAE: recurrent autoencoder. F. T.: Fusion of tasks. F. F.: fusion of features.

Additional insights can be observed in Table 9.18 about why such a model pro-
duces the highest global accuracy. The ResNet is the model that provides the best
accuracy to classify patients in intermediate stage of the disease, which is the most
misclassified class for the other methods, except for the phonological features. Meth-
ods like the late fusion of features are the most accurate to classify the extreme classes
(patients in initial and severe stages of the disease); however they are very inaccurate
to classify patients in intermediate stage of the disease. This make sense because
such particular methods were very accurate in the bi-class problems (see Table 9.6).

The confusion matrices from Figure 9.11 show the top-3 obtained results for the
classification of patients in three levels of speech impairments. The ResNet model in
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Figure 9.11a) shows the best results because it is the most balanced to classify the
three classes. Most of the classification errors in the ResNet model correspond to
patients in mild and severe stages that are classified in intermediate stage. This is
very positive since they are not mainly misclassified in the other extreme class.

a) b) c)

M
ild

In
ter

med
iat

e

Sev
ere

Predicted m-FDA

Mild

Intermediate

Severe

R
ea

l m
-F

D
A

0.67 0.21 0.12

0.26 0.52 0.21

0.11 0.36 0.53

M
ild

In
ter

med
iat

e

Sev
ere

Predicted m-FDA

Mild

Intermediate

Severe

R
ea

l m
-F

D
A

0.65 0.14 0.22

0.18 0.39 0.43

0.13 0.25 0.62

M
ild

In
ter

med
iat

e

Sev
ere

Predicted m-FDA

Mild

Intermediate

Severe

R
ea

l m
-F

D
A

0.61 0.2 0.19

0.11 0.53 0.36

0.13 0.39 0.48

Figure 9.11: Details of the best result obtained classifying subjects from the Multi-
modal corpus in different dysarthria levels according to the m-FDA score. a) Fusion
of speech tasks in the ResNet Full model. b) OpenSMILE features computed in the
monologue. c) Phonological features from the DDK3 exercise.

9.1.3 Automatic Evaluation of the Motor State of Patients

The evaluation of the motor state of patients is based on the MDS-UPDRS-III scale,
and it is performed in two scenarios: (1) the prediction of the value of the MDS-
UPDRS-III scale using regression strategies and (2) the classification of patients in
different levels of the disease severity (mild, intermediate, severe) using multi-class
classification methods. The results obtained for the regression approach using the
different feature sets are shown in Table 9.19. The results are presented in terms of
the Spearman’s correlation coefficient between the predicted and real scores assigned
to each patient. The highest correlations are observed with the phonological features,
although none of the models is accurate enough to evaluate the motor -state severity
of the patients with a strong (> 0.6) or even moderate (> 0.4) correlations. This
is expected since the MDS-UPDRS-III is a complete motor scale in which only one
of the items is related to speech symptoms. Hence it is not suitable nor fair to
try to evaluate the full motor-state severity of patients using only speech signals.
However, these speech features could provide complementary information when they
are combined with the handwriting and gait signals. These aspects are addressed in
Section 9.4.

Similar to the experiments performed to classify patients in different dysarthria
levels, three classes are defined based on the 33rd and 66th percentiles of the total
MDS-UPDRS-III to discriminate between mild, intermediate, and severe levels of
motor-state severity. For the total MDS-UPDRS-III score the ranges per class are
defined as follows: 0 to 25 (mild), 26 to 40 (intermediate), and higher than 40 (severe).
The distribution and limits of the scores were chosen in order to have three equal
priors for the classes. The distribution is shown in Figure 9.12.
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Table 9.19: Results estimating the MDS-UPDRS-III scale of the patients from the
Multimodal corpus using different speech feature sets and SVR regressors. Results
in terms of the Spearman’s correlation coefficient.

Feature sets F. F. F. F. F. F.
Task Phonation Articulation Prosody OpenSMILE Phonological RAE Early Late 1 Late 2

DDK1 -0.210 0.159 0.090 0.176 0.252 0.192 0.214 0.227 0.274
DDK2 -0.287 -0.146 0.073 0.196 0.120 0.059 0.206 0.079 0.231
DDK3 -0.017 -0.266 0.046 0.102 -0.243 -0.289 0.070 0.075 -0.362
DDK4 -0.262 0.124 0.051 0.069 0.149 -0.086 0.095 0.074 0.176
DDK5 -0.239 -0.120 0.153 -0.253 0.174 -0.259 -0.272 0.169 -0.327
DDK6 -0.299 -0.317 -0.221 0.202 0.099 -0.335 0.200 0.162 -0.340
Sentence 1 -0.130 -0.340 -0.137 0.172 0.138 -0.252 0.078 -0.012 -0.276
Sentence 2 -0.249 -0.333 -0.253 0.170 0.100 -0.089 0.046 0.050 -0.383
Sentence 3 0.162 -0.005 -0.404 0.009 0.276 -0.317 -0.016 -0.065 -0.361
Sentence 4 -0.248 0.075 -0.391 0.159 0.067 0.135 0.152 -0.050 -0.328
Sentence 5 -0.244 -0.010 -0.353 0.138 0.189 -0.310 0.101 0.072 -0.381
Sentence 6 -0.167 -0.009 0.125 0.018 0.165 -0.379 0.004 -0.012 -0.309
Sentence 7 -0.281 -0.132 -0.345 0.033 0.206 -0.037 -0.085 0.068 -0.320
Sentence 8 -0.230 -0.330 -0.326 0.004 0.048 0.217 -0.015 0.151 -0.327
Sentence 9 -0.324 0.000 -0.341 0.285 0.367 -0.119 0.318 -0.204 -0.405
Sentence 10 -0.303 -0.182 0.019 0.014 0.129 -0.302 0.021 -0.100 -0.394
Read text -0.045 -0.063 -0.300 0.099 0.174 0.065 0.086 -0.058 -0.255
Monologue -0.070 -0.227 -0.428 0.229 0.102 -0.246 0.200 0.142 -0.396
F. T. Early -0.060 -0.269 -0.176 0.126 0.149 0.081
F. T. Late 1 -0.324 -0.064 0.017 0.213 0.255 0.106 0.159 0.105
F. T. Late 2 -0.501 -0.466 -0.531 0.253 0.334 -0.495 0.280 -0.491
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Figure 9.12: Histogram of the MDS-UPDRS-III score of the subjects from the Mul-
timodal corpus and the three groups defined to classify subjects with mild (green),
intermediate (blue) and severe (red) motor-state severity.

The results of the multi-classification are shown in Table 9.20. The highest UAR
is observed with the fusion of the speech tasks and the phonation features (49.1%). In
general, none of the models is accurate enough to discriminate the patients in three
levels of the motor-state severity, similar to the observed in the regression experiment.
However, these speech features could provide complementary information when they
are combined with the handwriting and gait signals to model the general motor-state
severity of the subjects. This multi-class classification problem was also addressed
with the ResNet-based models. However, the results were also not satisfactory.
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Table 9.20: Results classifying subjects from the Multimodal corpus in different motor
state levels using speech features and SVM classifiers. Results in terms of UAR [%].

Feature sets F. F. F. F.
Task Phonation Articulation Prosody OpenSMILE Phonological RAE Early Late 1

DDK1 29.3 (9.8) 33.7 (11.9) 33.9 (13.9) 38.7 (15.5) 36.8 (14.7) 31.3 (11.5) 39.4 (17.3) 36.6
DDK2 33.0 (14.9) 38.3 (12.8) 42.4 (9.6) 42.0 (9.2) 36.2 (12.4) 31.1 (6.7) 33.7 (7.9) 42.1
DDK3 39.0 (12.9) 31.8 (10.1) 33.6 (8.9) 31.9 (14.2) 36.0 (12.4) 33.9 (1.7) 36.1 (12.3) 33.9
DDK4 41.8 (13.7) 38.1 (15.2) 31.1 (11.6) 31.7 (8.7) 39.7 (7.6) 41.2 (13.4) 32.5 (9.4) 42.4
DDK5 34.7 (6.8) 33.5 (6.7) 35.1 (8.0) 33.3 (0.0) 39.2 (6.0) 31.8 (11.8) 33.3 (0.0) 37.7
DDK6 33.3 (0.0) 33.9 (8.1) 33.3 (0.0) 34.2 (8.4) 33.1 (8.8) 33.3 (0.0) 35.4 (13.0) 32.5
Sentence 1 32.9 (7.5) 39.1 (11.2) 39.6 (11.2) 37.3 (8.2) 35.7 (9.0) 31.3 (7.4) 39.0 (6.2) 34.0
Sentence 2 33.7 (13.9) 35.2 (6.9) 36.9 (8.4) 40.4 (10.4) 36.6 (12.1) 38.6 (10.7) 32.3 (11.9) 37.1
Sentence 3 40.1 (12.9) 33.6 (66.7) 31.7 (12.9) 30.9 (3.9) 39.8 (8.8) 36.2 (10.0) 39.4 (8.9) 39.6
Sentence 4 44.2 (10.1) 36.3 (9.9) 33.9 (1.7) 43.7 (17.9) 32.9 (1.3) 34.2 (2.7) 39.8 (9.5) 43.3
Sentence 5 32.7 (6.9) 31.7 (12.9) 32.9 (10.2) 41.8 (10.4) 39.2 (11.2) 31.9 (11.1) 44.2 (7.6) 37.1
Sentence 6 34.2 (7.2) 44.0 (11.2) 44.3 (13.0) 41.3 (9.0) 37.8 (16.0) 30.8 (10.6) 42.6 (9.3) 43.3
Sentence 7 37.4 (13.3) 39.0 (11.7) 38.3 (9.5) 33.2 (0.3) 37.1 (8.9) 33.6 (12.1) 29.4 (9.9) 42.5
Sentence 8 38.8 (13.4) 42.6 (8.4) 37.4 (9.4) 36.8 (5.7) 41.0 (9.1) 42.7 (13.1) 40.7 (14.5) 46.5
Sentence 9 42.3 (17.6) 36.0 (4.4) 32.2 (9.4) 32.2 (8.2) 40.1 (6.9) 31.3 (7.3) 41.3 (7.2) 42.0
Sentence 10 32.1 (10.4) 32.7 (9.4) 35.4 (11.1) 33.3 (0.0) 33.2 (0.3) 33.9 (11.8) 33.9 (1.6) 32.5
Read text 36.7 (11.6) 37.6 (9.1) 38.7 (9.0) 40.1 (8.1) 32.4 (8.9) 34.2 (2.7) 41.2 (8.6) 38.9
Monologue 39.2 (12.1) 36.7 (12.3) 40.7 (10.9) 33.6 (11.9) 42.3 (9.1) 32.8 (1.7) 36.0 (12.8) 38.4
F. T. Early 38.6 (5.3) 38.5 (9.9) 38,238 33.3 (0.0) 40.0 (11.5) 34.0 (5.5)
F. T. Late 1 49.1 37.9 42.4 42.0 42.1 39.5 46.5 45.2

9.2 Handwriting Assessment
The handwriting assessment of PD patients is performed to cover the discrimina-
tion between PD patients and HC subjects and the evaluation of the motor-state
severity of the patients based on the MDS-UPDRS-III scale. The estimation of the
motor-state severity includes as well the longitudinal evaluation of PD patients from
the Longitudinal corpus. The handwriting assessment of the patients is always per-
formed considering both the kinematic, geometric, and in-air features, explained in
Chapter 5 as well the deep learning models to process the offline and online hand-
writing data. The analysis includes also the different writing and drawing tasks like
sentences written by the patients and Archimedean spirals, among others. The fusion
at feature and task-levels is performed with three methods described in Section 7.2.

9.2.1 Automatic Classification of Parkinson’s Disease Patients

The results obtained classifying PD patients vs. HC subjects from the Multimodal
corpus (Section 3.3.1) are presented in Table 9.21 using the different feature sets and
handwriting tasks. The feature sets include kinematic, geometric, in-air, and their
combinations. The results are presented in terms of the UAR to avoid bias due to
the unbalance in the groups. Results of the best feature set per task are highlighted
in bold.

The highest UAR is obtained in the fusion of all handwriting tasks and all fea-
ture sets, using the early fusion for the features and the Late 2 fusion for the tasks
(97.8%). This was the same strategy that produced the highest accuracy for the case
of speech signals (see Table 9.1). This confirms that early fusion is better to model
the different and complementary information produced by each feature set, and also
that late fusion methods deal better with the redundant information that appears
when using the same features computed from different tasks. The analysis of the
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Table 9.21: Results classifying PD patients vs. HC subjects from the Multimodal
corpus using different handwriting feature sets and SVM classifiers. Results in terms
of UAR [%].

Feature sets
Task Kinematic Geometric In-air F.F Early F.F Late 1 F.F Late 2
Alphabet 78.6 (11.9) 85.1 (7.1) 77.3 (12.2) 80.2 80.8
Circle 75.1 (10.5) 72.5 (8.9) 74.8 (9.6) 75.1 78.0
Circle template 67.4 (14.0) 72.8 (6.8) 68.5 (13.5) 67.3 76.0
Cube 72.7 (12.1) 79.9 (9.1) 78.1 (10.9) 75.7 81.3
Free writing 67.9 (13.4) 79.4 (8.3) 70.6 (11.7) 74.0 78.4
House 74.2 (12.2) 83.5 (9.3) 77.2 (8.6) 78.6 80.0
ID 69.7 (14.0) 74.4 (11.9) 73.8 (9.4) 69.1 77.6
Name 73.1 (13.7) 75.4 (7.2) 74.4 (12.8) 74.0 78.9
Numbers 75.6 (5.2) 71.4 (7.7) 75.5 (8.3) 77.7 76.6
Rectangles 70.5 (8.3) 74.3 (12.1) 65.8 (8.7) 68.8 75.0
Rey Figure 70.9 (9.3) 86.0 (12.4) 75.1 (10.5) 80.3 82.3
Signature 73.0 (11.2) 74.8 (11.2) 74.7 (11.7) 72.7 72.7
Spiral 74.3 (13.1) 61.5 (8.2) 66.3 (9.4) 73.9 (12.6) 72.5 74.6
Spiral template 68.2 (9.6) 56.4 (9.0) 69.1 (10.4) 72.0 (6.1) 67.4 76.8
F.T Early 85.4 (11.6) 96.2 (5.3)
F.T Late 1 85.9 86.4 90.2 85.9
F.T Late 2 86.1 86.8 97.8 87.8

results for the individual tasks indicates that for many of the cases the best result is
obtained combining the kinematic and in-air features, specially for the simple draw-
ing tasks like Circle, Circle template, Cube, Rectangles, Spiral, and Spiral template.
For more complex tasks like the Alphabet, the Free writing, and the Rey figure the
best results are obtained with the in-air features. These more complex tasks have
a lot of pen-up and pen-down transitions, which are particularly well modeled with
the in-air features. Conversely, the simple drawing tasks like the spiral and the cir-
cle do not contain that high amount of transition movements, making the fusion of
kinematic and in-air features more appropriate for the analysis. Unfortunately, the
geometric features do not provide the expected accuracy. Additional analyses could
be performed in such direction to model the trajectory and accuracy of the strokes
performed by the patients when drawing different geometrical shapes.

The classification is also performed using the different deep learning methods
explained in Section 5.5 to model both offline and online handwriting. The results
are depicted in Table 9.22 and indicate that it is possible to classify PD patients
and HC subjects with accuracies of up to 99.2% using the CNN model to process
the online handwriting data from the pen-up and pen-down transitions. The best
result is always obtained by combining the outputs of the different handwriting tasks,
similar to the previous case with the feature extraction and classification. The results
obtained for the offline handwriting model are not that accurate compared to the ones
observed with the online models, indicating that there is important information in
the temporal variability and structure of the handwriting process that is not available
when considering only the spatial attributes of the figures and the characters written
by the patients.

The comparison between the results observed for both online models (transitions
and full segments) indicates that there are important differences depending on the
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Table 9.22: Results classifying PD patients vs. HC subjects from the Multimodal
corpus using deep learning strategies to model handwriting signals. Results in terms
of UAR [%].

Task Offline SqueezeNet Online CNN Online CNN
Transition segments Full segments

Alphabet 61.4 96.2 92.9
Circle 55.5 72.9 85.9
Circle template 56.2 80.3 93.7
Cube 62.8 92.7 95.2
Free writing 61.6 84.4 86.3
House 66.7 92.5 93.5
ID 64.2 95.3 94.7
Name 61.3 94.1 93.7
Numbers 61.9 92.4 93.0
Rectangles 60.0 86.5 92.1
Rey Figure 64.1 97.0 96.6
Signature 71.2 71.5 80.4
Spiral 59.0 61.0 57.6
Spiral template 59.9 64.3 52.3
F.T Late 1 71.7 97.6 98.8
F.T Late 2 76.2 99.2 98.8

addressed handwriting task. Simple drawing shapes such as circles, cubes, and rect-
angles are better modeled with the Full segments. Conversely, more complex tasks
like the alphabet are better modeled with the network that only consider the pen-up
and pen-down transitions. This is similar to the results previously observed with the
in-air features, since they were more accurate to model the most complex writing
tasks. Finally, the results observed with the Archimedean spirals are not as good as
expected, specially considering that this is one of the most used handwriting tasks
for the assessment of PD patients in the literature. This aspect has to be carefully
considered when designing evaluation protocols for the assessment of the disease.

The summary of the best results obtained for the classification is shown in Ta-
ble 9.23, and include additional performance metrics like sensitivity, specificity, F-
score, and the area under the ROC curve. As it was stated previously, the best results
are always obtained when the different handwriting tasks are combined, specially us-
ing late fusion strategies. The best results are obtained with the deep learning model
to process the online handwriting data from the pen-up and pen-down transitions,
followed by the early fusion of in-air and kinematic features.

The confusion matrices, ROC curves, and histograms of the predictions for these
top-2 models are observed in Figures 9.13 and 9.14. Note the high separability of the
scores of the histograms both for the deep learning model in Figure 9.13c) and for
the fusion of kinematic and in-air features in Figure 9.14c).

The sensitivity of 98% observed for the deep learning model in Figure 9.13a) shows
that only two of the PD patients were misclassified. The first one is a 67 years old male
PD patient with MDS-UPDRS=31. The second one corresponds to a 34 years old PD
patient with MDS-UPDRS=17. This subject is the youngest patient in the corpus,
and probably a patient with a similar age was never observed in the training set. In
addition, this second patient has a low MDS-UPDRS-III score, compared to the rest
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Table 9.23: Best results obtained for each method classifying PD patients and HC
subjects in the Multimodal corpus using handwriting signals.

Feature set Task ACC Fscore UAR SENS SPEC AUC
Kinematic F.T Late 2 87.2 0.848 86.1 88.6 83.7 0.948
In-air F.T Early 96.1 0.955 96.2 95.7 96.7 0.996
F.F Early F.T Late 2 97.1 0.967 97.8 95.7 100.0 0.996
F.F Late 1 F.T Late 1 87.8 0.853 85.9 90.2 81.6 0.962
F.F Late 2 F.T Late 2 86.0 0.843 87.8 83.7 91.8 0.961
Online CNN-GRU F.T Late 2 98.8 0.985 99.2 98.4 100.0 0.999
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Figure 9.13: Details of the best result obtained classifying PD patients and HC
subjects from the Multimodal corpus using the deep learning methods. a) Normalized
confusion matrix. b) ROC curve. c) Distribution of the classification scores.
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Figure 9.14: Details of the best result obtained classifying PD patients and HC
subjects from the Multimodal corpus using the fusion of kinematic and in-air features.
a) Normalized confusion matrix. b) ROC curve. c) Distribution of the classification
scores.

of the patients in the corpus. Examples of the alphabet written by both misclassified
patients are seen in Figure 9.15. The alphabet was chosen for the example because
it was one of the most accurate tasks for the classification. Note that neither the
writing of both subjects exhibit the specific aspects associated to PD dysagraphia,
like tremor or micrographia. In addition, it is possible to understand and to read the
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characters written by the patients, making these samples more similar to the ones
observed for HC subjects.
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Figure 9.15: Alphabet written by the two misclassified PD patients from the Mul-
timodal corpus. a) 67 years old male PD patient with MDS-UPDRS-III: 31. b) 34
years old Female PD patient with MDS-UPDRS-III: 17.

9.2.2 Automatic Evaluation of the Motor State Severity of
Patients

The evaluation of the motor state severity of patients is based on the MDS-UPDRS-III
scale. The evaluation of the motor state severity is performed in three scenarios with
the handwriting signals: (1) the prediction of the value of the MDS-UPDRS-III scale
using the handwriting models described in Chapter 5 and regression algorithms; (2)
the progression evaluation of the patients from the Longitudinal corpus using both
user models based on GMM-UBM systems and regression algorithms; and (3) the
classification of patients in different levels of the disease severity (mild, intermediate,
severe) using multi-class classification methods.

Motor State Evaluation based on Regression Algorithms

The evaluation of the motor-state severity is addressed considering the different hand-
writing features and tasks, and their combinations. The handwriting features include
the kinematic, geometric, and in-air models, in addition to the end-to-end modeling
using deep learning techniques. The regression is performed using an SVR algorithm.
The results obtained estimating the MDS-UPDRS-III score from the Multimodal cor-
pus are presented in Table 9.24. The results are presented in terms of the Spearman’s
correlation coefficient.

The highest correlation is obtained with the early fusion of the kinematic fea-
tures for all handwriting tasks (ρ =0.616). Unfortunately, the in-air features are not
that accurate to evaluate the global motor-severity as they were for the classifica-
tion experiments. This is likely because of although these features model well known
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Table 9.24: Results estimating the MDS-UPDRS-III scale of the subjects from the
Multimodal corpus using handwriting features and SVR regressors. Results in terms
of the Spearman’s correlation coefficient.

Feature set
Task Kinematic Geometric In-air F.F Early F.F Late 1 F.F Late 2

Alphabet 0.101 -0.247 0.015 0.060 -0.160
Circle 0.140 0.071 0.208 0.125 0.165
Circle template 0.105 0.163 0.059 0.125 0.018
Cube 0.070 -0.121 0.107 -0.120 -0.127
Free writing 0.080 -0.015 0.041 -0.011 0.066
House 0.206 0.045 0.211 0.174 0.100
ID -0.042 -0.379 -0.104 -0.148 -0.095
Name -0.201 -0.409 -0.356 -0.341 -0.368
Numbers 0.340 -0.380 0.300 0.095 0.201
Rectangles 0.182 0.040 0.158 0.137 0.092
Rey Figure -0.475 -0.443 -0.446 -0.461 -0.471
Signature 0.052 -0.472 -0.052 -0.249 -0.242
Spiral 0.154 0.184 -0.145 0.133 0.001 0.050
Spiral template 0.453 0.107 -0.090 0.431 0.301 0.320
F.T Early 0.616 0.253
F.T Late 1 0.328 -0.087 0.524 0.113
F.T Late 2 0.532 -0.535 0.447 0.248

symptoms to characterize the presence of the disease like tremor and rigidity, these
are not the most sensitive aspects included in the MDS-UPDRS-III scale to map the
global motor performance of the patients.

The estimation of the MDS-UPDRS-III scale is also performed using the deep
learning models. Only the models based on online handwriting were considered here
because they were the most robust in the classification experiments. The results
are observed in Table 9.25. Unfortunately, the results are not that accurate as the
ones obtained in the classification experiments, similar to what occurs for the speech
signals predicting the dysarthria level of the participants. The main reason would be
the lack of labeled data about the MDS-UPDRS-III score of the patients to train the
regression models.

A summary of the best results obtained with each method is shown in Table 9.26,
including additional metrics like the Pearson’s correlation coefficient and the MAE.
The results include also the p-values of the correlations to test whether the cor-
relations are significant or not. The best result was obtained with the kinematic
features, as it was mentioned previously. In addition, the best results are achieved
when considering all handwriting tasks together.

Figure 9.16 shows the errors in the evaluation of the MDS-UPDRS-III scores. The
displayed result corresponds to the ones obtained with the kinematic features com-
bining all handwriting task using the early fusion. Although the result is satisfactory
(strong correlation), other regression strategies and feature sets can be considered to
improve the correlation values.



170 Chapter 9. Experiments & Results

Table 9.25: Results estimating the MDS-UPDRS-III scale of the subjects from the
Multimodal corpus using handwriting signals and deep learning methods. Results in
terms of the Spearman’s correlation coefficient.

Task Online CNN Online CNN
Transition segments Full segments

Alphabet 0.065 0.249
Circle 0.191 0.050
Circle template -0.121 0.372
Cube 0.021 0.082
Free writing 0.011 0.125
House -0.008 0.031
ID 0.066 0.135
Name -0.010 0.158
Numbers 0.037 -0.042
Rectangles -0.037 0.229
Rey Figure 0.018 0.083
Signature -0.099 0.100
Spiral -0.036 0.070
Spiral template 0.051 0.112
F.T Late 1 0.054 0.087
F.T Late 2 0.239 0.254

Table 9.26: Best results obtained for each method to evaluate the MDS-UPDRS-III
scale of the subjects in the Multimodal corpus using handwriting signals.

Feature set Task r p-val r ρ p-val ρ MAE
Kinematic F.T. Early 0.586 �0.005 0.616 �0.005 8.5
In-air F.T. Early 0.238 0.103 0.269 0.065 8.7
F.F Early F.T Late 1 0.502 �0.005 0.524 �0.005 8.7
F.F Late 1 Spiral template 0.310 0.003 0.301 0.005 8.5
F.F Late 2 Spiral template 0.362 0.001 0.320 0.003 10.2
Online CNN-GRU F.T Late 2 0.284 0.007 0.254 0.017 10.0

Longitudinal Assessment of Patients

Two methods are considered to model the disease progression of the patients from the
Longitudinal corpus based on the MDS-UPDRS-III scale. The first one comprises the
use of an SVR trained with the data from the Multimodal corpus. The patients from
the longitudinal data will act as an independent hidden test set for the regression
method. The second approach consists of applying user models based on the GMM-
UBM approach introduced in [Aria 18a] and extended in [Vasq 20b] to model as well
handwriting signals. The UBMs are trained using information from the HC subjects
from the Multimodal corpus. Then specific GMMs are adapted for each patient in
each session from the Longitudinal corpus. The results are shown in Table 9.27.
Only the kinematic features were considered for the analysis because they were the
most accurate for the regression problem in the previous subsection. The best results
are generally obtained with the SVR approach, similar to the results obtained with
speech signals to evaluate the disease progression based on the m-FDA score (see
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Figure 9.16: Details of the best result obtained estimating the MDS-UPDRS-III scale
of the subjects in the Multimodal corpus using kinematic features and SVR regressors.

Tables 9.12 and 9.13). The main reason is because here there are more data to
train the regression models, thus obtaining more accurate results using a supervised
model like the SVR instead of the unsupervised model based on GMM-UBM. A
strong correlation is obtained (ρ =0.704) with the SVR approach and combining all
handwriting tasks using the Late 2 fusion strategy. High correlations are also obtained
with tasks related to writing exercises like Numbers (ρ =0.627), Name (ρ =0.562), ID
(ρ =0.449), and Free writing (ρ =0.497). These tasks are the longest to perform by
the patients and contain a lot of strokes that are better to model the disease severity
of the patient.

Figure 9.17 displays curves with the comparison of the predicted MDS-UPDRS-
III scores (cyan lines) and the real labels assigned by the neurologist (black lines) for
each of the nine speakers of the Longitudinal corpus, using both the SVR and the
GMM-UBM systems. The horizontal axis represents the recording session. The lines
for each speaker represent the progression of the motor state severity level due to the
disease progression. The predicted scores follows the trend of the MDS-UPDRS-III
level for most of the cases, specially for the SVR in Figure 9.17a). The results suggest
that the proposed approach is suitable to monitor the progression of the motor state
severity in PD patients using the handwriting signals; however the results have to be
validated with more data from additional patients collected in more sessions.

Classification of Patients in Different Levels of the Disease Severity

Although strong correlation were found between the predicted and the real MDS-
UPDRS-III scores, it is more informative for the patients to know in which stage of
the disease they are. In addition, for medical applications it is difficult to have a
great amount of data to train suitable regression algorithms like an SVR or a CNN.
For these reasons it should be better to divide the patients into different groups
according to their disease severity, based on their MDS-UPDRS-III score. Three
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Table 9.27: Results predicting the MDS-UPDRS-III scale of the subjects from the
Longitudinal corpus using kinematic features. Results in terms of the Spearman’s
correlation coefficient.

Task SVR GMM-UBM
Alphabet 0.330 0.157
Circle -0.169 0.080
Cube 0.159 0.181
Free writing 0.497 0.121
House 0.141 0.155
ID 0.449 -0.208
Name 0.562 0.105
Numbers 0.627 0.267
Rectangles -0.008 0.215
Rey Figure -0.118 0.237
Signature -0.158 0.009
Spiral 0.009 0.015
Spiral template 0.251 0.028
F.T Early 0.152
F.T Late 1 0.363 0.115
F.T Late 2 0.704
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Figure 9.17: Predictions of the MDS-UPDRS-III scale of the patients from the Lon-
gitudinal corpus using handwriting signals. a) SVR regression. b) GMM-UBM.

classes are defined based on the 33rd and 66th percentiles of the total scale in order
to discriminate between mild, intermediate, and severe levels of motor-state severities.
For the total MDS-UPDRS-III score the ranges per class are defined as follows: 0 to
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25 (mild), 26 to 40 (intermediate), and higher than 40 (severe). See Figure 9.12 for
more details.

With these new labels, a multiclass SVM is trained in a one vs. all strategy to
classify the subjects in the three levels of the disease. The results are presented in
Table 9.28. The most accurate models per task are highlighted in bold. The best
result is obtained with early fusion at feature-level and the Late 1 fusion at task-level
(UAR=56.5%). Relatively similar results are obtained with the kinematic and in-air
feature sets. Regarding the handwriting tasks, there is no particular pattern of which
tasks are better for the addressed problem.

Table 9.28: Results classifying subjects from the Multimodal corpus in different motor
state levels using handwriting features sets and SVM classifiers. Results in terms of
UAR [%].

Feature set
Task Kinematic Geometric In-air F.F Early F.F Late 1

Alphabet 33.9 (23.6) 36.7 (16.7) 35.6 (18.3) 43.0
Circle 33.3 (0.0) 35.6 (18.3) 37.8 (13.3) 33.5
Circle template 38.3 (13.0) 48.3 (22.9) 28.3 (22.4) 34.4
Cube 41.7 (14.8) 32.8 (19.0) 40.6 (13.2) 42.1
Free writing 35.0 (12.7) 35.0 (11.1) 42.2 (16.9) 38.8
House 42.8 (16.5) 30.0 (5.1) 42.8 (16.5) 44.1
ID 41.7 (13.9) 33.3 (8.6) 34.4 (18.1) 36.6
Name 35.0 (11.4) 36.1 (13.0) 40.6 (13.4) 37.9
Numbers 41.7 (15.6) 43.3 (20.6) 46.7 (13.9) 40.4
Rectangles 52.2 (12.0) 40.0 (17.4) 51.7 (16.5) 52.0
Rey Figure 45.0 (18.5) 42.8 (22.2) 42.2 (12.2) 38.9
Signature 27.2 (13.9) 33.3 (19.7) 31.7 (5.0) 37.1
Spiral 38.9 (15.1) 37.8 (16.6) 42.8 (14.9) 42.2 (16.3) 41.5
Spiral template 49.4 (18.0) 41.7 (13.0) 33.9 (16.6) 49.4 (18.7) 48.8
F.T Early 51.7 (13.8) 46.7 (22.1)
F.T Late 1 53.9 41.7 56.5 53.9

The multi-class experiments are also performed with the deep learning models
with the aim to improve the results. The results are shown in Table 9.29. An
UAR up to 56.4% was obtained, which is similar to the reported one combining the
kinematic and in-air features for all tasks. The best result is obtained here with the
Alphabet task, using the deep learning model to process the pen-up and pen-down
transitions.

The summary of the best results obtained using the different methods is shown
in Table 9.30. The highest UARs are obtained with the deep learning models and
with the fusion of all tasks and feature sets. These results are highlighted in bold.
Taking a look to the other performance metrics, it is observed that the deep learning
model has higher accuracy and F-score values than the fusion of all feature sets and
tasks. In addition, all models are very accurate to detect patients in severe stages of
the disease. The most difficult class corresponds to patients in intermediate state.

The confusion matrices from Figure 9.18 show the top-3 results for the classifica-
tion of patients in three levels of the disease. The three models are very accurate to



174 Chapter 9. Experiments & Results

Table 9.29: Results classifying subjects from the Multimodal corpus in different motor
state levels using the deep learning models. Results in terms of UAR [%].

Task Online CNN-GRU Online CNN-GRU
Transition segments Full segments

Alphabet 56.5 47.5
Circle 36.2 37.5
Circle template 31.9 36.8
Cube 39.4 40.0
Free writing 43.7 44.0
House 43.0 43.1
ID 55.2 48.0
Name 49.7 49.1
Numbers 49.3 52.4
Rectangles 38.6 42.8
Rey Figure 35.4 39.9
Signature 54.3 50.6
Spiral 41.2 35.8
Spiral template 37.1 40.4
F.T Late 1 49.5 44.4

Table 9.30: Best results obtained for each method classifying subjects from the Multi-
modal corpus in different motor-state levels according to the MDS-UPDRS-III score.

Feature set Task ACC Fscore UAR ACC ACC ACC
Mild Intermediate Severe

Kinematic F.T Late 1 53.4 0.525 53.9 58.0 33.0 70.0
In-air Circle template 49.3 0.452 48.3 32.0 50.0 65.0
F.F Early F.T Late 1 54.2 0.537 56.5 56.0 29.0 85.0
F.F Late 1 F.T Late 1 53.4 0.525 53.9 58.0 33.0 70.0
Online CNN-GRU Alphabet 60.1 0.555 56.5 59.0 34.0 76.0

detect patients in severe stages of the disease, followed by patients in initial stage.
Patients in intermediate state of the disease are very difficult to classify, for the three
methods. These results suggest that would be better and easier to classify patients
in two levels of the disease (divided by the median) rather than the classification in
the three levels addressed here.

9.3 Gait Assessment

The gait analysis of PD patients covers the discrimination between PD patients and
HC subjects and the evaluation of the disease severity of the patients based on the
MDS-UPDRS-III scale. The experiments include the evaluation of the gait signals
collected with the eGait sensors for the Multimodal corpus and the signals collected
with the Apkinson app. The gait assessment is always performed considering both
the kinematic, spectral, and NLD features, explained in Chapter 6 as well the deep
learning models to process the raw gait signals. The analysis includes the different
gait exercises for the Multimodal corpus, and the gait and hand movement tasks for
the Apkinson corpus.
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Figure 9.18: Details of the best result obtained classifying subjects from the Multi-
modal corpus in different motor-state severity levels according to the MDS-UPDRS-
III score. a) Online CNN-GRU from the alphabet task. b) Early fusion of kinematic
and in-air features, combining all task with the late fusion strategy. c) Late fusion
of kinematic and in-air features, combining all task with the late fusion.

9.3.1 Automatic Classification of Parkinson’s Disease Patients

The results obtained classifying PD patients vs. HC subjects from the Multimodal
corpus (Section 3.3.1) are presented in Table 9.31 using the different feature sets and
gait tasks. The feature sets include kinematic, spectral and NLD features, and their
combinations. The last column shows the results using the deep learning approach
based on CNN-GRU networks. The results are presented in terms of the UAR to
avoid bias due to the unbalance in the groups. Results of the best model per task are
highlighted in bold.

Table 9.31: Results classifying PD patients vs. HC subjects from the Multimodal
corpus using gait signals. Results in terms of UAR [%].

Feature sets
Task Kinematic Spectral NLD F. F. Early F. F. Late 1 F. F. Late 2 CNN-GRU

2x10 64.2 (15.9) 76.8 (9.9) 79.0 (12.4) 79.3 (8.1) 79.9 78.8 96.6 (2.4)
4x10 72.4 (9.4) 70.7 (8.7) 68.0 (8.5) 73.7 (4.6) 68.2 73.1 96.5 (2.4)
Stop & Go 74.3 (23.5) 74.2 (8.5) 81.5 (14.2) 78.3 (8.0) 76.3 81.8 98.7 (2.4)
Heel toe Left 74.9 (9.1) 71.5 (6.3) 75.9 (8.3) 71.7 77.2 90.6 (2.4)
Heel toe Right 70.8 (8.6) 91.9 (6.2) 83.5 (15.9) 78.3 76.9 90.6 (2.4)
TUG 69.1 (12.3) 71.6 (6.8) 72.9 (10.9) 68.7 68.1 96.5 (2.4)
F. T. Early 64.1 (9.0) 78.8 (10.7) 94.3 (6.5)
F. T. Late 1 70.2 81.5 86.2 75.8 85.7 98.7
F. T. Late 2 72.6 81.6 86.3 77.1 82.1 98.3

The best results are obtained in general with the deep learning approach, which
achieved an UAR up to 98.7% when all gait tasks are combined with a late fusion
strategy. The NLD features are also very accurate for some of the gait tasks like the
heel toe tapping. The results obtained with the kinematic and spectral features are
similar, the later one being slightly higher. Kinematic features could not be computed
for the heel toe and the TUG tasks because a template to properly segment the strides
was not available. The analysis for the individual tasks indicates that for all methods
the best result is obtained with the Stop & go task, which is the one when the
patients have to perform more start/stop movements of the lower limbs, causing FoG
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episodes in the patients. These results confirm the importance of such exercises for
the assessment of the gait impairments of PD patients, and it should be carefully
considered when designing evaluation protocols.

The results in the Multimodal corpus suggest that the proposed methods are
valid and accurate to model the gait of PD patients in a clinical setting. Now the
aim is to evaluate whether those methods are also accurate to model the gait of PD
patients in at-home environments using the smartphone data, which can be used to
monitor the state of the patients at-home. The results classifying PD patients vs.
HC subjects from the Apkinson corpus are presented in Table 9.32. Note that for the
case of the Apkinson corpus additional hand movement exercises like Finger to nose,
Circles, Postural tremor, and Pronation / Supination are included in the analysis.
The best results per task are also highlighted in bold. The kinematic features were
not included in this analysis because the template to properly segment the individual
strides was not available.

Table 9.32: Results classifying PD patients vs. HC subjects from the Apkinson corpus
using gait signals. Results in terms of UAR [%].

Feature sets
Task Spectral Non-linear F. F. Early F. F. Late 1 F. F. Late 2 CNN-GRU

4x10 51.3 (15.5) 65.0 (14.5) 60.8 (15.3) 60.5 61.2 83.0 (12.2)
Free Gait 64.2 (10.7) 71.3 (20.5) 70.4 (17.1) 75.5 68.7 84.4 (12.2)
Circles Left 50.4 (18.4) 69.2 (7.0) 64.6 (11.7) 64.1 71.1 72.9 (12.2)
Circles Right 59.2 (18.0) 65.0 (9.7) 69.2 (12.4) 63.3 62.2 78.2 (12.2)
Finger to nose Left 59.7 (17.9) 70.7 (16.4) 67.3 (9.8) 60.7 71.2 76.1 (12.2)
Finger to nose Right 62.3 (12.8) 67.7 (13.9) 64.8 (13.4) 70.3 67.5 66.7 (12.2)
Postural Tremor Left 50.0 (0.0) 57.9 (11.9) 70.0 (12.6) 70.0 59.9 55.3 (12.2)
Postural Tremor Right 55.8 (17.5) 78.3 (17.2) 72.5 (21.4) 67.9 74.8 53.7 (12.2)
Posture 55.0 (20.4) 55.0 (16.9) 62.1 (16.1) 58.5 56.4 59.8 (12.2)
Pronation / Supination Left 51.8 (23.6) 71.2 (15.8) 67.2 (12.9) 58.7 71.1 56.3 (12.2)
Pronation / Supination Right 58.8 (8.9) 70.6 (19.1) 59.3 (10.8) 68.3 63.7 54.7.0 (12.2)
F. T. Early 67.0 (12.5) 79.5(15.7)
F. T. Late 1 66.3 78.3 81.7 82.1 83.3
F. T. Late 2 62.5 78.8 80.4 75.0 83.8

The comparison between the results observed for the Multimodal and Apkinson
corpus, using each method indicates that the accuracy is reduced in about 14.6%
for the spectral features, 14.8% for the NLD features, and 14.9% for the CNN-GRU
model. This result is explained because in the smartphone data only one 3-axial
accelerometer is available, compared to the eGait system where both a 3-axial ac-
celerometer and gyroscope is attached to each foot. The highest UARs are obtained
with the CNN-GRU model (84.4%). The deep learning model is specially very accu-
rate to model the gait tasks like 4x10 and the Free gait. Hand movement tasks like
Finger to nose and Circles produce moderate accuracies. Conversely, tasks such as
Postural tremor, Posture, or Pronation / Supination are not accurate for the classifi-
cation using the proposed CNN-GRU model. This is probably because these tasks do
not have high temporal variability, thus the information provided by these exercises
is not properly exploited by the neural network. These particular hand movement
exercises are better modeled with the NLD features.

A summary of the best results obtained using the different methods is shown
in Table 9.33. The results include additional performance metrics like sensitivity,
specificity, F-score, and the AUC. The best result obtained for the Multimodal and



9.3. Gait Assessment 177

Apkinson corpus are highlighted in bold, and they were obtained with the deep CNN-
GRUmodels. In addition, for almost all cases, the best results are obtained combining
the different tasks with the early or late fusion strategies. After the results using the
CNN-GRU models, the best results for the Multimodal corpus are obtained with the
early fusion at task-level using the NLD features(UAR=94.3%) and for the Apkinson
corpus using the Late 1 fusion both at feature- and task-levels (UAR=82.1%).

Table 9.33: Best results obtained for each method classifying PD patients and HC
subjects in the Multimodal and Apkinson corpus using gait signals.

Feature set Task ACC Fscore UAR SENS SPEC AUC
Multimodal corpus

Kinematic Stop & Go 77.1 0.724 74.3 83.5 65.0 0.757
Spectral F. T. Late 2 82.0 0.799 81.6 82.8 80.4 0.890
NLD F. T. Early 90.3 0.874 94.3 88.6 100.0 0.954
F. F. Early Heel toe Right 78.9 0.720 83.5 76.9 90.0 0.905
F. F. Late 1 2x10 82.0 0.793 79.9 85.3 74.5 0.853
F. F. Late 2 F. T. Late 2 82.0 0.800 82.1 81.9 82.4 0.898
CNN-GRU F. T. Late 1 98.2 0.979 98.7 97.4 100.0 0.999

Apkinson corpus
Spectral F. T. Early 77.5 0.670 67.0 40.0 94.0 0.665
NLD F. T. Early 83.6 0.796 79.5 68.3 90.7 0.848
F. F. Early F. T. Late 1 85.0 0.832 81.7 65.0 98.3 0.898
F. F. Late 1 F. T. Late 1 82.0 0.815 82.1 82.5 81.7 0.924
F. F. Late 2 F. T. Late 2 80.0 0.762 75.0 50.0 100.0 0.924
CNN-GRU Free Gait 85.6 0.845 84.4 79.4 89.3 0.938

The confusion matrices, ROC curves, and the histograms obtained with the scores
of the predictions of the CNN-GRU models are shown in Figures 9.19 and 9.20 for the
Multimodal and Apkinson corpus, respectively. For the case of the Multimodal corpus
there are no HCs that are misclassified and there are three misclassified patients. Note
that at least two of them are very close to the decision boundary of the classifier,
which is set at 0 (see the histogram in Figure 9.19c). For the case of the Apkinson
corpus there are six misclassified HC subjects and seven PD patients. Note in the
histogram in Figure 9.20c) that most of the misclassified subjects in the Apkinson
corpus are just in the decision boundary and not in the other extreme class.

The results are compared to the ones obtained with the classical feature extraction
and classification using the SVM classifier. The confusion matrices, ROC curves, and
the respective histograms obtained using the traditional techniques are shown in
Figures 9.21 and 9.22 for the Multimodal and Apkinson corpus, respectively. The
results for the Multimodal corpus correspond to the ones obtained with the NLD
features and the early fusion at task-level. The results for the Apkinson corpus
correspond to the Late 1 fusion at feature- and task-levels.

9.3.2 Automatic Evaluation of the Motor State Severity of
Patients

Similar to the handwriting analysis, the evaluation of the motor state severity of
patients is based on the MDS-UPDRS-III scale. The evaluation is performed in three
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Figure 9.19: Details of the best result obtained classifying PD patients and HC
subjects from the Multimodal corpus using the CNN-GRU model. a) Normalized
confusion matrix. b) ROC curve. c) Distribution of the classification scores.
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Figure 9.20: Details of the best result obtained classifying PD patients and HC sub-
jects from the Apkinson corpus using the CNN-GRU model. a) Normalized confusion
matrix. b) ROC curve. c) Distribution of the classification scores.
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Figure 9.21: Details of the best result obtained classifying PD patients and HC
subjects from the Multimodal corpus using NLD features and SVM classifiers. a)
Normalized confusion matrix. b) ROC curve. c) Distribution of the classification
scores.
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Figure 9.22: Details of the best result obtained classifying PD patients and HC
subjects from the Apkinson corpus using different feature sets and SVM classifiers.
a) Normalized confusion matrix. b) ROC curve. c) Distribution of the classification
scores.

scenarios with the gait signals: (1) the prediction of the value of the MDS-UPDRS-
III scale using the gait models described in Chapter 6 and regression algorithms; (2)
the progression evaluation of the patients from the Longitudinal corpus using both
user models based on GMM-UBM systems and regression algorithms; and (3) the
classification of patients in different levels of the disease severity (mild, intermediate,
severe) using multi-class classification methods.

Motor State Evaluation based on Regression Algorithms

The aim of this experiment is to evaluate the motor-state severity of the patients
by estimating the value of the MDS-UPDRS-III using the different gait features and
regression algorithms. The SVR regression is trained with the kinematic, spectral,
and NLD features. The early and late fusion strategies are also considered. The
CNN-GRU model is also trained for this particular task. The results obtained for
the Multimodal corpus are observed in Table 9.34. Unfortunately, so far there is
not enough labeled data to train the regression algorithms for the Apkinson corpus.
The most correlated result is observed when all gait tasks and features are com-
bined together with the Late 2 fusion method (ρ=0.646). For many of the gait tasks
the best result is obtained when only the NLD features were considered, which vali-
dates the importance of these features to model the walking process of PD patients.
There is also a high correlation obtained with the spectral features and the 4x10 task
(ρ=0.620), which is very close to the best result achieved. The results using the deep
learning models are not accurate to evaluate the motor-state severity of the patients,
similar to the results obtained with the handwriting signals. The main reason is
because the lack of labeled data to train the regression network.

The summary of the best results obtained with each method is shown in Ta-
ble 9.35. The best result was obtained with the fusion of all gait tasks and feature
sets, as it was mentioned previously. For all methods, excluding the CNN-GRU
models the correlation between the estimated and real MDS-UPDRS-III scores is
statistically significant. Figure 9.23 shows the errors in the evaluation of the MDS-
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Table 9.34: Results estimating the MDS-UPDRS-III scale of the subjects from the
Multimodal corpus using gait signals. Results in terms of the Spearman’s correlation
coefficient.

Feature sets
Task Kinematic Spectral NLD F. F. Early F. F. Late 1 F. F. Late 2 CNN-GRU

2x10 0.435 0.526 0.481 0.490 0.448 0.542 0.036
4x10 0.312 0.620 0.532 0.626 0.608 0.617 0.095
Stop & Go 0.261 0.315 0.477 0.474 0.182 0.467 -0.012
Heel toe Left -0.218 0.196 0.130 -0.026 0.013 0.009
Heel toe Right -0.208 0.028 0.109 0.044 -0.085 0.009
TUG 0.340 0.424 0.256 0.413 0.378 0.090
F. T. Early 0.372 0.506 0.635
F. T. Late 1 0.317 0.391 0.504 0.452 0.459 0.045
F. T. Late 2 0.447 0.607 0.572 0.550 0.646 0.098

UPDRS-III scores for the best model. Although the result is satisfactory (strong
correlation), other regression strategies and feature sets can be considered to improve
the correlation values.

Table 9.35: Best results obtained for each method to evaluate the MDS-UPDRS-III
scale of the subjects in the Multimodal corpus using gait signals.

Feature set Task r p-val r ρ p-val ρ MAE
Kinematic F. T. Late 2 0.439 �0.005 0.447 �0.005 9.2
Spectral 4x10 0.567 �0.005 0.620 �0.005 6.9
NLD F. T. Early 0.560 �0.005 0.635 �0.005 8.3
F. F. Early 4x10 0.580 �0.005 0.626 �0.005 7.5
F. F. Late 1 4x10 0.580 �0.005 0.608 �0.005 9.2
F. F. Late 2 F. T. Late 2 0.554 �0.005 0.646 �0.005 9.1
CNN-GRU F. T. Late 2 0.148 0.187 0.098 0.382 9.7

Longitudinal Assessment of Patients

The SVR and the GMM-UBM models are considered as well to model the disease
progression of the patients from the Longitudinal corpus based on the MDS-UPDRS-
III scale, similar to the experiments addressed with speech and handwriting signals.
The SVR is trained with the data from the Multimodal corpus, excluding those
subjects from the Longitudinal corpus. Then, patients from the Longitudinal data
form an independent hidden test set for the regression method. For the GMM-
UBM system the UBMs are trained using information from the HC subjects from the
Multimodal corpus. Then specific GMMs are adapted for each patient in each session
from the Longitudinal corpus, similar to the experiments addressed in [Vasq 20b]. The
prediction is performed using both spectral and NLD features. The results obtained
using both methods are shown in Table 9.36. The best results are obtained with
the SVR approach, similar to the observed for the cases of handwriting and speech
signals. The main reason again is because here there are more data to train the
regression models, thus obtaining more accurate results using a supervised model
like the SVR instead of the unsupervised model based on GMM-UBM. The strongest
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Figure 9.23: Details of the best result obtained estimating the MDS-UPDRS-III scale
of the subjects in the Multimodal corpus using all gait features features and SVR
regressors.

correlation (ρ =0.770) is obtained using the 4x10 task and the fusion of spectral
and NLD features. Strong correlations are also obtained considering separately the
spectral features in the 2x10 (ρ =0.697), 4x10 (ρ =0.710), and Stop & Go (ρ =0.644)
tasks. Similar results are obtained with the NLD features in the 2x10 (ρ =0.652),
4x10 (ρ =0.628), and TUG (ρ =0.603) tasks. This is very positive considering the
fact that these results are obtained as an independent test set that was never seen
during a cross-validation strategy.

Table 9.36: Results predicting the MDS-UPDRS-III scale of the subjects from the
Longitudinal corpus using different gait features. Results in terms of the Spearman’s
correlation coefficient.

SVR GMM-UBM
Task Spectral NLD F. F. Early F. F. Late 1 F. F. Late 2 Spectral NLD F. F
2x10 0.697 0.652 0.702 0.206 0.666 0.322 0.097 0.120
4x10 0.710 0.628 0.734 -0.253 0.770 0.051 0.080 -0.374
Stop & Go 0.644 0.481 0.648 0.617 0.646 0.423 0.241 0.038
Heel toe Left 0.283 0.320 0.214 0.332 0.314 -0.190 0.036 0.038
Heel toe Right 0.321 0.387 0.461 0.387 0.248 -0.190 0.036 -0.004
TUG 0.266 0.667 0.636 0.457 0.503 0.564 0.268 0.184
F. T. Early 0.395 0.603
F. T. Late 1 -0.016 0.704
F. T. Late 2 0.733 0.760

Figure 9.24 shows the prediction of the MDS-UPDRS-III scores for the nine pa-
tients of the Longitudinal corpus for the best model i.e., the late fusion of spectral and
NLD features for the 4x10 task. The lines for each speaker represent the progression
of the motor state severity level. The predicted scores follows the trend of the MDS-
UPDRS-III level in many cases. Note specially that for patients PD04, PD05, and
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PD07 the prediction is very similar to the real score. The results suggests that the
proposed approach is suitable to monitor the progression of the motor state severity
in PD patients using the gait signals; however the results have to be validated with
more data from additional patients collected in more sessions.
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Figure 9.24: Predictions of the MDS-UPDRS-III score of each patient in the Longi-
tudinal corpus with the gait features and the SVR regression.

Classification of Patients in Different Levels of the Disease Severity

The classification of patients in different levels of the disease severity is also per-
formed with gait signals in the same way as the addressed for the case of speech and
handwriting data. Three classes are defined based on the 33rd and 66th percentiles of
the total MDS-UPDRS-III scale in order to discriminate between mild, intermediate,
and severe levels of motor-state severities. The ranges of the total MDS-UPDRS-III
score are defined as follows: 0 to 25 (mild), 26 to 40 (intermediate), and higher than
40 (severe). The distribution and limits of the scores were chosen in order to have
three equal priors for the classes. The distribution was shown in Figure 9.12. With
these new labels, a multiclass SVM is trained in a one vs. all strategy to classify the
subjects in the three levels of the disease. The CNN-GRU models were also trained
for such a purpose. The results obtained for the patients from the Multimodal corpus
are observed in Table 9.37. The best result is obtained with early fusion at task-level
and the NLD features (UAR=70.6%). This result is 11.6% higher than the best one
observed with handwriting signals, which was up to 59.0% (see Table 9.30). There
is no particular trend about which is the best model for the classification, however
the CNN-GRU achieved the highest accuracy in four of the six tasks, specially for
the TUG exercise (64.9%). In addition, the 4x10 and the TUG exhibit on average
higher accuracies than the ones observed in other tasks like heel toe tapping and
2x10. Unfortunately, the late fusion strategy did not produce accurate results for
this problem.

The multi-class classification was also performed with the movement signals col-
lected using the Apkinson app. The results are observed in Table 9.38. For this case
there are differences of up to 10% with respect to the results observed for the Multi-
modal corpus. The best result is observed here with the spectral features computed
over the posture exercise (60.0%). Additional data should be collected and labeled
in order to improve the results using the different proposed methods.
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Table 9.37: Results classifying subjects from the Multimodal corpus in motor state
levels using gait signals. Results in terms of UAR [%].

Feature sets
Task Kinematic Spectral NLD F.F. Early F.F. Late 1 CNN-GRU

2x10 35.0 (5.0) 53.9 (8.3) 57.8 (18.5) 51.1 (10.5) 55.1 60.8 (9.6)
4x10 33.3 (0.0) 59.4 (18.1) 57.8 (7.9) 57.8 (13.9) 60.0 58.1 (9.6)
Stop & Go 43.3 (24.9) 46.1 (16.7) 47.8 (14.3) 45.6 (15.1) 50.4 62.9 (9.6)
Heel toe Left 38.3 (13.5) 42.8 (19.9) 38.3 (21.1) 42.4 46.4 (9.6)
Heel toe Right 47.2 (18.6) 44.4 (18.3) 39.4 (18.3) 44.5 46.4 (9.6)
TUG 55.0 (15.8) 55.0 (17.5) 51.7 (11.7) 54.4 64.9 (9.6)
F. T. Early 52.2 (9.0) 58.3 (16.5) 70.6 (13.1)
F. T. Late 1 41.0 51.5 56.1 57.9 59.0 54.9 (9.6)

Table 9.38: Results classifying subjects from the Apkinson corpus in motor state
levels using gait signals. Results in terms of UAR [%].

Feature sets
Task Spectral NLD F. F. Early F. F. Late 1 CNN-GRU
4x10 33.3 (21.1) 43.3 (24.9) 43.3 (13.3) 25.6 44.4 (10.9)
Free Gait 33.3 (10.5) 30.0 (22.1) 43.3 (20.0) 28.1 37.2 (10.9)
Circles Left 43.3 (22.6) 43.3 (17.0) 50.0 (18.3) 52.4 37.5 (10.9)
Circles Right 33.3 (0.0) 30.0 (6.7) 33.3 (0.0) 48.0 20.0 (10.9)
Finger to nose Left 33.3 (0.0) 30.0 (6.7) 33.3 (0.0) 35.3 21.0 (10.9)
Finger to nose Right 33.3 (10.5) 26.7 (13.3) 36.7 (6.7) 23.4 37.5 (10.9)
Postural Tremor Left 36.7 (19.4) 50.0 (10.5) 30.0 (6.7) 13.9 35.6 (10.9)
Postural Tremor Right 26.7 (13.3) 33.3 (0.0) 33.3 (0.0) 30.6 59.0 (10.9)
Posture 60.0 (22.6) 50.0 (10.5) 46.7 (16.3) 35.3 33.3 (10.9)
Pronation / Supination Left 53.3 (16.3) 56.7 (13.3) 46.7 (16.3) 53.2 19.0 (10.9)
Pronation / Supination Right 30.0 (12.5) 40.0 (13.3) 30.0 (19.4) 49.6 33.3 (10.9)
F. T. Early 37.9 (13.5) 39.4 (12.6)
F. T. Late 1 29.8 27.8 38.8 35.9 34.4

The summary of the best results obtained using the different methods is shown
in Table 9.39 both for the Multimodal and Apkinson corpus. The results include
additional performance metrics like the weighted accuracy, the F-score, and the ac-
curacies obtained for each of the three classes. The model based on NLD features
in the Multimodal corpus is the method that provides the best accuracy to classify
patients in intermediate stage of the disease, which is the most misclassified class for
the other methods. It also shows to be the most accurate method to classify patients
in severe stages of the disease (89%).

The confusion matrices from Figure 9.25 show the top-3 results for the classifi-
cation of patients in the three disease levels for the Multimodal corpus. The results
observed for the case of NLD features in Figure 9.11a) show to be the most accu-
rate because this particular model is the most balanced to classify the three classes.
Most of the classification errors with the NLD features correspond to misclassifica-
tions between patients in mild and intermediate stages of the disease. Patients in
severe stages are also very accurately classified. These results indicate that there is a
clear separation between the patients in severe stages with respect to the other two
classes, suggesting additional experiments classifying not three but only two levels of
the disease severity.
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Table 9.39: Best results obtained for each method classifying subjects from the Mul-
timodal and Apkinson corpus in different motor-state levels according to the MDS-
UPDRS-III score.

Features Task ACC F-score UAR ACC ACC ACC
MILD INTERMEDIATE SEVERE

Multimodal corpus

Kinematic F. T. Early 52.0 0.483 52.2 45.0 39.0 70.0
Spectral 4x10 60.9 0.579 59.4 71.0 40.0 68.0
NLD F. T. Early 69.9 0.647 70.6 61.0 67.0 89.0
F. F. Early 4x10 59.5 0.556 57.8 75.0 32.0 68.0
F. F. Late 1 4x10 60.5 0.586 60.0 80.0 33.0 67.0
CNN-GRU TUG 62.9 0.632 64.9 66.0 53.0 78.0

Apkinson corpus

Spectral Posture 56.7 0.556 60.0 56.0 60.0 56.0
NLD Pron. / Sup. Left 54.7 0.438 56.7 50.0 60.0 50.0
F. F. Early Circles Left 49.3 0.436 50.0 33.0 30.0 89.0
F. F. Late 1 Pron. / Sup. Left 52.9 0.520 53.2 67.0 50.0 43.0
CNN-GRU Postural Tremor Right 46.2 0.411 59.0 57.0 20.0 100.0
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Figure 9.25: Details of the best result obtained classifying subjects from the Multi-
modal corpus in different motor-state severity levels according to the MDS-UPDRS-
III score. a) NLD features combining all tasks. b) CNN-GRU model from the TUG
task. c) Late fusion of kinematic, spectral, and NLD features for the 4x10 task.

The confusion matrices from Figure 9.26 show as well the top-3 results for the
Apkinson corpus. The results for the spectral features in Figure 9.26a) show to be
the most balanced among the three classes. The CNN-GRU model in Figure 9.26b)
is very accurate to classify patients in severe stages of the disease, despite the mis-
classifications of patients in mild stage classified as severe. A more problematic error
would be the contrary i.e., patients in severe stages classified as mild because they
wont be prescribed with the proper treatment according to their disease severity.

9.4 Asynchronous Multimodal Assessment

This section presents the results combining speech, handwriting, and gait signals
both to classify PD vs. HC subjects and to evaluate the motor-state severity of
the patients. Different strategies based on early and late fusion approaches were
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Figure 9.26: Details of the best result obtained classifying subjects from the Apkinson
corpus in different motor-state severity levels according to the MDS-UPDRS-III score.
a) Spectral features computed upon the posture exercise. b) CNN-GRU model from
the Postural tremor task. c) NLD features from the Pronation/Supination task.

considered for each case. The results of the fusion to classify PD patients and HC
subjects from the Multimodal corpus are shown in Table 9.40. The results include
experiments performed using the extracted features for each modality and the later
SVM classifiers, and the models based on deep learning methods. The fusion is
always performed considering both the top-5 methods that produced the best results
with each modality, and using all methods applied to each bio-signal. For the case
of speech signals the models considered in the top-5 fusion includes the phonological
features computed over the DDK tasks, the monologue, the read text, and the 6th and
7th sentences. The top-5 methods for handwriting signals include the in-air features
computed over the most complex handwriting exercises such as the alphabet, the
cube, the free writing, the house and the Rey-Osterrieth figure. The top-5 models
for gait signals include NLD features computed over the 2x10, Stop & Go, and heel
toe tapping tasks, and spectral features computed over the 2x10 and heel toe tapping
tasks. For the case of the all fusion, only the late fusion approaches were considered.
The top-5 fusion for the deep learning models include those tasks that achieve the
most accurate results for each modality, and include the DDKs and the sentences 2,
4, 8, and 9 for speech signals, the alphabet, cube, ID, name, and the Rey-Osterrieth
figure for handwriting, and the five tasks from the gait signals.

The best result using the feature extraction and the SVM classifiers is obtained
for the early fusion of the top-5 features from the handwriting and gait signals
(UAR=99.2%). This results improves in up to 12.2% the ones obtained using only
speech signals (see Table 9.1), in up to 3.3% the ones obtained with handwriting
signals (see Table 9.21), and in up to 4.9% the ones obtained using only gait signals
(see Table 9.31). No high differences are observed when using the early or late fusion
strategies, neither using the top-5 or the all fusions. However, the results using the
top-5 models are slightly more accurate. The fusion using the deep learning tech-
niques show that the best results is also obtained when the handwriting and gait
signals are combined (UAR=99.4%) using the late fusion of the top-5 model for each
bio-signal. The are not big differences observed when using the Late 1 or Late 2
fusion approaches.



186 Chapter 9. Experiments & Results

Table 9.40: Classification of PD patients vs. HC subjects from the Multimodal corpus
combining the different speech, handwriting, and gait models.

Fusion Modalities # Feature sets ACC Fscore UAR SENS SPEC AUC
/ Classifiers

Feature extraction and SVMs

Early fusion Top-5 Speech+Handwriting 10 88.8 0.856 89.6 88.3 90.8 0.953
Late fusion 1 Top 5 Speech+Handwriting 10 88.9 0.876 89.5 87.9 91.0 0.953
Late fusion 2 Top 5 Speech+Handwriting 10 88.3 0.869 88.8 87.5 90.0 0.953
Late fusion 1 all Speech+Handwriting 120 86.7 0.849 86.0 87.9 84.0 0.954
Late fusion 2 all Speech+Handwriting 120 87.3 0.862 89.2 84.4 94.0 0.959
Early fusion Top-5 Speech+Gait 10 95.7 0.936 97.5 95.0 100.0 0.991
Late fusion 1 Top 5 Speech+Gait 10 88.5 0.872 89.2 87.5 90.9 0.947
Late fusion 2 Top 5 Speech+Gait 10 89.5 0.881 89.6 89.3 89.9 0.949
Late fusion 1 all Speech+Gait 108 85.4 0.833 84.2 87.5 80.8 0.943
Late fusion 2 all Speech+Gait 108 87.9 0.868 89.9 84.8 94.9 0.956
Early fusion Top-5 Handwriting+Gait 10 98.8 0.985 99.2 98.3 100.0 0.998
Late fusion 1 Top 5 Handwriting+Gait 10 91.4 0.902 92.2 90.2 94.2 0.983
Late fusion 2 Top 5 Handwriting+Gait 10 91.4 0.902 92.2 90.2 94.2 0.976
Late fusion 1 all Handwriting+Gait 48 88.0 0.846 82.6 95.9 69.2 0.948
Late fusion 2 all Handwriting+Gait 48 87.4 0.857 87.7 87.0 88.5 0.956
Early fusion Top-5 Speech+Handwriting+Gait 15 95.4 0.941 97.2 94.3 100.0 0.995
Late fusion 1 Top 5 Speech+Handwriting+Gait 15 90.4 0.893 91.4 88.8 94.0 0.956
Late fusion 2 Top 5 Speech+Handwriting+Gait 15 89.5 0.883 90.5 87.9 93.0 0.956
Late fusion 1 all Speech+Handwriting+Gait 138 87.0 0.855 87.6 86.2 89.0 0.951
Late fusion 2 all Speech+Handwriting+Gait 138 89.2 0.881 91.1 86.2 96.0 0.961

Deep learning models

Late fusion 1 Top 5 Speech+Handwriting 10 95.7 0.951 96.9 93.8 100.0 0.981
Late fusion 2 Top 5 Speech+Handwriting 10 93.5 0.928 95.3 90.6 100.0 0.996
Late fusion 1 all Speech+Handwriting 33 96.9 0.965 97.8 95.5 100.0 0.976
Late fusion 2 all Speech+Handwriting 33 96.0 0.955 97.1 94.2 100.0 0.997
Late fusion 1 Top 5 Speech+Gait 10 93.4 0.924 95.3 90.7 100.0 0.998
Late fusion 2 Top 5 Speech+Gait 10 93.7 0.927 95.6 91.2 100.0 0.998
Late fusion 1 all Speech+Gait 24 97.5 0.971 98.2 96.4 100.0 0.998
Late fusion 2 all Speech+Gait 24 96.3 0.958 97.3 94.6 100.0 0.999
Late fusion 1 Top 5 Handwriting+Gait 10 99.4 0.993 99.6 99.2 100.0 0.998
Late fusion 2 Top 5 Handwriting+Gait 10 98.8 0.986 99.2 98.4 100.0 0.998
Late fusion 1 all Handwriting+Gait 21 99.4 0.993 99.6 99.2 100.0 0.998
Late fusion 2 all Handwriting+Gait 21 98.9 0.986 99.2 98.4 100.0 0.998
Late fusion 1 Top 5 Speech+Handwriting+Gait 15 96.6 0.961 97.5 95.1 100.0 0.981
Late fusion 2 Top 5 Speech+Handwriting+Gait 15 95.4 0.948 96.7 93.3 100.0 0.996
Late fusion 1 all Speech+Handwriting+Gait 39 96.6 0.961 97.5 95.1 100.0 0.995
Late fusion 2 all Speech+Handwriting+Gait 39 96.3 0.958 97.3 94.6 100.0 0.998

The scatter plots observed in Figure 9.27 show the distribution of the classification
scores for the classifiers when the models for speech, handwriting and gait are com-
bined. The decision function of the multimodal system is also depicted in the figures,
and computed based on Equation 9.1 for the Late 1 fusion, being M the number of
modalities, yi the scores for the i-th modality, and α̂i the weight associated to each
classifier (see Equation 7.2). There are overlaps of the samples when the traditional
features and SVM classifiers are considered (Figures 9.27a) to d)). The results us-
ing the deep learning models show that the scores for the HC subjects are mainly
concentrated on the left bottom part of the figures, indicating the confidence of the
classifiers to discriminate this group. The scores for the PD patients are distributed
over the complete space, showing in some cases that they are misclassified in one of
the modalities, but when the two or three bio-signals are considered together, the
classification is performed correctly.
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Y =
M∑
i=1

yiα̂i (9.1)
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Figure 9.27: Distribution of the classification scores from the subjects of the Multi-
modal corpus for each modality.

The multimodal analysis is also performed in the Apkinson corpus, combining
the outputs from the speech and movement models. The results are observed in
Table 9.41. The top-5 speech feature sets used in the fusion include the RAE-based
features computed upon the DDK1 (/pa-ta-ka/), monologue, and sentence 8 tasks, the
articulation features computed upon the DDK1 task, and the phonological features
computed upon the monologue. The top-5 features from the movement analysis
include the NLD features computed upon the finger-to-nose, postural tremor, free
gait, pronation-supination, and 4x10 tasks. The top speech tasks for the deep learning
fusion include the three DDK exercises and sentences 8 and 9. The top movement
tasks used in the deep learning fusion include the 4x10, free gait, circles, and finger-
to-nose tasks.

The best results combining speech and movement features and using the SVM
classifier were obtained with the Late 2 fusion of the top-5 feature sets (UAR=92.2%),
which improves in up to 2.7% the results obtained using only speech features (see
Table 9.2), and in up to 10.1% the results obtained using only the movement features
(see Table 9.32). The highest UAR obtained combining the deep learning models
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is 99.2%, which is 2% higher than the ones observed using only speech signals, and
14.9% than the obtained one using only the movement signals. This result should
be taken carefully because the small size of the Apkinson corpus, and need to be
validated with additional data collected from more patients and HC subjects.

Table 9.41: Classification of PD patients vs. HC subjects from the Apkinson corpus
combining the speech and movement models.

Fusion Modalities # Feature sets ACC Fscore UAR SENS SPEC AUC
/ Classifiers

Feature extraction and SVMs

Early fusion Top-5 Speech+Movement 10 86.7 0.830 83.5 75.0 92.0 0.944
Late fusion 1 Top 5 Speech+Movement 10 91.3 0.907 89.5 79.1 100.0 0.960
Late fusion 2 Top 5 Speech+Movement 10 93.2 0.929 92.2 86.0 98.3 0.978
Late fusion 1 all Speech+Movement 102 86.4 0.863 87.3 93.0 81.7 0.953
Late fusion 2 all Speech+Movement 102 87.4 0.862 84.9 69.8 100.0 0.987

Deep learning models

Late fusion 1 Top 5 Speech+Movement 10 95.1 0.951 95.8 100.0 91.7 0.998
Late fusion 2 Top 5 Speech+Movement 10 99.0 0.990 99.2 100.0 98.3 0.998
Late fusion 1 all Speech+Movement 25 96.9 0.973 96.5 94.7 98.3 0.998
Late fusion 2 all Speech+Movement 25 99.0 0.990 98.8 97.7 100.0 0.998

The scatter plots for the Late 1 all fusion shown in Figure 9.28 show the distri-
bution of the speech and movement scores for the fusion system. For the case of the
fusion of traditional features and SVM classifiers in Figure 9.28a) note the overlap
that appears close to the decision function. Conversely, for the case of the fusion of
the deep learning models in Figure 9.28b) note that there is not such an overlap close
to the boundary. The misclassified subjects (1 HC subject and 2 PD patients) are
far from the decision boundary of the classifier. Particularly, the misclassified HC
subject (71 years old female) in the bottom right part of the figure was misclassified
based on her speech model but she was correctly classified based on her movement
model. For the case of the two misclassified patients they were as well misclassified
based on their speech, but correctly classified based on their movement. These type
of visualizations help to better understand the decisions made by each classifier and
how each one contributes to the global decision.

The previous experiments show that the fusion of the different bio-signals improves
the classification accuracy to discriminate between PD patients and HC subjects.
Now the aim is to evaluate whether the fusion of the different modalities also helps
to improve the assessment of the motor-state severity of the patients based on the
estimation of the MDS-UPDRS-III. The analysis is not performed with the Apkinson
corpus because the lack of enough labeled data to train the regression approaches.
The results obtained combining the outputs of the different bio-signals to estimate
the MDS-UPDRS-III of the patients are shown in Table 9.42. The analysis did not
include the results of the deep learning models because they were not accurate for
the individual modalities, thus only the models based on feature extraction and SVR
regression were considered. The fusion based on the top modalities only considers the
feature sets that individually achieved fair Spearman’s correlations (|ρ| > 0.3). The
top results for speech signals include phonological features computed from the DDK1
(/pa-ta-ka/) and the sentences 3, 8, and 9 tasks. The top features for handwriting
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Figure 9.28: Distribution of the classification scores from the subjects of the Apkinson
corpus for each modality.

only includes kinematic features computed from the spiral template, numbers, and
house tasks. Finally, the top features for the gait signals include spectral features
computed from the 2x10 and 4x10 tasks, and NLD features computed from the 2x10,
4x10, and Stop & Go tasks.

Table 9.42: Evaluation of the motor-state severity of patients from the Multimodal
corpus based on the MDS-UPDRS-III using the speech, handwriting, and gait fea-
tures.

Fusion Modalities # of Feature sets r r ρ ρ MAE
/ Classifiers p-value p-value

Feature extraction and SVMs

Early fusion Top Speech+Handwriting 7 0.329 0.002 0.329 0.002 10.0
Late fusion 1 Top Speech+Handwriting 7 0.177 0.024 0.267 0.001 13.5
Late fusion 2 Top Speech+Handwriting 7 0.535 0.000 0.533 0.000 9.8
Late fusion 1 all Speech+Handwriting 120 0.042 0.594 0.114 0.147 14.1
Late fusion 2 all Speech+Handwriting 120 -0.215 0.006 -0.364 0.000 11.1
Early fusion Top Speech+Gait 9 0.581 0.000 0.633 0.000 8.3
Late fusion 1 Top Speech+Gait 9 0.220 0.005 0.300 0.000 14.3
Late fusion 2 Top Speech+Gait 9 0.578 0.000 0.598 0.000 9.1
Late fusion 1 all Speech+Gait 108 0.116 0.143 0.243 0.002 14.3
Late fusion 2 all Speech+Gait 108 -0.026 0.742 -0.243 0.002 12.6
Early fusion Top Handwriting+Gait 8 0.614 0.000 0.594 0.000 8.7
Late fusion 1 Top Handwriting+Gait 8 0.450 0.000 0.648 0.000 14.1
Late fusion 2 Top Handwriting+Gait 8 0.594 0.000 0.663 0.000 7.9
Late fusion 1 all Handwriting+Gait 48 0.525 0.000 0.471 0.000 16.0
Late fusion 2 all Handwriting+Gait 48 0.350 0.001 0.283 0.007 15.5
Early fusion Top Speech+Handwriting+Gait 12 0.612 0.000 0.619 0.000 7.4
Late fusion 1 Top Speech+Handwriting+Gait 12 0.450 0.000 0.648 0.000 14.1
Late fusion 2 Top Speech+Handwriting+Gait 12 0.594 0.000 0.663 0.000 7.9
Late fusion 1 all Speech+Handwriting+Gait 138 0.056 0.482 0.129 0.101 14.4
Late fusion 2 all Speech+Handwriting+Gait 138 0.107 0.174 0.228 0.004 13.8
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The highest correlation between the real and estimated MDS-UPDRS-III scores
is observed when gait and handwriting signals are combined using the Late 2 fusion
approach of the top features for each modality (ρ = 0.663). The same result is
also obtained by combining the speech, handwriting, and gait signals. The results
obtained here are 80.6% more correlated than the best results obtained using only
speech signals (ρ = 0.367). The results also improve in 7.6% with respect to the ones
reported using only handwriting signals (ρ = 0.616), and in 2.6% with respect to the
ones obtained using only gait signals (ρ = 0.646). The best results are in general
obtained with the fusion of the top features for each modality. The correlation is
reduced when all features and tasks are considered together.

The last experiment consists of the fusion of the three bio-signals to classify PD
patients in different motor-state severity levels based on the MDS-UPDRS-III score,
in the same way as the addressed separately for each bio-signal. The results are shown
in Table 9.43. The top-5 features considered for the speech signals includes prosody
features computed from the DDK2 (/pa-ka-ka/) and the sentence 6, phonation fea-
tures computed from the sentence 4, and articulation features computed from the
sentences 6 and 8. The top-5 handwriting features includes in-air features computed
from the circle drawing and the numbers tasks, and kinematic features extracted from
the rectangles, the Rey-Osterrieth figure, and the spiral template. Finally, the top-5
gait features includes spectral features extracted from the 4x10 and TUG tasks, and
NLD features computed from the 2x10, 4x10, and TUG tasks. These results give an
idea about the importance of the different feature sets and tasks for the evaluation
of the disease severity of the patients.

Table 9.43: Classification of patients from the Multimodal corpus in three different
severity levels based on the MDS-UPDRS-III using the speech, handwriting, and gait
models.

Fusion Modalities # Feature sets ACC F-score UAR ACC ACC ACC
/ Classifiers Mild Intermediate Severe

Feature extraction and SVMs

Early fusion Top-5 Speech+Handwriting 10 45.8 0.421 46.7 47.0 44.0 56.0
Late fusion 1 Top 5 Speech+Handwriting 10 51.9 0.515 51.9 67.0 40.0 49.0
Late fusion 1 all Speech+Handwriting 120 51.2 0.497 51.5 59.0 27.0 68.0
Early fusion Top-5 Speech+Gait 10 53.6 0.511 52.8 50.0 56.0 59.0
Late fusion 1 Top 5 Speech+Gait 10 56.8 0.564 56.9 69.0 44.0 58.0
Late fusion 1 all Speech+Gait 108 53.7 0.522 53.9 69.0 29.0 64.0
Early fusion Top-5 Handwriting+Gait 10 54.2 0.436 53.3 62.0 50.0 40.0
Late fusion 1 Top 5 Handwriting+Gait 10 62.5 0.612 62.4 81.0 40.0 67.0
Late fusion 1 all Handwriting+Gait 48 55.7 0.545 55.8 71.0 33.0 63.0
Early fusion Top-5 Speech+Handwriting+Gait 15 55.3 0.467 55.0 62.0 29.0 67.0
Late fusion 1 Top 5 Speech+Handwriting+Gait 15 58.0 0.577 58.1 70.0 45.0 68.0
Late fusion 1 all Speech+Handwriting+Gait 138 53.1 0.505 53.4 70.0 22.0 68.0

Deep learning models

Late fusion 1 Top 5 Speech+Handwriting 10 46.9 0.467 47.0 37.0 47.0 57.0
Late fusion 1 all Speech+Handwriting 33 39.9 0.395 39.6 44.0 47.0 28.0
Late fusion 1 Top 5 Speech+Gait 10 42.4 0.411 42.1 57.0 46.0 24.0
Late fusion 1 all Speech+Gait 24 41.1 0.394 40.5 55.0 45.0 25.0
Late fusion 1 Top 5 Handwriting+Gait 10 47.1 0.450 49.0 26.0 37.0 85.0
Late fusion 1 all Handwriting+Gait 21 42.3 0.400 45.5 27.0 36.0 80.0
Late fusion 1 Top 5 Speech+Handwriting+Gait 15 46.9 0.467 47.0 37.0 47.0 57.0
Late fusion 1 all Speech+Handwriting+Gait 39 48.2 0.475 46.0 38.0 46.0 57.0

The most accurate results are observed again when handwriting and gait sig-
nals are combined using the late fusion over the top-5 features for each bio-signal
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(UAR=62.4%). This result is 15.9% higher than the reported using only speech sig-
nals (UAR=46.5%) and 5.9% higher than the reported only with handwriting signals
(UAR=56.5%). The result is 8.2% lower than the observed one only with gait signals
(UAR=70.6%, see Table 9.39).

9.5 Analysis of the Experimental Results
The automatic assessment of PD patients is evaluated in this chapter using infor-
mation from speech, handwriting, and gait signals. Each modality includes a set of
different exercises that the participants perform for the analysis.

Speech analysis is based on different dimensions to model the phonation, articu-
lation, prosody, and phonological aspects of the speech. The analysis includes also
the evaluation of representation learning strategies based on autoencoders and deep
learning methods to characterize and evaluate the speech of the participants. The
speech exercises performed by the subjects include DDK tasks like the rapid repe-
tition of the syllables /pa-ta-ka/, read sentences, a phonetically balanced read text,
and a monologue. Binary classification experiments i.e., PD vs. HC are addressed to
test the suitability of each speech task and each method for the automatic detection
of the disease. Additionally, regression experiments are performed to evaluate the
dysarthria severity of the subjects according to the proposed m-FDA scale. Multi-
class experiments are also performed to group patients in different levels of dysarthria
severity (mild, intermediate, and severe). The results indicate that it is possible to
classify PD patients and HC subjects with accuracies up to 87.7% when combining
the different speech features and speech exercises (see Table 9.1), and up to 96.2%
using the deep learning techniques (see Table 9.3). The results also indicate that
phonological features are the most accurate to classify PD patients and HC subjects,
and that the other feature sets are complementary to improve the accuracy. The
most accurate speech exercises to classify PD vs. HC subjects are the DDKs and the
read text, which allows to define a battery of exercises used in clinical practice for the
assessment of the disease. The classification of PD vs. HC subjects is also performed
on the data collected using the Apkinson app. The results indicate that there is not
a visible impact in the classification when speech signals collected from smartphones
are considered, and that only phonation and prosody analyses are affected because
the use of the smartphones.

The accuracy obtained with prosody and phonological features depends to some
extend on the phonetic content present in the sentences pronounced by the patients.
Particularly, sentences with a higher number of voiced phonemes are the most accu-
rate for the prosody analysis, and sentences with more presence of plosives, fricatives,
and vowels are more accurate when considering the phonological analysis. There are
other methods like the end-to-end deep learning strategy based on ResNet that do not
depend on the phonetic content of the sentence, which indicates that such methods
can be used for non-intrusive evaluation of the patients.

The experiments addressed to evaluate the dysarthria severity of the subjects are
performed in three scenarios: (1) prediction of the value of the m-FDA scale using
regression approaches; (2) longitudinal evaluation of the patients from the Longitu-
dinal and the At-Home corpus using both speaker models and regression algorithms;
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and (3) classification of patients in different levels of dysarthria severity (mild, in-
termediate, severe) using multi-class classification methods. The results evaluating
the dysarthria severity using the regression approach show correlations up to 0.61,
which are obtained when all speech tasks are considered, and using phonological
features. This fact gives an idea about the importance of these features to model
the dysarthria severity of the participants. In addition, the most sensitive tasks to
evaluate the severity of the speech impairments of the patients are the DDK exer-
cises. This is particularly useful specially considering that those tasks are very easy
to produce and are potentially useful to evaluate the speech of patients in almost
every language. Unfortunately, the results using the deep learning models are not
accurate to evaluate the dysarthria severity of the patients. The main reason would
be because the lack of enough labeled data to train the regression models.

The longitudinal evaluation of the dysarthria severity of patients is performed in
two scenarios to cover both the long- and short-term progression of the disease, using
the Longitudinal and the At-Home corpus, respectively. The disease progression
of patients is modeled using two strategies: (1) an SVR regression approach, and
(2) unsupervised speaker models based on GMM-UBM. The disease progression in
long-term time intervals is predicted with a Spearman’s correlation up to 0.51 using
phonological features and DDK exercises, similar to previous experiments predicting
the m-FDA score of the patients. This result gives insights about the generalization
capacity of the trained model to the dysarthria severity of new patients. The results
using the GMM-UBM system to predict the disease progression of the patients were
not as good as the ones obtained using the supervised model based on the SVR. This
result is contrary to the presented previously in [Aria 18a], where the GMM-UBM
systems were better. However, for this thesis, nearly the double of training data was
available, in comparison with the previously available, which makes the SVR model
more accurate than the GMM-UBM system. The disease progression in short-term
time intervals is predicted with a Spearman’s correlation up to 0.49 using as well
phonological features. These results allow to evaluate not only the dysarthria level
but also to map the outcomes with the medication intake of the patients. For the
At-Home corpus, similar results are obtained with both the SVR and the GMM-UBM
systems. In summary, the progression of the dysarthria level both in short- and long-
term intervals is predicted with moderate correlations for most of the patients. There
are even some patients in the Longitudinal corpus whose dysarthria level progression
is predicted with strong correlations. These results suggests that the proposed models
are suitable to monitor the progression of the dysarthria level in PD patients both
in long- and short-term intervals, as well as the possible influence of the medication
intake on the dysarthria severity.

Although there is some correlation between the predicted and the real m-FDA
scores, it is more suitable for the patients to know in which stage of the disease
they are, rather than to have the prediction of a continuous scale. In addition, for
medical applications it is difficult to have a great amount of data to train suitable
regression algorithms like an SVR or a CNN, as it was observed in the regression
results. For these reasons it is better to divide the patients into different groups
according to their disease severity, thus, it is possible to classify patients in mild,
intermediate, and severe stages of the disease. The subjects from the Multimodal
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corpus were grouped into three classes according to their dysarthria severity based
on the m-FDA scale. These classes are defined based on the 33rd and 66th percentiles
of the total scale in order to have equal priors for each class (see Figure 9.10). The
results indicate that it is possible to classify the patients in different levels of the
disease with accuracies of up to 61% using the ResNet-based models. Most of the
classification errors correspond to patients in mild and severe stages of the disease
that are classified in intermediate stage. This is very positive since they are not
mainly misclassified in the other extreme class. These results are also consistent with
the disease progression.

The evaluation of the motor-state severity of the patients using the MDS-UPDRS-
III scale was also performed using the speech signals. The highest correlations are
observed with the phonological features, although none of the models is accurate
enough to evaluate the motor-state severity of the patients. This is expected since
the MDS-UPDRS-III is a complete motor scale in which only one of the items is
related to speech symptoms. Hence it is not suitable nor fair to try to evaluate
the full motor-state severity of patients using only speech signals. However, these
speech features could provide complementary information when they are combined
with handwriting and gait signals.

The handwriting analysis is based on different features to model the kinematic,
in-air, and geometric aspects of the strokes. The assessment includes also the evalua-
tion of deep learning methods to characterize and evaluate both the online and offline
handwriting information of the participants. The handwriting exercises performed by
the subjects include drawing of geometrical shapes like Archimedean spirals, cubes,
circles, houses, among others. The protocol include as well writing tasks like the
alphabet, a free sentence, the numbers, the name of the participants, among oth-
ers. Finally, the analysis includes the drawing of the Rey Osterrieth figure, which
is a standard neurophysiological test to evaluate cognitive aspects of the partici-
pants [Shin 06]. The experiments include binary classification to test the suitability
of each handwriting task and each method for the automatic detection of the dis-
ease. Additionally, regression experiments are performed to evaluate the motor-state
severity of the patients according to the MDS-UPDRS-III scale. Finally, multi-class
experiments are also performed to classify patients in different levels of the disease
severity (mild, intermediate, and severe), according to the MDS-UPDRS-III scale.
The results indicate that it is possible to classify PD patients and HC subjects with
accuracies up to 97.8% when combining the different handwriting features and tasks
(see Table 9.21). The results also suggest that early fusion is better to model the
different and complementary information produced by each feature set, and that late
fusion methods deal better with the redundant information that appears when using
the same features computed from different tasks. On the one hand the more complex
exercises like the alphabet, the free writing or the Rey figure are better modeled
with in-air features. These more complex tasks have a lot of pen-up and pen-down
transitions, which are accurately characterized with the proposed in-air features. On
the other hand, the simple drawing exercises like Archimedean spirals and circles are
better modeled with the combination of kinematic and in-air features because they
do not contain that high amount of transition movements. Unfortunately, the pro-
posed geometric features do not provide the expected accuracy. Additional analyses
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and features can be proposed to model the trajectory and accuracy of the strokes
performed by the patients when drawing different geometric shapes.

The results using the deep learning methods to classify PD patients and HC
subjects using handwriting signals show accuracies of up to 99.2% using online hand-
writing samples from the pen-up and pen-down transitions (see Table 9.22). The
result obtained for the offline handwriting model are not that accurate compared
to the ones obtained with the online models, which suggest that there is important
information in the handwriting aspects of PD patients that is only available with the
online analysis. The comparison between the results observed for both online models
(transitions and full segments) shows that there are important differences depend-
ing on the addressed handwriting task. Simple drawing shapes are generally better
modeled with the Full segment models. Conversely, the most complex tasks like the
alphabet are better modeled with the network that only consider the pen-up and
pen-down transitions. Finally, the results observed with the Archimedean spirals are
not as good as expected, having in mind that this is one of the most used handwriting
tasks for the assessment of PD patients in the literature (see Table 5.1). This aspect
has to be carefully considered when designing evaluation protocols for the assessment
of patients.

The experiments addressed to evaluate the motor-state severity of the subjects
are performed in three scenarios using the handwriting signals: (1) the prediction of
the value of the MDS-UPDRS-III scale using regression approaches; (2) the disease
progression evaluation of the patients from the Longitudinal corpus using both user
models and regression algorithms; and (3) the classification of patients in different
levels of the motor state severity (mild, intermediate, severe) using multi-class clas-
sification methods. The results evaluating the MDS-UPDRS-III severity using the
regression approach show correlations up to 0.61, which are obtained when all hand-
writing tasks are considered, and using the kinematic features. Unfortunately, the
results using the deep learning models are not accurate to evaluate the motor-state
severity of the patients. The main reason is the lack of labeled data to train the
regression models.

The longitudinal evaluation of the motor-state severity of patients is performed
using the handwriting signals with the same two strategies considered for the speech
modeling: (1) an SVR regression approach, and (2) unsupervised user models based
on GMM-UBM. These methods are used to predict the progression of the MDS-
UPDRS-III of patients from the Longitudinal corpus. The disease progression is
predicted with a Spearman’s correlation up to 0.70 using the kinematic features and
the fusion of all handwriting tasks. In addition, the most complex tasks like writing
the name, the numbers, or writing a sentence are the most accurate ones to predict
the disease progression of the patients. The results using the GMM-UBM system
to predict the disease progression of the patients were not as accurate as the ones
obtained using the supervised model based on the SVR, similar to the results observed
for the case of speech signals.

Although the strong correlations obtained between the predicted and the real
MDS-UPDRS-III scores, and similar to the experiments addressed with the speech
signals, it is more suitable for the patients to know in which stage of the disease
they are, rather than to have the prediction of a continuous scale. The patients were
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divided into three groups according to their disease severity, thus it is possible to
classify patients in mild, intermediate, and severe stages of the disease. The division
for the three classes was performed using the 33rd and 66th percentiles of the total
MDS-UPDRS-III scale, in order to have equal priors for each class (see Figure 9.12).
The results indicate that it is possible to classify the patients in different levels of
the disease with accuracies up to 56.5% using both the deep learning models and
the fusion of all feature sets and handwriting tasks. The models are very accurate
to detect patients in severe stages of the disease. Patients in intermediate state are
very difficult to classify. These results suggest that would be better and easier to
classify patients in two levels of the disease (divided by the median) rather than the
classification in the three levels addressed here.

The gait analysis is based on features to model the kinematic, spectral, and non-
linear aspects of the walking process of the patients. Kinematic features include
different measurements to model different properties in the strides such as time, dis-
tance, and velocity of each step. Spectral features are designed to model the spectral
wealth and the harmonic structure of the gait signals, and include features like the
Freeze index [Zach 15], which is highly used to evaluate the presence of FoG episodes
in PD patients. Finally, NLD features are designed to model stability, regularity,
and long-range autocorrelations of the gait signals. The methods include as well a
proposed CNN-GRU neural network to process the raw gait signals. The gait anal-
ysis is performed both with the data collected using the eGait inertial sensors and
using the Apkinson app. Different gait exercises are collected and analyzed with the
eGait system, including short walk exercises like 2x10 and 4x10 tasks, in addition
to specifically designed tasks such as Stop & Go, heel toe tapping, and the TUG
test. For the case of the Apkinson data additional hand movement exercises like
Finger-to-nose, Circles, Postural tremor, and Pronation / Supination are included
in the analysis. The performed experiments include binary classification to test the
suitability of each model to discriminate between PD patients and HC subjects. Ad-
ditionally, regression experiments are performed to evaluate the motor-state severity
of the patients according to the MDS-UPDRS-III scale. Finally, multi-class exper-
iments are performed to classify patients in different levels of the disease severity
(mild, intermediate, and severe). The results indicate that it is possible to classify
PD patients and HC subjects with accuracies up to 86.2% using NLD features, and
up to 98.7% using the deep learning techniques. The most accurate gait exercise to
classify PD vs. HC subjects is the Stop & Go task, which is the one when the patients
have to perform more start/stop movements of the lower limbs.

The results with the Apkinson data indicate a reduction in the accuracy of about
15%. This result is explained because in the smartphone data only one 3-axial ac-
celerometer is available, compared to the eGait system where both 3-axial accelerom-
eters and gyroscopes are attached to each foot. However, the smartphone offers the
cheapest solution to evaluate the gait of PD patients. With the observed accuracy
(up to 84.4% using the CNN-GRU), it is possible to perform a preliminary evaluation
of the patient at-home. Then if some change is detected in the gait and movement of
the patient, (s)he can go to the clinic to be evaluated with more robust system like
the eGait.
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The evaluation of the MDS-UPDRS-III score of the patients using gait signals is
performed with kinematic, spectral, and NLD features. The motor state-severity can
be estimated with Spearman’s correlation of up to 0.65 combining all feature sets
and gait tasks. In addition, the best result is obtained for many of the gait tasks
when only the NLD features were considered, which validates the importance of these
features to model the walking process of PD patients. High correlations are obtained
also with spectral features computed upon the 4x10 task (ρ=0.62), which is very close
to the best result achieved.

The longitudinal evaluation of the motor-state severity is addressed with the gait
signals with the same two strategies considered for the speech and handwriting mod-
eling: (1) an SVR regression approach, and (2) user models based on GMM-UBM.
These methods are used to predict the progression of the MDS-UPDRS-III of patients
from the Longitudinal corpus. The disease progression is predicted with a Spearman’s
correlation up to 0.77 using the SVR and combining spectral and NLD features from
the 4x10 task. Strong correlations are also obtained considering separately spectral
and NLD features for some of the gait tasks. This is very positive considering the
fact that these results are obtained using an independent test set that was never seen
during a cross-validation strategy. In addition, the results using the GMM-UBM
system to predict the disease progression of the patients were not as accurate as the
ones obtained using the supervised model based on the SVR, similar to the observed
for the case of speech and handwriting signals.

The classification of patients in different levels of the disease severity is also per-
formed with gait signals in a similar way to the addressed with speech and hand-
writing signals. Three classes are defined based on the 33rd and 66th percentiles of
the total MDS-UPDRS-III scale in order to discriminate between mild, intermediate,
and severe levels of motor-state severity. The results indicate that it is possible to
discriminate among the three severity levels with an accuracy up to 70.6%, which is
11.6% higher than the best result observed with handwriting signals. The best result
is also obtained with the use of NLD features, similar to the bi-class problem and
the estimation of the MDS-UPDRS-III using the regression approach. These results
confirm the importance of the NLD analysis to model the different gait impairments
that appear due to neurodegeneration [Dier 17, Chom19, Pere 20b]. In addition, the
4x10 and the TUG tasks exhibit on average higher accuracies than the ones observed
in other tasks like heel-toe tapping and 2x10. The results using the signals from the
Apkinson app indicate that there are differences of up to 10% with respect to the
results observed for the Multimodal corpus. These differences are explained again be-
cause in the smartphone data only one 3-axial accelerometer is available, compared to
the eGait system where both a 3-axial accelerometer and a gyroscope are attached to
each foot. The best result for the Apkinson data was obtained with spectral features
computed over the posture exercise (60.0%). Additional data should be collected and
labeled in order to improve the results using the different proposed methods.

The fusion of the speech, handwriting, and gait signals is performed both with
early and late fusion strategies. The fusion was performed considering both the top-5
methods that produced the best results with each modality, and with the total of
methods applied to each bio-signal. The best result using the traditional feature
extraction techniques was obtained with the early fusion of the top-5 features from
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the handwriting and gait signals (UAR=99.2%). This results improved in 12.2%
the ones obtained using only speech signals, in up to 3.3% the ones obtained with
handwriting signals, and in up to 4.9% the results obtained with gait signals. No high
differences are observed when using the early or late fusion strategies, neither using
the top-5 or the fusion of all features and tasks. However, the results using the top-5
models are slightly more accurate. The fusion using the deep learning techniques
shows that the best result was also obtained combining the handwriting and gait
signals (UAR=99.4%). These results were also better than the reported ones for the
individual bio-signals.

The speech and movement signals from the Apkinson corpus were also combined.
The best result using the SVM classifiers was obtained with the late fusion of the top-
5 feature sets from each modality (UAR=92.2%), which improved in up to 2.7% the
results obtained using only speech features, and in up to 10.1% the results obtained
using only the movement features. The highest UAR combining the deep learning
models was 99.2%, which is 2% higher than the observed one using only speech signals,
and 14.9% than the obtained using only the movement signals. This result should be
taken carefully because the small size of the Apkinson corpus, and they need to be
validated with additional data collected from more patients and HC subjects.

The fusion of speech, handwriting, and gait features also improved the assessment
of the motor-state severity of patients based on the MDS-UPDRS-III scale. The
best result was observed when gait and handwriting signals are combined using the
late fusion approach of the top features for each modality (ρ = 0.663). The same
result was also obtained combining the speech, handwriting, and gait signals. The
results improved in up to 80.6% the best results obtained using only speech signals
(ρ = 0.367), in 7.6% the ones reported using only handwriting signals (ρ = 0.616),
and in 2.6% the ones obtained using only gait signals (ρ = 0.646).

The last experiment consisted of the fusion of the three bio-signals to classify
patients in three levels of the disease severity based on the MDS-UPDRS-III score.
The results of the multimodal system outperformed those reported using only speech
and handwriting signals, but not the ones obtained using gait signals, which are the
most accurate for the addressed problem with an accuracy of up to 70.6%.
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Chapter 10

Outlook

The methods and techniques proposed in this thesis can be extended to other appli-
cations. A potential scenario that can be considered is the automatic evaluation of
patients affected by other neuro-degenerative disorders with similar symptoms such as
Huntington’s disease or essential tremor. It is particularly known that Huntington’s
disease is more invasive than PD, producing more aggressive motor and cognitive
impairments. This is particularly important from demographic reasons because there
is evidence about the high incidence and clusters of genetically affected Huntington’s
disease patients in Venezuela and in the north coast of Colombia [Para 08, Cast 16].
The automatic assessment of patients affected by Huntington’s disease will help to
get better treatment to slow-down the progression of the disease. At the same time,
the proposed methodologies can be extended to problems related to automatic dis-
crimination between patients affected by different neuro-degenerative diseases.

The proposed methods can also be potentially used to detect prodromal stages
of the PD, which would benefit the development of future neuro-protective thera-
pies [Post 15]. There is evidence showing that the detection of prodromal stages of
PD is possible from speech [Hlav 17] and gait [Alib 16]. The main difficulty for these
studies is to find patients in pre-clinical stages, i.e. before the disease appears or is at
least observable by clinicians. Once the target group is found, it is required to start
the monitoring of patients over time in order to understand which are the patterns
that become abnormal when early signs of the disease appear. This is particularly
important given the fact that the north of Antioquia (Colombia) is perhaps one of
the areas with the highest prevalence of genetic PD [Pine 06]. Another population
that can be considered to study prodromal stages of the disease includes patients suf-
fering from rapid eye movement (REM) sleep behavior disorders (RBD). According
to recent studies, there is a high probability for these people to develop PD within
their next twelve years of life [Post 09, Hlav 17].

An additional scenario that can be potentially covered using the proposed methods
includes the analysis and classification of patients affected by sporadic PD, and those
affected by different genetic mutations. The aim is to evaluate how they differ in
terms of disease progression and aggressiveness of the disease. Recent studies suggest
that patients affected by mutations in the GBA gene are characterized by higher
rates of dementia and a faster progression of the disease, while patients affected by
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mutations in the LRRK2 and dardarin genes are characterized by an early onset and
slow progression of the disease [Gan 10, Yaha 19].

Some of the results obtained in this thesis should be validated with data collected
from additional patients in more recording sessions. For instance, the classification
of PD patients and HC subjects using the data collected using Apkinson should be
performed with additional smartphone data from several brands and with a higher
number of participants, in order to have more conclusive results. At the same time,
longitudinal data should be collected using Apkinson with the aim to track the disease
progression per patient. Finally, longitudinal analyses of handwriting and gait should
be performed as well with more recording sessions and subjects to validate the results
obtained in this thesis. The longitudinal analysis will help not only to monitor the
disease progression per patient, but also to evaluate the medication intake, and how
the pharmacotherapy affects the response of the upper and lower limbs, and the
speech production process.

The proposed methods can be complemented with additional modalities like fa-
cial images in order to evaluate more symptoms exhibited by PD patients like hy-
phomimia, which is the lost of facial expression [Gome 21]. At the same, this thesis
only covers asynchronous multimodal analysis of the patients. Hence, it is important
to consider as well synchronous multimodal analysis. This can be performed with the
joint analysis of speech, facial images, and text; or by considering dual activities e.g,
reading a text while while carrying an object [Sama 18]. Further research should be
performed to develop robust deep learning strategies to combine these synchronous
modalities.

The speech analysis of PD patients can be extended by a more in depth evaluation
of which speech dimensions are more affected for each patient individually. This can
be performed with a more detailed evaluation of phonological and phonetic features
to model specific speech deficits of the patients. For instance, it is clinically useful to
detect whether the patients have more problems in pronouncing plosives, fricatives,
or nasal sounds. This would help the expert phoniatrician to select a more specific
and focused therapy for the PD patients. This analysis can be complemented with
the use of the sub-items of the m-FDA scale, and using specific phonological features
for each item. For instance to consider only features based on labial phonemes to
evaluate the items related to lip movements, or dental phonemes to evaluate the items
related to tongue movements, among other analyses.

The analysis of specific symptoms of the disease can be extended to the domain
of handwriting and gait signals. The analysis can be extended to evaluate specific
impairments of the upper and lower limbs by considering only those items from the
MDS-UPDRS-III score that are related to the features computed from each modality.
Hence those items related to the gait process can be better modeled using specific
gait features, like those designed to detect FoG episodes in the patients like the FI.
Conversely, online handwriting analysis can be used to evaluate only those items of
the MDS-UPDRS-III related to the movement of upper limbs.

Regarding handwriting analysis, one important aspect to be considered is that
most of the studies are based mainly on kinematic and pressure features, which
limits the scope of the models. This thesis extends previous studies by proposing a
set of features to model the in-air movements of the handwriting process, which is
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very accurate to classify PD patients vs. HC subjects, but it is not robust enough
to evaluate the motor-state severity of the patients. Additional handwriting features
should be proposed to assess other aspects of PD dysgraphia such as fluency or size.
Preliminary results from a Bachelor thesis in our lab suggest that it is possible to
obtain features to model handwriting tremor by modeling the strokes performed by
the patients using a spectral-based approach [Kupf 20]. In addition, the use of small
neural networks like the SqueezeNet used in this thesis makes it possible to use trained
models to evaluate handwriting images in low-power devices like smartphones. These
types of models can be included in further releases of Apkinson, where a patient can
perform one or several handwriting exercises using normal pen and paper, and then
take a picture with his/her smartphone, which will be processed locally to evaluate
the upper motor skills of the patients.

The analysis of motor symptoms using Apkinson can be complemented using
the exercises included in the app to evaluate fine-motor skills such as finger-taping.
This type of exercises has not been extensively studied yet, and they can be a good
complement to the models proposed in this thesis to evaluate the motor-state severity
using smartphone data from speech, gait, and hand movements.

Finally, this thesis only covered the assessment of motor impairments of PD pa-
tients. However, the evaluation of non-motor symptoms such as depression, anxiety,
or cognitive decline is also important and can be automated by using state-of-the-
art technologies of speech and natural language processing. These techniques have
been successfully applied in patients with other neurodegenerative disorders such as
Alzheimer’s disease [Pere 21a, Pere 21d], and have been recently considered to evalu-
ate language aspects of PD patients [Pere 19, Garc 16, Nore 20, Garc 21].
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Chapter 11

Summary

The aim of this thesis was to develop robust models for the accurate diagnosis of
PD and to evaluate the disease severity of patients using different bio-signals such
as speech, online handwriting, gait, and those signals collected from smartphones.
Identifying accurate bio-markers for early and differential diagnosis, severity, and
response to therapy is a primary goal of the research on PD today. A computerized
approach for continuous monitoring of the state of the patients will help in slowing
down the impact of PD, and to improve the quality of life of patients.

The proposed models based on speech, handwriting, gait, and smartphone data
are evaluated in three main scenarios: (1) The automatic classification of healthy
subjects and PD patients. (2) The evaluation of the disease severity of the patients
based on a clinical scale, including both the motor-state severity and the dysarthria
level of the subjects. (3) The classification of PD patients into different groups
according to their disease severity e.g., mild, intermediate, and severe. For these
applications, two different machine learning paradigms for automatic classification
and regression are considered: (1) a traditional pattern recognition approach using
SVMs and GMMs, and (2) a novel approach based on deep learning methods for an
end-to-end analysis of the data collected from the patients.

The ground truth to label the motor-state severity of the patients is based on
the MDS-UPDRS-III scale. This scale has only one item out of 32 to evaluate the
speech of the patients. However, the speech production is highly affected in PD,
thus it makes sense to consider a specific scale to evaluate the severity of the speech
impairments. The recently introduced m-FDA scale is considered as a ground truth
to evaluate the dysarthria severity of the patients. The scale can be administered
considering only speech recordings, thus it can be applied remotely and represents a
step towards the automatic administration of speech and language therapy for PD
patients.

Four databases are considered for the validation of the methods proposed in this
thesis. The first one is the Multimodal corpus, which comprises speech, online hand-
writing, and gait signals signals from 106 PD patients and 105 HC subjects. The
speech protocol includes utterances of the vowel /ah/, DDK exercises, isolated sen-
tences, a read text, and a monologue. Handwriting data include drawing geometrical
shapes and writing tasks. Gait data are collected with the eGait system, which con-
sists of inertial sensors attached to the lateral heel of the shoes. The gait protocol
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includes different walking and heel-toe tapping exercises. The second database is the
Longitudinal corpus, which is designed to evaluate the impact of the motor deficits of
the patients in long-term. The corpus includes data from nine PD patients recorded
in seven sessions from 2012 to 2019. The third database is the At-home corpus, which
is considered to monitor the progress of the speech deficits of PD patients in short-
term periods of time. This corpus comprises a group of seven PD patients recorded
four times per day (every two hours), once per month during four months. The
last database is the Apkinson corpus, which includes speech and movement signals
collected with the Apkinson android application, and which includes at the moment
data from 38 PD patients and 60 HC subjects.

The automatic assessment of the speech of PD patients has been classically mod-
eled in terms of phonation, articulation, prosody, and intelligibility. In the last five
years, deep learning methods started as well to be used to evaluate the speech of
PD patients. The methods considered in this thesis to model speech signals include
the ones classically addressed in the literature to model phonation, articulation, and
prosody aspects, which are used as baselines for the proposed approaches. Three ap-
proaches are introduced to model the speech of PD patients. The first one comprises
phonological analysis of speech signals using deep learning methods. Phonological
features are more interpretable for clinicians since they encode information about the
mode and manner of articulation, which is specifically related with the movements
of the articulators in the vocal tract. A model to extract phonological features is
proposed and released as a toolkit called Phonet to extract phonological posterior
probabilities from speech. The model is based on a bidirectional RNN with GRU
units trained to detect the presence of 18 phonological classes in speech frames using
a multitask learning strategy. The phonological features are obtained at the output
of the neural network as the conditional posterior probability of a speech frame to
belong to one or more phonological classes. These phonological posteriors are trans-
formed into phonological log-likelihood ratio features to model the capabilities of the
speakers to pronounce different groups of phonemes. The transformed log-likelihood
ratio features overcome the non-Gaussian nature of phonological posteriors, which is
better to exploit different classification methods. The second proposed approach to
model the speech of PD patients involves the use of representation learning strate-
gies using recurrent autoencoders, which have the potential to extract more abstract
and robust features than those traditionally computed. A recurrent autoencoder is
trained to characterize the temporal structure of input spectrograms. Two different
feature sets are computed using the trained autoencoder: the bottleneck features in
the encoder’s output, and the reconstruction error between the input and the decoded
spectrograms in different frequency bands. Finally, the third proposed model is based
on CNNs trained to process time-frequency representations of the speech of PD pa-
tients. Two different spectral representations are considered as input for the neural
network: (1) Spectrograms of onset and offset transitions to evaluate the capabilities
of the patients to start/stop the vibration of the vocal folds. (2) Continuous speech
segments with the aim to model the full temporal and spectral information from the
speech of PD patients.

Handwriting impairments in PD patients are traditionally addressed using kine-
matic and pressure features that only model some of the handwriting aspects of the



205

disease. The use of deep learning methods has increased as well within the last years
to model handwriting impairments of PD patients. The analysis performed in this
thesis involves the computation of kinematic, geometric, and in-air features; in ad-
dition to the use of deep learning methods. Kinematic features are based on the
trajectory, velocity, and acceleration of the strokes, both in the horizontal, vertical,
radial, and angular axes. These features also include measures based on the pressure
of the pen and those based on the azimuth and altitude angles. The geometric analysis
aims to model geometric shape and symmetry aspects in Archimedean spirals drawn
by the patients. The trajectory of the spirals is modeled as an amplitude-modulated
signal. The feature set is based on the parameters of the modeled trajectory and the
error between the real and modeled trajectories. The in-air features are based on the
transitions between in-air and on-surface segments in order to model the difficulties
of patients to start/stop movements in the upper limbs. In-air features include the
number of pen-ups and pen-downs per second to model hesitations to start or to stop
writing, the slopes of the pen-up and pen-down transitions to model the stability of
the hand when placing/lifting the pen from the tablet surface, and the percentage
of time in-air, among others. The proposed deep learning models are designed to
process both online and reconstructed offline handwriting data. The neural network
to process the online handwriting is formed with a stack of three 1D-convolution
layers to process the raw signals collected from the tablet. Two different inputs are
considered for the CNN. The first one comprises the difference among consecutive
samples in order to transform the signal from a point-level sequence, which depends
on the position of the tablet, into a stroke-level sequence, which represents the di-
rection of the pen movement. The second input sequence for the CNN corresponds
to the pen-up and pen-down transitions to evaluate the difficulties observed in the
patients when they start/stop the handwriting movements. Finally, the online hand-
writing data are processed to reconstruct the images drawn by the patients, thus it
is possible to have similar images to what a patient would draw with a normal pen
and paper. These reconstructed offline images are processed with a CNN based on
the SqueezeNet architecture, using a transfer learning strategy from ImageNet.

Gait analysis of PD patients is commonly addressed with inertial sensors attached
to the body of the subjects. Most studies consider kinematic features based on the
duration and velocity of the steps, or spectral features to evaluate the harmonic struc-
ture of the gait signals. There are some studies that aim to model the non-linearities
that appear during the walking process using NLD features. Deep learning methods
have also gained attention from the research community to evaluate Parkinsonian
gait. The analysis performed in this thesis involves the computation of kinematic,
spectral, and NLD features; in addition to deep learning methods to model gait
impairments of PD patients. Kinematic features include different properties in the
strides such as time, distance, and velocity. These features are used as a baseline and
they are based on the methods proposed in [Bart 17]. Spectral features are designed
to model the spectral wealth and the harmonic structure of the gait signals. The
features are based on the CWT extracted from the time series. The feature set is
formed with the energy content in 8 frequency bands and three spectral centroids of
the wavelet spectrum. The features also include the energy content in the locomo-
tor (0.5–3 Hz) and freeze (3–8 Hz) bands, and the freeze index. NLD features aim
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to model the local dynamic stability, recurrence, and complexity properties of the
walking process. The features include the computation of the correlation dimension,
the largest Lyapunov exponent, the Hurst exponent, the Lempel-Ziv complexity, the
sample entropy, and the detrended fluctuation analysis. Finally, the proposed deep
learning models are based on 1D-convolutions to learn a filter bank from the raw gait
signals, followed by a stack of two bidirectional GRU layers to model the temporal
structure of the sequence. The proposed network includes at the end a layer with an
attention mechanism with the aim to learn and give more importance to specific parts
of the gait sequence, e.g. pauses, swing phase, or stance phase. For the particular
case of the data collected using Apkinson and due to the fact that the smartphone
can be always placed in a different orientation when performing the gait tasks, a data
augmentation strategy is proposed by randomly switching the axes of the inertial
sensors in the input to the deep learning model.

Multimodal analysis of speech, handwriting, and gait of PD patients imposes
challenges in terms of information perception and data fusion strategies. Different
modalities can be complementary, redundant, or even conflicting. For instance, we
can have PD patients with a healthy or “normal“ handwriting, but a very impaired gait
or speech. Multimodal analyses have not been extensively studied for PD analysis.
The main reason is because the lack of available data. Fusion of different modali-
ties is a relevant task, which can be executed at data-, feature- and decision-levels.
An example of data-level fusion is the combination of accelerometer and gyroscope
signals for the gait analysis, or the fusion of position and pressure for the hand-
writing analysis. Then, fusion at feature-level or early fusion is a general type of
fusion when speech, handwriting, and gait features, or features from different tasks
within the same modality are stacked together, before the classification. Finally, the
decision-level or late fusion consists of training individual models with data from each
modality, and then combine the local decisions using a set of rules to get a global
decision. The experiments addressed in this thesis are carried out using both early
and late fusion strategies.

The analysis of PD patients using smartphone technologies is carried out using
the Apkinson app. The aim of Apkinson is to monitor the disease progression of PD
patients and to make a motor evaluation that includes specifically the speech produc-
tion. Apkinson records several signals using sensors embedded on the smartphone
(microphone, accelerometer, and the touch screen). The App incorporates exercises
and models for speech, movement, and finger tapping. The patient receives individual
feedback with the results of the exercises with the aim to motivate them to continue
using the App and trying to perform better every day. The speech analysis in Ap-
kinson is focused on evaluating phonation, prosody, and intelligibility of PD patients.
The movement evaluation in the upper and lower limbs is performed in Apkinson
with measures of regularity of movements, FoG, hand tremor, postural stability, and
gait dynamics. Finally, the evaluation of fine-motor skills of the patients is performed
with tapping exercises based on the tapping accuracy, velocity, and precision.

The results using speech signals indicate that it is possible to classify PD patients
and HC subjects with accuracies up to 87.7% combining the different speech features
and tasks, and up to 96.2% using the proposed CNNs. The results evaluating the
dysarthria severity of the patients according to the m-FDA scale show correlations
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up to 0.61 by using all speech features and tasks. Unfortunately, the results using
the deep learning models are not accurate to evaluate the dysarthria severity of the
patients. The main reason is because the lack of enough labeled data to train the
regression models. Phonological features are the most accurate to evaluate the speech
of PD patients. The other feature sets are complementary to improve both the clas-
sification and the disease severity evaluation. The most accurate speech tasks are the
DDKs and the read text, which allow to define a battery of exercises used in clinical
practice for the assessment of the disease. In addition, the results indicate that there
is not a visible impact in the classification when considering speech signals collected
from smartphones. Only phonation and prosody features are negatively affected due
to the use of smartphones, which implies changing the recording conditions. The
progression of the dysarthria level both in short- and long-term intervals is predicted
with moderate correlations for most patients. There are even some patients in the
Longitudinal corpus whose dysarthria level progression is predicted with strong cor-
relations. These results suggest that the proposed models are suitable to monitor
the progression of the dysarthria level in PD patients both in long- and short-term
intervals, as well as the possible influence of the medication intake in the dysarthria
severity. The results also indicate that it is possible to classify the patients in three
different speech severity levels with accuracies up to 61% using the proposed CNN
models. Most classification errors correspond to patients in mild and severe stages
of the disease that are classified in intermediate stage. Finally, none of the speech-
based models is accurate enough to evaluate the motor-state severity of the patients
based on the MDS-UPDRS-III score. This is expected since the MDS-UPDRS-III is
a complete motor scale in which only one of the items is related to speech symptoms.

The results using handwriting signals indicate that it is possible to classify PD
patients and HC subjects with accuracies up to 97.8% combining the different hand-
writing features and tasks, and up to 99.2% using the CNNs to process the online
handwriting samples from the pen-up and pen-down transitions. The results suggest
that early fusion is better to model the complementary information produced by each
feature set, and late fusion methods deal better with the redundant information that
appears when using the same features computed from different tasks. More complex
exercises like free writing are better modeled with the in-air features because they
have a lot of pen-up and pen-down transition movements. Conversely, simple drawing
exercises like Archimedean spirals are better modeled with the combination of kine-
matic and in-air features because they do not contain that high amount of transition
movements. The result obtained using the CNN to process the reconstructed offline
handwriting model are not that accurate compared to the ones obtained with the
online models. This fact suggests that there is important information in the hand-
writing aspects of PD patients that is only available with the online analysis. The
results evaluating the MDS-UPDRS-III severity show correlations up to 0.61, which
are obtained using kinematic features and combining all handwriting tasks. The re-
sults using the deep learning models are not accurate to evaluate the motor-state
severity of the patients. The disease progression per patient in the Longitudinal cor-
pus is also predicted with strong correlations (ρ = 0.70) using the kinematic features
and the fusion of all handwriting tasks. Finally, the results indicate that it is possible
to classify patients in different levels of the disease with accuracies up to 56.5% using
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both the deep learning models and the fusion of all feature sets and handwriting
tasks. The models are very accurate to detect patients in severe stages of the disease,
while patients in intermediate state are very difficult to classify.

The results using gait signals include both the ones obtained using the high-quality
sensors of the eGaIT system and the signals collected using Apkinson. The results
indicate that it is possible to classify PD patients and HC subjects with accuracies
up to 86.2% using NLD features, and up to 98.7% using the deep learning techniques.
The most accurate gait exercise is the Stop & Go task, which is the one when the
patients have to perform more start/stop movements of the lower limbs. The results
with the Apkinson data indicate a reduction in the accuracy of about 15%. This is
explained because in the smartphone data only one 3D accelerometer is available,
compared to the eGait system where both 3D accelerometers and a gyroscopes are
attached to each foot. With the observed accuracy in Apkinson (up to 84.4% using
the deep learning models), it is possible to perform a preliminary evaluation of the
patient in at-home environments. Then if there is some change detected in the gait
and movement of the patient, (s)he can go to the clinic to be evaluated with a more
robust system like the eGaIT. The results evaluating the MDS-UPDRS-III severity
show correlations up to 0.65 combining all feature sets and gait tasks. The disease
progression for the Longitudinal data is predicted with a Spearman’s correlation up
to 0.77, combining spectral and NLD features from the 4x10 task. These results are
very positive because they were obtained as an independent test set that was never
seen during a cross-validation strategy. The results also indicate that it is possible to
discriminate among three disease severity levels with an accuracy up to 70.6%, which
is 11.6% higher than the best result observed with handwriting signals.

The most accurate results combining the information from speech, handwriting,
and gait are observed when handwriting and gait signals are combined (99.2%) using
the traditional extracted features and SVM classifiers. This result improves in 12.2%
the ones obtained using only speech, in up to 3.3% the ones obtained with handwrit-
ing, and in up to 4.9% the ones obtained with gait signals. The fusion using the deep
learning models shows that the most accurate results were also obtained combining
the handwriting and gait signals (99.4%). These results are also higher than the ones
reported for the individual bio-signals. The speech and movement signals from the
Apkinson corpus were also combined. The best result using the SVM classifiers was
obtained with the late fusion of the feature sets from each modality (92.2%), which
improved in up to 2.7% the results obtained using only speech, and in up to 10.1%
the ones obtained using only movement features. The fusion of speech, handwriting,
and gait features also improved the assessment of the motor-state severity of patients
based on the MDS-UPDRS-III scale. The best result was observed when gait and
handwriting signals are combined (ρ = 0.66). The results improved in up to 80.6%
the results obtained using only speech (ρ = 0.37), in 7.6% the ones reported using
only handwriting (ρ = 0.62), and in 2.6% the ones obtained using only gait signals (ρ
= 0.65). The last experiment consisted in the fusion of the three bio-signals to classify
patients in three severity levels. The results of the multimodal system outperform
those reported using separately speech and handwriting signals, but not the ones
obtained using gait signals, which are the most accurate for the addressed problem
with an accuracy of up to 70.6%.
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