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Abstract
The relationship between the immunomodulatory effects of Vitamin D (VitD) and the expression of anti-HIV-1 molecules has not been
explored in HIV-1-exposed seronegative individuals (HESNs). Higher mRNA levels of cathelicidin and HAD-4 in oral-mucosa and peripheral-
blood, along with higher CYP24A1 mRNA in vaginal-mucosa and lower TLR2 mRNA in endocervical-mucosa were found in HESNs compared
to non-exposed controls. Furthermore, the mRNA of anti-HIV molecules Elafin, TRIM5, Cathelicidin, HAD-4 and RNase7, previously asso-
ciated with natural resistance to HIV-1 infection, positively correlated with the mRNA expression of VDR in HESNs, suggesting the potential
participation of VitD in natural resistance to HIV-1.
© 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Exposure to HIV-1 does not always lead to infection.
Several immune components, host genetic variants, as well as
soluble factors have been associated with resistance to HIV-1
infection on HIV-1-exposed but seronegative (HESN) in-
dividuals. Some of the most important soluble factors exhib-
iting anti-HIV-1 activity, identified by us and others in mucosa
or peripheral blood mononuclear cells (PBMCs) of HESNs,
include the human alpha defensin (HAD)-1, human beta
defensins (HBD)-2 and -3 [1,2], the antiproteases Elafin,
SerpinA1 and the secretory leukocyte protease inhibitor
(SLPI) [3e5], the intracellular anti-HIV-1 restriction factors
APOBEC3G, TRIM5a and SAMHD1 [4,6] and peptides with
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ribonuclease activity such as RNase 1, RNase 7, Eosinophil
Derived Neurotoxin (EDN) and Angiogenin (ANG) [2,4].

However, other antiviral molecules, not yet evaluated in the
Colombian cohort, that have been reported to reduce HIV-1
infection in vitro such as cathelicidin (CAMP) [7], HAD-4
[8], or to modulate an anti-HIV-1 response such as TLR2
and TLR4 [9,10] could also be associated with natural resis-
tance to HIV-1 infection.

Recently, it has been shown that beyond its role in calcium
metabolism, vitamin D (VitD) has immunomodulatory effects
[11,12]. Indeed, keratinocytes and immune cells are endorsed
with metabolic machineries such as the 1a-hydroxylase
(CYP27B1) and the vitamin D receptor (VDR), allowing
activation and use of VitD as transcription factor of a sub-
stantial number of genes [11,13]. Certainly, it induces tran-
scription of some of the anti-HIV-1 peptides mentioned above,
in several cell populations [13,14], suggesting its possible
participation in the resistance against HIV-1 infection.

Remarkably, we recently found higher plasma VitD as well
as higher VDR mRNA levels in peripheral blood mononuclear
reserved.
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cells (PBMCs) and mucosa from HESNs compared to non-
exposed healthy controls (HCs) [15]. Moreover, mRNA
expression of VDR was positively correlated with that of the
anti-inflammatory cytokine IL-10 and the antimicrobial pep-
tides HBD-2 and -3 [15], further supporting the protective role
that VitD may have during HIV-1 exposure.

Therefore, the purpose of this study was to evaluate the
transcription expression level of the antiviral molecules
Cathelicidin, HAD-4, TLR2 and TLR4 and of the VitD
pathway genes CYP27B1, CYP27A1 and CYP24A1 in
PBMCs, in oral, endocervical and vaginal mucosa of HESNs,
in HIV-1-infected individuals and HCs from Colombia. In
addition, and with the purpose of determining the potential
relationship of the VitD pathway with the phenomenon of
natural resistance to HIV-1 infection, we correlated the relative
mRNA levels of these molecules and the levels of the mRNAs
of anti-HIV-1 soluble factors, previously reported in the same
cohort [2e4], with the VDR mRNA expression, also formerly
described [15].

2. Material and methods
2.1. Population
This is a cross-sectional study involving cDNA samples
from a cohort of Colombian sexual serodiscordant couples
composed of 58 HESNs and 43 chronically HIV-1-infected
subjects, hereafter called seropositives (SPs); they were
recruited from the HIV-1 comprehensive care programs in
Santa Marta and Medellín, Colombia. The inclusion criteria
for HESN subjects were previously reported [1]; briefly, the
HESNs in this study had an average of 8 unprotected sexual
intercourses per month with an SP partner with detectable viral
load (median [interquartile range]: 2569 [400e25,250]),
within at least 2 years of follow up, negative HIV-1 ELISA and
proviral HIV DNA tests at sampling [15]. Most individuals
(80%) were heterosexuals and the remaining were bisexuals.
None of the individuals was D32-homozygous nor had any
sexually transmitted disease (STD) at sampling. However,
27% of HESNs reported previous events of STDs, which could
have increased even more their risk to acquire HIV-1; how-
ever, they preserved the seronegative status.

The similar age (mean years ± standard deviation:
34.9 ± 10.3 for HESNs and 33.7 ± 7.1 for SPs), gender (41.4%
and 53.5% males for HESNs and SPs respectively) as well as
ancestry component and pair-wise fixation index (FST) values
in the SPs and HESNs [15,16] indicated that there was not
intra-cohort stratification by ethnicity.

We also included cDNA samples from 59 HCs with similar
demographic backgrounds and citizenship as the HESN and
SP individuals (32.8 ± 9.8 years and 42.4% males). HC in-
dividuals had negative HIV-1 ELISA and proviral HIV DNA
tests, fewer than 2 sexual partners in the last 2 years and self-
reported no risk behaviors for HIV-1 infection.

All individuals signed an informed consent prepared ac-
cording the Colombian Legislation; this study was approved
by the Ethical Committee CBE-SIU of Universidad de Anti-
oquia (certificate 13-08-520).
2.2. mRNA quantification by real time RT-PCR
cDNA samples previously obtained from oral, vaginal and
endocervical mucosa as well as from PBMCs from all in-
dividuals were used for the analysis of gene expression.
Briefly, mucosal samples were taken by rubbing a cytobrush
against the inner mucosa surfaces [1]. PBMCs were isolated
by gradient centrifugation, from 17 HESNs, 15 SPs and
38 HCs out of the total cohort [15]. RNA isolation was per-
formed using TRizol Reagent (Invitrogen) plus DNase I
treatment (Thermo Scientific) followed by retro-transcription
using the Revertaid H Minus Retrotranscriptase Kit (Thermo
Scientific) [15].

Real time RT-PCR was performed in a final volume of
15 mL, using 2 mL cDNA, 1X Maxima SYBR green qPCR
master mix kit (Thermo Scientific) and 260 mM of the
following specific primers: Cathelicidin (Fw: 50-GGATGC-
TAACCTCTACCGC-30 and Rv: 50-AGGGTCACTGTCCC-
CATACA-30); HAD-4 (Fw: 50-GCTCTTCAGGTTTCA-
GGCTCA-30 and Rv: 50-TCACACCACCAATGAGGCAG-30);
TLR2 (Fw: 50-GAGTTCTCCCAGTGTTTGGTG-30 and Rv:
50-CCAGTGCTTCAACCCACAACT-30); TLR4 (Fw: 50-
TTATCACGGAGGTGGTTCCT-30 and Rv: 50-TGGTTGA-
GAAGGGGAGGTTGT-30); CYP27A1 (Fw: 50-TGGA-
CACGACATCCAACACG-30 and Rv: 50-GACCACAGGGTA-
GAGACGCA-30); CYP27B1 (Fw: 50-GTCCAGACAGCAC-
TCCACTC-30 and Rv: 50-ACCACAGGGTACAGTCTTAGC-
30); and CYP24A1 (Fw: 50-CGCAAATACGACATCCAGGC-
30 and Rv: 50-AATACCACCATCTGAGGCGT-30). In addition,
the expression of the reference genes b-actin (Fw: 50-
CTTTGCCGATCCGCCGC-30 and Rv: 50-ATCACGC-
CCTGGTGCCTGG-30), and Phosphoglycerate Kinase 1
(PGK-1) (Fw: 50-GTTGACCGAATCACCGACC-30 and Rv:
50-TCGACTCTCATAACGACCCGC-30), were used to
normalize the amount of RNA. The cycling profile in all the
experiments was: 95 �C for 10 min, followed by 40 cycles at
94 �C for 10 s, and annealing/extension for 40 s at 60 �C.
Duplicate assays were performed (SDs were less than 0.5
cycle in all assays). The Bio-Rad CFX manager 3.1 (Bio-Rad)
was used to acquire the cycle thresholds (Ct), determined in
each sample using a regression fit in the linear phase of the
PCR amplification curve. The relative expression was calcu-
lated by the DCt method. The results are presented as median
of the mRNA relative expression units (RUs) to the reference
genes. Samples that did not amplify target genes were
excluded from the analysis. The percentage of samples
analyzed is described in the figure legends.

In addition, mRNAs RU of anti-HIV-1 factors HAD-1,
HBD-2, HBD-3, Elafin, SerpinA1, SLPI, APOBEC3G,
TRIM5a, SAMHD1, RNase 1, RNase 7, EDN and ANG
analyzed in the mucosa of this HESN cohort in our previous
studies [2e4] were also used to correlate with the previously
quantified VDR mRNA levels [15].
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2.3. Statistical analysis
According to the results of the ShapiroeWilk test, a non-
parametric test (ManneWhitney U-two-tailed test) was used
to compare the mRNA expression of each gene between
HESNs vs HCs or HESNs vs SPs. The correlations between
VDR mRNA and transcript levels of the molecules analyzed
was evaluated using the Spearman coefficient rank (r). A p
value < 0.05 was considered statistically significant. The
statistical tests were performed using the GraphPad Prism
version 6.0 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. The mRNA levels of Cathelicidin and HAD-4 were
higher in PBMCs and oral mucosa of HESNs than of
HCs
The relative mRNA expression of Cathelicidin was 5.2 and
1.8-fold higher in PBMC and oral mucosa of HESN in-
dividuals compared to HCs ( p ¼ 0.0007 and p ¼ 0.0210 for
PBMCs and oral mucosa, respectively). In addition, the
Cathelicidin mRNA expression level in PBMCs of HESNs was
4.0-fold higher than in SPs ( p ¼ 0.0323) (Fig. 1A).

Similarly, 13.3 and 1.7-fold higher mRNA relative
expression level of HAD-4 was found in PBMCs and oral
mucosa of HESNs compared to HCs ( p ¼ 0.0002 and
p ¼ 0.0376 for PBMCs and oral mucosa, respectively). In
addition, the HAD-4 mRNA expression level in PBMCs of
HESNs was 6.9-fold higher than of SPs ( p ¼ 0.0346)
(Fig. 1B).
3.2. Low mRNA levels of TLR2 in endocervical mucosa
along with high mRNA levels of TLR4 in oral mucosa
were observed in HESNs compared to HCs
The mRNA relative expression level of TLR2 was 2- and
2.7-fold lower in endocervical mucosa of HESN individuals
compared to HCs ( p ¼ 0.0360) and SPs ( p ¼ 0.0410)
respectively (Fig. 1C). Conversely, the TLR4 mRNA expres-
sion level was 2.2-fold higher in oral mucosa of HESNs than
of HCs ( p ¼ 0.0074) (Fig. 1D).
3.3. High mRNA levels of the VitD target hydroxylase
CYP24A1 in vaginal mucosa of HESNs
We found that the baseline mRNA expression level of cy-
tochrome P450 VitD-hydroxylases (CYP27A1, CYP27B1 and
CYP24A1) varied depending on the tissue analyzed. Whereas,
CYP27A1 mRNA was similar in all evaluated tissues
(Fig. S1), the CYP27B1 and CYP24A1 mRNA expression
level was 10- and 33-fold lower, respectively, in PBMCs than
in mucosa and only detected in 30% of the samples (Fig. 1E,
F). Significant differences between HESNs and HCs were only
found for CYP24A1 mRNA that was 4.8-fold higher in vaginal
mucosa of HESNs compared to HCs ( p ¼ 0.0091. Fig. 1F).
3.4. mRNA levels of the anti-HIV molecules elafin,
TRIM5, cathelicidin, HAD-4 and RNASE7 were
positively correlated with the mRNA expression levels of
VDRs in HESNs, whereas TLR2 and VDR mRNAs were
negatively correlated
Since VitD induces transcription of antimicrobial mole-
cules [13,14], we subsequently evaluated if the VDR mRNA
[15] correlates with the mRNA of anti-HIV-1 soluble factors.
We found that VDR mRNA was positively correlated with
Elafin (r ¼ 0.65, p ¼ 0.0059) and Cathelicidin (r ¼ 0.76,
p ¼ 0.0015) in PBMCs (Fig. 2A, B), with HAD-4 (r ¼ 0.57,
p ¼ 0.0142) and RNase7 (r ¼ 0.50, p ¼ 0.0419) in endocer-
vical mucosa (Fig. 2C, D) and with TRIM5 in vaginal mucosa
of HESNs (r ¼ 0.48, p ¼ 0.0289; Fig. 2E). Furthermore, a
negative correlation between the mRNA of VDR and TLR2 in
endocervical mucosa of HESNs was also observed (r ¼ �0.53,
p ¼ 0.0192; Fig. 2F).

4. Discussion

The study of protective factors against HIV-1 is of capital
interest to improve preventive and immunomodulatory ap-
proaches in view of protecting high-risk individuals. In
particular, we studied the natural resistance to HIV-1 infection
in a cohort of serodiscordant couples from Colombia in the
last 10 years. From the 14 antiviral molecules analyzed in this
cohort, we have found higher expression of Elafin in PBMCs
[4], of HAD-1, HBD-2, HBD-3, Elafin, SAMHD1, Serpin1,
SLPI and APOBEC3G in oral mucosa [1e4], and of Elafin,
SAMHD1, TRIM5a, ANG, EDN, RNase-1 and -7 in genital
mucosa of HESNs compared to HCs [2,4]. In addition, in the
present study we found higher transcription expression of the
antimicrobial peptides HAD-4 and cathelicidin in HESNs
compared to HCs and SPs, and higher TLR4 in HESNs
compared to HCs in PBMCs and oral mucosa. Furthermore,
we found that in vaginal and endocervical mucosa the mRNA
expression level of the antimicrobial peptides cathelicidin and
HAD-4 was similar in HESNs and HCs, but TLR2 mRNAwas
lower in HESNs than HCs.

Altogether, our findings suggest that in general HESNs
have a pronounced anti-HIV-1 effector-like profile in PBMCs,
oral and genital mucosa, most likely contributing to the natural
resistance to HIV-1 infection.

Considering that the main aim of the study is to define
associations with natural resistance to HIV-1 infection, the
appropriate comparison is between HESN and HC, since it
might reflect a genetic trait associated with HIV-1 resistance,
revealed by viral exposure. Although we found significant
differences between the levels of mRNA for cathelicidin,
HAD-4 and TLR2, between HESNs and SPs, the expression of
these soluble factors in SP could have been influenced by the
chronic immune stimulation induced by HIV-1 infection or by
the immunological exhaustion as previously reported [17].

Interestingly, VitD seems to be a key element to immu-
noregulate the pathogenic immune response against HIV-1; in
fact, its deficiency has been associated with HIV/AIDS



Fig. 1. The box and whisker plots show the median value and 5e95 percentiles of mRNA relative units (RU; normalized to b-actin and PGK1 mRNA) of

Cathelicidin (A), HAD-4 (B), TLR2 (C), TLR4 (D), CYP27B1 (E) and CYP24A1 (F) in PBMCs (88% samples were correctly amplified for all genes), and oral

(73%), endocervical (83%) and vaginal (80%) mucosa of HESNs, HCs and SPs. A non-parametric test (ManneWhitney U-two-tailed test) was used to compare

mRNA RU between HESNs vs HCs or HESNs vs SPs. Outliers are plotted as black circles and significant p values are displayed in each graph. Significantly higher

mRNA RU of Cathelicidin and HAD-4 in PBMC and oral mucosa (AeB), and significantly lower TLR2 mRNA in endocervical mucosa (C) of HESNs compared

to HCs and SPs are shown. Furthermore, significantly higher TLR4 mRNA in oral mucosa (D) and CYP24A1 mRNA in vaginal mucosa of HESN than HCs (F) are

also displayed.

513W. Aguilar-Jimenez et al. / Microbes and Infection 18 (2016) 510e516
progression and mortality, whereas its supplementation could
be a simple, cost-effective intervention, particularly in
resource-poor settings, to reduce HIV-1 risk and disease pro-
gression [18]. Indeed, we have found that VitD reduces HIV-1
infection of PBMCs in vitro (manuscript submitted for
publication).

Remarkably, in this study we found higher mRNA levels of
CYP24A1, a well-established gene indicator for the presence of
active VitD (calcitriol), in vaginal mucosa from HESNs
compared to HCs, suggesting an immune-regulated environment
induced by VitD that could boost the control of HIV-1 entry.

Indeed, we found that mRNA levels of VDR, previously
quantified in the individuals from the same cohort [15], were
positively correlated with the antiviral factors elafin and
cathelicidin in PBMCs, with HAD-4 and RNase-7 in endo-
cervical mucosa, and with TRIM5 in vaginal mucosa of
HESNs. Furthermore, we had previously reported a positive
correlation between mRNA expression levels of VDR and
HBD-2 and -3 in oral mucosa of HESNs [15], supporting the
hypothesis of VitD involvement in the expression of anti-HIV-
1 molecules in HESNs.

Remarkably, the correlations between VDR and cath-
elicidin, HBD-2 and -3 are supported by in vitro assays and/or
the presence of VitD response elements in their promoters
[13,14]. Likewise, we observed a significant increase of Elafin
mRNA that was also correlated with VDR mRNA after a VitD
treatment that suppress in vitro HIV-1 infection in PBMCs
(manuscript submitted for publication).



Fig. 2. The VDR mRNA [15] was positively correlated with the mRNA of Elafin (A) and Cathelicidin (B) in PBMCs, with HAD-4 (C) and RNase7 (D) in

endocervical mucosa and with TRIM5 in vaginal mucosa (E) of HESNs. Furthermore, a negative correlation between mRNA of VDR and TLR2 in endocervical

mucosa of HESNs was also observed (F). The correlations were evaluated using the Spearman coefficient ranks (r), which are displayed in each graph with the best

linear fit lines, p values and number of samples (n).
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Considering that genital mucosa is the main port for viral
entry, factors associated with protection should be present
mainly in these tissues; however, PBMCs are circulating im-
mune cells that migrate around the entire body including
mucosas, and thus they may reflect, at least partially, the
ongoing response of these surfaces [19,20]. On the other hand,
although HIV-1 oral sex is not an efficient route of infection, it
does carry a small risk [21,22] pointing to the protective role
of these molecules during oral sexual exposure to HIV-1, as
previously proposed [21,23].

The production of cathelicidin by monocytes, natural killer
(NK), B and gdT cells [24] could support its observed
expression in PBMCs. In contrast, neutrophils and the intes-
tine seem to be the biological source of HAD-4 [25].
Remarkably, to the best of our knowledge, this is the first study
identifying the anti-HIV-1 molecules cathelicidin and HAD-4
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overexpressed not only in PBMC but also in oral mucosa of
HESNs compared to healthy controls. According to the
expression of the human alpha defensins HAD-1 to -3, we
hypothesized that HAD-4 could be expressed in monocytes,
NK, T and B cells, explaining its expression in PBMCs [24].

Interestingly, the previously reported anti-inflammatory
effects of VitD [11,12] could be represented by the negative
correlation between VDR mRNA and the lower levels of
TLR2 observed in the endocervical mucosa of HESNs.
Moreover, we previously reported lower mRNA of the pro-
inflammatory cytokine TNF-a in oral and genital mucosa of
HESNs compared to SPs, and higher mRNA levels of anti-
inflammatory cytokine IL-10 in genital mucosa of HESNs
compared to HCs with positive correlations between VDR and
IL-10 mRNA levels in PBMCs and genital mucosa of HESNs
[15].

The differences in the mRNA expression profile among all
the tissues might be due to compartmentalization issues and
differences in the frequency of various cell subpopulations,
such as immune cells in peripheral blood versus epithelial
cells in mucosa, or different shapes and structures of the
epithelial tissue such as the stratified squamous epithelium in
oral and vaginal mucosa vs single-layered columnar epithe-
lium of endocervix [26]. Indeed, it is well-known that the
expression of the antiviral molecules are tightly regulated and
highly dependent on the type of tissues or cell subpopulations
[23,24,27,28]. Unfortunately, protein levels were not measured
due to sample constraints, representing a limiting condition of
this study. However, an overall positive correlation between
mRNA and protein expression levels explaining more than
85% of the variation in steady-state protein levels have been
reported [29], increasing the confidence in the use of mRNA
expression for biological discovery. Furthermore, previous
studies have found protein expression particularly of cath-
elicidin and HAD-4 in human oral, rectal an genital mucosa
[27,30] strengthening the biological significance of our
findings.

Taken together, these findings suggest that VitD may favor
an immune quiescence phenotype in genital tissue, protecting
against infection by limiting HIV-1 target cells and substrates
available for HIV-1 replication, while promoting an antiviral
response as previously shown for other viral infections
[12,31].
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