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ABSTRACT
It is well-known that the space of derivations of n-dimensional evolu-
tion algebras with non-singular matrices is zero. On the other hand,
the space of derivations of evolution algebras with matrices of rank
n−1 have also been completely described in the literature. In this
work, we provide a complete description of the space of derivations
of evolution algebras associated to graphs, depending on the twin
partition of the graph. For graphs without twin classes with at least
three elements, we prove that the space of derivations of the associ-
ated evolution algebra is zero. Moreover, we describe the spaces of
derivations for evolution algebras associated to the remaining fami-
lies of finite graphs. It is worth pointing out that our analysis includes
examples of finite dimensional evolution algebras with matrices of
any rank.
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1. Introduction

The Theory of Evolution Algebras is a current and active field of research withmany appli-
cations and connections to other areas of mathematics. These algebras are non-associative
algebras and form a special class of genetic algebras. We refer the reader to [1–5] and ref-
erences therein for an overview of recent results. An n-dimensional evolution algebra is
defined as follows.

Definition 1.1: LetA := (A, · ) be an algebra over a fieldK. We say thatA is an evolution
algebra if it admits a finite basis S := {e1, . . . , en}, such that

ei · ei =
∑
k∈S

cikek, for i ∈ {1, . . . , n},

ei · ej = 0, for i, j ∈ {1, . . . , n} such that i �= j.
(1)

A basis S satisfying (1) is called natural basis of A. The scalars cik ∈ K are called the
structure constants of A relative to S and (cik) is called the matrix of A relative to S. In
what follows, we always assume that char(K) = 0. The first and best general reference of
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a Theory of Evolution Algebras is the book of Tian [6], where the author states the first
properties for these structures aswell as an interesting correspondence between this subject
and Probability Theory; more precisely, with the Theory of Markov Chains.

In this work, we are interested in the problem of characterizing the space of derivations
of a given evolution algebra. The advantage of describing this space lies in the fact that it
induces a Lie algebra which may be used as a tool for studying the structure of the original
algebra, see [7] and the references given there for a deeper discussion of this subject in
genetic algebras. A derivation is defined, as usual, as follows.

Definition 1.2: Let A be an (evolution) algebra. A derivation of A is a linear operator
d : A → A such that

d(u · v) = d(u) · v + d(v) · u,
for all u, v ∈ A. The space of all derivations of the (evolution) algebra A is denoted by
Der(A).

The space of all the derivations of an algebra has already been completely described
for some genetic algebras, see [3,8–12]. We refer the reader to [7] for a reference provid-
ing the interpretation of a derivation on a genetic algebra by means of the equality of two
genetically meaningful expressions.

For the case of an evolution algebra, a complete characterization of such space is still an
open question. In [6] it is observed that a linear operator d such that d(ei) = ∑n

k=1 dikek is
a derivation of the evolution algebraA if, and only if, it satisfies the following conditions:

cjkdij + cikdji = 0, for i, j, k ∈ {1, . . . , n} such that i �= j, (2)

n∑
k=1

cikdkj = 2cijdii, for i, j ∈ {1, . . . , n}. (3)

Therefore, Equations (2) and (3) are the starting point whether one want to obtain a
description of the space of derivations for a particular evolution algebra A. As far as we
known, the only almost-general result regarding the space of derivations of a finite dimen-
sional evolution algebra is obtained by [3]. In that work the authors consider K = C and
they prove that the space of derivations of n-dimensional evolution algebras with non-
singular matrices is zero; in addition, they describe the space of derivations of evolution
algebras with matrices of rank n−1. More recently, [13] describes the space of derivations
of evolution algebras with maximal nilindex restricted to the case where char(K) = 0.

The aim of this paper is twofold. On the one hand, we give a complete characteriza-
tion of the space of derivations in a special family of n-dimensional evolution algebras, i.e.
the ones associated to finite graphs. Furthermore, our results cover examples of evolution
algebras with matrices of rank k, where k ∈ {2, . . . , n}. On the other hand, we continue in
studying evolution algebras associated to graphs, a subject which was initiated by [6,14],
and considered more recently by [1,15]. We shall see that the twin partition of the given
graph is crucial for characterizing the space of derivations of its respective evolution alge-
bra. We emphasize that this provides an alternative to the criteria developed by [3], for the
case of evolution algebras associated to graphs.
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The paper is organized as follows. In Section 2, we review some of the standard notation
on Graph Theory, and we state our main results. Section 3 is devoted to the proofs of these
results.

2. Main results

2.1. Evolution algebra of a graph

In order to present our results, we start with some standard definitions and notation of
Graph Theory. A finite graphGwith n vertices is a pair (V ,E)whereV := {1, . . . , n} is the
set of vertices and E := {(i, j) ∈ V × V : i ≤ j} is the set of edges. If (i, j) ∈ E or (j, i) ∈ E
we say that i and j are neighbours, and we denote the set of neighbours of a vertex i byN (i).
In general, given a subset U ⊂ V , we denote N (U) := {j ∈ V : j ∈ N (i)for some i ∈ U},
and Uc := {j ∈ V : j /∈ U}. The degree of vertex i, denoted by deg(i), is the cardinality of
the set N (i). The adjacency matrix AG = (aij) of G is an n × n symmetric matrix such
that aij = 1 if i ∈ N (j), and aij = 0 otherwise. Note that, for any k ∈ V ,N (k) := {� ∈ V :
ak� = 1}. We say that vertices i and j of a graph G are twins1 if they have exactly the same
set of neighbours, i.e.N (i) = N (j). We notice that by defining the relation ∼t on the set
of vertices V by i ∼t j whether i and j are twins, then ∼t is an equivalence relation. An
equivalence class of the twin relation is referred to as a twin class. In other words, the twin
class of a vertex i is the set {j ∈ V : i ∼t j}. The set of all twin classes ofG is denoted by�(G)

and it is referred to as the twin partition of G. A graph is twin-free if it has no twins. All the
graphs we consider are connected, i.e. for any i, j ∈ V there exists a sequence of vertices
i0, i1, i2, . . . , in such that i0 = i, in = j and ik+1 ∈ N (ik) for all k ∈ {0, 1, . . . , n − 1}. For
simplicity, we consider only graphs which are simple, i.e. without multiple edges or loops.

The evolution algebra associated to a given graph G, and denoted by A(G), is defined
by letting cij = aij for any i, j ∈ V , see [6, Section 6.1].

Definition 2.1: LetG = (V ,E) be a graph with adjacencymatrix given byAG = (aij). The
evolution algebra associated to G is the algebra A(G) with natural basis S = {ei : i ∈ V},
and relations

ei · ei =
∑
k∈V

aikek, for i ∈ V ,

ei · ej = 0, if i �= j.

We notice that another way of stating the relations for ei · ei in the previous definition
is to say:

ei · ei =
∑

k∈N (i)

ek, for i ∈ V .

Example 2.2: Let Ka1,a2,...,am be a complete m-partite graph, with m ≥ 2, and partitions
of sizes a1, a2, . . . , am, where ai ≥ 1 for i ∈ {1, 2, . . . ,m}. This is a graph for which the set
of vertices is partitioned into m disjoint sets, with sizes a1, a2, . . . , am, in such a way that
there is no edge connecting two vertices in the same subset, and every possible edge that
could connect vertices in different subsets is part of the graph, see Figure 1. The resulting
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Figure 1. Complete 3-partite graph K3,4,5. Partitions are given by V1 = {1, 2, 3}, V2 = {4, 5, 6, 7} and
V3 = {8, 9, 10, 11, 12}.

evolution algebra associated to this graph, denoted byA(Ka1,a2,...,am), is given by the natural
basis {e1, . . . , ea1+···+am} and relations:

e2i =
∑
j/∈V�

ej, for i ∈ V�, and � ∈ {1, 2, . . . ,m},

ei · ej = 0, for i �= j.

The first definitions of evolution algebras associated to some families of graphs have
been formalized by [5,14], where the authors also study the properties related to these
algebras. More recently, [1,15] study the existence of isomorphisms between these alge-
bras and the evolution algebras associated to the random walk on the same graph. This
is a subject that has been remained as an open question since 2008, see [6,16] for further
details. We refer the reader to [4] for another reference related to the interplay between
evolution algebras and graphs. In that work, the authors consider a digraph associated to
any evolution algebra, which leads to new algebraic results on this class of algebras and are
useful to provide new natural proofs of some known results.

2.2. Space of derivations of the evolution algebra of a graph

Our aim is to characterize the space of derivations of an evolution algebra associated to
a graph. In the rest of the paper, we shall assume that G = (V ,E) is a finite graph with n
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vertices and d ∈ Der(A(G)) is such that

d(ei) =
n∑

k=1

dikek, (4)

for any i ∈ V . We shall consider graphs with at least three vertices since in other case d=0
by a direct application of (2) and (3). Our description of Der(A(G)) will depend on the
twin partition of G. More precisely, our characterization will depend on the set �3(G) ⊂
�(G) formed by all twin classes of G with at least three vertices. We start with a necessary
condition for d �= 0.

Theorem 2.3: Let G = (V ,E) be a finite graph, with |V| ≥ 3, and let d ∈ Der(A(G)). If
�3(G) = ∅ then d=0.

The previous result establishes a criterium to find evolution algebras associated to
graphs for which the only derivation is the null map, see Figure 2 for an illustration of
graphs with�3(G) = ∅. It is worth pointing out that, in the case of evolution algebras asso-
ciated to graphs, it provides an alternative to the criteria obtained by [3] where the rank of
the matrix ofA(G) relative to S should be computed. As a sideline, as we shall see later, our
criteria depends on the notion of twin vertices, which has been used in the literature for
understanding combinatorial properties of graphs, see for instance [17–19] and references
therein. Thus, our work also provides a new application of the twin partition of a graph.

Example 2.4 (Path graphPn): Consider the path graph with n vertices Pn, see Figure 2(a),
and denote its adjacency matrix by APn . Since Pn is an example of a twin-free graph, if
d ∈ Der(A(Pn)) then by Theorem 2.3 we have d=0. For the sake of comparison, let us
show the same result bymeans of the criteria obtained by [3]. It is known that det(APn) �= 0
if, and only, if n is even, see [20, Proposition 2.4]. So [3, Theorem 2.1] implies that d is zero

Figure 2. Illustration of graphs with Der(A(G)) = {0}. (a) Path graph P9 (b) Friendship graph F9
(c) Wheel graphW9 (d) Complete graph K9.
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whether n is even. Let us now assume n odd, where a straightforward calculation gives
rank(APn) = n − 1, and then the results in [3] apply. In this case, it is not difficult to see
that we can write:

e2n =
n−1∑
i=1

bi e2i ,

where

bi =
⎧⎨
⎩
0, if i = 2k, for k ∈ {1, . . . , (n − 1)/2},
(−1)k−1, if i = n − 2k, for k ∈ {1, . . . , (n − 1)/2}.

Therefore, we can use Lemma 2.2 in [3] to conclude that d is zero for n odd too.

Example 2.5 (Wheel graphWn): Consider the wheel graphWn, which is a graph with n
vertices, n ≥ 4, formed by connecting a single vertex, called centre, to all the vertices of
an (n − 1)-cycle, see Figure 2(c). We denote the central vertex by n. If AWn is the adja-
cency matrix ofWn it is known that det(AWn) = 0 if, and only, if n ≡ 1 (mod 4), see [21,
Corollary 2.2] for more details. Thus, we considerWn such that n ≡ 1 (mod 4), since oth-
erwise the space of derivations is zero by [3, Theorem 2.1]. We point out that whether
n ≡ 1 (mod 4) it is possible to show that rank(AWn) = n − 2, so the results in [3] do
not apply. We emphasize that Theorem 2.3 is enough to guarantee, also in this case, that
Der(A(Wn)) = {0}.

At this point one may ask: what we can say about Der(A(G)) for those graphs G such
that �3(G) �= ∅? The answer of this question is the spirit behind the following theorem,
which provides a natural and intrinsic characterization of Der(A(G)) depending on the
twin classes with at least three elements of G.

Theorem 2.6: Let G = (V ,E) be a finite graph, with |V| ≥ 3, and let d ∈ Der(A(G)).
If �3(G) = {T1, . . . ,Tm}, then d is in one of the following forms up to basis permutation:

(5)

where 0 denotes blocks of zeros, A�(d) := U�(d) − U�(d)T, and U�(d) := (uij) is the
a�-dimensional upper triangular matrix, with a� := |T�| for � ∈ {1, . . . ,m}, given by

uij :=
{

0, if i ≥ j,
d(s(�)+i) (s(�)+j), if i < j; (6)
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where s(i) := ∑i−1
j=1 aj, for i ∈ {2, . . . ,m} and s(1) := 0. Moreover, d satisfies the additional

condition: for � ∈ {1, . . . ,m}, ∑
k∈T�

dki = 0, for any i ∈ T�. (7)

Example 2.7 (Completem-partite graphs): LetKa1,a2,...,am be a completem-partite graph
with n vertices, m ≥ 2, and a partition of vertices {V1, . . . ,Vm} with respective sizes
a1, . . . , am, where ai ≥ 3 for i ∈ {1, 2, . . . ,m}. See Figure 1 for an illustration of this type
of graph. Since

∑m
i=1 ai = n, we have that A(Ka1,a2,...,am) is an n-dimensional evolution

algebra with rank equals to m. We can see this from the adjacency matrix of the graph,
AKa1,a2,...,am

, which is given by

where 0a×b (1a×b) denotes the matrix of size a × b and elements equal to 0 (equal to
1). The important point to note here is that although the criteria developed in [3] can not
be applied whetherm ≤ n − 2, Theorem 2.6 works. To see this, it is enough to notice that
�3(Ka1,a2,...,am) = {V1, . . . ,Vm}, i.e. each subset of the partition of the graph is a twin class
as well. Therefore, if d ∈ Der(A(Ka1,a2,...,am)), then d is in one of the forms given by (5)
up to basis permutation. For the sake of illustration, let us take m=2, and a1 = a2 = 3.
Theorem 2.6 implies that if d ∈ Der(A(K3,3)), then d is in one of the following forms up
to basis permutation:

(8)

for α,β ∈ R.

3. Proofs

3.1. Preliminary results

Since we are dealing with graphs, let us provide another look for the conditions (2) and (3).
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Proposition 3.1: Let G = (V ,E) be a finite graph, with |V| ≥ 3, and let d ∈ Der(A(G)).
Then d satisfies the following conditions:

(i) If i, j ∈ V, i �= j, andN (i) ∩ N (j) �= ∅ then dij = −dji.
(ii) If i, j ∈ V, i �= j, andN (i) ∩ N (j)c �= ∅ then dji = 0.
(iii) If i, j ∈ V, i �= j, andN (i) ∩ N (j) = ∅ then dij = dji = 0.
(iv) For any i ∈ V, we have

∑
k∈N (i)

dkj =
{

0, if j /∈ N (i),

2dii, if j ∈ N (i).

Proof: In order to prove (i) consider i, j ∈ V , with i �= j, such thatN (i) ∩ N (j) �= ∅, and
let k ∈ N (i) ∩ N (j). Since k is a neighbour of both i and jwehave aik = ajk = 1. Therefore,
condition (2) implies dij + dji = 0, or dij = −dji. Analogously, assume now that for some
i, j ∈ V we have N (i) ∩ N (j)c �= ∅, and let m ∈ N (i) ∩ N (j)c. This means that aim = 1
while ajm = 0. This implies, by (2), that dji = 0 and the proof of (ii) is completed. Item
(iii) is a consequence of (ii) sinceN (i) ∩ N (j) = ∅ impliesN (i) ∩ N (j)c �= ∅, andN (j) ∩
N (i)c �= ∅. Finally, item (iv)may be obtained by observing in (3) that for any i ∈ V , aik = 1
if, and only if k ∈ N (i). �

In other words, condition (i) refers to pairs of vertices having at least one neighbour in
common; (ii) is related to pairs of vertices for which one of them has a particular vertex as
a neighbour and the other does not; (iii) is the case for which the pair of vertices do not
have any neighbour in common; and (iv) gives an expression valid for any vertex of the
graph. Thus, Proposition 3.1 provides some conditions to be checked in order to look for
the derivations of a given evolution algebraA(G). Moreover, these conditions depend on
the topology of the graph G. The following result may be seen as a direct consequence of
Proposition 3.1.

Corollary 3.2: Let G = (V ,E) be a finite graph, with |V| ≥ 3, and let d ∈ Der(A(G)).
Then, the derivation d satisfies the following conditions:

(i) For any i ∈ V,

dii = 1
2 deg(i)

∑
k∈N (i)

dkk. (9)

(ii) If i ∼t j then dii = djj.

Proof: Notice that (ii) is a direct consequence of (i). In order to prove (i), we consider
Proposition 3.1(iv) for i, j ∈ V , with j ∈ N (i), i.e.

2dii =
∑

k∈N (i)

dkj. (10)

Since Equation (10) holds for any j ∈ N (i), we have∑
j∈N (i)

2dii =
∑

j∈N (i)

∑
k∈N (i)

dkj,
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which can be written as

2 deg(i)dii =
∑

k∈N (i)

dkk +
∑

j,k∈N (i)
j�=k

dkj. (11)

Finally observe that the second term of the right side in Equation (11) vanishes because
it includes for any k, j ∈ N (i) both djk and dkj. But N (k) ∩ N (j) �= ∅ so djk = −dkj by
Proposition 3.1(i). This completes the proof. �

Lemma3.3: Let G = (V ,E) be a finite graph, with |V| ≥ 3, and let d ∈ Der(A(G)). If dij =
dji = 0 for any i, j ∈ V, i �= j, then dii = 0 for any i ∈ V.

Proof: Let i ∈ V such that dii �= 0 and let j ∈ N (i). By applying Proposition 3.1(iv) we
have that

2dii =
∑

k∈N (i)

dkj = djj, (12)

where the last equality is by the hypothesis. On the other hand, since i ∈ N (j) we apply
again Proposition 3.1(iv) and we obtain

2djj =
∑

k∈N (j)

dki = dii. (13)

Therefore, (12) and (13) imply 2dii = (1/2)dii, and then dii = 0, which is a contradiction.
�

Lemma3.4: Let G = (V ,E) be a finite graph, with |V| ≥ 3, and let d ∈ Der(A(G)). If dij �=
0, for some i, j ∈ V with i �= j, then i ∼t j.

Proof: Let i, j ∈ V such that dij �= 0. By Proposition 3.1(iii), we have N (i) ∩ N (j) �= ∅,
but then Proposition 3.1(i) implies dji = −dij �= 0. Hence, since dij �= 0 and dji �= 0 we
conclude by Proposition 3.1(ii) that N (i) ∩ N (j)c = ∅ and N (i)c ∩ N (j) = ∅, that is,
N (i) = N (j). �

Lemma 3.5: Let G be a finite graph, with |V| ≥ 3, and let d ∈ Der(A(G)). If dk� �= 0 for
some k, � ∈ V, with k �= �, then there exists a twin class T1 ⊂ V , with |T1| ≥ 3, such that
k, � ∈ T1.

Proof: Without loss of generality assume d12 �= 0. By Lemma 3.4, we have that 1 ∼t 2.
From now on, we shall analyse two cases:

Case 1. Assume that there exists i ∈ V \ {1, 2} such that d1i �= 0. Then, again by
Lemma 3.4, 1 ∼t i and then T1 ⊃ {1, 2, i}.

Case 2. Assume that d1i = 0 for any i ∈ V \ {1, 2}. Since d21 �= 0 because of Proposi-
tion 3.1(i), we have the following possible situations:

• Suppose that there exists j ∈ V \ {1, 2} such that d2j �= 0. Then we can conclude, as
before,N (2) = N (j), and then T1 ⊃ {1, 2, j}.
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• Suppose d2j = 0 for any j ∈ V \ {1, 2}, since 1 ∼t 2 and |V| ≥ 3 then there exists j ∈
V \ {1, 2} such that j ∈ N (1). Without loss of generality we let j=3. Now, observe that
for any � ∈ N (3) we have by Proposition 3.1(i), d2� = −d�2, but d2� = 0 so d�2 = 0 as
well. Thus

∑
�∈N (3)
��=1,2

d�2 = 0. (14)

In a similar way, we obtain ∑
�∈N (3)
��=1,2

d�1 = 0. (15)

Proposition 3.1(iv), applied for i=3, j=1, and i=3, j=2, implies respectively the follow-
ing equations:

2d33 = d11 + d21 +
∑

�∈N (3)
��=1,2

d�1, (16)

and

2d33 = d12 + d22 +
∑

�∈N (3)
��=1,2

d�2. (17)

By (16) and (17), adding the expressions, we have 4d33 = 2d11. The last conclusion is
a consequence of (14), (15), d12 + d21 = 0 (by Proposition 3.1(i)), and d11 = d22 (by
Corollary 3.2(ii)). On the other hand, Corollary 3.2(i) implies

2 deg(1)d11 =
∑

k∈N (1)

dkk,

but, since a similar expression like (16) holds for any vertex inN (1), we have 2dkk = d11 +
d21, and then

2 deg(1)d11 =
∑

k∈N (1)

(
d11 + d21

2

)
= deg(1)

(
d11 + d21

2

)
.

This in turns implies 3d11 = d21, and again from (16) we have 2d33 = 4d11. Therefore,
it should be d11 = 0 which implies d21 = 0. But this is a contradiction. �

Lemma 3.6: Let G = (V ,E) be a finite graph, with |V| ≥ 3, let T1 ⊂ V be a twin class of G,
and let d ∈ Der(A(G)). Then

(i) dik = dki = 0 for any i ∈ T1 and k ∈ T c
1 ;

(ii) dii = 0, for any i ∈ T1;
(iii) d�� = 0, for any � ∈ N (T1);
(iv) dij = −dji, for any i, j ∈ T1, with i �= j.
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Proof: First we shall prove (i). Consider i ∈ T1 and k ∈ T c
1 .

• IfN (i) ∩ N (k) = ∅ then Proposition 3.1(iii) implies dik = dki = 0.
• IfN (i) ∩ N (k) �= ∅ we have by Proposition 3.1(i) that dik = −dki. Then, since T1 is a

twin class, we have two options:
– orN (i) ∩ N (k)c �= ∅, and then Proposition 3.1(ii) implies dki = 0;
– orN (k) ∩ N (i)c �= ∅, and then Proposition 3.1(ii) implies dik = 0.

In both cases, one can conclude dik = dki = 0 and the proof of (i) is completed.

Now let us prove (ii) and (iii) together. Let T1 = {1, . . . ,m}, let i ∈ T1 and let � ∈ N (i).
By Proposition 3.1(iv) we have

2d�� =
∑

k∈N (�)

dki,

but

∑
k∈N (�)

dki =
∑

k∈N (�)∩T1
dki +

∑
k∈N (�)∩T c

1

dki =
m∑
k=1

dki,

where the last equality is due toN (�) ∩ T1 = T1, together to the fact that
∑

k∈N (�)∩T c
1
dki

vanishes by (i). So, in general we have for any i ∈ T1, and � ∈ N (i):

2d�� =
m∑
k=1

dki, (18)

and taking the sum over all i ∈ T1 in Equation (18) one get

2md�� =
m∑
k=1

dkk = md11. (19)

The first equality of Equation (19) is due to Proposition 3.1(i), while the second one is due
to Corollary 3.2(ii). On the other hand, Corollary 3.2(i) and (19) imply for i ∈ T1

2 deg(i)dii =
∑

k∈N (i)

dkk = deg(i)d��. (20)

Therefore we have 2d�� = dii (see Equation (19)) and dii = (1/2)d�� (see Equation (20))
so dii = d�� = 0, for i ∈ T1 and � ∈ N (i). This completes the proof of (ii) and (iii).

Finally, we notice that (iv) is a direct consequence of Proposition 3.1(i). �

3.2. Proofs of the theorems

3.2.1. Proof of Theorem 2.3
Assume d �= 0. By Lemma 3.3 we have that dij �= 0 for some i, j ∈ V , i �= j. Then
Theorem 2.3 is a consequence of Lemma 3.5.
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3.2.2. Proof of Theorem 2.6
Let �3(G) = {T1,T2, . . . ,Tm}, where m ∈ {1, . . . , n/3�}. Moreover, let ai := |Ti| and
without loss of generality relabel the vertices of the graph as

Ti = {s(i) + 1, s(i) + 2, . . . , s(i) + ai},
for i ∈ {1, . . . ,m}, where

s(i) :=
i−1∑
j=1

aj,

whether i>1 and s(1) := 0. In what follows we denote T := ⋃m
i=1 Ti. Let d ∈ Der(A(G)).

The main idea behind the proof is to discover the matrix representation of d by consid-
ering the twin classes of �3(G) one at a time. First let us consider T1. We shall see that we
can find the values of dij provided i ∈ T1 or j ∈ T1. In order to do it, we use Lemma 3.6.
Note that Lemma 3.6(i) implies dij = 0 if i ∈ T1 and j ∈ T c

1 or, if j ∈ T1 and i ∈ T c
1 . Now

we have to check the values of dij for i, j ∈ T1.We observe that dii = 0 for any i ∈ T1 thanks
to Lemma 3.6(ii). On the other hand, dij = −dji for i, j ∈ T1 by Lemma 3.6(iv). Hence, we
obtainA1(d) = U1(d) − U1(d)T, whereU1(d) is the a1-dimensional matrix with elements
(uij) satisfying (6) and (7). The latest condition is a consequence of Proposition 3.1(iv).
Summarizing, part of the representation matrix of d has been obtained by observing the
vertices in T1, see Figure 3 for an illustration of the first step of this procedure.

It is not difficult to see that the same procedure can be applied to the second twin classT2
of�3(G). This in turns allows us to discover the expression of a second part of thematrix of
d, see Figure 4(left side). By continuing in this way, we can discover the part of d associated
to all the vertices in T , see Figure 4(right side).

Figure 3. First step in the exploration process of d.
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Figure 4. General idea to discover thematrix representation of d. The second step consists into discover
those values of dij such that i ∈ T2 or j ∈ T2 (left side). Once dij is found for any i,j such that i ∈ T or
j ∈ T the remaining matrix to be discovered is formed by those dij such that i, j ∈ T c (right side).

The final step is to prove that the remaining block of the matrix representation of d,
which is formed by those dij such that i, j ∈ T c, is formed by zeros. By assuming |T | ≤
n − 3 (the other cases will be considered later), we have that the remaining block is a square
matrix with size of at least 3. Notice that the existence of a pair of vertices i, j ∈ T c, with
i �= j, such that dij �= 0, implies by Lemma 3.5 the existence of another twin class with
at least three vertices, but this is a contradiction by our construction. Therefore, we have
dij = 0 for any i, j ∈ T c, with i �= j. Now, let us discover the values of dii whether i ∈ T c.
Since we are considering a connected graph, we known that some vertices in T c belongs
toN (T ). So by Lemma 3.6(iii) it holds dii = 0 provided i ∈ N (T ). We shall see that the
same result can be extended to any vertex � such that � ∈ N (i) ∩ T c, for some i ∈ N (T ).
Indeed, for the considered vertices, we have dii = 0 because of the previous argument, and
we have

2d�� =
∑

k∈N (�)

dki = dii,

where the first equality comes from Proposition 3.1(iv) (note that � and i are neighbours),
and the second one is due to be dki = 0 whether k �= i. This means that d�� = 0. This argu-
ment can be extended to any vertex of T c. This is because since we are dealing with a
connected graph, for any vertex of T c, there exists a path of vertices connecting it with a
vertex in T . Thus, dii = 0 for i ∈ T c and the remaining block in our procedure is formed
by zeros.

In order to finish the proof, we have to prove that the remaining block, see Figure 4(right
side), is formed by zeros also in the case of |T | ∈ {n − 1, n − 2}. If |T | = n − 1, then
|T c| = 1 and the only vertex of T c, labelled by n according to our labels for T , must be a
neighbour of some vertex in T . This in turns implies dnn = 0 by Lemma 3.6(iii) and the
proof is complete. On the other hand, assume |T | = n − 2, which impliesT c = {n − 1, n}.
The same arguments than before allow us to conclude d(n−1)(n−1) = dnn = 0. Further-
more, a suitable application of Proposition 3.1(iv) lead us to d(n−1)n = dn(n−1) = 0, so the
proof is complete.
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Note

1. For the sake of simplicitywe use the nomenclature of twins but, sincewe consider graphswithout
loops, it coincides with the concept of non-adjacency twins, or false twins, depending of the
reference.
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