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Jairo Espinosa ∗

∗ Facultad de Minas,Universidad Nacional de Colombia, Cra. 80 No.
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∗∗Departamento de Ingenieŕıa Electrónica, Universidad de Antoquia,
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Abstract: Hydro-power valleys are large scale systems used to power energy production. The
stored water is also used for navigation and agriculture purposes. Recently, the control of hydro-
power valleys has been formulated as a centralized optimal control problem. However, the scale
of the systems make unfeasible real time implementations for centralized controllers. In this
work we propose the use of the game theory to formulate a distributed model predictive control
scheme to control an hydro-power valley. The proposed control scheme is tested by using a
power reference tracking scenario as a test-bed.

1. INTRODUCTION

A hydro-power valley (HPV) is a large-scale system whose
main objective is to produce electric power from water
stored in lakes and/or reaches. In this kind of systems the
water flows across a duct equipped with a turbine, this
movement converts the potential energy of the water into
mechanical energy, which is then converted into electric
energy. The electric power has to be produced considering
that the water is also used for ancillary services like
navigation and irrigation, and also the levels cannot be
higher than a predefined threshold in order to avoid
floods Faille (2009). All these restrictions plus the power
requirements must be accomplished with an adequate
control scheme.

As in almost all large-scale systems, the most common con-
trol scheme employed for controlling the HPV comprises
a proportional-integral (PI) controller with disturbance
feed-forward installed on each individual power plant Setz
et al. (2008). However, the use of local PI controllers in
a HPV does not guarantee an efficient use of the stored
water, and in presence of disturbances the performance of
the entire system could be compromised. For tackling these
issues, multivariate control structures have been proposed
for controlling HPV systems. Often, these are optimal con-
trol schemes (see Xiaohong et al. (1999) and the references
therein). In this way, centralized model predictive control
(MPC) schemes for controlling HPV have been proposed
Setz et al. (2008).

Since an HPV is a large-scale system, a centralized MPC
may become impractical, inflexible, and unsuitable, be-
cause it may require to exchange large amounts of infor-
mation with high computational load associated Li et al.
(2005); Negenborn (2007); Camponogara et al. (2002);

Necoara et al. (2008); Doan et al. (2008); Camponogara
and Talukdar (2007); Du et al. (2001); Venkat et al. (2007).
Therefore, distributed model predictive control (DMPC)
schemes were implemented to deal with large-scale MPC
problems given their capabilities to divide a complex prob-
lem into several sub-problems. The use of DMPC schemes
reduces the computational load and the information ex-
change required for the implementation of real-time large
scale MPC Li et al. (2005); Negenborn (2007).

Several DMPC approaches have been presented in the lit-
erature (see Camponogara et al. (2002); Doan et al. (2008);
Necoara et al. (2008); Rantzer (2009) for examples). Often,
these approaches required the system to be stable and
controllable, but it restricted the applicability of the pro-
posed methods. Moreover, the reviewed approaches may
force the subsystems to cooperate, often without taking
into account whether the cooperative behavior gives some
benefit to the subsystems, and might steer the subsystems
to operating points where they do not perceive any benefit
in terms of the local cost function. Considering these is-
sues, game theory arises as an alternative to formulate and
characterize the problem of not being able to determine
when the subsystems should cooperate or not.

Game theory is a mathematical method to analyze calcu-
lated circumstances where the success of an individual is
based upon the choices of the others (see Von Neumann
et al. (1947) for a more detailed definition of game theory).
The first ideas of applying game theory to the DMPC
problem were proposed in Du et al. (2001); Li et al. (2005).
In such approaches the DMPC problem was formulated as
a non-cooperative game and it was demonstrated that the
solution converged to the Nash equilibrium point of the
game. In Rantzer (2009) related the DMPC problem with
game theory using the cooperative game approach pre-
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sented in Von Neumann et al. (1947). In these approaches
the Lagrange multipliers used in the dual decomposition
methods were conceived as prices in a market mechanisms
(see Necoara et al. (2008) for details), allowing to achieve
mutual agreements among subsystems. Other approaches
related with the formulation of the DMPC problem as
a game have been presented in Muñoz de la Peña et al.
(2009); Maestre et al. (2011b). In Muñoz de la Peña et al.
(2009); Maestre et al. (2011a,c,b) some algorithms based
on cooperative games for solving the DMPC problem
were proposed. In Venkat et al. (2006b,a) the authors
presented examples where the convergence of the solution
of the DMPC to a Nash equilibrium point produced an
unstable closed-loop behavior. In addition, the DMPC
schemes based on cooperative games required the solution
of more than one optimization problem at each sample
time, increasing the computational burden of the DMPC
schemes.

In order to tackle these drawbacks, in this work is assumed
that subsystems “bargain” to each other in order to
(jointly) decide which strategy is best with respect to
their mutual benefit. Such assumption is based on the fact
that in a HPV the power-plants are coordinated in order
to provide the required power. The DMPC problem for
the HPV is then reformulated as a n-person bargaining
game based on the concepts presented in Nash (1950b,a,
1953) about such games. A similar formulation of DMPC
has previously been presented in Valencia et al. (2011);
Alvarado et al. (2011).

The outline of this manuscript is as follows: In Section 2
the HPV model is introduced. In Section 3 the mathe-
matical framework of non-symmetric game theory and the
formulation of the DMPC as a non-symmetric game are
presented. In Section 4 a DMPC based on game theory
is formulated for an HPV. In Section 5 simulation results
are presented. Finally, the concluding remarks are given in
Section 6.

2. HYDRO-POWER VALLEY MODELING

Consider the HPV shown in Figure 1. This HPV is
composed by three lakes (Lm, m = 1, 2, 3) where the water
is stored, a duct (U1) that connects two lakes, a river with
six dams (Dj , j = 1, . . . , 6), two turbines (Tp, p = 1, 2),
and two turbine-pump devices (Cp). The stored water
flows across ducts from one reservoir to another, or from
the reservoir to power houses where the potential energy
of the water is transformed into mechanical energy.

The river has a constant inflow qin and a constant trib-
utary flow qtr. Moreover, each dam Dj is equipped with
a turbine for electric power generation. They are located
in the river and divided it into six reaches (Rj), where
reaches R1, R2 and R4, R5 are connected with lakes
L1, L3 through turbines T1, T2 and turbine-pumps C1, C2

respectively. Also, lakes L1, L2 are connected to each other
by the duct U1. This duct is only used for transmitting the
water from one lake to another depending on the difference
of the levels.

A model suitable for control purposes using the HPV of
Figure 1 is derived in Savorgnan and Diehl (2011). This
model is based on the following assumptions:

Fig. 1. Hydro-Power Valley used as a case of study.

• The ducts are connected at the bottom of the lakes
(or at the bottom of the river bed).

• The cross sections of the reaches and of the lakes are
rectangular.

• The width of the reaches varies linearly along them.
• The river bed slope is constant along every reach.

Based on these assumptions, the nonlinear, first-order
Saint-Venant partial differential equations represent the
state of the art for modeling one-dimensional river hy-
draulics with constant fluid density Setz et al. (2008).
In these equations the hydraulic state of the river are
described by two variables: the water depth h(t, z) and
the discharge q(t, z), both varying as a function of space z
and time t. Thus, the dynamics of each reach are given by
Savorgnan and Diehl (2011); Setz et al. (2008)
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In Eq. (1), q = q(t, z), s = s(t, z), h = h(t, z), If =
If (t, z), Io = Io(t, z), where s(t, z) is the wet surface,
If (t, z) is the friction slope, Io(t, z) is the river bed slope,
and g is the gravitational acceleration. Since the cross
sections of the reaches and lakes are assumed rectangular,
the wet surface and the friction slope are given by Eqs. (2)
and (3) respectively Savorgnan and Diehl (2011)

s(t, z) = w(z)h(t, z) (2)

If(t, z) =
q2(t, z)(w(z) + 2h(t, z))

4

3

k2
str

(w(z)h(t, z))
10

3

(3)

where w(z) is the river width, and kstr is the Gauckler-
Manning-Strickler coefficient. For modeling the lakes,
duct, turbines, and turbine-pumps elements, Eqs. (4)-(7)
were used Savorgnan and Diehl (2011):

∂h(t)

∂t
=

qin(t)− qout(t)

S
(4)

qU1(t) = SU1sign(H(t))
√

2g|H(t)| (5)

pt(t) = ktqt(t)∆ht(t) (6)

pC(t) = kC(qC(t))qC(t)∆hC(t) (7)

where sign(·) is the sign function, S is the surface area of
the lake, SU1 is the section of the duct, kt is the turbine
coefficient, qin(t), qout(t), are the input and output flows
of the lakes respectively, qt(t) is the turbine discharge,
∆ht(t), ∆hC(t) are the heads of the turbine and the
turbine-pump respectively, qU1(t) is the flow across the

IFAC LSS 2013
July 7-10, 2013. Shanghai, China

539



duct U1; pt(t), pC(t) are the power generated by the
turbines and the power generated or consumed by the
turbine-pump elements respectively,

kC(qC(t)) =

{

ktC if qC(t) ≥ 0
kpC if qC(t) < 0

is the turbine-pump coefficient, ktC , kpC are the gains of
the turbine-pump devices in turbine or pump mode re-
spectively, qC(t) is the flow in the turbine-pump elements,
and H(t) = hL2(t)−hL1(t)+hU1, with hL1(t), hL2(t) the
levels of the lakes 1 and 2 respectively, and hU1 the height
difference of the duct.

Although Eqs. (1)-(7) describe the dynamic behavior of
the HPV, this model is unsuitable for control purposes. In
order to obtain a suitable model, a spatial discretization
of Eq. (1) is required. The expressions of the resultant
model are given in Savorgnan and Diehl (2011). Let
hLm(t) denote the level of the m-th lake. Let qTp, qCp

denote the inflow of the p-th turbine and p-th turbine-
pump device respectively. For the reach Rj , let QRj =
[q1j(t), . . . , qNxj

(t)] and hRj = [h1j(t), . . . , h(Nx+1)j(t)]
denote the vector of outflows and the vector of levels at
each spatial partition, being Nx the number of spatial
partitions of the reach. Also, let qRj denote the outflow
of the j-th turbine at the corresponding dam. Then, the
inputs u(t) and the states x(t) of the HPV can be defined
as

u(t) = [qT
Tp

(t), qT
Cp

(t), qT
Rj

(t)]T ,

x(t) = [hT

Lm
(t), QT

Rj
(t), hT

Rj
(t)]T

p = 1, 2; j = 1, 2, . . . , 6; m = 1, 2, 3. Based on this
definition of states and inputs the proposed DMPC scheme
is formulated.

3. DISTRIBUTED MODEL PREDICTIVE CONTROL
AS A BARGAINING GAME

Let start the current Section introducing the concept of
game. A game is defined as the tupleG = (N, {Ωi}i∈N , {φi}i∈N ),
whereN = {1, . . . ,M} is the set of players, Ωi is a finite set
of possible actions of player i, and φi : Ω1×. . .×ΩM −→ R

is the pay-off function of the i-th player Akira (2005). If it
is assumed that the players are able to “bargain” in order
to achieve a common goal, the game G can be analyzed
as a bargaining game following the Nash theories about
such games. A bargaining game is a situation involving a
set of players who have the opportunity to collaborate for
mutual benefit by an agreement on a joint plan of action
Nash (1950b, 1953). If an agreement is not possible, the
players carry out an alternative plan determined by the
information locally available. The benefit perceived by the
player when an agreement is not possible is called disagree-
ment point (see Peters (1992) for an in deep discussion
about bargaining games).

Assume that the whole system can be decomposed into
M subsystems such that the dynamic model of each sub-
system is given by the linear state equation Camponogara
et al. (2002); Doan et al. (2008); Du et al. (2001); Necoara
et al. (2008)

xi(k + 1) =

M
∑

l=1

Ailxl(k) +Bilul(k)

yi(k) =

M
∑

l=1

Cilxl(k) +Dilul(k)

(8)

where Ail, Bil, Cil, and Dil are sub-matrices of A, B, C,
and D respectively. Often, a quadratic cost function
Venkat et al. (2006b) is used to measure the performance
of the system (note that it can also be interpreted as the
total energy). Using Eq. (8), this cost function becomes

L(x̃(k), ũ(k)) =

M
∑

i=1

φi(ũ(k);x(k)) (9)

where x̃(k) = [xT (k), . . . , xT (k+Np)]
T , ũ(k) = [uT (k), . . .

, uT (k+Nu), . . . , u
T (k+Np)]

T , being Nu, Np the control
and prediction horizon respectively, with Nu ≤ Np, and

φi(ũ(k);x(k)) =ũT (k)Quuiũ(k) + 2xT (k)Qxuiũ(k)

+ xTQxxix(k)
(10)

withQuui ≥ 0, for i = 1, . . . ,M obtained with the solution
of the Local Lyapunov equation. In Eq. (10) the notation
φi(ũ(k);x(k)) indicates that the argument of φi is ũ(k) and
x(k) is a parameter of φi. Clearly, φi is a positive-definite
quadratic function of ũ(k) and thus it is convex in ũ(k)
(For the sake of simplicity of notation we will not indicate
the dependence of φi on x(k) explicitly in the remainder of
this text and thus write φi(u(k)) instead φi(u(k);x(k))).

In the formulation of the DMPC, there are a set of
subsystems N = {1, . . . ,M} determined by the system
decomposition of Eq. (8), a set of feasible control actions
Ω = ΠM

i=1
Ωi, being Ωi the feasible set for the whole system

determined by the physical and operational constraints,
determining a set of possible values for the cost function
φi(ũ(k)) for each subsystem i, and a set of cost functions
{φ1(ũ(k)), . . . , φM (ũ(k))} defining the interests of each
subsystem, all of them depending on the decision of
the remaining subsystems. Therefore, the DMPC can be
analyzed as a game GDMPC = (N, {Ωi}i∈N , {φi}i∈N ).
Moreover, since in a DMPC scheme the subsystems are
able to communicate to each other, it is possible to assume
that they are also able to bargain. Hence, the gameGDMPC

can be analyzed as a bargaining game, and the outcome
of an DMPC can be also computed and characterized
as a solution of such games. However, the axiomatic
bargaining game theory presented in Nash (1950a,b, 1953);
Peters (1992) has been developed for games with a static
decision environment, which is not the case of the DMPC,
where the decision environment changes accordingly to the
dynamic equations modeling the behavior of the system.
So, the original bargaining game theory has to be extended
in order to cover games with time-varying decision space.
Then, in this paper the concept of discrete-time dynamic
bargaining game is introduced.

A discrete-time dynamic bargaining game refers to a
situation where at each time step a static bargaining game
(S, d) is solved depending on the dynamic evolution of
the decision environment. It is determined by a state
vector x(k) ∈ R

n and by an input vector u(k) ∈ R
m,

with x(k) ∈ X and u(k) ∈ U, X and U being the
feasible sets for x(k) and u(k) respectively. In this game,
we assume that the feasible set and/or the disagreement
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point can change with time. Mathematically, a discrete-
time dynamic bargaining game for N is defined as a
sequence of games {(Θ(0), η(0)), (Θ(1), η(1)), . . .}, denoted
by {(Θ(k), η(k))}∞

k=0
, where for k = 1, 2, 3, . . ., Θ(k) is a

non-empty closed subset of R
M ; and η(k) ∈ int(Θ(k)),

η(k) is the disagreement point. Also, there exists functions
fi ∈ R

ni , gi ∈ R
zi , hi ∈ R, i = 1, . . . ,M , determining the

dynamic evolution of the decision environment, the feasible
set, and the disagreement point of player i such that:

xi(k + 1) = fi(x(k), u(k))

Θi(k + 1) = gi(x(k), u(k),Θ(k))

ηi(k + 1) = hi(x(k), u(k), η(k))

with xi(k) ∈ Xi; Xi ⊂ X; zi the dimension of the feasible
set of player i, and u(k) = [uT

1
(k), . . . , uT

M
(k)] the vector

of actions taken by the players affecting the decision
environment. Finally, there exists a tuple φ(x(k), u(k)) ∈
R

M such that φ(x(k), u(k)) ∈ Θ(k), being φi(x(k), u(k))
the profit function of the i-th player.

Let define the evolution of the disagreement point as

ηi(k + 1) =
{

ηi(k)− α(ηi(k)− φi(ũ(k))) if ηi(k) > φi(ũ(k))
ηi(k) + (φi(ũ(k))− ηi(k)) if ηi(k) < φi(ũ(k))

∀i ∈ N , with 0 < α < 1. Let Υ denote the set of values
of φi(ũ(k);x(k)) such that ũ(k) ∈ Ω. Let the utopia point
ζi(Υ) be defined as ζi(Υ) := min {φi(ũ(k)) : φi(ũ(k)) ∈ Υ}
exist for every i ∈ N . Then, the game GDMPC is a
discrete-time dynamic bargaining game with Θ(k) = Υ
(the evolution of the decision environment is determined
by the dynamics of the controlled system).

Until here the DMPC has been defined as a bargaining
game. Now, a solution for such a game is derived based
on the solution proposed in Nash (1950a,b, 1953); Peters
(1992) for non-symmetric bargaining games.

the non-symmetric bargaining solution of a game GDMPC

at time step k can be computed in a centralized way as a
solution of the maximization problem:

max
ũ(k)

M
∑

i=1

wi log(ηi(k)− φi(ũ(k))) (11)

subject to:

ηi(k) > φi(ũ(k)) ũ(k) ∈ Ω

with wi a set of weights. Since a DMPC scheme only
has horizontal communication, all the subsystems belong
to the same layer. Although the definition of weighted
hierarchy requires the selection of the weights for each
subsystem, there are not guidelines for choosing their
values. In the control theory field, the values of the weights
can be arbitrarily selected as wi =

1

M
, i = 1, . . . ,M Doan

et al. (2008); Venkat et al. (2006a,b)).

The maximization problem of Eq. (11) can be solved in a
distributed way by locally solving the system-wide control
problem

max
ũi(k)

M
∑

r=1

wr log(ηr(k)− σr(ũi(k), ũ−i(k)))

Subject to:

ηr(k) > σr(ũi(k), ũ−i(k)) ũi(k) ∈ Ωi

(12)

with σr(ũi(k), ũ−i(k)) = φR(ũ(k)) for r = 1, . . . ,M , where
ũ−i(k) = [ũT

1
(k), . . . , ũT

i−1
(k), ũT

i+1
(k), . . . , ũT

M
(k)].

Note that the maximization problem of Eq. (12) is equiv-
alent to the maximization problem of Eq. (11), consid-
ering fixed ũ−i(k) and optimizing only in the direction
of ũi(k). This formulation allows each subsystem to take
into account the effect of its decisions in the behavior of
the whole system and to promote the cooperation among
subsystems.

In order to implement the solution of a DMPC as a
bargaining game, a negotiation model is proposed. A
negotiation model is a sequence of steps for computing the
outcome of a game. In the case of the DMPC game, the
proposed algorithm solves such games in a distributed way.
This algorithm is based on the negotiation model proposed
by Nash (1953) for two-person games. The proposed steps
for solving the DMPC game are:

(1) At time step k, each subsystem sends to the remaining
subsystems the values of xi(k), ηi(k).

(2) With the information received, each subsystem solves
the local optimization problem of Eq. (12).

(3) Let ũ∗
i
(k) denote optimal control actions for subsys-

tem i, i = 1, . . . ,M . If Eq. (12) is feasible, subsystem
i selects the first control action of ũ∗

i
(k). Otherwise,

subsystem i selects the first control action of ũi(k),
where ũi(k) is the initial condition of subsystem i at
time step k for solving Eq. (12).

(4) Each subsystem updates its disagreement point based
on Eq. (3).

(5) Each subsystem sends its updated control action and
its updated disagreement point.

(6) Go to step 1.

The initial condition for solving (12) at time step k + 1
are given by the shifted control input ũoi(k+1) = [ūT

i
(k+

1), . . . , ūT

i
(k+Np), 0], where ūi(k) denotes the value of the

control input to be applied in the i-th subsystem. Note
that in the proposed negotiation model seems that there
is not a negotiation process. However, the cost function

J(ũ(k)) =

M
∑

r=1

wr log(ηr(k)− σr(ũi(k), ũ−i(k)))

allows every subsystem to have certain degree of coordina-
tion with the remaining subsystems. Thus, subsystem i is
able to compute its optimal control inputs in a separated
way from the information provided by the remaining sub-
systems. Furthermore, in comparison with the Lagrange
multipliers based DMPC schemes, the proposed algorithm
does not require an iterative process for computing the
local control actions, decreasing the computational bur-
den. The convexity and the feasibility of the proposed
DMPC scheme are analyzed in Alvarado et al. (2011).
Moreover, the whole system cost function is bounded by
the sum of all disagreement points. So, if the disagreement
point decreases and tends to zero, the cost function of the
whole system also decreases and tends to zero guaranteeing
stability. A formal definition of the stability conditions
of the proposed control scheme is presented in Valencia
(2012).

In the proposed negotiation model only one optimization
problem should be solved. This allows to reduce the
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computational burden of the DMPC scheme associated
with the communications among subsystems, and maybe
with the solution of more than one optimization problem
at each time step. In the next section a DMPC scheme
based on game theory is formulated for a HPV.

4. GAME-THEORY-BASED CONTROL OF A
HYDRO-POWER VALLEY

With the purpose of designing a MPC for the HPV de-
picted in Section 2, the power tracking scenario proposed
in Savorgnan and Diehl (2011) is considered. In this sce-
nario, power output of the system should follow a given
reference while keeping the water levels in the lakes and
at the dams as constant as possible. So, the global cost
function considered for the DMPC is composed by two
terms: the first term penalizes the 1-norm of the power
tracking error, and the second term penalizes the 2-norm
of the deviations of the levels in the lakes and in the dams
from their steady state values.

The HPV can be defined by the linear discrete model of
Eq. (8), where A, B, C, D are the matrices resulting from
the linearization of Eqs. (1)-(7), and y(k) = [p(k), hT

D
(k)]T ,

with p(k) the power produced by the HPV, and hD(k) =
[hD1Nx

, hD2Nx
, hD3Nx

, hD4Nx
, hD5Nx

, hD6Nx
] the levels at

the dams (only the levels in the last element of the spatial
discretization of the reaches is considered to regulate the
levels of the reaches). Note that the power produced by
the HPV is piecewise defined with respect to u(k) due
to the turbine-pump elements. In order to overcome this
issue in the linearization, constants kdes1, kdes2 were intro-
duced, virtual inputs ū1(k) ∈ [−qC1pump, qC1turb], ū2(k) ∈
[−qC2pump, qC2turb] were considered, and a gain compen-
sation

up(k) =















kdesp

ktCp

ūp(k) if ūp(k) ≥ 0

kdesp

kpCp

ūp(k) if ūp(k) < 0

was proposed, where qC1pump, qC2pump, qC1turb, qC2turb are
the maximum pumped flows and maximum turbine flows
for the turbine-pump elements C1, C2 respectively, p = 1, 2
(the values of qC1pump, qC2pump, qC1turb, qC2turb are given
in Savorgnan and Diehl (2011)).

From Savorgnan and Diehl (2011), it is possible to divide
the HPV of Figure 1 into eight subsystems:

• Subsystem 1: lakes L1 and L2, turbine T1, and
turbine-pump C1.

• Subsystem 2: lake L3, turbine T2, and turbine-pump
C2.

• Subsystems 3-8: reaches R1 to R6 respectively.

Thus, the DMPC problem is formulated as follows Sa-
vorgnan and Diehl (2011):

min
ũ(k)

λ|p̃r(k)− ỹp(ũ(k))|+ ũT (k)Quuũ(k)

+ hT

D
(k)Quxũ(k) + hT

D
(k)Qxxh

T

D
(k)

Subject to:

ũ(k) ∈ Ω

u(k + ν) = u(k +Nu), ∀Nu < ν < Np − 1

(13)

where p̃r(k) = [pr(k), . . . , pr(k+Np)], with pr(k) the power
references; ỹp(ũ(k)) = [p(x(k), u(k)), . . . , p(x(k), u(k +
Np − 1))], with p(x(k), u(k)) the power produced by
the HPV; Quu = B̄T Q̄B̄, Qux = xT (k)ĀT Q̄B̄, Qxx =
ĀT Q̄Ā, and Ω is the feasible set composed by the input
constraints and the mapping of the state constraints to
input constraints, with Ā, B̄ the resulting matrices from
the prediction of hD(k) along Np, Q̄ the Q block diagonal
matrix resulting form the division of the model, and λ > 0
a diagonal matrix. The power reference to be followed by
the entire system is known 24 hours in advance and the
inputs of the system can be changed every 30 minutes.

Let σi(ũi(k), ũ−i(k)) be the local cost function of each
subsystem, σi(ũi(k), ũ−i(k)) defined as

σi(ũi(k), ũ−i(k)) = γ|p̃r(k)− ỹp(ũi(k), ũ−i(k))|
+ [ũT

i
(k), ũT

−i
(k)]H̄i[ũ

T

i
(k), ũT

−i
(k)]T

+ 2F̄i[ũ
T

i
(k), ũT

−i
(k)]T

where H̄i, F̄i are the resultant matrices of the permutation
of the rows and columns of Quu and Qux respectively
(the state dependence of σi(·) was omitted for notational
convenience), and γ ∈ R a constant weight (the term
hT

D
(k)Qxxh

T

D
(k) was omitted because it is constant with

respect to the decision variables, then it does not af-
fect the result of the optimization). From Savorgnan and
Diehl (2011), the state and input constraints are time
independent and they only establishes lower and upper
boundaries to the states and inputs. So, they are inde-
pendent for each subsystems, i.e., there is not coupled
constraints. Then, for the control of the HPV we have a
game GHPV = {N, {σi(ũi(k), ũ−i(k))}i∈N , {Ωi}i∈N}, with
N = {1, . . . , 8}, in which all subsystems have the same
goal: to minimize the power tracking error keeping the
levels in the lakes and at the dams as close as possible to
their steady state values. Hence, the game GHPV can be
analyzed and solved as a discrete-time dynamic bargaining
game {(Υ, η(k))}∞

k=0
, with η(k) defined as in Section 3. In

the following section the simulation results are presented.

5. SIMULATION RESULTS

Based on the formulation presented in Section 4, a closed-
loop simulation of the HPV described in Section 2 was
performed along 24 hours (simulation time). In this sim-
ulation, kdes1 = 3

4
(ktC1 + kpC1), kdes2 = 3

4
(ktC2 + kpC2),

Ts = 1800s (30 minutes), Np = 48 (corresponding to a
day), Nu = 32, w1,2 = 0.4

2
, w3−8 = 0.6

6
(the weights of

subsystems 1 to 8), ηi(0) = 1 × 105 (the initial disagree-
ment point of subsystems 1 to 8), γ = 50, Q = I (I being
the identity matrix). The values of the parameters of Eqs.
(1)-(7), as well as the lower and upper values of the inputs
and the states were taken as proposed in Savorgnan and
Diehl (2011).

Figure 2 shows the comparison between the power pro-
duced by the HPV and the power reference when the
proposed DMPC scheme computes the inputs of each
subsystem. This figure shows how the power produced by
the HPV followed the power reference, satisfying one of
the objectives proposed for the control scheme. However,
there was an oscillation at the beginning of the experiment
due to the transient generated by the change of power from
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175 MW (equilibrium power) to the initial required power
150 MW.
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Fig. 2. Comparison between the power produced by the
HPV with the power reference, when the proposed
game-theory-based DMPC is used for computing the
inputs of the subsystems

In order to maintain some power demand, the levels of
the reaches and the lakes should be modified. In Figure 3
the behavior of the levels is presented. At the beginning
of the simulation the lakes increased their levels due to
the reduction of power from the equilibrium point to the
set point (see first panel of Figure 3). When the required
power was increased the lakes reached constant levels of
water, achieving one of the system objectives. During the
whole simulation the reaches maintained their levels as
constant as possible (see second panel of Figure 3). If it
is considered that the reaches also can be used for mar-
itime traffic, maintaining constant their levels guarantees
it. This condition was considered in the selection of the
weights, by giving more importance to the reaches com-
pared with the lakes; it is evidenced with the comparison:
∑

8

i=3
wi >

∑

2

i=1
wi.
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Fig. 3. Behavior of the levels in the lakes (first panel) and
the levels at the dams (second panel) of the HPV. In
both panels the levels are inside the values defined
by the constraints, although the levels of the lakes
(first panel) present large excursions before remaining
constant, while the levels of the reaches remains as
constant as possible.

The excursions of the levels of the lakes can be associated
with the behavior of the control inputs (see Figure 4).
Even though the control inputs remained inside the range
defined by the constraints, the control actions of subsys-
tems 1 and 2 had higher variations than the control actions
of the remaining subsystems with respect to their local
capability. This produced lager changes in the levels of the
lakes than the levels of the reaches. Recall that subsystems

3 to 8 were power plants and subsystems 1 and 2 were ducts
equipped with turbines and turbine-pump elements with
less capability to produce electric power than the power
plants.
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Fig. 4. Control actions applied to the subsystems. In the
first panel the behavior of the control actions applied
to subsystems 1 and 2 is presented. In the second
panel the behavior of the control actions applied to
subsystems 3 to 8 is presented. In both panels the
control actions remain inside the range defined by the
constraints of the control inputs.

Finally, in Figure 5 the evolution of the disagreement
points is presented. In this Figure, the disagreement
started at the same point but as they were evolving each
subsystem had its own value indicating the non-symmetry
of the gameGHPV . Figure 5 also shows a zoom between 4×
104s and 7.5× 104s, note that all the disagreement points
decreased with low frequency oscillations. Such oscillations
were associated to the decision process of each subsystem.

0 2 4 6 8

x 10
4

0

2

4

6

8
x 10

6

Time [s]

η
(t

)

η
1
(t)

η
2
(t)

η
3
(t)

η
4
(t)

η
5
(t)

η
6
(t)

η
7
(t)

η
8
(t)

Fig. 5. Behavior of the disagreement points at the full
simulation. This Figure shows an overall evolution
and presents a detailed view that allows to evidence
the non-symmetry of the game.

6. CONCLUDING REMARKS

In this work a distributed model predictive control scheme
based on game theory was proposed for controlling an
HPV. With this purpose, a model of an HPV suitable
for control purposes was presented, and the mathematical
framework for the formulation of the DMPC scheme as a
non-symmetric bargaining game also was presented. This
methodology allows the subsystems decide whether to
cooperate or not based on the benefit perceived by the
cooperative behavior. Moreover the disagreement point is
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reduced at each simulation step, forcing the subsystems
to cooperate with reduced values of the cost function,
improving the performance of the closed-loop system. In
order to validate the proposed control scheme, a power
reference tracking scenario was used as a testbed. In this
scenario both the power tracking and the level regulation
objectives were achieved.
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