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Abstract 

Alzheimer's disease (AD) poses a significant challenge in Colombia due to the 

growing aging population. Detecting early signs of cognitive alterations is crucial, 

and electroencephalography (EEG) has emerged as a valuable tool for studying AD-

related brain activity. However, challenges exist in obtaining comparable and high-

quality EEG recordings. Standardized data preprocessing pipelines and 

harmonization efforts, such as the Brain Imaging Data Structure (BIDS) format, 

play a vital role in facilitating data integration and sharing. The project focused on 

organizing multi-site EEG data using the EEG-BIDS framework, promoting 

localization, accessibility, and interoperability. Open-access databases were 

utilized to investigate the generalizability of EEG and machine learning (ML) 

analysis, highlighting the need for data standardization and harmonization. A 

processing pipeline (Sovaharmony) with normalization and harmonization stages 

enabled the integration of diverse cohorts (datasets) and optimization of 

information extraction. 

Machine learning models were employed for AD risk classification using non-

invasive EEG biomarkers. Harmonization of data from multiple cohorts was crucial 

for increasing sample size, improving statistical power, and identifying consistent 

features or biomarkers across cohorts. The project aimed to develop a robust and 

generalizable machine learning model by harmonizing cohorts using a larger and 

more diverse dataset and thereby improving accuracy. 
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This project made significant contributions to dementia research by developing a 

comprehensive approach for data acquisition, processing, harmonization, and 

machine learning-based risk classification using EEG technology. The standardized 

pipelines, data harmonization, and machine learning techniques were emphasized 

as critical components in advancing AD research and maximizing the value of EEG 

data. Further research should focus on replicating the findings on larger cohorts, 

using techniques like the introduced in the current project, and exploring the 

application of machine learning models to other non-invasive biomarkers, 

ultimately validating the accuracy and reliability of AD classification. 
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Chapter 1 

Relevance 

1.1 Introduction  

In Colombia, a person is considered an older adult from the age of 60 [1] and by 

2021 it was estimated that there were more than 6 million older adults living there, 

which represents 13.3% of the population [2], with an average use of services 

significantly higher compared to the general population. Additionally, aging 

represents a relevant risk factor for the development of cognitive alterations [3]. 

Alzheimer's dementia (AD) is the most prevalent neurodegenerative disorder, 

accounting for more than 50% of all cases of dementia and affecting approximately 

30% of all individuals over 85 years of age [4]. However, there is evidence that the 

pathophysiological processes in AD begin decades before the manifestation of 

clinical symptoms [5]. 

Electroencephalography (EEG) is one of the most important techniques for the 

study of brain electrical activity. It represents a non-invasive technology to study 

brain function and neurophysiological changes associated with AD [6]. The 

simplest and most common way to acquire EEG is to record spontaneous brain 

activity while the subject is in a resting state, with eyes open or closed, and this 

makes EEG recorded during rest highly reliable [7]. This project assumes that the 

current paucity EEG measures in biomarker studies are not due to a lack of 
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information about neuronal processes that can be gained from EEG, instead by the 

lack of access to information in a massive way [8]–[10] .  

In terms of cost, if EEG-based biomarkers are identified, the financial burden of 

implementing widespread screening for such markers will be low compared to 

magnetic resonance imaging (MRI)-based screening [11]. In addition, a challenge 

that has hindered the large-scale application of EEG is the difficulty in obtaining 

EEG recordings of comparable quality between subjects [12].  The difficulty of 

obtaining these records is due to the EEG signal being influenced by technical 

factors and by features of the recorded subject. Some of the factors that have been 

detected are temperature and air humidity [13], factors that interact with sources of 

noise, such as line frequency or other sources of electromagnetic noise [14], and 

subject-related artifacts, typically reflecting unwanted physiological signals (such 

as eye movements, eye blinks, muscular noise, heart signals and sweating) [15], 

may differ from subject to subject and may interact in a complex manner with non-

physiological artifacts. Due to the characterization of the artifacts mentioned, 

efforts have been focused on creating preprocessing pipelines for artifact cleaning 

or artifact correction [16]. 

In this context, machine learning (ML) models have emerged as valuable tools for 

leveraging the immense potential of EEG data for early AD detection [17]. These 

models can sift through vast amounts of data to uncover patterns and relationships 

that might not be immediately apparent through traditional analysis methods [18]. 
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In the scope of this project, individuals at risk of Alzheimer's Disease (AD) pertain 

to those with a specific genetic variant, PSEN1-E280A [19]. The primary goal of 

this research is to develop an accurate and reliable machine learning (ML) model 

that can effectively classify individuals at risk of AD using non-invasive biomarkers 

extracted from multiple databases. 

To achieve this objective, the project involves creating and organizing a 

comprehensive database by integrating diverse information sources. This process 

will be facilitated by employing efficient data management tools. The database will 

then undergo harmonization, focusing on crucial electrophysiological and clinical 

parameters, which will be accomplished through advanced biomedical data 

processing techniques. Finally, a state-of-the-art machine learning model will be 

designed to leverage the structured database. 

This undertaking necessitates the normalization and harmonization of data. 

Normalization refers to the process of transforming variables to a standardized 

scale, facilitating data comparison and analysis [20]. Harmonization, on the other 

hand, involves ensuring consistent and comparable data across various sources, 

thereby reducing variability caused by technical and subject-related factors  [21]. 

In the context of EEG data, normalization and harmonization ensure that data from 

different subjects and sources are treated uniformly, enhancing the reliability and 

generalizability of the ML model [22]. 

As part of the research methodology, classification models come into play to 

effectively discern patterns and associations in the EEG data that indicate potential 
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AD risk. By training the ML model on a diverse dataset that has been meticulously 

harmonized and normalized, the goal is to achieve accurate classification of 

individuals at risk of AD. 

1.2 Problem Description 

Achieving preprocessing pipelines that can be used in different databases or in 

longitudinal studies, preserving the processing configuration, and making the 

information processed (at the same time or years later) comparable would make a 

standard procedure based in EEG possible. In addition to the urge of standardized 

preprocessing, there is a need for a format to organize, harmonize, and share data. 

In the recent years, EEG datasets have been made increasingly openly available, 

some of them can be found on repositories like GitHub [23] or OpenNeuro [24] and 

it has been shown that integrating EEG datasets across studies offers unique insights 

[25]. The Brain Imaging Data Structure (BIDS) is at this moment the principled 

way of data sharing that has been successfully adopted in the functional Magnetic 

Resonance Imaging (fMRI) data [26] and various extensions of the BIDS format 

(including extensions for EEG data [27]) have been proposed that not only provide 

a standard for the respective data modality but moreover facilitate the integration 

between data of different modalities (e.g. simultaneous fMRI and EEG recordings) 

and also neuropsychological test data [16]. To make EEG data sharing simple and 

intuitive, it is beneficial that preprocessing pipeline supports BIDS format as in- 

and output. 
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In the current landscape, the pursuit of biomarkers encounters distinct challenges. 

The process of diagnosing Alzheimer's Disease (AD) through neurological 

examinations and medical record reviews is time-intensive and subject to 

inconsistencies, necessitating skilled clinicians and protracted assessments. To 

surmount these challenges, the prominence of developing and utilizing biomarkers 

has risen, offering an objective and efficient avenue for AD diagnosis. A biomarker 

in the context of AD refers to a quantifiable biological trait that reflects normal or 

pathological brain activity [28]. As EEG signals capture functional alterations in 

the cerebral cortex, they hold the potential to assess neuronal degeneration linked 

to AD progression prior to discernible tissue loss or behavioral manifestations [5]. 

Incorporating machine learning models, such as analyzing complex patterns within 

EEG data, can enable the identification of subtle patterns associated with late-life 

cognitive decline, such as Mild Cognitive Impairment (MCI). These models can 

play a pivotal role in uncovering non-linear relationships between EEG signals and 

early cognitive deterioration symptoms, potentially leading to early and precise 

detection of conditions like MCI and AD, thus offering opportunities for more 

effective interventions and treatments [29].  

To tackle the issue of sample size and demographic disparities, we need to explore 

normalization and harmonization techniques that enhance model performance. 

With data organized and processing streamlined, the next step is feature extraction. 

This sets the stage for using machine learning to train classifiers for Alzheimer's 

risk prediction [30]. 
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EEG studies face data variability from various sources, hindering comparability and 

biomarker accuracy. Implementing effective strategies is crucial for reliable EEG 

biomarkers in cognitive decline research. Among these sources, the amplitude of 

derivatives measurements of EEG is key [22]. It's influenced by various factors and 

directly impacts extracted features, which fuel subsequent analysis. Standardizing 

amplitude across acquisition settings is vital for consistency [22]. Advanced 

preprocessing techniques addressing amplitude differences and ensuring accurate 

scaling enhance EEG biomarker validity [31]. This approach strengthens biomarker 

development and overall EEG study integrity. 

1.3 Justification 

Several limitations are mentioned in articles discussing EEG studies of early 

Alzheimer's disease, for example, the small sample size of the cohort [32] and 

mismatched demographic variables could lead to inconclusive results [33], making 

the generalization of the model unrealistic. Other limitations include the non-

recruitment of participants with severe AD in resting-state experiments and the 

negative effect of a small number of electrodes on spatial resolution in source 

localization studies [34]. In addition, manual selection of clean EEG epochs may 

introduce human bias and limit reproducibility [35]. 

To address one of the main issues mentioned above regarding the sample size and 

demographic variables of the cohorts, it is necessary to delve into normalization 

and harmonization methods dedicated to improving the models. 
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Now that the data is organized and a unique processing pipeline is in place, the next 

step is to consider the feature extraction derived from the processing, in this way it 

is possible to use machine learning (ML) techniques to train a classifier to recognize 

the best features and improve the accuracy of the models for classifying subjects at 

risk of Alzheimer's disease. 

1.4 Hypothesis 

The resulting machine learning model is expected to produce an output with a 

higher accuracy than the state of the art. By incorporating more data and applying 

additional preprocessing steps.  

Understand that harmonization is primarily about extracting information by using 

libraries that facilitate data processing, normalization, and enhancement while 

effectively managing the variables present in the records. 

Figure 1 illustrates a comparison between two pipelines of the processing steps, 

along with the anticipated outcomes in terms of the accuracy of the classification 
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model. It highlights the evolution of the processing pipeline, showcasing the 

modifications and improvements proposed to enhance the accuracy of the model. 

 

Figure 1 Proposed Hypothesis Scheme. The inclusion of normalization and 

harmonization steps is shown, with an arrow in the "Accuracy" text symbolizing 

the hypothesis that the addition of these steps will lead to improved accuracy. 

Based on the hypothesis that harmonizing different electroencephalogram (EEG) 

databases will result in a large enough database to train a reliable machine learning 

(ML) model for the classification of subjects at risk of Alzheimer's Disease (AD), 

the following research question is generated:  

“What is the effectiveness of harmonizing different electroencephalogram 

(EEG) databases in generating a large enough database for training a 

reliable machine learning (ML) model for the classification of subjects at risk 

of Alzheimer's Disease (AD)?” 
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1.5 Objectives 

1.5.1 General objective 

The objective of this work is to develop an accurate and reliable machine learning 

(ML) model that can effectively classify subjects at risk of Alzheimer's Disease 

(AD) using non-invasive biomarkers extracted from multiple databases. 

“To build an ML model that allows classifying subjects at risk of AD using 

non-invasive biomarkers from multiple databases.” 

1.5.2 Specific objectives 

1. To build and standardize a database with multimodal information, taking 

multisite databases, using tools that facilitate data storage and manipulation 

before and during processing. 

Chapter 2, "Database Construction and Standardization," focuses on the objective 

of developing a comprehensive database with multimodal information, which is 

critical for building an accurate and reliable machine learning (ML) model. In this 

chapter, we describe the methodology used to select the databases, providing a 

detailed description of each data source, and discuss the methods utilized to 

standardize and harmonize the data. Through this chapter, we demonstrate our 

commitment to ensuring the quality and consistency of the data used in our study, 

and how we can overcome the challenges posed by using multiple data sources. 
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2. To harmonize the database to obtain comparable relevant 

electrophysiological and clinical parameters among healthy subjects using 

biomedical data processing techniques. 

Chapter 3, "Processing Pipeline and Harmonization” focuses on adding two 

additional steps to the processing pipeline previously reported in our laboratory and 

automating the execution of the pipeline on the comprehensive database resulting 

from the first objective. The primary focus of this chapter is on the critical steps of 

harmonization and processing that are necessary to ensure the accuracy and 

reliability of the data utilized in the machine learning (ML) model. Through this 

chapter, we aim to provide a comprehensive and transparent description of our 

methods, enabling replication and validation of our findings by other researchers. 

3. To design a machine learning (ML) model that, using the database built with 

neuropsychological and neurophysiological information, allows the 

classification of subjects at risk of AD. 

Chapter 4, "Machine Learning Model" represents a significant milestone in this 

work, as we aim to design and implement a machine learning (ML) model that can 

accurately classify subjects at risk of Alzheimer's Disease (AD) using the 

comprehensive database developed in previous chapters. In this chapter, we present 

the methodology and technical details of our ML model, including the feature 

selection process, model architecture, and evaluation metrics. We also discuss the 

results of our experiments and validate the effectiveness of our model in accurately 
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identifying subjects at risk of AD. Through this chapter, we hope to make a 

significant contribution to the field of AD research and aid in the development of 

effective early detection and intervention strategies. 

1.6 Theoretical Framework 

1.6.1 Electroencephalography 

Electroencephalography (EEG) is a non-invasive method of measuring the 

electrical activity of the brain. Electrodes are placed on the scalp to record electrical 

activity produced by populations of brain cells called neurons. When neurons are 

activated, they generate time-varying electrical currents [36].  

Since the first measurements by Hans Berger, we have known that the brain 

produces rhythmic electrophysiological activity that can be measured by EEG [37]. 

This has led to a large knowledge about the types of rhythmic activity that can be 

recorded, the circumstances under which they occur. Circumstances in which brain 

rhythms can occur include spontaneous activity and related or evoked events. This 

spontaneous activity is studied as activity at rest (resting-state). 

The study of resting-state brain activity becomes particularly interesting if neural 

processes are view as primarily intrinsic - the weighting, gating, and subsequent 

integration of new and external information into the brain - as opposed to a more 

absolute resting state that contrasts with momentary activity driven by external 

demands [38]. Unless one creates a contextual setting in which 'rest' is defined [39], 

paradigmatic repetitive stimulation precludes rest. This suggests that the method of 
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choice is to analyze ongoing spontaneous brain activity rather than averaged or 

induced brain activity.  

Recording of EEG rhythms is an experiment on brain neurophysiological 

mechanisms underpinning the control and maintenance of cerebral arousal [9].  

In different studies the bands have been segmented a little more for different 

purposes in this project the segmentation used comes from in pharmaco-EEG 

studies [9]. These frequency bands have been defined based on factorial analysis of 

EEG recordings and therefore provide a very robust framework. It does not mean 

that other frequency ranges should not be used for specific purposes [40](Figure 2). 

 
Figure 2 Frequency Ranges of EEG Waves Proposed by [40], These frequency 

bands have been defined on the basis of factor analysis of EEG recordings and 

therefore provide a very robust framework to ensure that the results of a study can 

be compared with other published studies and thus provide reference material useful 

to other scientists. 



32 

 

Delta waves lie within the range of 1.5–6 Hz: These waves are primarily associated 

with deep sleep and may be present during wakefulness [41].  Theta waves are in 

the range of 6-8.5 Hz [42].  Alpha waves appear in the back of the head and are 

usually found over the occipital region of the brain. They can be detected in all parts 

of the posterior lobes of the brain. Alpha1 waves have a frequency of 8.5-10.5 Hz 

and Alpha2 waves have a frequency of 10.5-12.5 Hz and usually appear as a round 

or sinusoidal signal [43]. A Beta wave is the electrical activity of the brain that can 

be divided into beta1 waves with a frequency of 12.5-18.5 Hz, beta2 waves with a 

frequency of 18.5-21 Hz, and beta3 waves with a frequency of 21-30 Hz [44]. A 

beta wave is the normal waking rhythm of the brain associated with active thinking, 

active attention, focusing on the outside world or solving concrete problems and is 

found in normal adults [45].  The frequencies above 30 Hz (mainly up to 45 Hz) 

correspond to the gamma range (sometimes called the fast beta wave). Although 

the amplitudes of these rhythms are very small and their occurrence is rare, the 

detection of these rhythms can be used to confirm certain brain diseases [46].  

1.6.2 Neurodegenerative diseases 

Neurodegenerative diseases such as Parkinson’s disease (PD) Alzheimer’s disease 

(AD) amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) affect 

millions of people worldwide [47]. 

Dementia is a syndrome that consists of a decline in intellectual and cognitive 

abilities. This consequently affects normal social activities and relationships and 
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interaction with other people. According to the World Health Organization, AD 

accounts for 60-70 percent of senile dementia characterized by severe cognitive 

decline, and the neuronal death [48]. 

AD is the primary cause of dementia globally and is characterized by the abnormal 

accumulation of beta-amyloid (Aβ) protein and hyperphosphorylated tau protein 

[49]. Pathogenic genetic variants of complete penetrance in genes such as amyloid 

precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) are 

responsible for 5-10% of early-onset AD cases, with pathological genetic variants 

in PSEN1 being the most prevalent cause of familial Alzheimer's disease [50]. 

AD is thought to initiate its pathological process up to two decades prior to the onset 

of noticeable clinical symptoms [51]. However, in the past 20 years, it has become 

clear that there is not always a direct relationship between the pathology of the 

disease and the clinical symptoms experienced by patients [52]. Instead, the 

pathology and clinical symptoms of Alzheimer's are better understood as separate 

continuums that may evolve independently but with a temporal delay [53]. As a 

result, AD is currently perceived as a gradual continuum rather than a series of 

distinct stages. 

The degenerative brain disorder of AD starts with progressive memory loss, and the 

loss of cholinergic cells in the basal forebrain is responsible for its first stage of 

development [54]. The cholinergic hypothesis of AD suggests that cognitive decline 

in patients results from a deficiency in cholinergic neurotransmission [55]. 
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The Neurosciences Group of Antioquia has been studying an extended family with 

the genetic variant PSEN1-E280A for 30 years [56]. The variant has almost 100% 

penetrance, with an amnestic presentation and an onset age of dementia at 49 years 

[57].  

Synaptic dysfunction is a pathophysiological event that impacts neuronal 

connections at various levels, including molecular, cellular, brain networks, and 

cerebral cortex, among others [58]. 

The gold standard for AD diagnosis is the Amyloid/Tau/Neurodegeneration (ATN) 

framework proposed by the National Institute on Aging and the Alzheimer's 

Association in 2018 [59]. In the ATN framework, the biological state of AD is 

classified by identifying three biomarkers (i.e., amyloid, tau, and 

neurodegeneration) measured from cerebrospinal fluid (CSF) and positron emission 

tomography (PET) imaging [60]. However, this approach is typically performed by 

lumbar puncture or PET, which is costly, invasive, and highly dependent on clinical 

infrastructure, severely limiting its availability in clinical practice [61].  

The term "biomarker" (an acronym for "biological marker") is used in this project 

to refer to a broad subcategory of medical signs, i.e., objective indications of a 

patient's externally observed medical status that can be accurately and reproducibly 

measured. Thus, a biomarker is defined as "a characteristic that is objectively 

measured and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention" as defined in 
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1998 by the Biomarker Definitions Working Group of the National Institutes of 

Health [62]. 

Electrophysiological data, such as EEG, provide valuable insights into the brain's 

activity [63]. However, to gain a more comprehensive understanding of a patient's 

condition and disease progression, it is often desirable to complement this data with 

neuropsychological tests [64]. These tests serve as essential tools for healthcare 

professionals, enabling them to interpret the electrophysiological data within the 

broader context of cognitive functioning and cognitive decline in patients [65]. By 

combining electrophysiological data with neuropsychological assessments, a more 

nuanced and accurate assessment of the patient's condition can be achieved. 

1.6.2.1 Neuropsychological tests 

The European Federation of the Neurological Societies (EFNS) also developed a 

guideline to diagnose and monitor AD [66]. The most used test to measure cognitive 

ability for AD diagnosis is the Mini Mental State Examination (MMSE) [67]. The 

Montreal Cognitive Assessment (MoCA) [68] and Addenbrooke’s Cognitive 

Examination revised (ACE-R) [69]. 

The evaluation of the mental state is crucial in assessing psychiatric patients. To 

supplement the standard examination, many investigators have incorporated 

quantitative assessment of cognitive performance, documenting the reliability and 

validity of various "clinical tests of the sensorium" [70]. However, the available 

batteries for cognitive assessment are often lengthy, which can be problematic for 
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elderly patients, particularly those with delirium or dementia syndromes, who may 

only cooperate for short periods of time. To address this issue, the "Mini-Mental 

State Examination" (MMSE) was created as a scored form of the cognitive mental 

status examination. The MMSE includes only 11 questions and requires only 5-10 

minutes to administer, making it practical to use serially and routinely [71]. 

Another widely used test is the verbal fluency test (VFT) [72], this is a useful tool 

to assess frontal lobe function and semantic memory, as it measures the ability to 

generate examples in different categories, which depends on the integrity of the 

semantic network, efficient retrieval, and organization. VFT has been widely used 

to evaluate various psychiatric and neurological disorders [73], [74].  

It should be noted that there is uncertainty in AD diagnosis when using MMSE and 

other neuropsychological tests [75]. While several studies measure the 

classification accuracy between AD and healthy controls using the results from 

these tests, neuropsychological tests cannot provide a 100% certain diagnosis.  

In particular, the use of approaches based on resting-state EEG and 

neuropsychological test could be beneficial in neurology or even primary care [76]. 

To achieve this kind of support in Alzheimer's disease detection, it is necessary to 

generate a reliable processing pipeline that can provide information about the 

characteristics of the signals and their relationship to the disease [77]. 



37 

 

1.6.3 Multi-site database harmonization (Cohorts) 

Harmonization encompasses the development of pipelines aimed at integrating 

neurophysiological databases originating from diverse cohorts [78] try to solve the 

integration problems discussed in this section 1.6.3. Its primary objective is to 

optimize information extraction through the utilization of purpose-built libraries. 

These libraries facilitate data processing, normalization, and enhancement by 

effectively managing variables present within the records. 

Integrating multiple cohorts poses challenges beyond technological aspects. The 

diversity in data content introduces additional complexities, as the same medical 

procedure can be described and conceptualized differently across countries, 

institutions, and even studies. Although there are guidelines to assist in the design 

of clinical studies, they often overlook the technological aspects. Consequently, the 

lack of harmonization in data structure and clinical concepts becomes a major 

obstacle to health data sharing, significantly delaying or even preventing multi-

cohort analysis. Recognizing the potential impact of these studies, researchers are 

driven to seek more robust and reusable solutions for aggregating knowledge from 

distributed health datasets [78]. This motivation has led to the establishment of 

organizations and the development of new methodologies for exploring clinical 

databases. 

The Cuban Human Brain Mapping Project (CHBMP) was developed through 

multiple stages, with its initial phase focused on establishing norms (means and 
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standard deviations) for narrow-band (NB) log-spectral DP based on a dataset of 

211 individuals aged 5 to 97 years from a single country [79]. However, the 

relatively small sample size may limit the statistical power of comparing data from 

different countries, particularly when compared to larger-scale neuroimaging 

efforts such as ENIGMA [80]. 

The Dementia ConnEEGtome project is a crucial study that aims to improve the 

reliability and validity of EEG data in dementia research by harmonizing EEG 

connectivity measurements across multiple centers [81]. This project's focus on 

multicenter harmonization addresses the lack of consistency in data collection and 

analysis methods, which is a significant challenge in dementia research [78]. 

Establishing harmonization in multinational EEG standards poses a more 

formidable challenge compared to MRI due to the considerable variability in 

recording systems across different manufacturers, further compounded by the lack 

of standardized protocols [82]–[84]. Differences in amplifier transfer functions, 

electrode placement systems, and preprocessing methods give rise to concerns 

about the presence of EEG batch effects [85]. Such sources of variability may also 

emerge from different conceptual frameworks employed in quantifying EEG 

connectivity, including various connectivity metrics and methodological 

procedures [86]. 
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Addressing these challenges is critical to achieving robust and standardized 

multinational EEG standards and requires the development of effective strategies 

for minimizing the impact of these sources of variability. 

1.6.3.1 BIDS format 

The Brain Imaging Data Structure (BIDS) is a standardized format for organizing 

both data and metadata generated by neuroimaging experiments [26] BIDS has 

gained popularity within the EEG community in recent years [27] as it facilitates 

the sharing and reuse of data. Although converting EEG data to BIDS is not 

technically complex, it is a time-consuming task when performed manually [87]. 

Existing software solutions for automated conversion of EEG to BIDS require 

either programming skills or extensive user input [88]. One of the activities 

necessary to meet the objectives of this study's project is the development of user-

friendly software that automates the process of converting EEG data into BIDS, see 

Annex 1. 

1.6.3.2 Data Normalization (Record-specific constant) 

The analysis of EEG data is highly customizable, allowing research teams to adopt 

their own processing strategies. However, when combining samples across centers, 

dataset variability must be considered. Efforts have been made to enable the joint 

connectivity analysis of raw data from different multicentric studies, and 

harmonization of raw EEG data has proven to be essential in eliminating technical 

and methodological sources of variability that impact the interpretation of EEG 

meta-analysis. Based on previous studies, it is proposed that between-dataset 
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variability can be reduced by multiple normalizations to improve comparability 

across recordings. 

“Data normalization is a process employed in data analysis and statistics to 

transform variables onto a consistent scale or comparable range. Its primary 

aim is to mitigate scale effects and ensure that variables exhibit a similar 

distribution, simplifying data comparison and analysis.” 

Normalization in the context of EEG refers to the process of standardizing or 

scaling the amplitude values of EEG signals to a common range or scale. This 

ensures that EEG data from different channels and recordings are comparable and 

can be analyzed effectively. The goal of normalization is to eliminate the impact of 

differences in signal amplitudes, which can vary due to factors such as electrode 

placement, hardware variations, and subject-specific characteristics. 

Data normalization or rescaling can be achieved through various methods of data 

alignment, including within-electrode and across-electrode transformations [81]. 

Within-electrode transformations involve normalizing the data for each electrode 

separately, while across-electrode transformations use linear transformations of the 

EEG data to reduce between-subject variability. Across-electrode weighting factors 

include the mean, Huber mean, and Euclidean (L2) norm [81]. The Huber mean is 

more robust to outliers compared to the mean and Euclidean norm, and these 

methods capture the central tendency of the EEG amplitude [25]. 



41 

 

The Huber mean is an iterative technique used for robustly approximating the mean 

in the presence of outliers [89]. In our study, normalization factors were computed 

column-wise on the amplitude matrix (across channels) as shown in Figure 3 for 

the Huber mean. The resulting amplitude matrix was then divided column-wise by 

the 1xR vector of resulting recording normalization factors to produce a normalized 

amplitude matrix. 

To characterize the comparability of channel amplitudes across a data collection, a 

dispersion vector was computed by taking the robust standard deviation of each row 

(across recordings in the collection) of an amplitude matrix. This vector was then 

divided by the row median (across recordings) to obtain a 58x1 channel dispersion 

vector representing the collection variability for each N.  

 

Figure 3 Steps for computing the normalized amplitude matrix and the channel 

dispersion vector for Huber mean normalization. Source: N. Bigdely-Shamlo et al. 

NeuroImage [25], showcases an illustrative instance involving a 4-channel (row) 

by 6-column (record) matrix, symbolizing the amplitude matrix. This project 

adheres closely to the methodology depicted in figure, though with an expanded 

scope featuring 58 channels and 457 records. 

In Figure 3, we present an illustrative example featuring a matrix with 4 channels 

(rows) and 6 columns (records) to represent the amplitude matrix. In this project, 
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we diligently followed the methodology depicted in Figure 3, albeit employing 58 

channels and 457 records. Within the scope of this study, we faithfully adopt the 

same methodology, initiating the harmonization process with Huber's 

normalization method. This strategic approach is aimed at attenuating inter-dataset 

variability by aligning EEG data across different recordings. Moreover, it serves to 

compensate for divergences among datasets when amalgamating samples sourced 

from disparate research centers. 

1.6.3.3 Harmonization of extracted features 

As has been discussed since the beginning of this Chapter 1, there is a growing 

trend of large-scale initiatives that aim to gather diverse EEG datasets for sharing 

and dissemination. In such studies, multiple records are crucial due to logistical 

challenges and the geographical differences in the subjects or cohorts being studied. 

However, a significant drawback of combining EEG data from multiple sites is the 

potential introduction of non-biological sources of variability, primarily arising 

from differences in EEG acquisition protocols and hardware used across different 

locations. 

"Harmonization primarily aims to extract information by utilizing libraries 

that facilitate data processing, normalization, and improvement while 

effectively managing variables present in the records." 

Harmonization, in the context of EEG analysis, goes beyond normalization. It 

involves aligning EEG data from different recordings or datasets to minimize 
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variations caused by differences in recording conditions, equipment, and other 

confounding factors. Harmonization techniques aim to create a unified dataset that 

mitigates the influence of inter-dataset variability, making it easier to analyze EEG 

data across different subjects, centers, or studies. 

Harmonization methods for EEG signals are in their developmental stages [90]. 

These techniques, while crucial, are not widely adopted as standardized protocols 

in multicentric studies of resting-state EEG and neurodegenerative phenomena 

[85]. However, our current project is actively addressing these gaps by innovatively 

implementing ComBat as part of our research on resting-state EEG. Rooted in the 

framework of Generalized Additive Linear Mixed-effects Models, these strategies 

have the potential to effectively manage confounding factors and determinants 

stemming from various recording centers and headset configurations [91]. 

The ComBat method, originally developed for batch-effect correction in genomics 

research by Johnson et al.[92], has been modified to address site-related effects in 

multi-site DTI studies, as reported by Jean-Philippe et al.[93].  

𝑦𝑖𝑗𝑣 = 𝛼𝑣 + 𝑋𝑖𝑗
𝑇 𝛽𝑣 + 𝛾𝑖𝑣 + 𝛿𝑖𝑣 ∈𝑖𝑗𝑣 

Equation 1 

Where 𝛼𝑣 is the feature for the reference site for feature 𝑣, the procedure for the 

estimation of the site parameters  𝛾𝑖𝑣 and  𝛿𝑖𝑣 uses Empirical Bayes and where 𝛽𝑣 

is the p × 1 vector of coefficients associated with X for feature 𝑣. ComBat assumes 
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that the residual terms ∈𝑖𝑗𝑣 have mean 0. The parameters 𝛿𝑖𝑣 describe the 

multiplicative site effect of the j-th site on voxel 𝑣. 

This technique has demonstrated efficacy in harmonizing the data by removing 

unwanted variations associated with site while retaining biological associations. 

The success of ComBat has led to the development of other methods like 

neuroComBat [94] and neuroHarmonize [95] in neuroimage, which aim to further 

refine and improve the harmonization process. 

It has previously been done harmonization of large MRI datasets for the analysis of 

brain imaging patterns by Raymond Pomponio [95]. That study discusses the 

challenges of harmonizing different MRI datasets and proposes a framework for 

harmonizing these datasets, which involves preprocessing, quality control, and 

statistical analysis. The approach can help to reduce confounding factors and 

improve the accuracy of results. 

The proposed method by Pomponio [95] involves the harmonization of individual 

ROI features through a model based on the statistical harmonization technique 

presented by Johnson [92], which facilitates adjustments to the data for location and 

scale (L/S) variations. This approach involves the estimation of location (mean) and 

scale (variance) differences in ROI features across multiple sites (or cohorts), along 

with the preservation of variations due to other biologically relevant covariates 

present in the data. Once the estimates are obtained, the standardized ROI features 
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are obtained by removing the location and scale effects caused by differences 

between cohorts. 

For cohort, 𝑖, subject 𝑗, region 𝑘, a general framework for an LS-adjustment of an 

ROI features, 𝑌𝑖𝑗𝑘, is: 

𝑌𝑖𝑗𝑘
∗ =

(𝑌𝑖𝑗𝑘 − 𝑓𝑘(𝑋𝑖𝑗) − 𝑔𝑖𝑘)

𝑑𝑖𝑘 + 𝑑𝑘(𝑋𝑖𝑗)
 

Equation 2 

where 𝑓𝑘(𝑋𝑖𝑗) denotes the variation of Y captured by the biologically relevant 

covariates (age and sex) X, 𝑔𝑖𝑘 is the estimated location effect for cohort i and 

region k, and 𝑑𝑖𝑘 is the estimated scale effect for cohort i and region k. In the linear 

case, 𝑓𝑘(𝑋𝑖𝑗)= 𝑎𝑘+ 𝑋𝑖𝑗 * 𝑏𝑘 and the corresponding adjustment is 

𝑌𝑖𝑗𝑘
∗ =

(𝑌𝑖𝑗𝑘 − 𝑎𝑘 − 𝑋𝑖𝑗 ∗ 𝑏𝑘 − 𝑔𝑖𝑘)

𝑑𝑖𝑘 + 𝑎𝑘 + 𝑋𝑖𝑗 ∗ 𝑏𝑘
 

Equation 3 

In the context of neuroHarmonize [95], the Generalized Additive Model (GAM) is 

used to replace 𝑓𝑘(𝑋𝑖𝑗), where the covariates age, sex, and ICV (Intercept of 

Covariates) are represented by 𝑋𝑖𝑗, 𝑍𝑖𝑗, and 𝑊𝑖𝑗, respectively. This approach 

enables the modeling of nonlinear age trends in ROI features using a basis 

expansion to allow for flexible nonlinearity in 𝑋𝑖𝑗. 
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𝑓𝑘(𝑋𝑖𝑗, 𝑍𝑖𝑗 , 𝑊𝑖𝑗) =  𝑎𝑘 + 𝑓(𝑋𝑖𝑗) + 𝑏𝑘 ∗ 𝑍𝑖𝑗 + 𝑐𝑘 ∗ 𝑊𝑖𝑗 

Equation 4 

To integrate the non-linear GAM model with ComBat, neuroHarmonize leverages 

the previously proposed framework of ComBat [92] for the multivariate 

harmonization of multiple ROIs. The ComBat approach assumes that location and 

scale effects for multivariate outcomes are drawn from a common parametric prior 

distribution. In this study, a normal distribution is used as the prior for 𝑔𝑖𝑘, while 

an inverse-gamma distribution is used for 𝑑𝑖𝑘. Empirical Bayes framework is 

employed to estimate the hyperparameters of the prior distributions from the data. 

These hyperparameters are then used to compute the conditional posterior estimates 

of all location and scale effects, as detailed in [92]. ComBat adjusts an ROI feature, 

𝑌𝑖𝑗𝑘
∗ , using these conditional posterior estimates. The ComBat-GAM adjustment, 

together with the non-linear GAM model in neuroHarmonize, provides a robust 

method for ROI harmonization. 

𝑌𝑖𝑗𝑘
∗ = (

𝑌𝑖𝑗𝑘 − 𝑓𝑘(𝑋𝑖𝑗, 𝑍𝑖𝑗 , 𝑊𝑖𝑗) − 𝑔𝑖𝑘
∗

𝑑𝑖𝑘 + 𝑓𝑘(𝑋𝑖𝑗, 𝑍𝑖𝑗 , 𝑊𝑖𝑗)
) 

Equation 5 

where 𝑔𝑖𝑘
∗  is the posterior estimate of the location effect for cohort 𝑖 and region k, 

and 𝑑𝑖𝑘 is the conditional posterior estimate of the scale effect for site 𝑖 and region 

k. For more details of the ComBat-GAM algorithm see [95]. 
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1.6.4 Acquisition and Signal processing 

1.6.4.1 Conventional Electrode Positioning 

The 10–20 system avoids both eyeball placement and considers some constant 

distances by using specific anatomic landmarks from which the measurement 

would be made and then uses 10 or 20% of that specified distance as the electrode 

interval [46]. The odd electrodes are on the left and the even ones on the right. Extra 

electrodes are sometimes used for the measurement of as electro-oculogram (EOG), 

electrocardiograph (ECG), and electromyography (EMG) of the eyelid and eye 

surrounding muscles [46].  

1.6.4.2 Preprocessing  

In a broad sense, EEG signal preprocessing stands for the manipulations performed 

on the raw acquired data in order to prepare it for feature extraction in the next 

processing phases [96]. Most of these techniques are common to almost all 

neuroscience EEG studies, not only to AD diagnosis [97]. When an EEG signal is 

acquired, the data is usually not clean, so some preprocessing is required [98].  This 

often includes the application of filters such as a high pass filter to remove the DC 

components of the signals and the drifts, usually a frequency cutoff of 0.5 Hz is 

sufficient [99]. A low pass filter can also be applied to remove the high frequency 

components [100]. In EEG, we rarely look at frequencies above 70 Hz, which is the 

gamma range. There are many other preprocessing techniques such as EOG artifact 

correction that may need to be applied if the subject is recorded with their eyes 

open. This is because blinking and eye movements create strong electrical fields 
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that interfere with our EEG recordings, and the filters are designed not to change or 

distort the signals [100]. 

On the other hand, high-frequency noise is reduced by using low-pass filters with a 

cutoff frequency of about 50 or 60 Hz (Depending on the country) [101].   

The goal of the processing techniques is to characterize the signal by a set of model 

parameters that best describe the signal generation system [102].  

The EEG signal can be considered as the output of a nonlinear system that can be 

characterized deterministically and non-stationarity of the signals can be quantified 

by measuring some statistics of the signals at different time lags [103]. It is 

necessary to label the EEG signals into segments of similar characteristics that are 

most meaningful to the clinician and for evaluation by the neurophysiologist. 

Within each segment, the signals are statistically stationary, usually with similar 

time and frequency statistics. If the signals are statistically stationary it is 

straightforward to characterize them in either the time or frequency domains. The 

most common epoch duration is 2 s according to a systematic review by Cassani R 

et al. [7]. 

The concept of independent component analysis (ICA) lies in the fact that the 

signals may be decomposed into their constituent independent components [104]. 

In places where the combined source signals can be assumed independent from each 

other this concept plays a crucial role in separation and denoising the signals [105].  
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ICA is usually able to concentrate the artifactual information into a single 

component, but in most cases this component also carries non-artifactual 

information, so rejecting it may cause information loss [106]. 

Moreover, ICA performance depends on the size of the dataset (number of 

samples): the larger the dataset processed, the higher the probability that the 

effective number of sources will overcome the number of channels (overcomplete 

ICA) [107], because the number of channels is fixed over time, but the number of 

contributions from different neural sources is likely to increase with the length of 

the recording. In this case redundancy is not sufficient to estimate the sources and 

an independent component might account for more than one contribution [108], in 

other words, the algorithm might not be able to separate the artifactual signals from 

the rest. 

On the contrary, the smaller the number of samples, the more difficult the 

estimation of the parameters and thus the performance of ICA suffers. The best 

choice is a tradeoff between a small dataset and a high performance [109]. To 

overcome this limitation, the proposed methodology includes a step prior to ICA 

that increases the redundancy of the dataset, thanks to wavelet decomposition, 

bypassing the possible problem of overcomplete ICA [110]. 

Another limitation is that ICA cannot take advantage of the features of the artifacts 

in frequency domain: artifacts have a typical frequency range, and their spectrum 

is overlapped to the spectrum of the EEG, thus filtering the dataset is not an optimal 
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solution because this would lead to a great information loss [111]. But we can make 

the most of this limitation in frequency domain performing ICA in the range where 

the artifact is concentrated [112]. 

Once our signals are clean, i.e., pre-processed, it is quite common to cut them into 

epochs of a few seconds and then extract features from each of these epochs. This 

allows us to have many features from a single EEG recording, which is preferable 

when doing statistics or applying classifiers [113]. 

1.6.4.3 Feature Extraction  

Over the last thirty years, the dimensionality of the data involved in machine 

learning and data mining tasks has exploded. Data with extremely high 

dimensionality has posed serious challenges to existing learning methods, i.e., the 

curse of dimensionality [114]. 

EEG signals are complex, which makes it very difficult to extract information using 

raw data. Nowadays, thanks to computers, we can apply complex automatic 

processing algorithms that allow to extract "hidden" information from EEG signals 

[115]. There are several techniques, such as time domain features (mean, standard 

deviation, Entropy, etc.), frequency domain features (Fourier transform, wavelets, 

etc.) and finally synchrony features, which look at the relationship between 2 or 

more EEG signals (Coherence, correlation, mutual information, etc.), just to 

mention a few [116]. 

There are other feature extraction methods, such as EEG tomography, which allows 

us to compute the active regions inside the brain (using the so-called inverse 
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problem approach) [117]. This, in turn, usually requires many electrodes (at least 

32) to achieve a decent spatial resolution [118]. Also, if possible, more advanced 

methods are used, such as converting the EEG recording into a graph where each 

node represents an electrode [119], and the connections of these nodes depend on 

the similarity of the EEG signals from each electrode to analyze properties using 

analysis techniques  [7], [120].  

Some features aim at measuring one major effect of AD in the EEG signal with 

slowing, complexity reduction, synchronization decrement, and neuromodulatory 

deficit and others includes data-driven features which are not necessarily driven by 

known biological processes [121]. 

Measurement of the slowing effect of AD on EEG signals typically relies on 

spectral features derived either from each of the EEG channels or from the average 

of the channels, being the most common the Power Spectral Density (PSD) and 

Wavelet [122]. On the other hand, the complexity of EEG signals is typically 

evaluated with Entropy measures [123]. 

The various metrics used to measure synchronization of EEG signals can be 

classified according to two criteria: (1) the presence or absence of directional 

(causal) information, and (2) whether the metric assumes a linear relationship 

between the analyzed signals (model-based) or no assumption of a linear 

relationship (model-free) [86]. This type of metric includes Coherence, 
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Synchronization Likelihood, Graph theory metrics, Correlation (amplitude 

envelopes) and Permutation disalignment index. 

1.6.4.3.1 Relative Power 

It is often used in EEG analysis to examine changes in the power of specific 

frequency bands in response to different stimuli or conditions [124]. In routine use, 

electrical potentials are acquired indirectly from the scalp surface and include 

waveform analysis of frequency, voltage, morphology, and topography, in addition, 

the amplitude of the EEG recorded in a particular subject depends on many factors, 

including neurophysiological, anatomical and physical properties of the brain and 

surrounding tissues (skin, bone, dura mater, and pia mater) [125], but these 

parameters vary from one subject to another and are basically unknown.  

These variations result in large variations in the absolute EEG spectra, but to 

compensate for this variation, the relative EEG power is calculated so that the 

variability in absolute power is greater than the variability in Relative Power [126]. 

The mathematical formula for Relative Power is: 

𝑅𝑆(𝑓) =
𝑆(𝑓)

∑ 𝑆(𝑓)
 

Equation 6 
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where RS(f) is the Relative Power at frequency f, S(f) is the power at frequency f, 

and ΣS(f) is the total power in the EEG signal. Relative Power is typically expressed 

as a percentage or decibel (dB) value. 

Where S is the Power spectral density, and the mathematical formula is: 

𝑆(𝑓) =  |𝑋(𝑓)|2 = |∫ ℎ(𝑡)𝑥(𝑡)𝑒2𝜋𝑖𝑓𝑡𝑑𝜏
𝑇

0

|

2

 

Equation 7 

Where: 

- 𝑆(𝑓): Represents the convolved power spectral density as a function of frequency 

"f". It measures how the power of a signal is distributed across different frequencies. 

- 𝑋(𝑓): Is the Fourier transform of the signal "x(t)", representing the signal in the 

frequency domain. 

- ℎ(𝑡): Is a taper or windowing function. 

𝑇: Is the time interval over which the integration is performed. 

- 𝑥(𝑡): Is the original signal in the time domain. 

- 𝑒2𝜋𝑖𝑓𝑡: Is a complex exponential function used to decompose the signal into its 

frequency components. 

- 𝑓:  Represents the frequency at which the power distribution is being analyzed.  
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Two key performance metrics of spectral estimators are bias and variance. Bias can 

be decomposed into two types: local and broadband. Local bias arises from the 

bandwidth of the main lobe of a spectral window, while broadband bias is a function 

of its side lobes [127].  

The Multitaper Method (MTM) further reduces bias by obtaining statistically 

independent estimates that are effectively averaged to reduce uncertainty, like the 

Welch WPM. Each window of MTM is pairwise orthogonal to all other windows, 

providing a statistically independent set of spectral estimates that are averaged 

(weighted) to provide the final spectrum. 

In this project, an adaptation in python of the Matlab Chronux module [128] was 

used to use the MTM, which is represented mathematically by the following 

formula: 

𝑆𝑀𝑇 =  
1

𝐾
∑|𝑋𝑘(𝑓)|2

𝑘

𝑘=1

=
1

𝐾
∑ |∫ 𝑢𝑘(𝑡)𝑥(𝑡)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡

𝑇

0

|

2𝑘

𝑘=1

 

Equation 8 

where 𝐾 = 2𝑇𝑊 − 1 is a taper or Slepian sequences function for duration T. 

𝑆𝑀𝑇: Represents the spectral estimation using the Multitaper Method. 

𝐾: Denotes the number of tapers used in the method. 
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|𝑋𝑘(𝑓)|2: Represents the squared magnitude of the Fourier transform of the data 

using the k-th taper at frequency 'f'. 

𝑢𝑘(𝑡): Represents the k-th taper function in the time domain. 

𝑥(𝑡): Denotes the original signal in the time domain. 

𝑒−2𝜋𝑖𝑓𝑡: Represents the complex exponential function that allows the signal to be 

analyzed in the frequency domain. 

T: Denotes the time interval over which the integration is performed. 

f: Represents the frequency being analyzed. 

The physiological interpretation of Relative Power in EEG analysis is that it reflects 

the degree of neural activity in different frequency bands in the brain and this 

frequency bands have been associated with different cognitive and physiological 

processes. 

1.6.4.3.2 Entropy 

Shannon Entropy is a measure of the uncertainty or randomness in a signal, named 

after the mathematician Claude Shannon [129]. In the context of EEG analysis, 

Shannon Entropy can be used to quantify the complexity of the EEG signal, based 

on the distribution of amplitudes across the signal [130]. It measures the degree to 

which the signal deviates from a uniform distribution of amplitudes. 

The mathematical formula for Shannon Entropy is: 
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𝐻(𝑝) =  − ∑ 𝑝𝑖log (𝑝𝑖)

𝑚

𝑖=1

 

Equation 9 

The calculation of the Shannon Entropy value (H) is given as minus the sum of the 

probabilities of the event(i) multiplied by the logarithm to base two of the 

probabilities of the event(i) and p is the probability of each amplitude value in the 

signal. Shannon Entropy is measured in bits, and its value ranges from 0 (no 

uncertainty) to the maximum Entropy of the signal, which is determined by the 

number of possible amplitude values. 

The physiological interpretation of Shannon Entropy in EEG analysis is not 

completely clear, but it is thought to reflect the complexity of neural activity in the 

brain [131]. A higher Entropy signal may indicate greater variability or complexity 

in the neural activity underlying the EEG signal, while a lower Entropy signal may 

indicate more uniform or simple neural activity [132]. 

There are several studies that have investigated the relationship between Shannon 

Entropy and EEG signals. For example, one study found that EEG signals from 

patients with Alzheimer's disease had lower Entropy than those from healthy 

controls, suggesting reduced complexity of neural activity in Alzheimer's disease 

[133]. Another study found that Shannon Entropy was positively correlated with 

the complexity of the cognitive task being performed by participants, suggesting 

that Entropy may reflect cognitive demand [134]. 
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1.6.4.3.3 Coherence 

From a structural (anatomical) point of view, the most striking feature of the brain 

is the abundant connectivity between neurons. From a functional point of view, this 

connectivity is reflected in synchronous activities within the brain: neurons in 

anatomically connected structures tend to fire synchronously [135]. 

Electrophysiological data show that this synchronicity is performed in bursts 

repeating at different frequencies [136]. The frequency of the synchronization 

seems to define the functional meaning of connectivity through consistency since it 

is a measure of synchronization between EEG recorded in different scalp locations 

and reflects a correlation between EEG powers computed for these two locations in 

the same frequency band [137]. 

For example, alpha frequencies are idling rhythms of sensory systems and 

synchronization at 10 Hz frequency indicates the state of the sensory system when 

neurons do not relay sensory information but ready to commence when a relevant 

stimulus will appear [138]. Oscillatory synchronization in gamma band has been 

proposed as a binding mechanism for combining different features of an object into 

a single percept [139]. Synchronization at 40 Hz frequency indicates the 

synchronous activation of neurons responsible for detecting different features of the 

same stimulus [140].  

The disruption of “normal” synchronization may be a sign of neurological or 

psychiatric dysfunction. For example, an abnormal pattern of synchronization 
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between different parts of the basal ganglia seems to be responsible for tremor and 

dyskinesia in Parkinson’s disease [141].  

Mathematically, Coherence is calculated by dividing the cross-spectral density of 

two signals by the product of their individual power spectra [142]. The resulting 

value ranges from 0 (indicating no correlation) to 1 (indicating perfect correlation) 

and is often expressed as a percentage and is computed as follows: 

𝐶𝑥𝑦 =
|𝑃𝑥𝑦|

2

𝑃𝑥𝑥 ∗ 𝑃𝑦𝑦
 

Equation 10 

Where Pxx and Pyy are power spectral density estimates of X and Y, and Pxy is the 

cross spectral density estimate of X and Y. 

Physiologically, Coherence reflects the degree of communication between different 

brain regions. When two brain regions are functionally connected, their neural 

oscillations will be synchronized, and their Coherence value will be high. In 

contrast, when there is no functional connection between two brain regions, their 

neural oscillations will be independent, and their Coherence value will be low. 

There have been numerous studies that have used Coherence analysis to investigate 

the functional connectivity of different brain regions and networks. For example, 

one study found that Coherence between the prefrontal cortex and the hippocampus 

was higher during working memory tasks, suggesting that these brain regions are 
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functionally connected during this cognitive process [143]. Another study found 

that Coherence between the primary motor cortex and the cerebellum was increased 

during motor learning, indicating enhanced functional connectivity between these 

regions during this process [144]. 

1.6.4.3.4 Cross Frequency 

Cross Frequency refers to the phenomenon in which the amplitude of high-

frequency oscillations is modulated by the phase of low-frequency oscillations 

[145]. It has been observed in a variety of brain regions and is thought to play an 

important role in cognitive processes such as attention, memory, and perception 

[146]. 

Mathematically, Cross Frequency is typically measured following the steps (Figure 

4):  

1. The full band EEG signal is broken down into sub-bands. 

𝑠𝑖(𝑛) = 𝑠(𝑛) ∗ ℎ𝑖(𝑛) 

Equation 11 

Where s(n) is the full band signal and hi(n), i = 1, 2, …, k are the responses of the 

band-pass filters used to separate each of the sub-bands. 

2. Using the Hilbert transform (H {*}) the time amplitude envelope of each of 

the sub-bands is calculated. 

𝑒𝑖(𝑛) = √𝑠𝑖(𝑛)2 + 𝐻{𝑠𝑖(𝑛)}2 
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Equation 12 

𝑒𝑖: Represents the time amplitude envelope of the i-th sub-band at time instance 

'n'. 

𝑠𝑖(𝑛)2: Denotes the instantaneous amplitude of the i-th sub-band signal at time 

'n'. 

3. The representation by “spectral modulation” is obtained for each sub-band 

by applying the Fourier transform (F {*}) with a Hamming window of 5 seconds 

and movement of 500ms, on the temporal envelopes. 

𝜀𝑖(𝑚; 𝑓) =  |𝐹{𝑒𝑖(𝑚, 𝑛)}| 

Equation 13 

Where m are the frames and f the modulated frequencies. 

4. Bearing in mind that, with the Hilbert transform, the envelope signal can 

only contain frequencies (i.e., modulation frequencies) up to the maximum 

frequency of its source signal (Bedrosian's theorem). Therefore, for each TF result, 

only the modulated sub-bands with lower frequencies than the original sub-band of 

the time envelope are taken. 

5. Finally, a modulation energy “ratio” parameter called percentage 

modulation energy (PME) is calculated, which has given good results in 

classification tasks and is given by: 

𝑃𝑀𝐸𝑖,𝑗 =
𝜀�̅�,𝑗

∑ ∑ 𝜀�̅�,𝑗
𝑘−1
𝑗=1

𝑘
𝑖=1

𝑥100% 

Equation 14 
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Where 𝜀�̅�,𝑗 is the average modulation energy (in all frames) of the sub-band i 

grouped by the modulated sub-band j. 

As shown in Figure 4, the Hilbert transform definition limits the frequency range 

of the extracted envelopes 𝑒𝑖(𝑛) to the modulation frequencies present in the 

original signal 𝑠𝑖(𝑛), as demonstrated by Bedrosian's theorem [147]–[149]. This 

implies that Gamma can modulate all frequency bands, whereas Delta is limited to 

modulating only itself.  
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Figure 4 Hilbert transform definition limits the frequency range of the extracted 

envelopes 𝒆𝒊(𝒏) to the modulation frequencies present in the original signal 𝒔𝒊(𝒏),, 

as demonstrated by Bedrosian's theorem. Adapted Image Source: [147] 
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Physiologically, Cross Frequency reflects the functional interactions between 

different neural oscillations [150]. The phase of low-frequency oscillations is 

thought to modulate the excitability of neural populations, which in turn affects the 

amplitude of high-frequency oscillations. This Cross Frequency interaction is 

believed to be important for coordinating the activity of different brain regions and 

for regulating neural processing [151]. 

There have been numerous studies that have used Cross Frequency analysis to 

investigate the functional connectivity and neural processing in the brain. For 

example, one study found that Cross Frequency between theta and gamma 

oscillations in the hippocampus was increased during memory retrieval, suggesting 

that this coupling is important for memory processing [152]. Another study found 

that Cross Frequency between alpha and beta oscillations in the motor cortex was 

increased during motor planning, indicating that this coupling is important for 

motor processing [153]. 

Finally, another study said although both within-frequency and Cross Frequency 

networks can be used to predict AD with high accuracy, the bispectrum-based 

functional connectivity outperforms cross-spectrum suggesting an important role of 

Cross Frequency functional connectivity [154]. 

1.6.4.3.5 Synchronization Likelihood 

Synchronization Likelihood (SL) is a measure of the non-linear synchronization 

between two signals [155]. It was developed to study the functional connectivity 

between different brain regions by measuring the degree of synchronization 
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between their respective neural oscillations. Unlike Coherence, which is a measure 

of linear synchronization, SL can capture non-linear synchronization, which is 

thought to be more common in the brain [156]. 

SL is calculated by computing the probability that two signals will remain within a 

certain phase difference range over time. The resulting value ranges from 0 

(indicating no synchronization) to 1 (indicating perfect synchronization) and is 

often expressed as a percentage. 

Mathematically, the Synchronization Likelihood 𝑆𝑘,𝑖,𝑗 for each channel k and each 

discrete time pair (i, j) where each of the M is time series embedded vectors 𝑋𝑘,𝑖 

,and the number 𝐻𝑖,𝑗 of channels, for which the distance of embedded vectors 𝑋𝑘,𝑖 

and 𝑋𝑘,𝑗 is smaller than εk,i, defined as: 

𝑖𝑓 |𝑋𝑘,𝑖 − 𝑋𝑘,𝑗| < 𝜀𝑘,𝑖: 𝑆𝑘,𝑖,𝑗 =
𝐻𝑖,𝑗 − 1

𝑀 − 1
 

𝑖𝑓 |𝑋𝑘,𝑖 − 𝑋𝑘,𝑗| ≥ 𝜀𝑘,𝑖: 𝑆𝑘,𝑖,𝑗 = 0 

Equation 15 

by averaging over all j, we finally obtain the Synchronization Likelihood 𝑆𝑘,𝑖 :   

𝑆𝑘,𝑖 =
1

2(𝑤2 − 𝑤1)
           ∑ 𝑆𝑘,𝑖,𝑗

𝑁

𝑗=1

𝑤1<|𝑗−𝑖|<𝑤2

 

Equation 16 
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Therefore, the Synchronization Likelihood 𝑆𝑘,𝑖 is a measure that describes how 

strongly channel k at time i is synchronized to all the other M − 1 channels. 

Physiologically, SL reflects the degree of synchronization between different brain 

regions [157]. When two brain regions are functionally connected, their neural 

oscillations will be synchronized, and their SL value will be high. In contrast, when 

there is no functional connection between two brain regions, their neural 

oscillations will be independent, and their SL value will be low [158]. 

There have been numerous studies that have used SL analysis to investigate the 

functional connectivity of different brain regions and networks. For example, one 

study found a significant heritability that suggests that SL can be used to examine 

genetic susceptibility [159]. Another study found that SL between the prefrontal 

cortex and the motor cortex was increased during motor imagery, indicating 

enhanced functional connectivity between these regions during this process [160]. 

Finally, another study found the relationship between functional connectivity and 

complexity exhibited various temporal-scale-and-regional-specific dependencies in 

both control participants and patients with AD and the combination of functional 

connectivity and complexity might reflect the complex pathological process of AD 

[161]. 

1.6.5 Machine Learning  

Using machine learning (ML) techniques, we can train a classifier to recognize the 

best features or, from among select features, which ones belong to one class (or 
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condition, i.e., AD,) or to another (i.e., subject healthy). This is a very powerful 

technique, and it is extensively used in EEG data analysis [162]. ML has the 

potential to support and perhaps accelerate the neurophysiological diagnostic or 

monitoring pathway, but with the adoption of any new technology there will be 

difficulties [163].  

Among classification algorithms, the Support Vector Machine (SVM) algorithm is 

the most widely used, where classification accuracy is widely used as a performance 

metric. However, in AD studies, given the differences experimental setup, EEG 

processing pipeline, and cross-validation paradigms, there is no way to directly 

compare the results [7].  

On the other hand, in the application of machine learning techniques to the selection 

of features, some tools appear, such as The Tree-Based Pipeline Optimization Tool 

(TPOT) [164] or Boruta [165], these tools are based on automated machine learning 

(AutoML). 

AutoML algorithms are not as simple as fitting a model to the data; they consider 

multiple machine learning algorithms (random forests, linear models, SVMs, etc.) 

in a pipeline with multiple preprocessing steps (missing value imputation, scaling, 

feature selection, etc.), the hyperparameters for all models and preprocessing steps, 

and multiple ways to ensemble or stack the algorithms within the pipeline.  

TPOT's optimization algorithm is stochastic in nature, i.e., it uses randomness (in 

part) to search the possible pipeline space. If two TPOT runs recommend different 
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pipelines, it means that the TPOT runs didn't converge due to lack of time, or that 

multiple pipelines perform the same on the dataset [166]. 

Boruta iteratively compares the importance of features with the importance of 

shadow features created by shuffling the original attributes. Features that have 

significantly worse importance than the shadows are successively discarded. On the 

other hand, attributes that are significantly better than the shadows are allowed to 

be confirmed. Shadows are created in each iteration[167]. 

Therefore, to better represent the domain, many candidate features are introduced, 

resulting in the existence of irrelevant redundant features for the target concept. A 

relevant feature is neither irrelevant nor redundant to the target concept, an 

irrelevant feature is not directly associated with the target concept but affects the 

learning process, and a redundant feature does not add anything new to the target 

concept [168]. Reducing the number of irrelevant redundant features can drastically 

reduce the running time of the learning algorithms and yield a more general 

classifier [169]. 
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Chapter 2 

Database construction and standardization 

2.1 Introduction 

Currently, there are a variety of pipelines for EEG analysis, so it is common to find 

a processing strategy in each repository or public database [170]. Additionally, it is 

necessary to apply organizational standards for the security and organization of 

EEG data, which also protect the personal data of patients [171]. This is the case of 

EEG-BIDS, an extension of the brain imaging data structure for EEG [27], which 

addresses the organization of multimodal data following localization, accessibility, 

and interoperability principles. A multimodal database is a data processing tool that 

supports multiple data models and defines the parameters of how information is 

organized and accommodated in a database [172]. While the approaches presented 

above section 1.6.1 and 1.6.5 for EEG and ML analysis show promising 

performance, the validation methods used are generally limited to relatively small, 

controlled, and mostly local and private data sets [173]. Therefore, the question 

arises as to whether the detection capabilities of these algorithms generalize to 

larger samples, considering the different databases, and whether they could 

subsequently be scaled to a clinical (uncontrolled) setting.  
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The possibility of answering this question has become a common interest at the 

scientific level and is motivated by the publication of open access databases [174]. 

The Cuban Center for Neurosciences has shared a set of resting-state EEG 

normative data collected between 1988-1990 [175], as has the CHBMP repository 

which shares an open-label multimodal neuroimaging and cognitive dataset of 282 

healthy young and middle-aged participants [79]. This data set was acquired from 

2004 to 2008 as a subset of a larger stratified random sample of 2019 participants 

from the municipality of La Lisa in Havana, Cuba. However, these efforts have also 

sparked a debate about the importance of moving beyond data pooling, toward data 

standardization to facilitate use of aggregated data sets that also share methodology 

in terms of pre-processing and quality control. The use of complementary 

multimodal databases results in a standardized data state. EEG-IP is a platform 

developed to advance biomarker discovery by enhancing large-scale integration of 

data from multiple sites [176]. Where lossless signal processing implementation 

algorithms are shared on this platform [96] maximizing signal isolation and 

minimizing data loss. In addition, it provides a unified and standardized output data 

status. 

Metrics for evaluation and comparison of multiple databases include calculation of 

epoch rejection rate, Signal to Noise Ratio (SNR), amplitude variation in particular 

time windows, the susceptibility of the experimental setup to line noise, the 

percentage of EEG segments contaminated by artifacts, and metrics on signal 

stability based on autocorrelation and cross-correlation analysis [16], [25], [177]. 
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With this approach, the effect on any independent parameter that has a potential 

impact on EEG database integration can be tested. Finally, the metrics that indicate 

the success of harmonization can be extended to the EEG source space. This is the 

case for the pairwise normalized difference/skewness (ND), a measure that 

represents the dimensionless, normalized pairwise skewness of functional 

connectivity matrices and graph-based derived metrics, and can be used as an 

indicator of variability between subjects [178]. Thus, standardizing the data offers 

maximum possibilities for large-scale data exploration in EEG data, substantially 

accelerating hypothesis testing in biomarker discovery research.  

In this chapter, we describe the methodology used to select the databases, providing 

a detailed description of each data source, and discuss the methods utilized to 

standardize and harmonize the data. Through this chapter, we demonstrate our 

commitment to ensuring the quality and consistency of the data used in our study, 

and how we can overcome the challenges posed by using multiple data sources. 

2.2 Methodology 

In this chapter, we delineate the method employed to choose suitable databases, 

aligning with our first objective of data integration and standardization, a crucial 

step that shapes the ensuing analysis.  The process unfolds in the following steps: 

1. Initial Database Identification: The foundation of our study involves two 

primary databases, namely a central database and a preceding parent database, both 

administrated by the University of Antioquia in collaboration with the 
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Neuropsychology and Behavior Research Group (Gruneco). These repositories 

encompass diverse datasets encompassing EEG recordings during rest tasks (with 

eyes open and closed), demographic insights (age, gender, education), and 

outcomes of neuropsychological assessments (MMSE, MOCA, etc.). 

2. Exploration of External Sources: We venture beyond our internal 

databases to explore external sites that provide open access to diverse databases. A 

meticulous evaluation of the available data is conducted, encompassing both 

neurophysiological (EEG) recordings and demographic/neuropsychological 

particulars. 

3. Database Selection Criteria: Leveraging the comparative lens, we 

meticulously select databases that feature neuropsychological assessments akin to 

our initial databases and encompass neurophysiological data obtained during rest 

tasks with eyes closed. 

4. Data Acquisition and Compilation: Selected databases are procured and 

systematically stored within a consistent directory on the computing system. The 

acquisition process adheres closely to the stipulated instructions offered by each 

respective website. 

5. Standardization through Sovabids Tool: To ensure uniformity and 

Coherence across the collected databases, we employ the Sovabids tool. This tool 

adeptly transforms the databases into the BIDS format, thereby enhancing 

compatibility and ease of integration. 



72 

 

6. Localization of Processable Signals: Within the standardized databases, 

we meticulously pinpoint the precise locations of raw signals slated for processing 

in alignment with our research objectives. 

The schematic representation of our methodology is depicted in Figure 5. 

 

Figure 5 Illustrates the integration of cohorts from the neuropsychology and 

behavior group, as well as the subsequent conversion of their data to the BIDS 

standard. 

This integration process ensures that data from different sources and formats can 

be harmoniously merged and organized, allowing for standardized and consistent 
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analysis. By adhering to the BIDS standard, the data becomes more accessible, 

interpretable, and easily shared among researchers and institutions. 

2.3 Search criteria 

The development of the search criteria was guided by the project's objectives, 

outlined below: 

1. Establishing a Comprehensive Database: The primary objective was to 

construct and standardize a database containing multimodal information sourced 

from diverse sites. This involved leveraging tools that facilitate both data storage 

and manipulation prior to and during processing. Our approach involved an 

exhaustive review of prominent open-access databases commonly referenced in 

pertinent neuroscience literature and journals. 

To devise our search criteria, we methodically explored websites frequently cited 

within the neuroscience domain, see Figure 6. We aspired to ensure the flexibility 

of our search criteria at the outset, enabling us to encompass diverse tasks, such as 

data from rest or eyes-closed studies, as well as data from both healthy subjects and 

those afflicted with Alzheimer's disease, see Figure 7.  

Once we had identified databases that matched these preliminary criteria, we 

refined our search to target repositories featuring both EEG data and 

neuropsychological assessments. This intricate process led us to isolate 707 

repositories housing both neurophysiological and neuropsychological records. 
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From this pool, we extracted 1098 EEG records, of which 1061 also boasted 

available neuropsychological test results. 

Websites 

 

Figure 6 Query criteria for websites. Commonly referenced in pertinent 

neuroscience literature and journals. 

Query criteria 

 

Figure 7 Query criteria for open access cohorts. Encompass diverse tasks, data from 

rest or eyes-closed studies, data from both healthy subjects and those afflicted with 

Alzheimer's disease. 

2. Achieving for Comparative Analysis: From the 1061 records, we isolated 

those that contained only entries in the resting state, of which we found 617, and 

those that could be downloaded without any preprocessing. This pursuit culminated 
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in our selection of two public access databases aligning with the neuropsychological 

tests outlined in our initial search. Consequently, our study was fortified by a total 

of 457 records, a breakdown of which is depicted in Figure 8.  

 

Figure 8 Illustrates the comprehensive review process conducted to gather the 

records utilized in this project. The transition from repositories to registries is 

illustrated, culminating in the selection of two open access databases and two 

proprietary databases. 
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The realization of this objective rested upon the databases provision of information 

on healthy subjects and their associated neuropsychological assessments, which 

collectively enabled the meticulous selection of records. 

3. Crafting a Machine Learning (ML) Model for Risk Assessment: The 

third objective revolved around the design of an ML model capable of classifying 

individuals at risk of Alzheimer's disease (AD), utilizing the comprehensive 

database of neuropsychological and neurophysiological data. 

In pursuit of this goal, records sourced from the databases outlined in objectives 1 

and 2 were employed. Yet, during model training, a challenge emerged due to the 

presence of missing data in certain records. To address this challenge, the 

possibility of employing an imputation process was explored, wherein missing 

values could potentially be substituted with informed estimations. However, it was 

decided to eliminate the records that did not contain all the data. 

This decision was based on, the inclusion criteria relating to neuropsychological 

tests presented an obstacle. Although our identified databases didn't exhibit 

identical sets of tests, they did share at least one common test within each 

repository. As a result, the integration of all four databases resulted in the 

elimination of this test-specific data. Despite these constraints, the objective was 

fulfilled within the project's defined scope. 

Looking ahead, it's imperative to acknowledge the considerations that arose from 

these limitations for subsequent projects. Lessons gleaned underscore the 
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importance of early consideration to circumvent the inadvertent removal of 

valuable records, thereby optimizing the utility of information within the model for 

future endeavors. 

2.4 Results 

2.4.1 Database standardization 

The following is a description of each of the databases that are part of the project, 

starting with the initial databases (Gruneco Research Group) and ending with the 

open access databases. 

2.4.1.1 UdeA 1 Database 

Subjects 

The study included individuals from families with the PSEN1-E280A genetic 

variant, as well as healthy controls who voluntarily participated. Participants were 

asymptomatic individuals aged between 20 and 45 years, with 32 carriers (G1) and 

37 non-carriers (G2). Additionally, 19 subjects with mild cognitive impairment 

(DCL) and 8 with dementia, who carried the PSEN1-E280A variant (DTA) and 

were over 40 years old, were included. Lastly, 30 community controls were 

included, who volunteered and did not have any psychiatric, neurological, or 

systemic disorders, history of TBI, stroke, use of anticonvulsant drugs, or abuse of 

psychoactive substances, which could affect EEG or cognitive test performance. 

Participants and evaluators were unaware of the genetic status of the participants, 

and the groups were matched as closely as possible for age, sex, and schooling.  
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Acquisition protocol 

During the study, EEG signals were recorded in both resting states: with eyes closed 

(EC) and with eyes open (EO) for a duration of 5 minutes. The EEG data was 

acquired using a Neuroscan amplifier (Neuroscan Medical System, Neurosoft Inc. 

Sterling, VA, USA) with a 58-tin channel cap placed according to the international 

10-10 system. The sampling rate of the data was set to 1000 Hz, and in-line band 

pass filtering (0.05 to 200 Hz) and a band reject filter (60 Hz) were applied to 

remove any power supply noise. A reference electrode was placed on the right 

earlobe, and Fz electrode was used as the ground electrode. Prior to recording, a 

channel impedance calibration was conducted to ensure contact impedances of EEG 

electrodes remained below 1 KΩ. Furthermore, to minimize any external 

electromagnetic interference, recordings were performed inside a Faraday cage, a 

soundproof and electromagnetically shielded enclosure. 

Number of channels:  60 (Including EEG and others) 

Channels:  ['FP1', 'FPZ', 'FP2', 'AF3', 'AF4', 'F7', 'F5', 'F3', 'F1', 'FZ', 'F2', 'F4', 'F6', 

'F8', 'FC5', 'FC3', 'FC1', 'FCZ', 'FC2', 'FC4', 'FC6', 'T7', 'C5', 'C3', 'C1', 'CZ', 'C2', 

'C4', 'C6', 'T8', 'TP7', 'CP5', 'CP3', 'CP1', 'CPZ', 'CP2', 'CP4', 'CP6', 'TP8', 'P7', 'P5', 

'P3', 'P1', 'PZ', 'P2', 'P4', 'P6', 'P8', 'PO7', 'PO5', 'PO3', 'POZ', 'PO4', 'PO6', 'PO8', 

'O1', 'OZ', 'O2', 'HEO', 'VEO'] 
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Neuropsychological tests 

All participants were evaluated by medical and neuropsychological experts and 

underwent genotyping for the PSEN1-E280A variant and cognitive status 

verification according to the protocol of the Neurosciences Group of Antioquia. 

Informed consent was obtained from all participants, and the Ethics Committee 

Board of the Faculty of Medicine - University of Antioquia approved the study. 

Support 

This work was supported provided by the Comité para el Desarrollo de la 

Investigación - CODI Universidad de Antioquia, through the project "Cambios en 

los patrones del electroencefalograma cuantitativo (reactividad alfa, theta y su 

índice) en reposo y tareas de memoria, en el seguimiento longitudinal de pacientes 

con riesgo genético para Enfermedad de Alzheimer Temprano", identified with the 

code 2017-16371. 

2.4.1.2 UdeA 2 Database 

Subjects 

The study enrolled individuals belonging to the E280A mutation Colombian 

kindred, which included 22 asymptomatic carriers (G1), 18 healthy non-carriers 

(G2), 20 symptomatic carriers (DTA), and 17 healthy non-carriers (Control). To 

ensure comparable gender, age, and educational level across the groups, we selected 

healthy non-carriers that matched with the carriers in these characteristics. 

Moreover, we compared each carrier group with its corresponding control group to 

evaluate the effect of the genetic mutation. It is worth noting that 30 of the 
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asymptomatic subjects had previously participated in other studies involving 

connectivity analysis and quantitative EEG. 

The study was conducted following the ethical guidelines approved by the local 

institutional review boards, and informed consent was obtained from the 

participants or their legal representatives. The study was conducted according to a 

general protocol approved by the Human Subjects Committee of the Sede de 

Investigación Universitaria (SIU) of Universidad de Antioquia, Medellin, 

Colombia. The genetic status of the participants was masked by the investigators 

collecting the data. The exclusion criteria included severe physical illness, 

psychiatric or neurological disorders that may affect cognitive function, and other 

forms of dementia. Additionally, individuals with alcohol or drug abuse and those 

under regular treatment with neuroleptics or antidepressants with anticholinergic 

activity were excluded. 

Acquisition protocol 

During the study, EEG recordings were obtained using a Neuroscan amplifier 

(Neuroscan Medical System, Neurosoft Inc. Sterling, VA, USA). Participants were 

seated comfortably and instructed to rest with their eyes closed for 5 minutes during 

the EEG data acquisition. EEG data were collected from 64 electrodes with a 

bandpass filter of 0.1-200 Hz and a midline reference at a sampling rate of 1000 

Hz. The electrodes were positioned according to the international 10-10 system, 

and an electrooculogram recording (0.1±100 Hz bandpass) was performed 

simultaneously. All recordings were obtained in the second semester of 2012. 
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Number of channels:  68 (Including EEG and others) 

Channels:  ['FP1', 'FPZ', 'FP2', 'AF3', 'AF4', 'F7', 'F5', 'F3', 'F1', 'FZ', 'F2', 'F4', 'F6', 

'F8', 'FT7', 'FC5', 'FC3', 'FC1', 'FCZ', 'FC2', 'FC4', 'FC6', 'FT8', 'T7', 'C5', 'C3', 'C1', 

'CZ', 'C2', 'C4', 'C6', 'T8', 'M1', 'TP7', 'CP5', 'CP3', 'CP1', 'CPZ', 'CP2', 'CP4', 'CP6', 

'TP8', 'M2', 'P7', 'P5', 'P3', 'P1', 'PZ', 'P2', 'P4', 'P6', 'P8', 'PO7', 'PO5', 'PO3', 'POZ', 

'PO4', 'PO6', 'PO8', 'CB1', 'O1', 'OZ', 'O2', 'CB2', 'HEO', 'VEO', 'EKG', 'EMG'] 

Neuropsychological tests 

All participants underwent a thorough clinical and neuropsychological assessment, 

which was conducted by a neurologist or a physician specially trained in dementia 

evaluation. The neurological examination and clinical history review were 

conducted to obtain a complete medical history of the subjects. The 

neuropsychological protocol included the widely used Mini-Mental State 

Examination (MMSE) and the Consortium to Establish a Registry for Alzheimer's 

Disease (CERAD) battery, which was adapted to the Colombian population. In 

addition, a cognitive composite test with high sensitivity for tracking E280A 

subjects was employed to examine the correlation analysis with the 

neurophysiological measures. This composite test consisted of the average of scores 

from several subtests, including Abstract Reasoning (Ravens Progressive 

Matrices), Orientation (MMSE Orientation to Time), Language (CERAD Boston 

Naming Test), Memory (CERAD Word list Recall), and Praxis (CERAD 

Constructional Praxis). 
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Support  

This work was supported by Vicerrectoría de Investigación of Universidad de 

Antioquia (CODI), Projects “Identificación de marcadores preclínicos de la 

mutación E280A de la enfermedad de Alzheimer a partir de medidas de 

conectividad en EEG”, code PRG14-1-02. 

2.4.1.3 SRM Database 

Subjects 

The dataset includes raw neuropsychological assessment scores, age, sex, and 

resting-state EEG data from 111 healthy control participants (Control) with a mean 

age of 37.6 years (SD = 14.0, range = 17-71). Prior to participation, written 

informed consent was obtained from all participants, who had normal or corrected-

to-normal vision and hearing, and reported no severe psychiatric or neurological 

symptoms. Basic audiometry screening was conducted on all participants. 

Recruitment was conducted through social media platforms, such as Facebook and 

Instagram, as well as local advertisements. 

Acquisition protocol 

During the data acquisition procedure, a resting-state EEG was obtained towards 

the end of the session while the participants had their eyes closed. EEG data were 

collected from 64 electrodes. The segment was initiated with a set of standardized 

written instructions displayed on a 24” LCD screen (BenQ, model ID: XL2420-B). 

The instructions, translated from Norwegian, asked the participants to close their 

eyes and remain seated with their eyes closed for about four minutes. During this 
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time, there were no visual or auditory stimuli presented, and the participants were 

not required to perform any actions. 

Number of channels:  64 (Including EEG and others) 

Channels:  ['Fp1', 'AF7', 'AF3', 'F1', 'F3', 'F5', 'F7', 'FT7', 'FC5', 'FC3', 'FC1', 'C1', 

'C3', 'C5', 'T7', 'TP7', 'CP5', 'CP3', 'CP1', 'P1', 'P3', 'P5', 'P7', 'P9', 'PO7', 'PO3', 'O1', 

'Iz', 'Oz', 'POz', 'Pz', 'CPz', 'Fpz', 'Fp2', 'AF8', 'AF4', 'AFz', 'Fz', 'F2', 'F4', 'F6', 'F8', 

'FT8', 'FC6', 'FC4', 'FC2', 'FCz', 'Cz', 'C2', 'C4', 'C6', 'T8', 'TP8', 'CP6', 'CP4', 'CP2', 

'P2', 'P4', 'P6', 'P8', 'P10', 'PO8', 'PO4', 'O2'] 

Neuropsychological tests 

At the initial time point, all participants underwent a comprehensive 

neuropsychological assessment. The assessment battery consisted of multiple tests 

to evaluate different cognitive domains. These included the Rey Auditory Verbal 

Learning Test, which measured verbal learning and memory, the Wechsler Adult 

Intelligence Scale-IV Digit Span, which assessed attention span and working 

memory, and the Delis-Kaplan Executive Function System tests. The D-KEFS tests 

comprised of the Trail Making Test, which measured psychomotor speed and 

executive functioning, the Colour-Word Interference Test, which evaluated reading 

speed and executive functioning, and the Verbal Fluency Test, which assessed 

phonemic and semantic processing abilities. 
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Support  

The dataset from the Stimulus-Selective Response Modulation (SRM) project at the 

Department of Psychology, University of Oslo, Norway, has been made publicly 

available on the internet and can be accessed freely. The project team has divulged 

this dataset to facilitate wider access and promote research in this field. 

2.4.1.4 CHBMP Database 

Subjects 

The CHBMP repository is a publicly accessible, multimodal neuroimaging and 

cognitive dataset that includes data from 282 healthy participants (Control) (age 

range 18-68 years, mean age 31.9 ± 9.3 years). This dataset was obtained between 

2004 and 2008 and is a subset of a larger stratified random sample of 2,019 

participants from La Lisa municipality in La Habana, Cuba. Participants with any 

signs of disease or brain dysfunction were excluded from the study. 

Acquisition protocol 

Resting-state EEG for 10 minutes was recorded using the digital 

electroencephalograph system MEDICID 5-with 64 and 128 electrodes with 

differential amplifiers and gain of 10,000. The amplifiers used three filters: 1) Low 

cutoff (-3dB, high-pass): first order (6 dB/octave) 2) High Cutoff (-3dB, low-pass): 

Butterworth, second order (12 dB/octave) and 3) Line filter with a unit frequency 

response. Electrodes were placed according to the 10–10 International System with 

a customized electrode cap. Linked earlobes were used as the EEG reference. 

Electrode impedances were considered acceptable if less than 5 KΩ. The bandpass 
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filter parameters were 0.5–50 Hz and 60 Hz notch, and a sampling period of 200 

Hz.  

The EEG was recorded in a temperature and noise-controlled room while the 

participant was sitting in a reclined chair. All individuals were asked to relax and 

remain at rest during the test to minimize artifacts produced by movements and to 

avoid excessive blinking. The participants received instructions to have enough 

sleep the previous night, take breakfast, and wash the hair before attending this 

appointment. The structure of raw EEG recording was generated in the default 

format of the MEDICID neurometrics system (*.plg extension), which later is 

converted to standard BIDS format.  

Number of channels:  123 (Including EEG and others) 

Channels:  ['Fp1', 'Fp2’, 'F3', 'F4’, 'C3’, 'C4 ‘, 'P3 ‘, 'P4 ‘, 'O1 ‘, 'O2 ‘, 'F7 ‘, 'F8 ‘, 

'T7 ‘, 'T8 ‘, 'P7 ‘, 'P8 ‘, 'Fz ‘, 'Cz ‘, 'Pz ‘, 'F1 ‘, 'F2 ‘, '22', '23', 'P1 ‘, 'P2 ‘, 'AF3’, 

'AF4’, '28', '29', '30', '31', '32', '33', 'FT7’, 'FT8’, '36', '37', 'P5 ‘, 'P6 ‘, 'FC5’, 'FC6’, 

'42', '43', 'C5 ‘, 'C6 ‘, '46', '47', '48', '49', '50', '51', 'TP7’, 'TP8’, 'PO5’, 'PO6’, '56', 

'57', 'AF7’, 'AF8’, '60', '61', 'FpZ’, '63', 'FCZ’, 'CPZ’, 'POZ’, 'OZ ‘, '68', '69', '70', 

'71', '72', '73', '74', '75', '76', '77', 'PO3’, 'PO4’, '80', '81', 'CP1’, 'CP2’, '84', '85', '86', 

'87', '88', '89', 'CP3’, 'CP4’, '92', '93', '94', '95', 'C1 ‘, 'C2 ‘, 'F5 ‘, 'F6 ‘, 'FC3’, 'FC4’, 

'FC1’, 'FC2’, '104', '105', '106', '107', '108', '109', '110', '111', 'CP5’, 'CP6’, 'PO7’, 

'PO8’, '116', '117', '118', '119', '120', 'EOI', 'EOD', 'ECG'] 
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Neuropsychological tests 

The psychological test results (including MMSE, Wechsler Adult Intelligence Scale 

- WAIS III, and computerized reaction time tests using a go no-go paradigm), as 

well as general information about each participant (age, gender, education, 

ethnicity, handedness, and weight).  

The Mini-Mental State Examination MMSE is a quick and easy measure of 

cognitive functioning that has been widely used in clinical evaluation and research 

involving patients with dementia. In our study, the MMSE was employed as a 

screening test to exclude participants with cognitive impairment. The total score of 

the participants is available in the file MMSE.csv with also the individual items for 

52 subjects. 

Support  

The dataset from the The Cuban Human Brain Mapping Project (CHBMP) project 

at the Cuban Ministry of Public Health (MINSAP) and coordinated by the Cuban 

Neuroscience Center (CNEURO), has been made publicly available on the internet 

and can be accessed freely. The project team has divulged this dataset to facilitate 

wider access and promote research in this field. 

2.4.2 Sovabids tool implementation 

 Following meticulous database selection and a thorough grasp of their distinctive 

features, a seamless integration process ensued within the Sovabids tool, an 

accessible open-source solution [179]. 
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The genesis of the Sovabids tool stems from the realization that typical EEG 

experiments produce a spectrum of data structures that are uniformly organized 

across participants. However, there may be subtle differences in the organization of 

these structures for individual participants. 

The Sovabids tool masterfully navigates these complexities by embracing an 

approach that capitalizes on overarching commonalities among participants while 

maintaining a dynamic adaptability to outliers. This intricate equilibrium was 

meticulously achieved through the instantiation of two discrete configuration files: 

1. The Rules File: This repository encodes the bedrock conversion principles that 

extend across an expansive EEG dataset. It functions as a standardized framework 

that illumines the trajectory of the conversion process. 

2. The Mappings File: Evolving from the Rules File, the Mappings File assumes a 

personalized mantle. It houses nuanced conversion directives, meticulously tailored 

to the distinct traits of each participant. This bespoke approach guarantees that even 

participants with variances in data organization find a harmonious inclusion. 

This dual-tiered configuration architecture encapsulates a deliberate fusion of 

harmony and flexibility, empowering the Sovabids tool to seamlessly harmonize 

with the intricate topography of diverse EEG datasets. (as shown in the Figure 9). 
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To increase the level of automation, sovabids incorporates heuristics that exploit 

the common file path patterns used in EEG research. This further streamlines the 

process of converting EEG data to BIDS. 

 

Figure 9 From a Rules File, a mapping for each file in the dataset can be generated 

and saved in the Mappings File. The colors illustrate how the information in both 

files is related. Source: sovabids.readthedocs.io 

Finally, the result is observed in Figure 10, since it shows how a data set made up 

of different tasks, different sessions and different patients is transformed into the 

ordered BIDS structure. 
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Figure 10 Graphical representation of the conversion to BIDS 

 

2.4.3 Data Description 

Ultimately, the data that has been meticulously organized in the BIDS format is 

consolidated and stored within a singular dataframe—a tabular data structure 

wherein information is systematically arranged into rows and columns. This 

coherent arrangement empowers us to seamlessly extract comprehensive insights 

from the entirety of the dataset, a representation vividly exemplified in Table 1. 

Table 1 Description of total subjects in selected cohorts 
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The information used consists of 457 records, divided into several groups: Healthy 

subjects (Controls and G2), and subjects carrying the genetic mutation PSEN1-

E280A (G1). Basic demographic information is available for almost all the subjects, 

presented in a Table 1 that includes their respective averages and standard 

deviations. Table 2 provides a segregated presentation of the identical information, 

distinctly categorized by each of the four cohorts. 

Table 2 Provides the statistical description of each selected cohort. 

 

2.5 Discussion 

EEG databases are an essential resource for researchers studying the brain's 

electrical activity. However, the lack of standardization in the format of these 

databases has been a significant barrier to their accessibility and usability. This is 

where the BIDS enters as alternative, which is a standardized format for organizing 

and sharing neuroimaging data. 



91 

 

Converting EEG databases to the BIDS format can have significant benefits for the 

neuroscience community. First and foremost, it allows researchers to easily access 

and use the data in a standardized format, enabling reproducible and transparent 

research [27]. Additionally, it facilitates the integration of EEG data with other 

neuroimaging modalities, such as MRI and fMRI, which are already commonly 

organized in BIDS format [174], [180]. 

Moreover, the availability of easy-to-use tools for converting EEG data to the BIDS 

format is critical. Without such tools, the conversion process can be time-

consuming and error-prone, which can hinder the adoption of BIDS by the 

neuroscience community. Therefore, the development and dissemination of user-

friendly conversion tools can significantly accelerate the adoption of BIDS and 

promote open and collaborative research in the field of neuroscience [179]. 

Overall, the use of BIDS format for EEG databases and the availability of 

conversion tools is essential for promoting open science and enabling transparent, 

reproducible, and collaborative research in the field of neuroscience. 

Our methodology for database selection prominently featured neuropsychological 

tests, serving as a pivotal criterion for inclusion. These tests facilitated the 

classification of subjects across distinct groups of interest, including Controls, G1, 

and G2. It is noteworthy, however, that the absence of certain evidentiary elements 

within the selected databases curtailed the integration of some longitudinal follow-

ups or data encompassing healthy controls and AD participants. Consequently, the 
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results stemming from these tests were not integrated into the subsequent data 

analysis showcased in Chapters 3 and 4. 

Finally, disseminating and implementing tools like Sovabids in projects that utilize 

databases from multiple sites can promote their adoption, increase their visibility 

within the scientific community, and ultimately facilitate data exchange for 

maximal benefit of these databases. 

2.6 Conclusions 

In summary, Chapter 2 has successfully achieved its goal of creating and 

standardizing a comprehensive multimodal database from multiple databases. 

We've gone through the process of selecting databases, explaining their contents 

and the tools used for data standardization in the field of neuroscience. 

Of particular importance is the Sovabids tool, which we've adopted for wider using 

by the scientific community. It's important to emphasize our overarching mission: 

to create a processing pipeline that unifies datasets across different cohorts and 

databases. Our goal is to use harmonization techniques to build a machine learning 

model capable of identifying Alzheimer's disease risk using noninvasive 

biomarkers extracted through semi-automated processing. 

As we move into Chapter 3, our focus shifts to practical implementation. We'll 

delve into the intricacies of our generalized processing pipeline designed 

specifically for feature extraction. This leads to the construction of a harmonized 
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and augmented database that serves as the cornerstone of our machine learning 

model. The culmination of this process is the unveiling of the results, which 

illuminate the classification effectiveness of the model and the insights it provides. 

These insights pave the way for significant advances in scientific progress. 
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Chapter 3 

Processing pipeline and Harmonization  

 

3.1 Introduction 

The analysis of EEG data has become more varied and flexible with the availability 

of different pipelines, allowing research teams to adopt their own processing 

strategy. However, the choice of algorithms used in different processing steps, such 

as artifact removal, filtering, and time-domain transformations, can have significant 

effects on the estimation of the power spectral density of different EEG frequency-

bands, ultimately affecting scientific conclusions [46]. Researchers generally 

overestimate the likelihood of significant results across hypotheses, and 

reproducibility of results obtained using a single analysis pipeline is hard to 

estimate. To increase the statistical power and sensitivity of multicentric studies, it 

is important to have standardized data preprocessing pipelines in addition to 

standard collection procedures [81]. As discussed in the previous Chapter 2, 

organizational standards for EEG data such as BIDS can help with the security and 

organization of data, as well as protecting patients' personal data. Therefore, it is 

crucial to plan and carefully report the selection of tools, the sequence of processing 

steps, and the analysis parameters.  
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As we delve further into the concept of harmonization in this Chapter 3, it is 

essential to note that the development of a pipeline for harmonizing EEG-related 

multi-feature in neurodegenerative research presents substantial challenges. 

Nevertheless, there is promising progress in the field, with several tools available 

for harmonizing preprocessing steps that need to be comparable within basic 

common processing pipelines [81], [181]. These advancements have the potential 

to revolutionize current EEG approaches in neurodegenerative research, leading to 

a new generation of objective, computer-based tools for the diagnosis, 

characterization, and treatment of neurodegenerative diseases and other disorders. 

Aligned with this trend, a processing pipeline has been developed, demonstrating 

favorable outcomes in single-site databases [182], [183]. Nevertheless, the pipeline 

has been enhanced with normalization and harmonization stages to facilitate its 

applicability across multiple databases sourced from diverse websites. Chapter 3 

showcases the processing pipeline implemented and elucidates the undertaken 

measures to harmonize it for seamless integration with various cohorts. 

3.2 Methodology  

Prior to delving into this Chapter 3, it is essential to remember the definition of 

harmonization presented in the theoretical framework to establish the scope of its 

relevance to this project: "Harmonization primarily aims to extract information 

by utilizing libraries that facilitate data processing, normalization, and 

improvement while effectively managing variables present in the records." 
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Figure 11 depicts a step-by-step processing diagram, which includes four essential 

steps. The first step is the pre-processing pipeline, followed by the normalization of 

the data using the "Record-specific constant." Next, spectral analysis is conducted, 

and finally, data harmonization is performed. In the subsequent sections 3.3.3, will 

discuss the execution of each step-in detail, this preprocessing pipeline is referred 

to as "Sovaharmony". 

Sovaharmony is a proprietary package developed within the scope of this project, 

encompassing the `harmonize` function designed to process EEG data within a 

BIDS-format dataset. The function sequentially processes EEG files, executing 

preliminary stages such as artifact detection, signal filtering, and scaling. Processed 

data, along with its pertinent details, is stored in both derived files and JSON 

formats. The function adeptly manages event-related operations, enforces exclusion 

criteria, and scales data. Notably, it also efficiently handles and documents errors 

arising from files facing difficulties during processing. 

The creation of this processing pipeline stands as an outcome of the project; 

however, it falls outside the purview of the project's objectives. As a result, an 

illustration of the pipeline is provided and expounded upon in an annex section, 

specifically labeled as Annex 2. In this annex, one can access the requisite tools to 

comprehensively grasp the workflow and thereby facilitate its replication by 

various interested groups and research teams engaged in the field. 
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Figure 11 Pre-processing Pipeline Sovaharmony 
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The methodology comprised several essential steps aimed at achieving specific 

objectives. The second objective was to harmonize the database. This 

harmonization process was executed to ensure that the features extracted from 

different cohorts of healthy subjects were comparable and aligned. Various 

biomedical data processing techniques, such as spatial representation, channel 

interception, and preprocessing, were employed. The aim was to establish a 

standardized foundation for data analysis and interpretation, facilitating meaningful 

comparisons across the healthy cohorts (Controls). 

As the data from healthy individuals were compared, the need for harmonization 

procedures among other groups became evident. These procedures facilitate the 

accomplishment of Objective 3, which revolves around the creation of a machine 

learning (ML) model for classifying subjects at risk of developing Alzheimer's 

disease. 

Consequently, the results presented in this chapter exclusively pertain to the 

outcomes of the control subjects, thereby ensuring the fulfillment of Objective 2 

(Section 3.3.5 Feature Extraction). Additionally, the results encompass the group 

carrying the Alzheimer's PSEN1-E280A gene mutation, completing the Matching 

and NeuroHarmonize phases (Sections 3.3.6 Matching and 3.3.7 

NeuroHarmonize), setting the stage for the introduction of Objective 3 in the 

subsequent chapter. 
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3.3 Results  

3.3.1 Spatial representations 

Relative Power spectral density was calculated following EEG frequency bands: 

delta (1.5-6 Hz), theta (6-8.5 Hz), alpha 1 (8.5-10.5 Hz), alpha 2 (10.5-12.5 Hz), 

beta 1 (12.5-18.5 Hz), beta 2 (18.5-21 Hz), beta 3 (21 -30 Hz) and gamma (30-45 

Hz) [40].  

 

Figure 12 Schematic picture of the 58-electrodes system 10-10 and the ROIs 

generated. F: frontal; T: temporal; C: central; PO: parieto-occipital.  
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The analysis was approached in two spatial representations. The first one focuses 

on four regions of interest (ROIs) presented in Figure 12: frontal, temporal, central 

and parietal-occipital, where each region is defined by a set of electrodes. 

The second one consisted of a spatial filter used previously in the work of García-

Pretelt et al.[184] through the temporally concatenated group-ICA (gICA) 

methodology. The methodology employed by García-Pretelt et al. [184]with a 

single database has consistently shown good results. 

In relevant preceding studies [184], Ochoa J et al. [185] analyzed differences in the 

frequency domain between a group of asymptomatic carriers of the PSEN-1 E280A 

mutation of familial Alzheimer's (ACr) and a group of symptomatic carriers of the 

same mutation, using data from the UdeA 2 database of this project. García-Pretelt 

et al. [184], on the other hand, utilized data from the UdeA 1 database to obtain 

independent components (spatial filters). 

Figure 13 shows an adaptation of the methodology used by Garcia to select the 

neural gICA Components. 
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Figure 13 The calculation of the gICA components was performed with MATLAB 

(V.2017 a) using the FourerICA algorithm. Pipeline applied for the calculation of 

gICA components. Taken and modified from [184], [186]. 

The gICA components were calculated using MATLAB and the FourerICA 

algorithm. The procedure included concatenation of EEG records, optimal order 

testing, data laundering, and calculation of gICA components using ICASSO x30 

[184]. The resulting components were evaluated for stability, and the weight matrix 

was applied to both groups. 

Here, it is important to clarify that the spatial filter used was the one directly derived 

by García-Pretelt et al. [184], that is, the recordings used for the gICA procedure 

correspond to the subjects of that study, where the weight matrices were taken and 
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multiplied by the clean data to extract the activations. The gICA components used 

were the eight labeled as neural. Figure 14 shows the scalp-map for each component 

of the spatial filter. 

 

Figure 14 Scalp maps of the group-ICA components used. 

3.3.2 Interception of EEG montages 

The results presented in Chapter 2 provide a comprehensive breakdown of the 

registered channels for each cohort. The first stage of our pre-processing involves 

intercepting the channels of each cohort in relation to those used to construct the 

gICA matrix. It's worth noting that all cohorts consistently included the full set of 

58 channels in the matrix, which simplifies the interception process. This strategic 

measure ensures consistency across all cohorts, and consequently the channels used 

throughout the project correspond to those shown in Figure 12, which illustrates the 

Regions of Interest (ROIs). 

3.3.3 Pre-processing pipeline 

The raw data underwent pre-processing using the pipeline proposed by Suarez et 

al. [183], which was entirely implemented in Python. The standardized early-stage 
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EEG (PREP) processing pipeline was first applied, which involved signal 

detrending and robust referencing to the average [184]. Bad channels were excluded 

and interpolated after referencing. The Fast ICA algorithm from Scikit-learn library 

was then used to obtain both artifactual and neural gICA Components after applying 

a high-pass filter at 1 Hz (FIR filters zero phase sinc, with Hamming window, 

order=3300, transition bandwidth= 1Hz) [187]. 

The records were subsequently segmented into 5-second epochs and subjected to 

wavelet-ICA for smoothing any remaining eye blink artifacts [188]. A 50 Hz low-

pass filter (FIR filters zero phase sinc, with Hamming window, order=264, 

transition bandwidth=12.5 Hz) was then applied[184], and any remaining noisy 

epochs were detected and removed based on the following criteria: abnormal linear 

trends, statistically atypical activity, extreme kurtosis values, abnormal power 

spectra, and extreme signal amplitudes. 

Moreover, to account for the variability introduced by the subject's hair, scalp, and 

skull, the normalization stage proposed by N. Bigdely-Shamlo et al.[25] was also 

included. This stage involved dividing the signal by a specific constant obtained 

from each EEG record that represents the overall channel amplitude. The constant 

was calculated by applying a 20 Hz low-pass filter, then calculating the channel-

wise robust standard deviation and finally aggregating the values into a single 

constant using Huber's mean. While Relative Powers are unaffected by this 
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division, it is included as a standard stage since the pipeline is generalized for the 

calculation of other metrics.  

The preprocessed and normalized data is utilized to extract spectral, connectivity, 

and amplitude modulation features (Relative Power, Entropy, Coherence, Cross 

Frequency, and Synchronization Likelihood) and make matches based on the age 

and sex of the subjects in the database using the MatchIt tool. This tool implements 

the suggestions of Ho D et al. [189] to improve parametric statistical models for 

estimating treatment effects in observational studies [190]. It achieves this by 

reducing model dependence through preprocessing data with semi-parametric and 

non-parametric matching methods. 

Next, data harmonization methods are employed to eliminate unwanted variability 

arising from site or vendor differences while retaining the genuine biological 

variability within the measures. ComBat is an empirical Bayesian method for data 

harmonization initially developed for harmonizing gene expression data [92]. 

ComBat is applied directly to the extracted features from the signals without the 

need to retrieve the signals. It estimates and corrects site effects directly from the 

available signal feature values measured at different sites, which theoretically 

improves the alignment of the mean and standard deviation of the distributions 

based on the method's optimized criterion [191]. 

To execute the preprocessing, the sova packages, which are hosted on GitHub, are 

installed (For installation see Annex 2). 



105 

 

If the objective is to harmonize databases coming from different repositories, 

acquired by different devices, with a different sampling frequency and different 

channels, the processing must be done from the Sovaharmony package, otherwise 

the processing can be done only by taking the sovapipeline package. However, it is 

recommended to use Sovaharmony which has built-in both pre-processing and post-

processing routines. 

3.3.4 Quality control  

Data quality control is a crucial step in workflow development, providing validity 

and oversight for executed processes. Researchers define monitoring protocols 

tailored to their study and processing. For EEG data, three main stages[192] are 

suggested: annotating movements or incidents during recordings, visually 

inspecting data for repetitions, excluding non-neuronal segments, and selecting 

EEG segments for analysis. However, these reviews often lack automation. 

To address this, tools like 'sovaviolin' have been introduced to facilitate quality 

control Zapata [193] integrated it into the 'sova' packages, streamlining quality 

assessment. Nevertheless, methodologies primarily rely on visual inspection, 

equipment-specific protocols, and workflow validations. For post-processing data 

quality evaluation, metrics in Table 3 were adopted, quantitatively assessing key 

processing stages like PREP, Wavelet-ICA, and epoch rejection. Project aimed to 

compare data quality between cohorts before additional harmonization. Violin and 
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box-and-whisker plots illustrated metrics from Table 3, with a focus on cohort 

comparisons to assess variations tied to acquisition differences.  

Different analysis approaches visualized data transition post-PREP, revealing 

patterns of decreased signal mean during interpolation. This stage identifies 

potentially damaged channels, favoring zero length in evaluated metrics. 

Afterward, a high-pass filter removed low-frequency trends, followed by wICA for 

artifact filtering. The percentage of filtered components highlighted processing 

quality, expected to be low due to previous signal enhancements. 

Finally, a low-pass filter attenuated frequency ranges, and noisy epochs were 

rejected post-filtering. Segmented with a five-second window, epochs' size 

considered signal stationarity. This preprocessing pipeline automated metric 

generation, aiding in data quality assessment. 

Table 3 Metrics used for the quantitative evaluation of each processing stage. 

Early-Stage Data Processing pipeline (PREP) 

Metrics Justification 

Bad by NAN Detection of channels that contain NAN 

type data. 

Bad by flat Identifying Channels with Flat Signals 

in Comparison to Others on a Scroll 

Graph 

Bad by deviation The estimation of bad channels based on 

deviation primarily focuses on detecting 

amplitude differences between data 
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sets. However, it does not effectively 

identify channels that are contaminated 

by blinks and muscle activity, which 

can introduce noise into the data. 

Bad by hf noise Those channels that have high 

frequency noise are detected. 

Bad by correlation Bad Channel Detection based on 

Maximum Correlation Thresholding. 

Bad by SNR Identification of Defective Channels 

based on Low Recording Signal-to-

Noise Ratio (SNR) 

Bad by dropout Default Identification of Defective 

Channels 

Bad by ransac Defective Channel Detection using 

RANSAC (Random Sample 

Consensus) Iterative Method 

Bad all Detection of Channels with General 

Faults 

 

Wavelet Cleaning and Independent Component Analysis (ICA) Technique 

in Combination 

Metrics Justification 

Ratio of Filtered Components to 

Total Components 

Detection and Estimation of Filtered 

Component Percentage in Relation to 

Total Components 

 

Noisy Time Rejection 
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Metrics Justification 

Kurtosis Detection and Estimation of Filtered 

Component Percentage in Relation to 

Total Components 

Amplitude Maximum Variation of Displacement in 

Physical Measurements 

Linear Trends in Data Analysis Utilizing Straight Lines for Linear Data 

Sets and Identifying Linear Trends 

Spectral power The measurement you are referring to is 

known as a Power Spectrum, which 

reports the distribution of spectral power 

across the frequency rhythms of a signal. 

 

Figure 15 corresponds to the metrics of Early-Stage Data Processing pipeline 

(PREP) described in Table 3. 

The graph represents the original signal, which refers to the raw data mentioned in 

previous Chapter 2. illustrates that none of the cohorts had channels with NaN 

values. However, the CHBMP cohort exhibited some outliers with flat channels in 

the original signal. Regarding channels with shunts, most cohorts displayed 

variability in the original signal, except for UdeA 2, which only had outliers. After 

interpolation, the variability decreased, but outliers still persisted across all cohorts. 

 



109 

 

 

 
F

ig
u
re

 1
5
 C

o
m

p
ar

at
iv

e 
an

al
y
si

s 
o
f 

q
u
al

it
y
 m

et
ri

cs
 i

n
 t

h
e 

P
R

E
P

 

 



110 

 

The behavior of channels affected by high-frequency noise was similar to the 

previous metrics, where only outliers were observed after interpolation. Analyzing 

channels based on correlation, it was noted that the SRM cohort exhibited greater 

variation and a higher number of outliers in the original signal. Before interpolation, 

the CHBMP cohort displayed notably distant outliers that persisted even after 

interpolation. Other cohorts showed significant improvement, although a few 

outliers remained. 

Considering the signal-to-noise ratio, most cohorts demonstrated an almost perfect 

behavior with metric values close to zero after interpolation. None of the cohorts 

experienced dropouts or carcasses in the original signal. Regarding carcasses 

identified using the RANSAC algorithm, UdeA2 and SRM cohorts exhibited a 

reduction in variation, while the variation in the CHBMP cohort increased. 

Lastly, in terms of bad channels, all cohorts showed variation in the original signal, 

with the SRM cohort displaying the most significant variability. After interpolation, 

some outliers persisted, and variation was still observed in the CHBMP and SRM 

cohorts.  

Figure 16 corresponds to the metrics of Wavelet Cleaning and Independent 

Component Analysis (ICA) Technique in Combination described in Table 3. 
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Figure 16 Wavelet Cleaning and Independent Component Analysis (ICA) 

Technique in Combination 

The graph consists of violin diagrams representing each of the project cohorts, 

namely UdeA 1, UdeA 2, SRM, and CHBMP. The violin diagrams depict the values 

obtained from the metric derived from the combination of wavelet cleaning 

techniques and independent component analysis (ICA). 

Analyzing the UdeA 1 violin, it exhibits a greater dispersion of values ranging from 

0.25 to 0.7. The median, indicated by the point inside the violin, appears to be 

around 0.45. The width of the violin is similar to that of UdeA 2, but UdeA 1 shows 

a higher concentration of data closer to the mean value. This suggests that UdeA 1 

has a wider range of values but a higher density around its median. 
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In contrast, the CHBMP violin demonstrates the smallest dispersion, spanning from 

0.15 to 0.4. The median value is approximately 0.25, and the width of the violin is 

observed to be wider at the center compared to the other cohorts. This implies that 

CHBMP has a more concentrated distribution of values, with less variability 

overall. 

The UdeA 2 violin differs from the other cohorts as its ends are not as sharp, 

indicating a relatively consistent width from end to end. The metric values for UdeA 

2 range from 0.33 to 0.7, and the median value is observed to be around 0.51. This 

suggests that UdeA 2 has a moderate range of values with a relatively even 

distribution across the metric scale. 

Lastly, the SRM violin exhibits metric values between 0.2 and 0.59. The majority 

of the values cluster around the median value of 0.4. This indicates that SRM has a 

relatively narrow range of values, with a significant concentration close to the 

median. 

Overall, the violin diagrams provide insights into the distribution and variation of 

metric values among the different cohorts. The differences in dispersion, 

concentration, and range of values observed in the violin plots contribute to 

understanding the distinct features and patterns exhibited by each cohort in relation 

to the combined wavelet cleaning and ICA metric. 

Figure 17 corresponds to the metrics of Noisy Time Rejection described in Table 3 
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Finally, the rejection graph illustrates that the majority of the metrics for all cohorts 

remain at zero, indicating that most epochs are not rejected based on the applied 

criteria. However, there is a notable exception in the "End Trend" metric, where the 

SRM cohort exhibits a significant peak reaching a metric value of 4𝑥107. This 

indicates that the rejection pattern or direction of epochs considered "bad" in the 

EEG data analysis has experienced a substantial increase in the SRM cohort. 

The rejection graph provides insights into the temporal dynamics of epoch rejection 

and its relationship with relevant variables. It demonstrates how the number or 

percentage of rejected epochs fluctuates over time or under specific conditions. In 

this case, the "End Trend" metric highlights a distinct pattern for the SRM cohort, 

suggesting a pronounced shift in the rejection of "bad" epochs compared to the other 

cohorts and that it is consistent with Figure 15 where SRM presented greater 

dispersion in the PREP in the bad channels. 

The observed peak in the SRM cohort's rejection trend signifies an intensified 

identification and exclusion of problematic epochs during the later stages of the 

recording session. This may imply the presence of specific artifacts or irregularities 

that were more prominent in the SRM cohort's data, prompting stricter rejection 

criteria. 

Interpreting quality control graphs is essential for gaining a comprehensive 

understanding of data quality, evaluating the effectiveness of rejection criteria, and 
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identifying potential factors that influence the rejection of epochs and removal of 

channels. 

The graphs obtained after the completion of these processing stages will serve as a 

basis for evaluating the effectiveness of the applied methodologies. By comparing 

these updated graphs to the initial ones, we can observe any noticeable changes in 

the dispersion and patterns of the data. 

This analysis will provide insights into the impact of the processing stages on the 

quality of the data, as well as the overall effectiveness of the chosen methods in 

mitigating noise and artifacts. Furthermore, it will allow for a better understanding 

of the extent to which the subsequent stages have improved the interpretability and 

reliability of the data. 

3.3.5 Feature Extraction 

3.3.5.1 Relative Power 

To promptly evaluate the EEG signals for pertinent physiological insights, the 

power values of all individuals in good health are graphed via the power spectrum, 

focusing on the posterior occipital region. 

This visual representation (Figure 18) encompasses channels situated in the Parieto-

Occipital area (PO ROI). The resultant signal demonstrates the anticipated 

physiological behavior, revealing a noticeable reduction of artifacts in the processed 

signal when contrasted with the original signal. Additionally, the characteristic 

alpha peak near 10 Hz is distinctly discernible. 
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Figure 18 Power Spectrum Analysis of Subjects in the Posterior Occipital (PO) 

Region 

Similarly, in Figure 19, the neural gICA Component (25), which is located in the 

posterior area, is visualized.  It shows the characteristic alpha peak close to 10 Hz 

compared to the original signal albeit with a lower prominence than the one found 

for the PO ROI. 
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Figure 19 Power Spectrum Analysis of Subjects in the neural gICA Component 25. 

Figure 20 depicts the Relative Power of the gamma brain wave across four different 

cohorts. The y-axis represents the Relative Power feature, while the x-axis 

corresponds to the different groups. Figure 20 is segmented into eight boxes, each 

corresponding to one of the eight gICA neural components used in the feature 

extraction process. 
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Figure 20 Relative Power of the Gamma brain wave across four cohorts. 

When examining Figure 20 several important observations become apparent. First, 

it is evident that the controls in UdeA 1 cohort have a broader data distribution 

compared to most of the other cohorts. Conversely, the UdeA 2 and SRM cohorts 
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exhibit narrower variability than UdeA 1, with both medians closely aligned. In 

contrast, the CHBMP cohort shows the lowest variability of all cohorts. 

Furthermore, it is noteworthy that neural gICA component 25 shows the lowest 

variability across all cohorts, indicating a relatively consistent pattern. Conversely, 

neural gICA component 20 has the highest variance between groups, indicating 

greater variability. 

3.3.5.2 Entropy 

At this stage, the data was explored by visualizing the distribution of Entropy across 

cohorts using a Box plot. A representative sample of these plots for neural gICA 

Components is displayed in Figure 21 below. For a comprehensive collection of 

these plots, please refer to Annex 3, located at the end of this document. 

Figure 21 represents the Entropy of the Delta brain wave across four cohorts for 

controls. The Y-axis represents the feature of Entropy, while the X-axis represents 

the groups. Figure 21 is divided into eight boxes, each representing one of the eight 

neural gICA Components mentioned in the feature extraction. 
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Figure 21 Entropy of the Delta brain wave across four cohorts. 

The Delta band was chosen as a representative sample graph due to challenges in 

adequately visualizing the Gamma band, primarily for the CHBMP cohort. 

However, the distribution features are not clearly discernible, making it challenging 

to assess the dimensions of the distributions. This difficulty arises from the 

significant difference exhibited by the controls in CHBMP cohort concerning the 

Entropy result. In general, there are few notable differences within the components.  
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3.3.5.3 Coherence 

At this stage, the data was explored by visualizing the distribution of Coherence 

across cohorts using a Box plot. A representative sample of these plots for neural 

gICA Components is displayed in Figure 22 below. For a comprehensive collection 

of these plots, please refer to Annex 3, located at the end of this document. 

Figure 22 shows the gamma brain wave Coherence over four cohorts for controls. 

The y-axis represents the Coherence function, while the x-axis represents the 

different groups. The graph is divided into eight boxes, each symbolizing one of the 

eight gICA neural components used in the feature extraction process. 

Looking more closely at the evaluation of Coherence within the gamma band, a 

distinct pattern emerges. In particular, the controls in CHBMP cohort shows a 

higher degree of variability compared to the other cohorts. There are also several 

outliers, particularly within neural gICA components 18, 22, and 23. While the 

medians of the boxes are generally close together, this is particularly evident in 

neural gICA component 24. 
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Figure 22 Coherence of the Gamma brain wave across four cohorts. 

 

3.3.5.4 Cross Frequency 

Figure 23 depicts the Cross Frequency of the gamma brain wave across four 

different cohorts in controls. The y-axis represents the Relative Power feature, 

while the x-axis corresponds to the different groups. Figure 23 is segmented into 

eight boxes, each corresponding to one of the eight gICA neural components used 

in the feature extraction process.  
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Figure 23 Cross Frequency of the Gamma brain wave in the gamma modulated 

band across four cohorts. 

Figure 23, it becomes clear that the middle values (medians) for the different 

components are quite similar. However, the controls in CHBMP group stands out 

as having the most distinct differences from the others, which is consistent with 

what we saw in the earlier data features. 
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What's particularly interesting is what we observe in the UdeA 1 group, specifically 

within neural gICA Component 20. This suggests that this group shows a wider 

range of differences in comparison to the other groups, especially in this specific 

aspect. Similarly, the UdeA 2 group also shows more differences in Component 22. 

In contrast, both Component 18 and Component 25 show less variation across all 

groups, but at the same time, they have quite a few data points that are different 

from the norm. 

3.3.5.5 Synchronization Likelihood 

Figure 24 depicts the Synchronization Likelihood of the gamma brain wave across 

four different cohorts. The y-axis represents the Relative Power feature, while the 

x-axis corresponds to the different groups. Figure 24 is segmented into eight boxes, 

each corresponding to one of the eight gICA neural components used in the feature 

extraction process.  

In Figure 24, it is evident that the controls in CHBMP cohort continues to exhibit 

the highest variation among the cohorts. This consistency in behavior across all 

neural gICA Components is noteworthy. Additionally, the number of outliers 

remains relatively constant across all components, indicating a consistent presence 

of extreme values in the data. 

There are fewer outliers in this feature. However, the medians of the different 

cohorts don't show any similarity either. While these medians are close to each 

other, none are at the same level as the others. It's also worth noting that for most 
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of the components, the means follow an ascending order: SRM, UdeA1, UdeA2 

and CHBMP. 

In all the components, the CHBMP cohort showed greater variation. 

 
Figure 24 Synchronization Likelihood of the Gamma brain wave band across four 

cohorts. 
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3.3.6 Matching between subjects  

As we have been mentioning in Chapter 1, EEG data has shown promise as a 

potential biomarker for Alzheimer's risk. However, analyzing such data is often 

complicated by differences in data collection protocols, instruments, and cohorts. 

Harmonizing different EEG data cohorts is essential to improve the efficiency and 

accuracy of machine learning models in predicting Alzheimer's risk. 

Observational studies that collect EEG data are subject to confounding due to non-

random treatment assignment. To address this, MatchIt is a powerful tool for 

causal inference that can be implemented in R. It creates matched pairs of 

individuals from two groups (Alzheimer gene carriers (G1) and Control plus 

G2 subjects) based on their similarity in pretreatment covariates, such as sex 

and age. The resulting matched pairs have similar distributions of 

confounding variables, allowing for a more accurate estimation of the causal 

effect of the treatment variable (in this case, PSEN1-E280A gene carrier 

status) on the outcome of interest. 

Using MatchIt can improve the accuracy and efficiency of machine learning models 

in predicting Alzheimer's risk by controlling for confounding variables. This 

ensures that any differences in EEG data between the two groups are due to the 

treatment variable (i.e., PSEN1-E280A gene carrier status) rather than other 

confounding factors. This can lead to more accurate predictions of Alzheimer's risk, 
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which is essential for developing effective treatments and interventions for this 

debilitating disease. 

 Figure 25 displays the data entered for groups G1 (group1) and Controls plus G2 

(group2) of all joined cohorts (UdeA 1, UdeA 2, SRM, CHBMP) and the 

application of the MatchIt algorithm in R. The resulting matched dataset contains 

twice as many Controls as carriers of the PSEN1-E280A gene. 

 
Figure 25 Application of the MatchIt algorithm in R. In the R algorithm or rpy2 in 

python, you can use MatchIt to include 457 age- and sex-matched records for two 

groups, carriers (G1) and controls plus G2, by applying the 'matchit' function at a 

2:1 ratio. This process results in a G1 group of 49 subjects and a control group of 

98 subjects, for a total of 147 subjects. 

 

It's worth noting that the reduction from 457 to 147 subjects may seem extreme but 

it is due to the longitudinal nature of the UdeA 1 and SRM cohorts. Each subject 

within the studies has multiple registrations, as they attended different registration 
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sessions over a period of 6 months to 2 years. To prevent subject duplication, a filter 

was applied during MatchIt to include only one registration per subject. 

Table 4 Provides the statistical description of each selected cohort after Matching. 

Healthy: Control Group + G2 Group 

 

Table 4 provides a statistical overview of the data used in the machine learning 

model. This data was matched using the MatchIt algorithm, taking into account age 

and gender, as shown in Figure 25. 

3.3.7 neuroHarmonize Implementation 

The implemented algorithm for group harmonization of neuroHarmonize between 

individuals with and without the PSEN1-E280A variant includes only factors that 

contribute to the change in acquisition. It is assumed that these factors should be 

similar between the two groups. Examples of such factors are the acquisition team, 

the city, the type of cap, the type of reference, etc. 



129 

 

For this project, the covariates considered in the algorithm were Cohort, Sex, and 

Age. These covariates were chosen based on their potential influence on the 

acquisition and the need to account for their effects during the harmonization 

process with neuroHarmonize. By including these covariates, the algorithm aims to 

adjust for any differences associated with cohort, sex, and age, ensuring that the 

harmonization process is more accurate and effective. 

It is crucial to emphasize that the nature of Relative Power poses challenges for the 

harmonization process. Therefore, to evaluate the effectiveness of the 

neuroHarmonize methodology, a necessary step was taken extracting the 

component specific to one of the bands, in this case, the Gamma band. This 

extraction allowed for the harmonization process to be conducted in the other bands, 

after which the Gamma band was reintroduced proportionally using a relationship 

Equation 17. 

 

𝛾ℎ = 1 −  ∑(𝛿 + 𝜃 + 𝛼 + 𝛽) 

Equation 17 

Where  𝛾ℎ = ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑧𝑒𝑑 𝑔𝑎𝑚𝑚𝑎, 𝛿 = 𝐷𝑒𝑙𝑡𝑎, 𝜃 = 𝑇ℎ𝑒𝑡𝑎, 𝛼 = 𝐴𝑙𝑝ℎ𝑎, 𝛽 =

𝐵𝑒𝑡𝑎 . This equation (Equation 17) allows for the calculation of the Relative Power 

specifically for the Gamma band, ensuring its inclusion in the analysis alongside 

the other frequency bands, see Figure 26. 
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Figure 26 Incorporation and Exclusion of Gamma in the neuroHarmonize Process. 

 

An essential step in the harmonization process with neuroHarmonize involved 

applying a heuristic transformation to prevent negative values from arising after 

harmonization. This transformation was necessary due to the presence of very small 

or close to zero values in the data.  

To achieve this transformation, a constant value of 0.001 was added to each data 

point before initiating the harmonization procedure. The addition of this small 

constant ensured that all values remained positive, see Figure 27. 

 
Figure 27 Heuristic transformation to prevent negative values from arising after 

neuroHarmonize. 
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The reverse transformation was then applied to restore the data to its original scale 

and facilitate interpretation within the context of the initial values. By utilizing the 

exponential function, followed by the subtraction of 0.001, the adjustment made 

during the initial transformation was undone, resulting in the recovery of the 

original values. 

The same method was applied to the feature extraction process for each ROI and 

each neural gICA Components, resulting in a visualization of the distribution of 

cohort effects. A representative sample of these graphs for one neural gICA 

Component is presented below see Figure 28. For a complete set of graphs, please 

refer to Annex 4, which is located at the end of this document. 
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Figure 28 Comparing Pre- and Post-Cohort Effects: Analyzing Distribution 

Patterns 
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Figure 29 Comparing Pre- and Post-Group Effects: Analyzing Distribution 

Patterns. 

 

The same method was applied to the distribution of group effects. A representative 

sample of these graphs for one neural gICA Component is presented below see 

Figure 29 

For a complete set of graphs, please refer to Annex 4, which is located at the end of 

this document. 

3.3.8 Statistical analysis of harmonized features 

3.3.8.1 Descriptive statistics 

After completing the matching and harmonization stages, the next step involves 

conducting an analysis using descriptive statistics, which includes generating Box 

plots for each stage. It is important to note that during the matching process, the 

groups are narrowed down to specific interest groups.  

Out of the four groups that have been discussed so far (Controls, G1, and G2), the 

group of primary interest regarding individuals at risk of Alzheimer's is the one 

comprising carriers of the genetic variation PSEN1-E280A, known as the G1 group. 
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Therefore, the paired testing was conducted specifically between the groups that 

help distinguish this risk, as presented in Table 5.  

Table 5 Groups and cohorts 

Paired groups Cohorts 

G1 with Controls UdeA 1, UdeA 2, SRM, CHBMP 

G1 with G2 UdeA 1, UdeA 2 

 

Table 5, 6 and 7 present the sample sizes obtained for each paired group. These 

sample sizes reflect the number of individuals included in the analysis, providing 

important information about the availability and representativeness of the data for 

each specific comparison. 

Table 6 The sample sizes obtained for G1, and Controls plus G2 paired group. 

G1 with Controls 

 ROIs 
Neural gICA 

Components 

G1 48 49 

Controls 96 98 

Total 144 147 



135 

 

 

Table 7 The sample sizes obtained for G1, and G2 paired group. 

G1 with G2 

 ROIs 
Neural gICA 

Components 

G1 48 49 

G2 54 52 

Total 102 101 

 

Figure 30 presents a comparison of the paired groups of Power Relative in Delta 

band neural gICA Components before and after matching, utilizing the familiar 

boxplot format discussed earlier. This visualization allows for a clear understanding 

of the changes in the distribution and features of the data following the matching 

process. 

By examining the boxplots, we can assess how the matching procedure has affected 

the distribution of variables of interest within each paired group.  

In (a) the box plots illustrate data without the use of neuroHarmonize. In (b) the 

boxplots illustrate data with the use of neuroHarmonize, and it is evident that 

reducing systematic differences between groups facilitates meaningful 

comparisons, i.e., the median is similar between groups, the distribution is better, 

but the presence of outliers in most of the components does not decrease. 
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Finally, it is observed that the distributions of the paired groups appear more similar 

after matching, which indicates a successful alignment of variables and a possible 

reduction in potential confounding factors. 
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Power Relative in Delta band neural gICA Components before and after matching  

G1 with Controls 

(a) Data without neuroHarmonize (b) Data with neuroHarmonize 

  

 

Figure 30 Power Relative in Delta band neural gICA Components before and after 

matching 
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These same graphs were generated for all the features and for the two areas of 

interest, namely ROIs and neural gICA Components. The results consistently 

demonstrate the improvements observed after using neuroHarmonize. While a 

selection of graphs is presented here for analysis, the remaining graphs can be found 

in Annex 4 for reference. 

The Entropy feature has exhibited considerable variability, as evident from Figure 

21 presented in section 3.3.5.2 Therefore, it is of particular interest to examine its 

behavior following the using neuroHarmonize. See Figure 31. 

While in (a) it is not possible to observe the box of G1, in (b) the distribution, 

median, and length of the whiskers (representing outliers) are practically the same 

in both groups. This alignment and consistency in the boxplot representation after 

using neuroHarmonize greatly enhance the interpretability of the graph. 

While analyzing the data, an unforeseen outcome emerges in relation to Relative 

Power, particularly within the Gamma band. Despite the unexpected nature of this 

result, it can be attributed directly to the decision outlined in section 3.3.7 of the 

neuroHarmonize methodology. This section specifies the inclusion of the Gamma 

band after the harmonization process, considering the unique features of Relative 

Power. 

Remarkably, as seen in Figure 32, the obtained results demonstrate negative values 

for Relative Powers within the gamma band across all components. 
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Entropy in Gamma band neural gICA Components before and after matching  

G1 with Controls 

(a) Data without neuroHarmonize (b) Data with neuroHarmonize 

  
Figure 31 Entropy in Gamma band neural gICA Components before and after 

matching 
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Power Relative in Gamma band neural gICA Components before and after matching  

G1 with Controls 

(a) Data without neuroHarmonize (b) Data with neuroHarmonize 

  
Figure 32 Power Relative in Gamma band neural gICA Components before and 

after matching. 
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3.3.8.2 Effect size 

Effect sizes hold particular importance when assessing the effectiveness of 

harmonization techniques, offering a means to transcend significance testing and 

explore the tangible implications of observed distinctions. They provide 

standardized measurements that quantify the degree of divergence between groups 

(Figure 33), encapsulating the strength and orientation of relationships or 

discrepancies across variables, regardless of the size of the sample. 

 

Figure 33 Cohen's Difference (d Cohen), which calculates the ratio of the difference 

between the mean of two groups with normal distribution (green and red) to the 

joint variance. Low values indicate a small effect size, high values indicate a large 

effect size. 
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From the differences between the group means and the weighted standard deviation. 

Cohen's d values less than 0.20 indicate the absence of an effect; values between 

0.21 and 0.49 indicate a small effect; similarly, values oscillating between 0.50 and 

0.70 indicate a moderate effect; finally, values greater than 0.80 indicate a large 

effect. 

In our analysis, we employ the pingouin.compute_effsize function to calculate 

effect sizes. This function provides us with effect size estimates, which help us 

quantify the extent of differences observed within our study. It's important to note 

that pingouin.compute_effsize does not provide p-values, and in our specific 

context, the absence of p-values is not a limitation. 

The reason why p-values are not relevant in this case is rooted in our focus on effect 

sizes for evaluating the practical significance of differences. While p-values are 

commonly used to determine statistical significance, they do not convey the 

magnitude or meaningfulness of differences. Effect sizes, on the other hand, offer 

a direct and interpretable measure of the strength of associations, which aligns with 

our objective of assessing the real-world impact of harmonization procedures. 

When using the pingouin.compute_effsize library, the following Equation 18 is 

employed, if 𝑥 and 𝑦 are paired, the Cohen 𝑑𝑎𝑣𝑔  is computed: 
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𝑑𝑎𝑣𝑔 =
�̅� − �̅�

√(𝜎1
2 + 𝜎2

2)
2

 

Equation 18 

Where �̅� and �̅� represents the mean (average) of the values in dataset X and Y, 𝜎1 

and 𝜎2 represents the variance of dataset X and Y. 

The Cohen’s d is a biased estimate of the population effect size, especially for small 

samples (𝑛 < 20). It is often preferable to use the corrected Hedges 𝑔  instead: 

𝑔 = 𝑑 × (1 −
3

4(𝑛1 + 𝑛2) − 9
) 

The common language effect size is the proportion of pairs where 𝑥 is higher than 

𝑦 (calculated with a brute-force approach where each observation of 𝑥 is paired to 

each observation of 𝑦, see pingouin.wilcoxon() for more details): 

𝐶𝐿 = 𝑃(𝑋 > 𝑌) + 0.5 × 𝑃(𝑋 = 𝑌) 

Equation 19 

P(X > Y): This represents the probability that the random variable X is greater than 

the random variable Y. 

P(X = Y): This represents the probability that the random variable X is equal to the 

random variable Y. 

Equation 19 consists of two terms: the first term calculates the probability of X 

being strictly greater than Y, and the second term considers the probability of X and 
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Y being equal. Since the formula is designed to evaluate the comparison between 

two variables, the sum of these two terms provides an estimate of the probability of 

X being greater than or equal to Y. The additional 0.5 in the second term is used to 

correct the calculation in cases where the two variables might be considered equally 

likely. 

3.3.8.2.1 Effect size between controls across all cohorts 

Table 8 presents a statistical analysis of effect size for some of the features used, 

providing an overview of other metrics related to data harmonization. All results 

are stored in Annex 5 for a more detailed exploration of this outcome.  

In Table 8, it can be observed that all effect sizes among controls from different 

databases are large without neuroHarmonize. Notably, in Relative Power, Delta, 

Beta1, Beta2, Beta3, and Gamma bands stand out with effect sizes exceeding 0.8, 

while the lowest effect size belongs to the Theta band. Additionally, it is specified 

that the feature that differs the most among the 4 cohorts in controls is Gamma in 

the gICA component 14, and the feature that most closely resembles is Beta3 in the 

gICA component 23. 
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Table 8 Summary of the effect size by feature extraction between the control groups 

of the different cohorts. 

 

After applying neuroHarmonize, the values decrease significantly, showing greater 

differences in the Gamma feature in gICA component 25 and greater similarity in 

the Theta feature in gICA component 20. 

The other metrics exhibit the same behavior of reduction after neuroHarmonize, but 

it is specified that for SL, the features showing greater differences are Alpha1 in 

gICA component 14 without neuroHarmonize, and Alpha1 in gICA component 22 

with neuroHarmonize. The features showing greater similarity are Gamma in gICA 

component 15 without neuroHarmonize, and Gamma in gICA component 24 with 

neuroHarmonize. 
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Finally, in Cross Frequency, the features showing greater differences are Gamma 

in gICA component 15 with the modulated Gamma band without neuroHarmonize, 

and Delta in gICA component 14 with the modulated Theta band with 

neuroHarmonize. The features showing greater similarity are Delta in gICA 

component 14 with the modulated Theta band without neuroHarmonize, and Beta2 

in gICA component 15 with the modulated Beta1 band. 

3.3.8.2.2 Effect size between paired group G1 with Controls 

After understanding the behavior of the controls, the analysis is performed for the 

paired group results, focusing specifically on the group comparing carriers (G1) and 

controls. 

The behavior of the effect size in Table 9 is similar to that observed in the controls 

Table 8. After applying neuroHarmonize, a reduction in effect size is observed for 

all traits. At this point, it is desirable that the effect size does not significantly 

decrease or increase. 
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Table 9 Summary of the effect size by feature extraction between the control groups 

of the different cohorts. 

 

For Relative Power, the largest difference would be in the Beta 3 band for gICA 

component 14 without neuroHarmonize, and for Gamma in gICA component 25 

with neuroHarmonize. For SL, larger differences are observed in the Alpha1 band 

for gICA component 14 without neuroHarmonize and for Delta in gICA component 

18 with neuroHarmonize. Finally, in Cross Frequency, the largest difference would 

be in the Beta3 band for gICA component 14 with the modulated Beta2 band 

without neuroHarmonize, and for Beta3 in gICA component 18 with the modulated 

Beta3 band with neuroHarmonize. 

Finally, Table 11 summarizes the percentage decrease in effect size for all Features, 

both in ROIs and components. 
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Table 10 Average percentages of reduction in effect size for each feature across all 

bands for both ROIs and neural gICA Components 

G1 with Controls 

 ROIs 
Neural gICA 

Components 

Relative Power 29% 30% 

Entropy 74% 84% 

Coherence 18% 35% 

Cross Frequency 21% 33% 

Synchronization 

Likelihood 
48% 67% 

 

Table 11 shows that the most significant reduction occurred in Entropy, while the 

least reduction occurred in Relative Power. It also shows that the majority of the 

metrics experienced a decrease of more than 30%, with the exception of Coherence, 

Relative Power and Cross Frequency in ROIs with a decrease close to 20%. 

The reduction in effect size was smaller for both neuronal gICA components and 

ROIs in terms of Relative Power compared to the other features, and larger for both 

gICA components and ROIs in terms of Entropy. 
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The tables containing the effect sizes and the summary statistics for all the features 

can be found in Annex 4. These tables provide a comprehensive overview of the 

impact of harmonization on the different variables analyzed in the study. 

3.4 Discussion 

The combination of processing techniques, harmonization, and subsequent 

statistical analysis has enabled focused research on risk factors for Alzheimer's 

disease [121]. During the development of the processing and harmonization 

pipeline, several steps were considered. This involved normalizing the data using 

Huber's normalization, implementing a matching process, and ultimately 

implementation the neuroHarmonize harmonization technique. 

The outcomes of the descriptive analysis enable us to discern the disparities 

between controls with and without neuroHarmonize, as well as the alignment of the 

median concerning all cohorts. It also permits us to visualize the outcomes of the 

Relative Power feature in the gamma band, where negative values are obtained. 

While no negative values are observed in the other features, the alignment of the 

median remains consistent. These results are available for detailed examination in 

Annex 5. 

Each step of the process yielded promising results, instilling confidence in the 

processing pipeline until the matching phase without neuroHarmonize. However, 

discussions arose regarding the interpretation of results and the most effective 

approach for analyzing the data, particularly after harmonization with 
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neuroHarmonize. The unexpected negative values observed in Relative Power 

lacked a consistent interpretation aligned with expectations.  

It is evident that the balance of sample sizes plays a crucial role in achieving 

harmonization in data analysis [194]. Imbalanced sample sizes can significantly 

impact the harmonization process and potentially introduce biases or inaccuracies 

in the results. Therefore, it was essential to carefully consider and address any 

imbalances in sample sizes when implementing harmonization techniques using 

matching process. 

Several potential factors during the harmonization process could lead to changes. 

These factors include modifications to the scale and distribution of energy in 

frequency bands, adjustments in reference values that impact magnitude and 

distribution of energy, and the estimation of parameters affecting energy 

distribution across frequency bands. 

Additionally, with the Gamma band which was not subjected to the same 

adjustments as other bands and subsequently combined with them, may contribute 

to the occurrence of negative values. It is crucial to carefully consider these factors 

and their potential influence when interpreting negative values.  

Nevertheless, the procedure was executed with a solid understanding of the 

underlying concepts, motivating the continuation of the proposed methodology to 

generate valuable information with machine learning. 
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Considering the situation, two paths need to be considered: 

• Data without neuroHarmonize: The first path focuses on evaluating the 

pipeline from raw data input to paired data as a harmonization process capable of 

generating an accurate machine learning model. 

• Data with neuroHarmonize: The second path focuses on evaluating the 

results using specialized libraries, in this case, neuroHarmonize, to achieve 

effective harmonization and produce an accurate machine learning model. 

Furthermore, the reduction in effect size observed after harmonization implies the 

attenuation of systematic differences between the groups. By reducing the effect 

size, the potential impact of statistical differences related to the features that 

distinguish the two groups of interest, carriers of the PSEN1-E280A genetic 

variation and controls, is also reduced. 

In the effect size results for controls, it was expected that the effect size would be 

small for all cohorts, demonstrating that controls are comparable and can be 

integrated as a single control group for subsequent comparison with the carrier 

group (G1). However, Table 8 shows that this is not the case without 

neuroHarmonize, as there are very large effect size values for most of the traits. 

Therefore, only a few features such as Relative Power in Beta3 for C23, SL in 

Gamma for C15, and Cross Frequency in Delta with Mtheta for C14 could be useful 

for integrating databases and subsequently classifying individuals at risk for 
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Alzheimer's disease. In this way, the differences captured by the classifier would 

not be associated with the cohorts, but only with the groups. 

On the other hand, the path with neuroHarmonize Table 8 shows a reduction in 

effect size that is highly positive for all features as expected from the literature  [83], 

[92], [191] (Therefore, the use of harmonized data that show greater similarity 

between controls from all cohorts may be the most favorable approach for 

evaluating the integration of multi-site databases. In theory, this suggests improved 

comparability and reduced variability between groups, as the differences initially 

observed were largely influenced by systematic factors that have now been 

addressed and mitigated by harmonization. 

3.5 Conclusions 

In conclusion, the five metrics investigated in this study, namely Shannon Entropy, 

Cross Frequency, Relative Power, Coherence, and Synchronization Likelihood in 

conjunction with crossover frequency, have proven their utility as valuable tools for 

analyzing EEG signals and extracting meaningful insights into underlying 

physiological processes. 

Section 3.7 has emphasized the evaluation of two different approaches involving 

the use of specialized libraries (with neuroHarmonize) and the establishment of a 

well-controlled pipeline (without neuroHarmonize) to achieve harmonization and 

generate comparative results. 
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The neuroHarmonize approach has limitations in dealing with negative values that 

have no physiological basis. However, when analyzing healthy subjects (controls 

from different cohorts), it provides an alternative that successfully harmonizes 

multi-site databases while offering the prospect of consistent results when applying 

the machine learning model. 

In the upcoming Chapter 4, we will present and discuss the machine learning model 

developed for the classification of Alzheimer's disease (AD), building on the two 

paths outlined in this Chapter 3. Our focus will be on the methodology used and the 

results obtained. The goal is to further evaluate and reflect on the model's 

performance and implications in order to gain a deeper understanding of its 

strengths, limitations, and potential impact on AD research and clinical practice. 
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Chapter 4 

Machine Learning model 

4.1 Introduction 

The development of accurate and reliable machine learning models is crucial for 

identifying and classifying individuals at risk of Alzheimer's Disease (AD) based 

on non-invasive biomarkers. These models analyze large and complex datasets, 

such as EEG data, to uncover patterns and relationships that aid in accurate risk 

classification and enable early interventions and targeted treatments for better 

patient outcomes. 

Support Vector Machines (SVM) is a versatile algorithm widely used in AD risk 

classification [195]. It identifies an optimal hyperplane to separate different classes 

in the feature space and has been successfully applied to various neuroimaging and 

biomarker data [196]. 

Random Forest, an ensemble learning method, combines multiple decision trees to 

improve model generalization and handle high-dimensional data. Its ability to 

capture complex interactions among features makes it popular in AD research 

[197], [198]. 

Neural networks, particularly deep learning models like Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN), have shown promise in 
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AD risk classification. These models automatically learn hierarchical 

representations and intricate patterns from raw data, making them suitable for 

neuroimaging, genetic, and clinical data analysis [199], [200]. 

Gradient Boosting Machines (GBM) combine weak learners to create a strong 

predictive model, iteratively improving performance. GBM has been applied to AD 

risk classification with different data types and has demonstrated good predictive 

performance [201]. 

Logistic regression, a simple and interpretable linear model, estimates class 

probabilities based on input features and is widely used in AD research. It often 

incorporates feature selection techniques to identify relevant biomarkers for risk 

classification [202]. 

These machine learning models provide valuable tools for accurately classifying 

individuals at risk of Alzheimer's disease and hold great potential for improving 

diagnosis and treatment outcomes. 

The choice of model depends on various factors such as the nature of the data, the 

availability of labeled samples, the desired interpretability, and the specific research 

objectives. Some studies have focused on the use of decision trees to classify 

subjects at risk of Alzheimer's disease, and all present a particular combination of 

data [203]. 

Marcos et al. [204] employed decision tree algorithms to classify individuals at risk 

of Alzheimer's disease based on genetic markers and cognitive assessments. The 
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researchers achieved a classification accuracy of 85% using a combination of 

genetic and cognitive data [205]. They found that specific genetic variants, such as 

the APOE ε4 allele, played a significant role in predicting disease risk [206]. The 

decision tree model demonstrated the potential of using genetic and cognitive 

information for early detection and risk assessment of Alzheimer's disease [207]. 

Ketan et al. [208] discovered that Deep Learning Ludwig Classifier produces 95% 

accuracy while the best outcomes of the Random Forest models produce about 87%. 

Among many patients, it had the highest accuracy in identifying dementia.  

Shahin et al. [209] proposes an upgraded machine learning algorithm named 

Modified Random Forest (m-RF) to individualize between normal people and 

people with the risk of having Alzheimer’s disease using neuroimaging features. 

They have achieved an accuracy of 96.43% that is far better than other algorithms 

like Support Vector Machine, Adaptive Boosting, K-Nearest Neighbors, etc. 

In recent studies exploring EEG for AD and aging, several methodologies and 

findings have emerged. García-Pretelt et al. [184] focused on developing an SVM 

model using gICA-derived spectral features and neuroimaging data for AD 

classification. Their study achieved an impressive 83% classification accuracy and 

identified specific genetic variants, such as the PSEN1-E280A gene mutation, as 

important predictors of disease risk. Miltiadous et al. [210] further investigated 

EEG in AD and proposed methodologies, obtaining accuracy scores of 78.5% for 

AD detection using decision trees and 86.3% for FTD (frontotemporal dementia) 
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detection using random forests. Javaid et al. [211]explored the resting state and 

observed a strong correlation between absolute power in delta and theta bands and 

aging. Additionally, a correlation was found between beta absolute power and aging 

during a Work Memory task. The use of the decision tree method during the Work 

Memory task successfully distinguished the elderly group from the middle-aged 

group with an impressive accuracy of 87.5%. These combined studies highlight the 

potential of EEG and its spectral features in aiding the classification and 

understanding of AD, FTD, and aging-related processes. 

These references collectively showcase the effectiveness of decision tree algorithms 

in classifying individuals at risk of Alzheimer's disease. They highlight the 

importance of incorporating various data modalities, including genetic markers, 

cognitive assessments, and neuroimaging data, for accurate classification. The 

results demonstrate that decision trees can effectively capture patterns and 

variations in data, leading to promising classification accuracies. These findings 

contribute to the development of reliable and robust machine learning models for 

early detection and risk assessment of Alzheimer's disease. 

One key aspect that emerges from these references is the significance of data 

harmonization in the context of machine learning for Alzheimer's disease 

classification. Harmonization involves combining and aligning data from multiple 

cohorts or datasets to increase the sample size, improve statistical power, and 

reduce the impact of dataset-specific biases. By harmonizing cohorts, limitations 
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associated with small sample sizes can be overcome achieving a more 

comprehensive understanding of the disease. 

This project increased the amount of data through harmonization in order to search 

development of a more robust and generalizable machine learning model with a 

larger and more diverse dataset than previous projects in order to improve the 

accuracy of the model and contribute to the identification of consistent features or 

biomarkers across cohorts. 

4.2 Methodology 

The data in this chapter is managed using dataframes, structured as illustrated in the 

Figure 34. Each row corresponds to a record, while the columns represent specific 

feature. For the ROIs, there are a total of 391 features (columns), while for the 

gICA, there are a total of 547 features (columns). 

 
Figure 34 Processed Dataframe Containing Model Input Information 
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The methodology for developing the machine learning model for Alzheimer's 

disease risk classification involved several steps. The first step, preprocessing, 

aimed to evaluate the available features and ensure data quality and consistency. 

After preprocessing and applying MatchIt, there were two data sets to evaluate. 

The first one (Table 11) consists of two groups: Carriers of the PSEN1-E280A 

gene (G1) and controls plus G2 (healthy), and the second (Table 12) includes two 

groups; carriers of the PSEN1-E280A gene (G1) with their respective control 

group (G2). It was noted that if any cohort was missing neuropsychological or 

demographic information, that specific information (neuropsychological or 

demographic columns) would be excluded from the model for all cohorts. 

Table 11 Description of total subjects according to MacthIt for the first selected 

record. 

Healthy: Control Group + G2 Group 
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Table 12 Description of total subjects according to MacthIt for the second selected 

record 

 

Once the model and the best combination of the input parameters were selected, the 

feature dataset which included Relative Power, Shannon Entropy, Coherence, Cross 

Frequency, and Synchronization Likelihood, was partitioned into training and 

testing sets. This partitioning is crucial for evaluating the performance of the model. 

The training set is used to train the machine learning model on a subset of the data, 

allowing it to learn patterns and relationships between the input features and the 

target variable. The testing set is then used to assess the model's performance on 

unseen data, providing an estimate of how well the model can generalize to new 

data. 

To assess the importance of each feature, a training graph is generated. The 

graph evaluates the precision of the model as each feature is added to the 

training one by one. The process starts with including one feature and 

progressively adds more features until all the features in the dataset are 

included. The precision of the model is calculated at each step, allowing the 

identification of the model with the highest precision. 
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By analyzing the training graph, is determined which feature set contributes the 

most to improving the precision of the model. These features are considered more 

informative and play a significant role in accurately classifying individuals at risk 

of Alzheimer's disease. 

Once the decision tree model with the highest precision has been selected, it is used 

to generate a confusion matrix and evaluate the performance of the model in 

classifying individuals at risk of Alzheimer's disease. 

As outlined in the preceding section 3.7, the methodology operates along two 

distinct paths. 

Figure 35 represents the first path that focuses on evaluating the pipeline from raw 

data input to paired data as a harmonization process capable of generating an 

accurate machine learning model, that is, without neuroHarmonize. 
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Figure 35 The first path focuses on evaluating the pipeline from raw data input to 

paired data. 

Figure 36 shows a graphic representation of the methodology described above and 

represents the second path focuses on evaluating the results using specialized 

libraries, in this case, neuroHarmonize, to achieve effective harmonization and 

produce an accurate machine learning model. 
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Figure 36 The second path focuses on evaluating the results using specialized 

libraries. 

 

4.3 Model selection 

In machine learning model selection, it is important to consider the potential issues 

of overfitting, sensitivity to small data variations, and the need for proper feature 

engineering and data preprocessing. Experimentation with different algorithms and 
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evaluation techniques is essential to determine the best approach for your specific 

problem and data. 

TPOT is a powerful tool that automates the process of building machine learning 

pipelines, including preprocessing, feature selection, and model selection. It uses 

genetic programming to search for the best combination of these components and 

aims to optimize the performance of tree-based models. 

Boruta is a feature selection algorithm that helps identify the most relevant features 

in a dataset for machine learning models. It is particularly useful when dealing with 

high-dimensional data or when there are many potential predictors. Both algorithms 

were tested and TPOT identified decision trees as the most suitable algorithm for 

the binary classification task. 

Boruta and decision trees offer valuable approaches for feature selection, albeit with 

different features. While Boruta identifies the best features and discards the rest, 

decision trees provide feature importance measures without discarding any features. 

In this case, a decision tree algorithm was chosen directly to retain all features and 

facilitate the feature-to-feature curve analysis mentioned in the methodology. This 

approach allows for a comprehensive examination of how different features 

contribute to the classification process, providing insights into their individual and 

collective impacts on the model's performance. By leveraging the decision tree's 

feature importance measures, deeper understanding of the relative importance of 



165 

 

features can be gained and informed decisions regarding their inclusion in the final 

model can be made. 

Lastly, considering the prevalence of SVM in classifying individuals at risk of 

Alzheimer's disease and the study conducted by Garcia et al. that achieved an 83% 

precision rate using SVM on a subset of the UdeA 1 database, this algorithm was 

selected for model comparison purposes. As mentioned earlier in this Chapter 4, 

SVM has been widely employed in Alzheimer's risk classification, making it a 

relevant choice to evaluate and compare against other models. 

4.4 Implementation and validation of the model 

4.4.1 Exploring and Loading the Data: Understanding the Dataset 

Descriptive tables were generated to provide a comprehensive overview of the data. 

Table 13 specifically presents a description of the Relative Power in neural gICA 

Component 14 for the Delta band. Similar tables were created for the other 

frequency bands, components, and regions of interest (ROIs). The aim of these 

tables is to analyze and compare the Relative Power across different bands, 

components, and ROIs, allowing for a comprehensive understanding of the data. 

Annex 5 can access the complete set of tables and delve deeper into the details and 

insights presented in the study. 
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Table 13 Description of the Relative Power in neural gICA Component 14 for the 

Delta band 

  Control G1 

power_C14_Delta 

count 98 49 

mean 0.19 0.17 

std 0.09 0.08 

min 0.05 0.03 

25% 0.13 0.11 

50% 0.17 0.16 

75% 0.25 0.23 

max 0.51 0.32 

4.4.2 Handling Incomplete Data: Removal of Inconsistent Columns and 

Implications for the Model  

As discussed in Chapter 2, it was observed that not all cohorts had consistent 

availability of neuropsychological test data information for all subjects. 

Consequently, it became necessary to exclude these columns from the dataset used 

in the model. In  

Table 14, the removed columns are listed along with the corresponding amount of 

data present in each column for the groups Controls and G1 in the harmonized data 

and matching data. 

 

Table 14 The list of removed columns for the groups Controls and G1 in the 

harmonized data and matching data. 

Columns Total data removed 

MM_total 41 

FAS_F  78 
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(Words that begin with the letter "F") 

FAS_S  

(Words that begin with the letter "S") 

78 

FAS_A  

(Category of "animals") 

78 

MM_total: Mini-Mental State Examination - FAS: verbal fluency test 

By eliminating these columns, the data set was simplified to ensure consistency and 

reliability in the model. Removing incomplete or inconsistent data is a common 

practice to maintain data integrity and avoid potential bias or inaccuracy in the 

analysis. The decision to exclude specific columns was made to ensure the 

reliability and validity of the model's predictions. 

4.4.3 Creating Training and Test Datasets: Data Split for Model Training 

and Evaluation  

The data splitting was performed using a commonly used technique called "train-

test split." In this technique, the dataset was divided into two portions: a training set 

and a test set. The division was done in a way that maintained the integrity of the 

dataset and preserved the relative proportions of different classes within the target 

variable. 

To achieve this, the dataset was randomly divided, with 80% of the samples 

allocated to the training set and the remaining 20% allocated to the test set. This 



168 

 

proportion was chosen to strike a balance between having enough data for training 

the model and having a separate set of unseen data for evaluating its performance. 

Furthermore, to ensure reproducibility of the results, a fixed random seed was set. 

This allowed for consistency in the data splitting process across multiple runs of the 

methodology. 

4.4.4 Explanation of Model Cross-Validation  

The cross-validation process uses the cross_val_score function from the 

`sklearn.model_selection` library. It first uses the pre-fitted estimator, `GS_fitted`, 

to estimate predictions with `random_grid`. During this process, the feature matrix 

`X_train` is used for both model training and evaluation, while the corresponding 

target vector `y_train` contains the labels of the samples in `X_train`. The cross-

validation procedure divides the data into ten parts, resulting in ten iterations of 

training and evaluation. Each iteration involves different combinations of training 

and testing data. 

In addition, this process makes optimal use of all available processor cores for 

parallel computation. The function ultimately returns a series of model performance 

scores that reflect the outcome of each fold in the cross-validation. These scores 

include various measures such as accuracy, F1 score, and more, depending on the 

model configuration and the nature of the problem. By averaging the scores across 

the ten folds, a single performance metric is derived. 
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4.5 Parameter selection 

In this section, the parameters employed in each model for every pathway outlined 

in the methodology are outlined. 

Detailed information on all implemented models and codes can be found in Annex 

6. 

4.5.1 The first path (without neuroHarmonize)  

4.5.1.1 RandomizedSearchCV 

The parameter configuration used for RandomizedSearchCV is as follows: 

• cv: Specifies the number of cross-validation folds for evaluation. 

• estimator: Sets the base estimator as a RandomForestClassifier. 

• n_iter: Determines the number of parameter settings that are sampled. 

• n_jobs: Utilizes all available processors for parallel computation. 

• param_distributions: Specifies the range of hyperparameters to be 

searched, including 'bootstrap', 'criterion', 'max_depth', 'max_features', 

'min_samples_leaf', 'min_samples_split', and 'n_estimators'. 

• random_state: Sets the random seed for reproducibility. 

• verbose: Controls the verbosity level of the output. 

This configuration suggests that the best performing Random Forest classifier was 

found with the specified hyperparameters. 
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Table 15 Configuration resulting from the RandomizedSearchCV without 

neuroHarmonize. 

Hyperparameter Optimization using RandomizedSearchCV 

Parameter Value 

Number of Iterations 100 

Cross-Validation Folds 10 

Base Estimator RandomForestClassifier() 

Number of Parallel Processes -1 

Hyperparameter Combinations Explored 

Splitting Criterion 'gini', 'entropy', 'log_loss' 

Maximum Tree Depth 10, 20, 30, ..., 110, None 

Maximum Features 'auto', 'sqrt' 

Minimum Samples per Leaf 1, 2, 4 

Minimum Samples to Split 2, 5, 10 

Number of Estimators in Forest 100, 165, 231, ..., 1934, 2000 

Random Seed 10 

Output Verbosity    verbose=2 

Optimal Model Configuration with RandomForestClassifier 

Bootstrap False 
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Splitting Criterion 'log_loss'    

Maximum Tree Depth 60 

Minimum Samples per Leaf 2 

Minimum Samples to Split 5 

Number of Estimators in Forest 1541 

 

4.5.1.2 Boruta 

The specific hyperparameters used for the RandomForestClassifier estimator are as 

follows: 

• Criterion: The criterion used to measure the quality of split points in the 

decision trees is based on logarithmic loss. 

• Max Depth: The maximum depth of the decision trees is set to 90, which 

controls the complexity and depth of the trees. 

• Min Samples Leaf: The minimum number of samples required to be at a 

leaf node is set to 2, ensuring that each leaf contains a minimum number of 

samples. 

• Min Samples Split: The minimum number of samples required to split an 

internal node is set to 5, determining when a node is considered for a split. 
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• N Estimators: The number of trees in the random forest is set to 1000, 

indicating the number of decision trees that are generated and combined to 

make predictions. 

• Random State: The random seed is set to ensure reproducibility of the 

results. 

Table 16 Configuration resulting from the Boruta without neuroHarmonize. 

Technique Parameters 

BorutaPy 

Estimator: RandomForestClassifier 

Criterion: 'log_loss' 

Max Depth: 90 

Min Samples Leaf: 2 

Min Samples Split: 5 

Number of Estimators: 1000 

Random State: MT19937 at 

0x236FCFAC340 

Verbose: 2 

RandomForestClassifier 

Criterion: 'log_loss' 

Max Depth: 90 

Min Samples Leaf: 2 
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Min Samples Split: 5 

Number of Estimators: 1000 

Random State: MT19937 at 

0x236FCFAC340 

 

4.5.1.3 Decision tree 

The optimized hyperparameters obtained through RandomizedSearchCV were 

employed for configuring the decision tree parameters. 

4.5.1.4 Support Vector Machine (SVM) 

The algorithm used in this case was a Support Vector Machine (SVM) model with 

the specified parameters, namely C = 0.1 and gamma = 0.001. The goal of the SVC 

algorithm is to find an optimal decision boundary that achieves a balance between 

the margin width (the separation between classes) and the accuracy of 

classification. 

4.5.1.5 TPOT 

Finally, TPOT, an automated machine learning tool, with the following parameter 

configuration shown Table 17. The "cv" parameter denotes the number of cross-

validation folds, "generations" specifies the number of iterations for the genetic 

programming search, "n_jobs" determines the number of parallel jobs to run, 

"population size" sets the number of individuals in each generation, "random_state" 

ensures reproducibility, and "verbosity" controls the level of detail in the output. 
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Table 17 TPOT parameter configuration without neuroHarmonize. 

TPOT Classifier 

TPOTClassifier (cv=10, generations=5, n_jobs=-1, population_size=58, 

random_state=10, verbosity=3) 

Table 18 Parameters for the 5 generations with using TPOT without 

neuroHarmonize. 

Technique Parameters 

ExtraTreesClassifier 

Bootstrap: True 

Criterion: 'entropy' 

Max Features: 0.75 

Min Samples Leaf: 14 

Min Samples Split: 3 

Number of Estimators: 100 

 

4.5.2 The second path (with neuroHarmonize)  

4.5.2.1 RandomizedSearchCV 

The parameter configuration used for RandomizedSearchCV is as follows: 

• cv: Specifies the number of cross-validation folds for evaluation. 

• estimator: Sets the base estimator as a RandomForestClassifier. 

• n_iter: Determines the number of parameter settings that are sampled. 
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• n_jobs: Utilizes all available processors for parallel computation. 

• param_distributions: Specifies the range of hyperparameters to be 

searched, including 'bootstrap', 'criterion', 'max_depth', 'max_features', 

'min_samples_leaf', 'min_samples_split', and 'n_estimators'. 

• random_state: Sets the random seed for reproducibility. 

• verbose: Controls the verbosity level of the output. 

The final RandomForestClassifier configuration resulting from the 

RandomizedSearchCV is in Table 19. 

Table 19 Configuration resulting from the RandomizedSearchCV with 

neuroHarmonize. 

Hyperparameter Optimization using RandomizedSearchCV 

Parameter Value 

Number of Iterations 100 

Cross-Validation Folds 10 

Base Estimator RandomForestClassifier() 

Number of Parallel Processes -1 

Hyperparameter Combinations Explored 

Splitting Criterion 'gini', 'entropy', 'log_loss' 

Maximum Tree Depth 10, 20, 30, ..., 110, None 

Maximum Features 'auto', 'sqrt' 
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Minimum Samples per Leaf 1, 2, 4 

Minimum Samples to Split 2, 5, 10 

Number of Estimators in Forest 100, 165, 231, ..., 1934, 2000 

Random Seed 10 

Output Verbosity    verbose=2 

Optimal Model Configuration with RandomForestClassifier 

Bootstrap False 

Criterion Entropy 

Maximum Tree Depth 30 

Minimum Samples per Leaf 10 

Number of Estimators in Forest 165 

 

4.5.2.2 Boruta 

The specific hyperparameters used for the RandomForestClassifier estimator are as 

follows: 

• Criterion: The criterion used to measure the quality of split points in the 

decision trees is based on logarithmic loss. 

• Max Depth: The maximum depth of the decision trees is set to 90, which 

controls the complexity and depth of the trees. 
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• Min Samples Leaf: The minimum number of samples required to be at a 

leaf node is set to 2, ensuring that each leaf contains a minimum number of 

samples. 

• Min Samples Split: The minimum number of samples required to split an 

internal node is set to 5, determining when a node is considered for a split. 

• N Estimators: The number of trees in the random forest is set to 1000, 

indicating the number of decision trees that are generated and combined to 

make predictions. 

• Random State: The random seed is set to ensure reproducibility of the 

results. 

Table 20 Configuration resulting from the Boruta with neuroHarmonize. 

Technique Parameters 

BorutaPy 

Estimator: RandomForestClassifier 

Criterion: 'log_loss' 

Max Depth: 20 

Min Samples Leaf: 2 

Min Samples Split: 5 

Number of Estimators: 1000 

Random State: MT19937 at 

0x2354076B140 
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Verbose: 2 

RandomForestClassifier 

Criterion: 'log_loss' 

Max Depth: 20 

Min Samples Leaf: 2 

Min Samples Split: 5 

Number of Estimators: 1000 

Random State: MT19937 at 

0x2354076B140 

4.5.2.3 Decision tree 

The optimized hyperparameters obtained through RandomizedSearchCV were 

employed for configuring the decision tree parameters. 

4.5.2.4 Support Vector Machine (SVM) 

The algorithm used in this case was a Support Vector Machine (SVM) model with 

the specified parameters, namely C = 0.1 and gamma = 0.001. The goal of the SVC 

algorithm is to find an optimal decision boundary that achieves a balance between 

the margin width (the separation between classes) and the accuracy of 

classification. 

4.5.2.5 TPOT 

Finally, TPOT, an automated machine learning tool, with the following parameter 

configuration is shown Table 21.  The "cv" parameter denotes the number of cross-

validation folds, "generations" specifies the number of iterations for the genetic 
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programming search, "n_jobs" determines the number of parallel jobs to run, 

"population_size" sets the number of individuals in each generation, 

"random_state" ensures reproducibility, and "verbosity" controls the level of detail 

in the output. 

Table 21 TPOT parameter configuration with neuroHarmonize. 

TPOT Classifier 

TPOTClassifier (cv=10, generations=5, n_jobs=-1, population_size=58, 

random_state=10, verbosity=3) 

Table 22 Parameters for the 5 generations with using TPOT with neuroHarmonize. 

Technique Parameters 

ExtraTreesClassifier 

Bootstrap: True 

Criterion: 'entropy' 

Max Features: 0.75 

Min Samples Leaf: 14 

Min Samples Split: 3 

Number of Estimators: 100 

Table 23 The five generations for TPOT with neuroHarmonize. 

Parameters 
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DecisionTreeClassifier (input_matrix, 

criterion=gini, max_depth=9, min_samples_leaf=10, min_samples_split=14) 

XGBClassifier(SGDClassifier(input_matrix, alpha=0.0, eta0=0.01, 

fit_intercept=False, ratio=0.0, learning_rate=invscaling, loss=log, 

penalty=elasticnet, power_t=0.0), GBClassifier(learning_rate=0.01, 

max_depth=2, min_child_weight=3, n_estimators=100, n_jobs=1, 

subsample=0.75, verbosity=0) 

DecisionTreeClassifier (input_matrix,criterion=gini, max_depth=9, 

min_samples_leaf=10, min_samples_split=14) 

XGBClassifier(SGDClassifier(input_matrix, alpha=0.0, eta0=0.01, 

fit_intercept=False, l1_ratio=0.0, learning_rate=invscaling, loss=log, 

penalty=elasticnet, power_t=0.0), XGBClassifier(learning_rate=0.01, 

max_depth=2, min_child_weight=3, n_estimators=100, n_jobs=1, 

subsample=0.75, verbosity=0) 

RandomForestClassifier(MLPClassifier 

(DecisionTreeClassifier(input_matrix, criterion=gini, max_depth=7, 

min_samples_leaf=13,min_samples_split=4), 

MLPClassifier(alpha=0.1,learning_rate_init=0.1), 

RandomForestClassifier(bootstrap=True,criterion=entropy, max_features=0.05, 

min_samples_leaf=6, min_samples_split=16, n_estimators=100) 

RandomForestClassifier(MLPClassifier 

(DecisionTreeClassifier(input_matrix, criterion=gini, max_depth=7, 

min_samples_leaf=13, min_samples_split=4), MLPClassifier(alpha=0.1, 

learning_rate_init=0.1), bootstrap=True, criterion=entropy, max_features=0.05, 

min_samples_leaf=6, min_samples_split=16, n_estimators=100) 

DecisionTreeClassifier (input_matrix, criterion=gini, max_depth=9, 

min_samples_leaf=10, min_samples_split=14) 

GradientBoostingClassifier(DecisionTreeClassifier(input_matrix, 

criterion=gini,max_depth=8,min_samples_leaf=15, 

min_samples_split=7),learning_rate=1.0,max_depth=9, 

max_features=0.95,min_samples_leaf=13, 

min_samples_split=5,n_estimators=100, subsample=0.85) 

Generation 4 

XGBClassifier(input_matrix,XGBClassifier__learning_rate=0.01, 

max_depth=2,min_child_weight=3, n_estimators=100, n_jobs=1, 

subsample=0.75, verbosity=0) 
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GradientBoostingClassifier(DecisionTreeClassifier(input_matrix, 

criterion=gini,max_depth=8,min_samples_leaf=15, min_samples_split=7), 

GradientBoostingClassifier(learning_rate=1.0, 

max_depth=9,max_features=0.95, 

min_samples_leaf=13,min_samples_split=5,n_estimators=100, 

subsample=0.85) 

GradientBoostingClassifier (input_matrix, learning_rate=1.0, 

max_depth=2,max_features=0.65,min_samples_leaf=14,min_samples_split=5,

n_estimators=100, subsample=0.85) 

GradientBoostingClassifier(DecisionTreeClassifier(input_matrix, 

criterion=gini,max_depth=8,min_samples_leaf=15, 

min_samples_split=7),learning_rate=1.0,max_depth=9,max_features=0.95,min

_samples_leaf=13,min_samples_split=5,n_estimators=100, subsample=0.85) 

4.6 Results 

Initially, a series of summary tables is provided to elucidate the elements included 

in the models, all adhering to the same methodology. 

The number of features differs between gICA and the Regions of Interest (ROIs), 

considering that there are 8 gICA components and 5 ROIs. Within each component, 

there are 8 bands, and for each band, 5 features are evaluated Table 24 illustrates 

the characteristic count for each scenario. 

Table 24 Specification of the number of features included in the models. 

Feature Summary 

Number of features incorporated into 

the group independent component 

analysis (gICA) model 

547 

Number of features incorporated into 

the regions of interest (ROIs) model 
386 
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4.6.1 The first path (without neuroHarmonize)  

Table 25 presents a comprehensive summary of the results obtained for each model 

implemented using the previously mentioned methodologies. These models were 

specifically applied in the first path focuses on evaluating the pipeline from raw 

data input to paired data as a harmonization process capable of generating an 

accurate machine learning model. 

Table 25 Comprehensive summary of the results obtained for each model without 

neuroHarmonize. 

Healthy: Control Group + G2 Group 

Groups/Models 

RF-B DT SVM ET-T 

Train Test Train Test Train Test Train Test 

gICA 

G1 vs Healthy 100% 82% 100% 80% 85% 80% 86% 86% 

G1 vs G2 87% 68% 73% 73% 50% 45% 70% 40% 

ROIs 

G1 vs Healthy 86% 81% 97% 87% 86% 79% 81% 79% 

G1 vs G2 83% 64% 73% 70% 62% 48% 77% 50% 

RF-B: RandomForest using Boruta, DT: Decision Trees, SVM: Support vector 

machine, ET-T: ExtraTrees found with TPOP. 

Below is a comprehensive description of the results obtained for each implemented 

model, using the dataset consisting of the G1 and control groups of neural gICA 

Components as an example. This particular group selection aligns with the project's 

objectives. However, it is important to note that all groups included in the project 
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underwent the same methodology for both neural gICA Components and regions 

of interest (ROIs). Detailed information on all implemented models can be found 

in Annex 6. 

4.6.1.1 RandomizedSearchCV 

The results obtained from applying RandomizedSearchCV to a 

RandomForestClassifier represent the initial step in the methodology, which 

involves optimizing decision trees through grid search. 

The curve in Figure 37 demonstrates a 100% training accuracy, and a validation 

accuracy starts nearly at 70% and steadily increases until reaching an accuracy of 



184 

 

early at 80%. Additionally, the variability of the validation accuracy with respect 

to the number of samples is also evident from the curve. 

 

Figure 37 Validation curve for Grid Search without neuroHarmonize. 

4.6.1.2 Boruta 

The selection of these 19 significant features by the Boruta algorithm suggests that 

they have a strong influence on the predictive performance of the model. By 

focusing on these specific features, the model can effectively capture the relevant 

patterns and relationships in the data, leading to improved accuracy and 

performance. 
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To better highlight the relevant features selected by the Boruta tool, Figure 38 is 

presented. In this figure, the selected features are differentiated by the evaluated 

metric, components, bands, and modulated bands. The y-axis represents the 

frequency of occurrence of the discriminated element among the 19 selected 

features. The elements with higher significance according to the algorithm are 

shown in a darker color. For example, the Cross Frequency metric appears more 

frequently among the relevant features, but the Relative Power metric takes 

precedence by appearing with greater weight. Similar patterns apply to the other 

elements in Figure 38. 

 

Figure 38 Discriminant analysis of the most relevant features using Boruta without 

neuroHarmonize. 
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Figure 39, is the result of the input of the 19 features into the decision tree model, 

which was selected with the Boruta tool. The curve demonstrates a 100% training 

accuracy, while the validation accuracy starts nearly at 70% and it presents an 

increase in the accuracy between 20 and 40 samples, and steadily increases until 

reaching an accuracy of 82%. Additionally, the variability of the validation 

accuracy with respect to the number of samples is also evident from the curve. 
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Figure 39 Validation curve for Boruta without neuroHarmonize. 

4.6.1.3 Decision tree 

Figure 40 visualizes the importance of different features in the classification model. 

The analysis reveals that Cross Frequency in the Beta3 band, particularly in 

component 22, holds significant importance for the classification task. 

Additionally, Cross Frequency in components 14 and 18, within the Gamma and 

Beta bands respectively, also demonstrate notable relevance. It is important to note 

that the graph displays only the top 10 features for better visual clarity. However, a 

comprehensive list of all features along with their respective relative importance 

can be found in the supplementary files. This comprehensive information provides 
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a deeper understanding of the crucial features that contribute to the accuracy and 

effectiveness of the classification model. 

 

Figure 40 The importance of firsts features in the classification model without 

neuroHarmonize. 

Figure 41 visually represents the correlation between the number of features and 

the accuracy of the model. The graph displays a significant increase in accuracy as 

the number of features increases, reaching a peak of approximately 85% within the 

first 40 features out of a total of 547 features. Beyond this point, accuracy slightly 

fluctuates but remains consistently high. This observation suggests that the initial 

set of features contains the most informative attributes for achieving high precision, 
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while additional features beyond a certain threshold do not significantly contribute 

to the model's performance. 

 

Figure 41 Relationship between the number of features and the accuracy of the 

model without neuroHarmonize 

Based on this initial finding, the evaluation focuses on the set of features that 

achieved the highest accuracy. In other words, the precision value is taken when it 

contains only the first feature, then the precision value when it includes both the 

first and second features, and so forth. Employing this method starting from the first 

graph, the outcome indicates that the optimal model is trained using only the initial 

46 features.  
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Figure 42 Discriminant analysis of the most relevant features with Decision tree 

without neuroHarmonize. 

In Figure 42, the selected features are differentiated by the evaluated metric, 

components, bands, and modulated bands. The y-axis represents the frequency of 

occurrence of the discriminated element among the 46 selected features. The 

elements with higher significance according to the algorithm are shown in a darker 

color. For example, the Cross Frequency metric appears more frequently among the 

relevant features, but the Entropy metric takes precedence by appearing with greater 

weight. Similar patterns apply to the other elements in Figure 42. 

As a result, a graph similar to Figure 41 is generated, concentrating solely on the 

relationship between the number of features and the corresponding increase in 

accuracy. 
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Figure 43 Relationship between the 46th best features and the accuracy of the model 

without neuroHarmonize. 

Figure 44, the curve demonstrates a 100% training accuracy, while the validation 

accuracy starts nearly at 70% and steadily increases until reaching an accuracy of 

80%. Additionally, the variability of the validation accuracy with respect to the 

number of samples is also evident from the curve. 
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Figure 44 Validation curve for Decision Tree without neuroHarmonize. 

Table 26 presents the results of the computational precision achieved by the 

algorithm. It demonstrates an accuracy of 97% accompanied by a standard 

deviation of 6%. Additionally, the precision, recall, and F1 score are reported to be 

100%, indicating a high level of performance in classification. 

Table 26 Results of the algorithm's computational precision for decision tree 

without neuroHarmonize. 

------Computer Precision--- 

Precision:  0.8 

Recall:  0.8 

F1-score: 0.8 

Accuracy: 0.86 
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Standard deviation: 0.11 

Finally, a confusion matrix is generated to analyze the test set, consisting of 30 

subjects. Among the G1 subjects, 8 are correctly classified, while none of them are 

misclassified as controls. Within the control group, 18 subjects are correctly 

classified, and none of them are incorrectly classified. A visual representation of 

the confusion matrix can be observed in Figure 45, providing a comprehensive 

overview of the model's performance in the test set. 

 

Figure 45 Confusion matrix for decision tree without neuroHarmonize. 

4.6.1.4 Support Vector Machine (SVM) 

Table 27 presents the results obtained from the application of the SVC algorithm. 

It provides information about computational precision, which refers to the accuracy 
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and performance of the model in classifying the data. The precision score indicates 

the proportion of correctly predicted instances among all instances, while other 

metrics such as recall and F1 score provide additional insights into the model's 

performance. 

Table 27 Results of the algorithm's computational precision for SVM without 

neuroHarmonize. 

------Computer Precision---
--- 

Precision:  0.85 

Recall:  0.85 

F1-score: 0.85 

Accuracy: 0.80 

4.6.1.5 TPOT 

Using TPOT, Figure 46 shows the five generations of Table 18 and their respective 

accuracies. 

The precision values represent the accuracy of the machine learning models 

generated by TPOT in each generation. It can be observed that the precision remains 

constant over all generations at a value of 86%. 
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Figure 46 Five generations with ExtraTreesClassifier and the accuracy of each. 

4.6.2 The second path (with neuroHarmonize)  

Table 28 presents a comprehensive summary of the results obtained for each model 

implemented using the previously mentioned methodologies. These models were 

specifically applied in the second path, which emphasizes evaluating the outcomes 

using specialized libraries such as neuroHarmonize. 
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Table 28 Comprehensive summary of the results obtained for each model with 

neuroHarmonize. 

Healthy: Control Group + G2 Group 

Groups/Models 

RF-B DT SVM ET-T 

Train Test Train Test Train Test Train Test 

gICA 

G1 vs Healthy 80% 64% 78% 70% 66% 67% 73% 66% 

G1 vs G2 75% 63% 79% 76% 60% 38% 70% 48% 

ROIs 

G1 vs Healthy 80% 70% 73% 70% 79% 66% 70% 68% 

G1 vs G2 83% 71% 83% 75% 62% 48% 77% 67% 

RF-B: RandomForest using Boruta, DT: Decision Trees, SVM: Support vector 

machine, ET-T: ExtraTrees found with TPOP. 

Below is a comprehensive description of the results obtained for each implemented 

model, using the dataset consisting of the G1 and control groups of neural gICA 

Components as an example. This group selection aligns with the project's 

objectives. However, it is important to note that all groups included in the project 

underwent the same methodology for both neural gICA Components and regions 

of interest (ROIs). Detailed information on all implemented models can be found 

in Annex 6. 

4.6.2.1 RandomizedSearchCV 

 Figure 47, The curve demonstrates a 100% training accuracy, while the validation 

accuracy starts at 60% and steadily increases until reaching an accuracy of nearly 
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70%. Additionally, the variability of the validation accuracy with respect to the 

number of samples is also evident from the curve. 

 

Figure 47 Validation curve for Grid Search with neuroHarmonize. 

4.6.2.2 Boruta 

Based on the harmonized data using neuroHarmonize, the Boruta feature selection 

algorithm identified three significant features for training the model. 
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Figure 48 Discriminant analysis of the most relevant features using Boruta with 

neuroHarmonize. 

In Figure 48, the selected features are differentiated by the evaluated metric, 

components, bands, and modulated bands. The y-axis represents the frequency of 

occurrence of the discriminated element among the 1 selected feature by Boruta.  

Figure 49, the validation accuracy starts nearly at 68% and steadily increases until 

reaching an accuracy of 70%. Additionally, the variability of the validation 

accuracy with respect to the number of samples is also evident from the curve. 
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Figure 49 Validation curve for Boruta with neuroHarmonize. 

4.6.2.3 Decision tree 

Now, we present the results of the decision tree analysis, where the importance of 

all features in the database is evaluated. Each feature is initially assigned a relative 

importance score and enumerated in a list. 

Figure 50 illustrates the importance of various features in the classification model. 

The x-axis represents the features, while the y-axis represents their respective 

importance scores. As observed, the Relative Powers in the Gamma band, 

specifically components 15, and 25, are among the most significant features. The 

three important feature is Synchronization Likelihood. For visual clarity, only the 
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first 10 features are displayed in the graph; however, the complete list of features 

with their corresponding relative importance can be found in the supplementary 

files. 

 

Figure 50  The importance of firsts features in the classification model with 

neuroHarmonize. 

Once all the listed features are available, the model is trained by incrementally 

adding the features one by one. A training graph is then generated to visualize the 

relationship between the number of features entered (x-axis) and the corresponding 

accuracy (y-axis) achieved during each training iteration. 
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The graph demonstrates a significant increase in accuracy up to the first 5 features, 

reaching a peak of approximately 73%. This observation suggests that the most 

informative features for achieving high accuracy are concentrated within the initial 

set, and including additional features beyond a certain point does not contribute 

significantly to the model's performance. 

Figure 51 illustrates the relationship between the number of features and the 

accuracy of the model.  

 

Figure 51 Relationship between the number of features and the accuracy of the 

model with neuroHarmonize. 

Based on this initial finding, the model is subsequently trained using only the first 

3 features.  
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Figure 52 Discriminant analysis of the most relevant features with Decision tree 

with neuroHarmonize. 

In Figure 52, the selected features are differentiated by the evaluated metric, 

components, bands, and modulated bands. The y-axis represents the frequency of 

occurrence of the discriminated element among the 3 selected features.  

A graph like the previous Figure 51 is generated, focusing solely on the relationship 

between the number of features and the corresponding increase in accuracy. 

Notably, Figure 53 demonstrates a continuous rise in accuracy as the number of 

features increases, peaking at the 3rd feature reaching an accuracy of 78%. Like the 

learning curves, this training graph also provides insights into the variation of 

predictions across different training iterations. 



203 

 

 

Figure 53 Relationship between the 3rd best features and the accuracy of the model 

with neuroHarmonize. 

Figure 54, the validation accuracy starts nearly at 68% and steadily decreases until 

reaching an accuracy of 70%. Additionally, the variability of the validation 

accuracy with respect to the number of samples is also evident from the curve. 
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Figure 54 Validation curve for Decision Tree with neuroHarmonize. 

This behavior reflects that the model is clearly overtrained, i.e., it has adapted too 

much to the training data and has lost its generalization capacity, despite the use of 

cross-validation, to improve this result it would be necessary to perform a strict 

feature selection. 

Table 29 showcases the results of the algorithm's computational precision. It reveals 

an accuracy of 70%, accompanied by a standard deviation of 16%. Additionally, 

the precision, recall, and F1 score are reported to be 60%. 
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Table 29 Results of the algorithm's computational precision for decision tree with 

neuroHarmonize. 

---Computer Precision--- 

Precision:  0.6 

Recall:  0.6 

F1-score: 0.6 

Accuracy: 0.70 

Standard deviation: 0.16 

Finally, a confusion matrix is generated to analyze the test set. The test set consists 

of 30 subjects, out of which 4 subjects from G1 were correctly classified, and 6 

subjects were erroneously classified as controls. From the healthy group, 17 

subjects were correctly classified, and 3 subjects were erroneously classified. See 

Figure 55. 
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Figure 55 Confusion matrix for decision tree with neuroHarmonize. 

4.6.2.4 Support Vector Machine (SVM) 

Table 30 Results of the algorithm's computational precision for SVM with 

neuroHarmonize. 

---Computer Precision-- 

Precision:  0.67 

Recall:  1.0 

F1-score: 0.8 

Accuracy: 0.67 

4.6.2.5 TPOT 

Using TPOT, Figure 56 shows the five generations of Table 23 and their respective 

accuracies. 
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The precision values represent the accuracy of the machine learning models 

generated by TPOT in each generation. It can be observed that the precision remains 

constant over all generations at a value of 66%. 

 

Figure 56 Five generations with different classifiers and the accuracy of each. 

 

4.6 Discussion 

The main objective of this study was to improve machine learning classification 

models by augmenting data to effectively categorize individuals at risk for 

Alzheimer's disease using non-invasive biomarkers from different databases. The 

results presented in this study indicate that the most optimal dataset for achieving 

superior classification between the two groups (G1: PSEN1-E280A gene carriers 
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and controls plus G2) was obtained by the second path, where the processing 

pipeline included the use of neuroHarmonize. 

These findings are consistent with previous research demonstrating the potential of 

machine learning algorithms in biomarker-based AD classification. In a systematic 

review, Dijana et al. highlighted the importance of feature selection and model 

optimization in achieving accurate classification results [212]. Additionally, 

García-Pretelt et al. [184] used a support vector machine with an RBF kernel and 

achieved a test accuracy of 83% in their study, which used a smaller subset of the 

dataset compared to ours (27 carriers of the PSEN1-E280A gene and 33 controls 

from the UdeA 1 cohort). Notably, our study expanded the dataset to include 49 

carriers of the PSEN1-E280A gene and 98 controls. This expansion involved 

additional processing steps such as channel inspection, data transformation between 

cohorts using an ICA matrix (58x25), Huber normalization, and MatchIt matching 

[184]. Consequently, we did not observe an improvement in the model's accuracy 

with an increase in the sample size; however, we discovered that utilizing 

Neuroharmonize enables the harmonization of controls across different sites. 

However, the statistical analyses performed in the previous chapters lead us to 

speculate that the performance of the model without neuroHarmonize was able to 

detect differences between the groups, likely due to the fact that the controls in this 

case were from different cohorts. As evidenced by the effect size evaluation, these 

differences could introduce bias into the model. 
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Specifically, García-Pretelt et al. [184] found that the most relevant components 

were 14, 20, 22, 23, 24, and 25 for Relative Power and Cross Frequency, with which 

he obtained 89% accuracy in training and 83% accuracy in testing. These results 

are congruent and comparable to those found in this project in the flow that 

considers the data with neuroHarmonize, where the most relevant features are 

18,20, 24, and 25 for Relative Power and Synchronization Likelihood, with which 

he obtained 78% accuracy in training and 65% accuracy in testing. 

García-Pretelt et al. [184] also point out that the features presented had an effect 

size greater than 0.7 during model training, even though not all features were 

considered relevant in the model. Similarly, most of the features evaluated in this 

project without neuroHarmonize had an effect size greater than 0.8, while with 

neuroHarmonize they approached 0.2. Therefore, it's possible that the model with 

harmonized data could discriminate between the groups, but not with excessive 

accuracy. 

Regarding the bands in García-Pretelt et al.  [184] Gamma and Beta presented 

significant differences in the statistical part, but it was not consistent when applying 

the classification model. In this case, this project presents relevant results in the 

gamma, delta and theta bands in the classification of the model, obtaining a 

classification of 78% in training and 65% of accuracy in test for the data with 

neuroHarmonize. 
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In our study, the decision tree algorithm and TPOT emerged as the top-performing 

algorithms for both the first and second paths, consistent with other findings who 

successfully employed decision trees [63] and convolutional neural networks for 

classifying mild cognitive impairment and Alzheimer's disease [213]. Using 

decision trees, in the first path we used 46 features to achieve an outstanding 

accuracy of 85%, and in the second path we identified 5 significant features to 

achieve an accuracy of 65%. 

The processing pipeline implemented in our study played a pivotal role in obtaining 

these results. The application of techniques such as gICA, Huber normalization, and 

MatchIt matching facilitated data structuring, enabling comparability and 

suitability for classifying asymptomatic individuals carrying the PSEN1-E280A 

genetic variant compared to the control group. These findings align with studies 

emphasizing the importance of data preprocessing and feature selection techniques 

in enhancing the accuracy of Alzheimer's disease diagnosis [81]. 

It is important to recognize the limitations and potential variability in the efficacy 

of harmonization techniques across different datasets and populations, such as the 

use of neuroHarmonize, which showed excellent results in integrating cohorts, but 

showed negative values in bands such as gamma, which could lead to 

inconsistencies when standardizing a protocol with this tool. Gonzalez-Escamilla 

et al. highlighted the difficulties associated with using machine learning models 

with limited MRI data and emphasized the importance of robust feature extraction 

methods [214]. 
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The achieved precision of 65%, with a standard deviation of 16%, and a precision, 

recall, and F1 score of 60% in our study demonstrate interesting results. However, 

it is vital to recognize that these outcomes are derived from a specific dataset, and 

further validation on larger cohorts is needed. However, it is vital to recognize that 

these outcomes are derived from a specific dataset, and further validation on larger 

cohorts is needed. Moradi et al. proposed an early MRI-based Alzheimer's 

conversion prediction model using a machine learning framework, emphasizing the 

significance of model generalizability and replication [201]. Additionally, Audrey 

et al. emphasized the potential of machine learning models in Alzheimer's disease 

diagnosis using FDG-PET data, further highlighting the need for rigorous 

evaluation and validation [215].  

Additionally, it is important to explore the effect of linear harmonization on the 

performance of the evaluated classification methods. By thoroughly examining the 

impact of linear harmonization techniques, we can gain valuable insights into their 

effectiveness in improving the performance and generalizability of classification 

models. 

4.7 Conclusions 

In conclusion, this study makes a significant contribution to the field by 

implementing a high-quality data processing pipeline for incremental data and 

achieving an accurate and reliable machine learning model for classifying 

individuals at risk for Alzheimer's disease. The results underscore the critical role 
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of employing appropriate data preprocessing, feature selection, and model 

optimization techniques to achieve high accuracy in the classification task. In 

particular, the use of normalization and matching techniques, as well as an increase 

in data volume, positively impacted data harmonization for the healthy group. 

Consideration of potential limitations and variations in harmonization techniques is 

critical, as their effectiveness may vary across different datasets and populations. 

In addition, exploring the application of machine learning models to other non-

invasive biomarkers holds promise for improving the accuracy and reliability of 

Alzheimer's disease classification. 

To further improve the applicability of the model, future research should focus on 

replicating these results on larger cohorts. In addition, the use of generalized ICA 

matrices constructed from multiple databases is essential to improve the ability to 

effectively transform multi-site data. 

Significant results include metrics that are consistent with previous studies, such as 

power, Synchronization Likelihood, and Cross Frequency, which should be further 

explored due to their consistently positive results. Similarly, consistent results were 

obtained for neural components 18,20, 24, and 25. Finally, the gamma, delta, theta 

and beta bands emerged as the primary contributors to the classification of these 

populations. 

By addressing these issues, the field can advance our understanding of the disease 

and potentially contribute to the development of early and accurate diagnostic tools. 
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Continued efforts in this direction are critical to improving patient outcomes and 

facilitating timely interventions in the fight against Alzheimer's disease. 
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Chapter 5 

 

General conclusions and future work 

The project highlighted the importance of harmonizing EEG data and the potential 

of EEG-based biomarkers for early detection and screening of Alzheimer's disease. 

It discussed the challenges of EEG analysis, including the lack of standardized 

processing pipelines and organizational standards, and the need for validation 

methods using larger and more diverse data sets. Harmonization efforts, such as the 

EEG-BIDS and EEG-IP platforms, were identified as essential to integrate data and 

improve data quality, leading to accelerated biomarker discovery research. 

Machine learning models, particularly decision trees and other algorithms, were 

recognized as critical tools for AD classification using non-invasive biomarkers. 

The project emphasized the importance of harmonizing data from multiple cohorts 

to increase sample size, improve statistical power, and identify consistent features 

or biomarkers across cohorts. The development of a robust and generalizable 

machine learning model using a larger and more diverse dataset was a key objective 

of the project. 

The results obtained from the machine learning model showed promising results, 

with high accuracy achieved using the decision tree algorithm and TPOT. The 
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implemented processing techniques, including gICA, Huber normalization, and 

MatchIt matching, played an important role in structuring the data and improving 

accuracy. However, the inclusion of neuroHarmonize did not yield the expected 

results, indicating the need for further exploration and evaluation. 

In conclusion, this project made a significant contribution to dementia research by 

developing a processing pipeline and machine learning model for accurately 

classifying individuals at risk for Alzheimer's disease. It highlights the importance 

of standardized pipelines, data harmonization, and the adoption of BIDS to improve 

accessibility and reproducibility in neuroscience research. Further validation in 

larger cohorts and exploration of other non-invasive biomarkers were 

recommended for future research. In addition, addressing imbalanced sample sizes 

and understanding the impact of linear harmonization on classification methods 

were identified as important considerations for improving the reliability and 

robustness of harmonization techniques in different areas of study.  



216 

 

hapter 1#### 

References 

[1] C. A. Reyes-Ortiz, S. Pacheco, C. A. Slovacek, M. Jiang, I. C. Salinas-

Fernandez, and J. M. Ocampo-Chaparro, “Medical falls among older adults 

in Latin American cities,” Rev Salud Publica (Bogota), vol. 22, no. 5, Oct. 

2020, doi: 10.15446/RSAP.V22N5.84883. 

[2] N. Unidas and U. Nations, “Ageing in Latin America and the Caribbean: 

inclusion and rights of older persons,” Dec. 2022, Accessed: May 13, 2023. 

[Online]. Available: https://repositorio.cepal.org/handle/11362/48568 

[3] R. A. Cohen, M. M. Marsiske, and G. E. Smith, “Neuropsychology of 

aging,” Handb Clin Neurol, vol. 167, pp. 149–180, Jan. 2019, doi: 

10.1016/B978-0-12-804766-8.00010-8. 

[4] A. Kumar, J. Sidhu, A. Goyal, and J. W. Tsao, “Alzheimer Disease,” 

StatPearls, pp. 1–27, Jun. 2022, Accessed: May 13, 2023. [Online]. 

Available: https://www.ncbi.nlm.nih.gov/books/NBK499922/ 

[5] C. R. Jack et al., “NIA-AA Research Framework: Toward a biological 

definition of Alzheimer’s disease,” Alzheimers Dement, vol. 14, no. 4, pp. 

535–562, Apr. 2018, doi: 10.1016/J.JALZ.2018.02.018. 

[6] P. Monllor et al., “Electroencephalography as a Non-Invasive Biomarker of 

Alzheimer’s Disease: A Forgotten Candidate to Substitute CSF Molecules?,” 

Int J Mol Sci, vol. 22, no. 19, Oct. 2021, doi: 10.3390/IJMS221910889. 

[7] R. Cassani, M. Estarellas, R. San-Martin, F. J. Fraga, and T. H. Falk, 

“Systematic Review on Resting-State EEG for Alzheimer’s Disease 

Diagnosis and Progression Assessment,” Dis Markers, vol. 2018, 2018, doi: 

10.1155/2018/5174815. 



217 

 

[8] G. Cecchetti et al., “Resting-state electroencephalographic biomarkers of 

Alzheimer’s disease,” Neuroimage Clin, vol. 31, Jan. 2021, doi: 

10.1016/J.NICL.2021.102711. 

[9] C. Babiloni et al., “International Federation of Clinical Neurophysiology 

(IFCN) – EEG research workgroup: Recommendations on frequency and 

topographic analysis of resting state EEG rhythms. Part 1: Applications in 

clinical research studies,” Clinical Neurophysiology, vol. 131, no. 1, pp. 

285–307, Jan. 2020, doi: 10.1016/J.CLINPH.2019.06.234. 

[10] C. Babiloni et al., “Measures of resting state EEG rhythms for clinical trials 

in Alzheimer’s disease: Recommendations of an expert panel,” Alzheimer’s 

& Dementia, vol. 17, no. 9, pp. 1528–1553, Sep. 2021, doi: 

10.1002/ALZ.12311. 

[11] A. H. H. Al-Nuaimi, E. Jammeh, L. Sun, and E. Ifeachor, “Complexity 

Measures for Quantifying Changes in Electroencephalogram in Alzheimer’s 

Disease,” Complexity, vol. 2018, 2018, doi: 10.1155/2018/8915079. 

[12] M. Rashid et al., “Current Status, Challenges, and Possible Solutions of 

EEG-Based Brain-Computer Interface: A Comprehensive Review,” Front 

Neurorobot, vol. 14, p. 25, Jun. 2020, doi: 10.3389/FNBOT.2020.00025. 

[13] L. Pan, H. Zheng, and T. Li, “Effects of the indoor environment on EEG and 

thermal comfort assessment in males,” Build Environ, vol. 228, p. 109761, 

Jan. 2023, doi: 10.1016/J.BUILDENV.2022.109761. 

[14] A. de Cheveigné, “ZapLine: A simple and effective method to remove power 

line artifacts,” Neuroimage, vol. 207, p. 116356, Feb. 2020, doi: 

10.1016/J.NEUROIMAGE.2019.116356. 

[15] M. K. Islam, A. Rastegarnia, and Z. Yang, “Methods for artifact detection 

and removal from scalp EEG: A review,” Neurophysiologie 

Clinique/Clinical Neurophysiology, vol. 46, no. 4–5, pp. 287–305, Nov. 

2016, doi: 10.1016/J.NEUCLI.2016.07.002. 

[16] A. Pedroni, A. Bahreini, and N. Langer, “Automagic: Standardized 

preprocessing of big EEG data,” Neuroimage, vol. 200, pp. 460–473, Oct. 

2019, doi: 10.1016/J.NEUROIMAGE.2019.06.046. 



218 

 

[17] A. R. Javed et al., “Artificial Intelligence for Cognitive Health Assessment: 

State-of-the-Art, Open Challenges and Future Directions,” Cognitive 

Computation 2023, vol. 1, pp. 1–46, Jun. 2023, doi: 10.1007/S12559-023-

10153-4. 

[18] H. Hu, R. Kumar Das, A. Martin, T. Zurales, D. Dowling, and A. Khan, “A 

Survey on EEG Data Analysis Software,” Sci 2023, Vol. 5, Page 23, vol. 5, 

no. 2, p. 23, Jun. 2023, doi: 10.3390/SCI5020023. 

[19] J. T. Fuller et al., “Biological and Cognitive Markers of Presenilin1 E280A 

Autosomal Dominant Alzheimer’s Disease: A Comprehensive Review of the 

Colombian Kindred,” J Prev Alzheimers Dis, vol. 6, no. 2, p. 112, 2019, doi: 

10.14283/JPAD.2019.6. 

[20] “Normalization and Standardization of Data.” 

https://akashkunwar.hashnode.dev/understanding-the-differences-between-

normalization-and-standardization-of-data (accessed Aug. 21, 2023). 

[21] J. Caruana, “Harmonization,” Global Encyclopedia of Public 

Administration, Public Policy, and Governance, pp. 1–9, 2016, doi: 

10.1007/978-3-319-31816-5_2281-1. 

[22] P. Prado et al., “Dementia ConnEEGtome: Towards multicentric 

harmonization of EEG connectivity in neurodegeneration,” International 

Journal of Psychophysiology, vol. 172, pp. 24–38, Feb. 2022, doi: 

10.1016/J.IJPSYCHO.2021.12.008. 

[23] L. M. Alexander et al., “Data Descriptor: An open resource for 

transdiagnostic research in pediatric mental health and learning disorders,” 

Sci Data, vol. 4, Dec. 2017, doi: 10.1038/SDATA.2017.181. 

[24] “OpenNeuro.” https://openneuro.org/ (accessed May 13, 2023). 

[25] N. Bigdely-Shamlo, J. Touryan, A. Ojeda, C. Kothe, T. Mullen, and K. 

Robbins, “Automated EEG mega-analysis I: Spectral and amplitude 

characteristics across studies,” Neuroimage, vol. 207, p. 116361, Feb. 2020, 

doi: 10.1016/J.NEUROIMAGE.2019.116361. 

[26] K. J. Gorgolewski et al., “The brain imaging data structure, a format for 

organizing and describing outputs of neuroimaging experiments,” Scientific 

Data 2016 3:1, vol. 3, no. 1, pp. 1–9, Jun. 2016, doi: 10.1038/sdata.2016.44. 



219 

 

[27] C. R. Pernet et al., “EEG-BIDS, an extension to the brain imaging data 

structure for electroencephalography,” Scientific Data, vol. 6, no. 1. Nature 

Research, pp. 1–5, Dec. 01, 2019. doi: 10.1038/s41597-019-0104-8. 

[28] M. C. Biagioni and J. E. Galvin, “Using biomarkers to improve detection of 

Alzheimer’s disease,” Neurodegener Dis Manag, vol. 1, no. 2, p. 127, Apr. 

2011, doi: 10.2217/NMT.11.11. 

[29] T. M. Rutkowski, M. S. Abe, T. Komendzinski, H. Sugimoto, S. Narebski, 

and M. Otake-Matsuura, “Machine learning approach for early onset 

dementia neurobiomarker using EEG network topology features,” Front 

Hum Neurosci, vol. 17, p. 1155194, Jun. 2023, doi: 

10.3389/FNHUM.2023.1155194/BIBTEX. 

[30] A. Khan and S. Zubair, “Development of a three tiered cognitive hybrid 

machine learning algorithm for effective diagnosis of Alzheimer’s disease,” 

Journal of King Saud University - Computer and Information Sciences, vol. 

34, no. 10, pp. 8000–8018, Nov. 2022, doi: 10.1016/J.JKSUCI.2022.07.016. 

[31] A. Chaddad, Y. Wu, R. Kateb, and A. Bouridane, “Electroencephalography 

Signal Processing: A Comprehensive Review and Analysis of Methods and 

Techniques,” Sensors 2023, Vol. 23, Page 6434, vol. 23, no. 14, p. 6434, Jul. 

2023, doi: 10.3390/S23146434. 

[32] L. Del Fabro, E. Bondi, F. Serio, E. Maggioni, A. D’Agostino, and P. 

Brambilla, “Machine learning methods to predict outcomes of 

pharmacological treatment in psychosis,” Translational Psychiatry 2023 

13:1, vol. 13, no. 1, pp. 1–15, Mar. 2023, doi: 10.1038/s41398-023-02371-

z. 

[33] S. Iannaccone, E. Houdayer, A. Spina, G. Nocera, and F. Alemanno, 

“Quantitative EEG for early differential diagnosis of dementia with Lewy 

bodies,” Front Psychol, vol. 14, Apr. 2023, doi: 

10.3389/FPSYG.2023.1150540. 

[34] S. Asadzadeh, T. Yousefi Rezaii, S. Beheshti, A. Delpak, and S. Meshgini, 

“A systematic review of EEG source localization techniques and their 

applications on diagnosis of brain abnormalities,” J Neurosci Methods, vol. 

339, p. 108740, Jun. 2020, doi: 10.1016/J.JNEUMETH.2020.108740. 



220 

 

[35] C. T. Briels et al., “Reproducibility of EEG functional connectivity in 

Alzheimer’s disease,” Alzheimers Res Ther, vol. 12, no. 1, pp. 1–14, Jun. 

2020, doi: 10.1186/S13195-020-00632-3/TABLES/3. 

[36] E. R. , S. J. H. , J. T. M. , S. S. A. , & H. A. J. Kandel, Principles of Neural 

Science. 2013. 

[37] H. Berger, “Über das elektroenkephalogramm des menschen,” Arch 

Psychiatr Nervenkr, vol. 1, p. 87, 1929. 

[38] M. E. Raichle and A. Z. Snyder, “A default mode of brain function: a brief 

history of an evolving idea,” Neuroimage, vol. 37, no. 4, pp. 1083–1090, Oct. 

2007, doi: 10.1016/J.NEUROIMAGE.2007.02.041. 

[39] D. A. Fair et al., “Development of distinct control networks through 

segregation and integration,” Proc Natl Acad Sci U S A, vol. 104, no. 33, pp. 

13507–13512, Aug. 2007, doi: 

10.1073/PNAS.0705843104/SUPPL_FILE/05843TABLE3.PDF. 

[40] M. Jobert, F. J. Wilson, G. S. F. Ruigt, M. Brunovsky, L. S. Prichep, and W. 

H. I. M. Drinkenburg, “Guidelines for the recording and evaluation of 

pharmaco-EEG data in man: the International Pharmaco-EEG Society 

(IPEG),” Neuropsychobiology, vol. 66, no. 4, pp. 201–220, 2012, doi: 

10.1159/000343478. 

[41] G. Bernardi, M. Betta, E. Ricciardi, P. Pietrini, G. Tononi, and F. Siclari, 

“Regional Delta Waves In Human Rapid Eye Movement Sleep,” Journal of 

Neuroscience, vol. 39, no. 14, pp. 2686–2697, Apr. 2019, doi: 

10.1523/JNEUROSCI.2298-18.2019. 

[42] M. B. Bin Heyat, D. Lai, F. Akhtar, M. A. Bin Hayat, and S. Azad, “Short 

time frequency analysis of theta activity for the diagnosis of bruxism on EEG 

sleep record,” Studies in Computational Intelligence, vol. 875, pp. 63–83, 

2020, doi: 10.1007/978-3-030-35252-3_4/FIGURES/12. 

[43] P. Danjou et al., “Electrophysiological assessment methodology of sensory 

processing dysfunction in schizophrenia and dementia of the Alzheimer 

type,” Neurosci Biobehav Rev, vol. 97, pp. 70–84, Feb. 2019, doi: 

10.1016/J.NEUBIOREV.2018.09.004. 



221 

 

[44] K. Corace, R. Baysarowich, M. Willows, A. Baddeley, N. Schubert, and V. 

Knott, “Resting State EEG Activity Related to Impulsivity in People with 

Prescription Opioid Use Disorder,” Psychiatry Res Neuroimaging, vol. 321, 

p. 111447, Apr. 2022, doi: 10.1016/J.PSCYCHRESNS.2022.111447. 

[45] X. Ma, L. Song, B. Hong, Y. Li, and Y. Li, “Relationships between EEG and 

thermal comfort of elderly adults in outdoor open spaces,” Build Environ, 

vol. 235, p. 110212, May 2023, doi: 10.1016/J.BUILDENV.2023.110212. 

[46] J. A. C. Saeid Sanei, “EEG Signal Processing and Machine Learning - Saeid 

Sanei, Jonathon A. Chambers - Google Libros,” 2022. 

https://books.google.com.co/books?hl=es&lr=&id=yt9BEAAAQBAJ&oi=f

nd&pg=PA17&dq=Gamma,+Although+the+amplitudes+of+these+rhythms

+are+very+small+and+their+occurrence+is+rare,+the+detection+of+these

+rhythms+can+be+used+to+confirm+certain+brain+diseases.+&ots=usglQ

xZpbK&sig=CLn8utyYpKkKTkB4n1c5RDsgs64&redir_esc=y#v=onepage

&q&f=false (accessed May 14, 2023). 

[47] F. W. Pfrieger, “Neurodegenerative Diseases and Cholesterol: Seeing the 

Field Through the Players,” Front Aging Neurosci, vol. 13, Nov. 2021, doi: 

10.3389/FNAGI.2021.766587. 

[48] OME, “Global action plan on the public health response to dementia 2017 - 

2025,” Geneva: World Health Organization, p. 27, 2017, Accessed: May 14, 

2023. [Online]. Available: http://apps.who.int/bookorders. 

[49] M. Ayaz, A. Nawaz, F. Naz, F. Ullah, A. Sadiq, and Z. U. Islam, 

“Phytochemicals-based Therapeutics against Alzheimer’s Disease: An 

Update,” Curr Top Med Chem, vol. 22, no. 22, pp. 1811–1820, Sep. 2022, 

doi: 10.2174/1568026622666220815104305. 

[50] J. Andrade-Guerrero et al., “Alzheimer&rsquo;s Disease: An Updated 

Overview of Its Genetics,” International Journal of Molecular Sciences 

2023, Vol. 24, Page 3754, vol. 24, no. 4, p. 3754, Feb. 2023, doi: 

10.3390/IJMS24043754. 

[51] X. X. Zhang, Y. Tian, Z. T. Wang, Y. H. Ma, L. Tan, and J. T. Yu, “The 

Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and 

Prevention,” The Journal of Prevention of Alzheimer’s Disease 2021 8:3, 

vol. 8, no. 3, pp. 313–321, Apr. 2021, doi: 10.14283/JPAD.2021.15. 



222 

 

[52] J. Alber et al., “Developing retinal biomarkers for the earliest stages of 

Alzheimer’s disease: What we know, what we don’t, and how to move 

forward,” Alzheimer’s & Dementia, vol. 16, no. 1, pp. 229–243, Jan. 2020, 

doi: 10.1002/ALZ.12006. 

[53] K. A. Jellinger, “Recent update on the heterogeneity of the Alzheimer’s 

disease spectrum,” J Neural Transm, vol. 129, no. 1, pp. 1–24, Jan. 2022, 

doi: 10.1007/S00702-021-02449-2/FIGURES/3. 

[54] E. Giacobini, A. C. Cuello, and A. Fisher, “Reimagining cholinergic therapy 

for Alzheimer’s disease,” Brain, vol. 145, no. 7, pp. 2250–2275, Jul. 2022, 

doi: 10.1093/BRAIN/AWAC096. 

[55] Z. R. Chen, J. B. Huang, S. L. Yang, and F. F. Hong, “Role of Cholinergic 

Signaling in Alzheimer&rsquo;s Disease,” Molecules 2022, Vol. 27, Page 

1816, vol. 27, no. 6, p. 1816, Mar. 2022, doi: 

10.3390/MOLECULES27061816. 

[56] C. Ramos et al., “Substance Use-Related Cognitive Decline in Families with 

Autosomal Dominant Alzheimer’s Disease: A Cohort Study,” Journal of 

Alzheimer’s Disease, vol. 85, no. 4, pp. 1423–1439, Jan. 2022, doi: 

10.3233/JAD-215169. 

[57] G. B. Frisoni et al., “The probabilistic model of Alzheimer disease: the 

amyloid hypothesis revised,” Nature Reviews Neuroscience 2021 23:1, vol. 

23, no. 1, pp. 53–66, Nov. 2021, doi: 10.1038/s41583-021-00533-w. 

[58] F. Maestú, W. de Haan, M. A. Busche, and J. DeFelipe, “Neuronal 

excitation/inhibition imbalance: core element of a translational perspective 

on Alzheimer pathophysiology,” Ageing Res Rev, vol. 69, p. 101372, Aug. 

2021, doi: 10.1016/J.ARR.2021.101372. 

[59] D. S. Knopman et al., “The National Institute on Aging and the Alzheimer’s 

Association Research Framework for Alzheimer’s disease: Perspectives 

from the Research Roundtable,” Alzheimer’s & Dementia, vol. 14, no. 4, pp. 

563–575, Apr. 2018, doi: 10.1016/J.JALZ.2018.03.002. 

[60] R. Khoury and E. Ghossoub, “Diagnostic biomarkers of Alzheimer’s 

disease: A state-of-the-art review,” Biomark Neuropsychiatry, vol. 1, p. 

100005, Dec. 2019, doi: 10.1016/J.BIONPS.2019.100005. 



223 

 

[61] S. Gunes, Y. Aizawa, T. Sugashi, M. Sugimoto, and P. P. Rodrigues, 

“Biomarkers for Alzheimer&rsquo;s Disease in the Current State: A 

Narrative Review,” International Journal of Molecular Sciences 2022, Vol. 

23, Page 4962, vol. 23, no. 9, p. 4962, Apr. 2022, doi: 

10.3390/IJMS23094962. 

[62] A. J. Atkinson et al., “Biomarkers and surrogate endpoints: Preferred 

definitions and conceptual framework,” Clin Pharmacol Ther, vol. 69, no. 3, 

pp. 89–95, Jan. 2001, doi: 10.1067/MCP.2001.113989. 

[63] B. Jiao et al., “Neural biomarker diagnosis and prediction to mild cognitive 

impairment and Alzheimer’s disease using EEG technology,” Alzheimers 

Res Ther, vol. 15, no. 1, pp. 1–14, Dec. 2023, doi: 10.1186/S13195-023-

01181-1/FIGURES/6. 

[64] N. Chedid, J. Tabbal, A. Kabbara, S. Allouch, and M. Hassan, “The 

development of an automated machine learning pipeline for the detection of 

Alzheimer’s Disease,” Scientific Reports 2022 12:1, vol. 12, no. 1, pp. 1–7, 

Oct. 2022, doi: 10.1038/s41598-022-22979-3. 

[65] A. A. Horvath et al., “Subclinical epileptiform activity accelerates the 

progression of Alzheimer’s disease: A long-term EEG study,” Clinical 

Neurophysiology, vol. 132, no. 8, pp. 1982–1989, Aug. 2021, doi: 

10.1016/J.CLINPH.2021.03.050. 

[66] M. K. Jónsdóttir, J. Harrison, and K. I. Hannesdóttir, “The ambivalence 

toward neuropsychology in dementia research, diagnosis, and drug 

development: Myths and misconceptions,” Alzheimer’s & Dementia, vol. 19, 

no. 5, pp. 2175–2181, May 2023, doi: 10.1002/ALZ.12909. 

[67] C. H. Ciolek and S. Y. Lee, “Cognitive Issues in the Older Adult,” 

Guccione’s Geriatric Physical Therapy, pp. 425–452, Jan. 2020, doi: 

10.1016/B978-0-323-60912-8.00019-1. 

[68] J. Hobson, “The Montreal Cognitive Assessment (MoCA),” Occup Med 

(Chic Ill), vol. 65, no. 9, pp. 764–765, Dec. 2015, doi: 

10.1093/OCCMED/KQV078. 

[69] V. Korten et al., “Prevalence of HIV-associated neurocognitive disorder 

(HAND) in Turkey and assessment of Addenbrooke’s Cognitive 



224 

 

Examination Revised (ACE-R) test as a screening tool,” HIV Med, vol. 22, 

no. 1, pp. 60–66, Jan. 2021, doi: 10.1111/HIV.12957. 

[70] V. Singhal, “Clinical Approach to Acute Decline in Sensorium,” Indian J 

Crit Care Med, vol. 23, no. Suppl 2, p. S120, 2019, doi: 10.5005/JP-

JOURNALS-10071-23188. 

[71] M. F. Folstein, S. E. Folstein, and P. R. McHugh, “‘Mini-mental state’. A 

practical method for grading the cognitive state of patients for the clinician,” 

J Psychiatr Res, vol. 12, no. 3, pp. 189–198, Nov. 1975, doi: 10.1016/0022-

3956(75)90026-6. 

[72] S. García-Herranz, M. C. Díaz-Mardomingo, C. Venero, and H. Peraita, 

“Accuracy of verbal fluency tests in the discrimination of mild cognitive 

impairment and probable Alzheimer’s disease in older Spanish monolingual 

individuals,” https://doi.org/10.1080/13825585.2019.1698710, 2019, doi: 

10.1080/13825585.2019.1698710. 

[73] M. K. Yeung and J. Lin, “Probing depression, schizophrenia, and other 

psychiatric disorders using fNIRS and the verbal fluency test: A systematic 

review and meta-analysis,” J Psychiatr Res, vol. 140, pp. 416–435, Aug. 

2021, doi: 10.1016/J.JPSYCHIRES.2021.06.015. 

[74] L. M. Wright, M. De Marco, and A. Venneri, “Current Understanding of 

Verbal Fluency in Alzheimer’s Disease: Evidence to Date,” Psychol Res 

Behav Manag, vol. Volume 16, pp. 1691–1705, May 2023, doi: 

10.2147/PRBM.S284645. 

[75] J. Melin et al., “Traceability and comparability through crosswalks with the 

NeuroMET Memory Metric,” Scientific Reports 2023 13:1, vol. 13, no. 1, 

pp. 1–12, Mar. 2023, doi: 10.1038/s41598-023-32208-0. 

[76] D. Kondziella et al., “European Academy of Neurology guideline on the 

diagnosis of coma and other disorders of consciousness,” Eur J Neurol, vol. 

27, no. 5, pp. 741–756, May 2020, doi: 10.1111/ENE.14151. 

[77] W. Duan, X. Chen, Y. J. Wang, W. Zhao, H. Yuan, and X. Lei, 

“Reproducibility of power spectrum, functional connectivity and network 

construction in resting-state EEG,” J Neurosci Methods, vol. 348, p. 108985, 

Jan. 2021, doi: 10.1016/J.JNEUMETH.2020.108985. 



225 

 

[78] J. R. Almeida, L. B. Silva, I. Bos, P. J. Visser, and J. L. Oliveira, “A 

methodology for cohort harmonisation in multicentre clinical research,” 

Inform Med Unlocked, vol. 27, p. 100760, Jan. 2021, doi: 

10.1016/J.IMU.2021.100760. 

[79] P. A. Valdes-Sosa et al., “The Cuban Human Brain Mapping Project, a 

young and middle age population-based EEG, MRI, and cognition dataset,” 

Scientific Data 2021 8:1, vol. 8, no. 1, pp. 1–12, Feb. 2021, doi: 

10.1038/s41597-021-00829-7. 

[80] T. E. Cope, R. S. Weil, E. Düzel, B. C. Dickerson, and J. B. Rowe, 

“Advances in neuroimaging to support translational medicine in dementia,” 

J Neurol Neurosurg Psychiatry, vol. 92, no. 3, pp. 263–270, Mar. 2021, doi: 

10.1136/JNNP-2019-322402. 

[81] P. Prado et al., “Dementia ConnEEGtome: Towards multicentric 

harmonization of EEG connectivity in neurodegeneration,” International 

Journal of Psychophysiology, vol. 172, pp. 24–38, Feb. 2022, doi: 

10.1016/J.IJPSYCHO.2021.12.008. 

[82] S. Moguilner et al., “Multi-feature computational framework for combined 

signatures of dementia in underrepresented settings,” J Neural Eng, vol. 19, 

no. 4, p. 046048, Aug. 2022, doi: 10.1088/1741-2552/AC87D0. 

[83] F. Hu et al., “Image harmonization: A review of statistical and deep learning 

methods for removing batch effects and evaluation metrics for effective 

harmonization,” Neuroimage, vol. 274, p. 120125, Jul. 2023, doi: 

10.1016/J.NEUROIMAGE.2023.120125. 

[84] M. Bento, I. Fantini, J. Park, L. Rittner, and R. Frayne, “Deep Learning in 

Large and Multi-Site Structural Brain MR Imaging Datasets,” Front 

Neuroinform, vol. 15, p. 82, Jan. 2022, doi: 

10.3389/FNINF.2021.805669/BIBTEX. 

[85] M. Li et al., “Harmonized-Multinational qEEG norms (HarMNqEEG),” 

Neuroimage, vol. 256, p. 119190, Aug. 2022, doi: 

10.1016/J.NEUROIMAGE.2022.119190. 

[86] G. Chiarion, L. Sparacino, Y. Antonacci, L. Faes, and L. Mesin, 

“Connectivity Analysis in EEG Data: A Tutorial Review of the State of the 



226 

 

Art and Emerging Trends,” Bioengineering 2023, Vol. 10, Page 372, vol. 10, 

no. 3, p. 372, Mar. 2023, doi: 10.3390/BIOENGINEERING10030372. 

[87] Y. Roy, H. Banville, I. Albuquerque, A. Gramfort, T. H. Falk, and J. Faubert, 

“Deep learning-based electroencephalography analysis: a systematic 

review,” J Neural Eng, vol. 16, no. 5, p. 051001, Aug. 2019, doi: 

10.1088/1741-2552/AB260C. 

[88] A. S. Ballesteros, P. Prado, A. Ibanez, J. A. M. Perez, and S. Moguilner, “A 

pipeline for large-scale assessments of dementia EEG connectivity across 

multicentric settings,” 2023, doi: 10.31219/OSF.IO/H2WGV. 

[89] Y. Cherapanamjeri, S. Mohanty, and M. Yau, “List decodable mean 

estimation in nearly linear time,” Proceedings - Annual IEEE Symposium on 

Foundations of Computer Science, FOCS, vol. 2020-November, pp. 141–

148, Nov. 2020, doi: 10.1109/FOCS46700.2020.00022. 

[90] A. Jaramillo-Jimenez et al., “Spectral features of resting-state EEG in 

Parkinson’s Disease: A multicenter study using functional data analysis,” 

Clinical Neurophysiology, vol. 151, pp. 28–40, Jul. 2023, doi: 

10.1016/j.clinph.2023.03.363. 

[91] J. C. Beer et al., “Longitudinal ComBat: A method for harmonizing 

longitudinal multi-scanner imaging data,” Neuroimage, vol. 220, p. 117129, 

Oct. 2020, doi: 10.1016/J.NEUROIMAGE.2020.117129. 

[92] W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting batch effects in 

microarray expression data using empirical Bayes methods,” Biostatistics, 

vol. 8, no. 1, pp. 118–127, Jan. 2007, doi: 

10.1093/BIOSTATISTICS/KXJ037. 

[93] J. P. Fortin et al., “Harmonization of multi-site diffusion tensor imaging 

data,” Neuroimage, vol. 161, pp. 149–170, Nov. 2017, doi: 

10.1016/J.NEUROIMAGE.2017.08.047. 

[94] J. P. Fortin et al., “Harmonization of cortical thickness measurements across 

scanners and sites,” Neuroimage, vol. 167, pp. 104–120, Feb. 2018, doi: 

10.1016/J.NEUROIMAGE.2017.11.024. 

[95] R. Pomponio et al., “Harmonization of large multi-site imaging datasets: 

Application to 10,232 MRIs for the analysis of imaging patterns of structural 



227 

 

brain change throughout the lifespan,” bioRxiv, p. 784363, Sep. 2019, doi: 

10.1101/784363. 

[96] J. A. Desjardins, S. van Noordt, S. Huberty, S. J. Segalowitz, and M. 

Elsabbagh, “EEG Integrated Platform Lossless (EEG-IP-L) pre-processing 

pipeline for objective signal quality assessment incorporating data 

annotation and blind source separation,” J Neurosci Methods, vol. 347, p. 

108961, Jan. 2021, doi: 10.1016/J.JNEUMETH.2020.108961. 

[97] V. P. Kumaravel, E. Farella, E. Parise, and M. Buiatti, “NEAR: An artifact 

removal pipeline for human newborn EEG data,” Dev Cogn Neurosci, vol. 

54, p. 101068, Apr. 2022, doi: 10.1016/J.DCN.2022.101068. 

[98] K. Kingphai and Y. Moshfeghi, “On EEG Preprocessing Role in Deep 

Learning Effectiveness for Mental Workload Classification,” 

Communications in Computer and Information Science, vol. 1493 CCIS, pp. 

81–98, 2021, doi: 10.1007/978-3-030-91408-0_6/TABLES/3. 

[99] J. van Driel, C. N. L. Olivers, and J. J. Fahrenfort, “High-pass filtering 

artifacts in multivariate classification of neural time series data,” J Neurosci 

Methods, vol. 352, p. 109080, Mar. 2021, doi: 

10.1016/J.JNEUMETH.2021.109080. 

[100] W. Peng, “EEG preprocessing and denoising,” EEG Signal Processing and 

Feature Extraction, pp. 71–87, Jan. 2019, doi: 10.1007/978-981-13-9113-

2_5/COVER. 

[101] S. Pattisapu and S. Ray, “Stimulus-induced narrow-band gamma oscillations 

in humans can be recorded using open-hardware low-cost EEG amplifier,” 

PLoS One, vol. 18, no. 1, p. e0279881, Jan. 2023, doi: 

10.1371/JOURNAL.PONE.0279881. 

[102] M. C. Guerrero, J. S. Parada, and H. E. Espitia, “EEG signal analysis using 

classification techniques: Logistic regression, artificial neural networks, 

support vector machines, and convolutional neural networks,” Heliyon, vol. 

7, no. 6, p. e07258, Jun. 2021, doi: 10.1016/J.HELIYON.2021.E07258. 

[103] S. Guan et al., “The Profiles of Non-stationarity and Non-linearity in the 

Time Series of Resting-State Brain Networks,” Front Neurosci, vol. 14, p. 

493, Jun. 2020, doi: 10.3389/FNINS.2020.00493/BIBTEX. 



228 

 

[104] T. Popov et al., “Test–retest reliability of resting-state EEG in young and 

older adults,” Psychophysiology, vol. 00, p. e14268, Mar. 2023, doi: 

10.1111/PSYP.14268. 

[105] M. Grobbelaar et al., “A Survey on Denoising Techniques of 

Electroencephalogram Signals Using Wavelet Transform,” Signals 2022, 

Vol. 3, Pages 577-586, vol. 3, no. 3, pp. 577–586, Aug. 2022, doi: 

10.3390/SIGNALS3030035. 

[106] A. Echtioui, W. Zouch, M. Ghorbel, M. Ben Slima, A. Ben Hamida, and C. 

Mhiri, “Automated EEG Artifact Detection Using Independent Component 

Analysis,” 2020 International Conference on Advanced Technologies for 

Signal and Image Processing, ATSIP 2020, Sep. 2020, doi: 

10.1109/ATSIP49331.2020.9231574. 

[107] K. Yasoda, R. S. Ponmagal, K. S. Bhuvaneshwari, and K. Venkatachalam, 

“Automatic detection and classification of EEG artifacts using fuzzy kernel 

SVM and wavelet ICA (WICA),” Soft comput, vol. 24, no. 21, pp. 16011–

16019, Nov. 2020, doi: 10.1007/S00500-020-04920-W/TABLES/3. 

[108] S. A. Khoshnevis and R. Sankar, “Applications of Higher Order Statistics in 

Electroencephalography Signal Processing: A Comprehensive Survey,” 

IEEE Rev Biomed Eng, vol. 13, pp. 169–183, 2020, doi: 

10.1109/RBME.2019.2951328. 

[109] W. Deng, Y. Liu, J. Hu, and J. Guo, “The small sample size problem of ICA: 

A comparative study and analysis,” Pattern Recognit, vol. 45, no. 12, pp. 

4438–4450, Dec. 2012, doi: 10.1016/J.PATCOG.2012.06.010. 

[110] N. Mammone, F. La Foresta, and F. C. Morabito, “Automatic artifact 

rejection from multichannel scalp EEG by wavelet ICA,” IEEE Sens J, vol. 

12, no. 3, pp. 533–542, 2012, doi: 10.1109/JSEN.2011.2115236. 

[111] X. Jiang, G. Bin Bian, and Z. Tian, “Removal of Artifacts from EEG Signals: 

A Review,” Sensors (Basel), vol. 19, no. 5, Mar. 2019, doi: 

10.3390/S19050987. 

[112] M. P. S. Chawla, “PCA and ICA processing methods for removal of artifacts 

and noise in electrocardiograms: A survey and comparison,” Appl Soft 



229 

 

Comput, vol. 11, no. 2, pp. 2216–2226, Mar. 2011, doi: 

10.1016/J.ASOC.2010.08.001. 

[113] L. Zhang, Z. Li, F. Zhang, R. Gu, W. Peng, and L. Hu, “Demystifying signal 

processing techniques to extract task- related EEG responses for 

psychologists,” Brain Science Advances, vol. 6, no. 3, pp. 171–188, Sep. 

2020, doi: 10.26599/BSA.2020.9050018. 

[114] C. Chen, Z. Mei, and Z. Huang, “A clinical EEG research platform to support 

progressive model construction,” Proceedings - 2022 15th International 

Congress on Image and Signal Processing, BioMedical Engineering and 

Informatics, CISP-BMEI 2022, 2022, doi: 10.1109/CISP-

BMEI56279.2022.9979832. 

[115] K. Li et al., “Feature Extraction and Identification of Alzheimer’s Disease 

based on Latent Factor of Multi-Channel EEG,” IEEE Transactions on 

Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1557–1567, 

2021, doi: 10.1109/TNSRE.2021.3101240. 

[116] M. Ouchani, S. Gharibzadeh, M. Jamshidi, and M. Amini, “A Review of 

Methods of Diagnosis and Complexity Analysis of Alzheimer’s Disease 

Using EEG Signals,” Biomed Res Int, vol. 2021, 2021, doi: 

10.1155/2021/5425569. 

[117] R. Grech et al., “Review on solving the inverse problem in EEG source 

analysis,” J Neuroeng Rehabil, vol. 5, p. 25, 2008, doi: 10.1186/1743-0003-

5-25. 

[118] M. Gavaret, L. Maillard, and J. Jung, “High-resolution EEG (HR-EEG) and 

magnetoencephalography (MEG),” Neurophysiologie Clinique/Clinical 

Neurophysiology, vol. 45, no. 1, pp. 105–111, Mar. 2015, doi: 

10.1016/J.NEUCLI.2014.11.011. 

[119] F. Hasanzadeh, M. Mohebbi, and R. Rostami, “Graph theory analysis of 

directed functional brain networks in major depressive disorder based on 

EEG signal,” J Neural Eng, vol. 17, no. 2, p. 026010, Mar. 2020, doi: 

10.1088/1741-2552/AB7613. 

[120] S. Abdulla, M. Diykh, R. L. Laft, K. Saleh, and R. C. Deo, “Sleep EEG signal 

analysis based on correlation graph similarity coupled with an ensemble 



230 

 

extreme machine learning algorithm,” Expert Syst Appl, vol. 138, p. 112790, 

Dec. 2019, doi: 10.1016/J.ESWA.2019.07.007. 

[121] P. M. Rossini et al., “Early diagnosis of Alzheimer’s disease: the role of 

biomarkers including advanced EEG signal analysis. Report from the IFCN-

sponsored panel of experts,” Clinical Neurophysiology, vol. 131, no. 6, pp. 

1287–1310, Jun. 2020, doi: 10.1016/J.CLINPH.2020.03.003. 

[122] L. Gabard-Durnam, W. Xie, J. Yedukondalu, and L. Dev Sharma, “Circulant 

Singular Spectrum Analysis and Discrete Wavelet Transform for Automated 

Removal of EOG Artifacts from EEG Signals,” Sensors 2023, Vol. 23, Page 

1235, vol. 23, no. 3, p. 1235, Jan. 2023, doi: 10.3390/S23031235. 

[123] K. D. Tzimourta et al., “Analysis of electroencephalographic signals 

complexity regarding Alzheimer’s Disease,” Computers & Electrical 

Engineering, vol. 76, pp. 198–212, Jun. 2019, doi: 

10.1016/J.COMPELECENG.2019.03.018. 

[124] N. I. Abbasi, R. Bose, A. Bezerianos, N. V. Thakor, and A. Dragomir, “EEG-

Based Classification of Olfactory Response to Pleasant Stimuli,” 

Proceedings of the Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, EMBS, pp. 5160–5163, Jul. 

2019, doi: 10.1109/EMBC.2019.8857673. 

[125] M. Mosayebi-Samani, A. Jamil, R. Salvador, G. Ruffini, J. Haueisen, and M. 

A. Nitsche, “The impact of individual electrical fields and anatomical factors 

on the neurophysiological outcomes of tDCS: A TMS-MEP and MRI study,” 

Brain Stimul, vol. 14, no. 2, pp. 316–326, Mar. 2021, doi: 

10.1016/J.BRS.2021.01.016. 

[126] B. Y. Angulo-Ruiz, V. Muñoz, E. I. Rodríguez-Martínez, and C. M. Gómez, 

“Absolute and relative variability changes of the resting state brain rhythms 

from childhood and adolescence to young adulthood,” Neurosci Lett, vol. 

749, Apr. 2021, doi: 10.1016/J.NEULET.2021.135747. 

[127] J. V. Candy, “Multichannel Spectral Estimation: An Approach to 

Estimating/Analyzing Vibrational Systems,” Jan. 2020, doi: 

10.2172/1592017. 



231 

 

[128] H. Bokil, P. Andrews, J. E. Kulkarni, S. Mehta, and P. P. Mitra, “Chronux: 

A platform for analyzing neural signals,” J Neurosci Methods, vol. 192, no. 

1, pp. 146–151, Sep. 2010, doi: 10.1016/J.JNEUMETH.2010.06.020. 

[129] H. Fort, “Entropy as missing information: from Shannon’s information 

theory to Jaynes’ maximum entropy principle,” Forecasting with Maximum 

Entropy, pp. 1-1-1–26, Nov. 2022, doi: 10.1088/978-0-7503-3931-5CH1. 

[130] L. C. Amarantidis and D. Abásolo, “Interpretation of Entropy Algorithms in 

the Context of Biomedical Signal Analysis and Their Application to EEG 

Analysis in Epilepsy,” Entropy 2019, Vol. 21, Page 840, vol. 21, no. 9, p. 

840, Aug. 2019, doi: 10.3390/E21090840. 

[131] C. Pappalettera, F. Miraglia, M. Cotelli, P. M. Rossini, and F. Vecchio, 

“Analysis of complexity in the EEG activity of Parkinson’s disease patients 

by means of approximate entropy,” Geroscience, vol. 44, no. 3, pp. 1599–

1607, Jun. 2022, doi: 10.1007/S11357-022-00552-0/FIGURES/2. 

[132] A. C. Hull and J. B. Morton, “Activity‐State Entropy: A novel brain entropy 

measure based on spatial patterns of activity,” J Neurosci Methods, vol. 393, 

p. 109868, Jun. 2023, doi: 10.1016/J.JNEUMETH.2023.109868. 

[133] H. Ahmadieh and F. Ghassemi, “Assessing the Effects of Alzheimer Disease 

on EEG Signals Using the Entropy Measure: A Meta-analysis,” Basic Clin 

Neurosci, vol. 13, no. 2, p. 153, Mar. 2022, doi: 10.32598/BCN.2021.1144.3. 

[134] J. A. Thiele, A. Richter, and K. Hilger, “Multimodal Brain Signal 

Complexity Predicts Human Intelligence,” eNeuro, vol. 10, no. 2, Feb. 2023, 

doi: 10.1523/ENEURO.0345-22.2022. 

[135] O. Sporns, G. Tononi, and G. M. Edelman, “Connectivity and complexity: 

the relationship between neuroanatomy and brain dynamics,” Neural 

Networks, vol. 13, no. 8–9, pp. 909–922, Nov. 2000, doi: 10.1016/S0893-

6080(00)00053-8. 

[136] C. H. Chang, T. Furukawa, T. Asahina, K. Shimba, K. Kotani, and Y. Jimbo, 

“Coupling of in vitro Neocortical-Hippocampal Coculture Bursts Induces 

Different Spike Rhythms in Individual Networks,” Front Neurosci, vol. 16, 

p. 663, May 2022, doi: 10.3389/FNINS.2022.873664/BIBTEX. 



232 

 

[137] S. L. Yan, X. L. Yang, H. Yang, and Z. K. Sun, “Decreased coherence in the 

model of the dorsal visual pathway associated with Alzheimer’s disease,” 

Scientific Reports 2023 13:1, vol. 13, no. 1, pp. 1–13, Mar. 2023, doi: 

10.1038/s41598-023-30535-w. 

[138] H. Ono et al., “Dynamic cortical and tractography atlases of proactive and 

reactive alpha and high-gamma activities,” Brain Commun, vol. 5, no. 2, 

Mar. 2023, doi: 10.1093/BRAINCOMMS/FCAD111. 

[139] L. Rürup et al., “Altered gamma and theta oscillations during multistable 

perception in schizophrenia,” International Journal of Psychophysiology, 

vol. 155, pp. 127–139, Sep. 2020, doi: 10.1016/J.IJPSYCHO.2020.06.002. 

[140] W. A. Huang et al., “Transcranial alternating current stimulation entrains 

alpha oscillations by preferential phase synchronization of fast-spiking 

cortical neurons to stimulation waveform,” Nature Communications 2021 

12:1, vol. 12, no. 1, pp. 1–20, May 2021, doi: 10.1038/s41467-021-23021-

2. 

[141] Y. Zhong et al., “A review on pathology, mechanism, and therapy for 

cerebellum and tremor in Parkinson’s disease,” npj Parkinson’s Disease 

2022 8:1, vol. 8, no. 1, pp. 1–9, Jun. 2022, doi: 10.1038/s41531-022-00347-

2. 

[142] F. S. Racz, A. Czoch, Z. Kaposzta, O. Stylianou, P. Mukli, and A. Eke, 

“Multiple-Resampling Cross-Spectral Analysis: An Unbiased Tool for 

Estimating Fractal Connectivity With an Application to Neurophysiological 

Signals,” Front Physiol, vol. 13, p. 132, Mar. 2022, doi: 

10.3389/FPHYS.2022.817239/BIBTEX. 

[143] J. F. Morici, N. V. Weisstaub, and C. L. Zold, “Hippocampal-medial 

prefrontal cortex network dynamics predict performance during retrieval in 

a context-guided object memory task,” Proc Natl Acad Sci U S A, vol. 119, 

no. 20, p. e2203024119, May 2022, doi: 

10.1073/PNAS.2203024119/SUPPL_FILE/PNAS.2203024119.SAPP.PDF. 

[144] J. M. Cassidy, A. Wodeyar, R. Srinivasan, and S. C. Cramer, “Coherent 

neural oscillations inform early stroke motor recovery,” Hum Brain Mapp, 

vol. 42, no. 17, pp. 5636–5647, Dec. 2021, doi: 10.1002/HBM.25643. 



233 

 

[145] Y. Qin, T. Menara, D. S. Bassett, and F. Pasqualetti, “Phase-amplitude 

coupling in neuronal oscillator networks,” Phys Rev Res, vol. 3, no. 2, p. 

023218, Jun. 2021, doi: 

10.1103/PHYSREVRESEARCH.3.023218/FIGURES/5/MEDIUM. 

[146] J. Riddle, A. McFerren, and F. Frohlich, “Causal role of cross-frequency 

coupling in distinct components of cognitive control,” Prog Neurobiol, vol. 

202, p. 102033, Jul. 2021, doi: 10.1016/J.PNEUROBIO.2021.102033. 

[147] T. H. Falk, F. J. Fraga, L. Trambaiolli, and R. Anghinah, “EEG amplitude 

modulation analysis for semi-automated diagnosis of Alzheimer’s disease,” 

EURASIP J Adv Signal Process, vol. 2012, no. 1, pp. 1–9, Aug. 2012, doi: 

10.1186/1687-6180-2012-192/COMMENTS. 

[148] B. Boashash, “Time frequency signal analysis and processing : a 

comprehensive reference,” 2015. 

[149] Z. M. Smith, B. Delgutte, and A. J. Oxenham, “Chimaeric sounds reveal 

dichotomies in auditory perception,” Nature, vol. 416, no. 6876, p. 87, Mar. 

2002, doi: 10.1038/416087A. 

[150] M. Wischnewski, I. Alekseichuk, and A. Opitz, “Neurocognitive, 

physiological, and biophysical effects of transcranial alternating current 

stimulation,” Trends Cogn Sci, vol. 27, no. 2, pp. 189–205, Feb. 2023, doi: 

10.1016/J.TICS.2022.11.013. 

[151] E. Weiss, M. Kann, and Q. Wang, “Neuromodulation of Neural Oscillations 

in Health and Disease,” Biology 2023, Vol. 12, Page 371, vol. 12, no. 3, p. 

371, Feb. 2023, doi: 10.3390/BIOLOGY12030371. 

[152] B. Lega, J. Burke, J. Jacobs, and M. J. Kahana, “Slow-Theta-to-Gamma 

Phase–Amplitude Coupling in Human Hippocampus Supports the Formation 

of New Episodic Memories,” Cerebral Cortex, vol. 26, no. 1, pp. 268–278, 

Jan. 2016, doi: 10.1093/CERCOR/BHU232. 

[153] J. Feingold, D. J. Gibson, B. Depasquale, and A. M. Graybiel, “Bursts of 

beta oscillation differentiate postperformance activity in the striatum and 

motor cortex of monkeys performing movement tasks,” Proc Natl Acad Sci 

U S A, vol. 112, no. 44, pp. 13687–13692, Nov. 2015, doi: 

10.1073/PNAS.1517629112/SUPPL_FILE/PNAS.201517629SI.PDF. 



234 

 

[154] D. Klepl, F. He, W. Min, D. Blackburn, and P. Sarrigiannis, “Bispectrum-

based Cross-frequency Functional Connectivity: Classification of 

Alzheimer’s disease,” Proceedings of the Annual International Conference 

of the IEEE Engineering in Medicine and Biology Society, EMBS, vol. 2022-

July, pp. 305–308, 2022, doi: 10.1109/EMBC48229.2022.9871366. 

[155] T. Montez, K. Linkenkaer-Hansen, B. W. van Dijk, and C. J. Stam, 

“Synchronization likelihood with explicit time-frequency priors,” 

Neuroimage, vol. 33, no. 4, pp. 1117–1125, Dec. 2006, doi: 

10.1016/J.NEUROIMAGE.2006.06.066. 

[156] H. Yu, J. Liu, L. Cai, J. Wang, Y. Cao, and C. Hao, “Functional brain 

networks in healthy subjects under acupuncture stimulation: An EEG study 

based on nonlinear synchronization likelihood analysis,” Physica A: 

Statistical Mechanics and its Applications, vol. 468, pp. 566–577, Feb. 2017, 

doi: 10.1016/J.PHYSA.2016.10.068. 

[157] I. V. Stuldreher, N. Thammasan, J. B. F. Van Erp, and A. M. Brouwer, 

“Physiological synchrony in EEG, electrodermal activity and heart rate 

reflects shared selective auditory attention,” J Neural Eng, vol. 17, no. 4, p. 

046028, Aug. 2020, doi: 10.1088/1741-2552/ABA87D. 

[158] T. Wu, X. Zhang, and Z. Liu, “Understanding the mechanisms of brain 

functions from the angle of synchronization and complex network,” 

Frontiers of Physics 2022 17:3, vol. 17, no. 3, pp. 1–23, Apr. 2022, doi: 

10.1007/S11467-022-1161-6. 

[159] D. Posthuma, E. J. C. De Geus, E. J. C. M. Mulder, D. J. A. Smit, D. I. 

Boomsma, and C. J. Stam, “Genetic components of functional connectivity 

in the brain: The heritability of synchronization likelihood,” Hum Brain 

Mapp, vol. 26, no. 3, p. 191, Nov. 2005, doi: 10.1002/HBM.20156. 

[160] Y. K. Kim, E. Park, A. Lee, C. H. Im, and Y. H. Kim, “Changes in network 

connectivity during motor imagery and execution,” PLoS One, vol. 13, no. 

1, Jan. 2018, doi: 10.1371/JOURNAL.PONE.0190715. 

[161] S. Nobukawa, T. Yamanishi, S. Kasakawa, H. Nishimura, M. Kikuchi, and 

T. Takahashi, “Classification Methods Based on Complexity and 

Synchronization of Electroencephalography Signals in Alzheimer’s 



235 

 

Disease,” Front Psychiatry, vol. 11, p. 255, Apr. 2020, doi: 

10.3389/FPSYT.2020.00255/BIBTEX. 

[162] L. Billeci, A. Badolato, L. Bachi, and A. Tonacci, “Machine Learning for the 

Classification of Alzheimer’s Disease and Its Prodromal Stage Using Brain 

Diffusion Tensor Imaging Data: A Systematic Review,” Processes 2020, 

Vol. 8, Page 1071, vol. 8, no. 9, p. 1071, Sep. 2020, doi: 

10.3390/PR8091071. 

[163] J. Ray, L. Wijesekera, and S. Cirstea, “Machine learning and clinical 

neurophysiology,” J Neurol, vol. 269, no. 12, pp. 6678–6684, Dec. 2022, 

doi: 10.1007/S00415-022-11283-9/TABLES/1. 

[164] R. S. Olson, O. Edu, and J. H. Moore, “TPOT: A Tree-based Pipeline 

Optimization Tool for Automating Machine Learning,” vol. 64. PMLR, pp. 

66–74, Dec. 04, 2016. Accessed: May 14, 2023. [Online]. Available: 

https://proceedings.mlr.press/v64/olson_tpot_2016.html 

[165] N. Pilnenskiy and I. Smetannikov, “Feature Selection Algorithms as One of 

the Python Data Analytical Tools,” Future Internet 2020, Vol. 12, Page 54, 

vol. 12, no. 3, p. 54, Mar. 2020, doi: 10.3390/FI12030054. 

[166] Olson Randal, “Using TPOT - TPOT,” University of Pennsylvania, 2021. 

http://epistasislab.github.io/tpot/using/ (accessed May 14, 2023). 

[167] D’Agostino Andrea, “Feature Selection with Boruta in Python | by Andrea 

D’Agostino | Towards Data Science,” 2021. 

https://towardsdatascience.com/feature-selection-with-boruta-in-python-

676e3877e596 (accessed May 14, 2023). 

[168] R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore, 

“Relief-based feature selection: Introduction and review,” J Biomed Inform, 

vol. 85, pp. 189–203, Sep. 2018, doi: 10.1016/J.JBI.2018.07.014. 

[169] M. A. Azhar and P. A. Thomas, “Comparative Review of Feature Selection 

and Classification modeling,” 2019 6th IEEE International Conference on 

Advances in Computing, Communication and Control, ICAC3 2019, Dec. 

2019, doi: 10.1109/ICAC347590.2019.9036816. 

[170] C. J. Markiewicz et al., “The openneuro resource for sharing of neuroscience 

data,” Elife, vol. 10, Oct. 2021, doi: 10.7554/ELIFE.71774. 



236 

 

[171] R. Rajora, A. Kumar, S. Malhotra, and A. Sharma, “Data security breaches 

and mitigating methods in the healthcare system: A review,” Proceedings - 

2022 International Conference on Computational Modelling, Simulation and 

Optimization, ICCMSO 2022, pp. 325–330, 2022, doi: 

10.1109/ICCMSO58359.2022.00070. 

[172] B. Maharathi et al., “Multi-modal data integration platform combining 

clinical and preclinical models of post subarachnoid hemorrhage epilepsy,” 

Proceedings of the Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, EMBS, vol. 2022-July, pp. 

3459–3463, 2022, doi: 10.1109/EMBC48229.2022.9871864. 

[173] H. Altaheri et al., “Deep learning techniques for classification of 

electroencephalogram (EEG) motor imagery (MI) signals: a review,” Neural 

Computing and Applications 2021, pp. 1–42, Aug. 2021, doi: 

10.1007/S00521-021-06352-5. 

[174] G. Niso et al., “Open and reproducible neuroimaging: From study inception 

to publication,” Neuroimage, vol. 263, p. 119623, Nov. 2022, doi: 

10.1016/J.NEUROIMAGE.2022.119623. 

[175] J. Bosch-Bayard, L. Galan, E. Aubert Vazquez, T. Virues Alba, and P. A. 

Valdes-Sosa, “Resting State Healthy EEG: The First Wave of the Cuban 

Normative Database,” Front Neurosci, vol. 14, p. 555119, Dec. 2020, doi: 

10.3389/FNINS.2020.555119. 

[176] S. Van Noordt et al., “EEG-IP: An international infant EEG data integration 

platform for the study of risk and resilience in autism and related conditions,” 

Molecular Medicine, vol. 26, no. 1, pp. 1–11, May 2020, doi: 

10.1186/S10020-020-00149-3/FIGURES/5. 

[177] L. J. Gabard-Durnam, A. S. M. Leal, C. L. Wilkinson, and A. R. Levin, “The 

harvard automated processing pipeline for electroencephalography 

(HAPPE): Standardized processing software for developmental and high-

artifact data,” Front Neurosci, vol. 12, p. 97, Feb. 2018, doi: 

10.3389/FNINS.2018.00097/BIBTEX. 

[178] B. Daniel, L. Tim, S. Øyvind, and B. Jochen, “EEG-derived brain graphs are 

reliable measures for exploring exercise-induced changes in brain 



237 

 

networks,” Scientific Reports 2021 11:1, vol. 11, no. 1, pp. 1–13, Oct. 2021, 

doi: 10.1038/s41598-021-00371-x. 

[179] Y.-J. Mantilla-Ramos, “sovabids v0.3.1-alpha+21.gf251ba5.dirty 

documentation,” 2021. https://sovabids.readthedocs.io/en/latest/ (accessed 

May 15, 2023). 

[180] G. Niso et al., “Good scientific practice in EEG and MEG research: Progress 

and perspectives,” Neuroimage, vol. 257, p. 119056, Aug. 2022, doi: 

10.1016/J.NEUROIMAGE.2022.119056. 

[181] L. Waller et al., “ENIGMA HALFpipe: Interactive, reproducible, and 

efficient analysis for resting-state and task-based fMRI data,” Hum Brain 

Mapp, vol. 43, no. 9, pp. 2727–2742, Jun. 2022, doi: 10.1002/HBM.25829. 

[182] J. Suarez-Revelo, J. Ochoa-Gomez, and J. Duque-Grajales, “Improving test-

retest reliability of quantitative electroencephalography using different 

preprocessing approaches,” Proceedings of the Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, 

EMBS, vol. 2016-October, pp. 961–964, Oct. 2016, doi: 

10.1109/EMBC.2016.7590861. 

[183] J. X. Suárez-Revelo, J. F. Ochoa-Gómez, and C. A. Tobón-Quintero, 

“Validation of EEG Pre-processing Pipeline by Test-Retest Reliability,” 

Communications in Computer and Information Science, vol. 916, pp. 290–

299, 2018, doi: 10.1007/978-3-030-00353-1_26/FIGURES/3. 

[184] F. J. García-Pretelt, J. X. Suárez-Relevo, D. F. Aguillon-Niño, F. J. Lopera-

Restrepo, J. F. Ochoa-Gómez, and C. A. Tobón-Quintero, “Automatic 

Classification of Subjects of the PSEN1-E280A Family at Risk of 

Developing Alzheimer’s Disease Using Machine Learning and Resting State 

Electroencephalography,” Journal of Alzheimer’s Disease, vol. 87, no. 2, pp. 

817–832, Jan. 2022, doi: 10.3233/JAD-210148. 

[185] J. F. Ochoa et al., “Successful Object Encoding Induces Increased Directed 

Connectivity in Presymptomatic Early-Onset Alzheimer’s Disease,” Journal 

of Alzheimer’s Disease, vol. 55, no. 3, p. 1195, 2017, doi: 10.3233/JAD-

160803. 



238 

 

[186] J. F. Ochoa et al., “Precuneus Failures in Subjects of the PSEN1 E280A 

Family at Risk of Developing Alzheimer’s Disease Detected Using 

Quantitative Electroencephalography,” J Alzheimers Dis, vol. 58, no. 4, pp. 

1229–1244, 2017, doi: 10.3233/JAD-161291. 

[187] M. L. Manaog and L. Parisi, “M-ar-K-PCA and M-ar-K-FastICA: Robust 

Feature Extraction for Classification of Non-Gaussian and Entropic Data,” 

Jun. 2022, doi: 10.21203/RS.3.RS-1560908/V1. 

[188] M. Wang, X. Cui, T. Wang, T. Jiang, F. Gao, and J. Cao, “Eye blink artifact 

detection based on multi-dimensional EEG feature fusion and optimization,” 

Biomed Signal Process Control, vol. 83, p. 104657, May 2023, doi: 

10.1016/J.BSPC.2023.104657. 

[189] D. E. Ho et al., “Matching as Nonparametric Preprocessing for Reducing 

Model Dependence in Parametric Causal Inference,” Political Analysis, vol. 

15, no. 3, pp. 199–236, Jun. 2007, doi: 10.1093/PAN/MPL013. 

[190] J. Raffo, Raffo, and Julio, “MATCHIT: Stata module to match two datasets 

based on similar text patterns,” May 2020, Accessed: May 15, 2023. 

[Online]. Available: 

https://EconPapers.repec.org/RePEc:boc:bocode:s457992 

[191] M. Reynolds, T. Chaudhary, M. E. Torbati, D. L. Tudorascu, K. 

Batmanghelich, and the A. D. N. Initiative, “ComBat Harmonization: 

Empirical Bayes versus Fully Bayes Approaches,” bioRxiv, p. 

2022.07.13.499561, Jul. 2022, doi: 10.1101/2022.07.13.499561. 

[192] P. A. Valdes-Sosa et al., “The Cuban Human Brain Mapping Project, a 

young and middle age population-based EEG, MRI, and cognition dataset,” 

Scientific Data 2021 8:1, vol. 8, no. 1, pp. 1–12, Feb. 2021, doi: 

10.1038/s41597-021-00829-7. 

[193] Zapata Luisa, “Desarrollo de aplicación de servicios web basado en 

estándares de informática médica para  el preprocesamiento y visualización 

de registros EEG,” 2022, Accessed: May 20, 2023. [Online]. Available: 

https://bibliotecadigital.udea.edu.co/handle/10495/30073 

[194] N. K. Dinsdale, M. Jenkinson, and A. I. L. Namburete, “Deep learning-based 

unlearning of dataset bias for MRI harmonisation and confound removal,” 



239 

 

Neuroimage, vol. 228, p. 117689, Mar. 2021, doi: 

10.1016/J.NEUROIMAGE.2020.117689. 

[195] K. D. Tzimourta et al., “Machine Learning Algorithms and Statistical 

Approaches for Alzheimer’s Disease Analysis Based on Resting-State EEG 

Recordings: A Systematic Review,” 

https://doi.org/10.1142/S0129065721300023, vol. 31, no. 5, Feb. 2021, doi: 

10.1142/S0129065721300023. 

[196] G. Chen et al., “Classification of Alzheimer disease, mild cognitive 

impairment, and normal cognitive status with large-scale network analysis 

based on resting-state functional MR imaging,” Radiology, vol. 259, no. 1, 

pp. 213–221, Apr. 2011, doi: 10.1148/RADIOL.10100734. 

[197] S. F. Eskildsen, P. Coupé, D. García-Lorenzo, V. Fonov, J. C. Pruessner, and 

D. L. Collins, “Prediction of Alzheimer’s disease in subjects with mild 

cognitive impairment from the ADNI cohort using patterns of cortical 

thinning,” Neuroimage, vol. 65, pp. 511–521, Jan. 2013, doi: 

10.1016/j.neuroimage.2012.09.058. 

[198] M. Velazquez, Y. Lee, and for the A. D. N. Initiative, “Random forest model 

for feature-based Alzheimer’s disease conversion prediction from early mild 

cognitive impairment subjects,” PLoS One, vol. 16, no. 4, Apr. 2021, doi: 

10.1371/JOURNAL.PONE.0244773. 

[199] T. Jo, K. Nho, and A. J. Saykin, “Deep Learning in Alzheimer’s Disease: 

Diagnostic Classification and Prognostic Prediction Using Neuroimaging 

Data,” Front Aging Neurosci, vol. 11, p. 220, Aug. 2019, doi: 

10.3389/FNAGI.2019.00220/FULL. 

[200] G. W. Cha, H. J. Moon, and Y. C. Kim, “Comparison of Random Forest and 

Gradient Boosting Machine Models for Predicting Demolition Waste Based 

on Small Datasets and Categorical Variables,” International Journal of 

Environmental Research and Public Health 2021, Vol. 18, Page 8530, vol. 

18, no. 16, p. 8530, Aug. 2021, doi: 10.3390/IJERPH18168530. 

[201] E. Moradi, A. Pepe, C. Gaser, H. Huttunen, and J. Tohka, “Machine learning 

framework for early MRI-based Alzheimer’s conversion prediction in MCI 

subjects,” Neuroimage, vol. 104, pp. 398–412, Jan. 2015, doi: 

10.1016/J.NEUROIMAGE.2014.10.002. 



240 

 

[202] J. Schrouff et al., “PRoNTo: pattern recognition for neuroimaging toolbox,” 

Neuroinformatics, vol. 11, no. 3, pp. 319–337, Jul. 2013, doi: 

10.1007/S12021-013-9178-1. 

[203] M. Jin and W. Deng, “Predication of different stages of Alzheimer’s disease 

using neighborhood component analysis and ensemble decision tree,” J 

Neurosci Methods, vol. 302, pp. 35–41, May 2018, doi: 

10.1016/J.JNEUMETH.2018.02.014. 

[204] M. V. F. Silva, C. D. M. G. Loures, L. C. V. Alves, L. C. De Souza, K. B. 

G. Borges, and M. D. G. Carvalho, “Alzheimer’s disease: risk factors and 

potentially protective measures,” J Biomed Sci, vol. 26, no. 1, May 2019, 

doi: 10.1186/S12929-019-0524-Y. 

[205] A. Biffi et al., “Genetic variation and neuroimaging measures in Alzheimer 

disease,” Arch Neurol, vol. 67, no. 6, pp. 677–685, Jun. 2010, doi: 

10.1001/ARCHNEUROL.2010.108. 

[206] H. Stocker, T. Möllers, L. Perna, and H. Brenner, “The genetic risk of 

Alzheimer’s disease beyond APOE ε4: systematic review of Alzheimer’s 

genetic risk scores,” Translational Psychiatry 2018 8:1, vol. 8, no. 1, pp. 1–

9, Aug. 2018, doi: 10.1038/s41398-018-0221-8. 

[207] J. S. Yokoyama et al., “Decision tree analysis of genetic risk for clinically 

heterogeneous Alzheimer’s disease,” BMC Neurol, vol. 15, no. 1, Mar. 2015, 

doi: 10.1186/S12883-015-0304-6. 

[208] K. Gupta, N. Jiwani, and P. Whig, “An Efficient Way of Identifying 

Alzheimer’s Disease Using Deep Learning Techniques,” Lecture Notes in 

Networks and Systems, vol. 479, pp. 455–465, 2023, doi: 10.1007/978-981-

19-3148-2_38/COVER. 

[209] M. S. Ali, M. K. Islam, J. Haque, A. A. Das, D. S. Duranta, and M. A. Islam, 

“Alzheimer’s Disease Detection Using m-Random Forest Algorithm with 

Optimum Features Extraction,” 2021 1st International Conference on 

Artificial Intelligence and Data Analytics, CAIDA 2021, pp. 1–6, Apr. 2021, 

doi: 10.1109/CAIDA51941.2021.9425212. 

[210] A. Miltiadous et al., “Alzheimer’s Disease and Frontotemporal Dementia: A 

Robust Classification Method of EEG Signals and a Comparison of 



241 

 

Validation Methods,” Diagnostics 2021, Vol. 11, Page 1437, vol. 11, no. 8, 

p. 1437, Aug. 2021, doi: 10.3390/DIAGNOSTICS11081437. 

[211] H. Javaid, R. Manor, E. Kumarnsit, and S. Chatpun, “Decision Tree in 

Working Memory Task Effectively Characterizes EEG Signals in Healthy 

Aging Adults,” IRBM, vol. 43, no. 6, pp. 705–714, Dec. 2022, doi: 

10.1016/J.IRBM.2021.12.001. 

[212] D. Oreski, S. Oreski, and B. Klicek, “Effects of dataset characteristics on the 

performance of feature selection techniques,” Appl Soft Comput, vol. 52, pp. 

109–119, Mar. 2017, doi: 10.1016/J.ASOC.2016.12.023. 

[213] S. Fouladi, A. A. Safaei, N. Mammone, F. Ghaderi, and M. J. Ebadi, 

“Efficient Deep Neural Networks for Classification of Alzheimer’s Disease 

and Mild Cognitive Impairment from Scalp EEG Recordings,” Cognitive 

Computation 2022 14:4, vol. 14, no. 4, pp. 1247–1268, Jun. 2022, doi: 

10.1007/S12559-022-10033-3. 

[214] S. Sharma and P. K. Mandal, “A Comprehensive Report on Machine 

Learning-based Early Detection of Alzheimer’s Disease using Multi-modal 

Neuroimaging Data,” ACM Comput Surv, vol. 55, no. 2, Mar. 2023, doi: 

10.1145/3492865. 

[215] A. Katako et al., “Machine learning identified an Alzheimer’s disease-

related FDG-PET pattern which is also expressed in Lewy body dementia 

and Parkinson’s disease dementia,” Sci Rep, vol. 8, no. 1, Dec. 2018, doi: 

10.1038/S41598-018-31653-6. 

[216] Henao Isaza V, Mantilla-Ramos Y, Cadavid Castro V, and Zapata 

Saldarriaga L, “GRUNECO/eeg_harmonization,” 2021. 

https://github.com/GRUNECO/eeg_harmonization (accessed May 15, 

2023). 

  

 



242 

 

Chapter 1 

Annexes 

Annex 1: Procedure BIDS   

To obtain the BIDS format, the open-source tool sovabids was used, sovabids is a 

python package for automating eeg2bids conversion [179], and sovabids can be 

used through: 

1. Its python API 

2. Its CLI entry points 

3. Its JSON-RPC entry points (needs a server running the backend) 

4. Its minimal web-app GUI 

To understand the structure of the tool, the step called sovabids can be taken from 

Figure 57 of the methodology. 

 

Figure 57 Sovabids methodology 
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The basic architecture is: 

1. A source path with the original dataset. 

2. A bids path that will be the output path of the conversion. 

3. A rules file that configures how the conversion is done from the general 

perspective. 

4. A mapping file that encodes how the conversion is performed to each 

individual file of the dataset. 

5. Download and relocate the database. 

Note: All subjects must be in the same folder 

6. Evaluate the availability and distribution of the information and the format 

(Verify if it is in BIDS format or if you have the necessary information to convert 

to BIDS). 

Test BIDS 

Allows you to identify if a database is in BIDS format. To perform this test, go to 

the following GitHub repository:  

Sovaharmony unpublished package [216], and in the misc folder, run the 

pybids_test.py file. 

1. If the database is in BIDS format, the result of running the code would be:  

BIDS format OK 
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2. If the database is not in BIDS format, the result of running the code would 

be: 

Try to convert of Dataset in BIDS format using "conversion_bids" 

Conversion 

1. The first thing to do is create a rules file. 

Take as a base a .yml file like the one presented in the Github repository 

and edit each parameter as explained in the file's documentation: 

• task: refers to the type of task or condition. 

• Name: name of the database 

• Authors: Database authors 

• PowerLineFrequency: The spectrum graph is made to show 

the frequency by visual inspection. 

• EEGReference: Reference channel 

• Channels: Channel information 

• eeg_extension: EEG file extension 

• pattern: structure of the EEG file name 

If the file has a complex structure due to the number of tasks, conditions, 

sessions, etc. You need to create an additional parameter Figure 58: 

• fields: specifies each of the elements that differentiate the 

records within the database. 

Example: 
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Figure 58 Pattern Rules File Example 

For the design and creation of the rules file, there are useful tools such as 

https://regex101.com/ which is a regular expression tester with syntax 

highlighting, explanation, cheat sheet for PHP/PCRE, Python, GO, 

JavaScript, Java, C#/.NET, Rust. 

2. Open the file conversion_bids.py edit the variables; source_path, 

bids_path and rules_path. 

3. Run the file conversion_bids.py 

 

**For a step-by-step implementation of sovabids see Annex 1 or the 

direct source of sovathe bids** 

Rules 

The databases taken from websites already have the BIDS structure implemented, 

so it was only necessary to apply the standard to the initial databases. 

The conversion process was performed separately for each database, and the 

resulting rule files are displayed below. 
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Figure 59 show database description along with the baseline and reference electrode 

of the assembly. To identify the before channels, a channel standard was published 

for BIDS which includes a restricted keyword list for field type channels, shared 

with MEG and iEEG modalities [27]. In this case, the VEO and HEO types were 

marked. Additionally, the characteristics of the non-BIDS database, such as the data 

extension and file name, are specified. with the "Entities" in the file name represent 

relevant elements such as session, subject group, homework, etc. Currently, there 

are tools available to automatically generate regex as you type. 

 

Figure 59 Rules File Example of UdeA 1 

The second database (Figure 60) that was converted to BIDS has a file structure 

that is quite like the first. The authors, baseline, reference electrode, and non-EEG 

channels have been preserved. However, in this case, the file names represent tasks 

independently.  
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It is important to note that both methods of creating the rules file are valid, and they 

generate standardized and compatible files with respect to the groups, tasks, and 

file types that will be generated and used later in the processing pipeline. 

 

Figure 60 Rules File Example of UdeA 2 

Annex 2: Optimizing procedure of the Processing Pipeline   

Installation of sova package 

1. Open a command console and run the following command lines, see Figure 

61. 
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Figure 61 command for installation of packages 

2. Enter the location of the installed package and execute the command line 

that allows you to install the libraries necessary for the execution of the 

code, see Figure 62. 

 

Figure 62 command necessary for the execution of the installation code. 

3. When aiming to synchronize databases obtained from various repositories, 

collected by different devices, with varying sampling frequencies and 

channels, it is essential to utilize the Sovaharmony package for processing. 

Alternatively, if only the processing aspect is required, the sovapipeline 

package can be used. Nevertheless, it is highly recommended to employ the 

Sovaharmony package as it provides comprehensive pre-processing and 

post-processing functionalities. 
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Table 31 package list 

Resource Description 
Location on GitHub 

Sovachronux 

(private) 

It is inspired by 

the MATLAB 

Chronux tool 

that allows 

loading, 

visualization 

and analysis of 

neurobiological 

time series data 

such as EEG. 

This includes 

spectral analysis 

with the 

multitaper 

technique. 

https://github.com/ 

GRUNECO/ 

sovachronux/ 

tree/ 

main/ 

sovachronux 

Sovawica 

(private) 

It is inspired by 

thresh, a 

MATLAB 

wavelet function 

by M. Misiti, Y. 

Misiti, G. 

Oppenheim, 

J.M. Poggi 12-

Mar-96. 

https://github.com/ 

GRUNECO/ 

sovawica 

Sovareject 

(private) 

Artifact 

rejection routine 

with 

parameterized 

and automatic 

thresholds. 

https://github.com/ 

GRUNECO/ 

sovareject 

Sovaview 

(private) 
Software for 

EEG signal 

visualization 

https://github.com/ 

GRUNECO/ 

sovaview 

Sovapipeline 

(private) 

EEG signal 

preprocessing at 

rest. It integrates 

the stage of 

https://github.com 

/GRUNECO/ 

sovapipeline 

https://github.com/
https://github.com/GRUNECO/
https://github.com/GRUNECO/
https://github.com/GRUNECO/
https://github.com/GRUNECO/
https://github.com/
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 PREP, wICA 

and the rejection 

of times. 

Sovaharmony 

(public) 

Integrates sova 

packages for use 

in multiple 

cohorts 

https://github.com/ 

GRUNECO/ 

eeg_harmonization/ 

tree/ 

main 

/sovaharmony 

neuroharmonaze.py 

(public) 

Matching and 

implement the 

neuroHarmonize 

library 

https://github.com/ 

GRUNECO/ 

eeg_harmonization/ 

blob/ 

main/ 

misc/ 

neuroharmonaze.py 

Data_analysis_ 

ML_Harmonization_ 

Proyect 

(public) 

Descriptive 

analysis and 

model 

implementation 

https://github.com/ 

GRUNECO/ 

Data_analysis_ML_Harmonization_Proyect 

Verify the installation of the libraries and the versions of the previously 

installed packages, see Figure 63. 

 

Figure 63 Output installed packages in requirements format. 

4. Run preprocessing routine, found in the eeg_harmonization repository, in 

the Python file preprocessing.py. 

5. Run preprocessing routine, found in the eeg_harmonization repository, in 

the Python file postprocessing.py. 
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6. Use the "Data_analysis_ML_Harmonization_Proyect" repository to 

generate the necessary DataFrames and graphics. 

7. Perform matching and implementation of neuroHarmonize. 

8. Use "Data_analysis_ML_Harmonization_Proyect" again for graph 

generation. 

9. Run ML_models_G1_ic. ipynb in 

"Data_analysis_ML_Harmonization_Proyect" for machine learning model 

deployment 

Annex 3: Feature Extraction 

Link to Feature Extraction 

Annex 4: Harmonization of extracted features 

Link to Harmonization of extracted features 

Annex 5: Statistical analysis of harmonized features 

Link to result of sovaHarmony (without neuroHarmonize) 

Link to result of neuroHarmonize 

Link to result of effect size tables  

Annex 6: Implementation and validation of the model 

 

Link to result of the implementation and validation of the model 

https://drive.google.com/drive/folders/1BaUcNAS3s4CFYgWSdRuAam1lJ0T8uzDL?usp=share_link
https://drive.google.com/drive/folders/1x3-R1swI13LrE2JmHoKFE2BUxTnod7SM?usp=share_link
https://drive.google.com/drive/folders/1QZ-Ow-QRuiL4D-Sb3LxLzv8tGkuC10VP?usp=share_link
https://drive.google.com/drive/folders/1NTOKD2tn01u8iMqoAhXgMghb1qtVQ6fv?usp=share_link
https://drive.google.com/drive/folders/1mchBdU34edkAZpQr6QZTRd3oQfzrpwvM?usp=share_link
https://drive.google.com/drive/folders/13nBwtmivnm8Xo29hEFx-Wg99ElBdI8kp?usp=share_link
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Methodology for Learning Curve Analysis 

To assess the performance and generalization ability of the optimized model 

obtained from the grid search, a learning curve analysis was conducted. This 

analysis helps determine how the model's accuracy varies as the number of training 

samples increases. 

The learning curve was constructed using the following steps: 

1. Learning Curve Generation: The learning_curve function was utilized to 

generate the learning curve. It takes the following inputs: 

• The optimized model. 

• The training dataset (X_train and y_train). 

• The train_sizes parameter, which defines the proportion of the training 

dataset to use. In this case, it was set to start with 10% of the training data 

and gradually increase up to 100% in 10 equal steps. 

• Cross-validation (cv) was performed with a value of 10, which splits the 

data into 10 folds. 

• The learning_curve function was executed in parallel using all available 

processors (n_jobs=-1) to expedite the process. 

2. Calculation of Mean and Standard Deviation: The mean and standard 

deviation of the training and validation scores were calculated across the 

different training set sizes. These scores represent the accuracy of the model. 
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3. Plotting the Learning Curve: A line plot was created to visualize the learning 

curve. The x-axis represents the number of training samples, while the y-

axis represents accuracy. The training accuracy was plotted in blue with 

markers, and the validation accuracy was plotted in green with dashed lines 

and markers. 

• The area between the mean + standard deviation and mean - standard 

deviation for both training and validation accuracy was filled to represent 

the variance. 

By following this methodology, the learning curve analysis provided insights into 

the model's performance with varying training set sizes. It helped assess the model's 

ability to generalize well and detect any overfitting or underfitting issues. 

Optimizing Decision Trees using Grid Search: Fine-tuning Hyperparameters 

for Improved Performance  

To optimize the performance of decision trees, a systematic approach called grid 

search was employed. Grid search involves evaluating the model's performance by 

systematically searching through a predefined set of hyperparameters to find the 

optimal combination that yields the best results. 

The following hyperparameters were considered for optimization: 

1. Number of estimators: A range of values from 100 to 2000, with a step size 

of 30, was explored. 
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2. Maximum number of features: Two options were considered: 'auto' and 

'sqrt'. 

3. Maximum depth: A range of values from 10 to 110, with a step size of 11, 

was examined. Additionally, a value of None was included to allow for 

unlimited depth. 

4. Minimum samples required to split an internal node: Three values were 

tested: 2, 5, and 10. 

5. Minimum samples required to be a leaf node: Three values were evaluated: 

1, 2, and 4. 

6. Bootstrap sampling: Two options were considered: True and False. 

7. Criterion for splitting: Three criteria were assessed: 'gini', 'entropy', and 

'log_loss'. 

A random grid was constructed using these hyperparameters, encompassing various 

combinations for testing. 

To perform the grid search, a random forest classifier was employed as the base 

estimator. The random search algorithm, RandomizedSearchCV, was utilized to 

explore the hyperparameter space. This algorithm conducts a randomized search by 

sampling a specified number of combinations from the grid and evaluating their 

performance using cross-validation. 

During the search, the algorithm was configured to perform 100 iterations and use 

10-fold cross-validation. It was set to run in parallel using all available processors 
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(n_jobs=-1) to expedite the process. The random_state was fixed to 10 for result 

reproducibility. 

Finally, the model was fitted on the training data (X_train and y_train) using the 

optimized hyperparameters obtained from the grid search. 

By implementing this methodology, the decision tree model's hyperparameters 

were fine-tuned to enhance its performance, ultimately leading to improved 

predictive capabilities. Methodology for Feature Selection using Boruta.  

This was tried methodology aimed to select the relevant features from the dataset 

based on their importance in the classification process. 

1. Initializing the Boruta Feature Selector: 

• The BorutaPy class was utilized to perform the feature selection. 

• The verbose parameter was set to 2 to display detailed information during 

the selection process. 

• The estimator parameter was set to the best-selected model obtained from 

previous steps. 

• The max_iter parameter was set to 100, which specifies the maximum 

number of iterations to run. 

• The random_state parameter was set to 10 to ensure reproducibility. 

2. Fitting the Feature Selector: 

• The feature selector (feat_selector) was fit to the training data (X_train, 

y_train) using the fit () method. 
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• During the fitting process, Boruta evaluated the importance of each feature 

by comparing it with randomized versions of the dataset. 

3. The best-selected model (best_selected) was fitted to the transformed 

feature set (X_transform) and the target variable (y_train). 

By following this methodology, the Boruta feature selection technique was applied 

to identify the most relevant features for classification. The selected features were 

then used to train a model and evaluate its performance using classification metrics 

and cross-validation. 

Methodology for Feature Selection using Decision Trees  

In this phase, the focus was on analyzing the importance of features using a decision 

tree-based approach. By understanding the significance of different features, we 

can gain insights into their contribution to the overall predictive power of the model. 

A decision tree model was trained using the training dataset, with the target variable 

being the class labels. The model was trained to determine the importance of each 

feature in the classification process. 

1. Feature Importance Scores: 

• The feature importance scores were calculated using the trained decision 

tree model. 

• These scores provide a quantitative measure of how much each feature 

contributes to the model's predictive performance. 
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2. Ranking and Visualization: 

• The features were ranked based on their importance scores in descending 

order. 

• Each feature was associated with a corresponding score, representing its 

relative importance. 

• The top-ranked features, with the highest scores, are the most influential in 

the classification task. 

The analysis of feature importance helps identify the most influential features, 

enabling us to focus on the key variables that contribute significantly to the model's 

predictive performance. By understanding the relative importance of features, we 

can make informed decisions regarding feature selection and potentially improve 

the effectiveness of our predictive models. 

Methodology for SVM (Grid Search)  

The following methodology describes the steps involved in optimizing the SVM 

model using grid search. 

1. Defining the Parameter Grid: 

• The parameter grid consists of different combinations of hyperparameters 

that will be evaluated during the search process. 

• The 'C' parameter controls the regularization strength, with a range of values 

defined using a logarithmic scale. 
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• The 'gamma' parameter controls the kernel coefficient, with a range of 

values defined using a logarithmic scale, along with 'Auto' and 'scale' 

options. 

• The 'kernel' parameter specifies the type of kernel function to be used, with 

options for 'rbf' (Radial basis function) and 'poly' (Polynomial) kernels. 

2. Model and Grid Search Setup: 

• An SVM classifier (SVC) is instantiated. 

• GridSearchCV is used to perform grid search. 

• The SVM classifier and the parameter grid are provided as inputs to 

GridSearchCV. 

• The 'n_jobs' parameter allows for parallel processing to speed up the grid 

search. 

• Cross-validation is performed with 10 folds using the 'cv' parameter. 

3. Grid Search Execution: 

• The SVM model is trained and evaluated for each combination of 

hyperparameters in the grid. 

• The performance of each model is assessed using cross-validation. 

4. Selection of Best Model: 



259 

 

• The best performing SVM model is identified based on the evaluation 

results. 

• The best estimator, representing the SVM model with the optimal 

hyperparameters, is obtained. 

By systematically searching through different combinations of hyperparameters, 

the grid search approach helps identify the SVM model with the best performance. 

The chosen model, determined by the evaluation results, represents the optimized 

SVM model for the given dataset and task. 

Methodology for TPOT  

To streamline the model optimization process, the TPOTClassifier is employed. 

TPOT utilizes genetic programming to automatically search and select the best 

combination of machine learning algorithms and their hyperparameters. The 

following methodology outlines the steps involved in using TPOT for model 

optimization. 

1. Setting Parameters: 

• The number of generations determines the number of iterations TPOT will 

go through to evolve the best model. 

• The population size determines the number of individuals (candidate 

models) in each generation. 
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• Cross-validation (CV) is performed with the specified number of folds (cv) 

to evaluate the fitness of each candidate model. 

• The random_state parameter ensures reproducibility of results. 

• Verbosity level (verbosity) controls the amount of information displayed 

during optimization. 

• The n_jobs parameter allows parallel processing for faster execution. 

2. Optimization: 

• The TPOTClassifier is applied to the dataset for model optimization. 

• TPOT automatically evolves a population of candidate models using genetic 

programming. 

• Each candidate model undergoes evaluation through the specified number 

of CV folds to assess its performance. 

3. Selection of Best Model: 

• TPOT identifies the best-performing model based on a fitness metric, such 

as accuracy or ROC-AUC. 

• The best model is selected as the output of the optimization process. 

The utilization of TPOT simplifies the process of model optimization by automating 

the search for the best combination of algorithms and hyperparameters. This 

methodology allows for efficient exploration of the model space and enables the 
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identification of highly performing models without the need for manual trial and 

error. 
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Chapter 1 

 

Complementary material  

To access the supplementary material associated with this study, please follow the 

link provided below: 

Link to Supplementary Material 

The supplementary material provides additional information and resources that 

complement the findings and methodology presented in this research. It includes 

detailed tables, figures, code scripts, and any other supporting materials that can 

further enhance the understanding and reproducibility of the study. 

By accessing the supplementary material, readers can gain deeper insights into the 

experimental procedures, additional analysis, and extended results that may not be 

included in the main manuscript. It is recommended to explore the supplementary 

material to obtain a comprehensive understanding of the study's findings. 

Should you have any difficulties accessing or downloading the supplementary 

material, please contact the corresponding author or the research team for further 

assistance. 

 

 

https://drive.google.com/drive/folders/16xzQ0wsoOP6WmDhqEuWm19Mx1xvWuoQb?usp=share_link

