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Abstract

Purpose – Big data analytics capability (BDAC) is the ability of a firm to capture and analyze big data toward
the generation of insights. The literature has mainly focused on analyzing the direct effects of BDAC on
different aspects related to firm performance such as finances and innovation. However, the lack of works
analyzing the intermediation role BDAC could play is noticeable, particularly in organizational situations that
pose great challenges in terms of data processing. Thus, the aim of this paper is to analyze BDACmediation in
the relationship between open innovation (OI), particularly customer involvement, and firm performance
(financial and non-financial).
Design/methodology/approach – Structural equation modeling was used to test the proposed model with
survey data from a sample of 112 firms.
Findings – The results show that BDAC has a partial mediating effect on the relationship between OI and
financial performance, and between OI and non-financial performance. Nevertheless, this mediation is greater
in the first relationship.
Originality/value – The main contribution of the study is to offer a broader research perspective regarding
the role of BDAC in the relationship between OI and firm performance. This study ultimately questions that
research tradition in which this role has been reduced to that of a simple application of data analytics
techniques. Instead, the results show BDAC is primarily an organizational skill that should be articulated with
key processes, such as customer involvement, to maximize the financial and non-financial use of the large flow
of data coming from the main OI activity of low and medium-technology companies.
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Introduction
Digital technology is increasingly important in achieving business goals, and its pervasive effects
have resulted in the radical restructuring of entire industries (Peter et al., 2020). Digitalization
refers to the way in which new digital technologies such as analytics, cloud, mobile and social
media can be used to modify existing business processes (Arias-P�erez et al., 2021b). Among all
these technologies, the Deloitte firm recently identified big data analytics to be in the top three of
its investment priorities, all with a view to improving revenue and customer value: itmay increase
by 15 and 23%, respectively, in an early adoption stage, and reach 45 and 41%, respectively,
when a maturity stage is reached (Gurumurthy et al., 2020). It is foreseen, however, that the
greatest impact of big data analytics in firms will be a greater exploitation of the knowledge
captured from external sources or derived from open innovation (OI) processes, i.e. collaborative
work with external actors (Dahiya et al., 2021; Urbinati et al., 2019).
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These recent findings from consulting firms mirror the results that academic literature
has repeatedly shown regarding the positive relationship between big data analytics
capability (BDAC) and firm performance (Caputo et al., 2016; Gupta et al., 2020; Mikalef et al.,
2019a). BDAC is defined as the ability of a firm to capture and analyze big data toward the
generation of insights by effectively orchestrating and deploying its data, technology and
talent (Henao-Garc�ıa et al., 2021). Conversely, firm performance has been defined as the
achievement of financial and non-financial organizational objectives (Chadwick and Dawson,
2018; Meisinger and Moldaschl, 2020). The former relates to return on investment and sales
growth, among others; the latter is concerned with customer satisfaction and employee
capacity improvement, to mention a few (Ibarra-Cisneros et al., 2021; Lee et al., 2011).

Nevertheless, this type of studies that provide a generic analysis of the relationship
between BDAC and organizational performance has been the target of certain criticism: by
not placing BDAC in specific organizational settings where there is a large flow of data and
information, they could be revealing positive effects without opening the black box (Ferraris
et al., 2019; Mikalef et al., 2018). As a result, there is a growing interest in the literature to
analyze BDAC in relation to specific organizational processes where data flow in large
quantities, specifically with supply chainmanagement (Bag et al., 2021; Rialti et al., 2019); and
in an emerging fashion with decision-making (Shamim et al., 2020) and OI on virtual
platforms (Lozada et al., 2019).

On the other hand, in the context of digitalization, OI is seen as one of the most important
research topics in the coming years (Enkel et al., 2020). OI is defined as the innovation process
based on the purposive management of knowledge flows beyond organizational boundaries
(Chesbrough and Bogers, 2014; Dogbe et al., 2020). OI is subdivided into two major
organizational processes: acquisition or inbound and outbound (Arias-P�erez et al., 2021a;
van de Vrande et al., 2009).

Unfortunately, previous studies linking OI with big data analytics are marked by their
focus on the application of specific techniques and solutions for taking advantage of the
knowledge flow coming from external sources (Urbinati et al., 2019) seeking to generate
innovation ideas (Ciampi et al., 2021; Wen et al., 2020). In other words, these studies have
mainly focused on the acquisition process and the operational dimension of data analytics,
mostly paying attention to the type of external data source (Dahiya et al., 2021), for example if
they are customers (Zhang and Xiao, 2020) or patents (Papa et al., 2021).

Therefore, on the one hand, there is a shortage of studies adopting a less operational
research perspective and analyzing the relationship between big data analytics and the OI
process of acquisition beyond the simple application of a specific data analytics technique. In
this respect, we believe that for there to be a real use of the data and the knowledge flow
created by OI, rather than learning to apply a technique, companies need to develop an
organizational capacity to generate insights from big data, i.e. BDAC, which involves having
adequate resources in terms of human resource and technology.

On the other hand, the OI process of acquisition implies collaborative work with external
allies through specific activities such as customer involvement, external networking,
crowdsourcing, outsourcing technology services, inward intellectual property (IP) licensing,
among others (Burchardt and Maisch, 2019; Cappa et al., 2019; van de Vrande et al., 2009).
Hence, more studies are needed to examine BDAC in relation to some specific acquisition
activities involving collaborative work with external actors, e.g. customers or suppliers, from
which large amounts of data emerge permanently (Lozada et al., 2019).

In the context of emerging countries, where small and mid-size enterprises (SMEs) from
medium- and low-technology technological sectors prevail, the core activity in the OI process
of acquisition is customer involvement or co-innovation with customers (Arias-P�erez et al.,
2021a; van de Vrande et al., 2009). We believe that BDAC plays an intermediary role in the
relationship between OI with customers and firm performance (financial and non-financial).
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The said relationship has been analyzed extensively in the literature (Hung and Chou, 2013;
Moretti and Biancardi, 2020; Sisodiya et al., 2013). That is, a great flow of data and
information emerges from collaborative work with customers and using it to improve firm
performance would fully rely on the mediation of BDAC. Therefore, the aim of the work is to
analyze that mediating effect based on survey data collected from a sample of companies that
work collaboratively in a program sponsored by an institution from the regional innovation
system.

In consequence, understanding the role of big data analytics in the OI process of
acquisition from a BDAC perspective is the first contribution of the article, as it breaks with
that reductionist tradition that emphasizes technique and the type of external data source.
Our research, thus, also contributes otherwise to the discussion on the activities associated
with the OI process of acquisition and BDAC by analyzing the role of BDAC in improving
firm performance from the flow of knowledge derived from collaborative work with an
external actor in particular: customers.

Theoretical framework and hypotheses development
The knowledge-based view (KBV) of the firm proposes that the inventory of individual and
social knowledge is the most valuable resource of the organization (Grant, 1996) and the main
determinant of competitive advantage (Kogut and Zander, 1992). OI and BDAC are then
considered paramount organizational skills, given their potential to generate knowledge
about the environment –particularly about technology– and the market, among other
aspects, which can be used to overcome competition (Enkel et al., 2020; Gupta et al., 2020).

Open innovation (OI) and firm performance
Acquisition or inbound involves collaborative work with external allies through activities
such as customer involvement, external networking, crowdsourcing, external participation
investments in new or established enterprises to gain access to their knowledge, outsourcing
technology services and inward IP licensing involving the purchase or use of intellectual
property, such as patents, copyrights or trademarks, of other organizations to benefit from
external knowledge (Burchardt and Maisch, 2019; van de Vrande et al., 2009).

In the context of emerging countries, where SMEs from medium- and low-technology
technological sectors prevail, the core activity of the OI process of acquisition is customer
involvement or co-innovation with customers (Arias-P�erez et al., 2021a; van de Vrande et al.,
2009). Customer involvement is an organizational skill comprised of four dimensions
(Taghizadeh et al., 2016): Dialogue represents communication between companies and
customers. Access refers to tools and processes that facilitate co-innovation with customers.
Risk is related tomeasurements that enable customers to assess the risk involved in accepting
a value proposition. Transparency is the degree to which a company reduces information
asymmetry relating to customers (Zaborek and Mazur, 2017).

The relationship between OI, particularly its acquisition process, and firm performance has
been studied extensively in the literature, and this process has been proven to energize the
knowledge flow fromexternal sources into the company, facilitating the improvement of financial
and non-financial performance aspects (Hung and Chou, 2013; Liao et al., 2020; Sisodiya et al.,
2013; Wang et al., 2015). In particular, customer involvement allows knowledge capture in terms
of ideas, experiences and customer needs, and the development of innovative and creative
solutions (Dogbe et al., 2020; Wen et al., 2020), which, when implemented, are translated into
improvements of different firm performance aspects, including revenue, customer satisfaction
and profitability, among others (Caputo et al., 2016; Moretti and Biancardi, 2020).
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Mediating role of big data analytics capabilities (BDAC) in the relationship between open
innovation and organizational performance
The term big data has gained influence as a paradigm for taking advantage of the growing
flow of information to add value to the data for making better-supported decisions
(Vidgen et al., 2017). Despite the growing influence of big data, there are still divergences of
concepts (Dumbill, 2012), but it could be defined as information assets with characteristics of
high volume, high velocity and high variety, which demand innovative and cost-effective
ways of processing to improve their understanding and making sound decisions (Chen et al.,
2012; Dumbill, 2012).

Volume refers to the amount of information generated fromdata internally or externally in
organizations from sensors and internet of things (IoT) devices, transactions, social networks,
among others. It is a characteristic related to technological development since its magnitude
depends on the generation and storage capacity; what today could be big datamight not be in
the future (Demchenko et al., 2013). Velocity is related to the speed of information generation,
the variety of the collected data already structured; from spreadsheets to unstructured data
such as text, image, audio and others (Gandomi and Haider, 2015).

To the mentioned characteristics, also known as the 3Vs, other authors add veracity and
value to form the so-called 5Vs of big data (Fosso Wamba et al., 2015; Gantz and Reinsel,
2011). Veracity is understood as reliability of the origin of the information and reliability of
the processing method. Value is understood as the benefit generated by data processing,
which can be given in the form of prediction, forecasting and making better business
decisions. Additionally, dimensions could be added such as variability, associated with the
variation of information flows, or complexity associated with the diversity of data sources
(Gandomi and Haider, 2015).

Big data analytics capabilities refer to incorporating big data into the organizational
decision-making process (Rialti et al., 2019). This approach includes not only big data
technical infrastructure, but human skills and the knowledge required to embrace, adopt and
deploy data-driven insights extraction (Van De Wetering et al., 2019). BDAC can be divided
into different factors: (1) tangible, such as technology and financial resources; and (2)
intangible, which relates to human skills and knowledge (Gupta and George, 2016). Human
skills are relevant to derive value from information, and data culture created within
companies is key to implement technologies and conduct successful processes with higher
information flows and knowledge (Mikalef et al., 2019b).

BDAChelps companies to identifymarket trends and preferences to develop products and
services to meet demand (Beretta, 2019). BDAC can enable organizations to focus their
strategic decision-making process (Ferraris et al., 2019) related to markets more accurately,
reducing uncertainty and risks at the same time (Gupta and George, 2016).

At a strategic level, BDAC became a crucial element (Hagel, 2015) since it facilitates the
understanding of business dynamics for managers, identifying business trends and changes
in the environment (Schl€afke et al., 2013), through the transformation of large volumes of data
into useful information (Alnoukari and Hanano, 2017), which also has a positive impact in
terms of market value, productivity and financial benefits (Brynjolfsson et al., 2011). The
above is reflected in the growing trend of companies toward investing in data analytics tools
(Davenport et al., 2010). BDAC could determine a high or low performance since it allows
companies to become proactive and prospective; it can also improve their yields and customer
acquisition by about 8%. (Liu, 2014).

Companies that develop better BDAC are more likely to innovate and create new products
and services (Mikalef et al., 2019b); its relevance for the OI debate results from its importance
to identify social changes in consumption, production and its connectionwith the exchange of
knowledge, information and skills, which are proven to be highly effective to conduct
successful OI processes (Del Vecchio et al., 2018). By developing BDAC, companies can take a
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great amount of data from external interactions between firms and external actors such as
customers to identify business opportunities, expand market share, reduce costs or create
new products and services.

For example, customer involvement yields data on customer experiences with the company’s
existing products, whether structured such as databases with customer contact information and
recent orders or returns, or unstructured such as reports of customer opinions on the company’s
social networks or on virtual innovation platforms. Nonetheless, BDAC is essential for taking
advantage of this large flow of data; it means the innovation team will have the knowledge and
criteria to draw on the application of data analytics to create insights that will ultimately be
translated into solutions improving firm performance. In situations such as this, sentiment
analysis classifies the opinions of customers about a product, and even allows knowing in real
time whether those opinions have a positive, negative or neutral connotation, facilitating the
generation and implementation of innovative solutions (Zhou et al., 2020).

In short, large amounts of data and information emerge from collaborative work with
customers, e.g. from their experiences with new and existing products, from conversations with
them, from changes in their preferences, among others. However, BDAC is the organizational
ability that allows to permanently and routinely generate insights from these data so that they
may be translated into actions that concretely enhance key aspects of firm performance such as
revenue, customer satisfaction, among others. Therefore, this study proposes the following
hypotheses:

H1. The relationship between the process of inbound OI, particularly customer
involvement and financial performance, is mediated by BDAC.

H2. The relationship between the process of inbound OI, particularly customer
involvement and non-financial performance, is mediated by BDAC.

Methodology
Sample and data collection
The proposed model was tested in a sample of manufacturing and service companies located in
Colombia, from medium- and low-technology sectors, namely, food and plastic products
manufacturing. The use of big data analytics in these industries has grown exponentially in
recent years, the reason why they are changing in an accelerated manner (Nara et al., 2021;
O’Connor and Stephen, 2017; Shukla et al., 2019). These firms work collaboratively in a program
sponsored by an institution from the regional innovation system, which liaises firms with
universities and digital technology providers.

In this scenario, firms have several tools at their disposal to devise new products and adopt
new technologies, including digital ones, e.g. training in cloud services, andmachine learning and
its different applications for business. In principle, this strategy has encouraged local companies
to adopt cloud services, e.g. data storage, to use big data analytics tools, such as sentiment
analysis, and to develop analytical models to segment and anticipate customer churn or buying
intention. On the other hand, companies have access to a virtual co-innovation platform onwhich
they create innovation ideas with customers, universities and other external actors.

The questionnaire was administered via e-mail and physically to senior management from a
total of 600 firms. Field workwas conducted between September 2018 and October 2018. Finally,
112 responses were obtained; a sample size guaranteeing satisfactory statistical power, greater
than 80% (Hair et al., 2019).

Measurement scale
To measure the BDAC, the scale of Gupta and George (2016) was used, which is a construct
composed of three second-order constructs: tangible, human and intangible skills. Tangible is
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composed of three formative constructs: data, technology and basic resources; intangible of
two reflective constructs: data-driven culture and intensity of organizational learning. The
scale from Taghizadeh et al., 2016) comprising four dimensions – dialogue, access, risk and
transparency – was used to measure OI with customers. For financial and non-financial
performance, the scales proposed by Lee et al. (2011) were used.Wedecided to use these scales
because they look beyond financial aspects, such as customer satisfaction – an essential
indicator when analyzing innovation with customers as an independent variable. Besides, a
Likert scale from totally disagree (1) to totally agree (5) was conducted.

Reliability and validity
The reliability and validity of the measurement model were examined with equations by the
partial least squares (PLS) method, given the presence of formative and reflective constructs
(Hair et al., 2019). Since themodel BDAC is an endogenous variable withmore than two layers
of constructs, it was decided to perform the two-stage hierarchical component model (HCM)
analysis independently to simplify the PLS path model. This analysis allows to obtain the
scores of the three latent constructs of this capability: tangible, human and intangible
abilities, and use these scores as manifest variables in the PLS path model, particularly in the
evaluation process of the measurement model as a whole and the structural model
(Hair et al., 2019).

Before obtaining the latent variable scores, the reliability and validity of the scale were
examined (Table 1). In the case of the formative constructs, it was verified that the variance
inflation factor (VIF) values were below 5, and the weights of the constructs and formative
itemswere significant. In the case of itemswith no significant weights, it was verified that the
loading was significant (Hair et al., 2019).

Regarding the reflective constructs, it was verified that all the items had a loading equal to
or greater than 0.7. It was found that all constructs presented a Cronbach’s alpha (CA),
composite reliability (CR) and Dijkstra–Henseler (pA) indexes greater than 0.7, and an
average variance extracted (AVE) greater than 0.5. Table 1 shows the validation results of the
BDAC. To establish discriminant validity, it was confirmed that all heterotrait-monotrait
(HTMT) values were below the threshold of 0.85.

Mediating effect test
This study followed the procedure by Zhao et al. (2010), who proposed the confirmation of the
statistical significance of indirect effects by the bootstrap-percentile test, as the only criterion
to account for the existence of a mediating effect. This procedure constitutes an improvement
compared to the one previously used (Baron and Kenny, 1986), which demanded to prove the
significant direct effects between X and Y as prerequisite to test the mediation. This does not
make sense since the mediation can be total, i.e. all the effect of X on Y takes the indirect way
through the mediator (Hair et al., 2017). To confirm the above, structural equations were used
by the method of PLS (Hair et al., 2019).

Results
Table 2 shows that the paths of the indirect effects between OI and BDAC (β 5 0.46;
t-value5 5.64), between BDAC and financial performance (FP) (β 5 0.40; t-value5 2.52), and
between BDAC and non-financial performance (NFP) (β 5 0.41; t-value5 2.97) are significant
and positive. This being so, thementioned criterion defined in the procedure of Zhao et al. (2010)
is met to test the mediations. Therefore, H1 and H2 are accepted. However, the direct effects
paths between OI and FP (β 5 0.24; t-value 5 1.76), and between OI and NFP (β 5 0.37; t-
value 5 2.99) are also significant and positive.
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Hence, this result means a part of the OI positive effect directly reaches the two firm
performance aspects; however, another part of this effect requires the intermediation of
BDAC to be able to become a real impact on firm performance. In other words, part of this big
data flow and information coming from OI with customers is at a high risk of being wasted
and will not be translated into an improvement in financial and non-financial results, unless
BDAC intervenes and takes advantage of these data and generates insights that ultimately
become better decisions and solutions.

With the aim of dimensioning how important this BDAC mediating role is, the variance
accounted for (VAF) test was carried out (Table 2), allowing to establish the magnitude of the
indirect effect with respect to the total one. In the case of FP, 43% of its variance is explained by
the indirect relationship via themediator variable, whereas in the case of NFP, such percentage is
34%. This indicates that BDAC mediation is partial in both cases since the percentages do not
exceed 80% (Hair et al., 2017).

Discussion and conclusions
Contrary to what was expected, BDAC mediation is partial, and the OI process of acquisition,
particularly customer involvement, has a positive and significant influence on firm performance.
This was an unforeseen result as the existence of such direct effect had been ruled out entirely.
However, the fact that BDACmediation represents 43 and 34%of the total effect of OI on FP and
NFP, respectively, indicates this variable plays a complementary role that cannot be overlooked
in the context of medium- and low-technology companies. BDAC is, in effect, maximizing the
financial and non-financial use of the large flow of data produced by customer involvement.

Anyway, BDAC mediation is higher in the relationship between OI and FP. This fact could
explain how BDAC improves the decision-making process inside organizations regarding
markets, competitors and others, as well as how its effect impacts financial variables related to
revenue, sales and cost reduction in a faster manner (Caputo et al., 2019). Nevertheless, that effect
could appear more delayed for non-financial variables such as customer satisfaction, reputation
and innovation processes, because these variables involve other human components, such as
knowledge management and absorptive capacity, which require more time to improve (Ahn
et al., 2016).

This article contributes to the literature showing evidence that BDACmust be understood
in its relationship to OI and firm performance, not just from a technological perspective, as it

Trajectories Coefficient t-value

Direct effect
OI → BDAC (R2: 0.42) 0.46*** 5.646
OI → FP 0.24* 1.766
OI → NFP 0.37** 2.992
BDAC → FP (R2: 0.31) 0.40** 2.527
BDAC → NFP (R2: 0.45) 0.41** 2.978

Indirect effects
H1. OI → BDAC → FP (VAF 5 43%) 0.18* 2.04
H2. OI → BDAC → NFP (VAF 5 34%) 0.19* 2.32

Control variables
Age → FP 0.20 1.596
Size → FP �0.070 0.566
Age → NFP 0.08 0.740
Size → NFP �0.040 0.353

Note(s): *p < 0.05; **p < 0.01; ***p < 0.001

Table 2.
Structural equations
results

JSMA
15,1

10



has been predominantly considered, but as an organizational skill and a resource to develop
the OI process successfully to finally impact firm performance. In this context, BDAC is not
simply related to technological conditions that support the decision-making process, but to a
capability that could drive other internal or external processes. Above all BDAC is a strategic
skill that impacts OI by driving interactions and information gathering that helps companies
to create networks and encourage collaborative working, which impacts OI according to this
paradigm. This ultimately boosts innovation in products or services, impacting sales,
customer satisfaction or market share, and having a positive effect on firm performance.

Thus, the main contribution of the study lies in the fact that it offers a new, broader study
perspective on the role of BDAC in the relationship between OI and firm performance.
Ultimately, our study questions the research tradition adopted by recent studies that have
resorted to reducing this role to a simple application of data analytics techniques or
identifying specific solutions to benefit from the knowledge flow coming from external
sources (Urbinati et al., 2019) or those highlighting the importance of certain external data
sources (Papa et al., 2021); Zhang and Xiao, 2020). Instead, our results show BDAC is far more
than the application of a set of techniques. It rather is an organizational skill that should be
aligned and highly articulated with the outputs of key processes – namely collaborative work
with customers – yielding the data flow with the greatest potential to impact the firm
performance of medium- and low-technology companies.

In consequence, a first practical recommendation is to rethink altogether the storage of
structured or unstructured data coming from collaborative work with customers. Until now,
storage has been carried out to facilitate consultation by other members of the organization
(Wen et al., 2020), e.g. by creating a bank of lessons learned in the corporate intranet.
Nonetheless, our results compel us to understand storage as an enabler of big data analytics.
Based on our results, we therefore consider the prioritization of data storage in the cloud –
which greatly facilitates the implementation of big data analytics solutions – to be fitting. For
example, Amazon offers Hadoop as a service (HaaS); it is a big data analytics framework that
stores and analyzes data in the cloud using the Hadoop software library. This service can be
very useful for companies that are just entering the world of analytics.

On the other hand, a second recommendation concerns the ongoing training of employees,
mainly the product and process innovation team that interacts with customers, so that they
are familiar with the main big data analytics solutions available in the market, such as HaaS.
In that sense, our recommendation is not to turn the innovation team into data scientists, but
to broaden their understanding of the potential of all current and emerging analytics tools,
particularly their purposes, uses and benefits, so that the team can even utilize them
proactively to take advantage of the large flow of data produced by customer involvement.

The main limitation of our work is that it is confined to one of the several activities
associated with the OI process of acquisition or inbound, namely, collaborative work with
customers. However, there are other activities within this process such as outsourcing
technology services, inward IP licensing, supplier involvement, among others, from which
large amounts of data and information emerge. Moreover, the flow of data produced by the OI
process of exploitation or outbound is not within the scope of the present work.

On the other hand, the work was conducted in an emerging country where medium- and
low-technology sectors predominate, as reflected by our sample of firms. Consequently, the
extrapolation of our results to the context of developed countries is limited, as high-tech firms
are more common in the latter and OI influences firm performance, albeit under different
conditions, given the presence of other types of relationships between both constructs at
different points in time (Fu et al., 2019).

Future studies should, thus, strive to examine the mediating role of BDAC in the
relationship between the other OI acquisition activities and firm performance. Secondly, it
would also be worth analyzing the mediating role of BDAC in the relationship between the OI
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process of exploitation or outbound and firm performance, a work that could potentially
make a great contribution to the field of OI in the digital age. Similarly, analyzing whether
BDAC plays a moderating role in the relationship between OI and firm performance in high-
tech firms would also be worth exploring.
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