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A numerical scheme for dynamic response of deep-water risers is presented in this paper; its
formulation is based on the Finite Element Method (FEM) and the quasi-steady model for

prediction of the transverse forces. The increased mean drag coefficient during lock-in is also
considered in the numerical scheme. The simulation results are compared to experimental data
obtained from a 35-meter long flexible riser model. Good agreement is observed in these
comparisons. The in-line response of the riser model is well represented by the numerical
scheme and the transverse response is under-predicted as the oscillating frequency increases.
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1. Introduction

There is an increasing interest in developing
floating offshore facilities for deep petroleum

production. One of the main challenges of such
developments is the riser system employed to
transport oil from the seabed to floating offshore
structures. The main concern for designers is that
strong marine currents may induce vibrations
created by vortices shed from the riser. These
Vortex-Induced Vibrations (VIV) may cause severe
fatigue damage to the riser. The resonant type VIV,
when the vortex shedding frequency approaches, or
is coincident with, a natural frequency of the riser,
may cause considerable transverse oscillations of
the riser.

The VIV analysis of a deep-water riser is still
challenging due to the fact that the riser can be
excited along its length in different modes and at
different frequencies leading to a modal response
dominated by mode interference, multi-mode
response, mode switching and frequency
dependence of the added mass. Several analytical
models have been developed to describe the

dynamic response of deep-water risers; these models

predict quite well the dynamic response of risers
under controlled experimental conditions having 
many difficulties when they are dealing with severe
environmental conditions as reported by Hong and
Koterayamal) and Faccinetti et al. 2).

Numerical methods have been extensively used
to solve the coupled problem of VIV of risers. There
are basically three methods, namely the direct
numerical simulation, the Vortex-In-Cell (VIC)
method and the Finite Element Method (FEM)3).
The numerical approach has many limitations
considering the large number of variables that must
be included in the analysis; in addition, modal
response in sheared current is still not well
understood. The fluid motion and the motion of the
riser must be coupled in order to obtain a good

prediction model; especially in the lock-in region,
where the vortex shedding frequency collapses onto
the natural frequency. It is still challenging to
numerically predict the dynamic behavior of this
coupled system. Most of the numerical simulations
are restricted to the lower end of the Reynolds
number spectrum.
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The semi-empirical approach is also widely used
to predict the VIV response of risers. The current
semi-empirical prediction programs used large
databases of experimentally determined coefficients
to predict VIV. Although these programs are widely
used for practical applications, different models for
the prediction of VIV can give different results
among these programs as reported by Gabbai and
Benaroya3). Several experiments have also been
conducted recently to better understand the VIV
response of risers. Some of these experiments were
carried out to measure the hydrodynamic input
coefficients for the aforementioned semi-empirical
prediction programs to validate analytically derived
models of risers. The main conclusion that can be
drawn from these experiments is that VIV response
is an inherently nonlinear, self-regulated, multi-dof
phenomenon3).

A numerical scheme to simulate the VIV
response of long flexible risers is presented in this
paper. The Finite Element Method (FEM) is used in
conjunction with the quasi-steady model to predict
the transverse response of the riser taking into
account the main features of the VIV process.
Experimental validation is also carried out using a
35-meter flexible riser model.

The main objective of the development of this
numerical scheme is to provide a reliable tool that
can be used to implement vibration-based damage
detection methodologies in deep-water risers. It is
still challenging such implementations, but the first
step in this direction must be the development of
time-efficient and accurate dynamic response tools.

2. Numerical Scheme

One of the most widely used models to describe
the in-line motion of a structure excited by a fluid
flow is presented in Eq. (1)4).

(1)

where m0 is the mass of the structure per unit length,

xi is the relative displacement of the structure, ƒÄ0

is the damping coefficient, ƒÖ0 is the natural

frequency of the structure without fluid surrounding

it and kxl is the stiffness parameter related to the

combination of the physical constants of the

structure such as Young's modulus and Poisson's

ratio and its moments of the inertia. The density of

the surrounding fluid is denoted by ƒÏ, the cross-

sectional area of the displaced fluid by S, the steady

velocity of the fluid in the in-line direction acting on
the surface of the structure is defined by U1, and D
is defined as the characteristic length (e.g. diameter
of the riser). The three force parameters correspond
to the widely recognized approach proposed by
Morison et al.5). The mean drag coefficient is
denoted by Cd, the added-mass coefficient by Ci and
the inertia coefficient is defined by Cm=Ci+1.0.

2.1 The Quasi-Steady Model

The analytical representation of the transverse
lift force is incorporated into the numerical scheme
by using the quasi-steady procedure presented by
Obasaju et al.6). This model can be used in
conjunction with the left-hand side of the Eq. (1) to
represent the cross-flow response of the structure
using the corresponding stiffness parameter and the
relative displacement of the structure in the
cross-flow direction. The quasi-steady procedure
assumes that regular shedding of vortices produces a
sinusoidal force (transverse lift force), which is
proportional to the square of the in-line maximum
velocity as shown in Eq. (2).

(2)

where FL is the lift force per unit length of the

structure, U0 is the relative in-line maximum

velocity, CLmax is the maximum lift coefficient6), ƒÖL

is the dominant frequency6) and ƒÕ is the phase

angle. The dominant frequency mainly depends on

the Keulegan-Carpenter number (KC) when the

Strouhal number St=0.2 (Reynolds Numbers 2.5•~102

<Re<2.5•~105). Obasaju et al. 6) showed that the

vortex patterns around a circular cylinder in

oscillating flow can be approximately divided into

five regimes, namely the asymmetric (4•…KC•…

8), the transverse (8•…KC•…15), the diagonal

(15•…KC•…22), the third vortex (22•…KC•…

30), and the quasi-steady (KC•†30). Each of these

regimes is characterized by an approximate

dominant frequency.

The basic assumption behind the quasi-steady

procedure is that static fluid forces measured on a

stationary body can be used to approximate dynamic

fluid forces on an oscillating body, the main

drawback of this approach is that fluid-structure

interaction is completely neglected7).

One of the major challenges in the numerical

implementation of the quasi-steady model in

deep-water risers is the correct calculation of the

phase angle, ƒÕ. Each section of a deep-water riser

is excited at a particular dominant frequency in the
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cross-flow direction, which indeed is related to its
in-line amplitude; therefore, the phase angle used in
Eq. (2) must be calculated only when the steady
response is achieved; otherwise, wrong in-line
amplitudes obtained during the transient response
may under-estimate the phase angle and lead to
out-of-phase response between the in-line and the
cross-flow motions of the deep-water riser.

2.2 Increased Mean Drag Coefficient Model

Vandiver8), using experimental data, showed
that mean drag coefficients in excess of three can be
achieved when the vortex shedding frequency
approaches one of the natural frequencies of a
oscillating body, this phenomena is called lock-in.
Experimental studies have shown that lock-in occurs
when the reduced velocity, (Ur=U1/(foscD)), reaches
a value between 4 and 87). Here, fosc, is the
oscillating frequency of the body.

Kim and Perkins9) presented a methodology to
compute the increased mean drag coefficient during
lock-in using the maximum peak-to-peak amplitude

(2Y) in the cross-flow direction (transverse
direction). The increased mean drag coefficient is
then computed from Eq. (3), where Cd0 is the mean
drag coefficient and Cd is the increased mean drag
coefficient.

(3)

3. Numerical Implementation

The numerical solution of the differential
equation governing the static and dynamic behavior
of a flexible riser, presented in Eq. (1), is carried out
using the Finite Element Method (FEM). The
commercial software ABAQUS10) is used to
assemble the FE model of the riser and the
ABAQUS/Aqua10) capability is used to input the
in-line hydrodynamic forces to the riser.

The riser is then idealized as an assembly of
2-node cubic pipe elements using the Euler-
Bernoulli beam theory. The main idea behind this
procedure is that using multiple beam elements to
compose the flexible riser allows the element cubic
shape functions to more closely fit the actual shape
function of a nonlinear beam, thus improves the
simulation accuracy.

Due to the inherently nonlinear behavior of the

riser response, a nonlinear time-domain method is

selected. A static stress analysis is performed in

order to apply the self-weight of the riser. As a

result, the geometric nonlinearity is included during

this step. The dynamic response of the riser is

computed using the direct-integration method10),

during this step the quasi-steady model and the

increased mean drag coefficient model are

incorporated into the proposed numerical scheme

using an in-house FORTRAN subroutine developed

by the authors.

3.1 Free-end Riser Models

The numerical scheme is first implemented in

free-end riser models, these models are sinusoidal

excited at their top end and free supported at their

bottom end. Hong and Koterayama1) developed a

new analytical scheme for dynamic response of

flexible risers under controlled environmental

conditions and compared the results obtained from

their analytical scheme with experimental data.

Transverse force was not considered in the

numerical scheme1). The experimental model1) has a

length of 6.5m, Young's modulus of 8.847 MPa,

outer diameter of 0.0225m, inner diameter of

0.0127m and density of 1476 kg/m3. A bottom

weight is added to the model in order to keep it

straight during the dynamic tests. This bottom

weight has a diameter of 0.034 m, a total length of

0.093m and a weight in water of 3.489 N.

The experimental riser model presented by

Hong and Koterayamal) is simply supported at its

top end and free supported at its bottom end. The

riser model is excited at its top-end by a sinusoidal

forced oscillation motion with amplitude of 0.1m

and forced oscillation periods of 2 sec., 6 sec. and

10 sec. At the water level there is no horizontal

velocity component (U=0). The riser model is

excited at Reynolds numbers (Re) up to 2000 and

Keulegan-Carpenter (KC) numbers up to 28. This

regime is named the third vortex (22•…KC•…

30) by Obasaju et al.6). In this regime three full

vortices are formed during each half cycle and three

vortex pairs convect away during a complete cycle.

The forced oscillation experiments are carried

out in an experimental tank of 65m long, 5m wide

and 7m deep. Ten CCD cameras are used to

measure the motion of the riser model; each pair of

cameras is arranged at the same level in the x-y

direction. Fig.1 depicts the riser motion, where the

x-axis is defined in the direction of the forced

oscillation motion. The coordinate system is then

defined using the z-axis in the direction of the riser's

axis.
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Fig. 1 Riser Motion and Coorditate System.

The analytical and experimental results

presented by Hong and Koterayamal) are shown in
Fig.2. The horizontal axis shows the in-line
displacements, which are normalized by the
amplitude of the forced oscillation motion (AXO).
Fig.3 shows the simulation results obtained with the

proposed numerical scheme. Good agreement is
observed.

Fig. 2 In-line Response (Hong and Koterayama1)).

Fig. 3 In-line Response (Proposed Numerical Scheme).

A second riser model, using the same properties
and boundary conditions from the model previously

presented1), was developed by Senga and
Koterayama11). The previous numerical scheme1) is
extended by Senga and Koterayama11) in order to
include the transverse (lift) force using the harmonic
model presented in Eq. (4).

(4)

where FL is the lift force per unit length of the

structure, U is the instant in-line velocity, CL is the

lift coefficient, f
s is the shedding frequency and

ƒÕ is the phase angle. The experimental riser

model11) is excited by a sinusoidal force oscillation

motion with amplitude of 0.1m and force

oscillation period of 8 sec.11).

According to Senga and Koterayama11) the

oscillation parameters avoid the lock-in condition,

because the oscillating frequency is located in

between the nearest natural frequencies of the

model. The riser model developed by Senga and

Koterayama11) has fundamental periods of 11 sec.,

4.8 sec., 3.1 sec. and 2.3 sec.

The analytical and experimental results obtained

from the riser model presented by Senga and

Koterayama11), using the transverse response of the

riser model at a depth of 4.31m (YC2), are shown

in Fig.4. The simulation results obtained by the

proposed numerical scheme are shown in Fig.5. In

the proposed numerical scheme the hydrodynamic

coefficients were obtained from experiments

conducted by Koterayama and Nakamura12), and the

maximum lift coefficients were obtained from

Sanghafian et al.13).

Fig. 4 Transverse Response (Senga and Koterayama11)).

Fig. 5 Transverse Response (Proposed Numerical Scheme).
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The in-line response of the riser model is

accurately represented by the proposed numerical

scheme as shown in Fig.2 and 3. On the other hand,

it can be seen from Fig.5 that the transverse

response at YC2 during 40 seconds has the same

frequency content of the experimental data

presented in Fig.4 resulting in 19 positive peaks;

therefore, the quasi-steady model using the

dominant frequency appropriately represents the

transverse motion at YC2. Some differences are

observed in the maximum displacements of the

transverse response at YC2 due to the inherently

nonlinear nature of the VIV process. Senga and

Koterayama11) reported that the error between the

experimental and simulations results is mainly

induced by the direction of the VIV.

3.2 Long Flexible Riser Model

3.2.1 Experimental Model

The forced oscillation experiments are carried

out in the deep-sea basin of the Integrated

Laboratory for Marine Environmental Protection

located in the National Maritime Research Institute

(NMRI). This deep-sea basin is shown in Fig.6 and

consists of two main parts, a circular basin (depth: 5

m, effective diameter: 14m) and a deep pit (depth:

30m, effective diameter: 6m). The underwater

3-dimensional measurement equipment consists of

20 high-resolution digital cameras (2 units/set•~10

sets).

Fig. 6 Deep-Sea Basin (NMRI).

The main features of the experimental riser
model are presented in Table 1. Fig.7 shows the
experimental riser model, its coordinate system is
defined in the x-axis by the in-line motion, the
y-axis corresponds to the transverse motion and the
z-axis is defined in the direction of  the riser's axis as
shown in Fig.l. At the water level there is no
horizontal velocity component (U=0). Fig.8 shows
the details of the bottom support of the riser model.

Table 1 Characteristics of the Riser Model.

Fig. 7 35-meter Experimental Riser Model (NMRI).

Fig. 8 Bottom Connection of the Riser Model.

The riser model is fixed at its top end and along
the x-axis is sinusoidal excited with an amplitude of
0.02m (AX0) and periods ranging from 1.06
seconds to 1.56 seconds. Steel bars are added to the
riser model in order to increase its self-weight. The
total weight of the riser, including the steel bars, is
119.25 N.
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3.2.2 Numerical Simulation

The FE model of the 35-meter flexible riser is

assembled using 138 pipe elements; its self-weight

is applied during the static step and hydrodynamic

forces during the dynamic step as previously

described. The model is fixed at its top end and the

boundary condition at the bottom end, as shown in

Fig.8, is numerically represented by a system of

linear springs, which constrain displacements and

moments in x-and y-axis, an additional linear spring

constrains the z-axis moment. A nonlinear spring is

additionally used to allow vertical displacements up

to a maximum of 2 mm in the downward direction;

in the upward direction this nonlinear spring

restrains axial displacements.

Although the model is sinusoidal excited at its

top end, its dynamic response is transient due to a

time-varying load. It takes approximately 6 seconds

for the wave to completely excite the bottom of the

riser; then, the steady response is achieved and all

sections of the model are sinusoidal excited having

different oscillating frequencies, amplitudes and

phase angles. The initial unsteady response of the

model has a big incidence in the calculation of the

phase angles according to Eq. (2). A numerical

procedure is implemented in the proposed numerical

scheme using the top end of the model as a

reference. The phase angle is then calculated using

the time difference between the time required for

each section of the model to achieve its maximum

amplitude and the required time at the top end to

achieve the same condition. This procedure was

implemented in the in-house FORTRAN subroutine.

The KC numbers achieved for the riser model

range approximately between 2 and 8. The

hydrodynamic coefficients depend on the Reynolds

number and KC number. The assumption that the

hydrodynamic coefficients only depend on the KC

number is completely avoided in this numerical

implementation, at low KC numbers the beta

parameter (ƒÀ=Re/KC) must be considered. Lin et

al.14) present experimental data at ƒÀ=70 and Obasaju

et al.6) at ƒÀ=196, which are the lower and upper

limits, respectively of the range of the beta values

achieved for the 35-meter riser model.

Obasaju et al.6) carried out a comprehensive

study using circular cylinders in oscillating flow. In

this experimental study it was demonstrated that in

the transverse regime, (8<KC<15) the maximum

lift coefficient is estimated to be 0.5. Sanghafian et

al.13) numerically show a sharp decrease in the

values of the maximum lift coefficients at low KC

numbers (2<KC<8). Using a fixed beta parameter

of 1035, the computed maximum lift coefficient,

CLmax, is 3.0 at KC=8, but when KC=4 and KC=2,

the maximum lift coefficients are CLmax=0.5 and
CLmax=0.1, respectively. Considering that 70% of the

pipe elements of the riser model are excited at very
low KC numbers (2<KC<4) a conservative value
of 0.5 for the maximum lift coefficient is used for
the numerical validation of the dynamic scheme .

The natural frequencies of the numerical model
were computed considering the added-mass effect.
The reduced velocity of each section is checked and
when its value is located in between 4 and 8, lock-in
is included in the simulation by switching the
dominant frequency to the nearest natural frequency
in Eq. (2) and increasing the mean drag coefficient
according to the procedure previously presented. An
average value of increased mean drag coefficient is
used for each section, these values mainly ranges
from 2.25 to 4.

The damping force acting on a flexible riser is
due to structural damping and fluid damping. In
water structural damping will often be relatively
small compared to fluid damping, and may therefore
be of secondary influence. The damping force
depends on the oscillation amplitude at frequencies
above the lock-in region than at frequencies below
the lock-in region. Within the lock-in region
damping is frequency and amplitude dependent.

When a flexible riser is oscillating in the lock-in
region, in addition to the damping force, the
oscillating amplitude is also influenced by the
magnitude of the mass ratio. The mass ratio is
related to the ratio of the riser density to the fluid

surrounding it. A decreasing value of the mass ratio
induces increasing dynamic response as reported by
Chakrabarti15). Large-amplitude vibrations due to
lock-in and a low mass ratio value are the main
characteristics of the long flexible riser model

presented in this paper; therefore, a structural
damping ratio of 2% was included in the simulation
scheme using as a reference the structural damping
ratios proposed by Yamamoto et al.16), which ranges
between 2% and 5%.

It is also important to highlight that during
lock-in, the riser vibration is only limited by its
structural damping. However, once the amplitude
reaches about 1 or 1.5 times the riser's diameter, its
vibration becomes self-limiting. If the riser does not
achieve the lock-in condition, its vibration does not
account significant amplification; this is the main
reason why structural damping was not considered
for the free-end riser models previously presented.

Fig.9, 10, and 11 show the time history
response of the riser during 20 seconds exited at a

period of 1.06 sec. and Fig.12, 13, and 14 at a
period of 1.56 sec. In-line and transverse responses
were computed at depths of 5m, 10.5m, 15m, 20
m, 25m and 27.5m.
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Fig.9 Time History Response at z=-5m and z=-10.5m

(7=1.06sec.).

Fig.10 Time History Response at z=-15m and z=-20m

(T=1.06sec.).

Fig.11 Time History Response at z=-25m and z=-27.5m

(T=1.06sec.).

Fig.12 Time History Response at z=-5m and z=-10.5m

(7=1.56sec.).
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Fig.13 Time History Response at z=-15m and z=-20m
(T=1.56 sec.).

Fig.14 Time History Response at z=-25m and z=-27.5m

(T=1.56 sec.).

The experimental data were passed through a 6th
order high-pass Butterworth filter with a 0.1 Hz
cutoff. The in-line phase angles were corrected in 
order to improve the quality of the graphical results.
Variations in the phase angles were found when the
experimental results are compared with simulation
results. These variations may be caused in part by

the initial unsteady response of the riser.
Large displacements at the bottom end may be

less dominant in the real boundary condition.
Furthermore, although a proportional-type damping
ratio of 2% was included in the simulation scheme,
a local damping mechanism is likely to be acting at
the bottom end and its numerical simulation may
involve highly nonlinear behavior.

There is a considerable deviation in the
transverse response in Fig.9, 10 and 11. The
transverse response of the riser is under-predicted by
the proposed numerical scheme when T=1.06
seconds; on the other hand, the in-line response of 
the riser presented in Fig.10 and 11, which
correspond to the lock-out region, is over-predicted.
The main reason for this tendency is that the
transverse response of the riser has a big incidence
in the mean drag coefficients, this fact has been

proved by many experimental studies and even in
the lock-out region the cross-flow amplitude may
increase the mean drag coefficient and then reducing
the in-line response.

In Fig.15 and 16 the maximum FFT amplitudes
are computed for the in-line and transverse response
of the riser. Good agreement is observed between 
the experimental and the simulation results. The
transverse response of the model is relatively well

predicted by the quasi-steady model and although
the proposed numerical scheme considers the effect
of the increased mean drag coefficient during
lock-in, it is still challenging to predict the dynamic
response of a flexible riser in this stage. The period
of excitation (T=1.06 seconds) induces a dynamic
response having 36 elements of the FE model
moving under lock-in considerations; on the other
hand, when the period of excitation is increased to
T=1.56 seconds, the number of FE elements under
lock-in considerations is 62.

Several studies have been conducted using the
shedding frequency to compute the transverse
response. In the proposed numerical scheme the
dominant frequency is used instead of the instant
shedding frequency in order to represent the
dynamic transverse response. Obasaju et al.6
showed that the dominant frequency mainly depends
on the KC number for a low beta parameter.
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Fig.15 Maximum FFT Amplitudes (T=1.06 sec.).

Fig.16 Maximum FFT Amplitudes (T=1.56 sec.).

The in-line response is well represented by the
proposed numerical scheme. There is a large region
of the riser model located in the asymmetric region
(mid section of the riser), where the lock-in
condition is not achieved. In this region the mean
drag coefficient is 1.5. According to Lin et al.14) the
asymmetric region shows a sudden drop in the mean
drag coefficient when KC=7, that is not well
represented by computational fluid dynamics. In
addition, the values of the mean drag coefficient
ranges from 1.7 to 1.4 for values of KC numbers
located in between 2 and 7.

The value of the mean drag coefficient in the
mid section of the riser may have a big incidence in
the dynamic response of the riser model. The value
of 1.5 was kept in order to use a more realistic
value. Furthermore, if the mean drag coefficient is
increased proportionally to the cross-flow amplitude
better results can also be achieved, but this approach
must take into account large transverse amplitudes
when the section of the riser is under lock-in
conditions.

4. Conclusions

A numerical scheme to predict the dynamic
response of deep-water risers was presented.
Experimental data obtained from a 35-meter riser
model was compared with the simulation results.
One of the major advantages of the presented
numerical scheme is that it can be used for long
flexible risers due to its relatively simplicity when is
compared with numerical schemes that involve the
computation of the fluid forces using Computational
Fluid Dynamics (CFD).

Good agreement is observed between simulation
and experimental results. Two free-riser models
were used to validate the in-line and the transverse
response. The in-line response is accurately
represented by the proposed numerical scheme and
the transverse response also shows good agreement.
At high oscillating frequencies there is a tendency of
the proposed numerical scheme to under-predict the
transverse response of the riser model.

It was found that the numerical model of
boundary condition at the bottom end caused some
errors in the dynamic response of the riser in regions
located near the bottom end. The accurate modeling
of a boundary condition is still one of the major
challenges in the structural mechanics field. In this
paper a system of linear and nonlinear springs was
used to model the boundary at the bottom end. New
modeling strategies must be considered in order to
improve the quality of the dynamic response of the
riser near the bottom end.
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The long flexible model due to its complex
nonlinear behavior involves many challenges; the

proposed numerical scheme using a numerical 
representation of the increased drag conffient was

also able to represent the main features of the

dynamic response of the riser model.
An important issue to be considered in order to

improve the numerical scheme presented in this

paper; is the correct calculation of the hydrodynamic
coefficients in the asymmetric region for this

particular study. Although the values of these
coefficients were taken from the best research work
in that field, there are some modeling considerations

that must be included in the numerical scheme,

especially the segment of the 35-meter riser model

located in the lock-out region. Further work using
CFD must be carried out to improve the modeling

considerations in this region.

Although VIV can occur in both steady currents

and oscillating flow, only the oscillating flow case
was presented in this paper. In steady currents, in

the lock-in region, the VIV process may also induce

large oscillating amplitudes in the riser as the

reduced velocity is increased, but when the
cross-flow amplitude reaches a certain value, the

vortex shedding changes and then the cross-flow

amplitude decreases. The oscillating flow case

exhibits more complex behavior because the lock-in
conditions can be achieved several times. As a
result, the later case must be the core of the

development of a dynamic response scheme for
deep-water risers, which combines steady currents

with oscillating flow.
This study shows a practical numerical scheme

for the dynamic response of deep-water risers. The

quasi-steady model can be easily incorporated in
normal design practice under additional design

considerations. The interaction between the steady
current case and the oscillating flow case must be

considered in further studies.
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