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Introduction: Heart rate variability (HRV), brain resting-state functional connectivity (rsFC), and gut microbiota
(GM) are three recognized indicators of health status, whose relationship has not been characterized. We aimed
to identify the GM genera and families related to HRV and rsFC, the interaction effect of HRV and rsFC on GM
taxa abundance, and the mediation effect of diet on these relationships.

Rumi
Fiubc ;nococmceae Methods: Eighty-eight healthy, young Colombian men were included in this cross-sectional study. HRV metrics
Diet were extracted from 24-hour Holter monitoring data and the resting functional connectivity strength (FCS) of 15

networks were derived from functional magnetic resonance imaging. Gut microbiota composition was assessed
using the sequences of the V3-V4 regions of the 16 S rRNA gene, and diet was evaluated using a food frequency
questionnaire. Multivariate linear regression analyses were performed to evaluate the correlations between the
independent variables (HRV metrics and FCS) and the dependent variables (GM taxa abundance or alpha di-
versity indexes). Mediation analyses were used to test the role of diet in the relationship between HRV and GM.
Results: The sympathovagal quotient (SQ) and the FCS of control networks were positively correlated with the
abundance of the gut Ruminococcaceae family and an unclassified Ruminococcaceae genus (Ruminococcaceae_unc).
Additionally, the interaction between the FCS of the control network and SQ reduced the individual main effects
on the Ruminococcaceae_unc abundance. Finally, reduced habitual fiber intake partially mediated the relationship
between SQ and this genus.

Conclusion: Two indicators of self-regulation, HRV and the rsFC of control networks, are related to the abundance
of gut microbiota taxa in healthy men. However, only HRYV is related to habitual dietary intake; thus, HRV could
serve as a marker of food choice and GM composition in the future.

1. Introduction

Heart rate variability (HRV) reflects the bidirectional interaction
between the heart and the central nervous system (CNS) mediated by the
autonomic nervous system (ANS). HRV has been proposed as an index of
psychophysiological self-regulation (Smith et al., 2020). Higher HRV is
related to better self-rated physical and mental health (Jarczok et al.,

* Corresponding author.
E-mail address: ana.miranda@udea.edu.co (A.L. Miranda-Angulo).

https://doi.org/10.1016/j.psyneuen.2024.107003

2015), while low HRYV is related to several physical and mental diseases
and an increased all-cause mortality risk (Jarczok et al., 2022).

The sympathovagal quotient (SQ) is a frequency-domain HRV metric
initially meant to reflect the ratio between sympathetic and para-
sympathetic (vagal) heart innervation, reflected by the low-frequency
(LF) and high-frequency (HF) metrics, respectively. The SQ is used as
an indicator of sympathovagal modulation of the heart. Its increase has
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been related to a variety of physical and mental health disorders, such as
weight gain (Costa et al., 2019) and psychiatric stress-related disorders
(Schneider and Schwerdtfeger, 2020). In contrast, a decrease in SQ has
been associated with psychological well-being (Shiga et al., 2021).

Another critical aspect of human physiology is the gut microbiota
(GM), mainly because its impact on metabolism, the systemic immune
response, and the nervous system. Consequently, some GM taxa are
protective, and others increase the risk of several chronic diseases (Chen
et al., 2021). The abundance of GM taxa is variable among individuals
and functionally complex, and it is influenced by many intrinsic and
extrinsic factors (Falony et al., 2016). An approach to simplifying GM
complexity is the categorization of GM taxa into a small number of
groups based on the predominance of specific taxa known as enterotypes
(Arumugam et al., 2011).

Previous studies addressing the HRV-GM relationship have consis-
tently found that HRV is related to changes in alpha diversity and
abundance of the Lachnospiraceae and Ruminococcaceae families, which
belong to the Firmicutes phylum (Michels et al., 2019; Morkl et al., 2022;
Tsubokawa et al., 2022). However, methodological flaws limit the scope
of some of these studies. For instance, HRV data came from short elec-
trocardiographic (ECG) recordings (Tsubokawa et al., 2022), which are
considered unreliable, or the authors did not adjust for medical treat-
ment or other confounders when needed (Morkl et al., 2022). Finally,
the studies so far have been descriptive and have not explained the
mechanisms behind the observed HRV-GM association.

Diet is an important factor that may be involved in the HRV-GM
relationship. GM composition is significantly modulated by food, and
HRV has been associated with many aspects of diet in a bidirectional
way, as an indicator of self-regulation ability in food choices and an
index of the physiological effects of nutrient intake in the body (Maier
and Hare, 2017; Young and Benton, 2018). The neural mechanisms
linking HRV with food choices involve prefrontal areas. Maier and Hare
(Maier and Hare, 2017) found that subjects with higher HRV were able
to resist taste temptation better than those with lower HRV, which was
correlated with a reduced representation of taste value in the ventro-
medial prefrontal cortex (vmPFC). The vmPFC interacts with the
dorsolateral prefrontal cortex (dIPFC) to represent food healthiness
(Wilson et al., 2023). Additionally, the grey matter volume of the vmPFC
and dIPFC predicts cognitive regulation during dietary self-control tasks
(Schmidt et al., 2018). Interestingly, both the vmPFC and dIPFC are
well-established regulators of HRV (Matusik et al., 2023), and anchored
nodes of two correlated large-scale resting-state networks (RSNs), the
default mode network (DMN), and the central executive network (CEN),
respectively. The DMN is involved in self-referential cognitive processes,
and the CEN is involved in executive function (EF). Their interaction is
mediated by the salience network (SN) (Bressler and Menon, 2010). Due
to its heterogeneity, Yeo et al. subdivided the CEN network into sub-
networks (Yeo et al.,2011). One has top-down control over the dorsal
attention network (Control A), whereas the other has a stronger
connection to the DMN (Control B). Control A drives attention toward
task-relevant perceptual information and away from task-irrelevant
stimuli and thoughts. In contrast, Control B is activated when atten-
tion is driven away from perceptual information and directed toward
introspective processes (Dixon et al., 2018).

Extensive cross-sectional studies have investigated the correlation
between resting-state functional connectivity (rsFC) and GM in healthy
adults from a Chinese cohort (Cai et al., 2021; Zhang et al., 2022; Zhu
et al., 2022). The authors reported that structural and functional mag-
netic resonance imaging (MRI) at rest and under EF tasks correlated with
alpha diversity indexes and GM enterotypes. Despite the wide charac-
terization of this relationship, its interpretation is difficult because the
enterotype approach does not allow identifying specific taxa related to
brain connectivity. Interestingly, some brain areas and RSNs associated
with their enterotypes, such as DMN and CEN, are involved in food
choices, which raises a question about the role of diet in the correlation
between GM, brain connectivity, and EF.
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Taken together, these studies suggest that the relationship between
HRYV, rsFC, and GM significantly impacts health status. However, this
interaction needs to be better characterized by addressing some meth-
odological limitations of previous studies, evaluating the relationship
between HRV, rsFC, and GM in the same subjects, and exploring the
mediation effect of diet on this relationship. Therefore, in this cross-
sectional study, we aimed to (1) identify the GM genera and families
related to HRV and rsFC, (2) determine whether HRV and rsFC interact
in their influence on GM taxa abundance, and (3) explore the mediation
effect of diet in the HRV-GM and rsFC-GM relationships. We hypothesize
that HRV and rsFC are related to gut microbiota composition, and diet
mediates this relationship.

2. Materials and methods
2.1. Study population selection

This cross-sectional study included Colombian healthy men aged
21-40 years. Exclusion criteria were self-reported medical conditions,
current or long-term use of any medication, vegan or vegetarian diet,
left-handedness, presence of heart devices or any other device not
compatible with MRI, and drug abuse assessed using the Alcohol,
Smoking, and Substance Involvement Screening Test scale (ASSIST)
version 1.1.66. We also asked for recent exposure to several microbiota
modifiers such as antibiotics, probiotics, and recent infectious diseases,
among others and when they were present, a suitable washout time was
taken before inclusion in the study. All subjects underwent physical
examination to obtain anthropometric and blood pressure measure-
ments. Biological samples, 24-hour Holter and resting-state functional
magnetic resonance imaging (rsfMRI) data were collected within four
weeks.

This study was approved by the Research Ethics Committee of the
Faculty of Medicine at the University of Antioquia (minute 007 of May
11, 2017), in accordance with the Ethical Principles for Medical
Research Involving Human Subjects outlined in the Declaration of
Helsinki in 1975 and Resolution 8430 issued by the National Ministry of
Health of Colombia in 1993. All the participants provided written
informed consent.

2.2. Health parameters

2.2.1. Anthropometric and blood pressure measurements

Blood pressure was the average of three consecutive measurements
taken in the left arm supported in a table at the heart level. The waist-to-
hip ratio was calculated by dividing the waist circumference by the hip
circumference. The body mass index (BMI) was calculated from weight
and height measurements obtained using a calibrated digital scale and a
stadiometer, respectively.

2.2.2. Biochemical parameters

All measurements were performed in fresh serum from peripheral
blood. High-sensitivity C-reactive protein, high-density lipoprotein,
total cholesterol, and glycated hemoglobin levels were quantified using
Dimension® Flex® reagent cartridges (DF34, DF48B, DF27, and
DF105A, respectively).

2.3. Holter acquisition and analysis

A Custo Flash 510 V model monitor was installed in volunteers be-
tween 7 am and 10 am, and it was removed the following day around the
same time to ensure a minimum ECG recording of 21 h. The monitor
performed recordings in three channels every 2.5 ms + 0.1% per
channel, with a quantification amplitude of 5.6 uV/Bit + 1% of 10 bit, a
response frequency range of 0.05-45 Hz, and a resistance > 10 MQ
filtered at 50 Hz 80 dB. Volunteers were asked to perform their usual life
activities during recording but were instructed to avoid physical
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exercise. They were also asked to log their daily activities. HRV time-
and frequency-domain metric calculations were performed using the
ANS diagnostic module of the Custo diagnostics Holter ECG (Customed
Inc., Germany). The HRV metrics used for the analyses were the stan-
dard deviation of NN intervals (SDNN), the root mean square of suc-
cessive differences between normal heartbeats (RMSSD), the natural
logarithms of LF and HF (In LF and In HF), and SQ as In (LF/HF).

2.4. Resting-state functional MRI acquisition and graph connectivity
analysis

Scanning was performed using an Ingenia 3 T Philips MRI scanner
with a 16-channel phased-array rigid head coil. A high-resolution 3D T1-
weighted sequence (175 axial slices; TR = 7807 ms; TE = 3593 ms; FOV
= 256 mm x 256 mm; matrix size = 256 x 256; voxel size = 1 mm x
1 mm x 1 mm, FA = 8°) and rs-fMRI for 10 min (300 volumes; 36 slices;
repetition time, TR = 2000 ms; echo time, TE = 30 ms; flip angle, FA =
70°; field of view, FOV = 112 mm x 112 mm; matrix size = 72 x 72;
voxel size =2 mm x 2 mm x 3 mm) were acquired. The volunteers were
instructed to keep their eyes closed and remain still.

The Configurable Pipeline for the Analysis of Connectomes (C-PAC)
version 1.8.1 was used to pre-process the MRI data. The structural im-
ages were skull-stripped, segmented into the main cerebral tissues, and
constrained into the individual subject space. Functional images were
realigned, motion-corrected, and skull-stripped. The global mean in-
tensities were normalized, the nuisance signals were regressed-out
(scanner drift, physiological noise, and head motion signals), the vol-
umes with head motion higher than 0.3 mm were interpolated, and the
time series were bandpass-filtered (0.01-0.1 Hz). Anatomical and
functional images were normalized to the 2 mm Montreal Neurological
Institute (MNI) 152 space. The pre-processed functional average time
series of 385 non-limbic regions were extracted from the 400 Schaefer’s
cortical parcellation and assigned to one of the Yeo 17 networks (Yeo
et al., 2011). The areas within the two limbic Yeo-17 networks were
excluded from the analyses because of the low signal-to-noise ratio of
the frontal orbital areas. The functional connectivity matrix was calcu-
lated as pairwise Pearson’s correlation between the time series and
z-scored. The matrix was thresholded to retain the strongest 10%
weight, and the negative weights were set to 0. The resting-state func-
tional connectivity strength (FCS) of RSNs was measured using the node
strength connectivity metric (Stg) derived from the graph theory
approach, which provides information about the weight of the correla-
tion between a node and the rest of the cortex. Using the Brain Con-
nectivity Toolbox, Stg was computed as the sum of the link weights
connected to a node. Afterward, the average Stg was calculated dividing
by the number of connected nodes in each network.

2.5. Stool collection, bacterial DNA extraction, and sequencing

Volunteers collected stool samples in a plastic sterile container
refrigerated until delivery within the next two hours. Fresh stool sam-
ples were used for DNA extraction using the Stool Nucleic Acid Isolation
Kit (Norgen Biotec Corp.). DNA was quantified using a NanoDrop™
2000-Thermo Scientific™ spectrophotometer. Before DNA sequencing,
the samples were normalized to a final concentration of 10 ng/pL. DNA
sequencing libraries were prepared and sequenced using a 300 bp
paired-end Illumina MiSeq protocol at Macrogen Inc. (Seoul, Republic of
Korea). The V3-V4 hypervariable regions of the bacterial and archaeal
16 S rRNA genes were amplified using the primers Bakt 341F (5-
CCTACGGGNGGCWGCAG-3) and Bakt 805R (5- GACTACHVGGG-
TATCTAATCC-3). The forward and reverse primers contained Illumina
adapter, pad, and linker sequences.

2.6. Gut microbiota taxonomy bioinformatic analysis

The sequences were analyzed using Mothurs version 1.44 pipeline
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according to the MiSeq standard operating procedure (SOP). Briefly,
paired-end reads were assembled using Mothur’s tool “make.contigs”
and then aligned to the SILVA 16 S rRNA reference database version
v138_1. VSEARCH algorithm was used to remove chimeric sequences.
The non-bacterial lineages were removed. Mothur’s subroutine “dist.
seqs” was used to cluster reads into operational taxonomic units (OTUs)
at a distance limit of 0.03. Data were normalized with the “total group”
method, and rare OTUs with less than three sequences were removed.
Phylogenetic classification was performed using the Ribosomal Data-
base Project (RDP) classifier tool (80 bootstrap threshold). A Biological
Observation Matrix (BIOM) file was generated and imported into the R
environment to perform statistical analyses using the PHYLOSEQ and
MICROBIOME packages. The normalized counts of each bacterial taxon
were calculated using the median value of the read counts in R software.
The frequencies of the most common phyla and families were deter-
mined from these counts. Alpha diversity indices were estimated using
the R package PHYLOSEQ.

2.7. Habitual diet estimation

Habitual food intake over a year was assessed using an online version
of a self-reported semi-quantitative food intake frequency questionnaire
(CFIA) developed locally (Monsalve Alvarez and Gonzilez Zapata,
2011). We calculated dietary energy and macronutrient values from this
questionnaire using an in-house developed R script.

2.8. Assessment of potential confounders

Depression and anxiety were self-assessed using an online validated
Spanish version of the Zung scale (Jaramillo-Toro et al., 2018) and the
validated Spanish version of the state and trait anxiety inventory ques-
tionnaires (STAI-S and STAIL-T) (Guillén-Riquelmeé and Buela-Casal,
2011). Zung raw scores were multiplied by 1.25 to obtain index scores
used to determine the cut-off scores. The cut-off scores for detecting
depression or anxiety were >50, >44, and > 41 for the Zung, STAI-R,
and STAI-S scales, respectively (Dunstan and Scott, 2019). Physical ac-
tivity was evaluated using the short Spanish version of the International
Physical Activity Questionnaire (IPAQ).

The presence of intestinal parasites was examined in fresh stool
samples following WHO recommendations (World Health Organization
(WHO, 1994). Sample concentration was performed using 15 ml fecal
parasite concentrators (Mini Parasep®, Apacor, Inc. United Kingdom).
Previous SARS-Co-V2 was verified by detecting IgG and IgM using
immunochromatography or chemiluminescent immunoassays.

2.9. Statistical analyses

2.9.1. Sample size and power analysis

Since no studies had assessed the relationship between HRV and rsFC
with GM composition or diet, we assumed that we could find a corre-
lation of at least 0.3, resulting in a sample size of 85 individuals. This
calculation was performed using STATA software version 13, assuming
an alpha of 0.05 and a power of 0.80. The lowest correlation found in our
analyses was —0.2 between SQ and habitual monounsaturated fat (MUF)
and fiber intake. The highest correlation was 0.6 in the MLR analyses
between the interaction SQ-Stg Control B and Ruminococcaceae_unc.
Consequently, the power for this range of correlations, given a sample
size of 88, was 0.46 and 1.0, respectively.

2.9.2. Description of participant characteristics and common GM taxa
The normal distribution of quantitative variables was checked using
the Shapiro-Wilk test, histograms, and Q-Q graphs. Normally distributed
variables were described by mean and standard deviations, whereas
non-normally distributed variables were described by median and
interquartile ranges. Qualitative variables were described by frequency.
These analyses were performed using IBM SPSS Statistics software
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version 24. The abundance of the most common GM taxa was calculated
by dividing the absolute abundance of each phylum or family by the
total absolute GM abundance across the sample at the corresponding
taxonomic levels.

2.9.3. Multivariable linear regression analyses

The relationship between GM, HRV, and rsFC was characterized in
two steps. First, the Microbiome Multivariable Associations with Linear
Models software version 2 (MasAlin2) was used to assess the correlation
between the absolute abundance of GM families and genera (dependent
variables), and the non-normalized HRV time and frequency domain
metrics, and the FCS of 15 RSNs (independent variables). We set the
minimum taxa abundance at five and ten for the genus and family
taxonomic levels, respectively, and the minimum prevalence at 50% for
both taxonomic levels. The total sum scaling normalization and log
transformation methods were applied to the GM taxa counts. After the
Benjamini-Hochberg procedure (BH), the other parameters were
maintained as recommended by the developers. The maximum signifi-
cance allowed was 0.2 after the Benjamini-Hochberg procedure (BH).
MasAlin2 analyses were performed using R studio 2022.07.2 +576
version (Mallick et al., 2021).

Second, the relative abundance of each taxon identified in the pre-
vious step was calculated and used as a dependent variable to confirm
their correlation with HRV metrics and the FCS of RSNs after adjusting
for confounders using multiple linear regression analyses (MLR). Addi-
tional MLR analyses were performed to evaluate the correlation of alpha
diversity indices with the HRV metrics and FCS of the RSNs identified in
the previous step.

To evaluate the interaction effect of HRV and FCS on the relative
abundance of taxa confirmed in the second step, we used MLR analyses.
To avoid inflation of the coefficient and variance (VIF) in the interaction
models, the interacting variables were centered by subtracting the mean
from each variable. Interactions were created by multiplying the
centered variables.

All MLR analyses were adjusted for age, BMI, habitual fiber intake,
and Zung scale scores. The normality of dependent variables was
checked before all MLR analyses using the Shapiro-Wilk test and their
histogram. The Rachas test was used to verify the assumption of
randomness. Data normalization of the dependent variables was per-
formed using IBM SPSS Statistics software version 24. The covariates
were chosen based on their biological plausibility. The absence of
multicollinearity was verified by calculating the variance inflation fac-
tor (VIF<5.0). Normality (Shapiro-Wilk test p>0.05), no autocorrelation
(Durbin-Watson test d=1.5-2.5), and homoscedasticity (Breusch-Pagan
test; p>0.05) of the residuals were checked for each analysis. The quality
of the models was verified using the Akaike information criterion (AIC)
and the adjusted R2. These MLR analyses were performed using STATA
software version 13.

2.9.4. Diet mediation analyses

To identify the macronutrients that could mediate the relationship
between GM taxa with HRV and the FCS of RSNs, a 2-tail Spearman’s
rank correlation coefficient calculation was performed using IBM SPSS
Statistics software version 24. The correlation matrix was plotted using
the website https://www.bioinformatics.com.cn, an online data analysis
and visualization platform. In this platform, a p-value equal to or below
0.05 was set as significant. Mediation analyses were performed using
PROCESS macro for SPSS version 4.2 model 4. The mediator and
dependent variables were normalized. We selected 5,000 bootstrap
samples with a 95% confidence interval (CI 95%). The percentage
contribution of the mediator was calculated as [a*b/(c¢+a*b)*100]
(Baron and Kenny, 1986).

2.9.5. Sensitivity analyses
All MLR analyses were repeated by adding the following additional
confounders individually in different models: physical activity,
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parasites, previous infection with SARS-Cov2, level of education level,
socioeconomic status, and STAI-T scale scores. Mediation analyses were
repeated by increasing the bootstraps to 10,000.

3. Results
3.1. Descriptive data

In the data analyses we included 88 of 402 volunteers who
completed the pre-selection questionnaire (Supplementary Figure 1).
The sociodemographic, anthropometric, biochemical, physiological,
and lifestyle habits and other general health characteristics of the
included volunteers are described in Table 1. Unexpectedly, we found
that some volunteers scored above the cutoff point on the Zung self-
rating depression scale (n=15, 17.04%), State-Trait Anxiety Inventory

Table 1

Demographic and clinical characteristics of participants.
Variables n=88
Demographics

Age (years), median (IQR)
Level of education

30 (25.3-34.0)

Bachelor 2(2.3)
Undergraduate 68 (77.3)
Posgraduate in progress 18 (20.5)
Anthropometrics

BMI (kg/m?), mean (SD) 24.2 (+2.6)
WHR(cm), median (IQR) 0.9 (0.8-0.9)
Biochemical

HbAlc (%), median (IQR) 5.3 (5.1-5.6)
HDL (mg/dL), median (IQR) 46.0 (40.1-52.1)
Total cholesterol (mg/dL), mean (SD) 180.5 (£34)
Total cholesterol: HDL (mg/dL), median (IQR) 3.8 (3.1-4.6)
hs-CRP (mg/L), median (IQR) 1.0 (0.1-1.4)
Cardiovascular

Heart rate (beats/min), mean (SD) 70.1 (£7.8)
SBP (mmHg), mean (SD) 114.3 (+9.4)
DBP (mmHg), mean (SD) 70.3 (£7.0)

SDNN (ms), median (IQR)
RMSSD (ms), median (IQR)

Ln LF (In ms?), mean (SD)

Ln HF(In ms?), mean (SD)

SQ (In ms?), mean (SD)
Lifestyle habits

Habitual diet

Caloric intake (Kcal), median (IQR)
Protein (gr), median (IQR)
Total fat (gr), median (IQR)
Carbohydrates (gr), median (IQR)
Fiber intake (gr), median (IQR)
Other health parameters
Zung scale score

>50, n (%)

STAI-T score

>44, n (%)

STAI-S score

>41, n (%)

Parasites

Presence n (%)

Previous COVID-19%

Yes n (%)

84.3 (71.6-98.6)
55 (45.4-73.7)
7.5 (£0.5)

6.6 (+£0.8)

0.9 (£0.4)

2350.2 (1775.9-2888.3)
83.6 (64.8-102.2)

79.8 (58.9-103.6)
304.3 (224.8-396.3)
17.9 (12.6-25.1)

15 (17.0)

14 (15.9)

3(3.4)

42 (47.7)

11 (12.5)

Values are expressed in percentages (%), mean + standard deviation (SD), or
median (IQR, interquartile range). BMI; body mass index, WHR, waist-to-hip
ratio; HbAlc, glycated hemoglobin; HDL, high-density lipoprotein; hs-CRP,
high sensitivity C-reactive protein; SBP, systolic blood pressure, DBP, diastolic
blood pressure; SDNN, the standard deviation of the NN intervals; RMSSD, root
mean square of successive differences between normal heartbeats; LnLF, the
natural logarithm of low-frequency power; LnHF, natural logarithm high-
frequency power; SQ sympathovagal quotient, the natural logarithm of the LF
/HF ratio. STAI-T and STAI-S, State-Trait Anxiety Inventory (STAI) form Y; trait
and state subscales, respectively.

@ Previous infection with SARS-Cov-2 verified with anti-SARS-Cov2 antibodies
quantification.
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trait subscale (STAI-T) (n=14, 15.9%), State-Trait Anxiety Inventory
state subscale (STAI-S) (n=3, 3.4%), and both Zung and STAI scales
(n=13, 14.8%), despite the reported absence of psychiatric diagnoses
and treatments during the pre-selection process. The most common
phyla identified were Bacteroidetes (56%) and Firmicutes (39%). The
most abundant families were Prevotellaceae (33%), Bacteroideaceae
(15%), Ruminococcaceae (14%) and Lachnospiraceae (11%).

3.2. Higher SQ and functional connectivity strength of control networks
were related to higher Ruminococcaceae abundance at genus and family
taxonomic levels

We found a positive and statistically significant correlation between
the SQ and FCS of control networks A and B (Stg_Control A and
Stg_Control B) and the relative abundance of the Ruminococcaceae family
and the Ruminococcaceae_unc genus (Fig. 1). After adjustment for con-
founders, these correlations remained, and Stg_Control A had a positive
and statistically significant correlation with the Shannon index
(Table 2). The average whole-brain FCS across participants and the
localization of the control A and B networks are shown in Supplemen-
tary Figure 2. Brain regions included in the control A and B networks are
listed in Supplementary Table 1.

3.3. The interaction between SQ and FCS of control B network reduced
their main effect on Ruminococcaceae unc genus abundance

The interaction SQ-Stg_Control B was correlated with the Rumino-
coccaceae_unc genus abundance but showed a negative coefficient,
indicating a reduction in the main effect of each independent variable.
In contrast, the SQ-Stg_Control A interaction was not related to the
Ruminococcaceae family or genus relative abundance (Table 3).
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3.4. Habitual fiber intake mediates the relationship between SQ and
Ruminococcaceae_unc genus abundance

SQ showed a weak significant negative correlation with habitual
fiber intake (p=-0.21, p=0.05) and MUF (p=-0.22, p=0.04). The
decreased habitual intake of these macronutrients was also correlated
with a decrease in the relative abundance of the Ruminococcaceae family
and Ruminococcaceae_unc genus (Fig. 2a). Furthermore, the mediation
analysis showed that fiber intake mediated the relationship between SQ
and Ruminococcaceae_unc genus with a 12.2% indirect effect [indirect
effect c: f=0.03, 95% IC (0.002-0.12)] (Fig. 2b).

3.5. Sensitivity analyses

All significant MLR analyses shown in Tables 2 and 3 survived the
addition of confounders except for the correlation between control A
and Shannon index, which lost significance after adding all confounders
except socioeconomic status (data not shown). Mediation analyses
remained significant after 10,000 bootstrapping [indirect effect c:
$=0.05, 95% IC (0.002-0.12)].

4. Discussion

In this study, we found that (1) SQ and the FCS of Control A and B
networks are positively related to the abundance of gut Ruminococcaceae
taxa, (2) SQ and Stg_Control B antagonize each other in their influence
on Ruminococcaceae unc genus abundance, and (3) the effect of SQ on
Ruminococcaceae_ unc genus abundance is partially mediated by reduced
fiber intake.

4.1. Positive correlation between SQ and Ruminococcaceae taxa
abundance

Only one study has explored the correlation between SQ and GM in
adult men (Tsubokawa et al., 2022). This study reported that SQ
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Fig. 1. Heatmaps of significant correlations between the sympathovagal quotient (SQ) and the functional connectivity strength (FCS) of control networks and gut
microbiota taxa abundance. a-b. At the genus taxonomic level, SQ and FCS of control A and B networks were correlated to an increased abundance of an unclassified
genus belonging to the Ruminococcaceae family (Ruminococcaceae_unc). c-d. At the family taxonomic level, SQ and FCS of control A and B networks were correlated to
an increased abundance of the Ruminococcaceae family. Stg_Control A and Stg_Control B, FCS of control A and B. Colors indicate the size effect calculated by the
following formula: [-log (qval)*sign (coefficient)]. The plus and minus signs indicate the direction of the correlations. FDR, false discovery rate calculated with BH

procedure. Significant g-values after BH procedure (g<0.2).
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Table 2

Multivariate linear regression analyses between HRV, the FCS of control networks, and GM composition.
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Dependent variables Independent variables Model results

)] p-value 95% CI Prob F R? Adjusted R?
Ruminococcacea_unc genus® SQ 0.41 <0.01 0.19-0.64 <0.01 0.19 0.15
Stg_Control A 0.08 <0.01 0.03-0.13 <0.01 0.17 0.12
Stg_Control B 0.08 <0.01 0.03-0.13 0.01 0.18 0.13
Ruminococcacea family® SQ 2.97 <0.01 1.23-4.70 <0.01 0.22 0.18
Stg_Control A 0.64 <0.01 0.27-1.01 <0.01 0.23 0.19
Stg_Control B 0.50 0.01 0.13-0.88 <0.01 0.19 0.14
Shannon index SQ 0.12 0.04 0.01-0.24 0.06 0.12 0.07
Stg_Control A 0.03 0.02 0.01-0.06 0.03 0.13 0.08
Stg_Control B 0.02 0.15 -0.01-0.04 0.13 0.10 0.04
Chaol index® SQ -97.54 0.20 -248.64-53.56 0.11 0.10 0.05
Stg_Control A 15.02 0.37 -18.11-48.14 0.15 0.09 0.04
Stg_Control B 14.42 0.38 -17.99-46.83 0.15 0.09 0.04
Inverse Simpson index?® SQ 0.15 0.02 0.02-0.29 0.05 0.13 0.07
Stg_Control A 0.03 0.07 -2.44e-03-0.05 0.10 0.10 0.05
Stg_Control B 0.01 0.43 -0.02-0.04 0.26 0.07 0.02

SQ, sympathovagal quotient LF/HF; Stg_Control A, FCS of Control A network; Stg_Control B, FCS of Control B network. Models were adjusted by age, BMI, habitual
fiber intake, and Zung depression scale scores. CI, confidence interval, Prob. F: p-value for the F statistic showing that at least one f coefficient differed from 0. Bold
indicates significant correlations that met all the MLR analysis assumptions (p<0.05).

# Natural logarithmic normalized abundance.
b Squared root normalized abundance.
¢ Fractional ranking normalized values.

Table 3
Multivariate linear regression analyses of the interaction between HRV and FCS of control networks and its relationship with GM taxa abundance.
Dependent variables Interaction Model Independent variables Model
i} p-value 95% CI Prob. F R? Adjusted R?
Ruminococcacea_unc genus® SQ-Stg_Control A SQ 0.43 <0.01 0.18-0.67 <0.01 0.29 0.22
Stg_Control A 0.06 0.01 0.01-0.11
SQ-Stg_Control A -0.03 0.26 -0.08-0.02
SQ-Stg_Control B SQ 0.48 <0.01 0.24-0.72 <0.01 0.31 0.25
Stg_Control B 0.07 <0.01 0.02-0.11
SQ-Stg_Control B -0.05 0.03 -0.87 to —4.50e-03
Rumminococcacea family® SQ-Stg_Control B SQ 0.47 <0.01 0.19-0.76 <0.01 0.27 0.20
Stg_Control B 0.07 0.02 0.01-0.12
SQ-Stg_Control B -0.04 0.08 -0.09-5.48e-03
SQ-Stg_Control A SQ 0.39 0.01 0.10-0.67 <0.01 0.26 0.20
Stg_Control A 0.07 0.01 0.02-0.13
SQ-Stg_Control A -0.02 0.62 -0.08-0.05

SQ, sympathovagal quotient LF/HF. Stg_Control A, FCS of Control A network; Stg_Control B, FCS of Control B network. SQ-Stg_Control A and SQ-Stg_Control B indicate
interaction between those variables obtained by multiplying the centered variables. Models were adjusted by age, BMI, habitual fiber intake, and Zung depression scale
scores, Prob. F: p-value for the F statistic showing that at least one f coefficient was different from 0. Bold indicates significant correlations (p<0.05).

@ Natural logarithmic normalized abundance.
Y Squared root normalized.

correlated positively with the abundance of Lachnospiraceae inserta sedis
genus. In line with this result, we also found a positive correlation be-
tween SQ and the abundance of an undetermined genus of Lachnospir-
aceae (Lachnospiraceae_ge). However, Ruminococcaceae_unc was the only
genus correlated with the SQ and FCS of RSNs.

Interestingly, the Ruminococcaceae and Lachnospiraceae families are
the most abundant families in the gut environment (80%) and are
phylogenetically and functionally closely related (Biddle et al., 2013).
Two contrasting health effects have been assigned to these families. On
the one hand, they are important fiber degraders that produce around
85% of total butyrate, which has positive effects on health, mainly
through its anti-inflammatory effect (Siddiqui and Cresci, 2021). On the
other hand, the increased abundance of some genera and species of the
same families is related to increased production of trimethylamine
(TMA), a precursor of liver-derived trimethylamine-N-oxide (TMAO)
(Fu et al., 2020). This metabolite contributes to the formation of
atherosclerotic plaques and increases the risk of cardiovascular and
cerebrovascular adverse events (Wang et al., 2021).

Overall, SQ is positively correlated with the abundance of genera
belonging to the Ruminococcacceae and Lachnospiraceae families,

suggesting a detrimental effect on health based on the negative impli-
cations of high SQ and the potential profile of harmful metabolites
originating from the increased abundance of some members of these
taxa. However, characterization of these unclassified genera and their
metabolites is necessary to confirm this assumption.

4.2. Positive correlation between the FCS of control networks and
Ruminococcaceae taxa abundance

We found that an increased abundance of Ruminococcaceae taxa was
related to an increased FCS of control A and B networks. The increased
FCS indicates higher rsFC of nodes within these networks with the rest of
the brain cortex.

Three publications derived from the analyses of the relationship
between brain connectivity and GM in a Chinese cohort of healthy in-
dividuals found a relationship between alpha diversity and the Rumi-
nococcaceae enterotype with brain structural and functional connectivity
as well as with EF tasks (Cai et al., 2021; Zhang et al., 2022; Zhu et al.,
2022). They found that higher FCS of CEN nodes correlated with worse
performance on behavioral inhibition (go/no go) and attention tasks
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Fig. 2. Diet correlation and mediation analyses. a. Spearman correlation heatmap to assess the relationship between habitual diet, the sympathovagal quotient (SQ),
the functional connectivity strength (FCS) of control A and B networks and gut microbiota taxa abundance. SQ showed negative and significant correlations with
habitual monounsaturated fat intake (MUF) (p= —0.22, p=0.04) and habitual fiber intake (p= —0.21, p=0.05). The relative abundance of Ruminococcaceae un-
classified genus (FR Rumin_unc) and family (FR Rumin_fam) was correlated to reduced intake of all macronutrients except carbohydrates (CHO) and Cholesterol
(Chol). PUF, polyunsaturated fat; SF, saturated fat; Prot, Proteins; Kcal, kilocalories. Stg_Control A and Stg_Control B, FCS of control A and B networks. Colors indicate
correlation strength and direction according to the bar on the right side. Asterisks indicate significance : *p<0.05, ** p<0.01. b. Mediation effect of habitual fiber
intake in the relationship between SQ (X) and the relative abundance of Ruminococcaceae unc genus (Y). Indirect effect significance after 5000 bootstraps. The
percentage of indirect effect was calculated as [a*b/(c+a*b)*100]. Values of habitual fiber intake and Ruminococcaceae unc genus abundance were natural loga-

rithmic normalized.

(digit span) (Cai et al., 2021; Zhang et al., 2022). These findings suggest
that worse performance in EF is related to higher FCS in brain areas
related to inhibitory control. Interestingly, they also found that FCS of
CEN nodes mediated the relationship between GM and these inhibitory
control tasks. Furthermore, they found connectivity differences between
the Prevotella enterotype and Ruminococcaceae enterotype in men (Zhu
et al., 2022). In consonance with these findings, we found a correlation
between the abundance of Ruminococcaceae and the FCS of control A and
B networks in men. Nonetheless, results from these studies are difficult
to compare with ours owing to the extensive methodological differences
in brain connectivity analyses.

In summary, the positive correlation between the FCS of control
networks and the abundance of Ruminococcaceae may be related to
reduced inhibitory control. Nevertheless, this needs direct confirmation
by exploring the relationship between the FCS of control networks,
performance in inhibitory control tasks, and abundance of
Ruminococcaceae.

4.3. Interaction between the SQ and the FCS of control B network in their
relationship with Ruminococcaceae_unc genus abundance

Our results showed that when SQ was high, the relationship between
Stg_Control B and Ruminococcacea unc abundance was reduced, and
when Stg Control B was high, the relationship between SQ and Rumi-
nococcacea unc genus abundance was reduced. This might indicate
negative feedback between SQ and the FCS of the control B network,
with consequent changes in their relationship with Ruminococcacea unc
genus abundance.

The control B network contains the dIPFC, a brain region consistently
involved in HRV regulation (Matusik et al., 2023). This brain region has
lateralized influence over HRV, an activation of the right dIPFC has been
associated with increased sympathetic tone. In contrast, the activation of
the left dIPFC increases parasympathetic tone. A clinical trial showed
that anodal high-definition tDS (HD-tDCS) on the left dIPFC increased LF

and SQ in healthy young adults (Gu et al., 2022).

Placing our interaction findings in the context of the reported lat-
eralized influence of the dIPFC on HRYV, it is tempting to speculate that
activation of the control B network, which contains the right dIPFC, will
contribute to increasing SQ by increasing the sympathetic tone. How-
ever, when the SQ reaches a threshold, the sympathetic tone decreases
through a reduction in the right dIPFC activity or increased activation of
the left dIPFC, leading to a reduction of SQ. Consequently, the reduction
of SQ and the right dIPFC activity would be related to a lower abundance
of Ruminococcacea unc genus.

Since SQ and Stg_Control B did not show a significant correlation in
our analysis, the bottom-up branch of this hypothetical feedback loop is
likely indirect and could involve the vmPFC. The indirect modulation of
the dIPFC through the vimPFC driven by heart signaling has been sug-
gested by the following two observations: First, activation of the vmPFC
is induced by heartbeat-evoked responses (HERs) (Azzalini et al., 2021).
Second, increased connectivity between the vmPFC and several other
areas, including the dIPFC, can be induced by HRV biofeedback, which
involves the modification of HRV by pace breathing (Schumann et al.,
2021).

Finally, in the top-down branch of this hypothetical feedback system,
the control B network regulation of HRV would also be indirect. It has
been shown that control networks interact with the DMN anchored in
the vmPFC, which directly influences the SN. This network, together
with the cingulate cortex, appears to have the direct and strongest
modulation of HRV (Duggento et al., 2017).

Behaviorally, one point of convergence of HRV and control networks
is their relationship with self-control and EF. Increased HRV has been
consistently correlated with better EF, especially cognitive inhibition
and flexibility (Magnon et al., 2022). Interestingly, the reduction of
self-control and its connection with HRV and control networks has been
shown in eating behavior disorders. For example, changes in HRV or
rsFC in control networks have been linked to bulimia nervosa (Peschel
et al.,, 2016; Wang et al., 2020). Moreover, clinical interventions that
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increase HRV or modify right dIPFC function, such as HRV biofeedback
and tDCs, have been shown to contribute to the treatment of some of
these disorders (Ester and Kullmann, 2022; Scolnick et al., 2014).
Finally, significant changes in GM composition have been described in
eating disorders (Carbone et al., 2021).

Taken together, SQ and Stg_Control B appear to antagonize each
other in their relationship with Ruminococcaceae unc genus abundance,
possibly through a negative feedback loop initiated by HERs. In addi-
tion, reduced self-control in food choices could explain the relationship
between SQ-Stg_Control B and Ruminococcaceae unc genus abundance.

4.4. Mediation effect of fiber intake in the relationship between SQ and
Ruminococcaceae unc genus abundance

Our previous discussion and mediation analysis results suggest that
SQ influences the abundance of the Ruminococcacea_unc genus through
food decision-making. Considering that HRV is generated by the neural
integration of multiple top-down signals coming from emotional,
cognitive, and behavioral CNS networks and bottom-up signals coming
from the immune system and chemoreceptors, mechanoreceptors, and
metaboreceptors of peripheral internal viscera, HRV reflects a broad
psychophysiological regulation (Smith et al., 2020). In addition, HRV
also reflects the signaling from the heart to the brain, where HERs in-
fluence emotions, behavior, and cognition after being integrated with
other visceral information (Azzalini et al., 2021). An example of the
influence of visceral signaling on brain function is the feeding behavior
in which the internal state of hunger influences visual, planning, motor
behavior, and memory to achieve food intake.

Evidence suggests that low HRV, measured by the SDNN, could in-
fluence food decisions by modifying the activation of the vmPFC and its
interaction with the dIPFC toward the selection of unhealthy food
(Maier and Hare, 2017; Wilson et al., 2023). In addition, a recent study
showed that men who had high saturated fat (SF) intake also had low
fiber intake, and this was related to an increased abundance of the TMA
producer genus Anaerotruncus, which belongs to the Ruminococcaceae
family (Bailén et al., 2020). This genus has been related to increased
TMAO levels in human studies (Franck et al., 2022). In contrast, men
with low SF intake also had high fiber intake, which was related to the
increased abundance of Ruminococcaceae UCG-014 genus (Bailén et al.,
2020). This suggests that while some Ruminococcaceae genera increase
in the presence of low fiber and high SF, others increase in the opposite
situation. Since Ruminococcaceae_unc is an unclassified genus, we do not
know its metabolic profile. However, its correlation with low fiber
intake suggests that it might be involved in the reduced production of
beneficial metabolites and an increased generation of detrimental me-
tabolites such as TMA. Finally, if the Ruminococcaceae unc genus is
involved in TMAO production, its relationship with an increased SQ
might be explained by the reported rise in sympathetic innervation to
the heart mediated by this metabolite (Meng et al., 2019).

In summary, SQ seems to reflect the broad influence of the psycho-
physiological status on food choice more than the FCS of the Control B
network. The mediation of habitual fiber intake in the relationship be-
tween SQ and Ruminococcaceae unc suggests that this genus is not
fibrinolytic but instead participates in the production of other metabo-
lites such as TMAO, which might perpetuate the increased SQ by
strengthening the sympathetic input to the heart.

5. Strengths and limitations

To our knowledge, this is the first study to evaluate the relationship
between three well-established health status indicators, HRV, rsFC, and
GM. Our sample was homogenous and was controlled for confounders
that might influence these health indicators. Therefore, our sample of
healthy men allowed us to perform a reliable description of the influence
of HRV and rsFC on GM. On the other hand, this study has several
limitations: (1) due to its cross-sectional design, we cannot draw any
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causal relationships; (2) our selection of young, healthy men from a
region of Colombia does not allow us to expand the conclusions to other
populations with different sex, age, and region of origin; (3) the
assumption of a negative relationship between the FCS of control net-
works and inhibitory control was not directly tested in our sample; (3)
we did not measure beneficial or detrimental metabolites in our par-
ticipants and its relationship with HRV and rsFC; (4) the mediation ef-
fect of diet was exploratory, and it should be measured in future
interventional studies.

6. Conclusion

Two indicators of self-regulation, HRV and the rsFC of control net-
works, are related to the abundance of gut microbiota taxa in healthy
men. However, only HRV is related to habitual diet intake; thus, HRV
should be analyzed in future studies as a marker of food choice and GM
composition. The wide use of wearable devices that measure HRV daily
and the availability of therapeutic interventions that directly improve
HRYV, such as biofeedback, supports the need to continue investigating
the HRVs relationship with food choices and GM profiles. Advances in
this field will contribute to decreasing the prevalence of disorders
characterized by reduced self-control in dietary decisions, a shared
characteristic of several chronic disorders.
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