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Abstract 

Background: The Colombian population, as well as those in other Latin American regions, arose from a recent tri‑
continental admixture among Native Americans, Spanish invaders, and enslaved Africans, all of whom passed through 
a population bottleneck due to widespread infectious diseases that left small isolated local settlements. As a result, 
the current population reflects multiple founder effects derived from diverse ancestries.

Methods: We characterized the role of admixture and founder effects on the origination of the mutational landscape 
that led to neurodegenerative disorders under these historical circumstances. Genomes from 900 Colombian indi‑
viduals with Alzheimer’s disease (AD) [n = 376], frontotemporal lobar degeneration‑motor neuron disease continuum 
(FTLD‑MND) [n = 197], early‑onset dementia not otherwise specified (EOD) [n = 73], and healthy participants [n = 
254] were analyzed. We examined their global and local ancestry proportions and screened this cohort for deleterious 
variants in disease‑causing and risk‑conferring genes.

Results: We identified 21 pathogenic variants in AD‑FTLD related genes, and PSEN1 harbored the majority (11 patho‑
genic variants). Variants were identified from all three continental ancestries. TREM2 heterozygous and homozygous 
variants were the most common among AD risk genes (102 carriers), a point of interest because the disease risk con‑
ferred by these variants differed according to ancestry. Several gene variants that have a known association with MND 
in European populations had FTLD phenotypes on a Native American haplotype. Consistent with founder effects, 
identity by descent among carriers of the same variant was frequent.
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Background
The circumstances related to Latin America’s unique 
demographic history led to numerous genetic founders 
that expanded rare genetic variation. The regional popu-
lations of Colombia originated from varying proportions 
of a recent tri-continental admixture consisting of diverse 
indigenous peoples, Spanish invaders, and enslaved Afri-
cans, all of whom had been geographically separated for 
tens of thousands of years. During the Spanish conquest, 
these individuals suffered massive mortality from numer-
ous infectious diseases, including smallpox, influenza, 
syphilis, hepatitis, measles, encephalitis, tuberculosis, 
diphtheria, cholera, typhus, scarlet fever, and meningi-
tis, which created a narrow bottleneck with a minimum 
effective population size approximately 12 generations 
ago [1]. Survivors were geographically dispersed in a 
patchwork of relatively isolated small founder popula-
tions. Following the first decades of the Spanish invasion 
and European expansion throughout various territories, 
the second half of the sixteenth century saw a large and 
continuous growth of an admixed population, especially 
in the Andean region of the country (Additional file  1: 
Figure S1). The population growth amplified the effects of 
genetic drift confined to highly local settings that marked 
a fine-grained geographic map with a local genetic stamp 
[2].

Demographic history and local ancestry have gained 
significant interest in genomic studies aiming to under-
stand the disease burden of underrepresented popula-
tions and transferability of risk scores from research done 
in European cohorts. However, most of these studies have 
focused on genome wide association studies (GWAS) and 
polygenic risk scores that usually rely on the sequencing 
of common genetic variants [3–5], while missing those 
rare alleles absent from European genomes [6]. Rare vari-
ants are likely to play a role in the problem of “missing 
heritability,” have larger effect sizes [7], and are more sus-
ceptible to population dynamics and genetic drift.

Rare mutations contribute to the occurrence of neuro-
degenerative disease, which prompted a search for indi-
viduals with young onset familial dementia and related 
neurodegenerative disorders. We suspected that genetic 
drift stamped local populations with unique sets of rare 
variants. Numerous rare genetic conditions converge 

under this phenotypic label, and therefore as a popula-
tion indicator of rare variation, dementia represents a 
readily identifiable trait with a great deal of genetic vari-
ation. Among the many genes in which disease muta-
tions fit the phenotypic label are PSEN1 [MIM: 104311], 
PSEN2 [MIM: 600759], APP [MIM: 104760], C9orf72 
[MIM: 614260], GRN [MIM: 138945], MAPT [MIM: 
157140], TARDBP [MIM: 605078], FUS [MIM: 137070], 
VCP [MIM: 601023], CHMP2B [MIM: 609512], and 
TBK1 [MIM: 604834] [8]. Rare variants in these genes 
offer novel perspectives on the breadth of their associ-
ated clinical phenotypes and the underlying molecular 
pathways. Here, we describe a cohort of 900 Colombian 
individuals with neurodegenerative diseases and report 
the genetic variants associated with neurodegeneration 
in the context of their ancestral origins and admixture.

Methods
Subjects
Participants were recruited or referred to the “Grupo 
de Neurociencias de Antioquia,” University of Antio-
quia, Colombia for “The Admixture and Neurodegener-
ation Genomic Landscape” (TANGL) study. The project 
was approved by the Institutional Review Board (IRB) 
of the Medical Research institute, School of Medicine, 
Universidad de Antioquia. Written informed consent 
following the guidelines of the Code of Ethics of the 
World Medical Association, Helsinki declaration, and 
Belmont Report was obtained from all participants or 
their legally authorized proxies. The recruitment tar-
geted patients with early-onset dementia and families 
in which multiple first-degree relatives were affected. 
All the individuals were born in Colombia (Additional 
file  1: Figure S1). All subjects were evaluated follow-
ing a standard protocol including physical and neuro-
logical examination, as well as population validated 
neuropsychological assessment [9, 10]. Family history 
was obtained from the patients and their relatives and 
was considered positive if at least one first or second 
degree relative presented dementia or motor neuron 
disease (MND). Families were classified as autosomal 
dominant if at least three first degree relatives suffered 
from dementia or MND in two consecutive genera-
tions. When patients had familial forms of dementia, 

Conclusions: Colombian demography with multiple mini‑bottlenecks probably enhanced the detection of founder 
events and left a proportionally higher frequency of rare variants derived from the ancestral populations. These find‑
ings demonstrate the role of genomically defined ancestry in phenotypic disease expression, a phenotypic range of 
different rare mutations in the same gene, and further emphasize the importance of inclusiveness in genetic studies.

Keywords: Founder effect, Bottleneck, Admixture, Genetic drift, Selection, Demography, Neurodegeneration, 
Alzheimer’s disease, Frontotemporal dementia, Motor neuron disease
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their relatives with neurological and psychiatric dis-
orders were recruited along with healthy family mem-
bers. Nine hundred individuals from 566 families with 
high quality genomes were used for analyses (genetic 
sequencing and quality control procedures are detailed 
in the Genome Sequencing methods).

Based on their clinical diagnosis, participants were 
divided in four cohorts:

• The Alzheimer’s disease (AD) [MIM: 104300] cohort 
(n = 376) included individuals with early-onset 
AD (AAO ≤ 65 years) and individuals with autoso-
mal dominant late onset AD. Patients with atypical 
presentations of AD, such as primary progressive 
aphasia–logopenic variant (lvPPA), posterior corti-
cal atrophy, and spastic paraparesis associated with 
PSEN1 pathogenic variants [MIM: 607822] were 
included in this cohort. AD was diagnosed according 
the NINCDS-ADRDA criteria [11].

• The frontotemporal lobar degeneration and motor 
neuron disease (FTLD-MND) spectrum cohort (n 
= 197) comprised patients with multiple presenta-
tions of frontotemporal lobar degeneration (FTLD) 
[MIM: 600274], which include behavioral variant 
of frontotemporal dementia (bvFTD), primary pro-
gressive aphasia-semantic variant (svPPA), primary 
progressive aphasia-non-fluent/agrammatic variant 
(navPPA), and FTLD with amyotrophic lateral scle-
rosis (FTLD-ALS). Diagnosis of FTLD variants was 
done according to Gorno-Tempini et  al. 2011 [12] 
and Rascovsky et al. 2011 [13]. Patients with cortico-
basal degeneration (CBD), progressive supranuclear 
palsy (PSP) [MIM: 601104] diagnosed according 
to The Movement Disorder Society Criteria [14], 
and with amyotrophic lateral sclerosis (ALS) [MIM: 
105400], diagnosed according to Strong et  al. 2017 
[15], were included in this cohort.

• The early-onset dementia not otherwise specified 
(EOD) cohort (n = 73) included patients with early-
onset dementia (AAO ≤ 65 years) that did not fully 
meet criteria for AD or FTLD at the time of evalua-
tion and did not have secondary causes that explain 
their neurodegeneration. Some of these individuals 
were relatives of the patients from the other cohorts 
but presented with conditions such as Parkinson’s 
disease [MIM: 168600], bipolar disorder [MIM: 
125480], or Lewy body disease [MIM: 127750].

• The Healthy participant cohort (n = 254) included 
individuals related and unrelated to the patients. 
These subjects had a Clinical Dementia Rating (CDR) 
score of 0 in their last examination and no evidence 
of neurodegenerative dementia or motor neuron dis-
ease.

The complete demographic information of the 900 
individuals can be found in Table  1, Additional file  2: 
Table S1 and Additional file 3: Table S2.

Genome sequencing
Peripheral blood from the participants was obtained by 
standard phlebotomy, and genomic DNA was isolated 
from leukocytes using the Gentra Puregene Blood Kit 
(Qiagen). Genome sequencing (WGS) was performed at 
the HudsonAlpha Institute for Biotechnology on either 
the Illumina HiSeq X platform, or the Illumina NovaSeq 
platform. A subset of individuals was sequenced at the 
Human Longevity Institute on the Illumina HiSeq X plat-
form (119 samples). The combined dataset had a mean 
read depth of 34X and an average of 92% of bases cov-
ered at 20X. Sequencing libraries at HudsonAlpha were 
prepared by Covaris shearing, end repair, adapter liga-
tion, and PCR using standard protocols. Library con-
centrations were normalized using KAPA qPCR prior to 
sequencing. Sequencing reads from both centers were 

Table 1 Demographic information of the included cohorts

AD Alzheimer’s disease, FTLD-MND frontotemporal lobar degeneration and motor neuron disorder, EOD early‑onset dementia not otherwise specified, AAO age at 
onset
a  Age at evaluation. There were three Individuals with uncalled APOE genotype (one from AD cohort and two healthy individuals)

Cohort n AAO Female APOE genotype no. (%)

ϵ2/ϵ2 ϵ2/ϵ3 ϵ2/ϵ4 ϵ3/ϵ3 ϵ3/ϵ4 ϵ4/ϵ4

Mean Range n % n % n % n % n % n % n %

AD 376 59 30‑90 249 66.2 ‑ ‑ 15 4 4 1.1 168 45 139 37.1 49 13.1

FTLD‑MND 197 58.8 21‑82 92 46.7 1 0.5 18 9.1 ‑ ‑ 122 62 49 24.9 7 3.6

EOD 73 54.5 25‑75 49 67.1 ‑ ‑ 2 2.7 ‑ ‑ 39 53 20 27.4 12 16.4

Healthy 254 60 18‑100a 159 62.6 2 0.8 25 9.8 1 0.4 159 45 61 23.9 4 1.6

549 60.7 3 0.3 60 6.7 5 0.6 488 54.2 269 29.9 72 8
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aligned to the hg19 reference genome with bwa-0.7.12 
[16]. BAMs were sorted and duplicates were marked with 
Sambamba 0.5.4 [17]. Indels were realigned, bases were 
recalibrated, and gVCFs were generated with GATK 3.3 
[18]. Variants were called across all samples in a single 
batch with GATK 3.8 using the -newQual flag to mini-
mize false negative singleton calls. The recall rate for 
GATK against truth sets is between 93 and 99% for single 
nucleotide variants and 85 and 98% for small (less than 
50 bp) indel events [19]. Genome annotation was per-
formed using SnpEff 4.3 [20] after splitting multi-allelic 
sites with Vt [21]. The genome was annotated with the 
gene definitions from human genome build Ensembl 
GRCh37.75 [22]. All single nucleotide variants and indels 
were annotated with CADD v1.3 [23]. Population data-
base frequency annotations included 1000 Genomes 
Phase 3 (1000GP) [24], TOPMed Bravo [25] (lifted over 
from hg38 to hg19 using CrossMap 0.2.7 [26]), and sev-
eral population database sets annotated using WGSA 0.7 
[27] including ExAC [28], gnomAD [29], ESP [30], and 
UK10K [31]. Variants were also annotated with dbSNP 
release 151 [32].

Calls were filtered with vcftools (v0.1.12b) [33] to retain 
sites with quality scores equal or greater than 20 and 
mean read depth scores equal or greater than 30. KING 
(v2.2.4) [34] was used to verify disclosed familiar relation-
ships and pedigree structures, and individuals with unex-
plained relatedness were removed. For duplicate samples 
and monozygotic twin pairs, only one genome was kept. 
PLINK v.1.90 [35, 36] was used to identify and exclude 
individuals with discordant X-chromosome sex and those 
with more than 5% missing data [37]. Mendel errors were 
set to missing before removing autosomal variants with 
missingness > 5% obtaining a total of 41,123,431 variants 
and 900 individuals from 566 families available for analy-
sis (Additional file 1: Figure S2).

To compare the TANGL genomes to previously iden-
tified carriers of PSEN1 c.428T>C (p.Ile143Thr) [38] 
from Colombia and PSEN1 c.356C>T (p.Thr119Ile) 
from Colombia and Argentina [39], we sequenced addi-
tional individuals using the Array-8+ v1.0 Kit + neuro 
booster array consortium (NBA) content, beadchip 
20042459 Illumina Global Diversity (Catalog 20031816). 
Imputation was performed using the TOPMed Imputa-
tion Panel and Server (version 1.3.3) [40], which includes 
97,256 references samples and 308,107,085 variants and 
uses Minimac4 for imputation. Pre-imputation scripts 
(version 4.3.0 from William Rayner at the University of 
Oxford) were run using default settings, which filtered 
out palindromic single nucleotide variants (SNVs) with 
minor allele frequency (MAF) > 0.4 or variants with > 0.2 
MAF difference from the TOPMed reference panel [41]. 
The Colombian carriers of these PSEN1 variants had 

been recruited and evaluated by the Grupo de Neuro-
ciencias de Antioquia (GNA). The Argentinian sample 
was provided by the Neurodegenerative illnesses’ labo-
ratory (Fleni-CONICET). The clinical assessment and 
sequencing of these individuals was done with written 
informed consent and approved by the IRB of the Medi-
cal Research Institute School of Medicine, Universidad 
de Antioquia, and the IRB from “Instituto de Investiga-
ciones Neurológicas Raúl Carrea – FLENI.”

To compare the TANGL genomes to previously iden-
tified carriers of MAPT c.1189C>T (p.Pro397Ser) from 
Spain, we obtained exome sequencing data from an indi-
vidual previously sequenced by the Alzheimer’s disease 
and other cognitive disorders unit at Hospital Clínic 
de Barcelona. The exome from the Spanish c.1189C>T 
(p.Pro397Ser) carrier [42] was processed from fastq to 
VCF using a standard clinical alignment pipeline from 
the HudsonAlpha Institute for Biotechnology Clinical 
Services Laboratory that uses Sentieon version 201808.07 
(a computational wrapper for common tools such as 
bwa), including alignment with Sentieon-BWA (version 
201808.07; identical to bwa mem 0.7.15-r1140) and vari-
ant calling with Illumina Strelka2 (version 2.9.10) [43]. 
The use of this sample was approved by the IRB from the 
“Hospital Clinic de Barcelona.”

Population structure analysis
We implemented protocols similar to those previously 
developed for ancestry estimation in admixed popula-
tions [3, 44]. We merged the 900 genomes (TANGL 
cohort) with the 1000 Genomes Project (1000GP) Phase 
3 genomes generating the TANGL.1000GP dataset (n 
= 3404). Then, we created a subset including only the 
TANGL cohort, the non-admixed African Populations 
(AFR), N = 504, and European populations (EUR), N = 
503. We merged these genomes with Native American 
samples (NAT), N = 43 from Mao et al. [45] inferred to 
have > 0.99 Native Ancestry, and created the TANGL.
AFR.EUR.NAT dataset. After removing monomorphic 
variants, triallelic sites that were not due to a strand flip 
in either dataset and those sites with missingness greater 
than or equal to 1%, we retained 845,950 autosomal vari-
ants and 1950 individuals for further analysis.

Global ancestry inference
A subset of unrelated samples from TANGL.AFR.EUR.
NAT was selected by keeping only the proband of each 
family and, using KING (v2.2.4) [34] with “—related” and 
“--degree 3” settings to identify cryptic relatedness. Only 
sample pairs with kinship coefficient less than 0.044 were 
retained for TANGL, AFR and EUR. The NAT individu-
als showed significant relatedness between them, and 
the threshold for that population was set to “—degree 2” 
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to retain the most NAT samples with kinship less than 
0.0884. The final TANGL.AFR.EUR.NAT -Unrelated 
dataset comprised 1611 unrelated individuals (TANGL N 
= 566, AFR N = 501, EUR N = 503, NAT = 41).

We calculated global ancestry using ADMIXTURE 
(v.1.3.0) [46] independently for the unrelated TANGL 
individuals (n = 566) and for the TANGL.AFR.EUR.
NAT-Unrelated cohort. As recommended by ADMIX-
TURE, PLINK (v.1.9) [35, 36] was used to perform pair-
phased linkage disequilibrium (LD) pruning; excluding 
variants with an  r2 value of greater than 0.2 with any 
other SNP within a 50-SNP sliding window, advancing by 
10 SNPs each time (--indep-pairwise 50 10 0.2). The LD-
pruned dataset contained 203,810 variants. We then per-
formed an unsupervised analysis modeling from one to 
ten ancestral populations (K = 1–10) using the random 
seed option and replicating each calculation 20 times. We 
selected the run with the best Loglikehood value for each 
K and compared the cross validation (cv) error values to 
determine the model with the lowest cv value. Ances-
tral proportion statistics of mean and standard deviation 
were calculated using the statistical software R [47].

In addition, we determined mitochondrial and Y-chro-
mosome haplogroups of the TANGL-unrelated cohort 
using HaploGrep 2 with Phylotree 17 [48], and yHaplo 
respectively [49].

Local ancestry inference
We phased the combined TANGL.AFR.EUR.NAT data-
set with SHAPEIT (v.2.r900) [50] using the haplotype 
reference panel of the 1000GP. We used the parameters 
–duohmm and a window of 5 MB (-W 5), which takes 
advantage of the inclusion of families, pedigree struc-
ture, and the large amount of IBD shared by close rela-
tives, leading to increased accuracy [51]. We used the 
PopPhased version of RFMix (v1.5.4) [52] to estimate the 
local ancestry using the following flags: -w 0.2, -e 1, -n 
5, --use-reference-panels-in-EM, --forward-backward 
as recommended by Martin et al. [3] for estimating local 
ancestry in admixed populations. To determine the car-
rier haplotype and local ancestry of a rare variant of 
interest, we used PLINK (v.1.9) [35, 36]. We identified 
other single nucleotide variants (SNVs) in linkage dis-
equilibrium with the variant of interest and used them as 
tags to identify the carrier haplotypes in the phased data-
set, and then searched for the local ancestry of the spe-
cific locus in the RFMix output.

Principal component analysis (PCA)
For PCA, we used the subset of unrelated samples with 
LD-pruning of variants as described in the methods for 
“Global ancestry inference.” We performed a PCA using 
the smartpca package from EIGENSOFT (v7.2.1) [53], 

with 3 outlier removal iterations (numoutlieriter: 3) and 
flag “altnormstyle: NO” to match EIGENSTRAT normal-
ization formulas [53]. The PCA results were plotted using 
the PCAviz package [54] for R. For the PCA with the 
Ancestral populations, we retained variants with MAF 
> 10%. For the PCA of the TANGL-unrelated cohort, 
we extracted a common variant set, retaining those with 
MAF > 10%, and then a lower frequency variant set, 
keeping only variants with MAF between 5 and 10%.

Genetic screening for disease causing variants
Each individual was initially screened for pathogenic var-
iants in the most recognized genes associated with AD 
and FTLD according to AD/FTLD mutation databases 
(https:// www. molgen. vib- ua. be/ ADMut ations, https:// 
www. alzfo rum. org/ mutat ions); PSEN1, PSEN2, APP, 
MAPT, GRN VCP, FUS, CHMP2B, TARDBP, and TBK1 
(the molgen.vib-ua.be/ADMutations database is not 
available as of July 2021). For the present study, the terms 
“pathogenic” and “likely pathogenic” refer to variants 
that are both predicted to be disruptive or damaging to 
the protein function and causative for a disease according 
ACMG criteria [55].

A secondary genetic analysis was done to identify 
pathogenic and likely pathogenic variants in other genes 
associated with similar or overlapping phenotypes. For 
the secondary screening, we chose the disease-causing 
genes reported in the following OMIM phenotypic series 
and phenotypes: frontotemporal dementia and/or amyo-
trophic lateral sclerosis [MIM: PS105550, PS167320, 
PS105400], Parkinson disease [MIM: PS168600], adult-
onset leukoencephalopathies [MIM: PS125310, 221820], 
and ceroid lipofuscinoses [MIM: PS256730]. We retained 
variants with MAF of 0.001 or less in the ExAC database 
if the gene had autosomal dominant or X-linked inher-
itance, and 0.01 or less if the gene had autosomal reces-
sive inheritance. The remaining variants were discarded 
if they were more prevalent in controls than cases or if 
they had a CADD Phred score less than 20. The selected 
protein altering variants defined as nonsynonymous sin-
gle nucleotide variants, splicing altering variants, inser-
tions, or deletions were manually curated by searching in 
the databases described before as well as ClinVar [56] and 
LitVar [57]. The previously unreported (novel) variants 
were classified according to the guidelines published by 
the American College of Medical Genetics and Genomics 
and the Association for Molecular Pathology [55]. Vari-
ants in PSEN1 and PSEN2 were also classified accord-
ing the Guerreiro algorithm [58]. Additionally, subjects 
were screened for C9ORF72 [MIM: 614260] hexanucleo-
tide expansion using repeat-primer following the proto-
col described in DeJesus-Hernandez et  al. [59] because, 
while C9ORF72 expansions are possible to detect from 

https://www.molgen.vib-ua.be/ADMutations
https://www.alzforum.org/mutations
https://www.alzforum.org/mutations
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short-read PCR-free genomes [60], such events are not 
detectable from PCR positive genomes which were 
conducted here. We searched for large copy number 
variations using four callers: DELLY [61], ERDS [62], 
CNVnator [63], and BIC-seq2 [64]. Events called by mul-
tiple callers were inspected for validity using Integrative 
Genomics Viewer [65]. In contrast to GATK small vari-
ant calls, where recall rates against truth sets are known, 
there are not recall rates available for this employed com-
bination of tools, though we note that there is a high false 
negative rate for all CNV callers from short read PCR-
positive genome data; thus, the goal in CNV analysis 
was to have high confidence in those variants that were 
identifiable across all four callers at the expense of miss-
ing some true positives that may not pass these strict cri-
teria. Better detection of expansions such as C9ORF72 or 
heretofore unidentified similar events and/or better large 
indel detection will be aided by emerging use of long read 
sequencing which can help identify events that would be 
missed otherwise [66].

Neuropathologic assessment of CSF1R c.2068G>A 
(p.Gly690Ser) and DNAJC5 c.347 T>G (p.Leu116Arg) 
carriers was performed at the Brain Bank of the Neu-
roscience Group of Antioquia following standardized 
protocols [67, 68]. Tissues were stained with hematoxy-
lin-eosin, Luxol Fast blue, and periodic acid–Shiff (PAS). 
The brain donation and neuropathologic assessment 
were done with written informed consent and approved 
by the IRB of the Medical Research Institute School of 
Medicine, Universidad de Antioquia.

Genetic screening for risk associated variants
We used publications in the literature to identify genes 
in which rare variants were associated with increased 
risk for AD and/or FTLD-MND with an odds ratio 
higher than 2. TREM2 [69, 70] [MIM: 605086], ABCA7 
[69, 71, 72] [MIM: 107741], and SORL1 [69, 73] [MIM: 
602005] were selected as intermediate effect risk genes. 
We retained variants that were known to be risk confer-
ring, led to premature truncation of the protein (PTV), 
or that were classified as  strictly damaging (SD) accord-
ing to previous published criteria [69]. Strictly damaging 
variants had MAF ≤ 0.01 in the ExAC database and were 
unanimously classified as deleterious by three different in 
silico prediction algorithms; SIFT [74], Polyphen-2 (Hum 
Div.) [75], and MutationTaster [76]. In addition to this 
strategy, we included ADAM10 [MIM: 602192] c.510G>T 
(p.Gln170His) and c.541A>T (p.Arg181Gly) variants as 
they have been reported to confer intermediate risk for 
AD [77, 78]. Variant nomenclature is according to the 
Human Genome Variation Society Recommendations 
[79]; the GenBank reference transcripts used for each 

disease causing and risk conferring variant can be found 
in Additional file 4: Table S3.

Identity by descent
If any of the disease-conferring or risk-associated variants 
were shared by two or more unrelated individuals, we 
used hap-IBD [80] v1.0 to search for identity by descent 
(IBD) around the locus. Because this software detects 
IBD of 2 cM and higher, we additionally performed an 
alignment of the haplotypes carrying the variants of 
interest to search for smaller IBD segments between the 
TANGL and 1000 Genomes Project (1000GP) carriers. 
Autozygosity (homozygosity by descent) was determined 
using the same methods. Code and scripts used for the 
population structure and identity by descent analyses are 
publicly available [81].

Results
Population analysis of the genomes 
from the neurodegeneration cohort
Nine hundred Colombian individuals with high-quality 
genome sequences were included in “The Admixture 
and Neurodegeneration Genomic Landscape” (TANGL) 
study. The individuals were divided into four different 
cohorts: Alzheimer’s disease (AD), frontotemporal lobar 
degeneration and motor neuron disease (FTLD-MND), 
early-onset dementia not otherwise specified (EOD), 
and healthy participants (Table  1 and Additional file  2: 
Table  S1). These 900 individuals represented 566 inde-
pendent families, which were classified into the same 
four cohorts according to the diagnosis of the proband 
(Additional file 3: Table S2).

Because the sample set was highly selected, we first 
sought to determine the genomic similarity between 
the TANGL cohort and other Colombian individuals. 
We initially merged the TANGL and the 1000 Genomes 
Project (1000GP) phase 3 [82] datasets and performed a 
principal component analysis (PCA). The TANGL cohort 
had a similar distribution in the first three principal com-
ponents (PC) to the “Colombians from Medellín” (CLM) 
of the 1000GP, allowing us to conclude that both popu-
lations are genetically similar (Additional file  1: Figure 
S3). To take a closer look into the ancestral origins of the 
TANGL cohort, we used the software ADMIXTURE to 
estimate the number of ancestral populations (K) from 
which the cohort arose. The lowest cross validation 
(cv) error was obtained when assuming the cohort was 
derived from three ancestral populations (k = 3), which 
agrees with the history of the tri-continental admix-
ture after the Spanish conquest (Additional file  1: Fig-
ure S4). To analyze the global and local ancestry of the 
TANGL cohort, we merged the TANGL genomes with 
the European and African populations from the 1000GP 



Page 7 of 22Acosta‑Uribe et al. Genome Medicine           (2022) 14:27  

and Native American genomes from Mao et al. [45] and 
repeated the ADMIXTURE analysis. In this joint dataset, 
K = 3 accurately differentiated Native American, Euro-
pean and African cohorts, but the lowest CV error was 
obtained for K = 6 (Fig.  1 and Additional file  1: Figure 
S5). Modeling for six ancestral populations allowed the 
detection of substructure within the African and Euro-
pean cohorts and created an additional cluster described 
by Moreno-Estrada et al. [44] as a “Latino-specific Euro-
pean component.” Consistent with previous studies [83], 
the ancestral population with the highest proportion in 
our cohort was European (mean of 64%, SD = 15%), fol-
lowed by Native American (mean of 27%, SD = 11%), 
and African being the least represented (mean of 9%, SD 
= 11%) (Additional file  1: Figure S6). These individual 

admixture values (Q-values) at K = 3 correlated with the 
sum of local ancestries estimated by RFMix (Pearson’s 
r > 0.99), allowing us to conclude that the local ances-
try inferred for each individual matches the percentages 
of global ancestry obtained by an orthogonal method) 
(Additional file 1: Figure S7). However, the regional dif-
ferences in the fine structure of the Colombian popu-
lation make these global ancestry proportions highly 
region dependent. For example, the three individuals 
whose global ancestry was nearly 90% African were from 
the Pacific coast of the country where former enslaved 
Africans settled and most of the population self identifies 
as Afro-Colombian (Additional file 1: Figure S1).

After calculating the proportions of global ancestry, we 
evaluated the TANGL cohort for sex biased admixture, 

Fig. 1 Population structure and admixture analyses of the TANGL cohort. A PC1 vs PC2 of the PCA of the TANGL cohort (purple) with the European 
(blue) and African (orange) individuals from the 1000GP and 43 Native American genomes (green). B Ternary plot representing the global ancestry 
of each of the individuals in the TANGL cohort values according to sum of local ancestries calculated by RFMix. C Q plot of ADMIXTURE results 
assuming 3 and 6 ancestral populations (K). ESN: Esan in Nigeria. GWD: Gambian in Western Divisions in the Gambia. LWK: Luhya in Webuye, Kenya. 
MSL: Mende in Sierra Leone. YRI: Yoruba in Ibadan, Nigeria. CEU: Utah Residents (CEPH) with Northern and Western European Ancestry. FIN: Finnish 
in Finland. GBR: British in England and Scotland. IBS: Iberian Population in Spain. TSI: Toscani in Italia. AYM: Aymara. MAY: Mayan, NAH: Nahuatl. QUE: 
Quechua. NAT: Native American
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a genetic trait previously described in the Colombian 
population [84, 85]. We used HaploGrep2 and yHaplo 
to determine mitochondrial and Y-chromosome haplo-
groups. The mitochondrial haplogroups of the probands 
(n = 566) were predominantly Native American (83.4%) 
while the Y-chromosome haplogroups (n = 224) were 
mostly of European and of Mediterranean origins 
(92.8%), thus supporting the conclusion than multiple 
cohorts of Colombian origin show sex-biased admix-
ture with Native American maternal lineages and pater-
nal lineages from Europe (Additional file 5: Table S4 and 
Additional file  6: Table  S5). Overall, these analyses let 
us conclude that despite recruiting the TANGL cohort 
based upon neurodegenerative conditions from the 
Andes region of Colombia, it recapitulated the admixture 
patterns previously described in the country.

The TANGL cohort was distributed between the three 
ancestral populations in the PCA, clustering closer to 
Europeans and Native Americans. To determine if the 
clustering of the admixed individuals was driven by their 
percentages of global ancestry, we compared the values 
of the principal components (PC) with the percentage 
of global ancestry attributed to each of the three ances-
tral populations by ADMIXTURE. PC1 correlated with 
the percentage of African ancestry (Pearson’s r2 of 1), 
and PC2 showed a correlation with the level of Native 
American ancestry (Pearson’s r2 of 0.87) (Additional 
file 1: Figures S8, S9 and S10). To determine whether the 
Colombian population clustered according to their global 
ancestry without including the ancestral populations 
in the analyses, we retained the 566 unrelated probands 
from the TANGL cohort and performed two PCAs, one 
with common variants (MAF > 10%) and one with less 
frequent variants (MAF 5-10%). Both PCAs showed 
correlation of the PCs with the global admixture pro-
portions, regardless of the inclusion of the ancestral pop-
ulation (Additional file 1: Figures S11, S12 and S13).

Neurodegenerative disease variants in the TANGL cohort
AD‑associated genes
The 900 genomes were initially examined for variants 
in AD-associated genes (PSEN1, PSEN2, and APP), and 
the protein altering variants were curated according to 
the ACMG guidelines for the interpretation of genetic 
variants [55] and the algorithm proposed by Guerreiro 
et  al. [58] to determine pathogenicity (Additional file  1: 
Figures  S14, S15 and Additional file  7: Supplementary 
methods).

Eleven deleterious variants were identified in the 
PSEN1 gene (Table  2 and Additional file  8: Table  S6 
and Additional file  9: Table  S7). Three of these were 
novel; two classified as definite pathogenic, c.485 T>G 
(p.Ile162Ser) c.667C>A (p.Gln223Lys); and one as 

probably pathogenic according to the Guerreiro algo-
rithm, c.782C>T (p.Val261Ala). Four of these PSEN1 
variants had been previously identified in the Colom-
bian population c.349C>G (p.Pro117Ala), c.428T>C 
(p.Ile143Thr), c.839A>C (p.Glu280Ala), and c.1247 T>C 
(p.Ile416Thr) [38, 86–88], and four had been described 
in families outside Colombia with diverse ancestries 
c.356C>T (p.Thr119Ile) [39], c.488A>G (p.His163Arg) 
[89], c.791C>T (p.Pro264Leu) [89] and c.851C>T 
(p.Pro284Leu) [90]. PSEN1 c.839A>C (p.Glu280Ala) [86], 
of European origin, is the largest family in the world with 
familial Alzheimer’s disease and living nearby is a fam-
ily with the PSEN1 variant c.1247 T>C (p.Ile416Thr) [87] 
that originated in Africa.

PSEN1 c.782 T>C (p.Val261Ala) was identified in a sin-
glet without confirmed paternity, and it was classified 
as likely pathogenic (ACMG criteria)/probably patho-
genic (Guerreiro) despite the lack of family history due 
to the report of three different pathogenic mutations in 
the same codon c.780G>T (p.Val261Phe) [91], c.780G>A 
(p.Val261Ile) [92], andc.780G>C (p.Val261Leu) [93]. All 
the reported variants, except c.851C>T (p.Pro284Leu), 
presented as early-onset amnestic AD. The c.851C>T 
(p.Pro284Leu) carriers developed spastic paraparesis 
(SP), which is an atypical form of AD occasionally associ-
ated with certain PSEN1 mutations [91, 94, 95]. All the 
families with pathogenic PSEN1 mutations had auto-
somal dominant inheritance (Additional file  1: Figure 
S16); however, the singlet c.782 T>C (p.Val261Ala) was 
indeterminate. Among these PSEN1 variants, six were of 
European origin, three were Native Americans, and one 
African (Table 2).

All the carriers of each variant, except c.791C>T 
(p.Pro264Leu), reported a known common ancestor 
(Additional file  1: Figure S16). Several families from 
the harbored the PSEN1 c.791C>T (p.Pro264Leu) vari-
ant, but we could not connect them by family history. 
Therefore, to prove that c.791C>T (p.Pro264Leu) was 
the result of a founder effect, we used the hap-IBD 
software to identify identical by descent (IBD) seg-
ments between the variant carrying chromosomes. 
All the PSEN1 c.791C>T (p.Pro264Leu) carrier hap-
lotypes shared an IBD segment of 2.79 cM around the 
PSEN1 locus, supporting the hypothesis of a common 
ancestor for all three families originating at about 
the same time (Additional file  1: Figure S17). PSEN1 
c.791C>T (p.Pro264Leu) has been described in mul-
tiple populations (France [89, 96–99], UK [100, 101], 
Turkey [102], and Japan [103]) suggesting that PSEN1 
c.791C>T (p.Pro264Leu) is a recurring mutation. 
While the European carriers of this variant often pre-
sent SP [104], this phenotype was not observed in the 
Colombian carriers of the variant. To determine if this 
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phenotypic heterogeneity is related to the ancestral 
haplotype wherein the variant arose, we used RFMix 
to estimate the ancestry of the variant carrier haplo-
type (Table  2 and S6). In the TANGL cohort, PSEN1 
c.791C>T (p.Pro264Leu) resided on a Native American 
haplotype, which suggests that the haplotype of origin 
may play a role in the different expressivity and clinical 

manifestations between the variant carriers. Six of the 
other pathogenic PSEN1 variants resided on European 
haplotypes, two variants were present in Native Ameri-
can and one in an African background. The multi-
ancestral origins of the PSEN1 variants suggest that the 
admixture process contributed to the introduction of 
pathogenic variants to a population.

Table 2 Pathogenic variants identified in disease causing genes

ExAC ExAC database minor allelic frequency. SIFT scores are D, deleterious, and T, tolerated. PolyPhen‑2 scores are D, probably damaging, P, possibly damaging, and B, 
benign. CADD corresponds to the Phred score. Variants with + were identified in homozygous states. GenBank transcripts for each gene can be found in Additional 
file 4: Table S3

Alzheimer disease genes
Gene Coding change dbSNP/ClinVar ExAC SIFT Polyphen CADD Local ancestry
APP g.(26253828_30011000)dup SCV001751549 . – – – European

PSEN1 c.349C>G (p.Pro117Ala) rs63750550 . D P 26.9 European

c.356C>T (p.Thr119Ile) rs1566630791 . T P 24.4 European

c.428T>C (p.Ile143Thr) rs63750004 . D D 26.8 European

c.485T>G (p.Ile162Ser) rs1898533739 . D D 32 Native American

c.488A>G (p.His163Arg) rs63750590 . T B 23.4 European

c.667C>A (p.Gln223Lys) rs1898776259 . D D 33 Native American

c.782T>C (p.Val261Ala) SCV001751539 . D P 25.9 Undetermined

c.791C>T (p.Pro264Leu) rs63750301 . D D 35 Native American

c.839A>C (p.Glu280Ala) rs63750231 . D D 29.3 European

c.851C>T (p.Pro284Leu) rs63750863 . D D 33 European

c.1247T>C (p.Ile416Thr) SCV001751540 . D P 25.9 African

PSEN2 c.487C>T (p.Arg163Cys) rs200931244 . D D 35 African

FTLD genes
Gene Coding change dbSNP ExAC SIFT Polyphen CADD Local ancestry
C9ORF72 (GGG GCC )n Repeat Expansion rs143561967 . . . European

GRN c.709‑2A>G (p.Ala237fs) rs63750548 . . . 23.1 European

MAPT c.902C>T (p.Pro301Leu) rs63751273 . D D 34 European

c.1189C>T (p.Pro397Ser) rs1295855402 . D D 25 European

TARDBP c.881G>T (p.Gly294Val) rs80356721 0.00000824 T P 18.89 European

c.1147A>G (p.Ile383Val) rs80356740 0.00000865 T B 0.308 European

TBK1 c.1257_1258del (p.Val421Cfs*26) rs1392685429 . . . . European

c.1717C>T (p.Arg573Cys)+ rs772820487 0.00003329 T D 29.6 European

ALS genes
Gene Coding change dbSNP ExAC SIFT Polyphen CADD Local ancestry
ANXA11 c.904C>T (p.Arg302Cys) rs142183550 0.0000412 D D 31 Native American

FIG4 c.122T>C (p.Ile41Thr) + rs121908287 0.001 D D 26.5 European

HNRNPA2B1 c.965G>A (p.Gly322Glu) SCV001751542 . D D 23.6 Native American

SOD1 c.63C>G (p.Phe21Leu) rs1555836170 . T D 22.9 Native American

SQSTM1 c.1175C>T(p.Pro392Leu) rs104893941 0.0009 D B 34 European

TUBA4A c.820C>G (p.Pro274Ala) rs1241875438 . . D 23.8 Native American

TUBB4A c.811G>A (p.Ala271Thr) rs587777074 0.000003992 . P 22.8 Native American

UBQLN2 c.724G>A (p.Ala242Thr) SCV001751543 . D D 25.9 Undetermined

Other neurodegeneration associated genes
Gene Coding change dbSNP ExAC SIFT Polyphen CADD Local ancestry
CSF1R c.2068G>A (p.Gly690Ser) rs141866247 0.0000165 T D 23.1 Native American

DNAJC5 c.347T>G (p.Leu116Arg) SCV001751544 . D P 27.2 African

LRRK2 c.4334C>G (p.Ser1445Cys) rs1945001552 . T P 24.3 European
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Two of the PSEN1 variants described in this cohort had 
been previously identified in other families in Colombia 
[c.428T>C (p.Ile143Thr) [38], c.356C>T (p.Thr119Ile)], 
and in Argentina [c.356C>T (p.Thr119Ile) [39]]. We 
performed additional array genotyping to test for IBD 
between the members of these families and those from 
the TANGL cohort. The Colombian carriers of c.428T>C 
(p.Ile143Thr) and c.356C>T (p.Thr119Ile) showed IBD 
overlapping the PSEN1 locus (Additional file  1: Fig-
ures S18 and S19). Interestingly, the Colombian individu-
als who harbored c.356C>T (p.Thr119Ile) with whom no 
shared ancestor could be determined by history carried a 
small IBD segment shared with the Argentinian carrier of 
the same variant (Additional file 1: Figure S20). The geo-
graphical expanse over which these variants reside could 
reveal small population migratory streams from Europe 
or within the South American continent.

In addition to the eleven pathogenic variants, we 
identified four benign variants in PSEN1. c.1279A>G 
(p.Ile427Val) and c.114C>A (p.His38Gln) that did not 
segregate with the illness, while c.118G>A (p.Asp40Asn) 
and c.953A>G (p.Glu318Gly) have been reported in cases 
and controls without a clear disease association [105–
107]. Thus, most of the PSEN1 missense variants in this 
cohort are pathogenic and have an age-dependent phe-
notype of amnestic AD. In contrast, the majority of the 
variants observed in PSEN2 were either benign or had 
been previously classified as risk factors for AD. Only 
the variant c.487C>T (p.Arg163Cys), which had been 
described in a Chinese patient with AD [108], was clas-
sified as likely pathogenic (Additional file 1: Figure S21). 
Interestingly, this variant resided on an African haplotype 
in the Colombian carrier. No pathogenic variants were 
observed in APP; but one individual with AD had copy 
number variation (CNV) spanning APP [104] (chromo-
some 21 g.(26253828_30011000)dup, Additional file  1: 
Figure S22). These results confirm PSEN1 as the most 
prevalent gene associated with genetic AD in our cohort, 
mostly as the result of founder effects, and that the cur-
rent genetic burden of the TANGL cohort is influenced 
by the genetic diversity of its founders.

Variants in FTLD‑MND associated genes
We performed the same curation process for FTLD-
MND associated genes (MAPT, C9ORF72, GRN, VCP, 
FUS, CHMP2B, TBK1, TARDBP). Most of the individu-
als with genetic forms of FTLD-MND in the TANGL 
cohort had deleterious variants in MAPT and TARDBP 
(Table  2 and Additional file  8: Table  S6 and Additional 
file  9: Table  S7). The MAPT c.1189C>T (p.Pro397Ser) 
variant was identified in three independent families 
from the same geographic region that shared IDB seg-
ment of 2.89 cM overlapping the locus (Additional file 1: 

Figures  S23 and S24). This variant had been previously 
reported in five apparently unrelated Spanish families 
[42], and like the Spanish counterpart, the Colombian 
MAPT c.1189C>T (p.Pro397Ser) carriers had variable 
expressivity of the illness (Additional file  9: Table  S7 
and Additional file  10: Table  S8). To elucidate whether 
the Colombian MAPT c.1189C>T (p.Pro397Ser) carri-
ers were IBD with the Spanish families, we used exome 
sequencing data from a Spanish patient to search for 
similarities in the variant carrying haplotype. We identi-
fied a minimal shared haplotype of 2.65 cM including the 
MAPT locus, which suggests that the Colombian families 
share a common ancestor with the Spanish carriers of 
MAPT c.1189C>T (p.Pro397Ser) (Additional file  1: Fig-
ure S25).

Two siblings with FTLD-MND born of consanguine-
ous parents were homozygous for the TBK1 c.1717C>T 
(p.Arg573Cys) variant (Additional file  1: Figure S26). 
Haploinsufficiency of TBK1 has been previously associ-
ated with familial ALS and FLTD and is a known mecha-
nism of pathogenicity [109]. Homozygosity of nonsense 
TBK1 variants has been proven to be lethal in mice 
[110]. A second variant in TBK1 was c.1257_1258del 
(p.Val421Cfs*26), identified in two unrelated individu-
als that shared an IBD segment of 3.1 cM including the 
TBK1 locus (Additional file  1: Figure S27). We identi-
fied two variants in TARDBP that had been previously 
reported in European populations with diagnosis of ALS 
[111, 112], and in contrast with these cohorts, Colombian 
TARDBP c.1147A>G (p.Ile383Val) carriers had signifi-
cant intra-familial variability with heterogeneous FTLD-
MND spectrum disorders (Additional file 1: Figure S28). 
Our study identified only one carrier of C9ORF72 expan-
sion, a single carrier of a pathogenic variant in GRN 
(Additional file  1: Figure S29), and no disease-causing 
variants in CHMP2B, FUS, or VCP. While the frequency 
of the identified mutations differs from those reported 
in European descent cohorts [59, 113], all the identified 
pathogenic variants in these FTLD-MND associated 
genes resided on European haplotypes.

Other genes associated with ALS in the cohort
To explore the phenotypic and genetic overlap between 
FTLD and ALS, we searched for deleterious variants in 
nineteen additional genes associated with ALS, with 
or without FTLD (Additional file  1: Figure S14, S15 
and Additional file  7: Supplementary methods). The 
SQSTM1 [MIM: 601530] c.1175C>T (p.Pro392Leu) vari-
ant was present in 11 unrelated cases and two controls 
of the TANGL cohort. These cases were unrelated and 
were clinically heterogeneous: six had diagnosis of AD, 
three of FTLD, one of CBD, and one PSP (Table  2 and 
Additional file 8: Table S6). Eight of the eleven cases had 
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family history of dementia or neurodegenerative disease, 
and none of them carried other pathogenic mutations 
in the explored disease-causing genes. This variant was 
initially reported in European individuals with famil-
iar forms of FTLD, Paget’s disease of the bone, and ALS 
[114–116]. Later studies identified this variant both in 
cases and controls, suggesting that it may be a risk factor 
rather than causal for illness [117, 118].

The SQSTM1 c.1175C>T (p.Pro392Leu) is the result of 
founder effects in Belgian, Dutch, and Spanish individu-
als [119], and it was present in five individuals from the 
European cohort of the 1000GP. We used HAP-IBD to 
search for IBD between the Colombian and the 1000GP 
carriers of SQSTM1 c.1175C>T (p.Pro392Leu). Ten car-
riers of the TANGL cohort shared IBD segments > 2 cM 
overlapping the variant, which resided in a European 
haplotype as well (Additional file 1: Figure S30). To deter-
mine IBD at a smaller scale, we did a manual alignment of 
all the variant-carrying haplotypes and detected an IBD 
segment of ~ 1 cM between all the TANGL cohort and 
1000GP European SQSTM1 c.1175C>T (p.Pro392Leu) 
carriers (Additional file  1: Figure S31). This observation 
suggests that SQSTM1 c.1175C>T (p.Pro392Leu) shows 
the signature of a founder effect that pre-dates the Span-
ish invasion. Variants with higher allelic frequency also 
show IBD between the TANGL cohort and with other 
carriers outside of Colombia.

In contrast to the pathogenic variants in the FTLD-
MND associated genes, five of the eight disease associ-
ated variants identified in the ALS panel were of Native 
American origin while only two were of European ances-
try (Table  2). However, most of these individuals with 
pathogenic and likely pathogenic variants in Native 
American haplotypes presented with FTLD pheno-
types (Additional file  8: Table  S6 and Additional file  9: 
Table  S7). For example, the TUBA4A [MIM: 191110] 
c.820C>G (p.Pro274Ala) variant was identified in two 
independent families with positive family histories of 
dementia and diagnosis of bvFTD and EOD without 
motor neuron disease (Additional file 1: Figure S32). As 
described previously for other variants, these families 
shared a long IBD haplotype of 15.54 cM overlapping the 
locus, suggesting a recent common ancestor (Additional 
file  1: Figure S33). The SOD1 [MIM: 147450] c.63C>G 
(p.Phe21Leu) variant was identified in one patient with 
sporadic navPPA who did not have any motor or ALS-
associated symptoms. This variant and others in this 
same amino acid [c.62 T>G (p.Phe21Cys)] had been pre-
viously reported in patients with ALS [120, 121]. Addi-
tional likely pathogenic variants in ANXA11 [MIM: 
602572] and HNRNPA2B1 [MIM: 600124] residing in 
Native American haplotypes were identified in patients 
with svPPA and bvFTD. These results further intertwine 

ALS and FTLD with several genes previously associ-
ated exclusively with ALS that may also be responsible 
for a FTLD phenotype in a different ancestral context. 
The genetic and clinical heterogeneity of ALS associ-
ated genes had been previously described in European 
population [122], but the inclusion of diverse individuals 
expands the extent of genetic overlap between FTLD and 
ALS.

A patient with PSP was homozygous by descent for a 
European haplotype harboring the FIG4 [MIM: 609390], 
c.122 T>C (p.Ile41Thr). Although this gene has been 
associated with autosomal dominant forms of ALS, this 
same specific variant has been reported in compound 
heterozygosity with nonsense variants in European 
individuals with autosomal recessive cases of Charcot-
Marie-Tooth’s disease [123] [MIM: 611228]. A family 
presenting with FTLD-ALS was shown to have a novel 
c.724G>A (p.Ala242Thr) variant in UBQLN2 [MIM: 
300264]. UBQLN2, found on the X-chromosome, is asso-
ciated with ALS or FTLD-MND, with a lower penetrance 
in females [124]. The family with this mutation had late 
onset bvFTD presentation in the female carrier, while the 
male carrier had FTLD-MND (Additional file  1: Figure 
S34).

Other genes associated with neurodegenerative disorders
Several families with EOD were explained by variants in 
other non-AD-FTD-ALS genes (Additional file  1: Fig-
ures  S14 and S15). A family with an unspecified auto-
somal dominant EOD had a novel mutation in DNAJC5 
[MIM: 611203] c.347 T>G (p.Leu116Arg) residing on an 
African haplotype. Their phenotype and postmortem 
brain tissue histopathology was compatible with adult-
onset ceroid neuronal lipofuscinosis-4B (CNL4B) [MIM: 
162350] (Additional file  1: Figure S35). A novel likely 
pathogenic variant in LRRK2 [MIM: 609007] c.4334C>G 
(p.Ser1445Cys) was identified in a patient with a Euro-
pean background and non-motor symptoms in Parkin-
son’s disease and dementia. One patient with a family 
history of cancer and dementia carried the CSF1R [MIM: 
164770] c.2068G>A (p.Gly690Ser) variant in a Native 
American haplotype. CSF1R mutations have been associ-
ated with Hereditary Diffuse Leukoencephalopathy with 
Spheroids (HDLS) [125] [MIM: 221820] A postmortem 
brain tissue examination supported HDLS diagnosis 
for the CSF1R c.2068G>A (p.Gly690Ser) variant carrier 
(Additional file  1: Figure S36). These families provide 
novel insights on genetic-phenotypic relationships.

Despite an extensive evaluation of known genes pre-
viously reported for Mendelian forms of dementia, we 
were not able to identify a disease-causing variant in all 
families with autosomal dominant inheritance of the ill-
ness. Of the 566 families included in the present study, 
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59 had autosomal dominant inheritance defined as three 
or more affected individuals in two consecutive genera-
tions (Additional file  11: Table  S9). For the 18 families 
in which all individuals had early onset of symptoms 
(< 65 years), we could identify disease causing variants in 
all but three, and 13 of them carried pathogenic PSEN1 
variants. In families with both early and late onset cases, 
we identified disease causing variants in seven of 33. No 
disease-causing variant was identified in the 12 individu-
als from the eight families where everyone had late onset, 
but 10 of them carried at least one APOE [MIM: 107741] 
ϵ4 allele (two were APOE ϵ3/ϵ3, six were ϵ3/ϵ4, and four 
ϵ4/ϵ4). In conclusion, a pathogenic or likely pathogenic 
variant was identifiable in the families with autosomal 
dominant inheritance in which most of the affected indi-
viduals had disease onset before 65 years.

Genetic variation associated with AD risk genes
Both rare and common variants can have a small effect 
size on AD risk [126]. To explore rare variants confer-
ring intermediate risk for the illness, we selected three 
genes (TREM2, SORL1, and ABCA7) that have shown 
odds ratio (OR) higher than two (OR > 2) in disease asso-
ciation studies [69] Using the criteria suggested by Bel-
lenguez et  al. [69], we identified 14 protein truncating 
variants (PTV) and 16 strictly damaging (SD) variants 
in TREM2, SORL1, and ABCA7 (Table 3 and Additional 
file 12: Table S10).

The most common risk-conferring variants in the 
TANGL cohort resided on TREM2, with over a hun-
dred individuals carrying SD or PVT in this gene (Addi-
tional file 12: Table S10). The most prevalent variant was 
c.469C>T (p.His157Tyr), with 50 heterozygous and seven 
homozygous carriers. All the c.469C>T (p.His157Tyr) 
carriers were IBD for a Native American haplotype. Two 
out of three algorithms classified His157Tyr as definitely 
pathogenic, while a meta-analysis determined TREM2 
c.469C>T (p.His157Tyr) has an OR = 3.65 [127], and 
therefore, it qualified for the present study. Additionally, 
we identified 33 TREM2 c.140G>A (p.Arg47His) carriers 
in our cohort; three of them were homozygous for this 
variant (Additional file  12: Table  S10). All the TREM2 
c.140G>A (p.Arg47His) carriers from the TANGL cohort 
shared an IBD European haplotype overlapping the 
TREM2 locus, and this same variant-carrying haplotype 
was present in five European individuals from the 1000GP 
who showed IBD with the Colombian carriers (Addi-
tional file 1: Figure S37). Besides risk conferring variants 
in Native American and European haplotypes, an Afri-
can TREM2 haplotype [GenBank: NM_001271821] car-
rying c.572G>A (p.Trp191*), c.632 T>C (p.Leu211Pro), 
and c.287C>A (p.Thr96Lys) was identified in 10 individu-
als. This haplotype was previously associated with an 

increased risk in African-American cohorts [128]. Unlike 
the previous cases of homozygosity, one individual with 
early-onset AD was a compound heterozygote with both 
the Thr96Lys/Trp191*/Leu211Pro haplotype and the 
c.469C>T (p.His157Tyr) variant, suggesting that genetic 
risk factors from different ancestral origins may coexist 
in admixed individuals and populations.

Rare variants in TREM2 are population specific. For 
example, TREM2 c.140G>A (p.Arg47His) is associated 
with increased risk for AD in European descent popula-
tions [129, 130] but not in African [128] or Asian [131, 
132], while TREM2 c.469C>T (p.His157Tyr) shows 
association with AD in Asian [127, 133] but not in Euro-
pean [134] or African [128] cohorts. Interestingly, the 
c.469C>T (p.His157Tyr) variant was found in Colom-
bia on a Native American haplotype, raising the possi-
bility that this allele arrived from Asia to the American 
continent close to the time when the Americas were 
first populated 15,000–20,000 years ago. To support this 
hypothesis, we searched for this variant in the Human 
Genome Dating database [135], which uses coalescent 
modeling to estimate the time to the most recent com-
mon ancestor (TMRCA) between the variant carriers and 
the age of the variant. The estimated age of the c.469C>T 
(p.His157Tyr) allele is 1265 generations (95% confi-
dence interval of 1108.5–1430.9), which corresponds 
to 31,625 years by setting one generation equivalent to 
25 years (https:// human. genome. dating/ snp/ rs223 4255). 
In contrast, the c.140G>A (p.Arg47His) variant emerged 
more recently, as it was estimated to be 425 generations 
old or 10,625 years (https:// human. genome. dating/ snp/ 
rs759 32628), dating to a time before gene flow from 
Europe to the Americas occurred. These results lead us to 
conclude that the disease burden in this population is not 
only affected by the recent admixture after the conquest 
of the Americas, but was also affected by migrations 
[136] during the original populating of the continent.

Risk-conferring variants in ABCA7 and SORL1 were 
less prevalent than those in TREM2. Most of the variants 
detected in ABCA7 consisted in PTV and resided on Afri-
can haplotypes (Additional file 1: Figure S37). The major-
ity in SORL1 were SD variants of European origin, two 
homozygous carriers of ABCA7 variants c.2124_2130del 
(p.Glu709fs) and c.4886C>T (p.Ser1629Leu), and a 
compound heterozygote of risk variants from differ-
ent ancestral origins. There were no compound het-
erozygous or homozygous variants for SORL1, and the 
c.6550G>A (p.Ala2184Thr) variant was only found in a 
healthy centenarian. Additionally, a search for risk asso-
ciated variants in ADAM10 [77, 78], identified c.510G>C 
(p.Gln170His) in ten individuals, including one homozy-
gous patient. These reported variants in TREM2, SORL1, 
ABCA7, and ADAM10 were IBD in carriers of the same 

https://human.genome.dating/snp/rs2234255
https://human.genome.dating/snp/rs75932628
https://human.genome.dating/snp/rs75932628
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variant (Additional file 1: Figures S37, S38, S39 and S40). 
In summary, the characteristics we described for disease-
causing variants such as IBD between carriers, multiple 
ancestral origins of deleterious variants within the same 
gene, and autozygosity were present in variants with 
higher allelic frequencies in risk-associated genes.

The high allelic frequency of some risk conferring 
variants in the TANGL cohort allowed the detection of 
individuals who were homozygous by descent and raised 
the hypothesis of consanguinity between their par-
ents, as was the case for the two families with recessive 
dementias [TBK1 c.1717C>T (p.Arg573Cys) and FIG4 
c.122 T>C (p.Ile41Thr)]. We used Hap-IBD and manual 

haplotype alignment to estimate the autozygosity of the 
homozygous individual for risk-associated variants in 
ABCA7 [c.2124_2130del (p.Glu709fs) and c.4886C>T 
(p.Ser1629Leu)], TREM2 [c.140G>A (p.Arg47His) and 
c.469C>T (p.His157Tyr)] and ADAM10 [c.510G>C 
(p.Gln170His)]. Five individuals from three families who 
were the offspring of related parent had autozygous seg-
ments > 30 cM overlapping the risk associated variant 
(Additional file  13: Table  S11). The remaining individu-
als had smaller autozygous segments, suggesting back-
ground relatedness of the population due to a small 
effective population size or bottlenecks [137, 138].

Table 3 Variants in risk‑associated genes

PTV protein truncating variant, SD strictly damaging, ExAC ExAC database minor allelic frequency. CADD corresponds to the Phred score. Variants denoted with a + 
were identified in homozygous states. GenBank transcripts for each gene can be found in Additional file 4: Table S3

Gene Coding change dbSNP/ClinVar Classification ExAC 1000G CADD Local ancestry

ABCA7 c.2T>C rs1347920426 PTV (nonsense) . . 24.9 Native American

c.236A>C (p.Asn79Thr) rs377401443 SD 4.16E‑05 . 24.5 African

c.1180_1190del (p.Leu396fs) rs567222111 PTV (frameshift) 0.0005 0.0022 . African

c.1531G>T (p.Glu511*) rs374932832 PTV (nonsense) 7.60E‑05 . 39 African

c.1776G>T (p.Trp592Cys) SCV001751545 SD . . 26 African

c.2124_2130del (p.Glu709fs)+ rs547447016 PTV (frameshift) 0.0024 0.0006 . European

c.2194C>T (p.Gln732*) rs1030634619 PTV (nonsense) . . 36 European

c.2552+11_2552+58del rs1178315251 PTV (splice) . . . African

c.2611G>C (p.Asp871His) rs139251928 SD 0.0004 0.0014 24.8 African

c.3781delC (p.Pro1261fs) SCV001751546 PTV (frameshift) . Native American

c.4208delT (p.Leu1403fs) rs538591288 PTV (frameshift) 0.0011 . . European

c.4465C>T (p.Arg1489*) rs753664323 PTV (nonsense) 6.66E‑05 . 39 European

c.4886C>T (p.Ser1629Leu)+ rs184590335 SD 0.0012 0.0006 35 Native American

c.4895C>T (p.Pro1632Leu) rs143083561 SD 0.0002 0.0006 34 African

c.5302delC (p.Leu1768fs) rs1348650979 PTV (frameshift) . . . Native American

c.5463+2T>C rs374611445 PTV (splice) 2.81E‑05 . 23.7 European

c.5794C>T (p.Arg1932C) rs114787084 SD 0.0002 0.0006 34 African

SORL1 c.994C>T (p.Arg332Trp) rs772110877 SD 5.77E‑05 . 35 European

c.1432G>C (p.Ala478Pro) SCV001751547 SD . . 28.2 European

c.1496C>T (p.Ser499Leu) rs764032259 SD 8.24E‑06 . 35 European

c.2200G>A (p.Asp734Asn) rs148430425 SD 0.0011 . 34 European

c.2230C>T (p.Arg744*) rs1050845490 PTV (nonsense) . . 39 European

c.2710C>T (p.Arg904Trp) rs148966249 SD 4.12E‑05 2.00E‑04 33 Native American

c.3679G>T (p.Gly1227Cys) rs1765488318 SD . . 34 European

c.4520C>T (p.Pro1507Leu) rs1308522330 SD . . 26.2 Undetermined

c.6550G>A (p.Ala2184Thr) rs369618646 SD 4.16E‑05 . 34 African

TREM2 c.140G>A (p.Arg47His)+ rs75932628 SD 0.0021 0.002 33 European

c.469C>T (p.His157Tyr)+ rs2234255 SD 0.0036 0.0028 23.1 Native American

NM_001271821
c.287C>A (p.Thr96Lys)
c.572G>A(p.Trp191*)
c.632T>C (p.Leu211Pro)

rs2234253
rs2234258
rs2234256

PTV (nonsense) African

c.594G>A (p.Trp198*) rs1765488318 PTV (nonsense) . . 39 Undetermined

ADAM10 c.510G>C (p.Gln170His)+ rs61751103 SD 0.0012 0.0012 19.17 European



Page 14 of 22Acosta‑Uribe et al. Genome Medicine           (2022) 14:27 

Discussion
Genetic drift has been one of the main forces shaping 
human genomic variation [139, 140]. While popula-
tions that emerge from a bottleneck will harbor reduced 
genetic variation, over time, such a population can accu-
mulate higher numbers of deleterious variants due to 
random fluctuations in allele frequencies [141]. Fur-
thermore, deleterious allele frequencies decrease more 
slowly in smaller populations because natural selection 
acts on fitness differences and therefore requires genetic 
variation [141]. The Colombian tri-continental admixture 
among the Native Americans, Europeans, and Africans 
combined a portion of the genetic disease burden that 
was previously limited to each of these ancestral popu-
lations. Within the backdrop of an admixed population, 
numerous infectious diseases extracted a very steep mor-
tality. As a consequence, the small isolated settlements 
that survived the bottleneck rapidly expanded locally 
during the colonial period [1]. These multiple isolated 
bottlenecks each with their own rare variants added to 
the diversity over the entire population. The TANGL 
cohort recapitulated the admixture patterns previously 
described in the Colombian population, suggesting that 
the country´s demographic history is likely to underlie 
the modern clustering of familial neurodegenerative dis-
eases arising from multi-ancestral rare disease-associated 
alleles.

In this cohort, most familial early-onset AD cases were 
caused by variation in the PSEN1 gene. We identified 
eleven different pathogenic PSEN1 variants from multiple 
ancestral origins, nearly all attributed to founder effects. 
The PSEN1 mutations emerged from a small effective 
population in each of the early settlements that consti-
tuted a patchwork of bottlenecks dispersed throughout 
the country. Because people tended to remain geographi-
cally isolated, the rare variants represent a local genetic 
footprint. Survivors who emerged from the bottleneck 
had escaped the large number of infectious diseases 
responsible for decimating the population. During the 
historical period of colonization, populations in these 
settlements grew rapidly as the incidence of diseases 
diminished, which favored the segregation of potentially 
damaging variants at higher rates. The question arises as 
to whether the PSEN1 mutations could be under positive 
selection or are the mutations completely explained by 
drift. Because PSEN1 mutant phenotypes do not appear 
until after the age of child-bearing, it is unnecessary to 
invoke trade-off effects for maintaining the mutation 
in the population. Positive selection for Alzheimer risk 
in the context of infectious burden has been previously 
attributed to the APOE ϵ4 risk allele [142]. PSEN1 muta-
tions cause the production of excess amyloid-beta, which 
may function as an anti-microbial peptide (AMP) [143]. 

In this manner, PSEN1 mutations may have been posi-
tively selected as protection against the enormous mor-
tality of infectious diseases. AMPs function as an ancient 
component of the innate immune system that target bac-
teria, mycobacteria, enveloped viruses, fungi, and proto-
zoans [144]. Amyloid beta is active against at least eight 
common and clinically relevant microorganisms, and 
several anti-amyloid-beta clinical trials have reported 
increased rate of infections among the participants [143, 
145]. However, given the short ~ 500-year interval since 
the selective pressure occurred and the ~ 100-year pulse-
like nature of the selection, the possibility of positive 
selection must remain speculative. Without a sufficient 
time interval for the mutation to spread widely through 
the population, the only indirect support for positive 
selection might consider the collective fitness conferred 
by all of the PSEN1 mutations due to their shared phe-
notypic effect of increasing amyloid beta as an AMP. 
Whether these mutations represent a statistical excess 
will require further study, but given the population size at 
the time to which the mutations can be historically traced 
(see ancestry data for each mutation), it is likely that the 
mutations derived from a small effective population, thus 
supporting their possible over-representation. A com-
parison comes from large catchment groups for clinics 
with an interest in familial dementias—one in Alabama 
had no PSEN1 cases in their series [146] and another in 
San Francisco had six PSEN1 cases (personal communi-
cation, Jennifer Yokoyama, University of California San 
Francisco). In one study that sought early-onset Alzhei-
mer patients from 28 university hospitals across France 
spanning the dates 1993 to 2016, 17 sporadic cases car-
ried a PSEN1 mutation [104]. However, any comparison 
with our cases is problematic because ten of these arose 
de novo, which was not the case in the TANGL cohort, 
and some were of unknown pathogenicity.

In addition to the PSEN1 variants, we identified multi-
ple rare variants causing autosomal dominant early-onset 
dementia. Variants were usually found in one local-
ity and likely derived from a common ancestor (Addi-
tional file  1: Figure S41). Previous studies had reported 
disease causing variants for other neurological disor-
ders with the signature of founder effects; among these 
are four different cerebral autosomal dominant arte-
riopathy with subcortical infarcts and leukoencepha-
lopathy (CADASIL) [MIM: 125310] associated variants 
in NOTCH3 [MIM: 600276, c.307C>T(p.Arg103Cys), 
c.421C>T (p.Arg141Cys), c.484 T>A (p.Cys162Ser), 
c.1363 T>C (p.Cys455Arg)] [147, 148], a familial epi-
sodic pain syndrome [MIM: 615040] with a variant in 
TRPA1 [MIM: 604775, c.2564A>G (p.Asn855Ser)] [149], 
Huntington’s disease [150] [MIM: 143100], a Parkinson 
disease variant in LRRK2 [c.6055G>A (p.Gly2019Ser)] 
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[151], blepharophimosis-ptosis-epicanthus inversus 
syndrome (BPES) [MIM: 110100] type 1 with a FOXL2 
[MIM: 605597, c.157C>T (p.Gln53*)] variant and BPES 
type 2 with FOXL2 in-frame 30 bp duplication (c. 909–
938dup) [152], a complex ataxia due to a KIF1A vari-
ant [MIM: 601255, variant c.304G>C (p.Gly102Arg)], 
generalized epilepsy with febrile seizures plus (GEFS+) 
[MIM: 604403] with SCN1A [MIM: 182389 c.5225A>G 
(p.Asp1742Gly)] variant [153], and non-syndromic hear-
ing loss [MIM: 220290] due to a GJB2 variant [MIM: 
121011 c.35delG (p.Gly12Valfs∗] [154] . Founder effects 
can also be detected in other non-neurologic con-
ditions: BRCA1/2 variants [MIM: 113705, 600185] 
among Colombian women with breast and ovary cancer 
increased the prevalence of these variants in the studied 
population [155]. Most of these mutations map to small 
distinct locales that when, taken together, demonstrate 
the remarkable overlap of the genetic and geographic 
maps.

This study underscores the numerous genetic insights 
that can emerge from Latin American populations. 
Another example is the putative modifier gene—homozy-
gosity of the Christchurch variant in ApoE3—that may 
strongly delay the onset of Alzheimer’s disease [156]. 
This gene variant and many of the rare large effect size 
mutations reported here arose due to the unique genetic 
history of the region. Ongoing interest in Latin Ameri-
can genetic studies, akin to all genetic studies in under-
represented populations, must consider the ethical 
implications of the research. Over the many years these 
were obtained, the research was conducted with the full 
involvement of the community and extensive interac-
tions with and informed consent from the contributing 
families.

Conclusions
Demographic history plays a significant role in shaping 
a population’s genetic risk for disease. The genetic com-
plexity of the dementias offers a phenotypic heading 
for a search to uncover genetic variation for the familial 
dementias. In the Colombian population, founder effects 
led to a large number of ancestral disease-causing alleles 
from each of three admixed continents. We also observed 
a confluence of rare variants arising from different ances-
tral origins in dementia risk-conferring genes. Variants of 
different ancestries combined to create a heterogeneous 
landscape for the genetic risk of dementia. In addition to 
the significant role of admixture and drift, we raise the 
question of whether positive selection of PSEN1 muta-
tions could contribute to the large number of these in a 
relatively small effective population size. PSEN1 variants 
lead to excess of amyloid-beta, which may function as 
anti-microbial protein and may have protected against 

the massive mortality due to infectious diseases during 
the conquest and colonization of the Americas. This work 
reinforces the need to include diverse populations for 
gene-trait association studies including populations that 
underwent bottlenecks as a source for gene discovery.
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