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VERTEX-DEGREE-BASED TOPOLOGICAL INDICES OVER
TREES WITH TWO BRANCHING VERTICES

R. CRUZ1, C. A. MARÍN1, AND J. RADA1

Abstract. Given a graph G with n vertices, a vertex-degree-based topological
index is defined from a set of real numbers {ϕij} as TI (G) =

∑
mij (G)ϕij , where

mij (G) is the number of edges between vertices of degree i and degree j, and the
sum runs over all 1 ≤ i ≤ j ≤ n− 1. Let Ω (n, 2) denote the set of all trees with n
vertices and 2 branching vertices. In this paper we give conditions on the number
{ϕij} under which the extremal trees with respect to TI can be determined. As a
consequence, we find extremal trees in Ω (n, 2) for several well-known vertex-degree-
based topological indices.

1. Introduction

Topological indices are molecular descriptors which play an important role in the-
oretical chemistry, especially in QSPR/QSAR research ([4,13] and [14]). Among all
topological indices one of the most investigated are the so-called vertex-degree-based
(VDB for short) topological indices, defined for a graph G with n vertices as

(1.1) TI (G) =
∑

1≤i≤j≤n−1
mijϕij,

where mij is the number of edges of G joining a vertex of degree i with a vertex of
degree j and {ϕij} is a set of real numbers. Several well-known VDB topological
indices in the literature are obtained by different choices of the numbers {ϕij}. For
example, for the First Zagreb index ϕij = i + j [12] , for the Second Zagreb index
ϕij = ij [12], for the Randić index ϕij = 1√

ij
[21], for the Harmonic index ϕij = 2

i+j

[24], for the Geometric-Arithmetic ϕij = 2
√

ij
i+j

[22], for the Sum-Connectivity index
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ϕij = 1√
i+j

[25], for the Atom-Bond-Connectivity index ϕij =
√

i+j−2
ij

[5] and for

the Augmented Zagreb index ϕij =
(

ij
i+j−2

)3
[6]. A more complete list thereof can

be found in [7] and [8]. For recent results on VDB topological indices we refer to
[1–3,7, 8, 11,18–20,23].

Let Ω (n, i) denote the set of all trees with n vertices and i branching vertices. The
problem of finding extremal values of a topological index over the set of trees with
exactly one branching vertex (i.e., starlike trees) was solved for the Wiener index
[10], the Hosoya index [9], the Randić index or more generally, for vertex-degree-
based topological indices [1]. Moreover, the extremal values of the Hosoya index over
trees with exactly 2 branching vertices can be deduced from [17]. See also [16] for
the Wiener index. The double star Sp,q is a tree with p + q = n vertices with two
branching vertices with degrees p and q respectively and p+ q − 2 pendant vertices.
If |p− q| ≤ 1 then the double star is said to be balanced. In [15] is reported that the
balanced double star is the tree with the maximum general Randić index among all
trees of order n ≥ 8 for α ∈ [2,+∞). Also, the double stars Sn−2,2 and Sn−3,3 are the
trees with the second and the third minimum zeroth-order general Randić index for
0 < α < 1 and the second and the third maximum zeroth-order general Randić index
for α < 0 or α > 1 respectively [15].

It is our interest in this paper to give a general criteria to decide which trees in
Ω (n, 2) , minimize and maximize TI. We denote by S (a1, . . . , ar; t; b1, . . . , bs) the tree
with two branching vertices of degrees r + 1, s+ 1 > 2 connected by the path Pt, and
in which the lengths of the pendant paths attached to the two branching vertices are
a1, . . . , ar and b1, . . . , bs respectively (see Figure 1). Let Ω1(n, 2) be the set of all trees

Pt
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···
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···

· · ·
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Figure 1. The tree S(a1, . . . , ar; t; b1, . . . , bs) in Ω (n, 2).

in Ω(n, 2) in which each pendant path has length 1 and Ω2(n, 2) be the set of all trees
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in Ω(n, 2) such that the branching vertices are connected by an edge. Note that

Ω1(n, 2) =

S(x; t; y) = S(1, . . . , 1︸ ︷︷ ︸
x

; t; 1, . . . , 1︸ ︷︷ ︸
y

)} : x+ y + t = n

 ,
Ω2(n, 2) =

S(a1, . . . , ar; 2; b1, . . . , bs)} :
r∑

i=1
ai +

s∑
j=1

bj + 2 = n

 .
In sections 2 and 3 we consider the problem of finding extremal trees with respect

to VDB index TI over Ω1(n, 2) and Ω2(n, 2) respectively. In Theorems 2.1 and 3.1 we
give conditions on the number {ϕij} under which the trees with extremal TI values
over Ω1(n, 2) and over Ω2(n, 2) respectively, can be determined.

Finally, in section 4 we show that under certain conditions on the number {ϕij}, one
of the extremal values of the VDB index TI over the class of trees with two branching
vertices is attained in a tree of the class Ω1(n, 2) and the other one is attained in a
tree of the class Ω2(n, 2) (see Theorem 4.1). As a consequence, in Corollary 4.1 we
find extremal trees for the First Zagreb index, the Second Zagreb index, the Randić
index, the Harmonic index and the Sum-Connectivity index. Also we find the maximal
tree for the Atom-Bond-Connectivity index and the minimal tree for the Augmented
Zagreb index.

2. Extremal Values of VDB Topological Indices Over Ω1(n, 2)

First we consider the set of double stars S(x; 2; y) = S(1, . . . , 1︸ ︷︷ ︸
x

; 2; 1, . . . , 1︸ ︷︷ ︸
y

), where

2 ≤ x ≤ n− 4, x+ y + 2 = n and n ≥ 6. The value of the VDB index TI of double
stars is
(2.1) f1(x) = TI (S(x; 2; y)) = xϕ1,x+1 + ϕx+1,y+1 + yϕ1,y+1.

In the next proposition we give conditions on the numbers {ϕij} under which the
extremal double stars with respect to VDB index TI can be determined.

Proposition 2.1. Let TI be a VDB topological index defined as in (1.1) and assume
that f1(x) is increasing (decreasing) for 2 ≤ x ≤

⌊
n−2

2

⌋
, where n ≥ 6. Then the

double star with minimal (maximal) TI value is S (2; 2;n− 4) and the double star
with maximal (minimal) TI value is the balanced double star S

(⌊
n−2

2

⌋
; 2;

⌈
n−2

2

⌉)
.

Proof. It is sufficient to note that, for 2 ≤ x ≤
⌊

n−2
2

⌋
and y = n−2−x, f1(x) = f1(y).

Then, if f1(x) is monotone for 2 ≤ x ≤
⌊

n−2
2

⌋
, then the extremal values of f1(x) are

attained in x = 2 and x =
⌊

n−2
2

⌋
. �

We apply the previous proposition in order to find extremal double stars with
respect to well-known vertex-degree-based topological indices.

Corollary 2.1. Among all double stars of order n ≥ 6:
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(a) the Randić index, the Sum-Connectivity index, the Geometric-Arithmetic index,
the Harmonic index and the Augmented Zagreb index attain the minimal value
in the double star S(2; 2;n− 4) and the maximal value in the balanced double
star S

(⌊
n−2

2

⌋
; 2;

⌈
n−2

2

⌉)
;

(b) the First Zagreb index, the Second Zagreb index and the Atom Bond Connec-
tivity index attain the maximal value in the double star S(2; 2;n− 4) and the
minimal value in the balanced double star S

(⌊
n−2

2

⌋
; 2;

⌈
n−2

2

⌉)
.

Proof. For each index in Corollary 2.1 it can be verified that the function f1(x) is
continuous in [2, n− 4] and differentiable in (2, n− 4).

For all VDB topological indices in part 1 of Corollary 2.1, we obtain that f ′1(x) > 0
if 2 < x < n−2

2 < y < n− 4. It implies that

f1(2) = f1(n− 4) ≤ f1(x) ≤ f1

(
n− 2

2

)
,

for 2 ≤ x ≤ n− 4 and the result follows.
On the other hand, for all VDB topological indices in part 2 of Corollary 2.1, we
obtain that f ′1(x) < 0 if 2 < x < n−2

2 < y < n− 4. It implies that

f1(2) = f1(n− 4) ≥ f1(x) ≥ f1

(
n− 2

2

)
,

for 2 ≤ x ≤ n− 4 and the result follows. �

Next we consider the set of trees of the form S(x; 3; y) = S(1, . . . , 1︸ ︷︷ ︸
x

; 3; 1, . . . , 1︸ ︷︷ ︸
y

),

where 2 ≤ x ≤ n− 5, x + y + 3 = n and n ≥ 7. The value of the VDB index TI of
S(x; 3; y) is
(2.2) f2(x) = TI (S(x; 3; y)) = xϕ1,x+1 + ϕ2,x+1 + ϕ2,y+1 + yϕ1,y+1.

Conditions on the numbers {ϕij} under which the extremal trees of the form S(x; 3; y)
with respect to VDB index TI can be determined are presented in the following

Proposition 2.2. Let TI be a VDB topological index defined as in (1.1) and assume
that f2(x) is increasing (decreasing) for 2 ≤ x ≤

⌊
n−3

2

⌋
where n ≥ 7. Then the tree

of the form S(x; 3; y) with minimal (maximal) TI value is S (2; 3;n− 5) and the tree
with maximal (minimal) TI value is S

(⌊
n−3

2

⌋
; 3;

⌈
n−3

2

⌉)
.

Proof. The proof is similar to the proof of Proposition 2.1. �

The results of applying conditions in the previous proposition to the topological
indices listed in Proposition 2.1 are presented in the next

Corollary 2.2. Among all trees of order n ≥ 7 of the form in S(x; 3; y):
(a) the Randić index, the Sum-Connectivity index, the Geometric-Arithmetic index

and the Harmonic index attain the minimal value in S(2; 3;n − 5) and the
maximal value in S

(⌊
n−3

2

⌋
; 3;

⌈
n−3

2

⌉)
;
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(b) the First Zagreb index, the Second Zagreb index, the Atom Bond Connec-
tivity index and the Augmented Zagreb index attain the minimal value in
S
(⌊

n−3
2

⌋
; 3;

⌈
n−3

2

⌉)
and the maximal value in S(2; 3;n− 5).

Proof. For each index in Corollary 2.2 it can be verified that the function f2(x) is
continuous in [2, n− 5] and differentiable in (2, n− 5).

For all VDB topological indices in part 1 of Corollary 2.2, we obtain that f ′2(x) > 0
if 2 < x < n−3

2 < y < n− 5. It implies that

f2(2) = f2(n− 5) ≤ f2(x) ≤ f2

(
n− 3

2

)
,

for 2 ≤ x ≤ n− 5 and the result follows.
On the other hand, for all VDB topological indices in part 2 of Corollary 2.2, we

obtain that f ′2(x) < 0 if 2 < x < n−3
2 < y < n− 5. It implies that

f2(2) = f2(n− 5) ≥ f2(x) ≥ f2

(
n− 3

2

)
,

for 2 ≤ x ≤ n− 5 and the result follows. �

Now we find the extremal trees with respect to vertex-degree-based topological
index TI over Ω1(n, 2). Let 4 ≤ t ≤ n−4, 2 ≤ x ≤ n− t−2, x+ y+ t = n, n ≥ 8 and

f3(x) =TI (S(x; t; y))− TI (S(x+ 1; t− 1; y))
= (ϕ2,x+1 − ϕ2,x+2) + (x+ 1) (ϕ1,x+1 − ϕ1,x+2) + (ϕ22 − ϕ1,x+1) .(2.3)

Theorem 2.1. Let TI be a VDB topological index defined as in (1.1) and n ≥ 8.
(a) If f3(x) ≤ 0 for all 2 ≤ x ≤ n− 6, f2(x) is decreasing for 2 ≤ x ≤

⌊
n−3

2

⌋
and

f1(x) is decreasing for 2 ≤ x ≤
⌊

n−2
2

⌋
, then the minimal tree in Ω1(n, 2) with

respect to VDB index TI is S(2; n− 4; 2), if 4ϕ13 + 2ϕ23 + (n− 7)ϕ22 ≤ f1
(

n−2
2

)
,

S
(⌊

n−2
2

⌋
; 2;

⌈
n−2

2

⌉)
, if 4ϕ13 + 2ϕ23 + (n− 7)ϕ22 > f1

(
n−2

2

)
,

while the maximal tree is{
S(2; 2;n− 4), if f1 (2) ≥ f2 (2) ,
S(2; 3;n− 5), if f1 (2) < f2 (2) .

(b) If f3(x) ≥ 0 for all 2 ≤ x ≤ n− 6, f2(x) is increasing for 2 ≤ x ≤
⌊

n−3
2

⌋
and

f1(x) is increasing for 2 ≤ x ≤
⌊

n−2
2

⌋
, then the minimal tree in Ω1(n, 2) with

respect to VDB index TI is{
S(2; 2;n− 4), if f1 (2) ≤ f2 (2) ,
S(2; 3;n− 5), if f1 (2) > f2 (2) ,
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while the maximal tree is S(2; n− 4; 2), if 4ϕ13 + 2ϕ23 + (n− 7)ϕ22 ≥ f1
(

n−2
2

)
,

S
(⌊

n−2
2

⌋
; 2;

⌈
n−2

2

⌉)
, if 4ϕ13 + 2ϕ23 + (n− 7)ϕ22 < f1

(
n−2

2

)
.

(c) If f3(x) ≥ 0 for all 2 ≤ x ≤ n− 6, f2(x) is decreasing for 2 ≤ x ≤
⌊

n−3
2

⌋
and

f1(x) is increasing for 2 ≤ x ≤
⌊

n−2
2

⌋
, then the minimal tree in Ω1(n, 2) with

respect to VDB index TI is S(2; 2;n− 4), if f1 (2) ≤ f2
(

n−3
2

)
,

S
(⌊

n−3
2

⌋
; 3;

⌈
n−3

2

⌉)
, if f1 (2) > f2

(
n−3

2

)
,

while the maximal tree is S(2; n− 4; 2), if 4ϕ13 + 2ϕ23 + (n− 7)ϕ22 ≥ f1
(

n−2
2

)
,

S
(⌊

n−2
2

⌋
; 2;

⌈
n−2

2

⌉)
, if 4ϕ13 + 2ϕ23 + (n− 7)ϕ22 < f1

(
n−2

2

)
.

Proof. (a) If f3(x) ≤ 0 for all 2 ≤ x ≤ n− 6, f2(x) is decreasing for 2 ≤ x ≤
⌊

n−3
2

⌋
and f1(x) is decreasing for 2 ≤ x ≤

⌊
n−2

2

⌋
, by relation (2.3) and Propositions

2.1 and 2.2 we obtain
f2(2) = TI (S(2; 3;n− 5)) ≥ f2(x) = TI (S(x; 3; y)) ≥ TI (S(x; t; y))

≥ TI (S(2; n− 4; 2)) = 4ϕ13 + 2ϕ23 + (n− 7)ϕ22,

f1(2) = TI (S(2; 2;n− 4)) ≥ TI (S(x; 2; y)) = f1(x) ≥ f1

(
n− 2

2

)
,

and the part 1 is proved.
(b) The proof is obtained as in part 1 by reversing inequalities.
(c) If f3(x) ≥ 0 for all 2 ≤ x ≤ n− 6, f2(x) is decreasing for 2 ≤ x ≤

⌊
n−3

2

⌋
and

f1(x) is increasing for 2 ≤ x ≤
⌊

n−2
2

⌋
, by relation (2.3) and Propositions 2.1

and 2.2 we obtain

f2

(
n− 3

2

)
≤ f2(x) = TI (S(x; 3; y)) ≤ TI (S(x; t; y))

≤ TI (S(2; n− 4; 2)) = 4ϕ13 + 2ϕ23 + (n− 7)ϕ22,

f1(2) = TI (S(2; 2;n− 4)) ≤ TI (S(x; 2; y)) = f1(x) ≤ f1

(
n− 2

2

)
,

and the part 3 is proved. �

We apply the previous theorem in order to find extremal trees in Ω1(n, 2) with
respect to well-known vertex-degree-based topological indices.

Corollary 2.3. Among all trees in Ω1(n, 2) with n ≥ 8:
(a) the Randić index, the Sum-Connectivity index, the Geometric-Arithmetic index

and the Harmonic index index attain the minimal value in the tree S(2; 2;n−4)
and the maximal value in the tree S(2; n− 4; 2);
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(b) the First Zagreb index, the Second Zagreb index and the Atom Bond Connec-
tivity index attain the minimal value in the tree S(2; n− 4; 2) and the maximal
value in the tree S(2; 2;n− 4);

(c) the Augmented Zagreb attains the minimal value in the tree S
(⌊

n−3
2

⌋
; 3;

⌈
n−3

2

⌉)
and the maximal value in the tree S

(⌊
n−2

2

⌋
; 2;

⌈
n−2

2

⌉)
.

Proof. For all the indices in part 1 of Corollary 2.3 it can be verified that f3(x) ≥ 0
for all 2 ≤ x ≤ n− 6. Moreover, by the proofs Corollaries 2.1 and 2.2, the functions
f1(x) and f2(x) are increasing. It is easy to verify that for all these indices

f1(2) ≤f2(2),

4ϕ13 + 2ϕ23 + (n− 7)ϕ22 ≥f1

(
n− 2

2

)
,

for all n ≥ 8. Then, by Theorem 2.1 the minimal tree is S(2; 2;n−4) and the maximal
tree is S(2; n− 4; 2).

For all the indices in Part 2 of Corollary 2.3 it can be verified that f3(x) ≤ 0 for all
2 ≤ x ≤ n − 6. Moreover, by the proofs Corollaries 2.1 and 2.2, the functions f1(x)
and f2(x) are decreasing. It is easy to verify that for all these indices

f1(2) ≥f2(2),

4ϕ13 + 2ϕ23 + (n− 7)ϕ22 ≤f1

(
n− 2

2

)
,

for all n ≥ 8. Then, by Theorem 2.1 the minimal tree is S(2; n− 4; 2) and the
maximal tree is S(2; 2;n− 4).

For the Augmented Zagreb index, it is easy to check that f3(x) > 0 for all x > 0.
By the proofs of Corollaries 2.1 and 2.2, the function f1(x) is increasing while the
function f2(x) is decreasing. It can be verified that

f1(2) ≥f2

(
n− 3

2

)
,

4ϕ13 + 2ϕ23 + (n− 7)ϕ22 ≤f1

(
n− 2

2

)
,

for all n ≥ 8,. By Theorem 2.1 the minimal tree is S
(⌊

n−3
2

⌋
; 3;

⌈
n−3

2

⌉)
) and the

maximal tree is S
(⌊

n−2
2

⌋
; 2;

⌈
n−2

2

⌉)
. �

3. Extremal Values of VDB Topological Indices Over Ω2(n, 2)

In order to find the trees with extremal TI values over Ω2(n, 2) we compute the
differences between TI indices of trees of the form S(a1, . . . , ar; 2; b1, . . . , bs), where
n ≥ 8.

Let S(a1, . . . , ax, y) = S(a1, . . . , ax, 1, . . . , 1︸ ︷︷ ︸
y

; 2; b1, . . . , bz−1), where x, y ≥ 0, x+ y ≥

2 and z ≥ 3. In the case of x ≥ 1, we assume that ai ≥ 2 for each i = 1, . . . , x.
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For x ≥ 1, y ≥ 1 and z ≥ 3 we have

f4(x, y, z) =TI (S(a1, . . . , ax, y))− TI (S(a1, . . . , ax + 1, y − 1))
= (ϕz,x+y+1 − ϕz,x+y) + x (ϕ2,x+y+1 − ϕ2,x+y)

+ y (ϕ1,x+y+1 − ϕ1,x+y) + (ϕ1,x+y − ϕ22) .(3.1)

For x ≥ 0, y ≥ 2 and z ≥ 3 we have

f5(x, y, z) =TI (S(a1, . . . , ax, y))− TI (S(a1, . . . , ax, 2, y − 2))
= (ϕz,x+y+1 − ϕz,x+y) + x (ϕ2,x+y+1 − ϕ2,x+y)

+ y (ϕ1,x+y+1 − ϕ1,x+y) + (2ϕ1,x+y − ϕ12 − ϕ2,x+y) .(3.2)

For x ≥ 3 and z ≥ 3 we have

f6(x, z) =TI (S(a1, . . . , ax−1, ax))− TI (S(a1, . . . , ax−1 + ax))
= (ϕz,x+1 − ϕz,x) + x (ϕ2,x+1 − ϕ2,x) + (ϕ2,x + ϕ12 − 2ϕ22) .(3.3)

Let A and X be arbitrary connected graphs with at least two vertices. For each
i = 2, . . . , n− 3, consider the path-coalescence graphs AXi+1,i and for i = 2, . . . , n− 2
the path-coalescence graphs Xn,i, depicted in Figure 2, where n ≥ 5.

b b b b b b b b

n i+ 1 i 1· · ·

XA

AXi+1,i

· · ·
b bbb b b b

n i 1

X

Xn,i

· · · · · ·

Figure 2. Path-coalescence graphs AXi+1,i and Xn,i.

Now we compute the difference between the vertex-degree-based topological index
TI as in (1.1) of introduced path-coalescence graphs. Let x be the degree of the
vertex i and y the degree of the vertex i+ 1 in AXi+1,i. Similarly, x is the degree of
the vertex x in Xn,i. For 3 ≤ i ≤ n− 2 we have:

(3.4) TI (Xn,i)− TI (Xn,2) = (ϕ2x − ϕ22) + (ϕ12 − ϕ1x) = f7(x)

and for 3 ≤ i ≤ n− 3 we have

(3.5) TI (AXi+1,i)− TI (AX3,2) = (ϕ2x − ϕ22) + (ϕ12 − ϕ1x) = f7(x).

Moreover, TI (Xn,i) is constant for each i ∈ {3, . . . , n − 2} and TI (AXi+1,i) is also
constant for i ∈ {3, . . . , n− 3}.

Theorem 3.1. Let TI be a VDB topological index defined as in (1.1), f7(x) ≥ 0 for
all x ≥ 3 and n ≥ 8.
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(a) If f4(x, y, z) ≤ 0 for all x ≥ 1, y ≥ 1 and z ≥ 3, f5(x, y, z) ≤ 0 for all x ≥ 0,
y ≥ 2 and z ≥ 3 and f6(x, z) ≤ 0 for all x, z ≥ 3, then the maximal tree in
Ω2(n, 2) with respect to VDB index TI is{

S(2, 2; 2; 2, n− 8), if f7(x) ≥ 0 for all x ≥ 3,
S(1, 1; 2; 1, n− 5), if f7(x) < 0 for all x ≥ 3,

while the minimal tree is S
(⌊

n−2
2

⌋
; 2;

⌈
n−2

2

⌉)
, if f1(x) is decreasing for 2 ≤ x ≤

⌊
n−2

2

⌋
,

S(2; 2;n− 4), if f1(x) is increasing for 2 ≤ x ≤
⌊

n−2
2

⌋
.

(b) If f4(x, y, z) ≥ 0 for all x ≥ 1, y ≥ 1 and z ≥ 3, f5(x, y, z) ≥ 0 for all x ≥ 0,
y ≥ 2 and z ≥ 3 and f6(x, z) ≥ 0 for all x, z ≥ 3, then the minimal tree in
Ω2(n, 2) with respect to VDB index TI is{

S(2, 2; 2; 2, n− 8), if f7(x) ≤ 0 for all x ≥ 3,
S(1, 1; 2; 1, n− 5), if f7(x) > 0 for all x ≥ 3,

while the maximal tree is S
(⌊

n−2
2

⌋
; 2;

⌈
n−2

2

⌉)
, if f1(x) is increasing for 2 ≤ x ≤

⌊
n−2

2

⌋
,

S(2; 2;n− 4), if f1(x) is decreasing for 2 ≤ x ≤
⌊

n−2
2

⌋
.

Proof. If f4(x, y, z) ≤ 0 for all x ≥ 1, y ≥ 1 and z ≥ 3, f5(x, y, z) ≤ 0 for all x ≥ 0,
y ≥ 2 and z ≥ 3 and f6(x, z) ≤ 0 for all x, z ≥ 3, by relations (3.1), (3.2) and (3.3),
we have

TI (S(a1, . . . , ar; 2; b1, . . . , bs)) ≤ TI (S(a1, a2; 2; b1, b2) ,
where a1, a2, b1, b2 ≥ 2. By relations (3.4) and (3.5) we have that

TI (S(a1, a2; 2; b1, b2) ≤
{
TI (S(2, 2; 2; 2, n− 8)) , if f7(x) ≥ 0 for all x ≥ 3,
T I (S(1, 1; 2; 1, n− 5)) , if f7(x) < 0 for all x ≥ 3.

On the other hand, by relations (3.1) and (3.2), we have

TI (S(a1, . . . , ar; 2; b1, . . . , bs)) ≥ TI

S(1, . . . , 1︸ ︷︷ ︸
p

; 2; 1, . . . , 1︸ ︷︷ ︸
n−2−p

)

 = f1(p),

where p = ∑r
i=1 ai. The result follows from Proposition 2.1 and the part 1 is proved.

The proof of part 2 is similar by reversing inequalities. �

Corollary 3.1. Among all trees in Ω2(n, 2) with n ≥ 8:
(a) the Randić index, the Sum-Connectivity index and the Harmonic index attain

the minimal value in the tree S(2; 2;n− 4) and the maximal value in the tree
S(2, 2; 2; 2, n− 8);

(b) the First Zagreb index and the Second Zagreb index attain the minimal value
in the tree S(1, 1; 2; 1, n− 5) and the maximal value in the tree S(2; 2;n− 4).
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Proof. For all the indices in part 1 of Corollary 3.1 it can be verified that f4(x, y, z) ≤ 0
for all x ≥ 1, y ≥ 1 and z ≥ 3, f5(x, y, z) ≤ 0 for all x ≥ 0, y ≥ 2 and z ≥ 3,
f6(x, z) ≤ 0 for all x, z ≥ 3 and f7(x) ≥ 0 for all x ≥ 3. Moreover, by the proof
of Corollary 2.1, the function f1(x) is increasing for 2 ≤ x ≤

⌊
n−2

2

⌋
. Then, by

part 1 of Theorem 3.1 the minimal tree is S(2; 2;n − 4) and the maximal tree is
S(2, 2; 2; 2, n− 8).

For all the indices in part 2 of Corollary 3.1 it can be verified that f4(x, y, z) ≥ 0 for
all x ≥ 1, y ≥ 1 and z ≥ 3, f5(x, y, z) ≥ 0 for all x ≥ 0, y ≥ 2 and z ≥ 3, f6(x, z) ≥ 0
for all x, z ≥ 3 and f7(x) ≥ 0 for all x ≥ 3. Moreover, by the proof of Corollary 2.1,
the function f1(x) is decreasing for 2 ≤ x ≤

⌊
n−2

2

⌋
. Then, by part 2 of Theorem 3.1

the minimal tree is S(1, 1; 2; 1, n− 5) and the maximal tree is S(2; 2;n− 4). �

The Geometric-Arithmetic, Atom-Bond-Connectivity and Augmented Zagreb in-
dices do not satisfy conditions in Theorems 3.1.

4. Extremal Values of VDB Topological Indices Over Trees with
Two Branching Vertices

In this section we consider the problem of finding trees in Ω(n, 2) with extremal TI
values.

Let X and A be arbitrary connected graphs with at least two vertices. For each
i = 2, . . . , n − 1, consider the path-coalescence graphs AXn,i, depicted in Figure 3,
where n ≥ 3.

b bbb b b b

n i 1· · ·

X

A

AXn,i

· · ·

Figure 3. Path-coalescence graphs AXn,i.

Now we compute the difference between the vertex-degree-based topological index
TI as in (1.1) of introduced path-coalescence graphs. Let x be the degree of the vertex
i and y the degree of the vertex n in AXn,i. For 3 ≤ i ≤ n− 2 we have:

TI (AXn,n−1)− TI (AXn,i) = (ϕxy − ϕ2y) + (ϕ22 − ϕ2x) = f8(x, y),(4.1)
TI (AXn,i)− TI (AXn,2) = (ϕ2x − ϕ22) + (ϕ12 − ϕ1x) = f7(x).(4.2)

Theorem 4.1. Let TI be a VDB topological index defined as in (1.1) and n ≥ 8.
(a) If f8(x, y) ≥ 0 and f7(x) ≥ 0 for all x, y ≥ 3 then the tree with minimal value

of the index TI over Ω(n, 2) is the the tree with minimal value of the index TI
over Ω1(n, 2) and the tree with maximal TI value over Ω(n, 2) is the tree with
maximal TI value over Ω2(n, 2).
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(b) If f8(x, y) ≤ 0 and f7(x) ≤ 0 for all x, y ≥ 3 then the tree with maximal value
of the index TI over Ω(n, 2) is the the tree with maximal value of the index TI
over Ω1(n, 2) and the tree with minimal TI value over Ω(n, 2) is the tree with
minimal TI value over Ω2(n, 2).

Proof. Consider a tree of the form S(a1, . . . , ar; t; b1, . . . , bs), with at least one of the
parameters a1, . . . , ar, b1, . . . , bs greater than 1. Assume that bs > 1. If f8(x, y) ≥ 0
and f7(x) ≥ 0 for all x, y ≥ 3, then applying relation (4.1) if t = 2 or relation (4.2) if
t > 2 we obtain
TI (S(a1, . . . , ar; t; b1, . . . , bs−1, bs)) ≥ TI (S(a1, . . . , ar; t + 1; b1, . . . , bs−1, bs − 1)) .

Now, applying repeatedly relation (4.2) we obtain

TI (S(a1, . . . , ar; t; b1, . . . , bs)) ≥ TI

S(1, . . . , 1︸ ︷︷ ︸
r

; t′; 1, . . . , 1︸ ︷︷ ︸
s

)
 = TI (S(r, t′, s)) ,

where t′ = t+∑r
k=1(ak − 1) +∑s

k=1(bk − 1) = n− r− s. Then, the minimal tree with
respect to the index TI is in Ω1(n, 2).

On the other hand, considering again a tree in Ω(n, 2) with t > 2, we apply relation
(4.1) if at least one of the parameters a1, . . . , ar, b1, . . . , bs is greater than 1, or relation
(4.2) otherwise. We obtain

TI (S(a1, . . . , ar; t; b1, . . . , bs)) ≤ TI (S(a1, . . . , ar; t− 1; b1, . . . , bs−1, bs + 1) .
Now, applying repeatedly relation (4.1), we obtain

TI (S(a1, . . . , ar; t; b1, . . . , bs)) ≤ TI (S(a1, . . . , ar; 2; b1, . . . , bs−1, b
′
s) ,

where b′s = bs + t − 2. Then, the maximal tree with respect to the index TI is in
Ω2(n, 2) and the part 1 is proved.

The proof of part 2 is similar. �

The conditions listed in Theorem 4.1 can be used to find extremal trees in the
class Ω(n, 2) for a specific VDB topological index. In the next corollary we apply the
mentioned theorem to well-know vertex-degree-based topological indices.

Corollary 4.1. Among all trees of order n ≥ 8 and two branching vertices:
(a) the Randić index, the Sum-Connectivity index and the Harmonic index attain

the minimal value in the tree S(2; 2;n− 4) and the maximal value in the tree
S(2, 2; 2; 2, n− 8);

(b) the First Zagreb index and the Second Zagreb index attain the minimal value in
the tree S(2; n− 4; 2) and the maximal value in the tree
S(2; 2;n− 4);

(c) the Atom-Bond-Connectivity index attains its maximal value in the tree
S(2; 2;n− 4);

(d) the Augmented Zagreb index attains its minimal value in the tree
S
(⌊

n−3
2

⌋
; 3;

⌈
n−3

2

⌉)
.
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Proof. It is sufficient to check the signs of f8(x, y) and f7(x) for x, y ≥ 3 for each
index in Corollary 4.1 and apply Theorem 4.1, Corollary 2.3 and Corollary 3.1 . �

In the case of Atom-Bond-Connectivity and Augmented Zagreb indices, it was
obtained that the function f4(x, y, z) takes possitive and negatives values for different
choices of x ≥ 2, y ≥ 1 and z ≥ 3. On the other hand, for the Geometric-Arithmetic
index it was found that f8(x, y) ≥ 0 for all x, y ≥ 3, however f7(x) ≤ 0 for x sufficiently
large. It means that the conditions in Theorem 4.1 do not hold.
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