Kragujevac Journal of Mathematics Volume 43(3) (2019), Pages 399–411.

VERTEX-DEGREE-BASED TOPOLOGICAL INDICES OVER TREES WITH TWO BRANCHING VERTICES

R. CRUZ¹, C. A. MARÍN¹, AND J. RADA¹

Abstract. Given a graph *G* with *n* vertices, a vertex-degree-based topological index is defined from a set of real numbers $\{\varphi_{ij}\}\$ as $TI(G) = \sum m_{ij}(G) \varphi_{ij}$, where $m_{ij}(G)$ is the number of edges between vertices of degree *i* and degree *j*, and the sum runs over all $1 \leq i \leq j \leq n-1$. Let $\Omega(n, 2)$ denote the set of all trees with *n* vertices and 2 branching vertices. In this paper we give conditions on the number $\{\varphi_{ij}\}\$ under which the extremal trees with respect to *TI* can be determined. As a consequence, we find extremal trees in $\Omega(n, 2)$ for several well-known vertex-degreebased topological indices.

1. INTRODUCTION

Topological indices are molecular descriptors which play an important role in theoretical chemistry, especially in QSPR/QSAR research $([4, 13]$ $([4, 13]$ $([4, 13]$ and $[14]$). Among all topological indices one of the most investigated are the so-called vertex-degree-based (VDB for short) topological indices, defined for a graph *G* with *n* vertices as

(1.1)
$$
TI(G) = \sum_{1 \leq i \leq j \leq n-1} m_{ij} \varphi_{ij},
$$

where m_{ij} is the number of edges of *G* joining a vertex of degree *i* with a vertex of degree *j* and $\{\varphi_{ij}\}\$ is a set of real numbers. Several well-known VDB topological indices in the literature are obtained by different choices of the numbers $\{\varphi_{ij}\}\$. For example, for the First Zagreb index $\varphi_{ij} = i + j$ [\[12\]](#page-11-3), for the Second Zagreb index $\varphi_{ij} = ij$ [\[12\]](#page-11-3), for the Randić index $\varphi_{ij} = \frac{1}{\sqrt{ij}}$ [\[21\]](#page-12-0), for the Harmonic index $\varphi_{ij} = \frac{2}{i+j}$ \overline{i} _{*j*} $\left[2i\right]$, for the Harmonic muck $\varphi_{ij} = i+j$ [\[24\]](#page-12-1), for the Geometric-Arithmetic $\varphi_{ij} = \frac{2\sqrt{ij}}{i+j}$ $\frac{2\sqrt{ij}}{i+j}$ [\[22\]](#page-12-2), for the Sum-Connectivity index

Received: June 13, 2017.

Key words and phrases. Vertex-degree-based topological indices, trees, branching vertices. 2010 *Mathematics Subject Classification*. Primary: 05C69, 05C35. Secondary: 05C05.

Accepted: December 28, 2017.

 $\varphi_{ij} = \frac{1}{\sqrt{i}}$ $\frac{1}{i+j}$ [\[25\]](#page-12-3), for the Atom-Bond-Connectivity index $\varphi_{ij} = \sqrt{\frac{i+j-2}{ij}}$ [\[5\]](#page-11-4) and for the Augmented Zagreb index $\varphi_{ij} = \left(\frac{ij}{i+j}\right)$ *i*+*j*−2 3^{3} [\[6\]](#page-11-5). A more complete list thereof can be found in [\[7\]](#page-11-6) and [\[8\]](#page-11-7). For recent results on VDB topological indices we refer to $[1-3, 7, 8, 11, 18-20, 23]$ $[1-3, 7, 8, 11, 18-20, 23]$ $[1-3, 7, 8, 11, 18-20, 23]$ $[1-3, 7, 8, 11, 18-20, 23]$ $[1-3, 7, 8, 11, 18-20, 23]$ $[1-3, 7, 8, 11, 18-20, 23]$ $[1-3, 7, 8, 11, 18-20, 23]$ $[1-3, 7, 8, 11, 18-20, 23]$.

Let $\Omega(n, i)$ denote the set of all trees with *n* vertices and *i* branching vertices. The problem of finding extremal values of a topological index over the set of trees with exactly one branching vertex (i.e., starlike trees) was solved for the Wiener index [\[10\]](#page-11-13), the Hosoya index [\[9\]](#page-11-14), the Randić index or more generally, for vertex-degreebased topological indices [\[1\]](#page-11-8). Moreover, the extremal values of the Hosoya index over trees with exactly 2 branching vertices can be deduced from [\[17\]](#page-11-15). See also [\[16\]](#page-11-16) for the Wiener index. The double star $S_{p,q}$ is a tree with $p + q = n$ vertices with two branching vertices with degrees *p* and *q* respectively and $p + q - 2$ pendant vertices. If $|p - q| \leq 1$ then the double star is said to be balanced. In [\[15\]](#page-11-17) is reported that the balanced double star is the tree with the maximum general Randić index among all trees of order $n \geq 8$ for $\alpha \in [2, +\infty)$. Also, the double stars $S_{n-2,2}$ and $S_{n-3,3}$ are the trees with the second and the third minimum zeroth-order general Randić index for $0 < \alpha < 1$ and the second and the third maximum zeroth-order general Randić index for $\alpha < 0$ or $\alpha > 1$ respectively [\[15\]](#page-11-17).

It is our interest in this paper to give a general criteria to decide which trees in $\Omega(n, 2)$, minimize and maximize *TI*. We denote by $S(a_1, \ldots, a_r; \mathbf{t}; b_1, \ldots, b_s)$ the tree with two branching vertices of degrees $r + 1$, $s + 1 > 2$ connected by the path P_t , and in which the lengths of the pendant paths attached to the two branching vertices are a_1, \ldots, a_r and b_1, \ldots, b_s respectively (see Figure [1\)](#page-1-0). Let $\Omega_1(n, 2)$ be the set of all trees

FIGURE 1. The tree $S(a_1, \ldots, a_r; \mathbf{t}; b_1, \ldots, b_s)$ in $\Omega(n, 2)$.

in $\Omega(n, 2)$ in which each pendant path has length 1 and $\Omega^2(n, 2)$ be the set of all trees

in $\Omega(n, 2)$ such that the branching vertices are connected by an edge. Note that

$$
\Omega_1(n,2) = \left\{ S(x; \mathbf{t}; y) = S(\underbrace{1, \dots, 1}_{x}; \mathbf{t}; \underbrace{1, \dots, 1}_{y}) : x + y + t = n \right\},
$$

$$
\Omega^2(n,2) = \left\{ S(a_1, \dots, a_r; \mathbf{2}; b_1, \dots, b_s) \} : \sum_{i=1}^r a_i + \sum_{j=1}^s b_j + 2 = n \right\}.
$$

In sections [2](#page-2-0) and [3](#page-6-0) we consider the problem of finding extremal trees with respect to VDB index *TI* over $\Omega_1(n,2)$ and $\Omega^2(n,2)$ respectively. In Theorems [2.1](#page-4-0) and [3.1](#page-7-0) we give conditions on the number $\{\varphi_{ij}\}\$ under which the trees with extremal *TI* values over $\Omega_1(n, 2)$ and over $\Omega^2(n, 2)$ respectively, can be determined.

Finally, in section [4](#page-9-0) we show that under certain conditions on the number $\{\varphi_{ij}\}\$, one of the extremal values of the VDB index *T I* over the class of trees with two branching vertices is attained in a tree of the class $\Omega_1(n, 2)$ and the other one is attained in a tree of the class $\Omega^2(n,2)$ (see Theorem [4.1\)](#page-9-1). As a consequence, in Corollary [4.1](#page-10-0) we find extremal trees for the First Zagreb index, the Second Zagreb index, the Randić index, the Harmonic index and the Sum-Connectivity index. Also we find the maximal tree for the Atom-Bond-Connectivity index and the minimal tree for the Augmented Zagreb index.

2. EXTREMAL VALUES OF VDB TOPOLOGICAL INDICES OVER $\Omega_1(n,2)$

First we consider the set of double stars $S(x; 2; y) = S(1, \ldots, 1)$ ${\overline{}}\hspace{2mm}$ $; 2; 1, \ldots, 1$ \overline{y}), where $2 \le x \le n-4$, $x+y+2=n$ and $n \ge 6$. The value of the VDB index $\prod_{i=1}^{n}$ of double stars is

(2.1)
$$
f_1(x) = TI(S(x; 2; y)) = x\varphi_{1,x+1} + \varphi_{x+1,y+1} + y\varphi_{1,y+1}.
$$

In the next proposition we give conditions on the numbers $\{\varphi_{ij}\}\$ under which the extremal double stars with respect to VDB index *T I* can be determined.

Proposition 2.1. Let TI be a VDB topological index defined as in [\(1.1\)](#page-0-0) and assume *that* $f_1(x)$ *is increasing* (*decreasing*) *for* $2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor$ 2 \vert *, where* $n \geq 6$ *. Then the double star with minimal (maximal)* TI *value is* $S(2; 2; n-4)$ *and the double star with maximal* (*minimal*) *TI value is the balanced double star* $S\left(\frac{n-2}{2}\right)$ 2 \vert ; 2; $\vert \frac{n-2}{2}$ $\frac{-2}{2}$.

Proof. It is sufficient to note that, for $2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor$ 2 $\left| \text{ and } y = n - 2 - x, f_1(x) = f_1(y). \right.$ Then, if $f_1(x)$ is monotone for $2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor$ 2 , then the extremal values of $f_1(x)$ are attained in $x = 2$ and $x = \frac{n-2}{2}$ 2 $\overline{}$.

We apply the previous proposition in order to find extremal double stars with respect to well-known vertex-degree-based topological indices.

Corollary 2.1. *Among all double stars of order* $n \geq 6$ *:*

- (a) *the Randić index, the Sum-Connectivity index, the Geometric-Arithmetic index, the Harmonic index and the Augmented Zagreb index attain the minimal value in the double star* $S(2; 2; n-4)$ *and the maximal value in the balanced double star* $S\left(\frac{n-2}{2}\right)$ 2 \vert ; 2; $\left\lceil \frac{n-2}{2} \right\rceil$ $\frac{-2}{2}$.
- (b) *the First Zagreb index, the Second Zagreb index and the Atom Bond Connectivity index attain the maximal value in the double star* $S(2; 2; n-4)$ *and the minimal value in the balanced double star* $S\left(\frac{n-2}{2}\right)$ 2 \vert ; 2; $\left\lceil \frac{n-2}{2} \right\rceil$ $\frac{-2}{2}$.

Proof. For each index in Corollary [2.1](#page-2-1) it can be verified that the function $f_1(x)$ is continuous in $[2, n-4]$ and differentiable in $(2, n-4)$.

For all VDB topological indices in part 1 of Corollary [2.1,](#page-2-1) we obtain that $f'_1(x) > 0$ if $2 < x < \frac{n-2}{2} < y < n-4$. It implies that

$$
f_1(2) = f_1(n-4) \le f_1(x) \le f_1\left(\frac{n-2}{2}\right),
$$

for $2 \leq x \leq n-4$ and the result follows.

On the other hand, for all VDB topological indices in part 2 of Corollary [2.1,](#page-2-1) we obtain that $f'_1(x) < 0$ if $2 < x < \frac{n-2}{2} < y < n-4$. It implies that

$$
f_1(2) = f_1(n-4) \ge f_1(x) \ge f_1\left(\frac{n-2}{2}\right),
$$

for $2 \le x \le n-4$ and the result follows.

Next we consider the set of trees of the form $S(x; 3; y) = S(1, \ldots, 1)$ | {z } *x* ; **3**; 1*, . . . ,* 1 \overline{y}),

where $2 \le x \le n-5$, $x+y+3=n$ and $n \ge 7$. The value of the VDB index TI of *S*(*x*; **3**; *y*) is

(2.2)
$$
f_2(x) = TI(S(x; 3; y)) = x\varphi_{1,x+1} + \varphi_{2,x+1} + \varphi_{2,y+1} + y\varphi_{1,y+1}.
$$

Conditions on the numbers $\{\varphi_{ij}\}\$ under which the extremal trees of the form $S(x; 3; y)$ with respect to VDB index *TI* can be determined are presented in the following

Proposition 2.2. Let TI be a VDB topological index defined as in (1.1) and assume *that* $f_2(x)$ *is increasing* (*decreasing*) *for* $2 \leq x \leq \left\lfloor \frac{n-3}{2} \right\rfloor$ 2 | where $n \geq 7$ *. Then the tree of the form* $S(x; 3; y)$ *with minimal* (*maximal*) *TI value is* $S(2; 3; n-5)$ *and the tree with maximal* (*minimal*) *TI value is* $S\left(\frac{n-3}{2}\right)$ 2 \vert ; 3; $\left\lceil \frac{n-3}{2} \right\rceil$ $\frac{-3}{2}$.

Proof. The proof is similar to the proof of Proposition [2.1.](#page-2-2)

The results of applying conditions in the previous proposition to the topological indices listed in Proposition [2.1](#page-2-2) are presented in the next

Corollary 2.2. *Among all trees of order* $n \geq 7$ *of the form in* $S(x; 3; y)$ *:*

(a) *the Randić index, the Sum-Connectivity index, the Geometric-Arithmetic index and the Harmonic index attain the minimal value in* $S(2; 3; n-5)$ *and the maximal value in* $S\left(\frac{n-3}{2}\right)$ 2 \vert ; 3; $\left\lceil \frac{n-3}{2} \right\rceil$ $\left(\frac{-3}{2}\right)$);

(b) *the First Zagreb index, the Second Zagreb index, the Atom Bond Connectivity index and the Augmented Zagreb index attain the minimal value in S* $\left(\frac{n-3}{2} \right)$ 2 \vert ; 3; $\left\lceil \frac{n-3}{2} \right\rceil$ $\left(\frac{-3}{2}\right)$ and the maximal value in $S(2; 3; n-5)$.

Proof. For each index in Corollary [2.2](#page-3-0) it can be verified that the function $f_2(x)$ is continuous in $[2, n-5]$ and differentiable in $(2, n-5)$.

For all VDB topological indices in part 1 of Corollary [2.2,](#page-3-0) we obtain that $f'_{2}(x) > 0$ if $2 < x < \frac{n-3}{2} < y < n − 5$. It implies that

$$
f_2(2) = f_2(n-5) \le f_2(x) \le f_2\left(\frac{n-3}{2}\right),
$$

for $2 \leq x \leq n-5$ and the result follows.

On the other hand, for all VDB topological indices in part 2 of Corollary [2.2,](#page-3-0) we obtain that $f_2'(x) < 0$ if $2 < x < \frac{n-3}{2} < y < n-5$. It implies that

$$
f_2(2) = f_2(n-5) \ge f_2(x) \ge f_2\left(\frac{n-3}{2}\right),
$$

for $2 \le x \le n-5$ and the result follows.

Now we find the extremal trees with respect to vertex-degree-based topological index *TI* over $\Omega_1(n, 2)$. Let $4 \le t \le n-4$, $2 \le x \le n-t-2$, $x+y+t=n$, $n \ge 8$ and

(2.3)
$$
f_3(x) = TI(S(x; \mathbf{t}; y)) - TI(S(x+1; \mathbf{t}-1; y))
$$

$$
= (\varphi_{2,x+1} - \varphi_{2,x+2}) + (x+1) (\varphi_{1,x+1} - \varphi_{1,x+2}) + (\varphi_{22} - \varphi_{1,x+1}).
$$

Theorem 2.1. *Let TI be a VDB topological index defined as in* [\(1.1\)](#page-0-0) *and* $n > 8$ *.*

(a) If $f_3(x) \leq 0$ for all $2 \leq x \leq n-6$, $f_2(x)$ is decreasing for $2 \leq x \leq \left\lfloor \frac{n-3}{2} \right\rfloor$ 2 k *and* $f_1(x)$ *is decreasing for* $2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor$ 2 \vert , then the minimal tree in $\Omega_1(n,2)$ with *respect to VDB index* TI *is*

$$
\begin{cases}\nS(2; \mathbf{n-4}; 2), & \text{if } 4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22} \le f_1\left(\frac{n-2}{2}\right), \\
S\left(\left\lfloor \frac{n-2}{2} \right\rfloor; 2; \left\lceil \frac{n-2}{2} \right\rceil\right), & \text{if } 4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22} > f_1\left(\frac{n-2}{2}\right),\n\end{cases}
$$

while the maximal tree is

$$
\begin{cases}\nS(2; \mathbf{2}; n-4), & \text{if } f_1(2) \ge f_2(2), \\
S(2; \mathbf{3}; n-5), & \text{if } f_1(2) < f_2(2).\n\end{cases}
$$

(b) If $f_3(x) \geq 0$ for all $2 \leq x \leq n-6$, $f_2(x)$ *is increasing for* $2 \leq x \leq \left\lfloor \frac{n-3}{2} \right\rfloor$ 2 k *and* $f_1(x)$ *is increasing for* $2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor$ 2 \vert , then the minimal tree in $\Omega_1(n,2)$ with *respect to VDB index* TI *is*

$$
\begin{cases}\nS(2; 2; n-4), & \text{if } f_1(2) \le f_2(2), \\
S(2; 3; n-5), & \text{if } f_1(2) > f_2(2),\n\end{cases}
$$

while the maximal tree is

$$
\begin{cases} S(2; \mathbf{n-4}; 2), & if \ 4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22} \ge f_1\left(\frac{n-2}{2}\right), \\ S\left(\left\lfloor \frac{n-2}{2}\right\rfloor; \mathbf{2}; \left\lceil \frac{n-2}{2}\right\rceil\right), & if \ 4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22} < f_1\left(\frac{n-2}{2}\right). \end{cases}
$$

(c) If $f_3(x) \geq 0$ for all $2 \leq x \leq n-6$, $f_2(x)$ *is decreasing for* $2 \leq x \leq \left\lfloor \frac{n-3}{2} \right\rfloor$ 2 k *and* $f_1(x)$ *is increasing for* $2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor$ 2 \vert , then the minimal tree in $\Omega_1(n,2)$ with *respect to VDB index* TI *is*

$$
\begin{cases}\nS(2; 2; n-4), & if \ f_1(2) \le f_2\left(\frac{n-3}{2}\right), \\
S\left(\left\lfloor\frac{n-3}{2}\right\rfloor; 3; \left\lceil\frac{n-3}{2}\right\rceil\right), & if \ f_1(2) > f_2\left(\frac{n-3}{2}\right),\n\end{cases}
$$

while the maximal tree is

$$
\begin{cases}\nS(2; \mathbf{n-4}; 2), & \text{if } 4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22} \ge f_1\left(\frac{n-2}{2}\right), \\
S\left(\left\lfloor \frac{n-2}{2} \right\rfloor; 2; \left\lceil \frac{n-2}{2} \right\rceil\right), & \text{if } 4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22} < f_1\left(\frac{n-2}{2}\right).\n\end{cases}
$$

Proof. (a) If $f_3(x) \leq 0$ for all $2 \leq x \leq n-6$, $f_2(x)$ is decreasing for $2 \leq x \leq \left\lfloor \frac{n-3}{2} \right\rfloor$ 2 $\overline{}$ and $f_1(x)$ is decreasing for $2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor$ 2 \vert , by relation [\(2.3\)](#page-4-1) and Propositions [2.1](#page-2-2) and [2.2](#page-3-1) we obtain

$$
f_2(2) = TI(S(2; 3; n-5)) \ge f_2(x) = TI(S(x; 3; y)) \ge TI(S(x; \mathbf{t}; y))
$$

\n
$$
\ge TI(S(2; \mathbf{n} - 4; 2)) = 4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22},
$$

\n
$$
f_1(2) = TI(S(2; 2; n-4)) \ge TI(S(x; 2; y)) = f_1(x) \ge f_1\left(\frac{n-2}{2}\right),
$$

and the part 1 is proved.

- (b) The proof is obtained as in part 1 by reversing inequalities.
- (c) If $f_3(x) \geq 0$ for all $2 \leq x \leq n-6$, $f_2(x)$ is decreasing for $2 \leq x \leq \left\lfloor \frac{n-3}{2} \right\rfloor$ 2 | and $f_1(x)$ is increasing for $2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor$ 2 \vert , by relation [\(2.3\)](#page-4-1) and Propositions [2.1](#page-2-2) and [2.2](#page-3-1) we obtain

$$
f_2\left(\frac{n-3}{2}\right) \le f_2(x) = TI\left(S(x; 3; y)\right) \le TI\left(S(x; \mathbf{t}; y)\right)
$$

\n
$$
\le TI\left(S(2; \mathbf{n} - 4; 2)\right) = 4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22},
$$

\n
$$
f_1(2) = TI\left(S(2; 2; n-4)\right) \le TI\left(S(x; 2; y)\right) = f_1(x) \le f_1\left(\frac{n-2}{2}\right),
$$

\nand the part 3 is proved.

We apply the previous theorem in order to find extremal trees in $\Omega_1(n, 2)$ with respect to well-known vertex-degree-based topological indices.

Corollary 2.3. *Among all trees in* $\Omega_1(n,2)$ *with* $n \geq 8$ *:*

(a) *the Randić index, the Sum-Connectivity index, the Geometric-Arithmetic index and the Harmonic index index attain the minimal value in the tree* $S(2; 2; n-4)$ *and the maximal value in the tree* $S(2; \mathbf{n} - 4; 2)$;

- (b) *the First Zagreb index, the Second Zagreb index and the Atom Bond Connectivity index attain the minimal value in the tree* $S(2; \mathbf{n} - 4; 2)$ *and the maximal value in the tree* $S(2; 2; n-4)$;
- (c) the Augmented Zagreb attains the minimal value in the tree $S\left(\frac{n-3}{2}\right)$ 2 \vert ; 3; $\left\lceil \frac{n-3}{2} \right\rceil$ 2 $\left| \ \right|$ *and the maximal value in the tree* $S\left(\frac{n-2}{2}\right)$ 2 \vert ; 2; $\left\lceil \frac{n-2}{2} \right\rceil$ $\frac{-2}{2}$.

Proof. For all the indices in part 1 of Corollary [2.3](#page-5-0) it can be verified that $f_3(x) \ge 0$ for all $2 \le x \le n-6$. Moreover, by the proofs Corollaries [2.1](#page-2-1) and [2.2,](#page-3-0) the functions $f_1(x)$ and $f_2(x)$ are increasing. It is easy to verify that for all these indices

$$
f_1(2) \le f_2(2),
$$

$$
4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22} \ge f_1\left(\frac{n-2}{2}\right),
$$

for all $n \geq 8$. Then, by Theorem [2.1](#page-4-0) the minimal tree is $S(2; 2; n-4)$ and the maximal tree is $S(2; n-4; 2)$.

For all the indices in Part 2 of Corollary [2.3](#page-5-0) it can be verified that $f_3(x) \leq 0$ for all $2 \leq x \leq n-6$. Moreover, by the proofs Corollaries [2.1](#page-2-1) and [2.2,](#page-3-0) the functions $f_1(x)$ and $f_2(x)$ are decreasing. It is easy to verify that for all these indices

$$
f_1(2) \ge f_2(2),
$$

$$
4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22} \le f_1\left(\frac{n-2}{2}\right),
$$

for all $n \geq 8$. Then, by Theorem [2.1](#page-4-0) the minimal tree is $S(2; \mathbf{n} - 4; 2)$ and the maximal tree is $S(2; 2; n-4)$.

For the Augmented Zagreb index, it is easy to check that $f_3(x) > 0$ for all $x > 0$. By the proofs of Corollaries [2.1](#page-2-1) and [2.2,](#page-3-0) the function $f_1(x)$ is increasing while the function $f_2(x)$ is decreasing. It can be verified that

$$
f_1(2) \ge f_2\left(\frac{n-3}{2}\right),
$$

$$
4\varphi_{13} + 2\varphi_{23} + (n-7)\varphi_{22} \le f_1\left(\frac{n-2}{2}\right),
$$

for all $n \geq 8$,. By Theorem [2.1](#page-4-0) the minimal tree is $S\left(\frac{n-3}{2}\right)$ 2 \vert ; 3; $\left\lceil \frac{n-3}{2} \right\rceil$ $\left(\frac{-3}{2}\right)$) and the maximal tree is $S\left(\left|\frac{n-2}{2}\right|\right)$ 2 \vert ; 2; $\vert \frac{n-2}{2}$ 2 \Box

3. EXTREMAL VALUES OF VDB TOPOLOGICAL INDICES OVER $\Omega^2(n,2)$

In order to find the trees with extremal TI values over $\Omega^2(n,2)$ we compute the differences between *TI* indices of trees of the form $S(a_1, \ldots, a_r; 2; b_1, \ldots, b_s)$, where $n \geq 8$.

Let
$$
S(a_1, ..., a_x, y) = S(a_1, ..., a_x, \underbrace{1, ..., 1}_{y}; 2; b_1, ..., b_{z-1}),
$$
 where $x, y \ge 0, x + y \ge 0$

2 and $z \geq 3$. In the case of $x \geq 1$, we assume that $a_i \geq 2$ for each $i = 1, \ldots, x$.

For $x \geq 1$, $y \geq 1$ and $z \geq 3$ we have

(3.1)
$$
f_4(x, y, z) = TI(S(a_1, ..., a_x, y)) - TI(S(a_1, ..., a_x + 1, y - 1))
$$

$$
= (\varphi_{z, x+y+1} - \varphi_{z, x+y}) + x (\varphi_{2, x+y+1} - \varphi_{2, x+y})
$$

$$
+ y (\varphi_{1, x+y+1} - \varphi_{1, x+y}) + (\varphi_{1, x+y} - \varphi_{22}).
$$

For $x \geq 0$, $y \geq 2$ and $z \geq 3$ we have

(3.2)
$$
f_5(x, y, z) = TI(S(a_1, ..., a_x, y)) - TI(S(a_1, ..., a_x, 2, y - 2))
$$

$$
= (\varphi_{z, x+y+1} - \varphi_{z, x+y}) + x (\varphi_{2, x+y+1} - \varphi_{2, x+y})
$$

$$
+ y (\varphi_{1, x+y+1} - \varphi_{1, x+y}) + (2\varphi_{1, x+y} - \varphi_{12} - \varphi_{2, x+y}).
$$

For $x \geq 3$ and $z \geq 3$ we have

(3.3)
$$
f_6(x, z) = TI(S(a_1, ..., a_{x-1}, a_x)) - TI(S(a_1, ..., a_{x-1} + a_x))
$$

$$
= (\varphi_{z,x+1} - \varphi_{z,x}) + x (\varphi_{2,x+1} - \varphi_{2,x}) + (\varphi_{2,x} + \varphi_{12} - 2\varphi_{22}).
$$

Let *A* and *X* be arbitrary connected graphs with at least two vertices. For each $i = 2, \ldots, n-3$, consider the path-coalescence graphs $AX_{i+1,i}$ and for $i = 2, \ldots, n-2$ the path-coalescence graphs $X_{n,i}$, depicted in Figure [2,](#page-7-1) where $n \geq 5$.

FIGURE 2. Path-coalescence graphs $AX_{i+1,i}$ and $X_{n,i}$.

Now we compute the difference between the vertex-degree-based topological index *TI* as in [\(1.1\)](#page-0-0) of introduced path-coalescence graphs. Let *x* be the degree of the vertex *i* and *y* the degree of the vertex $i + 1$ in $AX_{i+1,i}$. Similarly, *x* is the degree of the vertex *x* in $X_{n,i}$. For $3 \leq i \leq n-2$ we have:

(3.4)
$$
TI(X_{n,i}) - TI(X_{n,2}) = (\varphi_{2x} - \varphi_{22}) + (\varphi_{12} - \varphi_{1x}) = f_7(x)
$$

and for $3 \leq i \leq n-3$ we have

(3.5)
$$
TI(AX_{i+1,i}) - TI(AX_{3,2}) = (\varphi_{2x} - \varphi_{22}) + (\varphi_{12} - \varphi_{1x}) = f_7(x).
$$

Moreover, *TI* ($X_{n,i}$) is constant for each $i \in \{3, \ldots, n-2\}$ and *TI* ($AX_{i+1,i}$) is also constant for $i \in \{3, ..., n-3\}$.

Theorem 3.1. *Let TI be a VDB topological index defined as in* [\(1.1\)](#page-0-0)*,* $f_7(x) \geq 0$ *for all* $x \geq 3$ *and* $n \geq 8$ *.*

(a) If $f_4(x, y, z) \leq 0$ *for all* $x \geq 1$, $y \geq 1$ *and* $z \geq 3$, $f_5(x, y, z) \leq 0$ *for all* $x \geq 0$, $y \geq 2$ *and* $z \geq 3$ *and* $f_6(x, z) \leq 0$ *for all* $x, z \geq 3$ *, then the maximal tree in* $\Omega^2(n,2)$ *with respect to VDB index TI is*

$$
\begin{cases} S(2,2;2;2,n-8), & \text{if } f_7(x) \ge 0 \text{ for all } x \ge 3, \\ S(1,1;2;1,n-5), & \text{if } f_7(x) < 0 \text{ for all } x \ge 3, \end{cases}
$$

while the minimal tree is

$$
\begin{cases}\nS\left(\left\lfloor \frac{n-2}{2} \right\rfloor; 2; \left\lceil \frac{n-2}{2} \right\rceil\right), & \text{if } f_1(x) \text{ is decreasing for } 2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor, \\
S(2; 2; n-4), & \text{if } f_1(x) \text{ is increasing for } 2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor.\n\end{cases}
$$

(b) If $f_4(x, y, z) \ge 0$ *for all* $x \ge 1$ *,* $y \ge 1$ *and* $z \ge 3$ *,* $f_5(x, y, z) \ge 0$ *for all* $x \ge 0$ *,* $y \geq 2$ *and* $z \geq 3$ *and* $f_6(x, z) \geq 0$ *for all* $x, z \geq 3$ *, then the minimal tree in* $\Omega^2(n,2)$ *with respect to VDB index TI is*

$$
\begin{cases} S(2,2;2;2,n-8), & \text{if } f_7(x) \le 0 \text{ for all } x \ge 3, \\ S(1,1;2;1,n-5), & \text{if } f_7(x) > 0 \text{ for all } x \ge 3, \end{cases}
$$

while the maximal tree is

$$
\begin{cases}\nS\left(\left\lfloor\frac{n-2}{2}\right\rfloor; 2; \left\lceil\frac{n-2}{2}\right\rceil\right), & \text{if } f_1(x) \text{ is increasing for } 2 \leq x \leq \left\lfloor\frac{n-2}{2}\right\rfloor, \\
S(2; 2; n-4), & \text{if } f_1(x) \text{ is decreasing for } 2 \leq x \leq \left\lfloor\frac{n-2}{2}\right\rfloor.\n\end{cases}
$$

Proof. If $f_4(x, y, z) \le 0$ for all $x \ge 1$, $y \ge 1$ and $z \ge 3$, $f_5(x, y, z) \le 0$ for all $x \ge 0$, $y \ge 2$ and $z \ge 3$ and $f_6(x, z) \le 0$ for all $x, z \ge 3$, by relations [\(3.1\)](#page-7-2), [\(3.2\)](#page-7-3) and [\(3.3\)](#page-7-4), we have

$$
TI\left(S(a_1,\ldots,a_r; \mathbf{2};b_1,\ldots,b_s)\right)\leq TI\left(S(a_1,a_2; \mathbf{2};b_1,b_2)\right),
$$

where $a_1, a_2, b_1, b_2 \geq 2$. By relations [\(3.4\)](#page-7-5) and [\(3.5\)](#page-7-6) we have that

$$
TI\left(S(a_1,a_2; \mathbf{2};b_1,b_2)\right) \leq \begin{cases} TI\left(S(2,2; \mathbf{2};2,n-8)\right), & \text{if } f_7(x) \geq 0 \text{ for all } x \geq 3, \\ TI\left(S(1,1; \mathbf{2};1,n-5)\right), & \text{if } f_7(x) < 0 \text{ for all } x \geq 3. \end{cases}
$$

On the other hand, by relations (3.1) and (3.2) , we have

$$
TI\left(S(a_1,\ldots,a_r; \mathbf{2};b_1,\ldots,b_s)\right) \geq TI\left(S(\underbrace{1,\ldots,1}_{p}; \mathbf{2};\underbrace{1,\ldots,1}_{n-2-p})\right) = f_1(p),
$$

where $p = \sum_{i=1}^{r} a_i$. The result follows from Proposition [2.1](#page-2-2) and the part 1 is proved. The proof of part 2 is similar by reversing inequalities. \Box

Corollary 3.1. *Among all trees in* $\Omega^2(n,2)$ *with* $n \geq 8$ *:*

- (a) *the Randić index, the Sum-Connectivity index and the Harmonic index attain the minimal value in the tree* $S(2; 2; n-4)$ *and the maximal value in the tree S*(2*,* 2; **2**; 2*, n* − 8)*;*
- (b) *the First Zagreb index and the Second Zagreb index attain the minimal value in the tree* $S(1, 1; 2; 1, n - 5)$ *and the maximal value in the tree* $S(2; 2; n - 4)$ *.*

Proof. For all the indices in part 1 of Corollary [3.1](#page-8-0) it can be verified that $f_4(x, y, z) \leq 0$ for all $x \ge 1$, $y \ge 1$ and $z \ge 3$, $f_5(x, y, z) \le 0$ for all $x \ge 0$, $y \ge 2$ and $z \ge 3$, $f_6(x, z) \leq 0$ for all $x, z \geq 3$ and $f_7(x) \geq 0$ for all $x \geq 3$. Moreover, by the proof of Corollary [2.1,](#page-2-1) the function $f_1(x)$ is increasing for $2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor$ 2 k . Then, by part 1 of Theorem [3.1](#page-7-0) the minimal tree is $S(2; 2; n-4)$ and the maximal tree is $S(2, 2; 2; 2, n - 8).$

For all the indices in part 2 of Corollary [3.1](#page-8-0) it can be verified that $f_4(x, y, z) \geq 0$ for all $x \ge 1$, $y \ge 1$ and $z \ge 3$, $f_5(x, y, z) \ge 0$ for all $x \ge 0$, $y \ge 2$ and $z \ge 3$, $f_6(x, z) \ge 0$ for all $x, z \ge 3$ and $f_7(x) \ge 0$ for all $x \ge 3$. Moreover, by the proof of Corollary [2.1,](#page-2-1) the function $f_1(x)$ is decreasing for $2 \leq x \leq \left\lfloor \frac{n-2}{2} \right\rfloor$ 2 k . Then, by part 2 of Theorem [3.1](#page-7-0) the minimal tree is $S(1,1; 2; 1, n-5)$ and the maximal tree is $S(2; 2; n-4)$.

The Geometric-Arithmetic, Atom-Bond-Connectivity and Augmented Zagreb indices do not satisfy conditions in Theorems [3.1.](#page-7-0)

4. Extremal Values of VDB Topological Indices Over Trees with TWO BRANCHING VERTICES

In this section we consider the problem of finding trees in $\Omega(n, 2)$ with extremal *TI* values.

Let X and A be arbitrary connected graphs with at least two vertices. For each $i = 2, \ldots, n-1$, consider the path-coalescence graphs $AX_{n,i}$, depicted in Figure [3,](#page-9-2) where $n \geq 3$.

Figure 3. Path-coalescence graphs *AXn,i*.

Now we compute the difference between the vertex-degree-based topological index *T I* as in [\(1.1\)](#page-0-0) of introduced path-coalescence graphs. Let *x* be the degree of the vertex *i* and *y* the degree of the vertex *n* in $AX_{n,i}$. For $3 \leq i \leq n-2$ we have:

(4.1)
$$
TI (AX_{n,n-1}) - TI (AX_{n,i}) = (\varphi_{xy} - \varphi_{2y}) + (\varphi_{22} - \varphi_{2x}) = f_8(x, y),
$$

(4.2)
$$
TI(AX_{n,i}) - TI(AX_{n,2}) = (\varphi_{2x} - \varphi_{22}) + (\varphi_{12} - \varphi_{1x}) = f_7(x).
$$

Theorem 4.1. Let TI be a VDB topological index defined as in [\(1.1\)](#page-0-0) and $n > 8$.

(a) If $f_8(x, y) \geq 0$ and $f_7(x) \geq 0$ for all $x, y \geq 3$ then the tree with minimal value *of the index TI over* $\Omega(n,2)$ *is the the tree with minimal value of the index TI over* $\Omega_1(n, 2)$ *and the tree with maximal TI value over* $\Omega(n, 2)$ *is the tree with maximal TI value over* $\Omega^2(n,2)$ *.*

(b) If $f_8(x, y) \leq 0$ and $f_7(x) \leq 0$ for all $x, y \geq 3$ then the tree with maximal value *of the index* TI *over* $\Omega(n,2)$ *is the the tree with maximal value of the index* TI *over* $\Omega_1(n,2)$ *and the tree with minimal TI value over* $\Omega(n,2)$ *is the tree with minimal TI value over* $\Omega^2(n, 2)$ *.*

Proof. Consider a tree of the form $S(a_1, \ldots, a_r; \mathbf{t}; b_1, \ldots, b_s)$, with at least one of the parameters $a_1, \ldots, a_r, b_1, \ldots, b_s$ greater than 1. Assume that $b_s > 1$. If $f_8(x, y) \ge 0$ and $f_7(x) \ge 0$ for all $x, y \ge 3$, then applying relation [\(4.1\)](#page-9-3) if $t = 2$ or relation [\(4.2\)](#page-9-4) if $t > 2$ we obtain

$$
TI\left(S(a_1,\ldots,a_r; \mathbf{t};b_1,\ldots,b_{s-1},b_s)\right) \geq TI\left(S(a_1,\ldots,a_r; \mathbf{t}+\mathbf{1};b_1,\ldots,b_{s-1},b_s-1)\right).
$$

Now, applying repeatedly relation [\(4.2\)](#page-9-4) we obtain

$$
TI\left(S(a_1,\ldots,a_r;\mathbf{t};b_1,\ldots,b_s)\right) \geq TI\left(S(\underbrace{1,\ldots,1}_{r};\mathbf{t}';\underbrace{1,\ldots,1}_{s})\right) = TI\left(S(r,\mathbf{t}',s)\right),
$$

where $t' = t + \sum_{k=1}^{r} (a_k - 1) + \sum_{k=1}^{s} (b_k - 1) = n - r - s$. Then, the minimal tree with respect to the index *TI* is in $\Omega_1(n, 2)$.

On the other hand, considering again a tree in $\Omega(n, 2)$ with $t > 2$, we apply relation (4.1) if at least one of the parameters $a_1, \ldots, a_r, b_1, \ldots, b_s$ is greater than 1, or relation [\(4.2\)](#page-9-4) otherwise. We obtain

 $TI(S(a_1, \ldots, a_r; \mathbf{t}; b_1, \ldots, b_s)) \leq TI(S(a_1, \ldots, a_r; \mathbf{t}-1; b_1, \ldots, b_{s-1}, b_s+1)).$

Now, applying repeatedly relation [\(4.1\)](#page-9-3), we obtain

 $TI(S(a_1,..., a_r; \mathbf{t}; b_1,..., b_s)) \leq TI(S(a_1,..., a_r; \mathbf{2}; b_1,..., b_{s-1}, b'_s)),$

where $b'_s = b_s + t - 2$. Then, the maximal tree with respect to the index *TI* is in $\Omega^2(n,2)$ and the part 1 is proved.

The proof of part 2 is similar. \square

The conditions listed in Theorem [4.1](#page-9-1) can be used to find extremal trees in the class $\Omega(n, 2)$ for a specific VDB topological index. In the next corollary we apply the mentioned theorem to well-know vertex-degree-based topological indices.

Corollary 4.1. *Among all trees of order n* ≥ 8 *and two branching vertices:*

- (a) *the Randić index, the Sum-Connectivity index and the Harmonic index attain the minimal value in the tree* $S(2; 2; n-4)$ *and the maximal value in the tree S*(2*,* 2; **2**; 2*, n* − 8)*;*
- (b) *the First Zagreb index and the Second Zagreb index attain the minimal value in the tree S*(2; **n** − **4**; 2) *and the maximal value in the tree* $S(2; 2; n-4)$;
- (c) *the Atom-Bond-Connectivity index attains its maximal value in the tree* $S(2; 2; n-4)$;
- (d) *the Augmented Zagreb index attains its minimal value in the tree S* $\left(\frac{n-3}{2} \right)$ 2 \vert ; 3; $\left\lceil \frac{n-3}{2} \right\rceil$ $\frac{-3}{2}$.

Proof. It is sufficient to check the signs of $f_8(x, y)$ and $f_7(x)$ for $x, y \ge 3$ for each index in Corollary [4.1](#page-10-0) and apply Theorem [4.1,](#page-9-1) Corollary [2.3](#page-5-0) and Corollary [3.1](#page-8-0) . \Box

In the case of Atom-Bond-Connectivity and Augmented Zagreb indices, it was obtained that the function $f_4(x, y, z)$ takes possitive and negatives values for different choices of $x \geq 2$, $y \geq 1$ and $z \geq 3$. On the other hand, for the Geometric-Arithmetic index it was found that $f_8(x, y) \ge 0$ for all $x, y \ge 3$, however $f_7(x) \le 0$ for *x* sufficiently large. It means that the conditions in Theorem [4.1](#page-9-1) do not hold.

REFERENCES

- [1] C. Betancur, R. Cruz and J. Rada, *Vertex-degree-based topological indices over starlike trees*, Discrete Appl. Math. **185** (2015), 18–25.
- [2] R. Cruz, H. Giraldo and J. Rada, *Extremal values of vertex-degree topological indices over hexagonal systems*, MATCH Commun. Math. Comput. Chem. **70** (2013), 501–512.
- [3] R. Cruz, T. Perez and J. Rada, *Extremal values of vertex-degree-based topological indices over graphs*, J. Appl. Math. Comput. **48** (2015), 395–406.
- [4] J. Devillers and A. Balaban, *Topological Indices and Related Descriptors in QSAR and QSPR*, Gordon & Breach, Amsterdam, 1999.
- [5] E. Estrada, L. Torres, L. Rodríguez and I. Gutman, *An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes*, Indian J. Chem. **37A** (1998), 849–855.
- [6] B. Furtula, A. Graovac and D. Vukičević, *Augmented Zagreb index*, J. Math. Chem. **48** (2010), 370–380.
- [7] B. Furtula, I. Gutman and M. Dehmer, *On structure-sensitivity of degree-based topological indices*, Appl. Math. Comput. **219** (2013), 8973–8978.
- [8] I. Gutman, *Degree-based topological indices*, Croatica Chemica Acta **86** (2013), 351–361.
- [9] I. Gutman, O. Araujo and J. Rada, *Matchings in starlike trees*, Appl. Math. Lett. **14** (2001), 843–848.
- [10] I. Gutman, J. Rada and O. Araujo, *The Wiener index of starlike trees and a related partial order*, MATCH Commun. Math. Comput. Chem. **42** (2000), 145–154.
- [11] I. Gutman and J. Tošović, *Testing the quality of molecular structure descriptors. Vertex-degreebased topological indices*, Journal of the Serbian Chemical Society **78** (2013), 805–810.
- [12] I Gutman and N. Trinajstić, *Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons*, Chemical Physics Letters **17** (1972), 535–538.
- [13] L. Kier and L. Hall, *Molecular Connectivity in Chemistry and Drug Research*, Academic Press, New York, 1976.
- [14] L. Kier and L. Hall, *Molecular Connectivity in Structure-Activity Analysis*, Wiley, New York, 1986.
- [15] X. Li and Y. Shi, *A survey on the Randić index*, MATCH Commun. Math. Comput. Chem. **59** (2008), 127–156.
- [16] H. Lin, *On the Wiener index of trees with given number of branching vertices*, MATCH Commun. Math. Comput. Chem. **72** (2014), 301–310.
- [17] C. Marín, J. Monsalve and J. Rada, *Maximum and minimum energy trees with two and three branched vertices*, MATCH Commun. Math. Comput. Chem. **74** (2015), 285–306.
- [18] J. Rada and R. Cruz, *Vertex-degree-based topological indices of graphs*, MATCH Commun. Math. Comput. Chem. **72** (2014), 603–616.
- [19] J. Rada, R. Cruz and I. Gutman, *Vertex-degree-based topological indices of catacondensed hexagonal systems*, Chemical Physics Letters **572** (2013), 154–157.
- [20] J. Rada, R. Cruz and I. Gutman, *Benzenoid systems with extremal vertex-degree-based topological indices*, MATCH Commun. Math. Comput. Chem. **72** (2014), 125–136.
- [21] M. Randić, *On characterization of molecular branching*, Journal of American Chemical Society **97** (1975), 6609–6615.
- [22] D. Vukičević and B. Furtula, *Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges*, J. Math. Chem. **46** (2009), 1369–1376.
- [23] L. Zhong and K. Xu, *Inequalities between vertex-degree-based topological indices*, MATCH Commun. Math. Comput. Chem. **71** (2014), 627–642.
- [24] B. Zhou and N. Trinajstić, *On a novel connectivity index*, J. Math. Chem. **46** (2009), 1252–1270.
- [25] L. Zhong, *The harmonic index for graphs*, Appl. Math. Lett. **25** (2012), 561–566.

¹INSTITUTO DE MATEMATICAS. Universidad de Antioquia, Medellín, Colombia

Email address: roberto.cruz@udea.edu.co *Email address*: calberto.marin@udea.edu.co *Email address*: pablo.rada@udea.edu.co