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Introduction: Unvaccinated individuals in endemic areas with proven enzootic transmission of Yellow
fever virus are at risk of infection due to a dramatic shift in the epidemiology of the disease over recent
years. For this reason, epidemiological surveillance and laboratory confirmation of cases have become
mandatory.
Objective: To develop and test a control RNA for YFV detection through real-time RT-PCR.
Methods: A 437-bp insert containing the T7 promoter and the target sequences for two different in-house
protocols was designed in the context of the pUC57 vector and obtained through gene synthesis. After T7-
driven in vitro transcription, standard curves were developed for Log10 serial dilutions of the YFV control
RNA with 8 replicates.
Results: A dynamic range of quantification of 10 orders of magnitude was observed with a limit of detec-
tion of 6.3 GCE/lL (95% CI, 2.6 to 139.4 GCE/lL).
Conclusion: The plasmid construct is available for YFV molecular test validation on clinical, entomologi-
cal, and epizootic samples.
1. Introduction

Yellow fever is a febrile, icteric, and hemorrhagic illness native
to Sub-Saharan Africa [1]. The disease is caused by the Yellow fever
virus, the first member of the genus Flavivirus, family Flaviviridae,
with non-human primates (NHP) and sylvatic mosquitoes serving
as amplifying hosts and vectors, respectively, in the enzootic cycle.
The virus first appeared in humans several centuries ago in urban
areas of Africa. It then spread and established itself in other tropi-
cal areas, including the Americas and the Caribbean, where it was
transmitted between humans by an anthropophilic mosquito spe-
cies, Aedes aegypti [2]. Having entered the human population, the
virus led to significant reported outbreaks and epidemics [3], up
until the time when an effective vaccine was created and an
aggressive vector control program was implemented, at least in
the Americas. After registering the last human cases of urban trans-
mission in the Americas during the 19300s and 19400s, epizootics
with sporadic human cases among individuals exposed to the syl-
vatic vectors were reported, without major epidemiologic conse-
quences [4]. Since 2016, however, the epidemiology of this
disease changed dramatically in Brazil, where densely populated
cities with low vaccine coverage and close to forest areas with
active YFV enzootic circulation have been repeatedly exposed to
the virus, entailing 2240 human cases and 760 deaths during
2016–2019 [5]. The diagnosis of yellow fever can be assessed by
closely monitoring the clinical course and carrying out a number
of virological and serological tests, which can be confirmed only
through conventional or real-time RT-PCR and immunohistochem-
istry (in tissue samples from fatal cases suspected of yellow fever)
[6]. Altruistic initiatives have been of help in the Americas (e.g.,
development of the Tariki YFV kit for IgM antibody detection),
and the Pan-American Health Organization (PAHO) currently rec-
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ommends two RT-qPCR protocols for YFV detection and case con-
firmation in the viremic phase of the disease [7,8]. However, the
difficulty of accessing positive samples limits the standardization
of in-house protocols for routine surveillance and research on virus
activity. In the present study, we designed and evaluated plasmid
control for in vitro transcription of the YFV genomic regions tar-
geted by the primers and probes reported by Domingo et al [9]
and Jhonson et al (unpublished) [8], thereby demonstrating its use-
fulness in the implementation of sensitive fluorogenic assays.
2. Materials and methods

2.1. Design of the YFV control plasmid

The in-silico design of the control plasmid was performed with
Geneious� 9.1.8 software (Biomatters Inc., San Diego, CA, USA)
and consisted in the cloning of a 437-bp insert through the Eco
RI and Hind III restriction sites in the multiple cloning site of the
pUC57 plasmid. The target region comprised the nucleotide posi-
tions 14–115 of the 50 untranslated region (UTR) from the refer-
ence sequence NC_002031. In the middle of the insert, the Bam
HI restriction site was artificially introduced, which enabled differ-
entiation of a positive YFV sample (STAMARIL YFV vaccine (Sanofi
Pasteur) from the in vitro-transcribed YFV control RNA, by using
Restriction Fragment Length Polymorphism (RFLP) on agarose gel
electrophoresis (Fig. 1a). The plasmid was generated by gene syn-
thesis (Macrogen Inc., Seoul, Rep. of Korea).
2.2. In vitro transcription for YFV control RNA synthesis

The plasmid was linearized with the 30-overhang restriction
enzyme Sap I, and used for the T7 promoter-driven run-off
in vitro transcription, through the T7 RiboMAXTM Express Large
Scale RNA Production System (Promega Inc., Madison, WI, USA),
as previously described [10]. Transcribed RNA was treated with
2U RQ1 DNase I (Promega Inc., Madison, WI, USA) for the elimina-
tion of the template plasmid DNA, and the RNA was subsequently
purified with the QIAamp Viral RNA mini kit (Qiagen Inc., Chats-
worth, CA, USA), quantified in a Qubit 4 fluorometer (Thermo
Fisher Scientific Inc., MA, USA) using the Qubit RNA Broad Range
assay kit, stored at �80 �C, and subsequently serially diluted and
used as control for the YFV RT-qPCR assays.
2.3. Determination of the limit of detection

Genome copy equivalents (GCE) were calculated for the RNA
extract assuming a transcript of 406-bp comprised between the
position + 1 (the transcription start site) and the cutting site for
the linearizing endonuclease Sap I, as previously described [11].
To assess dynamic range and analytical sensitivity, standard curves
were performed for Log10 serial dilutions of the YFV control RNA
with 8 technical replicates [10,12], as part of two independent
and complementary experiments covering the 10-1 to 10-11 dilu-
tion range, through the qScriptTM XLT One-Step RT-qPCR Tough-
Mix� (Quanta BioSciences, Inc., MA, USA) in the CFX96 Touch
Real-Time PCR Detection System (BioRad Laboratories, Inc., CA,
USA). A No Template Control (NTC) reaction was included for every
dilution series. The limit of detection (LoD) was determined as the
last dilution for which 95 % of replicates were positive (CT < 38),
was calculated using the probit analysis algorithm (IBS SPSS Statis-
tics v.18.0, USA) and expressed in GCE/lL and GCE per PCR reaction
(GCE/Rxn).
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3. Results

3.1. Successful synthesis of the YFV control RNA from the plasmid

The YFV control plasmid was designed to contain the T7 pro-
moter sequence at the 50 region, followed by target sequences for
the primers and probes and the SP6 promoter at the 30 region
(Fig. 1b). The RFLP analysis displayed the expected results, with a
single band of around 89–102 bp for YFV control RNA uncut and
YFV vaccine + Bam HI; and two bands of around 57–58 and 32–
44 bp for YFV control RNA + Bam HI (Supplementary Fig. 1), as a
secondary control to be used in cases where cross-contamination
with the positive control was suspected or needed to be discarded.
The T7-driven in vitro transcription contributed to production of a
large amount of the YFV RNA control (6.3 lg), from which a DNase
I-treated RNA extract at a concentration of 17.2 ng/lL was
obtained.
3.2. Standard curves from the YFV control RNA demonstrates very high
sensitivity of two recommended RT-qPCR protocols for YFV diagnostics

The standard curves obtained for the dilution series of the pos-
itive control RNA showed amplification efficiencies of 117.0 % and
109.5 % for the Domingo et al (Fig. 2a) and Jhonson et al (Fig. 2b)
assays, respectively. A wide dynamic range was observed in both
assays, with linearity through at least six orders of magnitude
(Fig. 2), corresponding to a wide range of concentrations (7.8 to
784,982 GCE/lL) and Ct values of 37.2 to 21.4. While this range
comprises the expected concentration of YFV RNA in clinical sam-
ples [9], higher concentrations were also tested in triplicates, dis-
playing the same linear behavior and extending the dynamic
range to ten orders of magnitude (7.8 to 7.8 � 109 GCE/lL) and
Ct values of 37.2 to 6.1. The LoD for both assays was 6.3 GCE/lL
(95 % CI, 2.6 to 139.4 GCE/lL) or 31.7 GCE/reaction (Fig. 3), as
the same control RNA was used for serial dilution, and the same
number of positives was obtained per each dilution.
4. Discussion

YFV is a reemerging virus that has extended to at least seven
countries in Africa and to South American populations with low
vaccine coverage (Brazil, Peru, French Guiana. . .), with a public
health impact justifying active and integrated surveillance in
humans [13], NHPs [14] and mosquito vectors [15]. The enzootic
transmission of the virus is commonly accompanied by severe ill-
ness and death in new world primates, motivating routine moni-
toring as an early-warning strategy [16], with molecular
detection in samples obtained from dead NHPs [17].

While several conventional methods based on RT-PCR for YFV
detection have been aplied over the past decades [18], they have
been largely replaced by RT-qPCR protocols [19], which are recom-
mended by health authorities [8] due to their higher sensitivity,
lower propensity to amplicon cross-contamination, and to the
widespread availability of equipment (even in low complexity lab-
oratories). Implementation of the current strategy for the genera-
tion of YFV control RNA through in vitro transcription has been
characterized by amplification and detection of viral genome
copies applying the two one-step RT-qPCR methods recommended
by PAHO [8] to a wide linear range of concentrations, reaching a
LoD of 6.3 GCE/lL. This LoD should enable detection of the virus
in RNA extracts obtained from several sources with variable viral
loads, including those expected from clinical samples [9,20].

The global 2017–2026 Eliminate Yellow Fever Epidemics (EYE)
strategy, launched by WHO (a) to coordinate actions to protect
at-risk populations, (b) to prevent cross-border spread and (c) to
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Fig. 1. Yellow fever virus positive control plasmid design. a) The pUC57 plasmid was used as vector for cloning of a 437-bp insert from the YFV 50 UTR into the Eco RI-Hind III
region. b) The YFV control insert contained the T7 and SP6 promoters flanking the primers, and probed targets for two widely used real-time RT-PCR assays directed to the
YFV 50 UTR, and the Bam HI restriction site as a molecular marker to distinguish between a YFV positive sample and the positive control.
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rapidly early contain outbreaks [21] underscores the importance of
diagnostic capacity. Once molecular assays are properly imple-
mented for laboratory confirmation of YFV infection at regional
laboratories in areas of potential or active YFV circulation, more
robust surveillance and early response can be achieved.
5. Conclusions

During in vitro diagnostics, in vitro-transcribed RNA enables
simultaneous control of the reverse transcription and PCR amplifi-
cation steps. With a high level of transcribed RNA, it is possible, in
diagnostic laboratories in endemic regions, to generate multiple
aliquots of the working dilution for routine use in one-step RT-
qPCR protocols. The positive YFV plasmid DNA control presented
here is available for research laboratories planning to perform
molecular detection of YFV as part of their basic research and pub-
lic health activities.
3

Ethic statement

According to the national law 9/1979, decrees 786/1990 and
2323/2006, the Instituto Nacional de Salud is the reference lab
and health authority of the national network of laboratories and
in cases of public health emergency or those in which scientific
research for public health purposes as required, the Instituto
Nacional de Salud may use the biological material for research
purposes.
Authors’ contributions

Katherine Laiton-Donato: Performed the in-silico design, analy-
sis and writing of the manuscript. Paula Quintero-Cortés and Juan
Pablo Franco-Salazar performed the in vitro transcription, RT-qPCR
assays and results analysis, Dioselina Peláez-Carvajal, María-
Cristina Navas, Sandra Junglen, and Gabriel Parra-Henao made a



a)

b)

Fig. 2. Standard curve for YFV amplification using two different real-time RT-PCR assays. a) Standard curve for the Domingo et al., assay. b) Standard curve for the Jhonson
et al., assay.

Fig. 3. Limit of detection for the two real-time RT-PCR assays for the detection of YFV with 95% confidence.
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