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GLOSSARY

1. AIOps: AIOps stands for Artificial Intelligence for IT Operations. It refers to the use of
artificial intelligence and machine learning techniques to automate and enhance various
aspects of IT operations, including monitoring, analytics, and incident management.

2. DevOps: DevOps is a software development methodology that combines software
development (Dev) and IT operations (Ops) to improve collaboration, efficiency, and
the quality of software delivery. It emphasizes automation, continuous integration, and
continuous delivery to enable faster and more reliable software releases.

3. Cloud-Native: Cloud-Native refers to a software architecture and development
approach specifically designed for cloud environments. It involves building applications
that leverage cloud services, use containerization, and follow principles such as
scalability, resilience, and elasticity.

4. Distributed Systems: Distributed Systems refer to computer systems composed of
multiple autonomous computers or servers that communicate and coordinate their
actions to achieve a common goal. They are designed to handle large-scale processing
and storage requirements, providing fault tolerance and scalability.

5. Software Architecture: Software Architecture refers to the high-level design and
organization of software systems. It defines the structure, components, relationships,
and interactions between different software elements to achieve desired functionality,
performance, and quality attributes.

6. MTTD (Mean Time to Detect): MTTD represents the average time it takes to detect
an incident or an issue within a system. It measures the effectiveness and efficiency of
monitoring and detection mechanisms.

7. MTTR (Mean Time to Repair): MTTR represents the average time required to repair
or resolve an incident or failure in a system. It measures the responsiveness and
efficiency of incident management and recovery processes.

8. Non-functional requirements: Non-functional requirements are the quality attributes
or constraints that define how a software system should behave or perform. They
include factors such as reliability, scalability, security, usability, and performance.

9. Adaptability: Adaptability refers to the ability of a software system to respond and
adjust to changing requirements, environments, or conditions. It enables systems to
handle evolving needs and external influences effectively.

10. Interoperability: Interoperability refers to the capability of different software systems
or components to exchange and use information seamlessly. It ensures that disparate
systems can work together and communicate effectively.

11. Software pattern: A software pattern is a reusable solution to a common software
design problem. It provides a proven and documented approach to address specific
challenges and improve the structure, flexibility, and maintainability of software
systems.

12. CI/CD (Continuous Integration/Continuous Delivery): CI/CD is a software
development practice that involves frequent integration of code changes and continuous
delivery of software updates. It emphasizes automation, testing, and streamlined
deployment processes to achieve faster and more reliable software releases.

13. Docker: Docker is an open-source containerization platform that allows developers to
package and deploy applications along with their dependencies into lightweight,
isolated containers. It provides consistency and portability across different
environments.

14. Kubernetes: Kubernetes is an open-source container orchestration platform that
automates the deployment, scaling, and management of containerized applications. It
provides features for load balancing, service discovery, and high availability.
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15. Microservices: Microservices is an architectural style where applications are divided
into small, independent services that can be developed, deployed, and scaled
individually. Each service focuses on a specific business capability and communicates
with other services via lightweight protocols.

16. Serverless: Serverless computing is a cloud computing model where developers can
build and run applications without managing or provisioning underlying server
infrastructure. It allows developers to focus solely on writing code and enables
automatic scaling based on demand.

17. Containers: Containers are lightweight, isolated runtime environments that encapsulate
applications and their dependencies. They provide consistency and portability by
packaging software code, libraries, and configuration settings into a single deployable
unit.

18. C4 Model: The C4 Model is a visual notation for describing software architecture at
different levels of abstraction. It provides a set of diagrams that focus on Context,
Containers, Components, and Classes to effectively communicate and document the
architecture of a software system.

19. AWS: AWS, short for Amazon Web Services, is a comprehensive cloud computing
platform provided by Amazon. It offers a wide range of cloud services, including
computing power, storage, databases, networking, machine learning, and more, enabling
organizations to build, deploy, and scale applications and infrastructure in the cloud.
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1. ABSTRACT

The most popular approaches that have been used such as DevOps improve application
operations thanks to the heyday of containers and CI/CD, however, this still requires human
intervention in case of failures in any of the system components, since many of the solutions
that have been used so far are limited to specific problems, such as reacting to downed servers
and scaling them up. Taking into account that every time the operations of distributed systems
become more and more complex due to the large number of components that must run at the
same time, and also considering that in many applications, even small unavailability can
translate into a strong impact on the reliability of the application, which implies an economic
impact for the business, it is necessary that the solutions that are created reduce any type of risk
and each time all these operations are more automated. Due to this, AIOps arises which uses
artificial intelligence techniques such as machine learning and big data to operate and maintain
application infrastructures, reduce the operational complexity of systems and automate IT
operations processes. It has been proven that the implementation of this type of solution
improves the quality of the systems and reduces the MTTD (Mean time to detect an error) from
10 minutes to 1 minute and the MTTR (Mean time to recovery) can be reduced from 60 minutes
to 30 seconds [1], which is a very important advance in this world of operations. Despite this,
there is still not so much adoption by most companies due to the challenges involved in
implementing them in large projects and the fact that there is no clear path to follow when
integrating applications to this type of solution that is emerging. In this research, we are going to
propose a holistic architecture that makes it easier for cloud-native distributed systems to
integrate with these new solutions.

KEYWORDS: AIOps, Software Architecture, Cloud-Native, Distributed Systems,
Microservices, Serverless
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2. PROBLEM STATEMENT

In distributed environments, maintaining multiple services running at the same time is
challenging. AIOps seeks to reduce this operational complexity of the systems and automate all
operational processes through the application of machine learning algorithms and big data to
have services that are capable of managing themselves. Using AIOps, the MTTD can be
reduced from 10 minutes to one minute with the help of AIOps and the MTTR can be reduced
from 60 minutes to 30 seconds [1] which shows the great power that we can achieve by
implementing this type of technology. With the wide variety of services that exist in the clouds
today that provide different ways of operating and maintaining applications that are tightly
coupled to the cloud of choice, a successful AIOps implementation that is easy to deploy in
multiple scenarios becomes more complex.

The use of distributed systems implies several complexities such as the fact of using multiple
programming languages, libraries, and frameworks, different development teams within the
same system, the fact that each architecture carries its own challenges, and that there are
multiple clouds that provide different customized services to manage the applications. All these
complexities can be addressed by designing solutions that are as agnostic as possible for a
specific tool, however, this also implies a challenge when defining the architecture that can be
easily adapted to this type of application and that facilitates the implementation of AIOps.

Currently, there are customized solutions that focus on very specific tasks of IT operations
management using artificial intelligence (focused on AIOps subcategories), however, there is no
clear path to follow to make use of all these tools in such a way that has administration based on
AIOps, applied especially to distributed systems where it is necessary to be aware of multiple
services that run at the same time and with a component that fails, it can compromise the correct
functioning of a part of the system.

Some previous research works only treat single tasks or subareas inside AIOps [9, 10, 11]. Most
of them are mainly focused on the algorithm field [1], such as anomaly detection [12][13]-[14],
clustering analysis [15], failure prediction [16][17]-[18], and cost optimization [19]. This
motivates the need for a study focused on investigating the main architectures used in case
studies of systems managed by AIOps solutions which is the reason for this research. We are
going to apply some of the patterns identified in order to define a new architecture that will be a
starting point for systems to migrate to this type of self-managed administration or new systems
that want to take advantage of these powerful solutions.
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3. STATE OF THE ART

A distributed system is a computing environment in which various components are spread
across multiple computers (or other computing devices) on a network. These devices split up the
work, coordinating their efforts to complete the job more efficiently than if a single device had
been responsible for the task. Distributed systems are an important development for IT and
computer science as an increasing number of related jobs are so massive and complex that it
would be impossible for a single computer to handle them alone[1]. But distributed computing
also offers additional advantages over traditional computing environments. Distributed systems
reduce the risks involved with having a single point of failure, bolstering reliability and fault
tolerance. Modern distributed systems are generally designed to be scalable in near real-time;
also, you can spin up additional computing resources on the fly, increasing performance and
further reducing time to completion. Today there are multiple examples of distributed
architectures that are widely used in the software development industry, such as microservices
and serverless architectures. These systems are strongly based on the concept of
containerization, which is why the use of tools such as Docker or Kubernetes is very common.

Cloud-native computing is an approach in software development that utilizes cloud computing
to build and run scalable applications in modern, dynamic environments such as public, private,
and hybrid clouds[4]. Technologies such as containers, microservices, serverless functions, and
immutable infrastructure, deployed via declarative code are common elements of this
architectural style. These techniques enable loosely coupled systems that are resilient,
manageable, and observable. Combined with robust automation, they allow engineers to make
high-impact changes frequently and predictably with minimal toil. Frequently, cloud-native
applications are built as a set of microservices that run in Docker containers, and may be
orchestrated in Kubernetes and managed and deployed using DevOps and Git CI workflows[4]
(although there is a large amount of competing open source that supports cloud-native
development). The advantage of using Docker containers is the ability to package all software
needed to execute into one executable package. The container runs in a virtualized environment,
which isolates the contained application from its environment.

Using the IEEE Xplore, Scopus, ACM Digital Library, ScienceDirect, and arXiv databases, an
exhaustive search was made for papers that met all the inclusion/exclusion criteria. Different
filters were used to discard articles based on their publication date between 2017-2023, English
language, free online accessibility, and only articles or book chapters. The keyword set used for
database searches is:

"aiops"
("implementation" OR "case study" OR "use case" OR "scenarios")

("architecture" OR "microservices" OR "serverless" OR "architectural patterns")
("distributed" OR "distributed systems")

("cloud" OR "cloud-native")

45 papers were selected, of which 39 were discarded, from which the relevant information for
our research topic was extracted. We created a comparative table analyzing the relevant aspects
and finally, we synthesized the main conclusions of this state of the art.

1. Evolving from Traditional Systems to AIOps: Design, Implementation and Measurements,
2020 [1]
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In this paper, an AIOps system called Proton is created based on 5 key skills that the authors
define: perception, detection, location, action, and interaction. Proton adopts a layered design
with interoperability services between modules, making it highly compatible with traditional
heterogeneous systems. It is implemented with some key considerations including data
categories, database cluster, service gateway, and operation safety.

Tens of thousands of devices were used to test the AIOps system, of which three indicators are
measured: the rate of self-repair of faults, the storage capacity, and the delay in the response of
the service. In particular, the fault self-healing rate exceeds 80% for the scenario of server ping
failure. The maximum write rate is approximately 80,000 metrics / second and the maximum
query rate is approximately 7,500 metrics/second. And finally, it was obtained that the average
response time is about 292 milliseconds.

To receive the HTTP requests, the option of using a service gateway was evaluated, however,
this did not present the best results for the following reasons:

● Represents a bottleneck in high-performance network communication
● Became a possible single point of failure.
● Cannot achieve fine-grained permission control of the business, such as controlling the

visibility of each data.
● The compatibility of the unified gateway is not guaranteed when using multiple

frameworks.

Therefore, it was decided to use a DNS that had a load-balancing mechanism, while the service
statistics are performed by each service. This strategy is applied to the Proton system and to the
services that are integrated since both are connected in the last layer of the proposed design.

They also highlight the importance of capturing a large amount of information from each
service, collecting data such as metrics, logging, tracing, configuration data, workflow data, and
multimedia data. Each of this collected information is stored in a different database within the
AIOps system.

Another important point of the article is security, for which two main aspects of the security
mechanism were used: Authority and Approval of the operation (which is divided into
single-point approval and global approval).

Finally, the authors mention the importance of using the microservices architecture, since
interoperability can be increased by minimizing coupling using the restful protocol. In fact,
many of these recommendations are inherent to this kind of architecture.

2. An Anomaly Detection Algorithm for Microservice Architecture Based on Robust Principal
Component Analysis, 2019 [2]

In this paper, the authors propose an execution trace-based root cause location method for
microservices architectures, which consists of two parts: Invocation chain anomaly analysis
based on Robust Principal Component Analysis (RPCA) and a single indicator anomaly
detection algorithm.

To test the algorithm, they used data from the AIOps 2020 International Challenge, which is an
event that is planned to take place every year where issues related to AIOps are raised and
where participants can validate their solutions against the data provided. The algorithm created
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in this article scored 0.8304 (maximum score is 1) on the 4 batches of data used.

This challenge was based on a real problem presented in a commercial system with a
microservices architecture. The data was provided by the Zhejiang Mobile company: static
topology between services, the invocation chain data, the gold indicator data of the observed
services, and the time-series data of the underlying services (operating system, Oracle,
container, and middleware).

Although the challenge does not specify the complete architecture of the system, it is possible to
identify that each microservice is implemented in a separate container and there is a middleware
that receives the requests for each HTTP request. In addition, the importance they place on
collecting information on the system's tracking and indicators is highlighted.

3. A Context Model for Holistic Monitoring and Management of Complex IT Environments,
2020 [3]

In this paper, the authors propose a holistic model named Monitoring Resource Model (MRM)
for the management of context data, where it is important to know what context is required for a
given monitored resource, where the context data are originating from, and how to access them
across the data silos.

Based on this model, they propose a multilayer architecture consisting of 5 layers: acquisition,
management, analysis, presentation of context data, and automated responses. The acquisition
layer is responsible for communicating and collecting information from different data sources
through adapters and performing the necessary transformations to the collected data.

The information that the model receives from managed applications is:

● UID: Unique identifier of the resource.
● KPIs: List of key performance indicators for this resource that are monitored by the

respective monitoring systems and are used to describe the health status of a monitored
resource. CPU load and percentage of memory used are examples of KPIs.

● Log data: Generated by each managed resource.
● Alerts: The alerts generated in the resource.

Furthermore, static information is collected which is not monitored, such as the IP or hypervisor
of the virtual machine (VM) on which the resource is running. This information can be collected
using management tools such as OpenStack and serves to detect the context in which the
resource is running and thus be able to automate the creation of MRM instances of VMs.

At the end of the article, the authors analyze the main AIOps platforms currently available:
Moogsoft, BMC, Splunk, and Broadcom, comparing the monitoring and management provided
by each one, always thinking in a holistic approach, and comparing them with the MRM model
proposed.

The authors also mention the rise of technologies such as Docker, Kubernetes, and OpenStack,
which facilitate the creation of applications in the cloud, where additionally each cloud provider
has its custom monitoring tools. The emerging AIOps platforms and the proposed MRM model
are intended to work in conjunction with all of these technologies to facilitate the necessary
management tasks.
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4. AI-Governance and Levels of Automation for AIOps-supported System Administration, 2019
[4]

Although this paper does not focus on designing a custom AIOps solution or integrating a
specific existing system with these platforms, the authors show the different levels of
automation of application management, starting from 100% manual to the level that proposes
AIOps where the platform is able to solve the errors by itself.

In the last section of the article, when discussing application scenarios, the authors mention that
the main tasks of an AIOps platform are optimization of runtime, correction/recovery after a
malfunction, updates, improvements of security, and sizing (scaling up / down). For each of
these activities, the authors provide recommendations based on patterns that will facilitate the
integration of the system with AIOps solutions.

For runtime optimizations, it is very useful to use virtualization and load-balancing tools.
Additionally, they mention that typical activities such as scaling the compute nodes, replicating
the database, and resizing the storage volumes, can impact the performance of the application
but not the functionality or availability. Furthermore, measures to detect DDoS attacks such as
reconfiguring the balancing frontends to block suspected IP addresses are one way to mitigate
and prevent security problems.

The authors recommend using deployment tools like Kubernetes to manage updates, which
allows gradual updates and has rollback mechanisms in case of any performance degradation.

Reliability, availability, and security issues can be automated with artificial intelligence
strategies (unsupervised learning, deep learning, time series analysis), which rely heavily on the
data generated by the application and the monitoring that is configured. They also highlight the
importance of the system being self-healing and self-stabilizing, so that it is capable of
generating a feasible remediation workflow autonomously.

5. Ananke: A framework for Cloud-Native Applications smart orchestration, 2020 [5]

The authors propose a framework called Ananke for monitoring and operating cloud-native
microservices. They highlight the importance of modeling and monitoring CNA (cloud-native
applications) to obtain data that we can use in our machine learning and big data models,
facilitating integration with AIOps platforms. This information can be analyzed as time-series
data, modeled as a time-varying multi-layer network. Companies like Splunk and Sysdig are
looking to provide this type of monitoring.

The paper considers different communication protocols between microservices such as HTTP,
gRPC, and Broker-based (asynchronous). It also takes advantage of the benefits of tools such as
Kubernetes and OpenShift, performing online monitoring based on Prometheus architecture to
minimize the interference of the observation. In addition, some popular patterns and principles
in distributed architectures are highlighted, such as the fact that each service has its own
database and API gateway as an entry point for requests for external clients.

The model that the article proposes allows representing the communication between the
different microservices that can be presented with an external request, which can trigger a set of
requests between the microservices to complete a transaction. This facilitates the creation of a
time series graph and the entities that represent the model, therefore, the information on the
performance of the entire application can be obtained by adding the data of the complete cluster
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of all the requests.

Ananke's components are based on microservices patterns, which are divided into 3 main
classes:

● Monitor and collect
● Storage and processing middleware
● Analyzers and actuators.

Collecting the time-series data is part of the monitoring layers that belong to the AIOps solution.

The authors also recommend creating libraries to facilitate code configuration quickly through
decorators. Also, they suggest 2 other tools that they use within the Ananke framework: SPOUT
and Raphtory.

Although the Ananke paper and framework are mainly focused on microservices architectures,
they can be applied to different environments as function-as-a-service (serverless architectures)
and metal-as-a-service, as the recommended patterns and principles are widely used in
distributed systems.

6. Managing Distributed Cloud Applications and Infrastructure A Self-Optimising Approach.
Chapter 3: Application Optimisation: Workload Prediction and Autonomous Autoscaling of
Distributed Cloud Applications, 2020 [6]

In this chapter of the book, the authors discuss the optimization of the configuration and
deployment of distributed cloud applications, which can be complex as it requires understanding
factors such as the infrastructure and topology of the application, workload arrival and
propagation patterns, and the predictability and variations of user behavior. For this, the chapter
introduces the RECAP Application Optimization approach, which is a framework that enables
the development and execution of optimization tasks at the application level.

The authors discuss optimization problems related to the placement, deployment, autoscaling,
and remediation of applications. In addition, they show strategies to model these problems and
with these models, predictions can be performed more accurately to support load balancing,
autoscaling, and remediation proactively.

An important point mentioned by the authors is virtualization since it is widely used in the cloud
and facilitates automation, scaling, optimization of resource allocation, and resilience to
variations in workload intensity thanks to elasticity which is one of its main benefits. Elasticity
requires load balancing that can generate additional parallel application components and redirect
user requests to distribute the load evenly.

RECAP works for common architectures of distributed applications including client-server
architecture, cloudlet, service-oriented architecture, and microservices. In these architectures, it
is important to define the constraints of each component to model its communication patterns
between them. Typically each component is split into the backend and frontend to allow each to
scale independently. They also highlight the importance of collecting data from each component
since this information is used by the models, however, this task is complicated in very large
systems. The example presented at the end of the chapter shows an application that uses the
RECAP framework. This application has a microservices architecture with a REST API
Gateway that receives all requests from the system including the interaction it has with the
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AIOps platform.

Analyzing the detail of each paper it is easy to identify certain similarities in the way the
architectures of the reviewed applications are designed. Most of them are based on
microservices, however many of the patterns and principles suggested in the articles can be
applied in other architectural patterns of distributed systems such as Serverless.

A common topic among the applications reviewed in the papers is the approach to the cloud
since all the proposed solutions are designed for cloud-native systems. Some authors propose
layered models that allow the modeling of the AIOps platform and the application to be
integrated, in order to clearly separate the responsibilities of each one. In these architectures,
communication between layers is done using adapters that allow data to be processed in a way
that is easier for machine learning and big data models.

TABLE 1
PATTERN, PRINCIPLES, AND TOOLS COMPARISON

ARTICLE / PATTERN Architectural
pattern

Cloud-
Native

Patterns and
principles Tools

Evolving from Traditional Systems to AIOps:
Design, Implementation and Measurements, 2020
[1]

Layered,
Microservice Y

Logging, tracing,
Monitoring,

Interoperability, DNS,
Authority, Approval,

REST

ES Cluster,
MySQL, Hive,

Influxdb,
Python, Spring

Cloud

A Context Model for Holistic Monitoring and
Management of Complex IT Environments, 2020
[3]

Layered Y Monitoring,
Virtualization

Docker,
Kubernetes,
OpenStack,

AWS, MySQL

An Anomaly Detection Algorithm for
Microservice Architecture Based on Robust
Principal Component Analysis, 2019 [2]

Microservice,
Reactive Y

Synchronous
communication,
Middleware,

Containerization,
Logging, Monitoring

Docker, Oracle

AI-Governance and Levels of Automation for
AIOps-supported System Administration, 2019
[4]

N/A Y

Virtualization, Load
balancing, CI/CD,

Self-healing,
Self-stabilizing

Kubernetes

Ananke: A framework for Cloud-Native
Applications smart orchestration, 2020 [5]

Microservice,
Serverless,
Metal-as-a-
service

Y

API gateway, REST,
gRPC, Asynchronous

communication,
Monitoring,

Analyzers, Actuators,
Shared libraries

Prometheus,
OpenShift,
Kubernetes,

Kafka, DBMS,
SPOUT,
Raphtory

Managing Distributed Cloud Applications and
Infrastructure A Self-Optimising Approach.
Chapter 3: Application Optimisation: Workload
Prediction and Autonomous Autoscaling of
Distributed Cloud Applications, 2020 [6]

Client-server,
Cloudlet,

Service-oriented,
Microservices

Y

API gateway, REST,
Load balancing,
Autoscaling,
Remediation,
Virtualization,
Monitoring

RECAP

In general, the top 3 recommendations to use when deploying applications alongside AIOps
platforms are:
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● Monitoring of all system components, relying on existing solutions provided by each
cloud provider.

● A middleware in charge of intercepting requests from external clients and between
services. Here there are multiple options such as using an API Gateway or a DNS that
allows load balancing.

● Apply virtualization strategies for the deployment of components, especially based on
containers using technologies such as Docker and Kubernetes as they provide additional
advantages to scale each component independently.

Table 1 presents a comparison of the information found in each article focused on our research
topic, summarizing the patterns, principles, and tools used in each paper. There we can see that
all the reviewed solutions are focused on the cloud due to the benefits that facilitate the
implementation in distributed systems. We found 3 recommendations that are common:
monitoring of all components, middleware to intercept requests, and virtualization. Also, the
most used architectures are microservices and layered, along with some very popular tools that
facilitate working with distributed systems such as Kubernetes and Docker.

Now the question is which architectural pattern is better? To answer this question, we must first
ask ourselves, which of these patterns makes it easier to integrate with the machine learning and
big data algorithms used in AIOps? This requires an investigation where new architecture is
defined and evaluated.
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4. PROJECT OBJECTIVES

4.1. GENERAL
Propose a cloud-native architecture for distributed systems that facilitates integration with
AIOps platforms, getting mean time to detect and repair errors metric in the standard time
windows.

4.2. SPECIFICS
1. Evaluate the benefits and disadvantages of different architectural patterns and principles

in applications that integrate with AIOps platforms to propose an architecture.
2. Implement an AIOps platform using cloud-native solutions.
3. Validate the easy integration of the proposed architecture with at least one specific use

case, using different patterns, principles, and tools of distributed systems.
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5. IMPACT AND PRODUCTS

With this work, we hope to establish the basis for applications to be more easily integrated with
emerging AIOps solutions. This will benefit all those distributed projects where the
administration of the different components has high operational complexity and any
unavailability has a strong impact on the business side. Currently, research efforts on this topic
are more focused on how to create different solutions for AIOps platforms, however, there is no
clear path for existing or new applications to take full advantage of these solutions, this work
presents a clear guide to the architectural patterns and principles best suited to AIOps solutions.

This work has an impact on the software development industry, as it shows the way for more
projects to start integrating AIOps solutions and, as we described in the previous sections, the
MTTD can be reduced from 10 minutes to 1 minute and the MTTR can be reduced from 60
minutes to 30 seconds. This translates into more robust and reliable applications, with a better
reputation, and, in turn, has a good economic impact on the business.

As a result, we will deliver within the master's thesis a guide that will facilitate the
implementation of an architecture for cloud-native distributed systems. In addition, we will
publish a paper that will be sent to a journal recognized by Publindex and participate in an
international conference to promote the findings.
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6. METHODOLOGY

The methodology that will be applied for the development of the project is divided into three
iterative stages, in which we will constantly verify that the results obtained are as expected.
Figure 1 summarizes the 3 stages to follow.

First, we are going to perform an analysis of the different patterns, principles, and tools used in
distributed systems, making comparisons of the advantages and disadvantages that each one
provides. Then, an analysis of the benefits they have when applied together with an AIOps
solution is proposed. With this, we will propose an architecture based on the analysis obtained,
diagramming the different levels (using the C4 model) to have a holistic vision of the solution to
be implemented.

After the architecture is defined, we are going to create an initial version of an AIOps platform
using deep learning algorithms, combined with different existing development and deployment
tools, it should contain the minimum functionalities to manage the operations of distributed
applications. In this stage, we are going to combine some fixed solutions provided by each
cloud provider with our custom big data and machine learning algorithms. This is with the aim
of testing different algorithms to use. Additionally, we are going to use some public datasets
with logs from distributed systems to train and test the implemented models. Then, we are going
to choose the best models and the best services provided by the cloud providers to combine
them and create the AIOps platform.

With all of the above, we proceed to test the proposed architecture with at least 2 controlled
scenarios. At this point, as much information as possible should be collected from each test case
in order to have more accurate results about the benefits of the proposed architecture. The 2 use
cases will have small variations in the patterns and technologies to be used to validate that the
architecture adapts correctly to different contexts. Here we are going to apply some
cross-cutting patterns like the ones listed in section 8 (monitoring of all components,
middleware to intercept requests, virtualization, and some others that we will identify in the first
stage), this will allow us to reuse some components between the 2 use cases and will also allow
us to have a more adaptable solution for any context. Finally, we are going to use a performance
testing tool to run stress tests like JMeter to simulate cases where multiple users are making
many requests on a system.
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FIGURE 1. STAGED METHODOLOGY PROPOSED FOR PROJECT DEVELOPMENT
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7. SCHEDULE

ACTIVITY/
MONTH

1 2 3 4 5 6 7 8 9 10 11 12 DELIVERABLE

1. Analysis of
distributed
architectures

Analysis of the state of
the art in AIOps and
distributed systems

State of the art of
AIOps and
distributed systems

Collects the main
architectural patterns
and principles of
distributed systems

List of patterns and
principles

Comparison of
patterns, analyzing
advantages and
disadvantages

Comparison chart

Analysis of the
patterns that best fit
each AIOps process

Reduced list with
the best patterns

Definition of an
architecture that
facilitates the
implementation of
AIOps

C4 model

2. AIOps platform
implementation

Analysis of processes
to implement an
AIOps platform

List of steps to
implement an AIOps
platform

Analysis of cloud tools
to use

List of possible
cloud services

Platform
Implementation

Software
infrastructure
configured in a
specific cloud

Validate components
working together

Report with test
results

3. Validation of the
architecture with 2
use cases

Implementation of the
architecture with a
cloud-based use case

Software application

Implementation of the
second use case with
variations of the
architectural pattern
used

Software application

Controlled scenarios to
validate the
effectiveness of the

Report with test
results
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AIOps solution

Analysis of results
Report with analysis
of results

4. Presentation of the
final report

Preparation of the final
report

Master's Thesis

Evaluation of the
report

Evaluator feedback

Presentation of the
results

Presentation
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8. ANALYSIS OF DISTRIBUTED SYSTEMS PATTERNS

A distributed system is a network of independent computers that work together to provide users
with a unified set of services. They are used to solve complex problems that would be difficult
or impossible to tackle with a single, centralized computer. This type of system provides the
ability to manage mission-critical services that are capable of scaling almost instantly in
response to user demand, which is why it has become a necessity these days to build
applications like distributed systems [21]. They offer several benefits over traditional
centralized systems, such as better scalability, fault tolerance, and performance. However, they
also pose challenges, such as ensuring consistency and reliability in the face of network failures,
security threats, and communication delays. Building and maintaining distributed systems
requires specialized knowledge and expertise. This involves designing and implementing
protocols, algorithms, and architectures that are tailored to the characteristics and requirements
of the application.

The first generation of distributed systems was based on the client-server model, where clients
request services from a central server, which would respond with the requested information.
This is considered the first step as it allowed for the frontend and backend to be independent and
communicate through the network. More recently, microservices architecture has gained
popularity as a way to build distributed systems, where applications are broken down into small,
independent services that communicate with each other through APIs. This approach allows for
greater flexibility and scalability, as services can be added or removed without affecting the
entire system. Serverless computing is another recent trend in distributed systems, where
applications are built and run on cloud platforms without the need for managing the underlying
infrastructure [22].

The evolution of distributed systems has allowed the emergence of architectures such as
microservices or serverless. They have evolved over time over time as new patterns are
introduced or modified each day, so it is difficult to include them all in one list. For this
research, the main patterns listed in books such as Designing Distributed Systems: Patterns and
Paradigms for Scalable, Reliable Services [21] andMicroservices Patterns [23] are unified. The
final list was limited to using patterns focused on monitoring components, middleware, and
virtualization, as it was found that these points have a greater impact when integrated with
AIOps tools during the state-of-the-art investigation. By integrating these areas with AIOps
tools, it is possible to significantly improve the efficiency and effectiveness of system
management, as these critical points allow identifying possible bottlenecks, failure points, and
other performance issues.

8.1. MONITORING PATTERNS

In this section, I will compile all patterns related to application monitoring, including some
patterns that facilitate observability. Application monitoring is essential for detecting issues and
ensuring the smooth functioning of an application. It involves collecting and analyzing data on
various aspects of the application, such as performance metrics, error rates, and user behavior, to
identify potential problems and optimize the application's performance. Observability patterns
can help developers and operators design applications that are more easily monitored and
diagnosed, making it easier to identify and fix issues when they arise.
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8.1.1. HEALTH CHECK API

FIGURE 2. HEALTH CHECK API

The health check API pattern is a key pattern in microservices architecture that helps ensure the
health and reliability of the services. As Chris Richardson describes in his book "Microservices
Patterns" this pattern involves the implementation of an API endpoint that allows the
microservice to report its current health status. The endpoint can be queried by an orchestrator
or by other microservices to determine whether the service is currently healthy and available for
use.

It is essential for maintaining the reliability and availability of distributed systems. By
implementing a standard health check API, operators can easily monitor and manage the health
of their services. The pattern also helps with fault tolerance and self-healing, as unhealthy
services can be quickly identified and replaced [24]. Additionally, the health check API can be
used to provide information on the dependencies of the service, such as databases or other
microservices, and their health status. This can help to identify and resolve issues before they
impact the system as a whole.

Implementing this pattern can be accomplished using a variety of tools and frameworks. One
popular option is Spring Boot, which provides built-in support for health checks and can easily
expose them through a REST endpoint. Another option is to use the Kubernetes liveness and
readiness probes, which can be configured to execute custom health checks and report their
status to the cluster. Cloud providers also offer tools to facilitate health checks, such as AWS
Elastic Load Balancers and Azure Traffic Manager, which can monitor the health of instances
and automatically route traffic to healthy ones.

8.1.2. LOG AGGREGATION
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FIGURE 3. LOG AGGREGATION

The log aggregation is a pattern that involves collecting log data generated by distributed
systems and applications and centralizing it for analysis and monitoring [25]. It is a common
approach to address the challenges of distributed system logging. The pattern is useful for
troubleshooting and identifying issues in distributed systems as it provides a holistic view of the
system's behavior.

To implement log aggregation, various tools, and technologies can be used, such as
Elasticsearch, Logstash, Kibana (ELK) stack, Fluentd, and Splunk. These tools provide the
capability to ingest logs from different sources, transform them into a common format, and store
them in a centralized location for analysis and visualization. Log aggregation can be a very
effective means for detecting and diagnosing issues, as it enables analysts to search and explore
a large amount of log data from a single place.

The log aggregation pattern is widely used in industry and academia, and many organizations
have implemented it to monitor and analyze their distributed systems. For instance, Netflix uses
the ELK stack for log aggregation to monitor and troubleshoot its microservices-based
architecture.

8.1.3. DISTRIBUTED TRACING

FIGURE 4. DISTRIBUTED TRACING

This is a pattern that is commonly used in cloud-native applications to gain visibility into
complex distributed systems [27]. Distributed tracing involves the collection of timing and
context data related to a specific user request as it travels through a distributed system. This data
is then used to generate a trace of the request as it moves through different services, allowing
developers to understand how the system is performing and to identify and diagnose problems.
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One of the primary benefits of distributed tracing is that it provides a unified view of the entire
system, making it easier to understand how different components are interacting with each other.
This is particularly important in cloud-native applications, which are often composed of many
services that are developed and deployed independently. With distributed tracing, developers
can identify performance bottlenecks and errors that may not be immediately visible when
looking at individual services in isolation.

Another important aspect of distributed tracing is the ability to correlate logs and metrics with
individual requests. Logs and metrics are valuable sources of information when diagnosing
issues, but they can be difficult to use in a distributed system where a single request may touch
multiple services. Distributed tracing provides a way to tie these different sources of data
together, making it easier to understand the context surrounding a particular request. It provides
a way to allow developers to gain a better understanding of how different services are
interacting with each other and how requests are flowing through the system.

Overall, distributed tracing is an important pattern for cloud-native applications that can help
developers gain visibility into complex distributed systems. By providing a unified view of the
entire system, correlating logs and metrics with individual requests [26], and enabling a better
understanding of how services are interacting, distributed tracing is an invaluable tool for
diagnosing issues and ensuring that cloud-native applications are operating at peak performance.

8.1.4. EXCEPTION TRACKING

FIGURE 5. EXCEPTION TRACKING

The exception tracking pattern is a design pattern used in software development to identify,
handle, and track exceptions that occur during the execution of a program [28]. Exceptions are
runtime errors that can cause a program to crash, so it is important to have a mechanism to
handle them gracefully. The pattern involves logging exceptions and capturing contextual
information to aid in diagnosing and fixing the underlying issue. Exception tracking is crucial in
the development of robust and reliable software, as it helps developers identify and resolve
errors before they impact users.
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In the context of AIOps, the exception-tracking pattern plays an important role in detecting and
resolving issues in distributed systems. As modern applications become increasingly complex
and distributed, it can be challenging to track down the source of an exception. AIOps platforms
use machine learning algorithms to analyze large volumes of log data from across the system,
enabling developers to quickly pinpoint the root cause of an issue. By leveraging the exception
tracking pattern, AIOps platforms can help organizations reduce downtime and improve the
overall reliability of their applications.

One approach to implementing the exception tracking pattern is to use cloud-native tools
provided by major cloud providers such as AWS, Azure, and GCP. For example, AWS provides
CloudWatch Logs and CloudWatch Alarms, which can be used to monitor application logs and
trigger alarms based on predefined metrics. Azure provides Application Insights, which offers
similar functionality, and GCP provides Stackdriver Logging and Error Reporting. These tools
can be configured to capture application exceptions and log data, which can then be analyzed to
identify patterns and trends. In addition, they can provide real-time alerts when exceptions
occur, allowing DevOps teams to quickly respond and resolve issues.

Another option is to use third-party tools specifically designed for exception trackings, such as
Sentry or Raygun. These tools provide more advanced features than cloud-native tools, such as
the ability to group and filter errors by type or severity. They also offer integrations with other
DevOps tools, such as Slack or PagerDuty, allowing teams to receive notifications and take
action on errors more efficiently. However, these tools typically come with additional costs and
may require more configuration and setup time than cloud-native solutions.

Regardless of the toolset chosen, it is important to implement a robust exception-tracking
strategy in any cloud-native application. By identifying and resolving exceptions quickly,
DevOps teams can ensure that their applications are performing optimally and that end-users are
having a positive experience. Furthermore, by leveraging AIOps technologies such as machine
learning and automation, exception tracking can become an even more powerful tool for
ensuring application reliability and reducing downtime.

8.1.5. APPLICATION METRICS

FIGURE 6. APPLICATION METRICS

In this pattern, the services report metrics to a central server that provides aggregation,
visualization, and alerting [23] capabilities. There are multiple kinds of metrics to collect, such
as CPU utilization, memory usage, disk utilization, request latency, and number of requests
executed. Metrics can be collected at various levels of the application stack, including the
infrastructure, platform, and application layers, and can be used to monitor everything from the
health of individual services to the performance of an entire system. They are collected and
stored in a central server, which provides visualization and alerting.
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With the rise of cloud-native architectures and microservices, application metrics have become
even more critical, as distributed systems can be complex and challenging to monitor. As a
result, a range of tools and platforms have emerged to help organizations collect, store, and
analyze application metrics, including popular solutions like Prometheus, Grafana, and Datadog.
By leveraging these tools, organizations can gain real-time visibility into the performance of
their applications, enabling them to quickly identify and address issues before they impact end
users.

8.1.6. MICROSERVICE CHASSIS

FIGURE 7. MICROSERVICE CHASSIS

The microservices chassis pattern is a pattern proposed by Chris Richardson that aims to
provide a framework of shared infrastructure and libraries that handle cross-cutting concerns
[23]. The idea is to extract common functionality such as service discovery, logging, metrics,
and tracing into a separate framework that can be shared by all microservices. This pattern
promotes the idea of building services that are lightweight, decoupled, and independently
deployable. The microservices chassis pattern is not a monitoring pattern, but it can be used to
provide observability features such as monitoring, logging, and tracing.

One of the key benefits of the microservices chassis pattern is that it provides a standardized
way of implementing and managing observability features across multiple microservices. By
having a common set of libraries and infrastructure, observability features can be implemented
in a consistent and maintainable way. This can help to reduce the complexity and cost of
implementing observability features across a large number of microservices.

The microservices chassis pattern can also help to improve the reliability and resiliency of
services by providing features such as service discovery and circuit breaking. By providing a
standard way of implementing these features, it can help to reduce the risk of errors and failures
in microservices. It helps to improve the overall quality and performance of microservices,
which is especially important in cloud-native applications.

8.1.7. SIDECAR
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FIGURE 8. SIDECAR

The Sidecar pattern is a popular distributed system pattern that involves deploying a separate
container alongside each instance to provide additional functionality without modifying the
application code directly. This pattern enables the separation of concerns and helps to keep the
services lightweight, simple, and decoupled. The sidecar container is responsible for providing
features such as service discovery, load balancing, authentication, and monitoring, among
others. By having a dedicated sidecar container, developers can easily update or replace these
additional functionalities without affecting the core logic [21].

One of the main use cases for the Sidecar pattern is to enhance the observability of applications.
The sidecar container can be used to collect and forward metrics, logs, and traces from the
microservice to a central location for analysis and monitoring. This approach can simplify the
implementation of observability features, as the sidecar container can be customized to handle
the unique requirements of each instance. For example, a sidecar container can be used to
collect metrics and logs for a specific microservice and forward them to a dedicated monitoring
system, such as Prometheus or Grafana.

Another use case for the Sidecar pattern is to provide additional security features. By deploying
a dedicated sidecar container, developers can add authentication and authorization features to
the instance, and can also handle encryption and decryption of data in transit. This approach can
help to improve the overall security of the architecture by providing a central point for security
management. It can also be used to provide additional resilience features like circuit breakers,
retries, and timeouts to the microservice without affecting its core functionality. The sidecar
container can be configured to handle these resilience features and can automatically retry failed
requests or stop sending requests to a failing service.

8.2. MIDDLEWARE PATTERNS

This section will gather all patterns related to intercepting HTTP requests in the backend using
any kind of middleware. Intercepting HTTP requests is a technique that allows developers to
modify requests before they are processed by the server. By intercepting requests, developers
can add additional functionality to their applications without having to modify the client-side
code. There are several patterns available for intercepting HTTP requests, each with its own
strengths and weaknesses.

8.2.1. REPLICATED LOAD-BALANCED SERVICES
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FIGURE 9. REPLICATED LOAD-BALANCED SERVICES

The replicated load balancer pattern is a distributed systems pattern that addresses the need for
high availability and scalability in systems that require load balancing. The pattern consists of a
scalable number of servers with a load balancer in front of them [21]. It increases the
availability and traffic distribution across multiple instances to increase scalability. The nodes
share a common configuration and synchronize the session state to provide consistent responses
to clients.

This pattern is particularly useful in cloud-native applications that require load balancing across
multiple instances of the same service or application. By replicating the load balancer
component, the system is able to continue working even if one or more nodes fail. Additionally,
by distributing traffic across multiple instances, the system is able to handle increased traffic
without overloading any one instance.

The replicated load balancer pattern is based on a popular algorithm called the Round Robin. In
this algorithm, incoming requests are distributed evenly across a set of backend servers [29].
Each incoming request is assigned to the next server in the list, ensuring that each server
receives an equal share of the requests. However, there are other popular algorithms that can be
used with this pattern, such as the Least Connection algorithm, where incoming requests are
directed to the server with the least number of active connections, and the IP Hash algorithm,
where the client's IP address is used to calculate which server to route the request to. The choice
of algorithm depends on the specific requirements and characteristics of the application and
infrastructure.

There are various tools and services available that can be used to implement the replicated load
balancer pattern, including both open-source and commercial load balancers. For example, the
NGINX Plus load balancer provides a clustering feature that allows for the replication of the
load balancer component across multiple nodes. Additionally, cloud providers such as AWS,
Azure, and GCP provide load-balancing services that can be used to implement the pattern.

8.2.2. OWNERSHIP ELECTION
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FIGURE 10. OWNERSHIP ELECTION

The ownership election pattern is a distributed systems pattern that addresses the problem of
selecting a leader or primary node in a distributed system. In a distributed system, it is often
necessary to elect a single node to perform a specific task or coordinate the actions of other
nodes. This pattern provides a mechanism for electing a node to perform this role and ensuring
that the node is the only one responsible for the task.

One common use case for the ownership election pattern is in the implementation of a
distributed database system. In this scenario, it is necessary to select a primary node to handle
write requests and coordinate data replication across the other nodes in the system. It provides a
way to elect a primary node in a way that is fair and deterministic, ensuring that all nodes have a
chance to serve as the primary.

One important consideration is the need to handle failure scenarios. If the primary node fails or
becomes unavailable, it may be necessary to hold a new election to select a new primary [21].
This can be achieved using a variety of techniques, such as timeouts or heartbeat messages, to
detect when a node has failed and trigger a new election.

It is considered a middleware because it acts as a mediator between different nodes in a
distributed system, enabling them to communicate and coordinate the ownership of shared
resources. By electing a leader among the nodes, the pattern establishes a central point of
authority that can arbitrate access to shared resources. This helps to prevent conflicts that might
arise if multiple nodes were trying to access the same resource simultaneously. It is a key
solution that requires coordination and resource management between multiple nodes.

8.2.3. ADAPTER

FIGURE 11. ADAPTER
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This pattern is similar to the Sidecar, but now the adapter container is used to modify the
interface of the application container so that it conforms to some predefined interface that is
expected of all applications [21]. The adapter container is created to encapsulate the code that is
responsible for translating messages between the different components. It acts as a middleware
layer that sits between the two components and translates the messages that are sent between
them.

The adapter container pattern is commonly used in distributed systems to help with service
integration. Each service is designed to be small and independent, and it communicates with
other services using lightweight protocols such as REST or messaging systems like Kafka or
RabbitMQ. Each service is responsible for its own data and business logic, which means that it
can be developed and deployed independently of other services. However, when different
services need to communicate with each other, they may use different message formats or
protocols. The adapter container pattern provides a way to bridge this gap by creating a
container that is responsible for translating messages between different services.

8.2.4. ASYNCHRONOUS MESSAGING

FIGURE 12. ASYNCHRONOUS MESSAGING

The Asynchronous messaging pattern is a communication pattern used in distributed systems
that decouples the sender of a message from the receiver, allowing for more flexible and reliable
communication. In this pattern, messages are sent asynchronously, meaning that the sender does
not wait for a response from the receiver before continuing its operations [23]. Instead, the
message is placed in a message queue, which acts as an intermediary between the sender and
receiver. The receiver can then consume the message at its own pace, without any requirement
for a real-time connection between the two parties.

Asynchronous messaging can be implemented in various ways, such as using message brokers
or publish-subscribe systems. A message broker is a middleware component that acts as a hub
for messages, allowing for the routing, transformation, and storage of messages [30].
Publish-subscribe systems, on the other hand, allow multiple consumers to receive the same
message, providing a more scalable and fault-tolerant communication mechanism.

Asynchronous messaging provides several benefits, including increased scalability, reliability,
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and flexibility. By decoupling the sender and receiver, systems can be designed to handle higher
message volumes and provide fault tolerance, as messages can be stored and retried if a receiver
is temporarily unavailable. This pattern is particularly useful for systems that require real-time
data processing, such as financial transactions or real-time analytics.

However, implementing asynchronous messaging can also introduce complexity, as developers
need to ensure that messages are processed correctly and in the intended order. Additionally, the
use of message brokers and publish-subscribe systems can introduce latency and overhead,
which can affect system performance. To mitigate these issues, careful consideration should be
given to the design of the message format, the choice of message broker, and the
implementation of the messaging client.

8.2.5. API GATEWAY

FIGURE 13. API GATEWAY

The API Gateway is a pattern that provides a centralized point of entry for client applications to
access backend services in a distributed system. As a result, it can simplify the process of
exposing multiple services to clients, especially those using different protocols or data formats.
The API Gateway can also provide additional functionalities such as authentication,
authorization, rate limiting, caching, and routing [32].

The API Gateway pattern can be implemented in various ways, including as a standalone
component or as part of a larger service mesh architecture. Some cloud providers, such as
Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure, offer
managed API Gateway services that can be easily configured and deployed.

One key benefit of using the API Gateway pattern is the ability to decouple clients from services
[31]. This allows for greater flexibility in the deployment and scaling of services, as well as the
ability to change or update services without affecting client applications. Additionally, the API
Gateway can provide a layer of security and governance by enforcing access controls and
monitoring traffic to backend services.
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Another advantage of the API Gateway pattern is the ability to aggregate and consolidate data
from multiple backend services. This can simplify the process of data integration for client
applications and reduce the complexity of the overall system architecture. The API Gateway can
also provide caching and rate-limiting features to improve performance and reliability.

However, the API Gateway pattern can also introduce additional complexity and potential
points of failure in the system architecture. It requires careful design and configuration to ensure
that it can handle high volumes of traffic and avoid creating bottlenecks [23].

To maximize the benefits of the API Gateway pattern, it is important to carefully consider the
requirements and characteristics of the system architecture and choose the appropriate
implementation and configuration options. This can involve selecting the appropriate protocols
and data formats, defining access controls and authentication mechanisms, and configuring
routing and caching policies.

Additionally, monitoring and observability are critical for ensuring the performance and
reliability of the API Gateway and the overall system. This can involve using logging and
metrics to track traffic and usage patterns, as well as identifying and diagnosing errors and
issues.

8.2.6. SERVICE MESH

FIGURE 14. SERVICE MESH

The service mesh pattern is a modern approach to managing communication between services in
a distributed system. It aims to provide a standardized way to route network traffic in and out of
services through a networking layer that implements various concerns, including circuit
breakers, service discovery, load balancing, traffic routing, security, and rule-based routing [23].
The pattern involves adding a dedicated infrastructure layer to the system, consisting of a set of
interconnected network proxies that provide these functionalities.

The main benefit of using a Service Mesh is that it abstracts away the complexity of
service-to-service communication from the application code, making it easier to develop,
deploy, and manage. With other approaches like microservices chassis, you are restricted to the
technology stack to use in the instances, with this pattern you can create this middleware in any
programming language and framework and be used for all the instances.

One key feature of service meshes is the ability to implement traffic routing and load balancing
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policies at the network layer, without requiring changes to the application code. This allows for
more dynamic and flexible traffic management and can be especially useful in scenarios where
services have varying levels of capacity or availability.

There are several popular service mesh implementations available today, including Istio,
Linkerd, and Consul Connect. These implementations are typically implemented as a set of
network proxies that intercept traffic between microservices and apply policies and rules to
manage that traffic. They also provide enhanced security features, such as mutual TLS
authentication, and can help simplify the management of security policies and access control.

One of the challenges of implementing a service mesh is the additional infrastructure required to
support it. They can add significant overhead to a system, in terms of both compute resources
and operational complexity. It requires careful planning and configuration to ensure that they are
correctly integrated with the rest of the system.

Another challenge is the potential impact on performance and latency. Since service meshes add
an additional layer of network proxies, they can introduce additional latency and reduce overall
system performance [33]. However, many service mesh implementations have features to
mitigate this impact, such as connection pooling and optimized network protocols.

Despite these challenges, this pattern has become increasingly popular in recent years, as
organizations have adopted distributed system architectures and moved towards cloud-native
development. It provides a powerful set of features for managing communication and
observability in a distributed system and is likely to continue to play a key role in the
development of modern, cloud-native applications.

8.3. VIRTUALIZATION PATTERNS

The virtualization of web applications involves running web applications in a virtualized
environment, which allows multiple applications to run on a single physical machine. This
technique is often used to improve the scalability, performance, and security of web
applications. It is a common practice in the technology industry and can offer many benefits for
companies looking to improve their infrastructure. In this section, I will compile all the patterns
related to this.

8.3.1. VIRTUAL MACHINES
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FIGURE 15. VIRTUAL MACHINES

This pattern consists on deploy services packaged as virtual machine images into production.
Each service instance is an individual virtual machine [23] which helps isolate the service from
other services running on the same server. Each VM can have its own operating system,
software, and configuration, which allows for greater flexibility and control over the
environment in which the service runs.

One of the main advantages of this pattern is the ability to scale services independently of each
other. Each VM instance can be scaled up or down based on demand, allowing services to be
deployed and managed in a more efficient manner. This approach also provides greater fault
tolerance, as failures in one VM instance do not affect the availability of other services running
on the same server.

Another benefit of this pattern is the ability to easily deploy and manage services across
different cloud providers or on-premises environments. By packaging services as virtual
machine images, they can be easily moved between different infrastructure environments
without needing to reconfigure the entire system. This approach allows for greater flexibility
and portability in the deployment of distributed systems.

However, there are some drawbacks to the VM per service pattern. One of the main concerns is
the increased overhead and complexity associated with managing multiple VM instances [34].
Each instance requires its own operating system, software, and configuration, which can lead to
higher costs and increased management complexity. Additionally, this approach can lead to
longer deployment times, as each VM instance needs to be configured and deployed separately.

8.3.2. CONTAINERS
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FIGURE 16. CONTAINERS

In recent years, containerization has emerged as an alternative to the VM per service pattern
[23]. Containers provide a lightweight and portable way to package and deploy applications,
without the overhead of a separate operating system for each service. This is the most popular
deployment pattern used to deploy distributed systems into production. A container is a
lightweight, stand-alone executable package that includes everything needed to run the service,
including code, libraries, and system tools. Container technology, such as Docker, has
revolutionized the way systems are deployed, making it easier and more efficient than ever
before.

One of the key benefits of the container per service pattern is that it allows for each service
instance to be isolated from the others. Each container has its own file system, network, and
resources, which means that if one service instance fails or experiences issues, it will not impact
the other instances. This pattern also enables easy scaling of services, as new instances can be
deployed quickly and easily by simply creating a new container.

Container images can be stored in a registry for easy access and deployment. A container
registry is a centralized place for storing and managing container images. It allows developers to
push and pull container images as needed, making it easy to distribute applications across
different environments. Container registries can be hosted in the cloud or on-premises, and they
can be public or private, depending on the needs of the organization. Some examples of popular
container registries include Docker Hub, Google Container Registry, and Amazon Elastic
Container Registry. By using a container registry, organizations can simplify their deployment
process and ensure consistency across their infrastructure.

8.3.3. KUBERNATES

FIGURE 17. KUBERNATES
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Using containerization without a container orchestration system like Kubernetes has several
disadvantages. One of the main drawbacks is the lack of automation and scaling capabilities.
Without a container orchestrator, developers are required to manually manage the deployment
and scaling of containers. This can be time-consuming and prone to errors, especially as the
number of containers and services grows. Another disadvantage is the lack of container
networking capabilities. Without a container network overlay provided by Kubernetes,
containers cannot communicate with each other outside of the host machine. This can make it
difficult to build architectures that rely on service discovery and communication. In addition,
without a container orchestration system, there is no centralized control plane to manage
container workloads. This can lead to inefficient resource utilization, as it may be difficult to
balance the allocation of resources across different containers and services.

Kubernetes uses a declarative approach to manage the state of the infrastructure, ensuring that
the desired state is always maintained. It provides a wide range of features, such as automatic
scaling, load balancing, rolling updates, and self-healing capabilities. These features make it
easier for developers to deploy and manage their applications in a distributed environment. This
pattern also allows developers to easily deploy and manage their applications across multiple
environments, such as on-premises data centers, public clouds, and hybrid clouds.

This pattern provides all the advantages of containers and includes the benefits of having an
orchestration system. This must be the default solution to use for deploying distributed systems
in most cases, it has become the de-facto standard for managing containerized applications in
the cloud. It would also be possible to use other self-managed approaches like serverless and get
the same benefits, but the use cases for applying it are fewer than Kubernetes. Kubernetes
includes tools for monitoring, logging, and tracing, as well as a wide range of third-party
plugins and extensions.

Another benefit of this pattern is that it allows developers to easily scale their applications up or
down as needed. Kubernetes can automatically scale the number of application instances based
on resource utilization and demand, ensuring that the application can handle increased traffic or
workloads. This makes it easier for developers to build applications that can handle
unpredictable spikes in traffic or workloads, without having to worry about managing
infrastructure resources manually.

Kubernetes has revolutionized the world of DevOps by providing a powerful platform for
container orchestration and management [35]. DevOps teams can easily deploy and manage
containerized applications across multiple environments, from development to production. It
provides a consistent and standardized way to deploy and manage applications, making it easier
to move workloads between different environments and platforms. Kubernetes also provides a
powerful set of APIs and tools that enable DevOps teams to automate many tasks, such as
scaling, rolling updates, and monitoring.

Kubernetes also provides a rich set of monitoring and logging capabilities that enable AIOps in
distributed systems. It allows operators to monitor the health of the application and the
underlying infrastructure by providing metrics and logs that can be easily aggregated and
visualized. Kubernetes provides a standardized way to collect metrics from different
components of the application and the infrastructure, which can be used to identify performance
bottlenecks, diagnose issues, and improve the overall system performance.
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9. ANALYSIS OF THE PATTERNS FOR AIOPS SOLUTIONS

After analyzing the list of patterns for each category, we can detect the similarity that exists
among many of them. It is not uncommon to find similarities between patterns in software
development. Developers often face similar problems and come up with similar solutions to
solve them. However, some patterns may require more effort to implement than others. It's
important to carefully evaluate each pattern and determine its feasibility and potential impact on
the application. By doing so, developers can choose the most appropriate pattern for their
specific needs and requirements. Although there are more patterns, the selected ones are those
that have been identified as the most useful and effective in those areas, with which
architectures for distributed systems can be easily built.

Some conclusions that we can highlight from these patterns are:

1. In the monitoring section, all patterns must be used, as the more information is collected
about the state of the application, the better decisions can be made, especially when
working with AIOps platforms where information is the most important. The use of
monitoring patterns is crucial in collecting the right data and insights to help identify
and resolve issues.

2. Health check API, log aggregation, distributed tracing, and exception tracking are
patterns we can achieve with a bit of configuration. The last 3 will require external
services to send the information.

3. The application metrics pattern requires more coding than previous ones. We will need
to define in which places we need to collect data.

4. Microservice chassis and sidecars are useful patterns for applying reusable features.
Actually, we could use just one of them and will get the same results.

5. For the middleware patterns, we can select only one of the last 2 and it will be enough.
The best pattern may vary, but the API gateway is easy to implement than the service
mesh pattern.

6. Replicated load-balanced services, ownership election, and adapters are patterns already
implemented in tools like Kubernetes.

7. The asynchronous messaging pattern is only applicable for specific use cases.
8. The big winner in the virtualization section is Kubernetes. It contains all the features of

the other 2 patterns and with extra features.

These conclusions favor the interests of the AIOps platforms, where we have a large amount of
data from monitoring, a middleware with many features to offer, and a container orchestration
tool that has superpowers for instance management. Based on this we can build the architecture
for this research by combining these patterns and taking advantage of these conclusions.
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TABLE 2
RECOMMENDED PATTERNS

SECTION RECOMMENDED DISCARDED

Monitoring
Health check API, log aggregation, distributed tracing,
exception tracking, application metrics, microservice chassis,
sidecar

Middleware API Gateway, Service Mesh, Asynchronous messaging Replicated load-balanced services,
Ownership election, and Adapters

Virtualization Kubernetes Virtual machines, containers
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10. PROPOSED ARCHITECTURE - AIODS

Based on the previous analysis, a general architecture is proposed that is easy to adapt and
implement by developers working with distributed systems. AIODS (AIOps for Distributed
Systems) is an architecture focused on the integration between distributed systems with AIOps
platforms. For this, the C4 model was used as a tool to create and visualize the different views
of the architecture, this because it is a holistic way of diagramming a system from all its levels.

The C4 model is a software architecture model that provides a way to create and communicate
software architecture diagrams in four views that are both easy to understand and effective.
Each of these levels of the C4 model is focused on a certain perspective of the system [36]. It
was created by Simon Brown, a software developer and consultant who wanted to create a
simple yet powerful way to communicate software architecture.

The C4 model is based on a hierarchy of four levels: system context, container, component, and
code. Each level provides a different level of detail and abstraction, allowing developers and
architects to focus on the appropriate level of detail at each stage of the architecture design
process.

At the highest level, the system context level provides a high-level view of the software system
and its environment. This level is useful for communicating the system's purpose, scope, and
stakeholders.

The container level provides a view of the system's containers and their interactions. Containers
can be thought of as the runtime environments in which components are executed. This level is
useful for understanding how the system is partitioned into deployable units.

The component level provides a view of the system's components and their interactions.
Components are the building blocks of a system, and this level is useful for understanding the
system's internal structure.

Finally, the code level provides a view of the actual code that makes up the system. This level is
useful for understanding how the components are implemented [37].

The C4 model is an effective way to communicate software architecture, as it provides a clear
and consistent way to communicate the different levels of detail and abstraction. It is also a
useful tool for designing software systems, as it allows developers and architects to focus on the
appropriate level of detail at each stage of the design process.

10.1. SYSTEM CONTEXT LEVEL

At the system context level, there isn't much to show as the proposed architecture can be used in
any context, so this level may vary depending on the specific business of the application being
built. It's important to note that this level defines the boundaries of the system being built and
the external systems or users it interacts with. Therefore, it's crucial to understand the business
requirements and the system's stakeholders to determine the appropriate boundaries. At a
generic level, this level looks as follows:
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FIGURE 18. SYSTEM CONTEXT VIEW

10.2. CONTAINERS LEVEL

At this level, we cannot provide much detail, however, some applied patterns such as sidecar
and asynchronous messaging are already present. We also have a container dedicated to
middleware and some monitoring systems.

FIGURE 19. CONTAINERS VIEW

It is important to highlight that the logging server implements the log aggregation pattern.
Similarly, the monitoring server is used to collect all metrics generated using the application
metrics pattern. Finally, the alerting server provides the capabilities to implement the exception
tracking pattern. All of this observability section collects and sends data to the AIOps platform.
These 3 containers were added separately because they can be handled as standalone systems
created from scratch or using existing cloud tools that provide these functionalities.

We also included a container for the client, but this is not considered relevant to the architecture.
This can vary depending on the application and may include front-ends, mobile applications,
external systems, and more.

The middleware container is critical and added as a layer between the client and the application
backend. It can also intercept requests between backend services that communicate with each
other. At this point, the API gateway or service mesh pattern can be used depending on the use
case, but for ease of implementation, the recommendation is the former for most applications.

In the backend, multiple containers representing the backend are observed, which is typical in
distributed systems. Kubernetes is used to manage these containers, which also implements
additional patterns such as health check API, replicated load-balanced services, and ownership
election. The adapter pattern can also be implemented at this point or in the middleware through
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the API gateway. A red container representing the sidecar pattern to be implemented can also be
seen. The sidecar pattern can be implemented customly depending on the use case, but
Kubernetes provides Envoy Proxy to implement it easily and natively within Kubernetes.

In this diagram, the backend communicates with external systems such as databases, third party
systems, and message brokers. While these are optional and may not be present in every use
case, they are included since it is very common to connect distributed systems with these types
of systems. However, for the architecture being proposed, the main focus will be on the backend
itself.

10.3. COMPONENTS LEVEL

It's not possible to provide specific details on which components to use as it will depend on the
specific system, but some generic ones are proposed that can be used in most distributed
systems applications.

FIGURE 20. COMPONENTS VIEW

In the middleware, we must include security responsibilities. Usually in the API gateway, we
can add authentication and authorization concerns, however, it can also communicate with a
security component, either internal or external. In addition, an extra layer of security can be
added, such as the WAF. This component may be integrated within some API gateways or it
may be an external component. Clouds usually provide a ready solution for these security
issues.

WAF stands for Web Application Firewall. It is a type of firewall that is specifically designed to
protect web applications from various types of attacks, such as cross-site scripting (XSS), SQL
injection, and other web-based exploits [39]. WAFs inspect and analyze the HTTP traffic
between web applications and clients to identify and block malicious traffic.

A WAF typically works by analyzing incoming requests and filtering out any malicious requests
that could exploit web application vulnerabilities [38]. This is done by checking request
headers, parameters, and payloads against a set of predefined rules and signatures. If a request
matches a known attack signature or violates a security policy, the WAF can either block the
request or allow it to pass through after removing the malicious content.

We also have a cache component which is common among distributed systems, since it stores
frequently accessed data in memory or a faster storage medium to reduce the response time of
read requests. Caching is an effective technique for improving the performance of
database-driven applications, as it reduces the number of database queries required to serve
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requests [40].

Finally, a component widely used in enterprise and cloud-based systems is the facade for
third-party systems. It abstracts communication complexity and provides a simpler and more
standardized interface with external third-party systems. It is responsible for handling the
communication and translation of data formats and protocols.

10.4. CODE LEVEL

We can not propose a generic code-level view with the C4 model because it is designed to be a
high-level model that is independent of any particular programming language or
implementation. The model is intended to be a tool for communication and collaboration
between stakeholders, allowing them to better understand the system's architecture and make
informed decisions. So it depends 100% on the use case. It varies according to the business
requirements, the languages, frameworks, and libraries to be used.

The general recommendation is to use code that is easy to maintain and reuse over time, always
looking for high cohesion and low coupling between the different components of the
application. Try to use clean architectures combined with domain-driven design and a big suite
of tests. All of them are easy to implement and improve a lot the code quality. The fewer bugs,
the better for the AIOps platform.
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11. AIOPS PLATFORM

For the creation of the AIOps platform, the main cloud solutions that were easy to implement
and customize were analyzed. The top cloud providers such as AWS, Azure, and GCP provide
solutions that are already integrated with artificial intelligence, making it easy to use with just a
few configurations. They all provide very similar solutions, so the choice of one or the other is a
personal analysis issue. Among all of these, AWS was chosen because it is the one I am most
familiar with. Although there are other solutions that offer AIOps as a service, such as
Dynatrace, DataDog, Splunk, Moogsoft, PagerDuty, among others, they were not considered
due to their high cost of use.

AWS offers a wide range of cloud services that can be easily integrated and scaled based on the
needs of the application. It provides a robust set of tools and frameworks for building highly
available and fault-tolerant systems, such as Amazon EMR and Amazon Detective, which are
essential components for data processing and analysis. Additionally, AWS has strong security
and compliance standards, ensuring that the AIOps platform meets industry regulations and
protects sensitive data.

Moreover, AWS offers cost-effective pricing models and flexible payment options, which make
it a viable option for businesses of all sizes. AWS also has a large community of users and
developers, providing a wealth of resources and support for troubleshooting and optimizing the
AIOps platform. Lastly, AWS has a strong focus on innovation and continuously introduces new
services and features, allowing the AIOps platform to stay up-to-date with the latest
advancements in technology.

FIGURE 21. AIOPS PLATFORM ARCHITECTURE
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In this diagram, we are using the multiple AWS services. One of the core services for most of
the applications is Cloud Watch. It allows users to collect and track metrics, collect and monitor
log files, and set alarms [41]. CloudWatch provides a unified view of AWS resources,
applications, and services that run on AWS, as well as on-premises servers. With CloudWatch,
users can monitor and analyze performance metrics of their AWS resources, such as Amazon
EC2 instances, Amazon RDS DB instances, and Amazon S3 buckets. Users can also monitor
custom metrics generated by their applications and services, and set alarms to notify them of
potential issues. CloudWatch also enables users to collect and analyze log data from their
applications and systems, making it easier to troubleshoot issues and identify trends.
CloudWatch can also be used to troubleshoot performance issues, set up dashboards to visualize
metrics, and perform advanced analytics using metric filters and CloudWatch Logs Insights.
Additionally, CloudWatch supports integrations with other AWS services, such as Amazon SNS
and AWS Lambda, allowing users to take automated actions based on CloudWatch alarms or log
data.

We also have AWS Lambda that is a service to run code without the need for managing servers
or infrastructure. With Lambda, developers only need to upload their code and set up triggers to
execute it. The service automatically provisions and scales the infrastructure needed to run the
code in response to the triggers specified by the developer [42].

The AWS SNS is a messaging service that enables the sending and receiving of messages to and
from multiple subscribers or endpoints. SNS allows developers to send messages or
notifications to a large number of subscribers [43], including mobile devices, email, HTTP/S,
and AWS Lambda functions, among others. It is a fully managed service that offers high
scalability, availability, and reliability. It allows developers to decouple and separate their
systems by sending messages to individual topics. SNS can also be used to trigger other AWS
services or Lambda functions, as well as for application-to-application communication,
monitoring, and messaging-based architectures.

Now, the core services to create the AIOps platform are Amazon EMR, Amazon Detective, and
DevOps Guru. All of them are integrated with artificial intelligence algorithms so we only need
to take care of setup the service and they will be able to start working.

Amazon EMR (Elastic MapReduce) is a managed service that enables businesses, researchers,
data analysts, and developers to easily and cost-effectively process large amounts of data [44]. It
allows users to quickly provision Hadoop clusters and other big data frameworks such as Spark,
Hive, HBase, Flink, and Presto, on the AWS Cloud. It provides a simple and scalable way to run
big data applications without having to worry about the underlying infrastructure.

Amazon Detective is a service that helps users analyze, investigate, and identify security issues
across their AWS resources. It uses machine learning, statistical analysis, and graph theory
techniques to quickly analyze trillions of data points from various data sources. By providing a
visual representation of the data, Amazon Detective makes it easier for users to quickly identify
suspicious activities or potential threats, and drill down to the root cause of the issue [45]. It
automatically creates a unified, interactive view of all the relevant data, which can help security
teams to reduce the time and effort required to perform manual analysis and investigations.

Amazon DevOps Guru is a machine learning (ML) powered service that helps developers and
IT teams improve application reliability and performance [46]. It uses ML algorithms to analyze
application telemetry data, such as logs, metrics, and events, to identify operational issues,
provide root cause analysis, and make recommendations to resolve or prevent incidents.
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The way we send the information to the AIOps platform is:

1. The application generates logs to Cloud Watch.
2. Cloud Watch sends the data to Amazon EMR, Amazon Detective, and DevOps Guru.
3. The Amazon EMR cluster process the logs received from Cloud Watch, generate

reports, and send the information again to Cloud Watch.
4. Amazon Detective analyzes the logs from Cloud Watch, generates preventive reports,

and sends the information again to Cloud Watch.
5. DevOps Guru receives the data generated in Cloud Watch, including the data from

EMR and Detective.
6. DevOps Guru automatically scales the instances in the EKS cluster, before the error

happens.
7. SNS topic receives notifications when there is any issue detected in the 3 services and

sends the information to Cloud Watch or the EKS cluster using AWS lambda to decide
which action applies.

This is a very simple version of AIOps platforms on AWS that will receive and analyze logs
generated by your application and provide preventive and corrective actions to keep your
application running smoothly.
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12. TEST THE AIOPS PLATFORM

In order to test the AIOps platform, we will use a controlled mock scenario to verify the proper
communication between the different components within AWS. For this purpose, a simple
SpringBoot application was created in Java, exposing a REST endpoint that returns a "Hello
World". Additionally, a random error was injected with a 2% probability, to ensure that errors
are properly logged and follow the proposed flow accurately.

The Java application was deployed in EKS using a single t2.nano (512 MiB RAM and 1 vCPU)
instance for the cluster, as a simple test without auto-scaling was required. To carry out multiple
tests on the endpoint, JMeter 5.5 was used, which allows us to simulate loads from multiple
users calling the endpoint at the same time.

TABLE 3
AIOPS PLATFORM TEST RESULTS

Number of parallel users 100

Time 30 sec

Number of requests 101476

Number of errors 2537

The created scenario was simple, so multiple requests were made in a very short amount of time
and the application didn't have any issues. However, due to the high number of exceptions
generated, the instance was affected. As a result of this test, an insight was obtained in the
DevOps Guru dashboard regarding the deployed pod in EKS, which was restarted. This
demonstrates that the error propagated throughout the AIOps platform flow.

FIGURE 22. DEVOPS GURU INSIGHTS

To improve the accuracy of the AIOps platform's metrics, more realistic use cases need to be
created. These use cases should involve multiple parts of a distributed system communicating
with each other and performing business operations on HTTP requests.

50



13. VALIDATION OF THE PROPOSED ARCHITECTURE

To ensure that the proposed architecture integrates well with the AIOps platform, two use cases
of distributed systems will be selected. These use cases will use architectures that implement the
recommended patterns listed in table 2. Furthermore, a detailed view of the C4 model will be
presented, specifically for the Components and Code levels.The other 2 views (system context
and containers) are not modeled because in the end they do not change with respect to the one
shown in the proposed architecture. This will provide a better understanding of how the
different components of the distributed systems interact with each other and how the
architecture as a whole is working.

13.1. FIRST USE CASE - MICROSERVICES

The microservices architecture is based on the concept of distributed systems, where an
application is divided into smaller, independent components with a single responsibility [49]
called microservices. Each microservice runs in its own environment and can communicate with
other microservices through communication mechanisms like network calls or messaging. This
distribution of functionality into microservices allows for better decoupling and scalability of
the application, as each microservice can be developed, deployed, and scaled independently
[50].

In a distributed systems approach, microservices can run on different physical or virtual
machines, even in different geographic locations [51]. This provides greater resilience and
availability since the failure of one microservice does not affect the others. Additionally, the
microservices architecture allows for greater flexibility in choosing technologies and
programming languages for each microservice, facilitating the adoption of specialized
technologies or the upgrade of individual components without impacting the entire application.

Communication between microservices in a distributed microservices architecture can be
achieved through various mechanisms such as REST APIs, asynchronous events, or messaging
[52]. This enables flexible integration and the ability to scale specific components as needed.
However, it also introduces additional challenges such as managing latency, consistency of
distributed data, and security in microservice communication.

For this use case, we will model a business that allows users to order food delivery from local
restaurants. Although such applications may have multiple functionalities, we will focus on the
user's ability to order food for delivery. The component view of the C4 model would look as
follows:
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FIGURE 23. COMPONENTS VIEW FOR THE FIRST USE CASE

As we can see, It is a typical microservices architecture where each one has its own database
and all of them are behind an API gateway that receives all external HTTP requests and
redirects them to the corresponding service.

Each microservice has a unique responsibility. The Order Service is responsible for receiving
the order and calling the other microservices to create it. The Kitchen Service validates the order
details and checks if they are available for delivery. The Consumer Service manages the
information of all customers and verifies that the user can place the order. The Accounting
Service authorizes the purchase and verifies the purchase information. Finally, the Notification
Service sends messages to the user informing them of updates on the order.

FIGURE 24. CODE VIEW FOR THE ORDER MICROSERVICE

The order microservice is the main one and orchestrates the operations that must be performed
to place an order. The user sends an HTTP request, which passes through the controller, which
redirects it to the OrderService class, which communicates with the entity and repository to save
the information in the database with an APPROVAL-PENDING status. It then queries the
Consumer microservice to see if the user requesting the order is authorized to create new orders.
Then the Kitchen microservice is called to verify and create the order in the restaurant, and
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when a response is obtained, the order status is changed to CREATE-PENDING. Then the
Accounting microservice is requested to authorize the payment method, and this changes the
status to PAYMENT-CONFIRMED. Finally, the order receives the response of the HTTP
requests and changes the status to APPROVED if everything went well, and a last request is
launched to the Notification microservice to notify the user.

It is important to note that all requests to external microservices follow a ports and adapters
pattern (widely used in clean architecture) with the aim that the domain is independent of any
library and only contains business logic. If there is any error in an external call, the order is
canceled and the exception is returned to the user.

FIGURE 25. CODE VIEW FOR THE CONSUMER MICROSERVICE

The Consumer microservice is quite simple since its only task is to verify the user details and
confirm if they are authorized to create more orders. It must check that user is not blocked or
have any impediment due to previous orders. In case the verification fails, it will return an
exception to the Order service. This information is located in its own database, so the design of
this microservice is trivial.

FIGURE 26. CODE VIEW FOR THE KITCHEN MICROSERVICE

The Kitchen microservice is quite similar to the Consumer one in terms of code view, however,
in this microservice, there are two operations to create and reject the ticket. In case the
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restaurant does not have availability, the order will be rejected. Additionally, the domain entities
now consist of an aggregate where the kitchen has many food items.

In some applications of this type, the restaurant's topic requires communication with external
systems, however, for this use case, all the information will be available in the database of this
Kitchen microservice.

FIGURE 27. CODE VIEW FOR THE ACCOUNTING MICROSERVICE

The Accounting microservice will try to authorize the payment of the order, for which it must
connect with a third-party provider that provides that functionality. For this particular example,
the PaymentAdapter will simulate a call to an external system but it will always return true. The
result of the call is stored in the own database of this service and returned to the Order
microservice. In case of any error or if the payment is invalid, an exception is returned.

FIGURE 28. CODE VIEW FOR THE NOTIFICATION MICROSERVICE

This microservice will take the notification and send it by email to the user. For this use case,
the EmailAdapter will not perform any action since it is not important for the research being
conducted. Something curious about this service is that it has no entities or repository since in
this case, it is not necessary to save or query anything in the database.

An important point to highlight in all microservices is that they have configuration files that
allow them to generate logs of the operations they are performing. This configuration class was
introduced in each service using the Microservice Chassis pattern, so for the creation of each
microservice, I shared the same base code for them. It also includes the configuration to enable
a health check endpoint.
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13.2. TEST THE FIRST USE CASE WITH AIOPS PLATFORM

This order food delivery application was deployed in EKS using a t2.nano (512 MiB RAM and
1 vCPU) machine with a single instance for each microservice in the cluster and the opportunity
to scale up to 2 instances manually. Load tests were carried out on the order microservice,
simulating 100 concurrent users trying to create new orders for 22 minutes. For this test, errors
were also injected into all microservices every 5 minutes, so those errors shut down the Java
virtual machine, requiring new instances to be created in those cases. DevOps Guru was
configured to trigger the alert to EKS and ask it to create a new instance.

TABLE 4
JMETER TEST RESULTS MICROSERVICES

Number of parallel users 100

Time 22 min

Number of requests 1159040

Number of errors 5705

The percentage of failed requests was 0.492%, which is low considering the conditions
provided. It is important to note that these results obtained by JMeter reflect the responses of the
order microservice, so the behavior of the pods in each microservice should be analyzed
separately. These are the results collected from AWS about the health status of the pods:

TABLE 5
MICROSERVICES RESULTS AWS

Microservice Number of pods
created

Average downtime
(seconds) MTTD (seconds) MTTR (seconds)

Order 5 34.4 24.5 9.9

Consumer 5 21.5 15.2 6.3

Kitchen 5 23.9 15.8 8.1

Accounting 5 24.3 16.1 8.2

Notification 5 20.3 15.2 5.1

It makes sense that all microservices had 5 pods created as they were shut down 4 times plus the
initial pod creation. The average downtime is easy to calculate as Cloud Watch provides the
exact second when each microservice went down and the exact time when it became available
again.

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 =  0

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠

∑  (𝑡𝑖𝑚𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 − 𝑡𝑖𝑚𝑒 𝑓𝑖𝑟𝑠𝑡 𝑓𝑎𝑖𝑙𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠
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For the MTTD, we took the time from when the first failure was recorded in Cloud Watch until
the alert was created in DevOps Guru.

𝑀𝑇𝑇𝐷 =  0

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠

∑ (𝑡𝑖𝑚𝑒 𝑖𝑛𝑠𝑖𝑔ℎ𝑡 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 − 𝑡𝑖𝑚𝑒 𝑓𝑖𝑟𝑠𝑡 𝑓𝑎𝑖𝑙𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠

Finally, for the MTTR, we took the moment when the alert was generated and the exact time
when the requests started functioning again. All the values were approximated to only one
decimal point.

𝑀𝑇𝑇𝑅 =  0

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠

∑ (𝑡𝑖𝑚𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 − 𝑡𝑖𝑚𝑒 𝑖𝑛𝑠𝑖𝑔ℎ𝑡 𝑐𝑟𝑒𝑎𝑡𝑒𝑑)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠

This experiment resulted in 20 alerts generated in DevOps Guru, corresponding to the 4 times
the pods were restarted in each of the 5 microservices. The first alerts were obtained from
minute 5:02, which was immediately after the services were shut down, while the last alerts
were generated from 19:59, which allowed for scaling even before the microservices failed. This
demonstrates the good reaction obtained by the AIOps platform to predict a repetitive error.

Considering the benchmark values obtained in the state of the art for MTTD times of less than 1
minute and MTTR of less than 30 seconds, the results obtained in this case are very good, which
demonstrates that the AIOps platform works very well integrated with this use case. It is
important to mention that Java was used for these microservices, so the time to create a new
instance depends on the application's execution. In this case, the times are still good because
each microservice is very lightweight, so they are easy to run.

13.3. ANALYSIS OF THE FIRST USE CASE ARCHITECTURE

Now we need to find out if this architecture truly facilitates integration with AIOps platforms.
To do this, we will measure the ease in terms of the non-functional requirements of Adaptability
and Interoperability [47]. There is no single way to measure these two requirements, however, a
time-based approach is proposed that is easy to validate and contrast.

For adaptability, the following measures were considered:

1. Scalability capability: Scalability can be measured in units of time by the system
response time when the workload is increased. For example, the time required to
process a request when the number of users is increased. In this case, when a single
request is launched, the average response time is 511 milliseconds, when 100 concurrent
users are launched the average time is 726 milliseconds, and if 1000 users are launched
in parallel the average time is 759 milliseconds. It can be evidenced that the application
is not degrading significantly, so it scales correctly.

2. Robustness of a system: It measures a system's ability to maintain its operation despite
errors or changes in its environment. This metric can be quantified by the frequency and
severity of errors and the system's ability to recover from them. Thanks to the results
obtained in AWS, we can conclude that the application recovers in less than 10 seconds,
demonstrating its robustness.
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3. Flexibility: Flexibility can be measured in units of time by the time required to make a
change in the system. For example, the time required to add new functionality or to
adapt the system to a new environment. This will be measured later.

For interoperability, the following measures were considered:

1. Response time: The response time is the period of time it takes for a system to respond
to a request from another system. This time can be a good metric for measuring
interoperability in terms of time, especially in real-time applications. In the test
performed, the average response time was 738 milliseconds, which aligns with the
number of operations to be performed.

2. Integration time: Integration time is the period of time it takes to integrate two or more
systems to work together. This time can be a good metric to measure interoperability in
terms of time. This will be measured later.

Flexibility and integration time are two metrics that require input from multiple individuals to
avoid biases in the results. For this exercise, the evaluation techniques of Experiments and
Surveys, as explained in the book Experimentation in Software Engineering [54] were
combined. This approach involves conducting controlled experiments and then using surveys to
obtain the participants perceptions. It is a great option for measuring complex topics that are
subjective and do not have a single, exact way of measurement. It is ideal for measuring these
two non-functional requirements. In this way, a more comprehensive understanding of the
architecture's impact on adaptability and interoperability can be achieved.

An analysis was conducted on a sample of 22 Java developers from Colombia to add integration
of the Consumer microservice from scratch with the AIOps platform through the logs to be
generated. The code for the microservice was provided to them without the chassis that included
the configuration to send the logs to Cloud Watch. With this experiment, we can measure the
integration time. After integrating it, they were asked to modify the configuration to also
generate logs in a local plain file. This way, the flexibility of the architecture to modify that
functionality was measured. Finally, they were asked to fill out a survey where they were asked
about the time spent on each of the two tasks in order to obtain a real average time.
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FIGURE 29. INTEGRATION TIME MICROSERVICES

The average integration time spent was 44.8 minutes. This means that for a person adopting the
architecture and wishing to integrate with an AIOps platform, the time investment required is
less than an hour, which is considered a very good result.

FIGURE 30. FLEXIBILITY MICROSERVICES

The average time spent on flexibility was 24.7 minutes. This means that for someone using the
architecture, it takes less than half an hour to make modifications to it to add new functionality,
which is considered a very positive result.

Given the results of the 5 metrics obtained, we can conclude that the architecture implemented
in this use case using microservices is adaptable and interoperable. Therefore, we can say that it
facilitates integration with AIOps platforms.

13.4. SECOND USE CASE - SERVERLESS

The serverless architecture or Function-as-a-Service (FaaS), built on the foundation of
distributed systems, represents an evolution of microservices. While microservices focus on
breaking down monolithic applications into smaller, independent services, serverless takes this
concept further by eliminating the need for infrastructure provisioning and management. In a
serverless architecture, services are implemented as functions that are executed in a distributed
manner across multiple nodes or containers.

By leveraging distributed systems, serverless architectures can achieve greater scalability, fault
tolerance, and resource efficiency. Functions can be executed in parallel across different nodes,
allowing for elastic scaling based on demand [53]. The distributed nature of the architecture also
enables fault tolerance, as functions can be automatically replicated and distributed across
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multiple nodes to ensure high availability.

Moreover, the serverless model simplifies deployment and operations by abstracting away the
underlying infrastructure. Developers can focus solely on writing code for individual functions
without worrying about managing servers or containers. This shift in responsibility allows for
faster development cycles, increased agility, and reduced operational overhead.

Lets take the same business requirement of the previous use case to allow users to order food
delivery from local restaurants focused on order creation. The component view of the C4 model
would look as follows:

FIGURE 31. COMPONENTS VIEW FOR THE SECOND USE CASE

In this case, we have the same functions that were previously part of each microservice, but now
they are deployed as lambda functions within AWS. An important change from the previous
case is that communication now occurs using the asynchronous messaging pattern (as we saw in
the list of recommended patterns). Each function generates a result, which is then published to a
queue that the next component, which must be executed, is subscribed to. In the case of any
errors, it is published to an error queue, and an error notification is sent.

Another important change is that we no longer have a notification service, but instead, we use
the SNS service directly, which allows for easy notification sending. Additionally, information
is stored in a Dynamo database, which is easy to configure for lambda functions and is also
100% serverless. Each lambda function performs a process on the HTTP request that comes
from the API Gateway and saves the information in the database. The following functions also
store information and modify the order state, as we saw in the previous use case.

In this case, we are not deploying on Kubernetes, as we saw in the proposed architecture since
lambda functions are virtualized components that are fully managed by AWS. It still has the
same benefits and uses the same patterns that we saw in the proposed architecture. However, it
will be much more managed now.
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FIGURE 32. CODE VIEW FOR CREATING ORDER FUNCTION

Similar to what we saw in the microservices case, but now much more simplified since this
function only takes care of creating the order in the database and publishing the event that it was
created. Also, clean architecture is still followed in the case of publishing events, as the
implementation remains in the infrastructure layer and the domain only depends on an interface.

FIGURE 33. CODE VIEW FOR VERIFYING CONSUMER FUNCTION

In this case, two events can be published for both successful and failed cases. Both interfaces
are implemented in the infrastructure layer, and the domain layer decides which of the two
events to invoke.
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FIGURE 34. CODE VIEW FOR CREATING KITCHEN TICKET FUNCTION

The same structure of the function as for Consumer, but now for Kitchen. Also, we have 2
events to publish for the successful and failed cases.

FIGURE 35. CODE VIEW FOR PAYMENT AUTHORIZATION FUNCTION

The same structure as the Consumer and Kitchen functions, following the same patterns to
create the classes.

It is important to highlight that just like in the use case with microservices, the microservice
chassis pattern was implemented to create functions with a predefined structure. It contains the
necessary configuration classes to handle connections with AWS systems such as Cloud Watch,
SQS, and DynamoDB. In this case, the health check endpoint was not configured, as by default
lambda functions can detect when they fail automatically.

13.5. TEST THE SECOND USE CASE WITH THE AIOPS PLATFORM

This case is special because the same architectural pattern, such as serverless, indicates how
each component of the system should be deployed. Each function is deployed on a lambda,
which is a service managed by AWS that handles 100% of the function's lifecycle based on the
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received request [48]. Java 17 was used as the programming language, and, as in the case of
microservices, the API Gateway, which is managed by AWS, is used. The simulation of 100
concurrent users trying to create new orders for 22 minutes was also performed. For this test,
errors were also injected into all the lambda functions every 5 minutes, so those errors shuts
down the Java virtual machine, requiring new instances to be created in those cases. DevOps
Guru was configured to generate insights.

TABLE 6
JMETER TEST RESULTS SERVERLESS

Number of parallel users 100

Time 22 min

Number of requests 2842191

Number of errors 1357

The percentage of failed requests was 0.0477%, which is lower than the microservice use case.
It is important to note that these results obtained by JMeter reflect the responses of the create
order function, so the behavior of the pods in each function should be analyzed separately.
These are the results collected from AWS about the health status of the functions:

TABLE 7
SERVERLESS RESULTS AWS

Function MTTD (seconds) MTTR (seconds)

Create order 2.1 4.5

Verify consumer details 1.5 2.0

Create kitchen ticket 1.8 1.5

Authorize payment 2.2 1.7

In this case, the average downtime is not calculated because each lambda function runs on
independent Linux containers that can be reused for some requests. Running independently, an
error in one request does not affect other requests, so there is no specific moment when the
application is down. Only one instance of the multiple instances created by AWS falls down and
it is recreated on demand afterward. However, MTTD was identified by measuring the time it
took from when the log was registered in CloudWatch until the alert was created in DevOps
Guru. For MTTR, the time was taken from when the requests failed until the next request was
responded to successfully. In this case, the recovery time is extremely short due to the inherent
nature of serverless for managing concurrency.

107 alerts were registered within DevOps Guru, which served only to report the errors presented
since the scalability was directly handled by AWS Lambda functions. At the time of the errors,
more than 20 Lambda functions were running simultaneously, so the number of alerts increased
compared to the microservices case. However, these alerts can be used preventively in larger
applications, where infrastructure administrators can proactively receive the insights generated
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by this tool and take actions in advance.

In this case, there is a significant improvement in the times compared to the reference times
obtained, with detection times of less than 3 seconds and recovery times of less than 5 seconds.
Like in the first use case, Java was used as the programming language, using Spring Boot to
handle the HTTP requests.

13.6. ANALYSIS OF SECOND USE CASE SERVERLESS

Similar to the microservices use case, we will measure the proposed architecture in terms of
Adaptability and Interoperability. Using the same 5 characteristics, we will quantify with
numbers the impact that the design of this architecture has, at least at the level of ease.

For adaptability:

1. Scalability capability: Due to the auto-scalability provided by the serverless
architectures, and the fact that each request can be executed in an isolated instance, this
greatly facilitates the scalability of the solution, since no matter how many requests are
made to the endpoint, it will always be able to respond without degrading response
times. When requests were made with a single user, an average response time of 553
milliseconds was obtained, with 100 users it was 549 milliseconds, and with 1000 users
it was 561 milliseconds. The application scales properly.

2. Robustness of a system: The system recovered automatically and easily from the errors
presented in the controlled environment, with recovery times of less than 5 seconds,
which is incredibly fast considering that it runs a Java application for each request. The
system is very robust.

3. Flexibility: Similarly to the previous use case, a population sample of developers were
taken, who were asked to make modifications to the application, and at the end, the
reported times were taken into account to draw a conclusion. In this experiment, 14 Java
developers from Colombia participated and were asked to send logs to CloudWatch
before publishing messages to SQS with the body of the event.

FIGURE 36. FLEXIBILITY SERVERLESS
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The average time spent on applying these changes was 21.35 minutes. This means that for
someone using the architecture, it takes a few minutes to make modifications to it to add new
functionality, which is considered a very positive result.

For interoperability, the following measures were considered:

1. Response time: As in the microservices case, this metric is easy to measure thanks to
the tests carried out with JMeter on the application. The average response time was 564
milliseconds.

2. Integration time: The 14 developers were asked to measure how long it takes them to
integrate with the AIOps platform so that logs are sent at the beginning of each request
in the controller classes. For this, they were given the code of a lambda function and
asked to add the necessary configurations and code to send logs to CloudWatch.

FIGURE 37. INTEGRATION TIME SERVERLESS

The average integration time spent was 27 minutes. This means that for a person adopting the
architecture and trying to integrate with an AIOps platform, the time investment required is less
than half an hour, which is considered a very good result.

Given the results of the 5 metrics obtained, we can conclude that the architecture implemented
in this use case using serverless is adaptable and interoperable. Therefore, we can say that it
facilitates integration with AIOps platforms.
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14. CONCLUSIONS

Out of the 16 patterns analyzed, 11 were selected, 7 of which correspond to monitoring patterns.
These were used to build the proposed architecture named AIODS, in which the use of
monitoring patterns, middlewares, and virtualization was prioritized as analyzed in the state of
the art. The recommendations provided at each level of the C4 model can be observed, however,
for the component and code levels, a greater context of the use case where this architecture will
be applied is required.

Using cloud-native solutions facilitates the implementation of AIOps platforms, especially in
clouds like AWS where there is a great advancement in the integration of artificial intelligence
with the services offered. It can be evidenced how simple it is to connect different services
which, as a result, provide valuable insights that allow predicting problems in distributed
systems. The more self-managed a solution is, the fewer responsibilities for programmers.

Although the validation with the 2 use cases required extensive analysis, the benefits provided
by the proposed architecture were successfully evaluated. In both use cases, a a low error rate
of less than 1% was obtained, and error detection and correction times were below the standards
collected in the state-of-the-art analysis (MTTD of 1 minute and MTTR of 30 seconds). In both
use cases, the architecture used was varied but always taking into account what was proposed,
seeking to integrate the proposed patterns.

As a result of each use case, the extent to which the architecture facilitates integration with
AIOps platforms was evaluated, taking into account two non-functional requirements:
adaptability and interoperability. Metrics such as scalability capability, robustness of the system,
and flexibility were used to measure adaptability, while response time and integration time were
used to measure interoperability. Evaluating a sample population was necessary to avoid biases
in some of these measures. Finally, consistent results were obtained that demonstrate the ease of
integration with AIOps platforms provided by the proposed architecture.

The proposed architecture provides a clear blueprint for designing, deploying, and managing
distributed systems in a way that aligns with AIOps principles and it is easy to adapt for any
business problem. It ensures that the various components, such as middlewares, monitoring
systems, and virtualization, are properly integrated to support AIOps capabilities effectively. By
following this architecture, organizations can ensure easier integration between distributed
systems and AIOps platforms. This integration enables the collection, analysis, and
interpretation of vast amounts of operational data in real-time, leading to actionable insights,
automated incident detection, and proactive problem resolution.

Companies that want to adopt the relatively new concept of AIOps will be able to integrate it
much more easily, which will remove the barrier for more applications to start taking advantage
of the benefits provided by AIOps platforms. As a result, we will have applications with less
downtime. It also provides operational efficiency, increased availability and performance,
resource optimization and informed decision making. By making more accurate and timely
strategic and tactical decisions, organizations can minimize risk, maximize opportunity, and
gain competitive advantage.
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15. FUTUREWORK

As time goes on, there will be many more and better options for AIOps platforms. The
revolution of artificial intelligence, significant advancements in machine learning and big data
will enable solutions with greater precision in predicting failures, making them increasingly
autonomous.

In addition to the general implementation proposed in the article, an interesting approach would
be to develop domain-specific and domain-agnostic implementations for different sectors or
industries. This would involve adapting the AIOps architecture and tools used to meet the
specific requirements and challenges of each domain.

For example, in the financial sector, specific data sources such as market feeds, transaction data,
and key financial metrics could be integrated to enhance the detection and analysis of
performance and security anomalies in financial systems. Similarly, in the healthcare sector,
electronic medical records, connected medical devices, and patient monitoring data could be
incorporated to improve early detection of critical issues and enhance the quality of care.

Furthermore, to ensure portability and choice of cloud service providers, it would be valuable to
conduct multi-cloud testing to compare and evaluate the offerings from major cloud service
providers such as AWS, GCP, and Azure. This would help identify differences in AIOps
capabilities, integration with other tools and services, scalability, and performance across
different cloud environments. These multi-cloud tests would enable organizations to make
informed decisions regarding the selection of the most suitable cloud service provider for their
needs and leverage the full potential of AIOps capabilities in that specific environment.

Additionally, it would be interesting to explore and analyze other architectural patterns that can
be applied to different areas of the distributed system. While the article has focused on 3 key
sections, there are numerous other patterns worth investigating. For example, patterns related to
data management and real-time processing can offer valuable insights and solutions to specific
challenges within the architecture.

As more use cases and requirements arise, it becomes crucial to continuously evaluate the
architecture performance and effectiveness. This involves considering more non-functional
requirements focused in each use case to analyze. It will provides opportunities to identify areas
of improvement and make informed decisions on architectural adjustments or enhancements.
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