

Development of a Biochar-Based Catalytic ink for Enhancing the Hydrogen Evolution Reaction.

<u>Henao-Toro, H.¹</u>, Cartagena-Ocampo, S.², Calderón J.A.², Chica, E.¹, Rubio-Clemente, A.^{1,3}

Universidad de Antioquia, UdeA

¹Grupo de Investigación Energía Alternativa – GEA, Calle 70, No. 52-21, Medellín, Colombia., Postal code: 050024. ²Centro de Investigación, Innovación y Desarrollo de Materiales, CIDEMAT. Calle 62 #52-59 Medellín, Colombia. Postal code: 050024. ³Escuela Ambiental, Facultad de Ingeniería, Calle 70, No. 52-21, Medellín, Colombia. Postal code: 050024

Results

DE ANTIOQUIA

1 8 0 3

Characterization and electrochemical tests

Introduction

Energy demand continues to rise steadily, and concerns about global warming are intensifying efforts to move away from fossil fuels in order to reduce global temperatures and limit the temperature increase to 1.5°C above pre-industrial levels [1].

Fig 1. Total energy supply by group, 2020-2050 under the 1.5°C Scenario [2].

The implementation of renewable energy sources is essential to address issues related to energy security and affordability. However, renewables currently do not represent a high percentage of global electricity generation, making it difficult to achieve net-zero emissions targets by 2050

Hydrogen is a strong candidate the energy transition for process, functioning as both an carrier and vector. energy Additionally, it is a precursor or component in various industrial processes [3].

Fig 5. SEM Images of developed electrodes. a) SEM Ni-BCNiMo, b) SEM Ni-BC

Fig 2. Applications of hydrogen [3].

Fig 3. Price increases due to electrode materials

The production costs of hydrogen through electrolysis can rise due to the expensive materials used in the electrodes. Therefore, a catalytic ink made of biochar impregnated with Ni and Mo was investigated to address this issue.

Methodology

Ni-BCNiMo	
lement	Weight %
С	27.17
0	23.11
F	2.48
ĥ	18.14
Ио	29.10
ital	100.00

Fig 4. Diagram of the synthesis process

Fig 8. Electrochemical tests. a) LSV for HER, b) Tafel slopes, c) Capacitance measurements, d) Stability tests 400mA.

Conclusions

The NI-BCNiMo electrode exhibits a structure composed of cavities, generating a greater number of active sites where the HER reaction can occur.

The use of biochar as a porous structure to host the catalyst increases the efficiency of the electrode, showing an overpotential of 95 mV at 10 mA cm-2.

The addition of nickel and molybdenum significantly decreases the Tafel slope, leading to improved activities.

References

[1]. Hussain, S. A., Razi, F., Hewage, K., & Sadiq, R. (2023). The perspective of energy poverty 1st energy crisis of green transition. Energy, 275, 127487. and https://doi.org/10.1016/j.energy.2023.127487

[2]. IRENA (2023), World Energy Transitions Outlook 2023: 1.5°C Pathway, Volume 1, International Renewable Energy Agency, Abu Dhabi.

[3]. Okolie, J. A., Patra, B. R., Mukherjee, A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy. International journal of hydrogen energy, 46(13), 8885-8905.