Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling.

El conocimiento es de todos

Table_{Of} Contents

Introduction

Materials and Methods

Introduction | solid state storage

Hirscher et al. Materials for hydrogen-based energy storage – past, recent progress and future outlook. *Journal of Alloys and Compounds. 2020*

Introduction | Mg modifications

Metal-oxide

catalysts

They Improve kinetics or thermodynamics But decrease storage capacity

An approach that involves various modifications is required

Nanoparticles or nanostructures

elements and additives

Table_{Of} Contents

Materials and Methods

Table_{Of} Contents

Materials and Methods

Starting crystallite size 197.9 nm

UdeA

1st step

2nd step

Results | Mg thin flakes

Improved kinetics (94% less time) and capacity (increase in 25%)

Cortinez et al. Production of Mg Thin Flakes with Enhanced Hydrogen Storage Performance. International Journal of Hydrogen Energy. 2024

Results | Mg with Ni decoration

Electron Image 1

n Mg Ka1_2 30µm

30µm

Homogeneous distribution through the dry blending method

Results | Kinetics test at 350°C, 20 bar

Improved kinetics (50% of the time) but decreased capacity (9%)

Results | Kinetics at 350°C, 10 bar

Lower pressures resulted in higher capacities but slower kinetics due a to a change in sorption mechanism.

Tien et al. Mechanism of hydrogen capacity dependence on the hydrogenation temperature. Scr Mater. 2010

Results | Mg with Ni decoration

Results | Mg with Ni decoration

Ш

Oxygen content (EDX) below 5 wt.%

Hydrogen sorption at 350°C promotes Mg – Ni reaction to form the complex hydride

Results | Mg with Ni decoration

Preserved morphology after 5 cycles

Results | Mg with Ni decoration

Ш.

Higher Ni content agglomerated after sorption/desorption tests

Results | Mg with Ni decoration

use case det mode mag 🖽 HV

OptiPlan ETD SE

X

HFW

curr

WD

5 000 x 5.00 kV 50 pA 2.9 mm 41.4 µm High vacuum

vac mode

– 5 µm –

Scios 2

416 ± 127 nm Cycling could lead to finer particles

UdeA

Table_{Of} Contents

Materials and Methods

Conclusions

A two step ball milling method led to Mg thin flakes (thickness <300 nm) and improved hydrogen storage capacity

5 wt.%Nickel decoration improved sorption/desorption process in 50% of the time with a decrease of 9% in capacity

3

The formation of Mg₂NiH₄ after activation process led to improved dehydrogenation kinetics

Ø

El conocimiento es de todos

inciencias

