Enhanced Hydrogen Storage in Mg thin Flakes with dispersed Ni Nanoparticles prepared by High Energy Ball Milling.

U

El conocimiento es de todos

Minciencias

Table*Of* **Contents**

Materials and Methods

" **Introduction** |solid state storage

Hirscher et al. Materials for hydrogen-based energy storage – past, recent progress and future outlook. *Journal of Alloys and Compounds. 2020*

" **Introduction** | Mg modifications

modifications

Metal-oxide

catalysts

They Improve kinetics or thermodynamics But decrease storage capacity

An approach that involves various modificationsis required

Nanoparticles or nanostructures

Alloying elements and additives

Table*Of* **Contents**

Materials and Methods

Table*Of* **Contents**

Introduction

Materials and Methods

197.9 nm

Cortinez et al. Production of Mg Thin Flakes with Enhanced Hydrogen Storage Performance. *International Journal of Hydrogen Energy. 2024*

Cortinez et al. Production of Mg Thin Flakes with Enhanced Hydrogen Storage Performance. *International Journal of Hydrogen Energy. 2024*

11

 $5 \mu m$

UdeA

Results | Mg thin flakes

II.

Improved kinetics (94% less time) and capacity (increase in 25%)

Cortinez et al. Production of Mg Thin Flakes with Enhanced Hydrogen Storage Performance. *International Journal of Hydrogen Energy. 2024*

Results | Mg with Ni decoration щ

Electron Image 1

 $30 \mu m$ $^{\bullet}$ Mg Ka1_2

 $30_µm$ ¹ Ni Ka1

Homogeneous distribution through the dry blending method

Results | Kinetics test at 350°C, 20 bar

Щ

Improved kinetics (50% of the time) but decreased capacity (9%)

Lower pressures resulted in higher capacities

but slower kinetics due a to a change in

Results | Kinetics at 350°C, 10 bar

ш.

sorption mechanism. $MgH₂$ 6 $0 -$ Mg-15%Ni, hydrogenated at 20 bar 5 **-**Mg-15%Ni, hydrogenated at 10 bar -1 Hydrogen release (wt.%) Hydrogen uptake (wt.%)
 $\begin{array}{c|c}\n1 & 2 & 3 \\
\hline\n\end{array}$ **-D** Mg-5%Ni, hydrogenated at 20 bar 4 ⊣ ∎⊤ **Mg-5%Ni, hydrogenated at 10 bar** -2 H 3 – T – T -3 - 6 $2 - 1$ \rightarrow \rightarrow -4 Mg-15%Ni, 20 bar 1 \blacksquare \rightarrow Mg-15%Ni, 10 bar -5 \longrightarrow Mg-5%Ni, 20 bar 0 \rightarrow Mg-5%Ni, 10 bar -6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0 1 2 3 4 5 6 7 8 9 10 Time (min) Time (min)

Tien et al. Mechanism of hydrogen capacity dependence on the hydrogenation temperature. Scr Mater. 2010

Results | Mg with Ni decoration

Щ

Results | Mg with Ni decoration <u>Ш.</u>

Oxygen content (EDX) below 5 wt.%

Hydrogen sorption at 350°C promotes Mg – Ni reaction to form the complex hydride

Щ **Results** | Mg with Ni decoration

 $20 \mu m$

 $X700$

20kV

X700 20um

Preserved morphology after 5 cycles

Results | Mg with Ni decoration Щ

Higher Ni content agglomerated after sorption/desorption tests

Щ **Results** | Mg with Ni decoration

 $\begin{array}{c|c|c|c|c} \mathbf{X} & \text{use case} & \text{det} & \text{mode} & \text{mag} & \text{H} \ \mathbf{X} & \text{OptiPlan} & \text{ETD} & \text{SE} & \text{5 000 x} & \text{5.00} \end{array}$

 $|WD$

5 000 x 5.00 kV 50 pA 2.9 mm 41.4 μm High vacuum

curr

HFW

vac mode

 $-5 \mu m -$

Scios 2

UdeA

416 ± 127 nm Cycling could lead to finer particles

Table*Of* **Contents**

Materials and Methods

Conclusions

A two step ball milling method led to Mg thin flakes (thickness <300 nm) and improved hydrogen storage capacity

5 wt.%Nickel decoration improved sorption/desorption process in 50% of the time with a decrease of 9% in capacity

The formation of ${Mg}_2$ NiH₄ after activation process led to improved dehydrogenation kinetics

Thanks*for* your attention

Ú

El conocimiento
es de todos

