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Abstract
In this work, physics characterization and analysis of a GaAs quantum well with
AlGaAs barriers is carried out, considering an interior doped layer. An analysis
of the probability density, the energy spectrum, and the electronic density has
been carried out, solving in a self-consistent way the Schrödinger, Poisson, and
charge neutrality equations. Between the characterization, the system respon-
se under geometric changes in the well width and non-geometric changes such
as the position and doped layer width and the donor’s density were reviewed.
All the second-order differential equations have been solved using the finite-
difference method. Finally, with the obtained wave functions and energies, the
optical absorption coefficient and the electromagnetically induced transparency
between the first three confined states have been calculated. The results show
the possibility of tuning the optical absorption coefficient and the electromag-
netically induced transparency via changes in the system geometry and doped
layer characteristics.
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1. Introduction

Quantum wells (QWs) are semiconductor heterostructures that confine elec-
trons (or holes) in one spatial dimension, being free in the other two dimensions.
The study of these systems was promoted mainly from the second half of the
last century due to the invention of experimental techniques such as molecular
beam epitaxy (MBE) in 1968 at Bell Labs by Alfred Cho and John Artur [1, 2]
that allowed the possibility of growing very thin and high-quality layers. Even
today, QWs are widely studied both theoretically and experimentally due to
their multiple applications. In the case of Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As he-
teroestructure, a quantum well is formed in the conduction band since the gap
of Al0.3Ga0.7As is greater than the GaAs gap. An immediate consequence of
this type of confinement is that the energy levels in the confinement direction
become discrete and have a direct dependence on well width, and donor density,
among other parameters.

It is important to mention some of the multiple applications of QWs, among
which stand-out works in the optoelectronics field, such as the theoretical work
developed in 2022 by Aissat et al. [3] in which multiple quantum wells (MQWs)
were implanted inside the intrinsic region in a solar cell type device based on
InGaAsN/GaAs to improve efficiency by taking advantage of the low energy
photon absorption. In this work, Aissat et al. obtained a theoretical external
quantum efficiency (EQE) greater than 80 %. It should be clarified that some
of the first works in which the use of structures such as multiple QWs is pro-
posed for applications in devices such as solar cells were developed in the 80s,
in pioneering works such as that of C. J. Summers and K. F. Brennan [4]. In
this same optoelectronics field, Roy et al. [5] analyzed the effect of dark current
from the theoretical point of view for the development of a CdS/ZnSe photode-
tector for mid-infrared based on an array of MQWs; their results showed a high
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detectivity of this system compared to other materials and different composi-
tion. In the experimental field, in 2021, Yu and Dang [6] synthesized colloidal
metal chalcogenide quantum wells (CQWs) for laser applications ten years after
the successful synthesis of two-dimensional colloidal systems; in this work, the
authors categorized different systems according to the confinement of photons
and laser mechanisms, such as amplification of spontaneous emission, a laser
with a cavity, and a multiphoton-pumped laser.

It is worth mentioning some applications in more diverse fields, such as the work
of Hu and Zhang [7], who in 2020 proposed a ZnO QWs topological insulator
piezoelectric device. They found that through stress, the induced piezoelectric
field can cause the QWs to behave as topological insulators; this behavior de-
pends to a large extent on the QWs width. Regarding the QWs application in
electronics, considering some more recent works, in 2022, Zhou et al. [8] used
machine learning methods to demonstrate that through the application of neu-
ral networks, it is possible to solve the wavelength of intersubband transitions in
piezo-phototronic GaN/AlN transistors since their hidden layers can be accura-
tely approximated by any continuous function. In 2022, in an interesting experi-
mental work by Park et al. [9] studied the effective mobility of InGaAs/InAlAs
QW for direct application in high electron mobility transistors (HEMTs) on an
InP substrate. They achieved a significant reduction in the gate leakage current,
which allows for obtaining more precise measures of effective mobility.

In the applications mentioned above, QWs or MQWs systems based on va-
rious materials are reported. Systems based on GaAs/AlGaAs are particularly
interesting since they are widely studied materials. Due to their particular cha-
racteristics of tuning electronic properties with external parameters, they are of
great use for multiple applications in various fields. In 2023, Türkoglu et al. [10]
investigated the photoluminescence of GaAs/AlGaAs MQWs grown by metal-
organic vapor phase epitaxy (MOVPE); they analyzed the transition between
bands in the structure and their changes under different temperatures and ex-
ternal electric fields. In 2022 Makhov et al. [11] experimentally investigated the
effect of the photon current drag in the mid-infrared range corresponding to
the intersubband optical electron transitions in GaAs/AlGaAs QWs at room
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temperature; they studied the dependence of the change in refractive index in
the lateral current for different polarizations.

Currently, this type of material is of great interest since it allows optoelectro-
nic applications at terahertz frequencies. AL-Naghmaish et al. [12] studied the
optical response of a system of QWs as photodetectors under the effect of mag-
netic and electric fields and intense laser fields. Their work demonstrated the
possibility of adjusting and tuning the absorption coefficient and the refractive
index for terahertz applications. The recent advances in these materials have
not been given exclusively from the theoretical point of view. It is necessary
to highlight the advances in experimental techniques that have allowed a bet-
ter characterization of these heterostructures [13, 14]. Just to reference one of
these works, in 2021, Zhang et al. [15] performed the insertion of GaAs layers
to improve the properties of InGaAs/AlGaAs MQWs grown by metal-organic
chemical vapor deposition. The study showed that when the GaAs layer was
approximately 6 nm, the maximum properties of the system were found.

When characterizing a QWs system, either for a possible application in an op-
toelectronic device or as an active element in an electrical circuit, it is necessary
to consider materials that include doping since, when doping the material, the
electronic transport properties are amplified as are experimentally measura-
ble characteristics such as electric current, conductance, etc. Thus, to obtain a
better fit between the theoretical and experimental results, it is necessary to
consider QWs models that consider the electrostatic potential generated by a
donor density. In 2023, Dakhlaoui et al. [16] numerically studied the optical
response in Manning-like GaAs/AlGaAs double QWs, including the effects of
doped impurities. They added an n-doped layer in two different positions of
the potential. Among the reported results, there is evidence of a loss of dege-
neracy of the energy levels depending on the position of the doped layer and
the density of donors; this feature significantly modifies the optical properties
of the system. In 2021 Sadonov et al. [17] investigated both theoretically and
experimentally the dependence of the electron transport properties of a two-
dimensional electron gas on sheet doping concentration in one-sided δ-doped
pseudomorphic AlGaAs/InGaAs/GaAs QWs. Among the results of their re-
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port, the dependence of the transport relaxation times with nH (ionized donors
concentration) exhibit a non-monotonic behavior due to the competition of the
Fermi momentum increase and the scattering angle due to the nH variation.

These heterostructures are widely characterized by their optical properties, such
as linear and nonlinear optical absorption coefficient, electromagnetically indu-
ced transparency (EIT), and change in refractive index, among others. This
is evidenced by recent works such as that of Rodríguez-Magdaleno et al. [18]
in which a theoretical study of the electronic structure and the inter-subbands
related optical absorption coefficient for symmetrical double delta-doped GaAs
QW was carried out. Among the reported results, the modification of the ab-
sorption peak position due to the presence of donor impurity atom stands out.
In another interesting theoretical work, Jayarubi et al. [19] calculated the nonli-
near optical absorption coefficient and the EIT in GaAs/InAs/GaAs QWs. The
optical susceptibilities, the detuning parameters, and the Rabi frequency were
also analyzed. In general, it is a complete work from the theory point of view
to understand the effect of EIT on low-dimensional heterostructures.

Being clear that the system of GaAs/AlGaAs QWs with internal doping is a
problem of wide current development, this work characterizes a GaAs QW with
AlGaAs barriers, considering the modification in the bottom of the conduction
band due to the electrostatic potential generated by a δ-doped layer. The study
considers variations in the energy spectrum, probability density, electron den-
sity, and Fermi level. In this work, geometric modifications such as the QW
width and non-geometric modifications such as the doped region width and the
doped layer position are made.

Due to the significant growth of experimental techniques in recent years, it is
currently possible to grow very thin doped regions (delta type) of very preci-
se widths and of high quality inside heterostructures such as QWs of various
materials, as evidenced by works such as that of F. Ishikawa et al. [20] who stu-
died the energy-band engineering with nitrogen delta δ-doping in GaAs-related
quantum structures. In the same way, by means of techniques such as molecular
beam epitaxy, it is possible to control the position of doped layers, a reference
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to the application of the said method is presented in the report by H. Khmissi
et al. [21]. In 2018 S. Kang et al. [22] used the Si δ-doping technique to fabricate
high-performance GaAs tunnel diodes (TDs).

By including a doped region inside a heterostructure, some of its properties
can be improved, for example, the cathodoluminescence (CL) in InP quan-
tum dots grown on an InAlP matrix was improved about 16 times by mean
of modulation of the position of a silicon-doped delta layer, this was an ex-
perimental work by X. B. Zhang et al. [23]. In another interesting report, X.
Chen et al. [24] performed a characterization of a GaAs-based high-speed and
high-sensitivity delta-doped resonant cavity-enhanced heterostructure metal-
semiconductor-metal (HMSM) photodetector, finding that the growth of a do-
ped delta layer inside the heterostructure improves the photocurrent spectral
response, dark current, time response, and capacitance–voltage measurements
compared to undoped systems. To mention one last report, V. V. Vainberg et
al. [25] experimentally modulated the position of the delta layer, inside and
outside a GaAs/InGaAs/GaAs quantum well, finding a significant increase in
electron mobility when the delta layer is located in barrier regions compared to
measurements of the delta layer inside the quantum well.

As an application of the findings (eigenvalues and eigenfunctions), the linear ab-
sorption coefficient and the EIT have been calculated. A self-consistent method
combined with the finite difference method (FDM) is used to solve the coupled
Schrödinger, Poisson, and charge neutrality equations. The work is organized as
follows: In Chapter 2: the theoretical model is presented, including the Optical
absorption theory, the self-consistent method, EIT theory, and the finite diffe-
rence method. In Chapter 3: the results an discussion is presented as follow:
energies and probability density, Hartree potential, linear optical absorption
coefficient and EIT results. Finally, in Chapter 4 the conclusions are given, and
in the annexes section, the self-consistent code used for the calculations has
been included. The objectives of this research work are explicitly mentioned
below:

General Objective
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To study the optical properties of GaAs/AlGaAs quantum wells with modula-
ted doping by implementing a self-consistent procedure.

Specific objectives

(1) Implement a self-consistent code to numerically solve the Schrödinger and
Poisson equations in a GaAs/AlGaAs quantum well with modulated doping.

(2) Calculate the eigenvalues, wave functions and probability densities in the
studied system.

(3) Calculate the Fermi level, potential, Hartree potential, and electron density
after reaching the self-consistency of the system.

(4) Study the system response under changes in geometric parameters such as
the well width.

(5) Study the system response under changes in non-geometric parameters such
as the width and position of the doped delta layer, and the donor density.

(6) Discuss the changes in Hartree potential and electron density with the pre-
viously mentioned changes in parameters.

(7) Calculate the linear optical absorption and the electromagnetic induced
transparency taking the three lowest levels.
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2. General theoretical
framework

The system to be studied corresponds to a GaAs quantum well with Al0.3Ga0.7As
barriers, as shown in Figure 2-1, this is characterized by a height V0 and width
L centered at the x-axis origin. The L-parameter is the well-width centered
at the x-axis origin. The system presents an n-type doped layer located at a
distance ξ from the origin and of width δ, represented by the green rectangle.

The calculation presented will be considered at room temperature since one of
the main objectives of the work is to understand the physics of this type of
heterostructures and in this way, these could be implemented more directly in
electronic devices or in applications of more common use (it is more difficult
to find an application from a device that only works at low temperatures).
The effect of working at lower temperatures in this type of system has not
been explored by means of this model, however, a decrease in the occupancy
of the confined states could be expected as a direct effect of the decrease in
temperature, because the self-consistent Fermi level is proportional to this. As
a consequence of the above, the density of electrons occupying discrete states
would decrease, which could impair the characterization of the system by means
of optics, since the number of charge carriers available to perform transitions
would decrease.

For room temperature, it is reasonable to consider a total ionization of the
donor atoms, the above because for the implementation of this type of heteros-
tructure in practical applications or in devices, it is necessary to have a set of
half-occupied states that increase electronic mobility through the system, that
is, to have a certain electronic occupancy in the conduction band. Although



12 2 General theoretical framework

L
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0 x

Figure 2-1.: Schematic view corresponding to a quantum well of height V0 and
width L centered at the x-axis origin. The doped delta layer of
δ-width located at a ξ-distance from the origin of the coordinates
is shown in dark-green.

complete ionization has been assumed in this work, it is clear that the percen-
tage of ionized atoms is dependent on the system temperature and the donor
density [1]. In order for theoretical calculations to be useful for potential appli-
cations, we have worked at room temperature, at this temperature, for GaAs
it is possible to consider a “relatively high ionization” even taking into account
the increase in impurity ionization energy for the case of one-dimensional confi-
nement. References [3, 6, 7] present various quantum wells of different materials
in which total ionization with different densities at room temperature has been
considered, reporting very interesting results.
It is possible to determine a relationship to find the relative number of electrons
in the donor state, starting from the relationship for the probability function
of electrons occupying the donor state:

nd =
Nd

1 + (1/2) exp
(
Ed−Ef

kB T

) , (2-1)

where nd = Nd −N+
d is the electron density occupying the donor level and Ed
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is the donor energy level, Nd is the donor density atoms, and N+
d is the density

of ionized donors in the case in which (Ed − Ef) ≫ kB T is fulfilled, the last
expression is reduced to:

nd = 2Nd exp

(
−(Ed − Ef)

kB T

)
, (2-2)

this approximation (Boltzmann approximation) is also valid for electrons in the
conduction band:

n0 = 2NC exp

(
−(EC − Ef)

kB T

)
, (2-3)

where NC is the effective density of states in the conduction band and EC is
the conduction level. Now we can determine the relative number of electrons in
the donor state compared to the total number of electrons,

nd
nd + n0

=
1

1 + NC

2Nd
exp

(
− (EC−Ed)

kB T

) , (2-4)

As an example, for Si at room temperature, NC = 3.2× 1019 cm−3, considering
a density of Nd = 1.0 × 1016 cm−3 with P atoms, and the ionization energy of
shallow impurity EC − Ed = 0.045 eV, with these values, a relative number of
electrons in the donor state of less than 1 % is obtained. This example shows
that at room temperature a small fraction of the electrons remains in the donor
state, that is, practically all of them have passed to the conduction band.
To determine the electrostatic potential of interaction between electrons and
ions, Poisson’s equation is calculated with the corresponding charge density.
This charge density generates a Hartree potential that modifies the bottom
profile of the conduction band, to find the correct potential, states, energies,
etc., the problem is approached by means of the self-consistent formalism, which
is detailed in the next section.
It is interesting to take as a point of reference the previous work by Dakhlaoui et
al. [7] of 2023 (previously mentioned in the introduction) as a comparison with
the present work. In Dakhlaoui’s work, some optical properties are calculated in
Manning-like AlGaAs/GaAs double quantum Wells heterostructures (it should
be noted that this type of potential is used to represent the vibrational energies
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of some diatomic molecules), studying the effects of donors impurities. In the
present work, a single AlGaAs/GaAs quantum well is calculated that can be
modified by the introduction of the doped delta layer. In both works, the wave
functions for different donor densities and positions of the doped layers have
been represented.
In Dakhlaoui’s work, the increase in the donor density causes a redshift in the
optical absorption peaks caused by the approach between the corresponding
states when the doped layer is located in the structure center of symmetry. In
the present work, an opposite effect is presented, since when the donors’ density
increases, the quantum well depth, also increases and therefore the confined
states separate (as will be seen later in the results and discussion section) and
as a consequence of this, the absorption peaks present a blueshift.
Another interesting and practical work for comparisons was developed by Shao
et al. [8] in 2006, in which the product of electron density and electron mobility
was theoretically characterized by different variations in the system such as
temperature and donor density for a single AlInSb/InSb quantum well system
with a delta layer outside the well. As in the present work, a quantum well with
a doped delta layer has also been analyzed, in the mentioned paper the change
in the donor density was also characterized, however, an additional advantage
of the present research work is the position characterization of the delta doped
layer along the growth direction of the heterostructure, this is a significant
change as it allows the possibility of going from a single quantum well to two
coupled quantum wells (one caused by the band-offset between the materials
and the other by the introduction of the delta layer). This difference significantly
changes the optical properties of the system, which is an analysis that has been
carried out in this work and was not studied in the aforementioned paper.

2.1. Optical absorption theory

The developments presented in this section are based on the original works of
Ahn and Chuang from 1987 [9]. It is worth mentioning some pioneering works
in these theoretical developments, such as Stern’s in 1963 [10] and Kan et al. in
1987 [11]. Consider a two-level system with |0⟩ and |1⟩ (in coordinate represen-
tation, corresponds to Ψ0 and Ψ1 respectively, see Figure 2-2) corresponding
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Figure 2-2.: Absorption diagram of a photon of frequency ω between states
Ψ0 and Ψ1.

to the low and high level, respectively, in a monochromatic electromagnetic
radiation presence of frequency ω (classic field), which is a coupling field with
these states. The most common approach to tackle the problem of interaction
of radiation with matter is that of the density matrix, whose time evolution is
governed by the Liouville-Von Neumann equation (including dissipation terms):

∂ρ

∂t
=

1

iℏ
[H0 −ME(t), ρ]− 1

2

[
γ(ρ− ρ(0)) + (ρ− ρ(0))γ

]
, (2-5)

where ρ is the density matrix, H0 is unperturbed Hamiltonian of the system, i.e.
without the resonant electromagnetic radiation, M is a dipole operator, E(t)
the electric field with frequency ω, ρ(0) is the density matrix for the unperturbed
system, and γ is the phenomenological term that accounts for the dissipation
in the system presented by the presence of impurities or electron-phonon and
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electron-electron interactions. γ can be considered as a diagonal matrix and its
elements γmm correspond to the inverse of relaxation time for the |m⟩ state.
Defining the states |a⟩ ≡ |0, ky, kz⟩ and |b⟩ ≡

∣∣1, k′y, k′z〉, where 0 and 1 corres-
pond to the states in the confinement direction or growth of the structure (x).
The Hamiltonian H0 has the eigenvalues Ea and Eb corresponding to the levels
|a⟩ and |b⟩, respectively. These energies are given by:

Ea = E0 +
ℏ2

2m∗ (k
2
y + k2z), (2-6)

and

Eb = E1 +
ℏ2

2m∗ (k
′2
y + k′2z ), (2-7)

where ky and kz are the wave vectors of the electron in the y and z directions.
The electric field can be expressed as:

E(t) = Re
(
E e−iωt

)
=

1

2
E e−iωt +

1

2
E eiωt = Ẽ e−iωt + Ẽ eiωt, (2-8)

where E denotes the amplitude of the field. The only nonzero matrix elements
for the γ operator are:

⟨b|γ|b⟩ = γbb =
1

τb
and ⟨a|γ|a⟩ = γaa =

1

τa
, (2-9)

where τa and τb are the relaxation times for the states |a⟩ and |b⟩, respectively.
One way to calculate the density matrix is by means of a perturbative method,
expanding it in a power series as:

ρ =
∑
n

ρ(n), (2-10)

the density matrix for zero order ρ(0) has only diagonal elements because the
electronic population is located in each of the states and there are no inter-
action effects between them. The notations used for the n-order density ma-
trix elements are: ρ(n)aa = ⟨a|ρ(n)|a⟩, ρ(n)ab = ⟨a| ρ(n) |b⟩, ρ(n)ba = ⟨b| ρ(n) |a⟩, and
ρ
(n)
bb = ⟨b|ρ(n)|b⟩. Thus, ρ has the symmetric property ρab(t) = ρ∗ab(t).
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By expanding the commutator from equation (2-5):

∂ρ

∂t
=

1

iℏ
[(H0 −ME(t))ρ− ρ(H0 −ME(t))]

− 1

2

[
γ(ρ− ρ(0)) + (ρ− ρ(0))γ

]
,

(2-11)

by substituting (2-10) into equation (2-11):

∑
n

∂ρ(n)

∂t
=

1

iℏ

[
(H0 −ME(t))

∑
n

ρ(n) −
∑
n

ρ(n)(H0 −ME(t))

]

− 1

2

[
γ

(∑
n

ρ(n) − ρ(0)

)
+

(∑
n

ρ(n) − ρ(0)

)
γ

]
,

(2-12)

and taking into account that∑
n

ρ(n)−ρ(0) =
(
ρ(0) + ρ(1) + ρ(2) + ...

)
−ρ(0) = ρ(1)+ρ(2)+ρ(3)+... =

∑
n

ρ(n+1),

(2-13)

this expression is substituted into equation (2-12)

∑
n

∂ρ(n)

∂t
=

1

iℏ

[
(H0 −ME(t))

∑
n

ρ(n) −
∑
n

ρ(n)(H0 −ME(t))

]

− 1

2

[
γ
∑
n

ρ(n+1) +
∑
n

ρ(n+1)γ

]
.

(2-14)

For the calculation of the first order absorption, it is sufficient to calculate the
matrix element ρba. Applying the states ⟨b| and |a⟩ on the left and right in the
last equation, we obtain〈
b

∣∣∣∣∣∑
n

∂ρ(n)

∂t

∣∣∣∣∣a
〉

=
1

iℏ

〈
b

∣∣∣∣∣∑
n

(
(H0 −ME(t)) ρ(n) − ρ(n)(H0 −ME(t))

)∣∣∣∣∣a
〉

− 1

2

〈
b

∣∣∣∣∣γ∑
n

ρ(n+1) +
∑
n

ρ(n+1)γ

∣∣∣∣∣a
〉
,

(2-15)
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by using the distributing property:∑
n

∂

∂t

〈
b
∣∣∣ρ(n)∣∣∣a〉 =

1

iℏ
∑
n

((〈
b
∣∣∣H0ρ

(n)
∣∣∣a〉−

〈
b
∣∣∣ME(t)ρ(n)

∣∣∣a〉)−(〈b∣∣∣ρ(n)H0

∣∣∣a〉
−
〈
b
∣∣∣ρ(n)ME(t)

∣∣∣a〉))
− 1

2

(∑
n

〈
b
∣∣∣γρ(n+1)

∣∣∣a〉+
∑
n

〈
b
∣∣∣ρ(n+1)γ

∣∣∣a〉),
(2-16)

by using the completeness relation |a⟩ ⟨a| + |b⟩ ⟨b| = 1̂ and substituting the
corresponding energy values∑
n

∂

∂t

〈
b
∣∣∣ρ(n)∣∣∣a〉 =

1

iℏ
∑
n

((
Ebρ

(n)
ba −

〈
b
∣∣∣M(|a⟩ ⟨a|+ |b⟩ ⟨b|)ρ(n)

∣∣∣a〉E(t))
−
(
ρ
(n)
ba Ea −

〈
b
∣∣∣ρ(n)(|a⟩ ⟨a|+ |b⟩ ⟨b|)M

∣∣∣a〉E(t)))
− 1

2

(∑
n

〈
b
∣∣∣γ(|a⟩ ⟨a|+ |b⟩ ⟨b|)ρ(n+1)

∣∣∣a〉
+
∑
n

〈
b
∣∣∣ρ(n+1)(|a⟩ ⟨a|+ |b⟩ ⟨b|)γ

∣∣∣a〉),
(2-17)

by distributing terms

∑
n

∂ρ
(n)
ba

∂t
=

1

iℏ
∑
n

(
Ebρ

(n)
ba −

[
⟨b|M |a⟩

〈
a
∣∣∣ρ(n)∣∣∣a〉+ ⟨b|M |b⟩

〈
b
∣∣∣ρ(n)∣∣∣a〉]E(t)

−
(
ρ
(n)
ba Ea −

[〈
b
∣∣∣ρ(n)∣∣∣a〉 ⟨a|M |a⟩+

〈
b
∣∣∣ρ(n)∣∣∣b〉 ⟨b|M |a⟩

]
E(t)

))
− 1

2

(∑
n

[
⟨b|γ|a⟩

〈
a
∣∣∣ρ(n+1)

∣∣∣a〉+ ⟨b|γ|b⟩
〈
b
∣∣∣ρ(n+1)

∣∣∣a〉]
+
∑
n

[〈
b
∣∣∣ρ(n+1)

∣∣∣a〉 ⟨a|γ|a⟩+ 〈b∣∣∣ρ(n+1)
∣∣∣b〉 ⟨b|γ|a⟩]),

(2-18)
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and taking into account that the matrix γ has only diagonal elements and by
defining the matrix element of M as Mnm ≡ ⟨n|M |m⟩

∑
n

∂ρ
(n)
ba

∂t
=

1

iℏ
∑
n

(
Ebρ

(n)
ba −

[
Mbaρ

(n)
aa +Mbbρ

(n)
ba

]
E(t)

−
(
ρ
(n)
ba Ea −

[
ρ
(n)
ba Maa + ρ

(n)
bb Mba

]
E(t)

))
− 1

2

(∑
n

γbbρ
(n+1)
ba +

∑
n

ρ
(n+1)
ba γaa

)
,

(2-19)

rewriting terms Eba = Eb − Ea, Γab = Γba =
1
2

(
1
τa
+ 1

τb

)
, and reordering

∑
n

∂ρ
(n)
ba

∂t
=

1

iℏ
∑
n

(
Ebaρ

(n)
ba −

(
ρ(n)aa − ρ

(n)
bb

)
MbaE(t)

− (Mbb −Maa) ρ
(n)
ba E(t)

)
−
∑
n

Γabρ
(n+1)
ba ,

(2-20)

since the unperturbed density matrix only has diagonal elements, i.e. ρ(0)ba =

ρ
(0)
ab = 0 which implies

∑
n ρ

(n)
ba =

∑
n ρ

(n+1)
ba , using this result in the last equa-

tion,

∑
n

∂ρ
(n+1)
ba

∂t
=

1

iℏ
∑
n

(
Ebaρ

(n+1)
ba −

(
ρ(n)aa − ρ

(n)
bb

)
MbaE(t)

− (Mbb −Maa) ρ
(n)
ba E(t)

)
−
∑
n

Γabρ
(n+1)
ba ,

(2-21)

extracting the nth term from this equation, it is possible to write a recurrence
relation:

∂ρ
(n+1)
ba

∂t
=

(
1

iℏ
Eba − Γab

)
ρ
(n+1)
ba − 1

iℏ

(
ρ(n)aa − ρ

(n)
bb

)
MbaE(t)

− 1

iℏ
(Mbb −Maa)E(t)ρ

(n)
ba ,

(2-22)
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Expanding the density matrix elements as proportional terms of e±iωt, it is
possible to obtain the solutions for this equation by equaling both sides. Taking
into account that there will be two equalities, one of them for the exponent
sign (+) and the other one for (−). Under steady state conditions, the n-order
perturbative term is:

ρ(n)(t) = ρ̃(n)(ω) e−iωt + ρ̃(n)(−ω) eiωt, (2-23)

which is valid for n odd.
Taking n = 0 in equation (2-22)

∂ρ
(1)
ba

∂t
=

(
1

iℏ
Eba − Γab

)
ρ
(1)
ba − 1

iℏ

(
ρ(0)aa − ρ

(0)
bb

)
MbaE(t). (2-24)

Let n = 1 in equation (2-23) for the coupling b − a and by substituting it in
conjunction with equation (2-8) into equation (2-24)

∂

∂t

(
ρ̃
(1)
ba (ω) e

−iωt + ρ̃
(1)
ba (−ω) e

iωt
)

=

(
1

iℏ
Eba − Γab

)(
ρ̃
(1)
ba (ω) e

−iωt + ρ̃
(1)
ba (−ω) e

iωt
)

− 1

iℏ

(
ρ(n)aa − ρ

(n)
bb

)
Mba

(
Ẽ e−iωt + Ẽ eiωt

)
,

(2-25)

evaluating the derivative and grouping the terms with negative and positive
power,

−iωρ̃(1)ba (ω) e
−iωt + iωρ̃

(1)
ba (−ω) e

iωt

=

[(
1

iℏ
Eba − Γab

)
ρ̃
(1)
ba (ω)−

1

iℏ

(
ρ(0)aa − ρ

(0)
bb

)
MbaẼ

]
e−iωt

+

[(
1

iℏ
Eba − Γab

)
ρ̃
(1)
ba (−ω)−

1

iℏ

(
ρ(0)aa − ρ

(0)
bb

)
MbaẼ

]
eiωt,

(2-26)

equaling terms for the negative power and solving for ρ(1)ba (ω)

ρ̃
(1)
ba (ω) =

(
ρ
(0)
aa − ρ

(0)
bb

)
MbaẼ

Eba − ℏω − iℏΓab
, (2-27)
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where ρ0 are the state occupations in equilibrium, and depend on the Fermi
level of the system by means of the Fermi-Dirac distribution function,

ρ(0)aa =
1

1 + eβ (Ea−Ef )
and ρ

(0)
bb =

1

1 + eβ (Eb−Ef )
, (2-28)

where Ef is the Fermi level of the system and β = 1/kBT is the Boltzmann
factor, with T the temperature, and kB the Boltzmann constant.
Remembering the relationship between the electronic polarization P (t) and the
susceptibility χ [12]:

P (t) = ε0χ(ω)Ẽ e
−iωt + ε0χ(−ω)Ẽ eiωt =

1

V
Tr(ρM), (2-29)

where V is the volume, ε0 is the vacuum permittivity. The absorption coefficient
α(ω) is related to χ by

α(ω) = ω

√
µ

εR
Im (ε0χ(ω)) , (2-30)

where µ is the permeability of the system, εR is the real part of the permittivity
and χ(ω) is the Fourier component of χ(t). The electronic polarization can be
expressed as

P (t) =
1

V

∑
ky,kz

∑
k′y,k

′
z

[⟨a|ρM |a⟩+ ⟨b|ρM |b⟩] , (2-31)

where we can include the completeness relation:

P (t) =
1

V

∑
ky,kz

∑
k′y,k

′
z

[⟨a|ρ (|a⟩ ⟨a|+ |b⟩ ⟨b|)M |a⟩+ ⟨b|ρ (|a⟩ ⟨a|+ |b⟩ ⟨b|)M |b⟩] ,

(2-32)

by using distribute property

P (t) =
1

V

∑
ky,kz

∑
k′y,k

′
z

[
⟨a|ρ|a⟩ ⟨a|M |a⟩+ ⟨a|ρ|b⟩ ⟨b|M |a⟩

+ ⟨b|ρ|a⟩ ⟨a|M |b⟩+ ⟨b|ρ|b⟩ ⟨b|M |b⟩
]
,

(2-33)
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we can write this electronic polarization by using matrix notation and the
definitions of ρ given by Eqs. (2-10) and (2-23)

P (t) =
1

V

∑
ky,kz

∑
k′y,k

′
z

∑
n

[
(
ρ̃(n)aa (ω)Maa + ρ̃

(n)
ab (ω)Mba + ρ̃

(n)
ba (ω)Mab + ρ̃

(n)
bb (ω)Mbb

)
e−iωt+

(
ρ̃(n)aa (−ω)Maa + ρ̃

(n)
ab (−ω)Mba + ρ̃

(n)
ba (−ω)Mab + ρ̃

(n)
bb (−ω)Mbb

)
eiωt],

(2-34)

for n = 1, and neglecting the terms outside of resonant transition a− b and by
using equation (2-29):

ε0χ
(1)(ω)Ẽ =

1

V

∑
ky,kz

∑
k′y,k

′
z

(
2ρ̃

(1)
ba (ω)Mab

)
, (2-35)

by substituting equation (2-27) into equation (2-35). It follows that

ε0χ
(1)(ω)Ẽ =

2

V

∑
ky,kz

∑
k′y,k

′
z

(
ρ
(0)
aa − ρ

(0)
bb

)
MbaẼ

Eba − ℏω − iℏΓab
Mab, (2-36)

deleting Ẽ, remembering that Mba = M ∗
ab and multiplying numerator and de-

nominator by Eba − ℏω + iℏΓba in order to eliminate the imaginary number in
denominator

ε0χ
(1)(ω) =

2

V

∑
ky,kz

∑
k′y,k

′
z

(
ρ
(0)
aa − ρ

(0)
bb

)
|Mab|2

(Eba − ℏω − iℏΓab)

(Eba − ℏω + iℏΓab)

(Eba − ℏω + iℏΓab)
, (2-37)

this equation takes the form,

ε0χ
(1)(ω)

=
2

V

∑
ky,kz

∑
k′y,k

′
z

(
ρ(0)aa − ρ

(0)
bb

)
|Mab|2

(
Eba − ℏω

(Eba − ℏω)2 + (ℏΓab)
2 + i

ℏΓab

(Eba − ℏω)2 + (ℏΓab)
2

)
.

(2-38)
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Hence, by substituting the imaginary part of this expression into equation (2-
30), the absorption coefficient is finally obtained in linear order [9, 13]:

α(1)(ω) = ω

√
µ

εR

∑
ky,kz

∑
k′y,k

′
z

2

V

(
ρ(0)aa − ρ

(0)
bb

) |Mab|2ℏΓab

(Eba − ℏω)2 + (ℏΓab)2
, (2-39)

the term Mab is given by:

Mab = e ⟨a|x |b⟩ =e ⟨0, ky, kz|x
∣∣1, k′y, k′z〉

= e

∫
Ψ∗

0(x)xΨ1(x)dx δky,k′yδkz,k′z =M01 δky,k′yδkz,k′z ,
(2-40)

where δkj ,k′j are Kronecker deltas, and

M01 ≡ e

∫
Ψ∗

1(x)xΨ2(x)dx . (2-41)

replacing these results in 2-39, and writing the Γ01 in terms of the state rela-
xation time τ0:

α(1)(ω) = ω

√
µ

εR

∑
ky,kz

∑
k′y,k

′
z

2

V

(
ρ(0)aa − ρ

(0)
bb

) |M01|2ℏ/τ0 δky,k′yδkz,k′z
(Eba − ℏω)2 + (ℏ/τ0)2

, (2-42)

evaluating the kronecker deltas with the sums:

α(1)(ω) = ω

√
µ

εR

∑
ky,kz

2

V

(
ρ(0)aa − ρ

(0)
bb

) |M01|2ℏ/τ0
(E10 − ℏω)2 + (ℏ/τ0)2

. (2-43)

In the last equation, Eba = E10 has been used (for ky = k′y, and kz = k′z),
according to the 2-6 and 2-7 equations. Defining E10 ≡ ∆E, and εR = ϵ ϵ0,

α(1)(ω) = ω

√
µ

ϵ ϵ0

∑
ky,kz

2

V

(
ρ(0)aa − ρ

(0)
bb

) |M01|2ℏ/τ0
(∆E − ℏω)2 + (ℏ/τ0)2

. (2-44)

The summation in 2-44 can be computed explicitly using 2-28:

2

V

∑
ky,kz

(
ρ(0)aa − ρ

(0)
bb

)
=

2

V

∑
ky,kz

1

1 + eβ (Ea−Ef )
− 2

V

∑
ky,kz

1

1 + eβ (Eb−Ef )
. (2-45)
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Let’s calculate the first term on the right-hand side (the calculation of the
second term is equivalent):

2

V

∑
ky,kz

1

1 + eβ (Ea−Ef )
=

2LyLz

(2π)2V

∫ ∞

0

∫ ∞

0

dkykz

1 + eβ (E0+ϑ(k2y+k2z)−Ef )
, (2-46)

in the last equation, the sums have been changed to integrals
∑

kj
{· · · } →

Lj/(2π)
∫
{· · · }dkj and 2-6 has been used with ϑ ≡ ℏ2/(2m∗), where j = y, z

and Lj is the length of the system in the j direction. This integral can be
evaluated using the change of variable to polar coordinates: ky = r sin(θ),
kz = r cos(θ), and dkydkz = rdrdθ:

2

V

∑
ky,kz

1

1 + eβ (Ea−Ef )
=

2LyLz

(2π)2V

∫ 2π

0

dθ

∫ ∞

0

rdr

1 + eβ (ϑr2+E0−Ef )
, (2-47)

the volume of the system is given by V = LS, where S is the cross-sectional
area of the structure which is given by S = LyLz, and L is the length of the
quantum well then it remains:

2

V

∑
ky,kz

1

1 + eβ (Ea−Ef )
=

2

2πL

∫ ∞

0

rdr

1 + eβ (ϑr2+E0−Ef )
, (2-48)

this expression can be rewritten as:

2

V

∑
ky,kz

1

1 + eβ (Ea−Ef )
=

1

2πL

1

βϑ

∫ ∞

0

2βϑrdr

1 + eβ (ϑr2+E0−Ef )
, (2-49)

with ϱ ≡ β(Ef − E0), and changing variable u = βϑr2, then du = 2βϑrdr:

2

V

∑
ky,kz

1

1 + eβ (Ea−Ef )
=

1

2πL

1

βϑ

∫ ∞

0

du

1 + eu−ϱ
, (2-50)

writing β and ϑ explicitly and evaluating the integral, we get

2

V

∑
ky,kz

1

1 + eβ (Ea−Ef )
=

2m∗kBT

2πℏ2L
ln [1 + eϱ] , (2-51)
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finally,

2

V

∑
ky,kz

1

1 + eβ (Ea−Ef )
=
m∗kBT

πℏ2L
ln

[
1 + exp

(
Ef − E0

kBT

)]
. (2-52)

This expression gives the number of electrons per unit volume with energy
E0 [4]. Equivalently, the second term on the right hand side in equation 2-45 is
obtained:

2

V

∑
ky,kz

1

1 + eβ (Eb−Ef )
=
m∗kBT

πℏ2L
ln

[
1 + exp

(
Ef − E1

kBT

)]
. (2-53)

Now replacing 2-52 and 2-53 in 2-45:

2

V

∑
ky,kz

(
ρ(0)aa − ρ

(0)
bb

)
=
m∗kBT

πℏ2L
ln

[
1 + exp ((Ef − E0)/(kBT ))

1 + exp ((Ef − E1)/(kBT ))

]
≡ σ01 .

(2-54)

This expression corresponds to the three-dimensional electronic concentration.
Finally, replacing 2-54 in 2-44, the linear optical absorption coefficient is obtai-
ned [5, 9]:

α(1)(ω) = ω

√
µ

ϵ ϵ0

|M01|2σ01ℏ/τ0
(∆E − ℏω)2 + (ℏ/τ0)2

. (2-55)

2.2. Self-Consistent method

The self-consistent method [6, 14, 15] is a particularly useful method for cal-
culating wave functions, energy levels, charge densities, electron density and
Fermi level in systems that have regions with a certain donor density (acceptor
density), that is, doped systems. This method takes into account the distur-
bance in the system generated by the electrostatic potential due to the donor’s
density, this term must be included in the Hamiltonian in a small percenta-
ge since, if 100 % of this disturbance is included, the convergence will not be
reached.
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According to Figure 2-1, we define a confinement potential that accounts for
the magnitude of the confinement potentials and the sizes of the structure. Let
us define the electron confinement potential as

Vc(x) ≡

{
V0 , if |x| > L/2

0 , if |x| ≤ L/2 .
(2-56)

The starting point of the self-consistent method is to solve the time independent
Schrödinger equation considering only the electronic confinement potential, that
is, the term V (0)(x) ≡ Vc(x),

− ℏ2

2m∗

∂2ψ
(0)
j (x)

∂x2
+ V (0)(x)ψ

(0)
j (x) = E

(0)
j ψ

(0)
j (x) . (2-57)

In this equation, ℏ corresponds to the reduced Planck constant, m∗ is the ef-
fective mass which is taken equal in the region of wells and barriers, ψ(0)

j (x) is
the wave function of the system corresponding to the eigenvalue E(0)

j (j corres-
ponds to the j-th state, and the subscript (0) indicates the initial step in the
self-consistent method).

Equation (2-57) can be solved using any numerical method; in particular, in
this work, FDM [16, 17] will be used to solve all the equations involved in the
problem (this method will be explained in the next section). Once The equa-
tion (2-57) is solved, a set of eigenfunctions and their corresponding eigenvalues,
{ψ(0)

j (x), E
(0)
j }, are obtained. On the other hand, the delta layer must contain

a volumetric donor’s density, nd (electrons per cubic meter), additionally, the
complete system must comply with the charge neutrality condition, which con-
sists in that the total number of electrons per unit area must be equal to the
number of ionized donors per unit area, that is, the following relationship must
be met:

nd δ =
∑
j

m∗ kB T

π ℏ2
ln

[
1 + exp

(
E

(0)
f − E

(0)
j

kB T

)]
, (2-58)

where δ is the width of the delta doped layer, kB is the Boltzmann constant,
T is the system temperature (300 K in this work), E(0)

f is the Fermi level, and
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E
(0)
j are the eigenvalues obtained by means of equation (2-57). In the previous

section, an equation for the number of electrons per unit of volume with a cer-
tain energy was demonstrated (equation 2-52), multiplying this equation by L
and adding over all the states, the total number of electrons per unit area is ob-
tained that corresponds to the right hand side in the equation 2-58. In equation
(2-58), the only unknown term is the Fermi level, E(0)

f . Clearly, this expression
corresponds to a transcendental equation that can be solved for E(0)

f . From the
above, it follows that the second step in the self-consistent procedure is to use
the charge neutrality relation to calculate the Fermi level.

Once the wave functions are calculated, the corresponding eigenvalues and the
Fermi level in the system are obtained, from these, an expression for the electron
density associated with the occupation of each of the states is obtained,

n(0)(x) =
∑
j

m∗ kB T

π ℏ2
ln

[
1 + exp

(
E

(0)
f − E

(0)
j

kB T

)]
|ψ(0)

j (x)|2 . (2-59)

The next step is to calculate the electrostatic potential, this procedure can be
carried out by solving Poisson’s equation considering a charge density associated
with the ionized donors and the electron density,

d2V (0)
H (x)

dx2
=

e2

ϵ ϵ0

(
nd(x)− n(0)(x)

)
, (2-60)

where V (0)
H (x) is the Hartree potential obtained in the first self-consistency step,

e is the electron charge, ϵ0 is the vacuum dielectric permittivity, and ϵ is the
materials relative permittivity (which has been assumed to be constant in the
whole heterostructure). Note that in equation (2-60), full ionization is being
considered; this is a reasonable assumption for this material at room tempera-
ture. The function nd(x) takes the value of nd in the region where the doped
delta layer is located and is equal to zero at the other x-points. From the abo-
ve, we can define a new electronic potential starting from the initial potential
V (0)(x) = Vc(x), in the form V (1)(x) = 95%V (0)(x) + 5%

[
Vc(x)− V (0)

H (x)
]
,
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that is, 5 % of the Hartree disturbance potential has been included (the 5 %
value has been chosen to guarantee that a significantly large perturbation in
the electronic confinement potential that could lead to a numerical divergence
is not generated. The chosen value, despite increasing the computational ti-
me, guarantees a correct convergence). With this potential, we can solve the
Schrödinger equation again,

− ℏ2

2m∗

∂2ψ
(1)
j (x)

∂x2
+ V (1)(x)ψ

(1)
j (x) = E

(1)
j ψ

(1)
j (x) . (2-61)

Through the solution of equation (2-61), a new set of eigenfunctions and eigen-
values {ψ(1)

j (x), E
(1)
j } is obtained to repeat the procedure again. In general, in

an m-th step, it will be necessary to solve the Schrödinger equation:

− ℏ2

2m∗

∂2ψ
(m)
j (x)

∂x2
+ V (m)(x)ψ

(m)
j (x) = E

(m)
j ψ

(m)
j (x) . (2-62)

In this equation the self-consistent potential has the form,

V (m)(x) = 95%V (m−1)(x) + 5%
[
Vc(x)− V (m−1)

H (x)
]
, (2-63)

where the Hartree potential V (m−1)
H (x) is obtained by solving the equation:

d2V (m−1)
H (x)

dx2
=

e2

ϵ ϵ0

(
nd(x)− n(m−1)(x)

)
(2-64)

with

n(m−1)(x) =
∑
j

m∗ kB T

π ℏ2
ln

[
1 + exp

(
E

(m−1)
f − E

(m−1)
j

kB T

)]
|ψ(m−1)

j (x)|2 .

(2-65)

In this equation, the Fermi level associated with the m− 1 self-consistent step
is calculated again using the charge neutrality condition,

nd δ =
∑
j

m∗ kB T

π ℏ2
ln

[
1 + exp

(
E

(m−1)
f − E

(m−1)
j

kB T

)]
. (2-66)
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The parameter used to verify the convergence is the Fermi level Ef (in a comple-
tely analogous way, the wave function, the energies, etc. could be used). In this
way, in each cycle of the procedure, the quantity |E(m)

f −E
(m−1)
f | is calculated.

If in an N -th step this expression is less than a certain tolerance (for this work a
value of 10−5 eV is sufficient), then the self-consistent process stops and the set of
solutions found in this last step {ψ(N)

j (x),V (N)(x), E
(N)
j , E

(N)
f ,V (N)

H (x), n(N)(x)}
must correspond to the self-consistent solution of the problem.

Figure 2-3 presents a block diagram that summarizes the self-consistent pro-
cedure as follows: starting from the solution of the Schrödinger equation with
the potential V (0)(x) ≡ Vc(x); from the calculated eigenstates and eigenvalues,
the charge neutrality is used to determine the Fermi level, with this Fermi level
and the eigenstates, the electron density is constructed; from this density and
considering the charge contribution generated by the doped delta layer, a char-
ge density is defined that enters into Poisson’s equation to obtain the Hartree
potential. With this Hartree potential a new electronic potential is built and
the Schrödinger equation is solved again with this new potential. At this point,
a new set of eigenstates and eigenvalues is obtained, which are used again to
calculate a new Fermi level through charge neutrality. Finally, the Fermi level
is compared in this step with that obtained in the previous step. If a value less
than a certain previously defined tolerance is obtained, the procedure is stop-
ped; if on the contrary, a value greater than the tolerance is obtained, repeat
the process until convergence is obtained.

2.3. Electromagnetically induced
transparency (EIT)

EIT is an effect in which a material that presents high absorption at a certain
wavelength between two states (Ψ0 and Ψ1) becomes transparent for that wave-
length by taking advantage of the system interaction with two electromagnetic
fields that are coupled to three levels in the system; these fields are normally
known as probe field with a frequency of ωp and control field with a frequency
of ωc [18, 19]. Early works in this field include Harris et al. from 1990 [20] and
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f
, V
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Figure 2-3.: Block diagram corresponding to the self-consistent algorithm.
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Armstrong and Wynne from 1974 [21].
The probe field is associated with the coupling of the photons to the Ψ0 → Ψ1

electronic transition. By considering only the probe field, it would generate an
absorption peak located near the E1−E0 energy transition. On the other hand,
the control field refers to the coupling of the photons to the transition Ψ1 → Ψ2.
Depending on the characteristics of the control field, a destructive interference
effect can be generated to attenuate the peak of maximum absorption mentio-
ned above, making the system transparent for the energy in which it presented
its maximum absorption.

This chapter is dedicated to the development of the expression for susceptibility
considering the coupling between an atomic system modeled by a three-level
system (three orthogonal states) with two external electromagnetic fields [22].
In Figure 2-4 the situation scheme is presented, where the ground state is cha-
racterized by the vector |0⟩, the highest state as |2⟩ and an intermediate state
|1⟩ (these states correspond to Ψ0, Ψ2 andΨ1 respectively in coordinate repre-
sentation), the system is immersed in two electromagnetic fields, a probe field
of frequency ωp that couples the states |0⟩ with |1⟩ and a control field of fre-
quency ωc that couple the states |1⟩ and |2⟩ (the coupling between the |0⟩ and
|2⟩ state is dipolarly prohibited). The calculations are based on a semi-classical
approach where the atomic system is a quantum system and the external fields
are classical fields. In this development a cascade-type arrangement is conside-
red, therefore, there is no strong dipolar coupling between |0⟩ and |2⟩.

For the phenomenon of EIT to occur, a three-level system (Ψ0,Ψ1,Ψ2) is re-
quired with dipole coupling between Ψ0,Ψ1 and Ψ1,Ψ2 and forbidden coupling
(or much smaller than those previously mentioned) between Ψ0,Ψ2, additio-
nally, through the application of two electromagnetic fields (probe and control
fields), a destructive quantum interference effect is generated between the two
electronic transitions, resulting in the cancellation of optical absorption even in
the presence of the applied field [22].

For absorption cancellation to occur, the system must initially be prepared with
an electronic occupancy in the ground state and thus the imaginary part of the
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susceptibility (at resonance) proportional to the atomic decay between Ψ0,Ψ2

(which is much less than 1 since it is a prohibited coupling) and since the ima-
ginary part of the susceptibility is proportional to the optical absorption, then
this is attenuated, giving rise to the EIT effect.

(b)

p

control

2

1

0

( p)

probe

c

EIT Linear 
Absorption

2

1

0

2

1

0

Figure 2-4.: Diagram of a three-level system (Ψ0,Ψ1,Ψ2) in a cascade arran-
gement, interacting with two electromagnetic fields of frequencies
ωc and ωp (control and probe respectively).

The detailed development of the theory is presented below.
The total Hamiltonian of the three level system is given by:

Ĥ = Ĥ0 + Ĥ1, (2-67)

where Ĥ0 is the Hamiltonian of the atomic system and Ĥ1 represents the inter-
action of the atomic system with radiation. The three-level system corresponds
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to a complete basis, therefore, it is possible to write the completex relation,
Î = |1⟩⟨1|+ |0⟩⟨0|+ |2⟩⟨2|, where Î is the identity operator in the base. Now,
we can express the atomic system Hamiltonian using this left and right opera-
tor,

Ĥ0 = ÎĤ0Î , (2-68)

replacing the Î operator,

Ĥ0 = (|1⟩⟨1|+ |0⟩⟨0|+ |2⟩⟨2|)Ĥ0(|1⟩⟨1|+ |0⟩⟨0|+ |2⟩⟨2|), (2-69)

making the products explicitly,

Ĥ0 = |1⟩⟨1|Ĥ0|1⟩⟨1|+|1⟩⟨1|Ĥ0|0⟩⟨0|+|1⟩⟨1|Ĥ0|2⟩⟨2|+|0⟩⟨0|Ĥ0|1⟩⟨1|+|0⟩⟨0|Ĥ0|0⟩

⟨0|+ |0⟩⟨0|Ĥ0|2⟩⟨2|+ |2⟩⟨2|Ĥ0|1⟩⟨1|+ |2⟩⟨2|Ĥ0|0⟩⟨0|+ |2⟩⟨2|Ĥ0|2⟩⟨2|,

the non-diagonal terms like ⟨1|Ĥ0|0⟩, ⟨1|Ĥ0|2⟩, ⟨0|Ĥ0|1⟩, ⟨0|Ĥ0|2⟩, ⟨2|Ĥ0|1⟩ and
⟨2|Ĥ0|0⟩ are canceled because the atomic system Hamiltonian corresponds to
a diagonal matrix. On the other hand, since each state |n⟩ corresponds to an
eigenstate of the Hamiltonian Ĥ0, then it is true that, Ĥ0|n⟩ = ℏωn|n⟩, with
n = 1, 0, 2, where ωn is the energy associated to the n state. The above result
in the Hamiltonian associated to the atomic system with the form:

Ĥ0 = ℏω1|1⟩⟨1|+ ℏω0|0⟩⟨0|+ ℏω2|2⟩⟨2| . (2-70)

For the interaction Hamiltonian, we must take into account that there are
two external fields in the system (probe and drive fields). In this case, we can
consider that for both fields, the radiation is given with linear polarization in x,
with this consideration, we can express the interaction Hamiltonian as follows:

Ĥ1 = −e x̂ Ep(t)− e x̂ Ec(t), (2-71)

where e is the electronic charge, Ep(t) and Ec(t) are the electric fields associated
with the probe and control respectively. As with Ĥ0, it is possible to act on the
left and right with the identity operator to use the completex relation again,

Ĥ1 = Î Ĥ1 Î , (2-72)
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replacing the Î operator, and by using the equation (2-71),

Ĥ1 = (|1⟩⟨1|+ |0⟩⟨0|+ |2⟩⟨2|)Ĥ1(|1⟩⟨1|+ |0⟩⟨0|+ |2⟩⟨2|) ,

Ĥ1 = −e(|1⟩⟨1|+ |0⟩⟨0|+ |2⟩⟨2|)x̂(|1⟩⟨1|+ |0⟩⟨0|+ |2⟩⟨2|)Ep(t)

−e(|1⟩⟨1|+ |0⟩⟨0|+ |2⟩⟨2|)x̂(|1⟩⟨1|+ |0⟩⟨0|+ |2⟩⟨2|)Ec(t)

It is clear that the terms ⟨1|x̂|1⟩, ⟨0|x̂|0⟩ and ⟨2|x̂|2⟩ correspond to zero integrals
due to the states symmetry, what’s more, the ⟨0|x̂|2⟩ and ⟨2|x̂|0⟩ terms are zero
because of the lambda arrangement, thus, we obtain the following expression:

Ĥ1 = [−|1⟩(e⟨1|x̂|0⟩)⟨0| − |0⟩(e⟨0|x̂|1⟩)⟨1|]Ep(t)+

[−|1⟩(e⟨1|x̂|2⟩)⟨2| − |2⟩(e⟨2|x̂|1⟩)⟨1|]Ec(t) .

We can define the electric dipole matrix element asMij = e⟨i|x̂|j⟩ = (e⟨i|x̂|j⟩)† =
(e⟨j|x̂|i⟩)∗ =M ∗

ji, with this definition, the last equation takes the form,

Ĥ1 = −M10Ep(t) |1⟩⟨0| −M12Ec(t) |1⟩⟨2|+ h.c. , (2-73)

where h.c. is the hermitian conjugate.
The equation 2-73 is still not the most convenient to use, an expression whe-
re the Rabi frequency is associated to the excited state and the intermedia-
te state would be convenient. The fields Ep(t) and Ec(t) of equation (2-71)
are classical fields, we can express them as follows: Ep(t) = Ep cos(ωpt) and
Ec(t) = Ec cos(ωct), where Ep and Ec are the amplitudes associated with the
probe and control fields with frequencies ωp and νc respectively. We can define
ϕp and ϕc for the phases associated with the dipole operator matrix elements
M10 and M12, obtaining M10 = |M10|e−iϕp and M12 = |M12|e−iϕc. In this way,
we can define the Rabi frequency associated with each of the couplings:

Ωp =
|M10|Ep

ℏ
and Ωc =

|M12|Ec
ℏ

. (2-74)
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To obtain the equation of the dipole electric moment for the probe and control
fields we can write M10 and M12 in terms of the Rabi frequency,

M10 =
ℏΩp

Ep
e−iϕp and M12 =

ℏΩc

Ec
e−iϕc , (2-75)

it is convenient to rewrite the fields in their exponential form,

Ep(t) =
Ep
2
(e−iωpt + eiωpt) and Ec(t) =

Ec
2
(e−iωct + eiωct) , (2-76)

taking into account the Eqs. 2-75 and 2-76, we can express the term M10E(t)

of equation (2-73) in a new form:

M10Ep(t) =
ℏΩp

Ep
e−iϕp · Ep

2
(e−iωpt + eiωpt) ,

M10Ep(t) =
ℏΩp

2
(e−iϕpe−iωpt) +

ℏΩp

2
e−iϕpeiωpt ,

The second term of the expression M10E(t) does not contribute significantly
in the calculation of the electronic population, by using the rotating wave ap-
proximation we can see that the term is of high oscillations, then M10E(t) is
written as follows:

M10Ep(t) =
ℏΩp

2
e−iϕpe−iωpt . (2-77)

In the same way we calculate M12Ec(t),

M12Ec(t) =
ℏΩc

2
e−iϕce−iωct . (2-78)

Replacing (2-77) and (2-78) in (2-73):

Ĥ1 = −
(
ℏΩp

2
e−iϕpe−iωpt

)
|1⟩⟨0| −

(
ℏΩc

2
e−iϕce−iωct

)
|1⟩⟨2|+ h.c. . (2-79)
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From equation 2-75 we obtain Ωpe
−iϕp =M10Ep/ℏ, replacing in equation (2-79)

we obtain the interaction Hamiltonian between the system with the external
fields Ĥ1 in a explicit form in terms of the amplitude of the probe field Ep,
the associated dipole moment M10, the external frequency ωp and the Rabi
frequency of the system Ωc,

Ĥ1 = −M10

2
Epe−iωpt |1⟩⟨0| − ℏΩc

2
e−iϕce−iωct |1⟩⟨2|+ h.c. . (2-80)

We can use the Von Neumann equation to analyze the time evolution by means
of the density operator,

∂ρ̂

∂t
= − i

ℏ

[
Ĥ, ρ̂

]
− 1

2

{
Γ̂, ρ̂
}
, (2-81)

we must take into account that
[
Ĥ, ρ̂

]
is a commutator and

{
Γ̂, ρ̂
}

is an
anticonmutator. To calculate the matrix elements of this equation, we must
expand the products and use the completex relation between operators, with
an arbitrary matrix element the last equation can be written as,

ρ̇ij = − i

ℏ
∑
k

(Hikρkj − ρikHkj)−
1

2

∑
k

(Γikρkj + ρikΓkj) , (2-82)

the terms Γkj and Γik are dissipative elements and can be expressed as Γnm =

⟨n|Γ̂|m⟩ = Υnδnm with n,m = {1, 0, 2} where δnm is the Kronecker delta. From
the above, we see that Γ is a diagonal matrix, secondly, the term Υn is inversely
proportional to the state decay times, additionally, since states |0⟩ and |2⟩ are
not dipolarly coupled, thus, the decay time for these states will be very high
and consequently the Γ associate with the coupling between these states will
be smaller.
To calculate the matrix element of ρ10 we make i = 1 and j = 0 in equation
(2-82),

˙ρ10 = − i

ℏ
∑
k

(H1kρk0 − ρ1kHk0)−
1

2

∑
k

(Γ1kρk0 + ρ1kΓk0) , (2-83)
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˙ρ10 = − i

ℏ
[H11ρ10 − ρ11H10 +H10ρ00 − ρ10H00 +H12ρ20 − ρ12H20]

−1

2
[Γ11ρ10 + ρ11Γ10 + Γ10ρ00 + ρ10Γ00 + Γ12ρ20 + ρ12Γ20] , (2-84)

the non-diagonal terms of Γ have been canceled, at this point it is necessary to
explicitly calculate the matrix elements associated with the complete Hamilto-
nian Ĥ0 + Ĥ1, this is easy to do by means of equations (2-70) and (2-80),

H11 = ⟨1|Ĥ0|1⟩+ ⟨1|Ĥ1|1⟩ = ℏω1 , (2-85)

H10 = ⟨1|Ĥ0|0⟩+ ⟨1|Ĥ1|0⟩ = −M10 Ep
2

e−iωpt , (2-86)

H00 = ⟨0|Ĥ0|0⟩+ ⟨0|Ĥ1|0⟩ = ℏω0 , (2-87)

H12 = ⟨1|Ĥ0|2⟩+ ⟨1|Ĥ1|2⟩ = −ℏΩc

2
e−iϕc e−iωct , (2-88)

H20 = ⟨1|Ĥ0|0⟩+ ⟨1|Ĥ1|0⟩ = 0 , (2-89)

considering Γ11 = Γ00 ≡ γ01 and replacing equations (2-85 - 2-89) in (2-84):

˙ρ10 = − i

ℏ
[ℏω1 ρ10 +

M10 Ep
2

e−iωptρ11 −
M10 Ep

2
e−iωptρ00 − ℏω0 ρ10

−ℏΩc

2
e−iϕc e−iωctρ20]−

1

2
[γ01ρ10 + γ01 ρ10] ,
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˙ρ10 = −iω1 ρ10 + iω0 ρ10 −
iM10 Ep

2ℏ
e−iωpt ρ11 +

iM10 Ep
2ℏ

e−iωpt ρ00+

i

2
Ωc e

−iϕc e−iωct ρ20 − γ01 ρ10 ,

defining ω10 = ω1 −ω0, a final equation is obtained for the matrix element ρ10,

˙ρ10 = −(iω10 + γ01) ρ10 −
iM10 Ep

2ℏ
e−iωpt(ρ11 − ρ00) +

i

2
Ωce

−iϕce−ωctρ20 . (2-90)

In the same way, we can calculate the term ˙ρ20 making i = 2 and j = 0 in
equation (2-82),

˙ρ20 = − i

ℏ
∑
k

(H2kρk0 − ρ2kHk0)−
1

2

∑
k

(Γ2kρk0 + ρ2kΓk0) , (2-91)

expanding the summation,

˙ρ20 = − i

2
[H21ρ10 − ρ21H10 +H20ρ00 − ρ20H00 +H22ρ20 − ρ22H20]−

−1

2
[Γ21ρ10 + ρ21Γ10 + Γ20ρ00 + ρ20Γ00 + Γ22ρ20 + ρ22Γ20] , (2-92)

once again the terms corresponding to non-diagonal Γ have been canceled.
Following the same steps as in the calculation of ρ10, the matrix elements are
obtained,

H21 = −ℏΩc

2
eiϕc eiωct , (2-93)

H10 = −M10 Ep
2

e−iωpt , (2-94)

H20 = 0 , (2-95)
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H00 = ℏω0 , (2-96)

H22 = ℏω2 , (2-97)

considering Γ00 = Γ22 ≡ γ02 taking into account that they are associated to the
same transition, and replacing equations (2-93 - 2-97) in (2-92):

˙ρ20 = − i

ℏ

[
−ℏΩc

2
eiϕc eiωct ρ10 +

M10 Ep
2

e−iωpt ρ21 − ℏω0 ρ20 + ℏω2 ρ20

]
−

−1

2
[γ02 ρ20 + γ02 ρ20] . (2-98)

It is pertinent to remember that γ02 will have a very small value because the
time for electronic decay between these states will be very high, removing the
parentheses in the last equation,

˙ρ20 = iω0ρ20 − iω2 ρ20 −
iM10 Ep

2ℏ
e−iωpt ρ21 +

iΩc

2
eiϕceiωct ρ10 − γ02ρ20 , (2-99)

defining ω20 = ω2 − ω0, and rearranging terms, it is finally obtained,

˙ρ20 = −(iω20 + γ02) ρ20 −
iM10 Ep

2ℏ
e−iωpt ρ21 +

iΩc

2
eiϕceiωct ρ10 . (2-100)

Similarly, we can calculate the term ˙ρ12 by doing i = 1 and j = 2 in the
equation (2-82),

˙ρ12 = − i

ℏ
∑
k

(H1kρk2 − ρ1kHk2)−
1

2

∑
k

(Γ1kρk2 + ρ1kΓk2) , (2-101)

expanding the summations,
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˙ρ12 = − i

ℏ
[H11ρ12 − ρ11H12 +H10ρ02 − ρ10H02 +H12ρ22 − ρ12H22]

−1

2
[Γ11ρ12 + ρ11Γ12 + Γ10ρ02 + ρ10Γ02 + Γ12ρ22 + ρ12Γ22] , (2-102)

the procedure is similar to the one already presented, it is easy to see that the
matrix elements have the form,

H11 = ℏω1 , (2-103)

H12 = −ℏΩc

2
e−iϕc e−iωct , (2-104)

H10 = −M10 Ep
2

e−iωpt , (2-105)

H02 = 0 , (2-106)

H22 = ℏω2 , (2-107)

making Γ11 = Γ22 ≡ γ12 and replacing the Eqs. (2-103 - 2-107) in equation
(2-102),

˙ρ12 = − i

ℏ

[
ℏω1 ρ12 +

ℏΩc

2
e−iϕc e−iωct ρ11 −

M10 Ep
2

e−iωpt ρ02 −
ℏΩc

2
e−iϕc e−iωct ρ22 − ℏω2 ρ12

]
−

−1

2
[γ12 ρ12 + γ12 ρ12] , (2-108)
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defining ω12 = ω1 − ω2 and regrouping, we finally obtain,

˙ρ12 = −(iω12+γ12) ρ12−
i

2
Ωc e

−iϕc e−iωct (ρ11−ρ22)+
iM10 Ep

2ℏ
e−iωpt ρ02 . (2-109)

The absorption in the system is proportional to the density matrix associated
with the transition |0⟩ → |1⟩, ρ10. We can consider as initial condition the
system is in the ground state, this means that at time t = 0 all electronic
population are in |0⟩, this implies that ρ(0)00 = 1 and in the state |1⟩ and |2⟩
we will have zero ρ

(0)
11 = ρ

(0)
22 = 0, remembering that the diagonal terms of

the density matrix are associated with the probability density of each state.
In the same way we can consider ρ(0)21 = 0 which corresponds to the fact that
there are no excitations in the system for t = 0. Let’s make ρ10 = ρ̃10 e

iωpt and
ρ20 = ρ̃20 e

−i(ωp+ω21)t where ρ̃10 and ρ̃20 have no time dependency. By evaluating
in the equation (2-90),

−iν ρ̃10 e−iωpt = −(iω10+γ01)ρ̃10 e
−iωpt−iM10 Ep

2ℏ
(ρ11−ρ00)+

i

2
Ωce

−iϕce−iωctρ̃20 e
−i(ωp+ω21)t ,

(2-110)

with t = 0,

−iνρ̃10 = −(iω10 + γ01)ρ̃10 −
iM10 Ep

2ℏ
(ρ

(0)
11 − ρ

(0)
00 ) +

i

2
Ωce

−iϕcρ̃20 ,

reorganizing terms and applying the initial conditions for ρ(0)11 and ρ(0)00 ,

0 = −(γ01 + i(ω10 − ωp)) ρ̃10 +
iM10 Ep

2ℏ
+
i

2
Ωce

−iϕc ρ̃20 , (2-111)

defining the detuning ∆(ωp) = ω10−ωp as the difference between the transition
energy between |0⟩ and |1⟩ states and the energy of the probe field, we obtain

0 = −(γ01 + i∆)ρ̃10 +
iM10 Ep

2ℏ
+
i

2
Ωce

−iϕcρ̃20 . (2-112)
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Secondly, by using the expressions ρ10 = ρ̃10 e
iωpt and ρ20 = ρ̃20 e

−i(ωp+ω21)t in
the equation (2-100),

−i(ωp + ω21)ρ̃20 e
−i(ωp+ω21)t = −(iω20 + γ02) ρ̃20 e

−i(ωp+ω21)t − iM10 Ep
2ℏ

e−iωptρ21

+
i

2
Ωc e

iϕc eiωctρ̃10 e
−iωpt ,

evaluating for t = 0,

−i(ωp + ω21) ρ̃20 = −(iω20 + γ02) ρ̃20 −
iM20 Ep

2ℏ
ρ
(0)
21 +

i

2
Ωc e

iϕc ρ̃10 , (2-113)

rearranging terms,

0 = −(γ02 + i(ω20 − ω21 − ωp)) ρ̃20 +
i

2
Ωc e

iϕc ρ̃10 , (2-114)

let’s see that,

ω20 − ω21 = ω2 − ω0 − ω2 + ω1 ,

ω20 − ω21 = ω1 − ω0 ,

ω20 − ω21 = ω10 ,

by using this result in (2-114), remembering the detuning definition,

0 = −(γ02 + i∆(ωp)) ρ̃20 +
i

2
Ωc e

iϕc ρ̃10 . (2-115)

From this last equation, let’s solve for the term ρ̃20,

ρ̃20 =
iΩc e

iϕc

2 (γ02 + i∆(ωp))
ρ̃10 , (2-116)

replacing equation (2-116) in (2-112):
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0 = −(γ01 + i∆(ωp)) ρ̃10 +
iM10 Ep

2ℏ
+
i

2
Ωc e

−iϕc
iΩc e

iϕc

2 (γ02 + i∆(ωp))
ρ̃10 ,

simplifying,

0 = −(γ01 + i∆(ωp)) ρ̃10 +
iM10 Ep

2ℏ
− Ω2

c ρ̃10
4 (γ02 + i∆(ωp))

,

solving for ρ̃10,

[
(γ01 + i∆(ωp)) +

Ω2
c

4 (γ02 + i∆(ωp))

]
ρ̃10 =

iM10 Ep
2ℏ

,

4 (γ01 + i∆(ωp))(γ02 + i∆(ωp)) + Ω2
c

4 (γ02 + i∆(ωp))
ρ̃10 =

iM10 Ep
2ℏ

,

ρ̃10 =
4 iM10 Ep (γ02 + i∆(ωp))

2ℏ [4 (γ01 + i∆(ωp)) (γ02 + i∆(ωp)) + Ω2
c]
,

ρ̃10 =
iM10 Ep (γ02 + i∆(ωp))

2ℏ [(γ01 + i∆(ωp)) (γ02 + i∆(ωp)) + Ω2
c/4]

, (2-117)

remembering that ρ10 = ρ̃10 e
−ωpt, then we finally get,

ρ10 =
iM10 Ep (γ02 + i∆(ωp)) e

−iωpt

2ℏ[(γ01 + i∆(ωp)) (γ02 + i∆(ωp)) + Ω2
c/4]

. (2-118)

From the equation (2-76), it is had that by means of the rotating wave approxi-
mation only a part of the field contributes significantly to the electronic popula-
tion between the levels |0⟩ and |1⟩, this part is given by Ep(t) = Ep e−iωpt/2, in
the same way, the macroscopic polarization will be given by Pp(t) = ℘p e

−iωpt/2,
where ℘p is the complex polarization of the system. From the above, we can
write complex polarization in terms of macroscopic polarization as,
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℘p = 2Pp(t) e
iωpt . (2-119)

To obtain an expression for the polarization of the system due to the |0⟩ → |1⟩
transition, then the wave function of the system can be approximated as a linear
combination of these states,

|ψ(t)⟩ = C1(t) |1⟩+ C0(t) |0⟩ , (2-120)

on the other hand, the macroscopic polarization can be calculated as,

Pp(t) = e ⟨ψ(t)|x|ψ(t)⟩ =

Pp(t) = e (C∗
1(t) ⟨1|+ C∗

0(t) ⟨0|)x (C1(t) |1⟩+ C0(t) |0⟩) =

Pp(t) = eC∗
1(t)C0(t) ⟨1|x|0⟩+ eC1(t)C

∗
0(t) ⟨0|x|1⟩ =

Pp(t) = C1(t)C
∗
0(t)M10 + h.c. , (2-121)

where the integrals equal to zero have been canceled and the definition of electric
dipole moment that was already used in equation (2-73). Similarly, the density
matrix associated with state in equation (2-120) is given by,

ρ = |ψ(t)⟩⟨ψ(t)| =

ρ = (C1(t) |1⟩+ C0(t) |0⟩) (C∗
1(t) ⟨1|+ C∗

0(t) ⟨0|) =

ρ = |C1(t)|2 |1⟩⟨1|+ C1(t)C
∗
0(t) |1⟩⟨0|+ C∗

1(t)C0(t) |0⟩⟨1|+ |C0(t)|2 |0⟩⟨0| ,
(2-122)

according to equation (2-118), let’s calculate the element ρ10,
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ρ10 = ⟨1|ρ|0⟩ = C∗
1(t)C0(t) , (2-123)

replacing equation (2-123) in (2-121),

Pp(t) =M01 ρ10 + h.c. =

Pp(t) =M ∗
10 ρ10 + h.c. , (2-124)

where it has been used that M01 = M ∗
10. As in equation (2-119) the rotating

wave approximation has been used, in the same way in equation (2-124) we must
stay with only one of the terms to be consistent Pp(t) ≈M ∗

10 ρ10, replacing this
result in equation (2-119),

℘p = 2M ∗
10 ρ10 e

iωpt , (2-125)

this result can be equated with the complex polarization definition,

℘p ≡ ε0 χ Ep = 2M ∗
10 ρ10 e

iωpt , (2-126)

where ε0 is the vacuum permittivity, χ the system susceptibility and Ep the
field amplitude. Solving for ρ10 in (2-126),

ρ10 =
ε0 χ Ep
2M ∗

10

e−iωpt , (2-127)

equating this last equation with (2-118),

iM10 Ep (γ02 + i∆(ωp)) e
−iωpt

2ℏ[(γ01 + i∆(ωp)) (γ02 + i∆(ωp)) + Ω2
c/4]

=
ε0 χ Ep
2M ∗

10

e−iωpt ,
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χ =
i|M10|2 (γ02 + i∆(ωp))

ℏε0 [(γ01 + i∆(ωp)) (γ02 + i∆(ωp)) + Ω2
c/4]

,

χ =
i|M10|2 γ02 − |M10|2∆(ωp)

ℏε0 [γ01 γ02 + iγ01∆(ωp) + iγ02∆(ωp)−∆(ωp)2 + Ω2
c/4]

. (2-128)

It is necessary to know the real part and the complex part of the susceptibility
of the system to calculate the absorption, to obtain these expressions, let’s do
the substitutions,

α = −|M10|2∆(ωp) ,

β = |M10|2γ02 ,

λ = γ01γ02 −∆(ωp)
2 + Ω2

c/4 ,

σ = γ01∆(ωp) + γ02∆(ωp) ,

with these substitutions, equation (2-128) takes the simple form,

χ =
α + iβ

ℏε0 (λ+ iσ)
, (2-129)

multiplying up and down by (λ− iσ),

χ =
(α + iβ) (λ− iσ)

ℏε0 (λ+ iσ) (λ− iσ)
,

regrouping terms

χ =
(αλ+ βσ)− i(ασ − βλ)

ℏε0(λ2 + σ2)
. (2-130)

Defining the susceptibility as χ = χ′ + i χ′′, where χ′ and χ′′ are the real part
and imaginary part respectively, with this consideration, of equation (2-130) is
obtained that:
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χ′ =
αλ+ βσ

ℏε0 (λ2 + σ2)
, (2-131)

and

χ′′ =
βλ− ασ

ℏε0 (λ2 + σ2)
, (2-132)

returning to the original variables,

χ′ =
(−|M10|2∆(ωp)) (γ01γ02 −∆(ωp)

2 + Ω2
c/4) + (|M10|2γ02) (γ01∆(ωp) + γ02∆(ωp))

ℏε0 ((γ01γ02 −∆(ωp)2 + Ω2
c/4)

2 + (γ01∆(ωp) + γ02∆(ωp))2)
,

(2-133)

and

χ′′ =
(|M10|2γ02) (γ01γ02 −∆(ωp)

2 + Ω2
c/4)− (−|M10|2∆(ωp)) (γ01∆(ωp) + γ02∆(ωp))

ℏε0 ((γ01γ02 −∆(ωp)2 + Ω2
c/4)

2 + (γ01∆(ωp) + γ02∆(ωp))2)
,

(2-134)

simplifying, the real part of the susceptibility is finally obtained as,

χ′(ωp) =
Ξ∆(ωp)

Θ(ωp)

[
∆(ωp)

2 + γ202 − Ω2
c/4
]
, (2-135)

similarly, the imaginary part of susceptibility,

χ′′(ωp) =
Ξ

Θ(ωp)

[
γ02
(
Ω2

c/4 + γ01γ02
)
+∆(ωp)

2γ01
]
, (2-136)

where Ξ = σ01|M01|2/ϵ0ℏ,
Θ(ωp) =

[
(|Ωc|2/4) + γ01γ02 −∆(ωp)

2
]2
+∆(ωp)

2(γ01+γ02)
2, γij are the decay

rates and are related to the natural decay rates of the i, j states, and ∆(ωp) =
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[(E1−E0)−ℏωp]/ℏ is the detuning of the system with the probe field. Note that
in Ξ, σ01 has been added which corresponds to the three-dimensional electronic
concentration.
When ∆(ωp) = 0, which indicates that the probe field is in resonance with the
transition between states |0⟩ and |1⟩, it is obtained,

χ′ = 0 and χ′′ =
Ξ γ02

γ01γ02 + Ω2
c/4

. (2-137)

It is evident that the imaginary part of the susceptibility is proportional to γ02,
remembering that γ02 is the decay rate between states |0⟩ and |2⟩ and since these
states are not coupled, then γ02 → 0 which implies that χ′′ ≈ 0. The above
indicates that the absorption tends to zero, thus the radiation is not being
absorbed when the system is in resonance with the probe field (ω10 = ωp),
the system behaves as if it were transparent to this radiation (remembering
that this should be the point of maximum absorption). This process is known
as electromagnetically induced transparency. The effect depends on the Rabi
frequency of the drive field and the decay rate between states |0⟩ and |2⟩.
By using the intensity of the electromagnetic field associated with a wave of
amplitude Ec (control field) Ic = c ϵ0|Ec|2/2, an expression is obtained for
the intensity of the electromagnetic wave as a function of the associated Rabi
frequency and the dipole element |M12| that couples the states Ψ1 and Ψ2,

Ic =
c ϵ0 ℏ2

2

|Ωc|2

|M12|2
, (2-138)

in this work the value of the Rabi frequency Ωc has been fixed [24], which implies
that the intensity of the electromagnetic radiation (control field) is inversely
proportional to the square of the dipole element. An equivalent expression to
(2-138) is obtained for the probe field intensity by using |Ωp| and |M01|. From
equation (2-136) an expression for the system absorption is obtained,

αEIT (ωp) = (ωp/c)χ
′′(ωp) , (2-139)

where c is the speed of light in a vacuum. All the parameters associated with
the EIT calculation are included in Table 3-1 in the 3.1 section [25, 26].
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It is worth mentioning some of the potential applications of the EIT in both
theoretical and experimental developments. In 2004 at Hewlett-Packard Labo-
ratories, Beausoleil et al. [27] developed a general outline of the requirements
that components produced for industrial-level quantum information technology
(QIT) must have, the authors identified EIT as a possibility that facilitates the
goal of providing quantum information processing of few qubits. Later in 2011,
Safavi-Naeini et al. [28] by means of interaction control techniques between loca-
lized optics and mechanical excitations have obtained experimental advances in
micro and nanofabrication techniques. These authors demonstrate the presence
of EIT and tunable optical delays (slow and stopped light) in an optomecha-
nical crystal of the order of nanometers, using optomechanical nonlinearity to
control the speed of light through an experimental design to modulate photon-
phonon interaction. Another significant application of the EIT is in sensors [29],
in recent years Yan et al. [30] proposed a kind of biosensor based on EIT as
metamaterial, this device emerged good efficiency for detection of some cancer
cells.

2.4. Finite difference method (FDM)

The FDM is widely used for solving differential equations. The advantage of
implementing this method is to convert the differential equation into a set of al-
gebraic equations that can be solved by any matrix or diagonalization method.
Figure 2-5 represents a scheme in which the function f(x) (red curve) has been
discretized in a set of points according to an equidistant grid N + 1 points on
the x-axis, in such form that is fulfilled by definition: fj ≡ f(xj) for all xj in
the interval (x0, xN).

From the above, it clearly follows that each point xj can be represented as
xj = x0 + j∆x. The starting point for the development of the method consists
of the ordinary definition of the first-order derivative at a xk point using central
differences: df(xk)/dx = ĺım∆x→0[f(xk+∆x)− f(xk−∆x)]/2∆x. In the limit
in which ∆x´1, we can to approximate the derivative at a xk point as:
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fN-1

fN = b

fn+1

fn

fn-1

f1

 .  .  .  . xN-1x1 xn-1 xn+1xn xN
x

f(x)

x0  .  .  .  .

a = f0 fj = f(xj)

x

Figure 2-5.: Representative schematic of a one-dimensional point mesh used
to develop the finite difference method.

df(xk)

dx
≈ f(xk+1)− f(xk−1)

2∆x
=
fk+1 − fk−1

2∆x
. (2-140)

To ensure good precision in the results, it is necessary that the parameter ∆x
be much smaller than the size of the interval corresponding to the domain of x,
that is, it must be true that ∆x ≪ (xN − x0). According to equation (2-140),
this is a well-known expression to represent the first derivative of a function
at the point xk. Analogously, we can start from the derivative expression using
forward differences or backward differences to obtain the second derivative of a
function f(x) at a point xk through central differences, i.e.,

d2f(xk)

dx2
≈

fk+1−fk
∆x − fk−fk−1

∆x

∆x
=
fk−1 − 2fk + fk+1

∆x2
. (2-141)

In this way, an expression is found to calculate the second derivative of a fun-
ction f(x) at the point xk by means of central differences. Note that in equations
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(2-140) and (2-141), k can take integer values only in the interval (1, N−1). The
terms f0 and fN correspond to boundary conditions (see the Figure 2-5) for
the function with values a and b that are assumed to be known: f0 = f(x0) = a

and fN = f(xN) = b. Evaluating equations (2-140) and (2-141) for some k
values, it is easy to show that the first and second derivatives of a function on
the given interval can be written in matrix form

df(x)

dx
=

1

2∆x



1 0 0 0 0 0 · · · 0 0

−1 0 1 0 0 0 · · · 0 0

0 −1 0 1 0 0 · · · 0 0

0 0 −1 0 1 0 · · · 0 0
... ... . . . ... ...
0 0 0 0 0 · · · 0 −1 1

0 0 0 0 0 0 · · · 0 1





f0
f1
f2
f3
...

fN−1

fN


(2-142)

and

d2f(x)

dx2
=

1

∆x2



1 0 0 0 0 0 · · · 0 0 0

1 −2 1 0 0 0 · · · 0 0 0

0 1 −2 1 0 0 · · · 0 0 0

0 0 1 −2 1 0 · · · 0 0 0
... ... . . . ... ...
0 0 0 0 0 · · · 0 1 −2 1

0 0 0 0 0 0 · · · 0 0 1





f0
f1
f2
f3
...

fN−1

fN


.

(2-143)

Relations (2-142) and (2-143) are the matrix representation of the first and se-
cond derivatives, respectively, of a function f(x) on the interval (x0, xN) with
boundary conditions f(x0) = a and f(xN) = b. By means of this last repre-
sentation of the second derivative, we need to solve the equations (2-57) and
(2-60) at each self-consistent step.

According to the relation (2-141), Schrödinger’s formulation (2-57) can be rew-
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ritten in finite differences as:

− ℏ2

2m∗

(
ψk−1 − 2ψk + ψk+1

∆x2

)
+ Vkψk = Eψk , (2-144)

considering x ∈ [a, b], this equation must satisfy the boundary conditions
ψ0 = ψN = 0 to cancel the wave function at ±∞.
Below are the corresponding definitions to consistency, stability, and conver-
gence for a finite difference scheme [31, 32]:
Schema consistency The numerical scheme consistency means that the solu-
tion using the finite difference scheme approaches the exact equation solution,
that is, the discretization error tends to zero when the interval of the mesh
continuously decreases.
Schema stability The stability determines the increase or decrease of the
numerical errors that are committed when solving the equation in finite diffe-
rences. Although an equation in theoretically has an exact solution, rounding
errors are made in numerical resolution. If the errors smooth out as the cal-
culations are performed, the scheme is stable; however, if they do not remain
bounded, the scheme is unstable.
Schema convergence The numerical solution converges to the analytical so-
lution when the former tends to the latter when the mesh is refined.
Lax-Richtmyer Equivalence Theorem A consistent finite difference sche-
me for a partial differential equation such that the initial value problem is well
stated is convergent if and only if it is stable [33].
In the solution of this work, the eigenvalues and wave functions have been cal-
culated using the Schrödinger equation in finite differences (equation 2-144),
the stability of this equation in finite differences has been corroborated in va-
rious works, normally using the Von Neumann stability criterion [34], for which,
according to the Lax-Richtmyer theorem, the solution convergence to the nu-
merical problem is guaranteed.
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3. Results and discussion

3.1. Energies and probability density by
changing L, nd, δ and ξ

Table 3-1 details the parameters used throughout the work, γ01 and γ02 para-
meters corresponding to the decay rates, and have been taken according to the
GaAs and AlGaAs materials referencing to the work of E. B. Al et al. [1] and
D. Bejan et al. [2], likewise, the τin relaxation time has been referenced from
the reports of E.B. Al et al. [3] and H. Dakhlaoui et al. [4], approximating a
constant value since the range of variation of donor density is relatively small.
The doping levels that have been used for the calculation are in a high doping
regime, but their order of magnitude is not a novelty for investigations in this
type of heterostructures, both experimentally and theoretically, as evidenced
by Y. A. Aleshchenko et al. [5], H. Dakhlaoui [6], and R. B. Dhafera et al. [7].

It should be noted that in this work, the same effective mass has been assumed
for both the well and barrier regions, as well as the dielectric constant. These
approximations do not modify the physics of the results, which is one of the main
objectives of analyzing in this work. Also, for the GaAs/AlGaAs heterostructure
with 30 % Al, the difference in effective masses and dielectric constants does
not definitively modify the system’s energies.
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Parameter Value
ℏ 1.054×10−34 (J s)
m∗ 0.067m0 (Kg)
m0 9.109×10−31 (Kg)
e 1.602×10−19 (C)
kB 1.381×10−23 (J/K)
ϵ0 8.854×10−12 (F/m)
ϵ 12.35
V0 0.228 (eV)
T 300 (K)
c 299’792.458 (m/s)
γ01 0.1 (THz)
γ02 5 (THz)
Ωc 40 (THz)
τin 0.14 (ps)
µ 4π×10−7 (H/m)

Table 3-1.: List of parameters used in the calculations.

In Figure 3-1 are depicted the lowest energy levels for a confined electron in a
GaAs/AlGaAs as a function of the well-width considering a delta layer at the
well center, Figure 3-1(b). Figures 3-1(a) and 3-1(c) show the confinement
potential and the probability density for L = 10 nm and L = 25 nm, respecti-
vely. Figure 3-1(a) shows the conduction band bottom profile without including
the donor layer (dashed black curve) for L = 10nm, on-center donor layer with
δ = 2 nm, and donor density nd = 4.5 × 1025 (1/m3). This profile structure is
modified (continuous navy color curve), causing a sharp profile in the center of
the well and a systematic decrease in the barrier regions. The shaded region
corresponds to the system-occupied states. The self-consistent Fermi level takes
an approximate value of 0.175 eV. Additionally, the probability densities asso-
ciated with the first three confined states have been presented (black, red, and
green curves). Note that only the Ψ0 and Ψ1 states are occupied. It is evident
that by including the effect of the doped delta layer, a redshift is induced in all
states due to the decrease in the value of the conduction band bottom. Figure
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3-1(c) is equivalent to Figure 3-1(a), but for L = 25nm. Note that with this
increase in the well width, the number of confined states increases, which is to
be expected since the confinement is decreased. On the other hand, there is a
decrease in the Fermi level, being now approximately 0.065 eV and presenting
an occupation of three states instead of two as occurs for the case L = 10nm.
For the greater value of the well width, there are no significant modifications
in the barrier region (AlGaAs); this is due to the location of the delta layer in
the central region of the well and the condition of zero electrostatic potential at
infinities, that is, the band offset potential is much greater than the electrosta-
tic potential in these regions. A different situation occurs in the quantum well
region, in which the electrostatic potential significantly modifies the bottom of
the well, accommodating the lowest states in this region (see the black and red
curve in Figure 3-1(c)). Note how the electronic probability is concentrated al-
most entirely inside the well generated by the delta layer. Figure 3-1(b) shows
the energy spectrum as a function of the well width, keeping the other parame-
ters fixed: ξ = 0, δ = 2nm, and nd = 4.5×1025 (1/m3). A monotonic decrease is
evident for all confined states (states inside the well). This is due to a decrease
in confinement caused by the increase in the well width. The dashed black line
represents the Fermi-level behavior with the increase of L. It is observed that
the system with L = 10 nm presents only two occupied states, as previously
mentioned. For a well width greater than 13 nm, the system already presents
three occupied states. Note how the difference in energy between the states be-
comes smaller with the increase in L. This behavior is due to the fact that the
decrease in confinement allows the entry of new eigenvalues from the continuum
towards the interior of the quantum well, causing the energies to become closer.

In Figure 3-2 are depicted the lowest energy levels for a confined electron in
a GaAs/AlGaAs as a function of the on-center δ-parameter, Figure 3-2(b).
Figures 3-1(a) and 3-1(c) show the confinement potential and the probability
density for δ = 1nm and δ = 5nm, respectively. Figure 3-2(a) shows the pro-
file of the conduction band bottom for a quantum well of width L = 10 nm, not
including the doped delta layer (black dashed curve). This profile corresponds
to the electron confinement potential Vc(x) before starting the self-consistent
process required to solve the system, including a donor density. The potential
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Figure 3-1.: (a) and (c): Self-consistent potential V(x) with a solid line in
navy color, and electron confinement potential Vc(x) in black
dashed line. Figure (a) corresponds to L = 10 nm and figu-
re (c) to L = 25 nm; for both figures the parameters ξ = 0,
nd = 4.5×1025 (1/m3), and δ = 2nm have been set. In both figu-
res, the probability densities of all confined states have been in-
cluded. The shaded region indicates the occupied states and the
maximum of said region corresponds to the energy Fermi level
in the system. Figure (b) represents the lowest confined energy
levels as a function of the well width; the dashed line is the self-
consistent Fermi level Ef .
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profile after self-consistency of the same quantum well, including a doped del-
ta layer in the center (ξ = 0) is shown in navy color, width δ = 1nm and
nd = 4.5× 1025 (1/m3). The shaded region represents the occupied states and
the curves in black, red, and green colors represent the probability density asso-
ciated with the lowest three confined states, respectively. Figure 3-2(c) shows
the same system but with δ = 5nm, that is, the region in which the donor den-
sity is distributed has been increased. Clearly, for a region of 5 nm it no longer
makes sense to talk about a delta type doping; this is a whole doped region. The
most evident effect is observed in the depth of the quantum well, which now
presents the bottom at approximately -0.24 eV, as the energy zero remains fixed
at the bottom of the electron confinement potential; there is a clear decrease in
the system energy comparing with the system of δ = 1nm. This modification
in the bottom of the conduction band induces the appearance of new confined
states, as shown in Figure 3-2(c), the Ψ3 state (blue color curve). On the other
hand, since the volume of the doped layer has been increased, keeping the donor
density fixed, this implies that the number of charge carriers must increase and
therefore the Fermi level in the system must also increase, this is evidenced in
the shaded region that now takes a much higher value even above the bottom of
the band in the barrier region, causing a full occupation of all confined states.
Figure 3-2(b) shows the energy spectrum corresponding to the confined states
in the quantum well as a function of the width of the δ-parameter, holding fixed
L = 10nm, ξ = 0, and nd = 4.5 × 1025 (1/m3). The dashed line corresponds
to the system Fermi level that presents a monotonically increasing behavior, as
already mentioned. All the states present a red shift in energy, the shift being
more abrupt for lower states; for example, the ground state presents a shift of
approximately 0.16 eV. This decrease in energies, despite having a clear increase
in confinement with the increase in the δ-parameter, is because the energy is
measured concerning the bottom of the electron confinement potential Vc(x)

(dashed line in Figure 3-2(a)) and not for the lowest point of the conduction
band that would correspond to the center of the doped layer.

In Figure 3-3 are depicted the lowest energy levels for a confined electron in
a GaAs/AlGaAs as a function of the on-center ξ-parameter, Figure 3-3(b).
Figures 3-3(a) and 3-3(c) show the confinement potential and the probability
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Figure 3-2.: (a) and (c): Self-consistent potentials V(x), with a solid line
in navy color, and electron confinement potential Vc(x) in black
dashed line. Figure (a) corresponds to δ = 1 nm and Figure (c)
to δ = 5 nm. For both figures the parameters L = 10 nm, ξ = 0,
and nd = 4.5× 1025 (1/m3) have been set. In both figures, the
probability densities of all confined states have been included.
The shaded region indicates the occupied states, and the maxi-
mum of said region corresponds to the energy Fermi level. Figure
(b) represents the energy of the confined states concerning the
δ-parameter; the dashed line is the self-consistent Fermi level Ef .
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Figure 3-3.: (a) and (c): Self-consistent potentials V(x) with a solid line in
navy color, and electron confinement potential Vc(x) in black
dashed line. Figure (a) corresponds to ξ = 0 and Figure (c)
to ξ = 10 nm. For both figures the parameters L = 10 nm,
nd = 4.5× 1025 (1/m3), and δ = 2 nm have been set. In both fi-
gures, the probability densities of some confined states have been
included. The shaded region indicates the occupied states and
the maximum of said region corresponds to the energy Fermi le-
vel. Figure (b) represents the lowest confined energy levels as a
function of the ξ-parameter; the dashed line is the self-consistent
Fermi level Ef .
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density for ξ = 0 and ξ = 10nm, respectively. Figure 3-3(a) is the same Figure
3-1(a) with a different scale that has been placed for comparison purposes
with figure 3-3(c). This shows the quantum well with delta doping keeping
fixed L = 10nm, ξ = 0, and nd = 4.5×1025 (1/m3). Figure 3-3(c) shows the
same system but now locating the doped delta layer at ξ = 10 nm, that is, it
is 5 nm outside the edge of the well. The fact of moving the delta layer to the
right causes the loss of symmetry in the system; a direct implication of this
is that the wave functions also lose symmetry. In this case, an accumulation
of charge carriers is generated in the region where the delta layer is located,
causing an electrostatic potential with a significantly high value at that point
(comparable with the confinement potential V0) and as a consequence of this,
the total self-consistent potential (sum of confinement potential and Hartee
potential) is generated for a double-well system as seen in Figure 3-3(c). In
the AlGaAs barrier region occurs a clear asymmetry in the potential, being
V(x) > V0 for x < −5nm and V(x) < V0 for x > 10 nm; this difference
in electronic confinement causes the probability density associated with the
ground state to accumulate to a greater extent in the well-produced by the
delta layer (the electrons tend to be located in the place of least confinement),
around x = 10nm. Note how the opposite occurs with the first excited state,
which remains with high density inside the GaAs well in -5 nm< x <5 nm.

On the other hand, the Fermi level practically does not change with the displa-
cement of the delta layer; this is because the change in ξ does not modify the
number of charge carriers. However, this fact does not imply that the number of
occupied states can be modified, as can be seen in Figure 3-3(a), there are two
occupied states while in Figure 3-3(c), there are already four occupied states.
The fact of locating the delta layer in a position that breaks the symmetry of
the system generates a break in the symmetry of the self-consistent potential
(V(x)); this is mainly caused by the electrostatic potential that now presents
a high asymmetry, drastically modifying the electron confinement potential of
the well. In Figure 3-3(b), we see the energies of the first four confined states
as a function of the position of the ξ-parameter, keeping the other parameters
fixed at L = 10 nm, δ = 2nm, and nd = 4.5×1025 (1/m3). The Fermi level
corresponds to the dashed line, and this remains practically fixed, as already
stated, since there is no change in the number of carriers or in the temperature
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of the system. Note how the ground state and the first excited state (black
and red curves, respectively) remain approximately unchanged in the range
0 ≤ ξ < 5nm; this is the range in which the delta layer is moved from the cen-
ter to the edge of the quantum well and there is no change in the depth of the
well. Already for the range ξ > 5nm, these two states tend to come together;
this is because the delta layer comes out of the well, giving rise to the origin
of a new quantum well, and the system behaves as a coupled double quantum
well system.

In Figure 3-4 are shown the lowest energy levels for a confined electron in a
GaAs/AlGaAs as a function of the on-center nd-parameter, Figure 3-4(b). Fi-
gures 3-4(a) and 3-4(c) show the confinement potential and the probability
density for nd = 1.0× 1025 (1/m3) and nd = 4.5× 1025 (1/m3), respectively. Fi-
gure 3-4(a) shows the quantum well system with L = 10nm, ξ = 0, δ = 2nm,
and nd = 1.0×1025 (1/m3). As the donor density is lower, there is no significant
change in the barrier regions and in the well, only a decrease of approxima-
tely 0.06 eV. The Fermi level must change when the donor density decreases;
in this case, it takes a value of 0.13 eV (shaded region) and corresponds to
the occupation of the ground state (see the black curve in Figure 3-4(a)). Fi-
gure 3-4(c) shows the same system but now increasing the donor density to
nd = 4.5×1025 (1/m3), keeping the other parameters the same. Firstly, it is
evident that the increase in donor density generates a deeper quantum well in-
side the initial well (compare Vc(x) with V(x)). On the other hand, the states
present a slight decrease concerning zero energy, and the probability density
tends to be a little more localized around the point x = 0. In Figure 3-4(b),
the energy levels are presented as a function of the donor density nd for the first
three states, fixing the width of the well, the position of the delta layer, and
the width of the delta layer. The Fermi level again corresponds to the dashed
line and presents a monotonically increasing behavior which is the result of the
increase in the number of charge carriers with the increase of nd. For the lowest
density, i.e., for nd = 1.0×1025 (1/m3), only the ground state is occupied; for
nd > 1.75 × 1025 (1/m3) there begins to be an occupation of the first excited
state. As the donor density increases, the bottom of the well begins to decrease
towards lower energies, like all confined states. However, it should be noted that
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the relative distance between the bottom of the conduction band (bottom of
the quantum well) and each one of the states presents an increase originated
by the increase in confinement; that is, the electrons feel a greater height well
with the increase of nd.

Note how the redshift in the ground state is a little more pronounced than that
corresponding to the first excited state with the increase in donor density, this
implies that the intersubband spacing E21 increases and therefore, it is expected
that a blue shift is generated in the optical absorption peaks (Figure 3-7(d)),
similarly the increase in the electron density in the ground state causes an
increase in the intensity of the absorption peaks, as will be seen later. It should
be noted that this behavior has been experimentally demonstrated [8] and in
uniformly doped QWs, the enhancement of intersubband transition energy with
Nd is mainly attributed to a depolarization shift effect, which is a many-particle
effect [9, 10].

3.2. Hartree potential and electron density

Figure 3-5 shows the self-consistent Hartree potential as a function of position
x. In (a) varying the L, in (b) varying the δ, in (c) varying the ξ, and in
(d) varying the nd. In each case, when one parameter is changed, the others
are set to L = 10 nm, ξ = 0, δ = 2 nm, and nd = 4.5×1025 (1/m3). All
figures 3-5(a-d) have been put on the same scale for comparison purposes. Note
that the Hartree potential with the smallest value is the one corresponding
to nd = 1.0×1025 (1/m3) (black curve in Figure 3-5(d)), that is, with this
density value of the delta layer, there are no major modifications in terms of
the bottom profile of the conduction band, since it is a value comparable to the
electron confinement potential (V0); this has been shown previously in Figure
3-4(a) comparing the potentials Vc(x) and V(x). The increase in the donors
density generates an increase in the electrostatic potential, as can be seen in
the red curve of Figure 3-5(d). This is due to the increase in the charge density
associated with the increase in the donor density and the electronic occupation
of the ground state and the first excited state generated by the increase in Fermi
energy, this is evidenced in figures 3-4(a) and 3-4(c). Figure 3-5(b) shows the
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Figure 3-4.: (a) and (c): Self-consistent potentials V(x) with a solid line in
navy color, and electron confinement potential Vc(x) in black
dashed line. Figure (a) corresponds to nd = 1.0×1025 (1/m3)
and figure (c) to nd = 4.5×1025 (1/m3). For both figures the pa-
rameters L = 10nm, ξ = 0nm, and δ = 2nm have been set. In
both figures, the probability densities of some confined states have
been included. The shaded region indicates the occupied states,
and the maximum of said region corresponds to the energy Fermi
level. Figure (b) represents the energy of the confined states as
a function of nd-parameter; the dashed line is the self-consistent
Fermi level Ef .
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significant increase in the Hartree potential due to the increase in the doped
region going from δ = 1nm to δ = 5nm (black and red curves respectively);
this modification explains the increase in the depth of the quantum well in
Figure 3-2(c) and the change in the shape of the barrier region because the
potential takes values comparable to the barrier potential V0 for points in the
region x < −5nm and x > 5nm (see the red curve in Figure 3-5(b)). The
increase in the Hartree potential is due to the fact that the system increases
the region of the doped layer δ, keeping the donor density nd fixed in this region,
this implies that there must be an increase in the number of charge carriers,
this is evidenced by a much higher electron occupancy in excited states (as
presented in Figure 3-2(c)) thus increasing the charge density and therefore
the electrostatic potential.

On the other hand, Figure 3-5(a) shows an increase in the electrostatic po-
tential caused by the increase in the well width, going from L = 10nm to
L = 25nm. Although there is no change in the donor density, the increase in
the well width generates a decrease in the confinement and therefore, a decrease
in the energy of each state, thus allowing a higher occupancy of states (see Fi-
gure 3-1(c)), which implies a greater contribution to the charge density, which
generates an effective increase in the electrostatic potential.

Finally, in Figure 3-5(c) comparing the black curve that corresponds to ξ = 0

with the red curve that is for ξ = 10 nm, the asymmetry originated in the po-
tential of Hartree by the position of the delta layer that induces an asymmetry
gives rise to a second potential well at the bottom of the conduction band as
previously presented in Figure 3-3(c) with asymmetric states. Note the increase
in the intensity of the electrostatic potential with the change in the doped layer
position, this is due to the fact that the system went from having a single well
to having two wells and therefore a decrease in the confinement of the system
was generated, and consequently, a decrease in the energy of each state. This
implies a greater number of occupied states (see Figure 3-3(c)) since the Fermi
level remains fixed for the modification of ξ since the number of charge carriers
per volume unit does not change. A consequence of the above is an increase in
the charge density and therefore in the Hartree potential according to Poisson’s
equation.
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Figure 3-5.: Self-consistent Hartree potential as a function of x-position. In
(a) varying the L, in (b) varying the δ, in (c) varying the ξ,
and in (d) varying the nd. In each case, when one parameter is
changed, the others are set to L = 10nm, ξ = 0, δ = 2nm, and
nd = 4.5×1025 (1/m3).
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Figure 3-6 shows the electron density as a function of x-position. In (a) varying
the L, in (b) varying the δ, in (c) varying the ξ, and in (d) varying the nd.
In each case, when one parameter is changed, the others are set to L = 10nm,
ξ = 0, δ = 2 nm, and nd = 4.5×1025 (1/m3). Again all four figures have been
put on the same scale to allow for better comparison. In Figure 3-6(a), the elec-
tron density is compared for two different widths of the quantum well. As the
fact of increasing L does not generate changes in the donor density, therefore in
magnitude, the density must remain fixed, only its distribution changes; that is,
for L = 10 nm, the electrons are more localized in the central region between
-5 nm< x <5 nm. On the other hand, for L = 25nm, the electrons lose the
location, now located in a much larger region between -12.5 nm< x <12.5 nm
keeping the number of electrons per unit volume fixed. Additionally, as pre-
sented in Figure 3.1(c), the electron density for L = 25nm must contain the
contribution of two occupied excited states that have high probability density in
regions close to each barrier, increasing the electronic density in these regions.

Figure 3-6(b) compares the electron density for two widths of the doped layer
δ = 1nm and δ = 5nm. Since there is no change in the well width, the electrons
are distributed mainly in the region between -5 nm< x <5 nm. The electron
density magnitude is greater for δ = 5nm since the donor density in nd =

4.5×1025 (1/m3) and these are distributed in a greater volume, then the number
of charge carriers must increase as clearly seen by comparing the red curve with
the black one. Figure 3-6(c) compares the electron density for two different
positions of the same doped delta layer: ξ = 0 and ξ = 10nm, located 5 nm
to the right of the edge of the well. In the case ξ = 0, again, the electrons
are distributed inside the GaAs well, while in the case of ξ = 10nm, most of
the electrons are already in the AlGaAs region located in the well generated
by the doped delta layer. Although a part of electrons remains even inside the
initial well, this distribution is because the well generated by the delta layer
has a slightly greater width than the initial well that it is modified by the
Hartree potential; this being sharper, and therefore the electrons tend to be
in the region of least confinement (see Figure 3-3(c). Finally, Figure 3-6(d)
compares the electron density for two different donor densities in the delta layer
nd = 1.0×1025 (1/m3) and nd = 4.5×1025 (1/m3) corresponding to the black
and red curves respectively. In this case, the increase in nd directly causes an
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increase in the number of negative charge carriers that are concentrated inside
the quantum well, which is only modified in its depth.

3.3. Linear optical absorption coefficient and
EIT

The Figure 3-7 shows the absorption coefficient calculated according to the
equation (2-55) between the states Ψ0 and Ψ1 (shaded curves. The absorption
curves have been multiplied by 5) as a function of the incident photon energy.
The unshaded curves correspond to the calculation of the EIT between the first
three states of the system calculated via equation (2-139). In (a) varying the
L, in (b) varying the δ, in (c) varying the ξ, and in (d) varying the nd. In
each case, when one parameter is changed, the others are set to L = 10nm,
ξ = 0 δ = 2nm, and nd = 4.5×1025 (1/m3). In Figure 3-7(a) we see that
the absorption coefficient corresponding to the system with L = 10nm has
a greater intensity than the one corresponding to L = 25 nm; this is since
the matrix element |M01|2 corresponding to the system with the smallest L is
higher. On the other hand, the photon absorption occurs at a higher energy of
125.6 meV for L = 10nm compared to the 97.3meV of L = 25nm. This is to be
expected since the states for a smaller L are further apart. As the L is increased,
more states enter the system and confined states begin to come together, as can
be seen in Figure 3-1. In Figure 3-7(b), we see that the peak of the absorption
coefficient for δ = 1 nm occurs at 107.1 meV, while for δ = 5 nm occurs at
143.2 meV; this is because increasing the width of the doped layer increases
the Hartree potential and therefore the depth of the quantum well, causing the
entry of new states and reduction of separation of already confined states, this
behavior is evidenced in Figure 3-2. In Figure 3-7(c), we see that the maximum
peak of the absorption coefficient corresponds to the system with ξ = 0 for an
energy of 125.5 meV, compared to the 42.7 meV of the delta layer located in
the asymmetric system ξ = 10nm. The explanation for this behavior is evident
from the analysis of Figure 3-3, in which the states Ψ0 and Ψ1 are closer when
the delta layer is in the center of the quantum well, whereas when the delta layer
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Figure 3-6.: Electron density as a function of x-position. In (a) varying the L,
in (b) varying the δ, in (c) varying the ξ, and in (d) varying the
nd. In each case, when one parameter is changed, the others are
set to L = 10nm, ξ = 0, δ = 2nm, and nd = 4.5×1025 (1/m3).
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moves up to ξ = 10nm, a double quantum well system is generated, giving rise
to the appearance of new confined states and a decrease in the transition energy
between the ground state and the first excited state (see black and red curves of
Figure 3-3(b)). Note the significant difference in magnitude of the absorption
peaks, the peak corresponding to ξ = 0 nm being much larger than that of
ξ = 10nm, this is due to the fact that for ξ = 0nm, both the ground state and
the first excited state are very localized inside the quantum well, however, when
the system goes to ξ = 10 nm, these states have a main location in different
positions of x (see Figure 3-3(c)), which decreases the matrix element |M01|2
and therefore the intensity of the linear optical absorption peak.
Finally, in Figure 3-7(d), the absorption peak is given at 95.6meV for the sys-
tem with nd = 1.0×1025 (1/m3) and of a significantly smaller magnitude than
for nd = 4.5×1025 (1/m3) which takes a value of 125.7 meV. This behavior can
be understood through Figure 3-5(c), which shows that the increase in the
donor density causes an increase in the Hartree potential, and as a consequence
of this, a deeper quantum well is generated (see Figure 3-4), causing a separa-
tion of the confined states and particularly an increase in the transition energy
corresponding to Ψ0 → Ψ1. The increase in transition energy with increasing
donor density for GaAs/AlGaAs QW was reported experimentally by Sasagawa
et al. [8] in 1998.
The maximum absorption energy is presented for the set of parameters L =

10nm, ξ = 0, δ = 5nm, and nd = 4.5×1025 (1/m3) with an energy of 143.2 meV
represented by the shaded red curve of Figure 3-7(b).

According to the absorption coefficient, the EIT has been calculated, which,
as stated in the theoretical framework, requires three confined states. In this
calculation, the ground state and the first two excited states have been taken
Ψ0, Ψ1, and Ψ2 in a cascade configuration for each of the configurations pre-
sented in Figure 3-7. The emergence of the EIT effect requires the coupling
between the states Ψ0 − Ψ1 and Ψ1 − Ψ2, the Rabi frequency associated with
the control field Ωc, and the natural decay rates of the states γ01 and γ02 (see
Table 3-1). These decay rates are of great importance in this effect as they
govern the magnitude of the resonant structures. Note that in each of Figure 3-
7(a-d), when the control field is turned on (through the frequency ωp between
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Figure 3-7.: In each figure, the shaded curves represent the absorption coef-
ficient calculated according to the equation (2-55) between the
states Ψ0 and Ψ1 (the absorption curves have been multiplied by
5), the unshaded curves correspond to the calculation of the EIT
between the first three states of the system calculated using (2-
139). In (a) varying the L, in (b) varying the δ, in (c) varying the
ξ, and in (d) varying the nd. In each case, when one parameter
is changed, the others are set to L = 10nm, ξ = 0nm, δ = 2nm,
and nd = 4.5×1025 (1/m3).



3.3 Linear optical absorption coefficient and EIT 75

states Ψ1 − Ψ2), the points of maximum absorption now change and they are
points of minimum absorption (see red and black unshaded curves in Figures
3-7(a-d)), that is, the system has become almost transparent for the frequency
at which its absorption was maximum due to the coupling of a third state with
an external control field. This is a quantum interference effect between three
states with the application of two external electromagnetic fields as explained
in Section 2.3. The behavior is complementary to that explained above for opti-
cal absorption, note that the EIT, like linear absorption, is proportional to the
matrix element |M01|2, for this reason, the intensity of the EIT peaks change
in magnitude proportionally to the absorption peaks.

In the calculation of the optical absorption, the system has been restricted to
only two levels and interaction with a single mode of the electromagnetic field
(semiclassical approximation). This consideration is valid whenever the two le-
vels involved are in resonance or close to resonance with the external field and
the remaining states are highly detuned with said field or are inaccessible sta-
tes. It has been shown that, under some realistic approaches, by means of this
scheme it is possible to extract essential physical characteristics of the systems
under interaction with an external field [11, 12].
In the studied system, there is the advantage of having calculated the Fermi
level for each layout, thus, the occupancy level of each of the electronic states
of the system is clearly visualized. In this section, it is evident that the occu-
pation for all the dispositions varies between 1 and 4 states, with the lowest
energy, in addition, considering that the calculations have been carried out at
room temperature, the upper states close to the Fermi level may correspond to
semi-occupied states. This indicates that, regarding the calculation of optical
properties such as linear absorption or EIT in this model, it does not make
sense to calculate transitions between higher states (beyond the fourth excited
state) since these correspond to unoccupied states.
For the case of an external electromagnetic field with an energy close to reso-
nance between the ground state and the first excited state, in this system, the
approximation at two levels for the absorption calculation or three levels for the
EIT is not so bad as mentioned in the previous paragraph. The results show
that the energy for the maximum absorption in general differs from the energy
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difference between the excited states, allowing a reasonable approximation for
such cases. On the other hand, the excited states that present energy differences
close to the energy of the external field could present absorption and electronic
transitions as long as the occupation of said states allows it. In the event of the
latter, it would be expected to obtain an absorption peak in an energetic posi-
tion very similar to the one calculated, but with a generally different intensity
and amplitude, since the wave functions involved are modified and, therefore,
the matrix elements will also change.
In the case of the 3-level model used, it is possible to demonstrate, in addition
to the EIT, the generation of states that do not absorb or emit photons due
to quantum interference as long as the system presents a superposition of two
states initially, this type of state is known as dark states [11, 13]. An additional
effect that could be evidenced is a lasing without inversion (LWI) effect, this
can occur whenever the states are properly prepared [11, 14]. The additional
effects mentioned can be carried out in the studied system based on the 3-level
model used as future complementary works.
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4. Conclusions

The effects of a doper layer on the optical absorption coefficient and the EIT in
a GaAs/AlGaAs QW have been studied using a self-consistent coupling forma-
lism between the Schrödinger, Poisson, and charge neutrality equations. The
induced modification to the conduction band due to the electrostatic poten-
tial originated by the charge carriers has been considered. Modifications in the
well width increase the number of confined electron states, which generates
modifications in the electronic density and, therefore, in the linear absorption
coefficient. Consequently, an appreciable decrease in the intensity of the absor-
ption peak and a redshift in the resonance energy have been observed; a similar
behavior is evident in the EIT. It has been found that, by increasing the doped
layer width, a deeper QW is generated, and, as a consequence of this, the con-
fined state’s occupation is significantly increased; a similar effect is observed on
the transition energy between them. An immediate consequence of the above is
an increase in the electron density, the electrostatic potential, and a blue shift
with higher intensity absorption peaks. On the other hand, when the position
of the doped delta layer is modified, keeping its width fixed at 2 nm, and the
three-dimensional doping density at nd = 4.5×1025 (1/m3), the self-consistent
potential profile becomes completely asymmetric and gives rise to a double-well
system. These modifications increase the number of confined states simultaneo-
usly with a decrease in transition energies. Direct consequences on the optical
properties of the system are observed: redshift of the peak position and a sig-
nificant decrease in the intensity of both the linear absorption coefficient and
the EIT. To finalize the system characterization, modifications were made in
the donor density, causing an increase in the electrostatic potential, electronic
density, and the number of occupied states. In this case, the transition energy
between states is higher, and therefore, there is a blueshift of the resonance
peak in linear absorption and a clear increase in its intensity. In this work,
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the possibility of tuning the optical properties, such as the linear absorption
coefficient and the EIT has been demonstrated using modifications in various
geometric and non-geometric system parameters, including the donor density.

The possibility of tuning the system through the EIT has allowed potential
applications as mentioned at the end of section 2.3, in the field of quantum
information technology the EIT has been identified as a possibility that facili-
tates the processing of quantum information of some qubits, in the same way,
the possibility of controlling the speed of light in optomechanical crystals of the
order of nanometers has been demonstrated. In the field of medicine, EIT has
recently been used as a type of biosensor, with good efficiency for the detection
of some cancer cells. In the field of optoelectronics, the possibility of tuning
the optical absorption coefficient by means of structural parameters and ex-
ternal fields in QWs has been demonstrated, allowing even applications in the
terahertz range. These are some of the potential applications that the type of
heterostructures characterized in this work could have, since they present the
possibility of modulating the characteristics of optical absorption and EIT.

Perspectives

As perspectives for the future, it is intended to apply the method to a system
with three-dimensional confinement (such as a quantum dot for example) and
to study the optical response considering excitonic properties (which implies re-
solving not only the electron but also the hole and its interaction), initially work
on a system with multilayer spherical symmetry and extend the calculations for
a system with other types of symmetry (ellipsoid for example).



A. Python Self-Consistent
Code

This section includes the self-consistent code used for the work calculations.

import numpy as np
import matplotlib.pyplot as plt
from scipy.sparse import diags
from scipy.sparse.linalg import eigs
from scipy.integrate import solve_bvp
from scipy import optimize
from findiff import FinDiff

####### Parameters #########
L = 10 # well length in nm
Ldelta = 2*10**(-9) # delta layer length in m
Ld = 2 # delta layer length in nm
hbar = 1.054*10**(-34) # reduced Plank constant en J*s
m0 = 9.1093837015*10**(-31) # free electron mass in kg
qe = 1.602*10**(-19) # electron charge in C
kb = 1.380649*10**(-23) # Boltzman constant in J/K
Vba = 0.228 # potential height in eV
meff = 0.067*m0 # electron effective mass GaAs
eps0 = 8.8542*10**(-12) # vacuum permittivity in F/m
epsr = 12.35 # relative permittivity GaAs
T = 300 # temperature in K
nd3D = 4.5*10**(25) # electron density in 1/m^3
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nd2D = nd3D*Ldelta # electron density in 1/m^2
Cte1 = hbar**2/(2*meff)/10**(-18)/qe # in eV*nm^2
Cte2 = (meff*kb*T)/(np.pi*hbar**2) # in 1/m^2
infy = 100 # system infinite
zi = 0 # delta layer position zi (nm)

##############################################
N = 2001 # number of points to calculate
x = np.linspace(-infy, infy, N) # define our grid
dx = (2*infy)/(N-1)
###############################################
# initial potential
def V1(z,L):
if -L/2<=z<=L/2:
return 0.0
else:
return Vba
def V2(z,L):
if -L/2-0.8*infy <=z<= L/2+0.8*infy:
return 0.0
else:
return 10
def V(z,L):
return V1(z,L)+V2(z,L)
###########################################################
###########################################################
# delta layer difining
def g1(z):
return np.piecewise(z, [z<=-Ld/2+zi, z>-Ld/2+zi], [nd3D, 0])
def g2(z):
return np.piecewise(z, [z<=Ld/2+zi, z>Ld/2+zi], [nd3D, 0])
def Nd(z):
return g2(z)-g1(z)
##########################################################
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Naut = 100 # maximum number of iterations
tol = 0.1 # tolerance for the Fermi level in meV
LL = 10 # initial width of the Well
longWell = []
autovalores = []
Efj = []
while LL < 25.5: # maximum width of the well in nm
# Writing the potential as an array
V00 = [V(i,LL) for i in x]
V0 = np.array(V00)
#*****************************************
jj = []
error = []
Ef_int = []
Vn = np.zeros(V0.size)
for j in range(0,Naut+1):
if j == 0:
Vn = V0
else:
Vn = 0.95*Vn + 0.05*(V0 - y/qe) # new potential in eV

H = -Cte1*FinDiff(0, x[1]-x[0], 2).matrix(x.shape) + diags(Vn)
energies, states = eigs(H, which=’SM’, k=10)
def Psi(jj,z):
I2 = []
for i1 in range(0,N):
xp = -infy + i1*dx
fun = abs(float(states[:, jj].real[round(float(xp + infy)/dx)]))**2
I2.append(fun)
Norm = sum(I2)*dx*10**(-9)
return float(states[:, jj].real[round(float(z + infy)/dx)])/np.sqrt(abs(Norm))
def Ndd(Ef,nn):
I=[]
for i2 in range(0,nn+1):
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valor = Cte2*np.log(1 + np.exp(qe*(Ef-energies[i2])/(kb*T)))
I.append(valor)
total = sum(I)
return total
def f(Ef):
return nd2D - Ndd(Ef,3)
Eff = np.real(optimize.newton(f, 0.1))
def n(z1,nn): # electron density in 1/m^3
II=[]
for i3 in range(0,nn+1):
valor = np.real(Cte2*np.log(1 + np.exp(qe*(Eff-energies[i3])/(kb*T)))*abs(Psi(i3,z1))**2)
II.append(valor)
total = sum(II)
return total
A = np.zeros((N, N))
A[0, 0] = 1
A[N-1, N-1] = 1
for i4 in range(1, N-1):
A[i4, i4-1] = 1
A[i4, i4] = -2
A[i4, i4+1] = 1
b = np.zeros(x.size)
for i5 in range(1, N):
b[i5] = dx**2*float(qe**2*(n(x[i5],3) - Nd(x[i5]))/(eps0*epsr))*10**(-18)
y = np.linalg.solve(A, b) # Hartree potential in J
print(’L_well=’,LL, ’iter=’, j, ’ Ef = ’, Eff)
Ef_int.append(Eff)
if j>0 and np.abs(Ef_int[j]-Ef_int[j-1])*1000 < tol:
break
print(’********************************************’)
Efj.append(Eff)
autovalores.append(energies)
longWell.append(LL)
LL = LL + 1.0
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