Table 3

curve.

Classification results obtained with DTI-based features using a linear SVM classifier when differentiating CN (n=46) from pMCI (n=24) subjects. The balanced accuracy, sensitivity and specificity were averaged over 250 runs for no sampling classifications, and 10*250 runs for undersampling classifications. AUC: area under the receiver operating characteristic (ROC)

			Balanced		
Task	Feature	AUC	Accuracy	Sensitivity	Specificity
46 CN	WM-FA	0.60	0.58	0.85	0.32
	GM-FA	0.77	0.65	0.87	0.43
	WM+GM- FA	0.78	0.66	0.88	0.44
Vs	WM-MD	0.56	0.65	0.84	0.47
24 pMCI	GM-MD	0.55	0.61	0.80	0.42
	WM+GM- MD	0.54	0.61	0.83	0.4
24 CN	WM-FA	0.59	0.61	0.70	0.52
	GM-FA	0.70	0.66	0.71	0.60
	WM+GM- FA	0.76	0.69	0.75	0.63
Vs	WM-MD	0.33	0.63	0.88	0.37
24 pMCI	GM-MD	0.59	0.65	0.72	0.58
	WM+GM- MD	0.62	0.66	0.77	0.55

Table 4

Classification results obtained with DTI-based features using a linear SVM classifier when differentiating sMCI (n=54) from pMCI (n=24) subjects. The balanced accuracy, sensitivity and specificity were averaged over 250 runs for no sampling classifications, and 10*250 runs for undersampling classifications. AUC: area under the receiver operating characteristic (ROC) curve.

Task	Feature	AUC	Balanced Accuracy	Sensitivity	Specificity
54 sMCI	WM-FA	0.49	0.48	0.32	0.64
	GM-FA	0.48	0.52	0.25	0.78
	WM+GM- FA	0.49	0.52	0.22	0.81
Vs	WM-MD	0.49	0.49	0.66	0.32
24 pMCI	GM-MD	0.44	0.51	0.52	0.50
	WM+GM- MD	0.45	0.50	0.65	0.35
24 sMCI	WM-FA	0.50	0.47	0.47	0.47
	GM-FA	0.50	0.57	0.54	0.59
	WM+GM- FA	0.48	0.56	0.56	0.56
Vs	WM-MD	0.54	0.48	0.56	0.41
24 pMCI	GM-MD	0.45	0.53	0.41	0.65
	WM+GM- MD	0.44	0.54	0.43	0.65

P2-452

TAU ACCUMULATION IN RHINAL CORTEX IS ASSOCIATED WITH MEMORY PERFORMANCE IN NONDEMENTED YOUNG ADULTS WITH AUTOSOMAL DOMINANT ALZHEIMER'S DISEASE

Justin S. Sanchez¹, Reisa A. Sperling², Francisco Lopera³, Jean Augustinack⁴, Alex Becker¹, Heidi IL. Jacobs⁵, David Jin¹, Samantha Katz¹, Evelyn Luner¹, Kirsten Moody¹, Julie C. Price⁶, Edmarie Guzman-Velez⁷, Ana Baena³, Enmanuelle Pardilla-Delgado⁷, Kewei Chen⁸, Eric M. Reiman⁹, Keith A. Johnson¹⁰, Yakeel T. Quiroz¹¹, ¹Massachusetts General Hospital, Boston, MA, USA; ²Center for Alzheimer Research and Treatment, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; ³Grupo de Neurociencias, Universidad de Antioquia, Medellin, Colombia; ⁴Massachusetts General Hospital, Charlestown, MA, USA; ⁵Alzheimer Center Limburg, Maastricht University, Maastricht, Netherlands; ⁶University of Pittsburgh, Pittsburgh, PA, USA; ⁷Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ⁸University of Arizona, Tucson, AZ, USA; ⁹Arizona Alzheimer's Consortium, Phoenix, AZ, USA; ¹⁰Department of Radiology, Division of Molecular Imaging and Nuclear Medicine, Massachusetts General Hospital, Boston, MA, USA; ¹¹Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA. Contact e-mail: justin.sanchez@mgh. harvard.edu

Background: We previously reported that asymptomatic Presenilin-1 (PSEN1) mutation carriers have elevated tau levels in entorhinal cortex in their late 30s, an average of six years before their estimated clinical onset (Quiroz et al., 2018). Here we build on these results using an anatomically-defined rhinal cortex region, hypothesized to be the initial site of cortical tau deposition in non-demented individuals genetically-determined to develop Alzheimer's disease in their mid-forties (median age 44 \pm 2 years). Methods: Forty non-demented family members (age range: 28-45) from the Colombian kindred (12 cognitively unimpaired and 4 symptomatic PSEN1 carriers, 24 non-carriers) underwent structural MRI, PiB-PET, Flortaucipir (FTP)-PET, and cognitive testing (CERAD Battery). FTP SUVRs were sampled onto the cortical surface, and mean SUVRs were computed for FreeSurfer-defined entorhinal (EC) and inferior temporal (IT) cortical ROIs, as well as a surface curvature-derived rhinal cortex (RC) region surrounding the anterior collateral sulcus within a 6mm radius. Spearman correlations were used to characterize the relationship between tau PET, amyloid PET, age, and cognitive measures. Results: Elevated levels of RC and EC tau were seen in 9 of 11 amyloid-positive carriers, as young as 36 years of age, approximately 8 years prior to symptom onset. In the whole sample, RC tau was significantly associated with MMSE (r=-.317, p=.046) whereas EC and IT tau were not (p=.066, p=.066).225, respectively). RC and IT tau were significantly associated with age (p<.03), while EC tau was not (p=.194). RC, EC and IT tau were significantly associated with mean cortical PiB DVRs (p<.002). Further, higher levels of EC, RC and IT tau were associated with worse performance on memory measures (p<.05). RC tau had a slightly stronger association with performance on the CERAD Constructional Praxis Recall, compared to EC and IT tau (EC: r=-.72, p=0.002; IT: -.51, p=.05; and RC: r= -.75, p=.001). Conclusions: These observations suggest that the rhinal cortex, defined on the basis of individual sulcal anatomy, may be useful for detecting early signs of tau pathology and memory loss. Longitudinal analysis currently underway will help to elucidate the progression of RC tau and its contribution to cognitive decline.

P2-453

DIAGNOSTIC ACCURACY OF VARIOUS WHITE MATTER HYPERINTENSITY (WMH) INDEXES AND DTI MEASURES FOR DIAGNOSING ALZHEIMER'S DEMENTIA

Ji Won Han¹, Subin Lee², Euna Choi², Haejin Kim³, Hyunna Lee⁴, Seung Wan Suh¹, Ju Ri Lee¹, Seonjeong Byun¹, Jae Hyoung Kim¹, Ki Woong Kim^{1,2,5,6}, ¹Seoul National University Bundang Hospital, Seongnam, South Korea; ²Seoul National University College of Natural Sciences, Seoul, South Korea; ³Seoul National University, Seoul, South Korea; ⁴Ulsan University College of Medicine, Seoul, South Korea;