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 Abstract 
  Objective:  Analyze the information contained in homozy-
gous haplotypes detected with high density genotyping. 
 Methods:  We analyze the genotypes of  � 2,500 markers on 
chr 22 in 12 population samples, each including 200 indi-
viduals. We develop a measure of disequilibrium based on 
haplotype homozygosity and an algorithm to identify ge-
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nomic segments characterized by non-random homozygos-
ity (NRH), taking into account allele frequencies, missing 
data, genotyping error, and linkage disequilibrium.  Results:  
We show how our measure of linkage disequilibrium based 
on homozygosity leads to results comparable to those of  R  2 , 
as well as the importance of correcting for small sample vari-
ation when evaluating  D  � . We observe that the regions that 
harbor NRH segments tend to be consistent across popula-
tions, are gene rich, and are characterized by lower recom-
bination.  Conclusions:  It is crucial to take into account LD 
patterns when interpreting long stretches of homozygous 
markers.  Copyright © 2006 S. Karger AG, Basel
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 Identification of excess homozygosity in genotype 
data may provide valuable information for a wide range 
of population genetic investigations and also may indi-
cate genomic variations that are associated with diseases. 
The level of homozygosity at a single marker reflects the 
age of the polymorphism, population structure and his-
tory, and possibly the effect of selection. Excess joint ho-
mozygosity of contiguous markers (haplotype homozy-
gosity) can be a signature of selective pressure, linkage 
disequilibrium, inbreeding, and variations in copy num-
bers.

  Until recently it was not feasible to assess fine-scale 
homozygosity in the human genome in a systematic man-
ner or on a large scale. It is now evident that high resolu-
tion genotype data provide the information needed for 
such assessment. For example, several datasets of high 
density genotypes have shown that long stretches of ho-
mozygosity are unexpectedly common, and possibly re-
flect the effects of either inbreeding or selection. Esti-
mates of homozygosity in genotype datasets can also be 
used for a variety of statistical analyses, for example, as a 
measure of linkage disequilibrium. One of the beauties of 
homozygosity-based measures is that, often, they do not 
require phasing of the data. This is a particularly appeal-
ing feature for analyzing large genotype datasets that are 
now available (see for example references  [1–3]  for a re-
view of undergoing studies).

  To explore several questions involved in identifying 
and interpreting homozygosity patterns in large geno-
type datasets, we analyzed a dataset consisting of about 
2,500 SNPs on human chromosome 22 in 12 different 
population samples, each with about 200 individuals  [4] . 
In particular, we were interested in exploring the rela-
tionship between homozygosity and linkage disequilib-
rium (LD) (see, for a review, our previous work in  [5] ). 
With this goal in mind, we conducted a two-fold anal-
ysis.

  On one front, we define a new measure,  Hvol , which is 
constructed by normalizing the levels of homozygosity 
using a volume test approach  [6, 7]  and is robust to small 
sample variation. For comparison purposes, we also con-
sider a volume-test version of  D  � . We find out that mea-
sures based on homozygosity are successful in capturing 
the pattern of LD detected by  D  �  and, especially, by  R  2 . 
Additionally, we are able to verify that volume measures 
avoid the inflation due to small sample sizes that charac-
terizes  D  � .

  On another front, we propose an algorithm to identify 
genomic regions that, on the basis of their homozygosity 
levels, are likely candidates for IBD, genomic loss, and/or 

selection. Our approach is based on a model that leaves a 
certain degree of ambiguity on the origins of homozygos-
ity (in particular, IBD or genomic loss can be equivalent 
interpretations). This approach allows us to identify seg-
ments of ‘non random homozygosity’ (NRH) whose ge-
netic origin will be investigated on the basis of data other 
than genotypes.

  The paper is organized as follows. In section 1, we 
briefly describe the dataset with particular reference to 
the levels of homozygosity. In section 2, we introduce the 
measure  Hvol  and describe the results of its evaluation on 
this dataset. Section 3 introduces a model for the identi-
fication of NRH segments, and discusses the possible in-
terpretations for NRH segments together with the results 
of its application to our dataset.

  1 The Genotyped Samples 

 In this analysis, we study eleven isolated populations 
and one European-derived (CAU) population. The elev-
en isolated populations are Antioquia, Colombia (ANT), 
Ashkenazi (ASH), Azores (AZO), Costa Rican Central 
Valley (CR), Southwestern Netherlands (ERF), Fin-
land – mainly early settlement – (FIP), Finland mixture 
of early and late settlement (FIC), late settlement Fin-
land, Kuusamo (FIK), Newfoundland (NFL), Afrikaner 
(SAF), and Sardinia, province of Nuoro (SAR). The Cau-
casian outbred sample consists of 60 parents from CEPH 
trios and 140 Caucasians from the Coriell Institute Hu-
man Variation Panel (CIHVP). The sample consists of 
200 individuals from each population. Samples were col-
lected through ongoing genetic studies of various com-
mon disorders; subjects included in this analysis were ei-
ther controls or parents of probands. In most popula-
tions, genealogy of the subjects was assessed, and it was 
documented that they were unrelated for at least several 
generations.

  A total of 2,486 SNPs were successfully genotyped, 
covering 34.2 Mb of chromosome 22, with an average 
(median) spacing of one marker every 13.8 (8.5) kb. Spe-
cifically, 78% of the gaps between markers were less than 
20 kb, and only 3.5% of gaps were greater than 50 kb. 
These markers were in Hardy-Weinberg equilibrium in 
all populations (after correcting for multiple testing) and 
were not monomorphic in any population. The twelve 
populations had similar numbers of markers with minor 
allele frequency (MAF)  ̂  10%, with percentages ranging 
from 10% in Antioquia to 14% in the Sardinian isolate. A 
detailed description of the genotype data, comparisons in 
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allele frequencies between populations, and evaluation of 
linkage disequilibrium patterns using LD maps can be 
found in Service et al.  [4] .

  Analysis of overall heterozygosity did not reveal any 
interesting pattern. The mean heterozygosity of the mark-
ers was similar in different populations and ranged from 
0.359 (Sardinia) to 0.373 (Antioquia). A moving average 
of homozygosity values across the chromosomal region 
also appeared fluctuating randomly around the mean 
value. Once, however, we started considering joint homo-
zygosity of near-by markers, we were able to observe some 
interesting features. Firstly, we noticed that when one in-

spects the homozygosity status of markers along the 
chromosome in one individual, homozygous markers 
tend to cluster (see  fig. 1 ). To some degree, this is to be 
expected because of linkage disequilibrium, as described 
by Sabatti and Risch  [5] . Furthermore, we noticed that in 
a number of individuals we were able to observe rather 
long stretches of homozygous markers (see  fig. 1 ). Such 
long haplotype homozygosity can be due to long range 
disequilibrium, can be the signature of selection  [8] , or 
indicate genomic regions that are identical by descent  [9] , 
or again be due to an imprecise genotype call that assigns 
the status of homozygous to a portion of the genome that 
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  Fig. 1.  Representation of genotypes in 10 individuals from Costa Rica. Each horizontal line corresponds to an 
individual, and each vertical line represents a SNP – whose position in Mb is given on the x axis. The white 
spaces represent the gaps between SNPs. An orange segment is used to denote a homozygous genotype, i.e. ei-
ther AA or aa; blue and cyan correspond, respectively, to heterozygous and missing genotypes. Samples 1 to 3 
have unusually long homozygous stretches; sample 4 and 5 have suspiciously long homozygous stretches; and 
samples 6 to 10 are representatives of the overall population. Note that in these samples, the number of ungeno-
typed SNPs is so small, that practically no cyan can be detected. 
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are really monozygous due to genomic loss  [10] . We were 
naturally interested in the reason behind the homozygos-
ity observed in our sample and decided to investigate it 
further. The next two sections will illustrate first the 
analysis based on pairwise disequilibrium measures and 
then the study of stretches of homozygous markers, in-
cluding a discussion of their origins.

  2 Measuring Linkage Disequilibrium 

 The connection between haplotype homozygosity and 
linkage disequilibrium has long been noted  [11] , and has 
been described in detail by Sabatti and Risch  [5] . Let us 
consider the case of two markers. The alleles at each of 
these markers can be used to define a partition of the hap-
lotypes. An element of the partition induced by one 
marker is defined by all the haplotypes that have the same 
allele at that marker. The level of haplotype homozygos-
ity can be used to define a measure of agreement between 
the partitions defined by markers one and two, with ex-
cess homozygosity (heterozygosity) corresponding to the 
case of more (less) agreement than expected by chance. 
Different levels of agreement among these partitions 
translate into different prediction power, given the allele 
at one marker, of the allele at the other marker in the hap-
lotype. When agreement is high, we have good prediction 
power, while low agreement makes prediction more chal-
lenging. Excess of haplotype homozygosity, then, corre-
sponds to cases where the  R  2  between the two SNPs is 
high. The relation between haplotype homozygosity val-
ues and  D  �  is, instead, more complex, as  D �   does not re-
ally track ‘predictability’ of one SNP given the other.

  While Sabatti and Risch  [5]  introduced measures of 
LD based on haplotype homozygosity with values in the 
range [–1,1], their applicability was hindered by the lack 
of explicit formulas for the required maximum and min-
imum values of haplotype homozygosity given the allele 
frequencies. A solution to this impasse is provided by the 
use of ‘volume measures’ of linkage disequilibrium. Sab-
atti  [6]  discusses these measures and their precedents in 
statistical literature  [12, 13] . Volume measures can be de-
fined directly on the table of observed haplotype counts, 
which results in their robustness to the effects of small 
sample sizes  [7] . For simplicity, we consider only the case 
of two biallelic markers (which is the relevant one here). 
Let A and B be two SNPs with alleles  A  1 ,  A  2  and  B  1 ,  B  2 , 
and let  n  be the number of observed haplotypes. We can 
summarize these in the table N:

1 2

1 11 12 1

2 21 22 2

1 2

B B
A n n n
A n n n

n n n

� �

�

� �

N

  where  n  i·  ( n  ·j ) indicated the sum of the elements in row 
(column)  i  (  j ). To define a volume measure of disequilib-
rium, one firstly needs to select a dissimilarity function, 
with which compare any table N against  E , the one ex-
pected under equilibrium, with entries  e  ij  =  n  i  �  n  �  j / n . We 
consider two such dissimilarities. One is defined only for 
biallelic markers and is the same evaluated in  D  � ; the 
 other is excess of homozygosity. Volume measures are, 
then, calculated considering the number of tables  T , with 
the same margins  n  i  · ,  n  ·j  as N, and lower dissimilarity 
with  E . 

   Specifically, let  �  1  denote the set of all contingency 
tables with the same row and column sums as the ob-
served table. Looking at the excess of homozygosity  H 
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     When  c  =  r  = 2, let  �  2  denote the set of all contingency 
tables with the same row and column sums as the ob-
served table and the same sign of ( n  11  –  n  1·  n  ·1 / n ) as in the 
observed table. Let 
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 We then define  Dvol  as 

� � � �� �
22

1
1 . M ' M

'

Dvol �
�

� � N N
N ��

 (2)

 Note that the above definitions use the strict inequal-
ity sign. The choice of  !  over  ̂   is irrelevant for large  n , 
but it makes a difference in the case of small  n , where 
strict inequality allows us to better discriminate against 
apparent associations due to small samples.

  Since LD measures based on homozygosity are prob-
ably not very familiar to the reader, we illustrate the rela-
tion between known measures such as  D  � ,  �  R  � , and Hvol, 
by calculating them on a subset of our data. We consid-
ered the haplotypes defined by consecutive SNPs in one 
of our population of interest and evaluated the three mea-
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sures on the sample haplotype frequencies.  Figure 2  pres-
ents the results. In this display we use  �  R  �  rather than  R  2 , 
as its values are more directly comparable with  D  � . In the 
data analysis that follows, instead, we will use  R  2 , as it has 
a more direct interpretation in terms of prediction power. 
In panel (a) the relation between  �  R  �  and  D  �  is illustrated: 
there are a number of tables with high  D  �  that have low 
 �  R  � . In this display red circles correspond to tables with 
excess heterozygosity and green circles to tables with ex-
cess homozygosity: clearly excess heterozygosity corre-

lates with low values of  �  R  � . The positive correlation be-
tween  �  R  �  and  Hvol  is explicitly illustrated in panel (b): 
high values of  �  R  �  translate in high values of  Hvol ; negative 
values of  Hvol  correspond to low values of  �  R  � ; and there 
are a number of cases where  Hvol  is equal or close to 1, 
while  �  R  �  does not have a very high value. These empirical 
relations between the values of  Hvol  and  �  R  �  mirror the 
similarity and differences between the notions of predic-
tion and agreement. Panel (c) indicates that the informa-
tion in  Hvol  is largely orthogonal to the one contained in 
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  Fig. 2.  Illustration of relationships among  D  � ,  �  R  � , and  Hvol . Panels  a–c  respectively show the relationships be-
tween  D  �  and  �  R  � ,  Hvol  and  �  R  � ,  D  �  and  Hvol . The points are 1,000 random samples from marker pairs with a 
distance less than 500 kb. The red circles represent tables with excess heterozygosity, i.e.  Hvol   ̂  0, and green 
circles represent tables with excess homozygosity, i.e.  Hvol   1 0. 
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some 22 in the Costa Rican population ac-
cording to four different measures.  D  � ,  R  2 , 
 Dvol  and  Hvol  are represented, respective-
ly, with a solid black, a solid red, a broken 
red, and a broken blue line. The average 
value of the measures, between markers 
that are within a 1.7 Mb window, is plotted 
against the middle point of the window, 
with the x axis representing the length of 
chromosome 22. 
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 D  � . Overall, the fact that  Hvol  is quite close to  �  R  �  suggests 
that one could use it as a substitute for  �  R  �  with multial-
lelic markers.

  To conduct a complete analysis of the linkage disequi-
librium patterns in the 12 population samples, we re-
stricted our attention to the SNPs with sample minor al-
lele frequencies larger than 0.1. We did so for uniformity 
with previous studies, such as the one conducted by Hinds 
 [2] , and to make sure that our results were not strongly 
influenced by the rare markers with exceptionally high 
homozygosity. This leads us to work with 1920 SNPs. 
Four measures,  D  � , Dvol,  R  2  and Hvol are calculated for 
each of the 1,842,240 pairs of SNPs. The results were 
summarized by averaging the measured disequilibrium 
within windows of 1.7 Mb sliding along chromosome 
22.

   Figure 3  reports the values of the four measures in the 
Costa Rican population. The observed relation between 
the measures is consistent across populations. In particu-
lar it can be noted that the average values of  Dvol  are 
lower than the ones of  D  � , while clearly exhibiting very 
similar patterns. This testifies that even if the sample size 
is moderately large (200 individuals) and only markers 
with MAF  1 0.1 are considered,  D  �  is inflated due to un-
observed rare haplotypes. Turning now our attention to 
 Hvol , one can note that its values are closer to the ones of 
 R  2  than to any other measure – not surprisingly, given 
that both measures are related to predictability.  Hvol  ap-

pears to have a higher dynamic range, with larger fluc-
tuations than  R  2 : this can be explained considering that 
 Hvol  takes negative values when the agreement is less 
than expected under independence, while  R  2  has its min-
imum value at zero, in correspondence with indepen-
dence.

   Figure 4  presents the pattern of Hvol across all the 12 
populations. The most striking aspect is the consistency, 
across populations, of the LD patterns, suggesting a fun-
damental role of recombination frequencies. Regions 
where disequilibrium is higher, allow to better identify 
differences across populations. In terms of mean values, 
FIK exhibits the highest level of disequilibrium and AZO 
the lowest. All of the observations above are consistent 
with the patterns detected for  D  �  and  R  2 , described in 
Service et al.  [4] .

  3 Long Stretches of Homozygous Genotypes 

 As mentioned in the introduction, stretches of adja-
cent homozygous markers can be signatures of a number 
of interesting genetic phenomena. In the previous section 
we have already underscored how linkage disequilibrium 
between markers in a region can significantly increase 
their joint homozygosity. An analysis of extended haplo-
type homozygosities in different populations can be 
found in Sabatti and Risch  [5] . In addition to this, it is 
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important to keep in mind that selective sweeps substan-
tially reduce diversity in the neighborhood of the selected 
gene, and thus increase the frequency and length of ho-
mozygous segments  [8] . Furthermore, the genome of in-
bred individuals contains regions that are identical by de-
scent and that result in stretches of homozygous geno-
types  [9, 14] . It is important to recover the boundaries of 
IBD segments, for example, for gene mapping purposes. 
Yet another phenomenon that gives rises to stretches of 
homozygous genotypes is genomic loss, and, more gener-
ally, copy number variation. Genotyping technology is 
unable to accurately determine the number of copies of a 
given genomic region, so that a haploid segment will be 
classified as a homozygous diploid  [15] , and segments 
that have high copy numbers are also likely to be scored 
as homozygous as the signal coming from the multiple 
copies on one chromosome overpowers the one from the 
normal chromosome. Recently a number of studies  [16, 
17]  have underscored the higher than expected preva-
lence of variation in copy number in the genome. Their 
identification is important to correctly interpret results 
highlighting linkage and/or association between a phe-
notype of interest and genomic regions.

  As all of these different genetic processes result in ho-
mozygous segments, it is difficult to distinguish them 
through the analysis of genotype data alone. Fortunately 
other data are usually available. Information on raw val-
ues recorded during the genotyping reaction can help 
identify copy number variations. A comparison of the lo-
cation of homozygous segments across individuals can 
help separate subject specific effects (likely due to in-
breeding) from population ones (that may reflect varia-
tion in recombination rate and/or selection). In order to 
engage in this more complex analysis, however, one needs 
to initially identify homozygous stretches that are war-
ranted the researcher’s attention, as adjacent markers 
may happen to be jointly homozygous by no more excit-
ing reasons than random chance. Indeed, a quick look at 
 figure 1  makes quite evident that, within each individual, 
homozygous and heterozygous markers tend to cluster. 
In order to identify homozygous segments that are rea-
sonable candidates for regions that are identical by de-
scent or that vary in copy number, for example, one needs 
a model that guides us in the definition of what is to be 
considered usual or not, as well as an algorithm that al-
lows efficient scanning of the entire collection of geno-
types. The rest of this section is devoted to the description 
of such model and the summary of the results of its ap-
plication to our dataset.

  Interestingly – and reflecting the ambivalence that we 
have already outlined – there is one model that can be 
used both to describe IBD status  [9]  and genomic loss 
status  [15]  along the chromosome of one individual. This, 
combined with a formalization of the genotype generat-
ing mechanism, provides a useful tool to analyze our data 
and identify interesting homozygous segments. Consider 
data from one individual and let m be the total number 
of markers on a chromosome (different chromosomes 
can be considered as independent realizations of the same 
process). It is useful to introduce a set of hidden variables 
 �  = { �  i } m 

 i = 1  that indicate the IBD (or loss) status of the 
individual at the positions corresponding to each of the 
m markers on a chromosome:  �  i  = 0 indicates no IBD (no 
genomic alterations) at the location of the  i -th marker and 
 �  i  = 1 indicates IBD (or an alteration). Leutenegger et al. 
 [9]  described the joint distribution of { �  i } m 

 i = 1  for an in-
bred individual using a Markov model of order one with 
transition probabilities that depend on the distance  d  i  in 
centimorgans (cM) between marker  i  and  i  + 1. In par-
ticular, we have the following transition matrix:

( ) ( )
( ) ( )
( )( )( )( )
( ) ( )
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� � � �

� �

� �

 (3)

  where the parameter  �  corresponds to inbreeding coef-
ficient and  �  is related to the number of meiotic steps 
separating the two chromosomes from their most recent 
common ancestor. Newton and colleagues  [10, 18]  used 
the same model to represent the genomic instability of 
cancer cells, with  �  indicating the sporadic loss rate, and 
the parameter  �  modelling the dependency among the 
 �  i s. 

   In order to link the unobserved variables  �  with the 
observed genotypes  X  = { x  i } m 

 i = 1  both Leutenegger et al. 
 [9]  and Wang et al.  [15]  used a hidden Markov model 
framework. The genotype  x  i  has four possible values:  AA , 
 Aa ,  aa , –, with – indicating missing data. In the HMM, 
conditional on  �  i , the probability of the four possible val-
ues of  x  i  is independent of the genotype values at the oth-
er markers and of the values of  �  j  with  i   0   j . If  �  i  = 1, we 
expect a homozygous genotype (modulo genotyping er-
ror), while if  �  i  = 0, all the genotypes are observed accord-
ing to their population frequencies. According to the 
HMM terminology, then, we have the following emission 
probabilities:
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  where  p  A  i  is the frequency of allele  A  for the  i -th marker 
and  �  is the missing rate.

  While the genotype model in (4) was adequate for the 
marker density considered in the studies of Leutenegger 
et al.  [9]  and Wang et al.  [15] , it is not for the high den-
sity data we collected on chromosome 22. The average 
inter-marker distance in our data-set is such that we ex-
pect nearby markers to be in linkage disequilibrium (and 
indeed we observed this to be the case in the analysis of 
the previous section). Model (4) assumes, instead, mark-
ers to be in linkage equilibrium, and applying it to our 
data would result in an excess identification of IBD/loss 
regions. In order to develop an effective screening tool for 
homozygous segments, we then modified model (4) to 
take into account linkage disequilibrium.  Figure 5  gives 
a graphical illustration of the original HMM model (a) 
and of our generalization (b). For conceptual and com-
putational simplicity, we limited ourselves to a descrip-
tion of linkage disequilibrium that relies on a first order 
Markov model (see later discussion). The genotype  x  i , 
conditionally on  �  i , depends also on the genotype values 
of the immediate neighboring markers  x  i–  1 ,  x  i  +1 , and ac-
tually, the specific form of this link is determined by the 
values of  �  i  –1  and  �  i  +1 . Conditionally on ( �  i ,  �  i  –1 ,  �  i  +1 , 
 x  i  –1 ,  x  i  +1 ), the genotype  x  i  is independent of every other 
value of  X  and  � . We can describe the joint probability of 

the entire sequence  X , by specifying  Pr ( x  i   �   x  i   – 1 ,  �  i   – 1 ,  �  i ) 
(which we will denote  e ( x  i   �   x  i   – 1 ,  �  i   – 1 ,  x  i )) – as illustrated 
by the arrows in  figure 5  (b). These probabilities are de-
fined combining two elements: the expectation of a ho-
mozygous genotype when  �  i  = 1, and the dependence be-
tween alleles at neighboring markers on the same chro-
mosome according to a Markov model of order 1. To 
indicate the precise form of these modified emission 
probabilities, we need to introduce some notation. Let us 
indicate with   AA   the haplotype consisting of alleles  A  at 
marker  i  – 1 (succinctly  A  i   – 1 ) and allele  A  at marker  i  
(succinctly  A  i ). The population haplotype frequency at 
the two markers can then be written out as:
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  To fix ideas, let’s exclude for the moment the possibil-
ity of genotyping error and missing data, and consider 
the case when  �  i   – 1  =  �  i  = 1: the genotypes x i   – 1 ,  x  i  are 
homozygous and represent the alleles at two neighboring 
markers on the same chromosome, so that given  x  i   – 1 , the 
value of  x  i  is determined by the conditional population 
frequency of alleles at marker  i  given the observed allele 
at marker  i  – 1. We then have:
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  Fig. 5.  Hidden Markov Models. Each filled 
square represents the hidden state  �  i  at 
SNP i, red squares correspond to  �  i  = 1, 
blue squares to  �  i  = 0, and each circle rep-
resents the genotype  x  i . The arrows denote 
the dependence relationships of the HMM. 
Panel ( a ) gives an illustration of the stan-
dard HMM. The next hidden state only de-
pends on the previous hidden state, and 
the genotype at each SNP only depends on 
the hidden state of that SNP. Panel ( b ) is an 
illustration of our generalized HMM. The 
hidden state still preserves the property of 
a Markov chain, while the genotype of a 
SNP depends not only on its hidden state, 
but also on the hidden state and the geno-
type of its previous SNP. 



 Homozygosity and LD in High Density 
Genotyping 

Hum Hered 2006;62:175–189 183

  We can then introduce a probability  �  of genotyping 
error and  �  of missing data. If we assume that, in presence 
of genotyping error, alleles are independent and observed 
according to their population frequencies, one obtains 
the following expressions for the conditional probabili-
ties of the genotypes  x  i  given  �  i   – 1  =  �  i  = 1 (that can be 
used to define the appropriate  e ( x  i   �   x  i   – 1 ,  �  i  =  �  i   – 1  = 1)): 
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     Replacing  A  with a in  p ( x  i   �   x  i   – 1  =  AA ) will generate prob-
ablities  p ( x  i   �   x  i   – 1  =  aa ). Note that  p ( x  i   �   x  i   – 1  =  Aa ) is ac-
tually the marginal distribution of  p ( x  i ), which is a func-
tion of allele frequencies of the  i -th marker. This will be 
the case no matter what the values of ( �  i   – 1 ,  �  i ) are. When 
 x  i – 1  = –, the genotype probability distribution of  x  i  is the 
marginal. 

   Let us now consider how the expression above would 
need to be modified for other values of  �  i   – 1 ,  �  i : in the 
case where  �  i   – 1  =  �  i  = 0, there are two haplotypes 
 contributing to the genotype; when  �  i   – 1  = 0,  �  i  = 1 or 
 �  i   – 1  = 1,  �  i  = 0, only one chromosome contributes alleles 
at both markers. The probabilities  e ( x  i   �   x  i   – 1 ,  �  i   – 1 ,  �  i ) 
that can be derived taking into account these observa-
tions and the haplotype distribution (5) are given in the 
appendix.

  Given our modified emission probabilities, our model 
no longer has precisely the structure of a HMM; however, 
it is still possible to evaluate the probability of the entire 
genotype sequence  X  using a recursive algorithm. For 
analogy with the HMM literature, we refer to forward 
and backward algorithm to indicate the two recursions 
that can be defined on our model.

  Forward algorithm:
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  with initial conditions:
   � ( �  1  = 1) =  P ( x  1   �   �  1  = 1) P ( �  1  = 1) = e( x  1   �   �  1  = 1) � 
   � ( �  1  = 0) =  P ( x  1   �   �  1  = 0) P ( �  1  = 1) = e( x  1   �   �  1  = 0)(1– � )

  Backward algorithm:
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  with initial conditions:
   	 ( �  m  = 1) =  	 ( �  m  = 0) = 1

  With  � () and  	 () defined as above, we also obtain other 
expressions that are typical of HMM:

   P ( X ,  �  i ,  �  i   + 1 ) =  � ( �  i ) 	 ( �  i   + 1 ) t ( �  i   + 1   �   �  i ) e ( x  i   + 1   �   x  i ,  �  i ,  �  i   + 1 )

  and 

      P ( X ,  �  i ) =  � ( �  i ) 	 ( �  i ).

  These similarities with the HMM formulation allow us 
to calculate efficiently the probability of a genotype se-
quence  X  and to reconstruct with a Viterbi style algorithm 
the unobserved values  � . The portion in the genomes 
where  �  i  = 1 correspond to ‘interesting’ homozygous seg-
ments: that is, when the data is evaluated taking into ac-
count allele frequency and linkage disequilibrium (even 
if in a quite minimal form) these regions appear as IBD or 
subject to genomic losses. As we have already pointed out, 
it is impossible to distinguish between these two phenom-
ena on the basis of the genotypes of one individual alone; 
however, this is not our goal here. We are simply aiming 
at defining an algorithm that processes genotypes of one 
individual and highlights interesting homozygous seg-
ments. These can be due to IBD status, genomic loss, se-
lection, or even linkage disequilibrium patterns that are 
not well described by a Markov model of order one, but 
rather imply much longer range dependence. To see how 
the described model can be used with this purpose, we 
need to clarify how we specify the parameter values. 

   We assume that the values of  �  and  �  are obtained by 
prior genotyping studies conducted using the same tech-
nology. The collection of two-marker haplotype popula-
tion frequencies (5) is obtained from the genotype data 
using a standard EM algorithm. Once these parameters 
have been fixed, we estimate – for each individual –  �  and 
 �  using a maximum likelihood approach. The numerical 
optimization is performed using a gradient algorithm de-
scribed in the appendix.

  Applying the algorithm to the dataset, we are able to 
identify the regions of non-random homozygosity (NRH) 
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in each of the individuals in the 12 populations.  Table 1  
illustrates some summary statistics across populations. 
We report the five number summaries of the NRH seg-
ments lengths, and the proportion of chromosome 22 on 
which they span in each individual. (A more accurate de-
scription of the distributions of these two quantities is 
available in the supplementary material). In terms of pop-
ulation comparisons, the Finnish isolate (FIK) and the 
Finnish cohort sample (which include individuals from 
isolate) (FIC) show the longest and most frequent NRH 
segments. This is consistent with the higher values of LD 
in FIK, as measured both here and in Service et al.  [4] . 
The nature of this analysis is substantially exploratory 
and hence we do not claim that differences between the 
distributions illustrated in  table 1  are statistically signifi-
cant. This question can be addressed with appropriate 
confirmatory techniques; a first step in this direction is 
provided in the supplementary material.

  Once the regions of NRH are reconstructed, it is of 
interest to try to interpret what genetic process contrib-
uted to their formation. The first hypothesis we consid-
ered is inbreeding. The Costa Rica population, for which 
we had careful genealogical records, offered an ideal test 
case. A total of 6 individuals were known to have posi-
tive – albeit small – inbreeding coefficient. Our algo-
rithm estimated a positive  �  for each of them, and a like-
lihood ratio test, whose significance was evaluated with 
simulations, rejected the hypothesis  �  = 0 for all cases. 

These results testify that our methodology can effec-
tively detect inbreeding. However, the distribution of 
the estimated values of  �  in CR, as well in the other pop-
ulations, makes it unrealistic to attribute to inbreeding 
the bulk of the detected NRH segments: there are too 
many  �   1  0 and too large values of  �  for these to be due 
only to previously undetected inbreeding. For example, 
 figure 1  presents some individuals that are homozygous 
for as much as 30% of their genotypes. This distortion 
could be due to the fact that we are observing a small 
fraction of the entire genome of these individuals, but it 
is also important to explore other possible causes of 
NRH.

  Chromosome 22 is known to harbor one of the most 
well-studied microdeletions: a deletion on 22q11.2 is 
known to generate susceptibility to DiGeorge  [19]  and 
velocardiofacial  [20]  syndromes and has been associated 
to schizophrenia  [21] . It was then natural to investigate 
the possibility that some of the genotyped individuals 
harbored a deletion in this region. We did not find, how-
ever, any evidence of this. A few individuals from the 
Costa Rica showed a NRH region overlapping 22q11.2, 
but when we inspected the raw intensity values of the ge-
notyping reaction, we saw no evidence of deletion. More-
over, it is worth emphasizing that the NRH segments we 
identify are generally quite long: shorter segments as the 
ones resulting from a microdeletion may not be judged as 
interesting by our methodology, as their length is entire-

Table 1. The 5-number summary of length of NRH segments (cM) and overall percentage of the chromosomes 
covered by NRH segments in the 12 populations

NRH segment length (cM) NRH chromosome proportion

1st Qu. median 3rd Qu. max. 1st Qu. median 3rd Qu. max.

azo 0.0000 0.1473 0.4665 23.63 0.0043 0.0129 0.0276 0.2565
fip 0.0000 0.2272 0.5752 39.36 0.0059 0.0148 0.0299 0.5522
ant 0.0563 0.2885 0.6546 24.24 0.0071 0.0162 0.0304 0.4694
ash 0.1057 0.2892 0.6324 7.937 0.0068 0.0142 0.0258 0.1086
erf 0.0327 0.3164 0.6565 20.90 0.0063 0.0153 0.0299 0.2268
nfl 0.1290 0.3164 0.6325 20.97 0.0061 0.0108 0.0222 0.2471
cau 0.1966 0.3621 0.6888 9.186 0.0064 0.0160 0.0270 0.0997
sar 0.1422 0.3661 0.8127 25.10 0.0077 0.0158 0.0319 0.3042
saf 0.1667 0.3687 0.7266 17.00 0.0062 0.0131 0.0231 0.3167
cr 0.1962 0.4219 0.7171 19.54 0.0057 0.0169 0.0326 0.2685
fic 0.2800 0.4845 0.8968 12.14 0.0095 0.0184 0.0334 0.1473
fik 0.2651 0.5168 1.0370 22.90 0.0083 0.0197 0.0431 0.2645

We do not display the minimum values of the NRH segments and overall percentages in the 12 populations 
in the table because they are all zeros.
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ly comparable to that of random homozygosity segments 
that are found all over the genome.

  Segment of NRH could reflect the action of selection. 
In such case, we would expect NRH segments to occupy 
roughly the same genomic location in different individu-
als. To explore this possibility, we tallied, within each 
population, the proportion of individuals whose geno-
types were interpreted as NRH at each genomic position. 

The results, presented in  figure 6  revealed a consistent 
pattern across populations: while there are some specific 
population differences, these may very well be attributed 
to sample variation and are much less striking than the 
overall consistency. There are clearly two regions on chr 
22 where NRH is prevalent: between 26 and 31 Mb and 
38 and 41 Mb. These are comparatively gene rich regions, 
with, respectively 38 and 36 genes per Mb, versus the 20 
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  Fig. 6.  Localization of NRH regions across 
populations. For each population, we eval-
uated the proportion of individuals that 
exhibit NRH at each SNP. The average of 
these proportions across a 1.7 Mb sliding 
window is plotted against the position of 
the window center, with the x axis repre-
senting the length of chromosome 22. 

0.02

0.08

0

0.2

0.4

0.6

N
RH

 a
n

d
 L

D

D�

R2

Hvol
NRH

15 20 25 30 35 40 45

Location in Mb
50

  Fig. 7.  Relation between NRH regions and 
patterns of linkage disequilibrium in Cos-
ta Rica.  D  � ,  R  2 ,  Hvol  and NRH proportions 
are represented, respectively, with a solid 
black, a solid red, a broken blue, and a bro-
ken green line (curves are obtained as in 
previous pictures). The heat-colored bar at 
the bottom displays the known gene den-
sity on chromosome 22, as obtained aver-
aging information from the UCSC genome 
browser within 1.7 Mb sliding windows. 
On the top of the picture, a smoothed de-
rivative of the genetic map of Chr. 22. 



 Wang/Lin/Service/Chen/Freimer/Sabatti    Hum Hered 2006;62:175–189186

genes per Mb of chr 22 as a whole. This is consistent with 
the hypothesis of selection playing a role in determining 
these NRH segments. However, there is one more possi-
ble reason for the aggregation of these NRH segments 
that we need to explore.

   Figure 7  illustrates the relation between patterns of 
NRH and linkage disequilibrium. For clarity we have fo-
cused on the sample from one population only – Costa 
Rica – but the results are consistent across populations. As 
it can be seen, the regions of high density of NRH corre-
spond very well with the regions of high LD. Recall that 
our methods for the identification of NRH takes into ac-
count LD in as much as it can be modeled with a Markov 
process of order one. Effects of higher order LD are not 
incorporated in the model and hence could lead to the 
identification of NRH segments: these would be signatures 
of long range linkage disequilibrium.  Figure 7  clearly 
seems to suggest this to be the case. Linkage disequilibri-
um can indeed be caused by the effect of selection, how-
ever, it is interesting to note how this pattern correlates well 
also with variation in recombination fraction across chro-
mosome 22, as captured by the genetic map and illustrated 
in  figure 7 . This suggests that the high LD due to low re-
combination may suffice to explain a large portion of the 
NRH regions. A similar finding was recently reported by 
Gibson et al.  [22]  in an analysis of hap-map data.

  4 Conclusion 

 Homozygosity is a very natural genetic concept. We 
illustrate here how it can be constructively used to mea-
sure linkage disequilibrium, as well as a first pass detec-
tion tool for other genetic phenomena.

  A number of studies have recently noted the presence 
of long stretches of homozygous markers in highly dense-
ly genotyped individuals. We provide a model and an al-
gorithm to identify such segments characterized by non-
random homozygosity. Our analysis of 12 population 
samples comprising 200 individuals each genotyped at 
2,500 markers on chromosome 22 suggests that the vast 
majority of these NRH segments is due to linkage dis-
equilibrium, that could result from selection effects, but 
that is actually well correlated with variation in recombi-
nation frequency. Caution has to be used, then, when ho-
mozygous haplotypes are used to estimate inbreeding or 
localize disease genes, that an accurate consideration is 
given to the specific linkage disequilibrium levels.
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  Appendix: The IBD Reconstruction Model and 
Algorithm 

 Model with Differential Probabilities of Missing Genotype 
 In the main text, in the interest of readability, we have consid-

ered only one missing rate. However, it is quite reasonable to as-
sume that the probability of a missing genotype depends on the 
hidden status  � , at least when this indicates genomic alterations. 
To accommodate this case we have considered a model with dif-
ferential missing rate  �  for genotypes corresponding to  �  i  = 0, and 
 
  for genotypes corresponding to  �  i  = 1. In the detailed descrip-
tion of our model and algorithm that follows we will use these two 
differential missing rates. As in the main text,  �  is assumed as 
given (estimated on the base of prior data), while  
  is estimated 
with maximum likelihood.

  Modified Emission Probabilities 
 Below we list under different hidden states, the emission prob-

abilities of the genotypes.

  When  �  i  –1  = 1,  �  i   = 1, we have
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  Similarly, when  �  i   – 1  = 1,  �  i  = 0, 
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 MLE and Derivation of the Gradient Algorithm 
 The dataset we analyze consists in the genotypes of multiple 

individuals. Depending on the interpretation that one is willing 
to give to  �  and  �  it may be appropriate to estimate a separate 
value of these parameters for each individual or a single value for 
the entire population. In particular, if inbreeding is perceived as 
the most likely cause of extended segments of homozygosity, it is 
important to estimate a subject specific value of the two param-
eters describing the distribution of the unknown states, as every 
individual will have his/her own inbreeding coefficient. If, in-
stead, the genotypes under analysis come from cancer cell lines, 
so that the most likely cause of extended homozygous segments 
is genomic loss, it may be more appropriate to estimate only one 
value of the parameters describing the loss process across all in-
dividuals. The gradient algorithm we describe can be easily adapt-
ed to both cases. As specified in the main text, to analyze our data 
we estimated individual specific values of  �  and  � . Generally 
speaking, when one decides to use the model with differential 
missing rate, the value of  
  should be assumed constant across 
individuals. We now give the details of the gradient algorithm.

  When the hidden state  �  = ( �  i ) is known, the likelihood is
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 The derivation of the first derivatives of the parameters are 
similar to the non-LD case:
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  The gradient algorithm to maximize  � ,  � ,  
  is as following,  t  is the 
time, and  �  is the step size.
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  These partial derivatives are additive, and the gradient algo-
rithm can easily be extended to cases with multiple sequences 
where the  �  and  �  are the same for the entire population. Suppose 
we have  j  = 1, …,  n  independent sequences, each with length  m  j , 
and we denote each of them by  X  j . Then the gradient algorithm 
becomes: 
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